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Abstract 

The computer programme BACCHUS implemented at KfK includes a steady-state 

Version, a two-dimensional and a three-dimensional transient single-phase 

flow version describing the thermal-hydraulic behaviour of the coolant 

(sodium or water) in bundle geometry under nominal or accident conditions. 

All Versions are coupled with a pin model describing the temperature dis­

tribution in fuel (or electrical heaters) and cladding. The report des­

cribes the programme from the viewpoints of the geometrical model, the 

mathematical foundations and the numerical treatment of the basic equa­

tions. Although emphasis is put on the three-dimensional version, the 

two-dimensional and the steady state versions are also documented in self­

consistent sections. 

BACCHUS-3D/SP, e~n Rechenprogramm für die dreidimensionale Beschreibung 

der einphasigen Natriumströmung in Bündelgeometrie 

Zusammenfassung 

Das Computerprogramm BACCHUS, das im KfK implementiert ist, enthält eine 

stationäre, eine zwei- und eine dreidimensionale transiente einphasige 

Version zur Beschreibung der Thermohydraulik eines Kühlmittels (Natrium 

oder Wasser) in einer Bündelgeometrie unter Nominal- oder Unfallbedingun­

gen. Alle Versionen sind mit einem Stabmodell zur Beschreibung der Tempera­

turverteilung im Brennstoff (oder dem elektrischen Heizer) und der Hülle 

gekoppelt. Im Bericht wird das Programm hinsichtlich des geometrischen Mo­

dells, der mathematischen Grundgleichungen und ihrer numerischen Behand­

lung beschrieben. Obwohl die dreidimensionale Version im Vordergrund steht, 

werden auch die zweidimensionale und die stationäre Version in sich abge­

schlossen dokumentiert. 
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Introduction 

The three-dimensional version of the computer programme BACCHUS has been 

developed at KFK since the beginning of 1980. The starting point for this 

development were two two-dimensional programmes delivered from the CEN 

Research Centre of Grenoble (France) in the frame of a French-German cooper­

ation. The two programmes were: a) BACCHUS-P /1/, /2/ describing steady 

state s'ingle-phase and two-phase flow of sodium in reactor bundles; 

b) BACCHUS -T /3/ a transient programme version describing sodium single 

phase flow under accident conditions like pump run-down, up to boiling in­

ception. In these programmes only thermal-hydraulic effects were described 

without a fuel pin model. 

Work done at KFK concentrated first to assess the performances of the two­

dimensional transient BACCHUS-T programme by calculating three 7-pin bundle 

out-of-pile experiments performed in the sodium loop (NSK) at the Institut 

für Reaktorentwicklung at KfK /4/. Results of the calculations showed that 

at least in case of rapid transients a pin model was necessary for des­

cribing the temperature distribution in the fuel elements, hence the tran­

sient heat fluxes into the coolant. Therefore, the first programme implemen­

tation consisted in coupling the thermal-hydraulic calculation to a fuel pin 

model, as explained in section C 4. Results of the programme verification 

against bundle experimen ts \vi 11 be shmvn in Part III of this documenta tion. 

Some further programme improvements, concerning the two-dimensional version, 

aimed at accelerating the convergence of the iterative solution for the 

coolant pressure field and are reported in section C 3. 

The largest part of this report is dedicated to the new development of the 

three-dimensional programme version done at KfK. The new programme makes 

use of a different technique for solving the Poisson-like equation describing 

the coolant pressure field, namely the Alternating Direction Implicit (ADI) 

method derived from the original work by Peaceman and Rachford /5/. It offers 

the great advantage of reducing the solution of a three-dimensional problern 

to the solution of simpler one-dimensional problems. However, an iteration 

procedure is still required. The problern of accelerating the convergence of 

the ADI scheme has not yet been dealt with and may be obje,ct of future de­

velopment. Due to the large nurober of cells in the three-dimensional case, 

a numerical solution by a direct method, for instance by a matrix inversion 
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technique, is not efficient with regard to computing time. In the two­

dimensional case, however, a direct matrix inversion method has been incor­

porated as an alternative to the several iteration schemes based on the SOR 

method. It has been found to be superior to the iterative methods because it 

eliminates spurious oscillations in the time and space distributions of the 

dependent variables. 

For the sake of completeness, the two-dimensional programme version, which 

still exists as an independent programme, is also documented in this report 

in a self-consistent section (C 3). 

The two- and three-dimensional BACCHUS programmes are in continuous develop­

ment. This report documents the versions of July 1982. 
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PART I - The physical model and the rnathernatical foundations 

A) Geornetrical rnodel 

We consider separately the geornetrical rnodel adopted for the therrnal-hydrau­

lic calculation and that used for the fuel or electrically heated pins. We 

assurne that the p1ns are arranged on a hexagonal lattice, as shown in Fig. 1. 

1. Therrnal-hydraulic calculation 

1.1 Control volurnes 

The conservation equations describing the sodiurn single-phase flow are written 

first in a local form, then integrated over appropriate control volurnes. Ac­

cording to the ICE technique, explained in section C 2.1, a staggered rnesh is 

used for defining the several dependent variables (cornponents of coolant veloc­

ity, pressure, enthalpy) and correspondingly different cells are used for rnaking 

the rnacroscopic balances. 

