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Status and Perspectives of Liquid Argon Calorirneters 

ABSTRACT 

The status of liquid argon calorimeters is reviewed, and experience ob

tained with these devices is described. Future perspectives of the li

quid ionization charnber technique in calorimetry are also discussed. 

Stand und Perspektiven von Flüssig-Argon Kalorimetern 

ZUSAMMENFASSUNG. 

Es wird eine Übersicht über den Stand der Flüssigargon-Kalorimeter gege

ben und über Erfahrungen mit diesen Nachweisgeräten berichtet. Ebenso 

werden die zukünftigen Möglichkeiten der Flüssigionisationskammer beim 

Einsatz in Großkalorimetern diskutiert. 

Invited talk at the II. Pisa Conference on Advanced Detectors, 

June 3-7, 1983 
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1. INTRODUCTION 

Since the liquid argon ionization chamber was introduced into high ener

gy calorimetry by Willis and Radekal) about 10 years ago, several groups 

have applied this new detector technique. Starting from test devices rna

ny calorimeters have been developped up to large scale 4TI detectors in 

storage ring experiments. The first experiments using LAr calorimeters 

have already been completed, and it is therefore a good rnoment to review 

the experience and the performance obtained with this technique. 

A compilation of all calorirneters used in experiments so far is given in 

Table 1. The first three have finished data taking, whereas the large 

detectors at the storage rings PEP and PETRA are continuing, and the 

MARK II calorimeter is approved for the SLC physics programrne. _Apart 

from a few test devices for hadron calorimetry (among which the farnaus 

Uranium calorimeter of C.W. Fabjan et al.
8 )), all devices built so far 

are electromagnetic calorimeters. So I will concentrate mainly on these. 

TABLE 1 : Electromagnetic Calorimeters in Experimental Detectors 

Lab. Ref Experiment Pb Weight LAr Valurne No. channels 

CERN-I SR 2 Willis, Fabjan 8 t 1.500 Q, 600 
CERN-SPS 3 Geneva-Lausanne 2 ·t 3.000 9, 220 
Fermilab 4 Rochester-FNAL 2 t 3.000 9, 800 
PEP 5 MARK II 20 t 8.000 9, 3.000 
PET RA 6 Tasso 26 t 10.000 Q, 14.800 
PET RA 7 Cello 36 t 30.000 Q, 11.000 

2. ELECTROMAGNETIC CALORIMETERS 

In all calorimeters the sampling technique was used, i.e. the cascade of 

shower particles is absorbed in a stack of plates of dense material, and 

only part of the released ionization charge is detected by the liquid 

argon in the gaps between. The energy resolution of such a calorimeter 

is usually parametrized by the sum of three terms, which depend diffe

rently on the incoming particle energy E: 

(d0/E)
2 

( 1 ) 
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- Term A reproduces the sampling fluctuations caused by the undetected 

energy, which rests unseen in the inert absorber plates. 

- Term B represents effects like electronic noise, electronic pick-up in 

a high intensity environment, and material in front of the active ca

lorimeter. It contributes mainly at low energies below 1 GeV. 

- Term C is due to wrong intercalibration between individual channels, 

mechanical inhomogeneities in the stack construction, malfunctioning 

channels, etc. It contributes at high energy, starting typically 

around 20 GeV. 

The resolution achieved by different calorimeters varies, but typical 

para~ters obtained are: A ,...., 7 ... 10%, B ,.... 20%, C ....., 1 •. 2% wi th E ex

pressed in GeV. 

Let us look in more detail into the sampling fluctuations, which usually 

represent the most relevant contribution. Table 2 gives a compilation of 

several calorimeters tested up to now and their energy resolution. The 

first nine devices use lead plates as converters, followed by two iron 

calorimeters, and the last calorimeter uses aluminium as absorber plates. 

It was recently tested by an IHEP/Pisa group at the Serpuchow accelera

tor. 

For interpretation of the experimentally found resolution, the EGS Monte 

Carlo code of Ford and Nelson 12
) should be consultated. But for a quick 

estimate, a reasonably good estimate for the sampling fluctuations can 

b bt . d f 11 . ., . . 13 ) f h fl t t' e o alne o ow1ng Rossl s approxlmatlon B o s ower uc ua 1ons 

in the following way: Due to the sampling method the total deposited 

energy E is cut into N small energy buckets 6E, where 6E is the energy 

loss in one sampling step, i.e. in the inert and the adjacent active 

layer. Assuming the energy buckets to be statistically independent and 

applying Poisson statistic one obtains: 

da 

E 

1 

IN 
ßj_ 

E 

This rough estimate has to be refined for real calorimeters by taking 

into account two effects: 

(2) 

a) Experimentally the electrons and positrons in the cascade are detec

ted in the active layer only above a certain threshold energy, which 
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TABLE 2: Energy Resolution in LAr Test Calorimeters 