With reference to Fig. l, taken frorn reference /2/, we consider the following 

control volurnes. The control cells are bounded in radial direction by planes 

parallel to the bundle z axis through the pin axes. Let 6.r be the dis tance be­

tween the internal and external bounding planes, i.e. the width of the hexa­

gonal ring. Planes perpendicular to the z axis define the following control cells 

of length 6.z in the axial direction: 

Control volurne VI is bounded in axial direction by two planes perpendicular 

to the bundle z axis and a distance 6.z apart, in radial direction by planes 

through the pin axes. This control cell is used for volume-averaging the 

coolant energy equation, and the continuity equation. 

Control volurne VII is obtained by displacing VI by ~r/2 1n radial direction. 

It is therefore bounded in the radial direction by planes parallel to the 

bundle axis passing rnidway between the pin axes. This control cell is used 

for volurne - averaging the radial cornponent of the coolant rnornenturn 

equation. 

Control volurne VIII is obtained by displacing VI by 6.z/2 in axial direction. 

It is used for volurne - averaging the axial cornponent of the coolant rnornen­

turn equation. 
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ITR = 12 

IR=l 

hexagonal 
can 

Fig. 1: Indexing of control cells in radial and azimuthal directions 
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Vn vm 

Fig. 2a 

Fig. 2: Control volumes used for macroscopic balances 

Fig. 2a) Perspective view 

VI for the energy equation 

VII for the radial component of the momentum equation 

VIII for the axial component of the momentum equation 

VIV for the azimuthal component of the momentum equation 

Fig. 2b) Cross section 

2b 1) VI, VIII centred or axially displaced control volume 

2b2) VII radially displaced control volume 

2b3) VIV control volume displaced 1n the azimuthal negative direction 

2b 4) VIV contro 1 volume displaced 1n the azimuthal positive direction 
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Fig. 2b) Cross section 

Fig. 2b
1

) VI, VIII centred or axially displaced control volume 

Fig. 2b
2

) VII radially displaced control volume 
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Fig. 2b) Cross section 

:Fig. 2b
3

) VIV control volume displaced in the azimuthal 

negative direction 

VIV control volume displaced Ln the azimuthal 

positive direction 
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Control volurnes V to V I are bounded in the azirnuthal direction by two 
. I I I 

planes passing through the bundle axis and forrning an angle of 30 degrees. '· 

One of these planes is perpendicular to the hexagonal can, the other passes 

through the axis of a corner pin. The full bundle is thus divided azirnuthally 

into twelve sectors. 

Control volurne V · is obtained by taking the two adjacent halves of cells IV · 
like VI. VIV is used for volurne-averaging the azirnuthal cornponent of the 

coolant rnornenturn equation. 

1.2 Indexing conventions 

Following conventions are adopted for indexing the control cells: 

-Axial direction. Index JC = 2, 3, ••• MC denotes the control volurnes VI of 

length 6.z = DZC (JC). Control volurnes VIII' displaced by:!J':,z/2 are indexed 

by JZ = 2, 3, ... MZ. 

Meshes JC = 2 , MC and JZ = 2 t MZ correspond to physical partitions of the 

bundle in axial direction. Meshes JC = 1 and JC = MC + 1 are durnrny rneshes 

used :for introducing boundary conditions, 

- Radial direction. Index IC = 2, 3, , •. NC denotes the control volurnes VI. 

IC = 2 refers to the inner hexagonal control volurne; IC = NC is the control 

volurne bounded externally by the hexagonal can and internally by a plane 

through the axes of the outerrnost pins. Meshes IC = 1 and IC = NC + 1 are 

durnrny meshes used for introducing boundary conditions. 

Index IR= 1,2, ... NR refers to the control volurnes VII' IR= 1 is a rnesh 

centred on the axis of the central pin with width 6.r/2. IR = NR is the control 

volurne bounded externally by the hexagonal can and internally by a plane tangent 

to the outerrnost pins. 

- Azirnuthal direction. Index IT = 2, 3, ... NTH = 13 refers to the twelve 

azirnuthal sectors bounded by planes passing through the bundle axis and 

forrning 30 degrees angles. Index ITR = 1, 2 .. , 13 denotes these planes 

(planes ITR = 1 and ITR = 13 coiocide). Meshes IT = 1 and IT = NTH + 1 are 

durnrny rneshes used for deriving boundary conditions when integrating with 

the ADI rnethod along the azirnuthal direction. 
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Control cells and indexing conventions are shown 1n Fig. 1 for the case of a 

37-pin bundle. 

(IC, JC, IT) 1s indexedas node (i, j, k). The cells faces are indexed ns 

i + 1/2, j + 1/2, k ~ 1/2 respectively. 

1. 3 Definition of dependent variables 

According to the ICE technique, described in section C.2.1, space discreti­

zation of the conservation equations describing the fluid flow 1s clone with 

reference to staggered meshes. Scalar quantities, like coolant pressure, ent­

halpy and other physical properties of the fluid, are defined at the centre 

point (i, j, k) of a control volume. Velocity components of the coolant (u, 

w, v for the r, z, s directions respectively) are defined at the mid points 

of the boundary faces. These conventions are shown in Fig. 3. 

1.4 Volume Porosity and Surface Permeabilities 

All cells are characterized by a total volume V, a volume occupied by the fluid 

Vf, an area Aw of the solid (wall)-fluid interfaces, by the areas of the lat­

eral faces, St' Sb, (top, bottom, perpendicular to the z axis of the bundle), 

S., S (internal, external, perpendicular to the radial coordinate r), S , S 
1 e m p 

(bounding the cell in the azimuthal direction, where the subscripts m (minus), 

p (plus) denote the sequence considered in the positive clockwise direction). 

These geometrical elements are used to define volumetric porosities and surface 

permeabilities for every cell. 

Let Sft' Sfb' Sf., Sf , Sf , Sf be the flow areas of the bounding faces. We 

define the surfaee pefmeabTlitigs as ratios of the flow areas to the total 

areas, i.e.: 

E:t S f /S Surface permeability at the top cross section (1) 
t t 

E:b = sf /sb Surface permeability at the bottom cross section (2) 
b 

ljl. = sf. /S. Surface permeabil i ty at the inner cross section (3) 
1 1 1 

ljl sf /S Surface permeability at the outer cross section (4) e e e 

t;:m sf /S Surface permeabili ty at the azimuthal left cross section ( 5) 
m m 

t;:p sf /S Surface permeability at the azimuthal right cross section (6) 
p p 
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Yj,j, k+ 1/2 X 

I 

Fig. 3: Definitionof velocity components and scalar 

quantities on staggered meshes 
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The volume porosity of a cell is defined as the ratio of the volume occupied 

by the fluid to the total cell volume, i.e.: 

s = V /V 
f 

In an undisturbed geometry the volume porosity is equal to the surface 

permeabilities in the axial direction: 

or 

The definition of the surface permeabilities for the radial direction ~s 

shown in detail in Fig. 4 with reference to the centred cells VI and to 

the displaced cells VII' The following nomenclature has been adopted: 

a) Centred cells VI 

~. 
~ 

= PSI (IC) 

b) Displaced cells VII 

ljli+l/2 PSIR (IR) 

where index i denotes the node at the centre of control volume VI and 

i ~ 1/2 refer to its radial boundary faces. 

In the volume averaged conservation equations one must consider the 

surface to volume ratios. With reference to Fig. 5 these ratios are 

obtained for the radial direction as follows: 

a) Centred cells VI (Control volume (ABFE) • /:,z) 

Inner surface S. = EA ~ 6z = (EC - AC) • f:,z = 
~ 

t f A ( ) A ( /1." +. -~ b.. Jl. \ 1\ :>.. ou er sur ace S = FB • oz = FD + DB • oz = u~ 1 u~ 
e 6 I 

wi th MN 

(7) 

(8a) 

(Sb) 

(9) 

(10) 

( 10 

(12) 

(13) 
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The radial surface to volume ratios are then 

s. (ß.l)- p ~Jt) 6.~ ( 4- ~ )~ll FAC:C 1'\ (~'-) s .. ·;s~: 
l. 6 b~ 

<:::: ': 

V /:::.JZ. ~~.~~ 6,·~ ~·'2... 
., 

/:l.:Jz. 
(14) 

. ._ 

s c~~ + ~ ~J?.)tn: (~·+Jj)~ i=I\CC..V (-s::c..) s~ 1 sf'r'A~· e 6 /:)~ 
= '::: ': -:: 

V /:::...JI.· /::;...o;,. ~t b.~ ~J'L. b.~ 
(15) 

with FACCM (IC) (1 - _n ) b.JZ. 
' b1 

- S.'f Srw-.· (16) 

FACCP (IC) = (1 + u ) .~37. '::: Se / S""': 
b /::::.)) 

(17) 

b) Displaced cells VII (Control volume (MNVT). f:..z) 

Inner surface s = MN /Jz = (FB - DB) f:..z mi 
f3 (FB - (; ßr) bt: (1R) 

out er surface s TV f:..z (FB + HV) f:..z = me 
(FB + iJ3 Llr) b.:r • (19) 

6 / 

with FB .AfL Ar = + 
12 ~I!; 

(20) 

one has 

s 
mi 1 ( ~ ·- 6 A'Z- ) FAC ~ ~ (t::C') ';)"'-•' /Se 

= 
Ar 

·::. -V ~ · PFc.(~c) + 66~ /).~ ~~ 
(21) 

s 
t~ ·+ 6 A·'l- ) FAC.~P(~~) S(\'Ae, ls e-me 1 = -= V -ßr B · PFC.(l-<..)-+ 6AJ2.. 6.lL ~~ 

(22) 

where 

FACRM (IR) 
6 b.:Jt 

s~.· /Se = 1 - :. (23) fi•PFc(1-<:..J ·r 6 l:::.:sz. 

FACRP (IR) 1 + 
6 A.~ 

Srw. e.- /Se-= ..,., :::: (24) V1 . I'Fc (:t<:.) +6b.~ 

.::: ~- l=Ac.~ M (I:~) 



- 13 -

PSI ( IC) 

PSIR (IR) 

Fig~ Definition of radial surface permeabilities 

FACCM ( IC) i- 1/2 

IC FACRM (IR) i= IC 

FACCP (IC)/i+112=1R 

FACRP(IR) i+1 

IR 

Fig. 5: Definition of geometry coefficients 
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2. Fuel pin model and structure 

Every control volume VI of the bundle is associated to an equivalent fuel 

pin with geometrical data corresponding to those of the real pins. Fig. 6a 

shows the fractions of the fuel pins associated to the control volume ABCD 

which are considered for defining the equivalent pin of Fig. 6b. Its confi­

guration corresponds to the geometry of the SNR type reactor having a lower 

fission gas plenum. The pin consists of a heating element (fuel or electri­

cal heater), and a cladding, separated from the fuel by a gap of given width. 