Sampling Step do/IE (%) 
Authors, Group Ref. Cell (mm) 

X ßE (MeV) Test Formula Ratio 
0 

Hi tlin (SLAC) A 9 1 Pb/2 LAr .18 1. 70 6.5 6.6 .98 

Hi tlin (SLAC) B 9 22 Pb/4 LAr .42 3.66 9.5 9.6 .99 

Asano (Tsukuba, 10 2 Pb/2 LAr .37 2.98 9.6 8.7 1.10 
Tokyo) 

Mühlemann 3 1 Pb/4 LAr .23 2.76 8.0 8.4 .95 
(Geneva) A 

II II B 3 2 Pb/8 LAr .46 5.52 12.0 11.9 1.0 

Tasso 6 2 Pb/5 LAr . 39 3.62 10.0 9.6 1.04 

Cello 7 1.2 Pb/3.6LAr .24 2.3 9.0 7.7 1. 17 

Mark II 5 2 Pb/3 LAr .38 3.2 10.8 9.0 1. 20 

Nelson(FNAL) 4 2 Pb/2 LAr . 41 3.3 10.3 9.2 1. 12 

Fabjan ,Willis 8 1.5 Fe/2 LAr . 10 2. 16 6.9 5.2 1. 32 

Asano B 10 2 Fe/2 LAr .13 2.74 6.1 5.9 1.03 

Sergiampietri 11 1 Al/3 LAr .033 1.07 3.6 3.4 1.06 
(IHEP) 

in shower theory is normally called the cut-off energy E . This redu
c 

ces the total available energy by a fraction F = F(E /E), which de
c 

pends on the ratio of E to the cri tical energy E of the absorbing 
c 

material. In our case of a LAr ionization chamber, a reasonable guess 

for E is the energy loss of a rninimum ionizing particle in a single 
c 

LAr gap. 

b) The lateral spread of the shower entails that the effective sampling 

thickneB?. traversed by the particles increases by 1/<cos8>, where 

<cos8> is the rnean angle of all particles with the shower axis. 

Taking into account these two effects, we can write for the sampling 

fluctuations 

do 
E 

j 6E 
F•<cos8> • E 

( 3) 

A good parametrization for F and <cos8> has been given by U. Amaldi
14

) 
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at the Uppsala Conference. Both factors are nearly unity for light ele

ments like Al and become smaller than 1 for high Z materials. The agree

ment of formula (3) with the experimental findings is very satisfactory 

as can be seen by comparing column 4 and 5 in Table 2. The ratio scat

ters araund unity. 

The resolutions given in Table 2 were obtained under test conditions, 

that means only a limited number of channels was used and measurements 

were performed for relatively short periods of beam time. Meanwhile the 

large detectors have accumulated data for several years, and we can 

compare the test results with the resolutions obtained under lang term 

experimental conditions. This is demonstrated in Table 3, where in co-

TABLE 3: Performance of LAr Calorimeters under Experimental Conditions 

Detector 

FNAL Photon Cal. 
(Nelson et al.) 

Geneva Photon Cal. 
(Mühlemann) 

ISR Photon Cal. 
( Cobb et al.) 

PETRA Detector 
TASSO 

CELLO 

PEP Detector 
MARK II 

Calibration Method 
(Energy Range) 

e+ from 

e - beam 

e beam 

Bhabha 

Bhabha 

Bhabha 

ke
3 

(15.70 Ge V) 

( 6 GeV) 

(. 75-4 GeV) 

( 17 GeV) 

(17 GeV) 

( 2 GeV) 

Test 

10.3 

12 

8 

10 

9 

10.8 

dO/vE (%) 

Experiment 

14 

15 

10 

16 

11+1.8/E 

11.5 

lumn 3 and 4 test resul ts are given .together wi th the final experimental 

findings .. Th'e method of calibration used during the experiment is gi ven 

in column 2. One observes that usually the energy resolution becomes 

worse by two to three per cent. This deterioration is attributed mostly 

to non-responding channels and to uncertainties in the intercalibration 

system. 

A further deterioration shows up for complex event pattern or in a high 

intenstty environment, where problems of overlapping showers have to be 
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encountered. The effect depends very much on the individual experimental 

condition and on the layout of the longitudinal and lateral segmentation 

in the calorimeter, i.e. the strip or pad structure. How important this 

effect can be, is demonstrated in Fig. 1, which shows a result from the 
4) + + 0 FNAL photon calorimeter . In the decay of K ~ e TI v three showers have 

to be disentangled. The energy resolution found for the positrons, which 

arealso magnetically analyzed, is worse by roughly a factor 1.5 as com

pared to a single electron calibration beam. 

0 

t 

50 GeV 
.~ELECTRON 

-

GAUBRATION -

I I I I 

20 40 60 80 
POSITRON MOMENTUM 

(GeV/c) 
35967 

3. HADRON CALORIMETERS 

Fig. 1: 

Energy Resolution for Positrons from 
ke 3 Decay as obtained in the FNAL 
Calorimeter (Ref. 4) 

Up to now only test calorimeters were built, and LAr hadron calorimeters 

have not been used in experimental detectors. This might change in the 

future, because of the nice property of a liquid ionization chamber be

ing insensitive to radiation damage. I will not comment on the well

known Uranium calorimeter of Willis and Fabjan
8

) but restriet myself to 

rnention two iron calorimeters. Both used thin plates, the CERN calorime

ter 1.5 mm·Fe and the FNAL calorimeter of A.L. Sessoms et a1.
15

) 3 mm Fe. 

The outcome of the combined data is that the energy resolution is not 

consistent with a simple 0/E ~ A/IE dependence. This was confirmed by a 

Monte Carlo calculation of T.A. Gabriel et al. 
16

), performed wi th the 

HETC Oak Ridge code up to 250 GeV hadron energy. The energy resolution 

of the experimental data can be pararnetrized as follows (up to 38 GeV): 
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dO/E 8.5% + 28%/IE ( 4) 

Including the M.C. points (up to 250 GeV) one rather obtains 

dO/E = 5% + 33%/IE (5) 

4. EXPERIENCE WITH LAr CALORIMETERS 

4.1 Cryostat and Cryogenics 

Here we have a typical threshold effect. Groups which started with this 

new technique had to learn, but once farniliar with the system all groups 

unanimously report of having encountered no lang term difficulties. As 

an ex9mpie, the CELLO calorimeter had to be warmed up and moved out bf 

the bearn. All stacks were completely rewired and cooled down again with

out problems after one year. When the LAr was filled back again, the sa

me electrical pulse height was observed as compared to one year ago. 

4.2 LAr Purity 

None of the groups has complained about any problern with oxygen contarni

nation. The purity is reported to stay always below 1 ppm for a merely 

infinite lang time. However, several groups have reported about charges 

of liquid argon delivered from industry, which gave all of a sudden a 

reduced signal output, probably due to an unknown impurity in the liquid. 

Recently TASSO observed such a decrease of 30 -50% when they changed the 

delivering company for liquid argon. Whether the argon is contaiminated 

during fabrication or during transportation is an open question. The 

best remedy is to check the arriving liquid in a small test chamber. 

4.3 High Valtage and Electronics 

Up to 10 kVolt/cm usually no problems are encountered, provided the li

quid is perfectly clean (probably passed through filters) and all the ma

terials us~p in the cryostat, as e.g. the electrode surfaces, are resis

tant to shocks during the cool-down phase. Lost channels due to high val

tage short circuits can be kept at a very low level. The FNAL photon ca

lorimeter reports a lass of less than 1%, TASSO and CELLO have typically 

0.5%. 

The calibration is normally stable within less than 1% for many months, 

as is reported by the experimental groups. 
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Special care, of course, is needed when seeting up and maintaining the 

sensitive low noise amplifier system. Problems with ringing and pickup 

is a function of the conscientiousness of the responsible physicists. 

Both effects are especially troublesome in a trigger system, but can be 

mastered. At CELLO a single photon trigger operates with a threshold of 

2 GeV photon energy at a trigger rate of about 0.5/sec. 

5. NEW DEVELOPMENTS 

High counting rates are a certain limitation for liquid ionization cham-
1 7) 

bers due to the slow drifttime of ~ 200 nsec/mm. Muhlemann and Tavano 

have shown that with 1% admixture of methane the drifttime can be redu-

ced to 80 nsec/mm without losing in pulse height for the signal of a 

minimum ionizing particle. But up to now, methane was not used in any of 

the large detectors. 

How well, on the other hand, a timing can be achieved has been demanstra-

t d b th h l . 4 ) l . f 6 ld b e y e FNAL p oton ca or~meter . A reso ut~on o a = nsec cou e 

obtained as shown in Fig. 2. 

1000 

500 

100 

50 

o-~6ns 

PT 2-3 GeV Je 

E:2:l with directionality 
cut 

PT 3-4 GeV/c 

PHOTON TIME ( ns) 35966 

Fig. 2: 

Time Resolution in the FNAL 
Calorimeter for Photons (Ref. 4) 

An interesting possibility of read-out was investigated at Orsay by D. 

Fournier and coworkers
18

). They tried to read out the ~harge on both 

electrodes, the high valtage as well as the ground side. In this way the 

same signal can be obtained on different geometrical patterns, e.g. 
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strips on one and pads on the other electrode or strips with different 

orientations. A very good pulse height correlation was found, which in 

practice is lirnited only by the electronic noise, and this strong corre

lation helps to resolve arnbiguities in pattern recognition. 