The coolant temperature in the cell considered is used as boundary condition 

for the calculation of the temperature distribution in the pins. For the 

outermost control volumes the structural material of the hexagonal can is 

taken into consideration in a similar manner. 

In fuel, clad and structure only radial heat conduction is considered. Heat 

conduction in the coolant is negligible compared to convective heat transfer 

which affords the coupling between the axial meshes of the channel. Within 

an axial mesh up to 6 nodes are considered in radial direction in the fuel, 

3 nodes in the clad, and 1 for the structural material. The one-dimensional 

heat oonductionequations are solved rigorously for fuel and clad with refer­

ence to an axisymmetrical cylindrical coordinate system centred on the fuel 

pin axis, while the assumption of a linear temperature profile in the struc­

ture is made. The structure outer surface can be considered either as adia­

batic or as transfering heat to the outer medium, the latter being normally 

required for the theoretical interpretation of experiments. 

The transient calculation of temperature distributions in the p1n 1s carried 

out for fuel, clad and structure by discretizing the radial heat conduction 

equations with a half-implicit (Crank-Nicolson) scheme and solving them nu­

merically by means of direct inversion of a three-diagonal matrix. The heat 

flux beyond the structure outer surface is assumed as boundary condition. 

The fuel-clad gap conductance, which depends on the gap width and on the 

composition of the filling gas, influences strongly the fuel temperature dis­

tribution, and is calculated in a user written subroutine. 

The gradient of the calculated temperature distribution at the clad outer sur­

face is thenused to compute the new heat fluxes into the coolant which repre­

sent the coupling between the thermal hydraulic calculation and the fuel pin 

model. These heat fluxes are not updated during the iteration steps necessary 

for the thermal-hydraulic calculation (see section C 2.4) but are kept con­

stant up to next time step. 



mixing 
chamber 

upper 
blanket 

core 

lower 
blanket 

fission gas 
plenum 

Fig. 6b 
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Fig. 6a 

structure 
coolant 
channel 
fuel 

clad 

Fig. 6: 

Geometrical configuration of an 

equivalent fuel pin associated to 

control volumes used for thermal­

hydraulic calculation. The struc­

ture (hexagonal can) is present 

only for the outermost control 

volumes of the bundle. 
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GAP 
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Fig. 7: Definition of radial control volumes in an 

axial mesh of fuel and cladding. 

t t 
COOLANT 
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B) Basic Equations 

1) Conservation equations for three-dimensional thermal hydraulic 
,1' 

description of single-phase coolant flow 

1.1 Conservation equations 1n local form 

The three-dimensional single phase flow of the coolant can be described 

in the local form by the following equations. 

i) Continuity equation 

-ä.p' + \J . p v = o 

ii) Momentum equation 

a 
at 

.... ~~ 

( p V ) + "\j • p VV 

~ 

V = (u,w,v) (1) 

'l · < ~-'l·v) - "1 P + P -g - n 
0 

(2) 

which is equivalent to the three scalar equations for axial, radial and 

azimuthal directions, respectively: 

a 
at 

(pu) + 

(pv) + 
-'I 

\1 · (pvV) = 

iii) Energy equation 

a~ (ph) + 
.... 

\I· phV 

'!· (~'\]u)-

....J 

'1 · pa \1 h + Q 

'V' ~ 
pg - D n 

0 z 

j) 
0 

../q 
n 

8 

(2a) 

(2b) 

(2c) 

(3) 



where 

D = 
0 

g = 

h 

n 

p = 

Q = 

r = 

s = 

t = 

u = 

V = 

-
V = 

w = 

z = 

= 

~· = 

.J = 

Remark: 

- 18 -

drag force per unit volume at the fluid-solid interface L-kglm2s2_7 
- 2 -

gravity acceleration L mls _I 
- -

specific coolant enthalpy L Jlkg_l 

unit vector 

static pressure L-Nim2 7 
source of power 

- 3 -
supplied to the coolant L Wlm I 

radial coordinate L m_l 

azimuthal coordinate L m_l 

time L s I 

radial component of coolant velocity L mls I 

azimuthal component of coolant velocity L-mls_/ 

coolant velocity (vector) L-mls I 

axial component of coolant velocity L-m/s_/ 

axial coordinate, main flm.,r direction L m_l 

effective thermal diffusivity (taking into account both molecular 
- 2 -

and turbulent diffusivities) L m ls_l 

e~fective dynamic viscosity L-kglm s_/ 

coolant density L-kglm3
_/ 

The "radial" and "azimuthal" components are referred for convenience to 

a local cartesian coordinate system. 

The effective thermal diffusivity ~ and the effective dynamic viscosity ~ 

are calculated taking into account both the molecular and the turbulent 

contributions. Details of these calculations are given in sections 

C 5.2 and C 5.3, respectively. 
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1.2 Conservation equations averaged over the control volumes 

The conservation equations for mass, momentum and energy are integrated over 

appropriate control volumes and transformed into 11volume-averaged 11 equations 

using a staggered mesh. The control volumes used are VI to VIV as defined 

in section A 1.1. 