6. FUTURE PERSPECTIVES 

There are three new proposal·s to use LAr calorirneters in experirnents: At 
0 

CERN the CP violation experirnent for neutral decay of K , at Serpuchow 
L,S 

the 300 ton neutrino detector, and at TRISTAN the Venus detector, which 

intends to use LAr calorirneters in the end caps. For LEP detectors, LAr 

calorirneters have been disregarded, mostly because of space· problerns in

side rnagnetic coils. 

At several places interesting developrnents are going on to use the liquid 

argon as homogeneaus detectors with application rnainly in neutrino phy

sics or for rare decay experiments. 

6.1 Homogeneaus Calorirneters 

In a homogeneaus calorimeter the electrodes have tobe nearly rnassless. 

This can be realized by large gap distances which rneans long drifttirnes. 

H eh d k 
19 ) . h . . . t d . d t . l th · en an cowor ers at Irv1.ne ave 1.nvest1.ga e 1.n e ··a1. e cor-

responding problerns of purification down to the ppb level oxygen equiva

lent. They obtained an attentuation length of A ~ 55 crn at a reasonably 

low electrical field of 1.6 kV/cm. Thus, if care is taken, a liquid ar

gon time projection chamber seerns to be feasible. 

Avoiding the problern of electron attachrnent, the Pisa group has. run the 

IHEP/Pisa calorirneter not in the usual charge integration rnode but in a 
20) 

current rnode . They use only the first current after the particle has 

passed through the calorirneter and do not collect the later arriving io

nization charges. The gap distance used was 28 rnrn between 1 rnrn alurninium 

electrodes. For 36 GeV electrons an energy resolution of cr/E 0.85% was 

rneasured and with the bearn spread unfolded cr/E = 0.78%. This is, as an 

absolute value, the best ·resolution ever obtained in a liquid argon ca

lorimeter. 
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6.2 Scintillation Light 

An interesting extension for calorimetry is to use the scintillation 

light in addition to charge collection. Since lang the noble gases are 

known tobe perfect scintillators (see for instance T. Doke
21

)). Unfor

tunately, the light is in the far ul tra-violet, for argon at 1 2'5 nm. But 

it can be efficiently used, e.g. for trigger purposes. 

A 50 tons liquid argon ball acting as a homogeneaus calorimeter is under 
+ + investigation to study the rare decay of K + TI V by M. Ferro-Luzzi and 

coworkers
22

) at CERN. Both the ionization charge and the scintillation 

light are used. the latter serving to trigger on the successive decay of 

the pion. A similar detector is under study for neutrino physics at the 
23) 

Neutron Spallation Source at Rutherford Labaratory . 

6.3 Argon BubbleChambers 

The feasibility of a LAr bubble chamber is investigated at CERN by Rari

gel and coworkers
24

) and also at FNAL to be used in neutrino physics. 

Transparent wire electrodes are supposed to collect the charge operating 

the total argon volume as a calorimeter. In addition, the scintillation 

light is used to trigger the chamber optics. 

A solid argon and neon calorimeter has been developped at Ecole Poly

technique by Brisson et a1. 25 ) and was successfully tested in a low in

tensitiy beam at CERN. It is intended to be used at the downstream side 

of BEBC filled with H
2 

to detect electrons and photans in neutrino events 

events. No problems with pulse height reduction due to positive ion 

shielding were observed for particle fluxes below 4 particles/cm
2 

sec. 

6.4 Warm Liquids 

Often the question is raised why only argon can be used in a liquid io

nization c~amber. The problern is electron attachment: Most liquids are 

electrical polar. An electron liberated in the ionization process is im

rnediately caught by a molecule forming a negatively charged molecule, 

which moves too slowly and is thereby lost for charge collection. Only 

the noble gases Ar, Kr and Xe are non-polar and all the ionization char

ge can be collected. Among the rnolecules roethane is reasonably polar due 

to its tetrahedral structure, but unfortunately it is also cryogenic. 

There exist rooro ternperature liquids with a super methane structure, na-
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mely a four valent element in the centre of a tetrahydron and four me

thyl radicals araund it: X(CH
3

)
4

. Among the existing molecules with X 

C, Si, Ge, Sn, and Pb, the liquids with Si and Sn seem to be the most 

promising ones from technical point of view. At Karlsruhe a test chamber 

with tetramethyl-silane is operating. At a valtage of 20 kV/cm a charge 

output for cosmic muons of 35% as compared to LAr has been obtained. 

We have to wait for the future to see whether there will open up new de

velopments along these lines. Further improvements might show up in this 

new, but by now already 10 years old technique. 
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