Volume integrals are transformed into surface integrals by means of the Gauss 

theorem, time derivatives of volume integrals by means of the Leibniz theorem. 

The most general form of these theorems for a single phase fluid is reported 

hereafter. It is derived from the two-phase flow equations g~ven ~n reference 

/6/. 

Consider a volume of fluid Vf delimited by wal1 surfaces S and interfaces S. 
w ~ 

which in the most general case separate the fluid from another medium. In gene-

ral the positions of the interfaces are time dependent. Their rate qf displa­

cement be vi; n be the normal vector of a surface directed outwards. 

a) The Leibniz theorem states that for any scalar function f 

() J g J.\} 
Sv 

J? o\V 
+ s t -

DIS V~ • % 

Vt V 
- lf)t 

t ~ s~ 

b) The Gauss theorem for a vector or tensor ß is 

J \]. ß r).l) l ß·,\\~AS + Jß, % dS 
V g. S·w 

When the interfaces S. are fixed the Leibniz theorem becomes 
~ 

(4) 

(5) 

(6) 

In general the interfaces consist of several parts; ~.g. of top and bottom 

surfaces s1 and s2 normal to the z-axis and of side surfaces Ss) therefore 

the surface integral has to be taken over all parts, ~.e. 

(7) 



which can also be written as 

-
where B is the l-component of B. 

z 

i) Continuity equation 
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(8) 

We refer to the control volume v
1 

of Fig. 2 and use the indices t, b, e, i, 

p, m to denote the boundary surfaces (S): top, bottarn (z direction), external, 

internal (r direction) plus, minus (for the positive-clockwise- and negative 

azimuthals direction~respectively. Let V be the total volume of the control 

ce 11 and V f be the volume of the fluid in i t ( index f refers to the fluid). 

It holds 

V = St; h..e- ;:: Sb ~t:-

.6.~ ( s"· ·t SQ.) I% ·- A ~ s -<'ejz. (9) 

sf ((h) p )r AJ:> : si\M (em r) ~ t:d 

with Sie/ 2 = (Si+Se)/2. The angle ß is defined as shown ~n Fig. 5. 

Integrating equation (1) over the volume Vf of the fluid ~n the control cell gives 

Sv ~··~(SV) d~ • o 

~ 
(I 0) 

Applying the Leibniz and Gauss theorems and introducing the velocity components 
yields 

( II) 
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We introduce the following definitions of volurne and surface averaged quanti­

ties for any scalar function j: 
I 

< f ";:1.0 :::: i_SJ dv 
~r v~ 

(12) 

<f)' .:L ~ i JS -
$? s.~ 

( 13) 

By rneans of (9), (12), (13) and the definitions of the porosity and perrneability 

~qmation (11) becornes: 

f () <3'> ~ 
'()t 

+- _L [< )'vV> t - < )'vV ;> b1 t- .:i. [fe fe-< $u,>e -'VA.· f ~ -<)IA>:·l. + 
~c ~~ J 

with Fe== 

F.A.· ·= 

+ j_ r. fr . < ~'\)'> r _ . r.'W\ "'),.,)' >"""}-.::. v 
h~ lceo~ r)r ((JJ,) ~ )I'W- . 

SQ_ /See h 
S.{_·/ 5~·~ 1 1.-

(14) 

( 14b) 

( 14c) 

This is the volurne-averaged continuity equation. It is cornbined \vith the volu­

rne-averaged rnornenturn equations to derive a di~crete Poisson-like equation, 

as explained in section C. 2.1 

ii) Hornenturn equations 

a) Axial rnornenturn eouation 

Integration of eq. (2a) over the volurne Vf of the fluid 1n the control cell 

yields 

J J..'.s (f- \Iw) dV t 

vi 

( '5 . %],- o\ \) 
jv o 

X 

(15) 
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By means of the Leibniz and Gauss theorems one has 

~J S"' dv • J (sw)w d~ -J (sw)"' ct~ .. S (sw)"" ~~. 
Vf Sft S~ b .S~e 

_ S (~w)-" ~~ + J (sw).r d.'> _ J (~w)..r ct~ ~ (16) 

s~~ sgf sJ~ 

,= ~ fv P w o1 s _ J )A Pw J .) + J ~ 'lJw J s, __ J jA P w .J S -t 
SPt 9-t SP 9~ '"' r-;)01" S 'u)Z. 

~ tb ,)fe c~· 

+ l JA 'Jw ~ \. -s JA ?w ·)\ ~ + 
sf r t"J).) S..frw- 0~~ 

Letting D = D · V /S , a similar treatment as for the continuity 
-· ' - '0 f w 

equation leads to 

( 17) 

Eq. (17) is the volume-averaged axial momentum equation. 
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b) Radial momentum equation 

Integration of eq. (2b) over the volume Vf of the fluid in the control cell 

yields, with the same procedure as for equations (15) to (17): 

+ :i I tr < .ü.u- / - - r ~ -~ f ~) I -+ 
~->.> l ( (Ay) ~) f' fv r;J~ f ( W) f3 )~ <t)J) M\ -~ 

-+ t"l l- < f>~ -+ < f) ..:}- ~ ·" \)' "'" >w 

c) Azimuthal momentum equation 

Integration of (2c) over the volume Vf gives similarly: 

(18) 

(19) 
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iii) Energy equa.tion 

We integrate eq. (3) over the volume V of a control cell. Because the 

coolant density is not defined outside Vf' this is equivalent to inte­

grate the first three terms over the volume vf of the fluid: 

J' .~ s~ c\v 
l,:).t.. 

V Ii t 

t 

+ J J.·". (gf.V) o\V ·~ s ,j,.,.~ ~~) ol~ •J Q )\1/ • 

vt v't v 

Applying the Leibniz and Gauss theorems one has 

(20) 

+ l s ~ .. ~ \, -s $ ~A.v .:l' t 

s.~e, sr~· 

(21) 

Introducing the definitions of volume porosity and surface permeabilities and 

using (12), (13) yields: 

f~ < st) b + ~~ l< 3 f.w.) t - < 3 tw :> b1 + ~"1.-l fef•<S f" A.(,.)e- '\'.: f,· < S~">] T 

+ _, 1 _rP .. " ~ ~-v> _ r~. ~ 3 ~'\1'),"".,\ '=-

~~ \. ( W1 r> p - f ( W') p) lW\ .1 ( 2 2) 

_ L f~J~> - ~.~> l • {_ft,,r,;J~> -'fi,:F;J~), 
b ~ l Dt t: '0-t b \ h:~ l 0~ e 'lJ :sz_ ;_ l 

+ .i_ ·( rf . ~ D ~ > _ . r ~ -<Sl ~ ~ '~ l 4- ·< Q) ~ 
M . ((.o')fl)l' ~ V~ P (""~),.,., ~·~ ""'J 

Eq. (22) is the volume-averaged energy equation. 
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2) Equatiore for fuel pin and structural material 

i) Fue 1 

The equations describing the space and time temperature distribution in 

the fuel are (without taking into account heat conduction in axial direc­

tion): 

+ J:. >.. 
r B + 

with the boundary condition 

and the initial condition 

T (o,r) 
B 

On the fuel axis it holds: 

2 

nB (3 TB + qB PB 
ar

2 

with a symmetry condition 

Cl TB 
(-) 

Clr r=O = 0 

c 
PB 

= (r"fO) (1) 

(2) 

(3) 

Cl TB (r=O) (4) 
Clt 

(5) 
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In the above equations symbols are defined as follows: 

c = fuel specific heat (J/kg
0
e) 

PB 

qB = specific power generated in the fuel (W /m
3

) 

r = radial coordinate (m) 

RB = fuel outer radius (m) 

~i = radius of the inner clad surface (m) 

t time ( s) 

TB = fuel temperature (oe) 

TH· clad temperature (oe) 

ctBH = fuel-clad heat transfer coe fficien t (W/m
2 0 e) 

AB = fuel thermal conductivity (W/m
0
e) 

fuel density 3 
PB = (kg/m ) 

ii) eladding 

The equation describing space and time temperature distribution in the clad 

is 

with the boundary conditions 

- (A . H = 

and the initial condition 

= 

= 

= - (A 
H 

(6) 

(7) 

(8) 

(9) 
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Symbols are defined as follows: 

c 
PH 

qH 

~ 

~i 

~a 

TB 

TH 

TK 

= 

= 

= 

= 

= 

specific heat of clad material (J/kg°C) 

specific power generated in the clad (W/m
3

) 

fuel outer radius (m) 

radius of inner clad surface (m) 

radius of outer clad surface (m) 

f 1 ( oc) ue temperature 

0 
clad temperature ( C) 

0 
coolant temperature ( C) 

0\BH ,aHK = fuel-clad and clad-coolant heat transfer coefficients (W/m
2
°C) 

A.H 

PH = 

thermal conductivity of clad material (W/m°C) 

density of clad material (kg/m
3

) 

iii) Structural material 

Assuming the structural material of an axial mesh zone concentrated into 

one node, the equation describing the time dependence of its temperature 

l.S 

Fs F 
[TK(t) (t) 7 w L T (t) T (t) I ctKS - T 0\ 

Vs s w Vs s w 

qs ( t) 
dT 8( t) 

+ = p S cp S dt 

The first two terms at the left side represent the boundary con­

ditions, 1..e. the energy transfer from coolant to the structure and from 

the structure surface to a surrounding medium (for instance to a by-pass 

flow wi th temperature T ( t )). 
w 

( 10) 
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In the above equation symbols are defined as follows: 

t 

specific heat of structure material (J/kg 
0
e) 

inner surface of structure per unit axial length (m) 

outer surface of structure per unit axial length (m) 

energy produced in structural material per unit volume and time 

(W/m
3

) 

time (s) 

TK coolant temperature (
0
e) 

T 
w 

Ps 

0 
structure temperature ( e) 

surrounding medium temperature (
0
e) 

volume of structural material per unit axial length (m
2

) 

2 0 
heat transfer coefficient coolant-structure (W/m e) 

heat transfer coefficient structure-surrounding medium (W/m
2 0

e) 

density of structural material (kg/m
3

) 
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C) Numerical treatment of the basic equations and prograrnrning details 

1) Steady State Calculation BACCHUS-P 

1.1 General 

The transient two- or three-dimensional thermal-hydraulic calculations is 

preceeded by a steady state calculation which is performed in two steps: 

a) a real steady state calculation carried out by solving a simpli­

fied set of conservation equations in a two-dimensional (r, z) 

geometry with a loose coupling of subchannels in the radial 

direction; 

b) a transient calculation with constant boundary conditions, which 

therefore approaches eventually a steady state. 

Step a) is considered as an initialization for step b) and allows reaching 

a convergence to the steady state after only a moderate number of time steps. 

At the end of step b) time is set to zero,and the real transient calcula­

tion with timedependent boundary conditions starts. 

Step a) is performed with a prograrnrne package called BACCHUS-P which is 

documented in this section C.l. The basis of the thermal-hydraulic calcula­

tion is also reported in reference /1/. TM~ conservation equations for 

mass, momentum and energy are solved Ln BACCHUS-P under the simplifying 

assumptions that 

i) heat diffusion in axial direction is negligible 

ii) the coolant pressure is uniform at an axial level 

of the bundle 

iii) the radial coupling between control volumes is described by 

diffusive transport of momentum and enthalpy. 

For a two-dimensional ( :Jt) ~a-) geometry (see section C. 3) the calculation 

made in BACCHUS-P yields a preliminary field of pressure, enthalpy and ve­

locities (radial and axial) for the full bundle. In three-dimensional (r, 

z, s) geometry (section C.2) the BACCHUS-P calculation is clone for every 

azimuthal sector; the azimuthal velocity components are initialized to zero. 
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1.2 Thermal-hydraulic calculation 

1.2.1 Basic equations 

The steady state calculation is performed by solving numerically the follow­

ing system of simplified conservation equations: 

i) Continuity equation 

I 
_/IM (1) 

ii) Momentum equation 

() ( 'l) ()p sw2 u (r ~~) (2) - _)W +.)'~ + ·- ': tw 1 D~ + C)l 'Ur G).:Jt 

iii) Energy equation 

?Juc (sw ~) - u VJf 1w + ~ (sX d~ ) (3) 
': 

'il~ 'J-'2- D"l. 

In equation (1) to (3) symbols are defined as follows 

Dh 

f 
w 

g 

h 

m' 

p 

r 

u 

= 

= 

= 

= 

= 

= 

= 

hydraulic diameter L-m_/ 
wall friction coefficient 

gravity acceleration 
- 2 -L mls _I 

specific enthalpy L-Jikg_/ 

mass flux in radial direction per unit length 

pressure L~»lm2 _7 

- 3 L kglm §.1 

- 3 -
heat flux from wall to coolant per unit axial length L Wlm _I 

=- J cPXJL)= 
fJ JZ., .) D -'l- . 

specific enthalpy exchange due to turbulent 
,-.• , 3 -1 

>n mixing per unit axial length - -

= radial coordinate L-m_7 
= radial component of velocity L-mls 7 
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- 7 w = axial component of velocity L m/s 

z axial coordinate [m) 

"" J../scr = - 2 -
d- = thermal diffusi vity L m /s_/ 

cp = coolant specific heat at constant pressure L-J/kg oc I 

A coolant thermal conductivity L W/m 
0 

I = c 

)'L = dynamic viscosity L kg/m s I 

s density 
- 3 -= L kg/m _I 

1.2.2 Conservation equations averaged over the control volumes 

We consider a hexagonal ring-shaped control volume of lengths6r, ~z ~n 

the radi~l and axial directions,respectively,and let be 

st the area of the top cross section surface 

Sb the area of the bottarn cross section suface 

S· .t. the area of the inner surface 

Se the area of the external surface 

sft the cross flow area at the top section 

s~b the cross flow area at the bottarn section 

s~~ the cross flow area at the inner surface 

S,fe the cross flow area at the external surface 

·'V.c: = sfi /Si the radial permeability at the inner surface 

o/e. = sfe /Se the radial permeabi li ty at the external surface 

·>"[_~ = the distance of the inner surface from the bundle axis 

~e = the distance of the external surface from the bundle axis 

V = 11~' Ar = the cell volume per unit length of the azimuthal 

direction 

vf = the cell volume occupied by the fluid 
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= = = the volume porosity. 

It holds (for the unit length J.n the azimuthal direction) 

V = IJ.r ·~z = st ,tJ.z = s • tlc b 
(4a) 

/V S. ·Ar ~ s •A r (4b) 
1. e 

i) Continuity equation 

Integrating equation (1) over the volume of the fluid Vf and replacing the 

volume integral of the divergence term by surface integrals yields: 

(5) 

when Sf (r) is the area of the hexagonal cylindrical surface parallel to 

the bundle axis. 

Letting 

S
JGe 

Su,-= G·.oz. -= ~in. 
Jt~ 

- - - 2 -L Gr_I=L kg/m s_/ (6) 

and introducing surface averaged values at the top and bottarn sections 

one has 

(7) 

Dividing by V and using 

v%... f. v -= f: st A.r: -= sf* ~:r 

--=- E Sb ~:r = Sfb b.:c 
(8) 
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yields 

(9) 

ii) Momentum equation 

Integrating equation (2) over the volume of the fluid Vf and replacing the 

volume integrals of the divergence terms by surface integrals yields: 

A similar treatment as for the continuity equation gives 

when the symbol < >~ is used for volume averaged quantities. 

Dividing by V, taking into account (8) and 

V = s .{)...,.. = s . b.~ /'Ye e fe 

= S· . ~·~ = sfi .n~lo/~ ~ 

( 10) 

( 11) 

(12) 
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yields 

iii) Energy equation 

Integrating equation (3) over the volume of the fluid (and replacing the 

volume integrals of the divergence terms with surface integrals) yields: 

s sw~ :t~ -s .)"' !v d) _ s Wfd5 + J wrd> ·-

s~t Sfb S~t s~b 

::: s. 1w dV • y_ r· j .~ 'Je )<1 AS ·:A)]. 
V ~~ S~(Jt) '()::;z. 

.)l,_~ 

Using equations (4) and introducing surface and volume averaged values 

one has 

(13) 

( 14) 

(15) 
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Dividing by V, taking into account (8) and (12) yields 

Equations (9), (13) and (16) are the basic volume averaged conservation 

equations which are solved numerically as explained hereafter. 

1.2.3 Numerical solution of the volume-averaged conservation equations 

i) Continuity equation 

Let us refer to the control volume like that shown in Fig. 3, but dropping 

the azimuthal discretization. Let z. be the axial level of mesh node (i,j) 
J 

and ~zj+l/ 2 be the distance between two consecutive axial nodes and Vij 

the volume of the cell. Discretization of equation (9) yields 

with the definition of mass flow 

i t yields (dropping the symbol < ) ) 

(16) 

(17) 

( 19) 
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which is used to calculate the radial mass flow under the simplifying assump­

tion of an uniform radial pressure distribution. 

ii) Momentum equation 

Introducing the difference operator .h. by the definition 
i! 

(20) 

for any scalar quantity ~' the first term of equation (13) can be written 

We assume that for any two scalars ~ ~ '!-" lj / 't' 2. 

(21) 

(22) 

Using (22), applying the chain rule of differentiation to (21) and combining 

with the discrete continuity equation (9) yields 

Hence applying ( 18) 

f ~:e <.)\1\1) (\N)-= 
b~ 

- _L <)W> A~<.W"') t ~ <W> ßt<.S'W> (23) 
br ~+ 

The last term of equation (24) 1.s descretized according to the "donor-cell" 

technique as follm'ls (dropping the symbol < > ) : 
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(24b) 

with 

"' f (W), 
A'f M.~.·t-1/~ )0 

'w .t' +- -l /o)., -
(\lll').t't-i ~·~ M A-'t-1/tt <l> 

.... ' [ < \i\1 '><'- < ~+ M .(,'- -tl~.- >0 
\JJ· 

A. - 1/t =. 

<W )~ \ 

M .t.'- ~h < J ..t-~ 

Using axial velocities at level j + 1 the above equation can also be written: 

·~ ( Mt~W), - MA' <W)_.l) ::: 

-i -1. { ( M., ·\ M.~ ·)(IN. w:t,. - At h) ~ - .At /oi). 1 J .ttA + V \ I ~ 
A.. ~ 

(24c) 

+ ( IM. '\ .A.- ih- I) + M,_,h,i) (w.;_, - \N I) 
.~ i"" } 

Using these conventions eq. (13) ~s discretized in the following form 



t·,r~-" - P~·~· 
/Yl ,)t-1/,. 

- (t f._., _3Wt \ + 

~.De. )~,~ 

+ ~ ~"i f ( I K •' 'h \-
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Equation (25) can be written in the form 

with 

ß 1 :;: -4 ( \M\ + M) -
:l Vt·i ...t'- .. ,U).,, i 

ß2:- ~ ( ~ vSr) 
V., /).'ll "~.· ... ,,_,l ,4 ) 

H 1\ -:: .:L (\1'\- M) 
9. V.· i . A.' HJ~,.) 

~~":: L ( .~vSg ) ···1~. i V/~ A.sz.. 

+ 

(25) 

(26) 

(26a) 

( 26b) 

(26c) 

(26d) 
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T R. ·= ~ (f_$W)L,, (26e) 

.Ä:C ~· + -iJi ~ 

c~ -== \N '' • TR (26f) 
.L ~ 

c ~ -.:: ~· . 3-t',)t" + 3<·~ (26g) 

·- d ~ 
~ 

c~ - f~ 
f4·~ (26h) 

-
ß?; i+-1/')_, 

C'-4 ~ f~· (f sw~ ).. (26i) 

;! D~ A.~ 

c s -= f'"' (26j) ·-
Ö.":t~t-i/.1).. 

Letting 

s '""' A 1 + A% + ß1 + Bt T ~~ (27a) 

~~= (A '\ + Pt~) I s (27b) 

Bß-;: (ßti + 6:2) i 5, 
(27c) 

cc ( Ct1 + (~ ·- c 3 - c 4) I s (27d) 
= 

.DD ;;:: _es( s (27e) 

equation (26) becomes 

_ ßß \J.J,~.·-",)t" + \N_.:,lt" ·- ~R w,t'~r",;~" ·- .D.D f· 't-\-= cc 
<J .(.. 'l 

(28) 
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Equation (28) is used to calculate the axial velocities and the coolant 

pressure at an axial level j + 1. Writing it for every radial node i 

(i = 2 ..• NC) it supplies a systern of equations with a three-diagonal 

rnatrix of coefficients for the axial velocities. As eq. (28) contains 

the unknown pressure terrn 1'~)S~i a further condition is necessary 

for applying the solution algorithrn by Thornas 171. 

This condition is supplied by surnrning eq (19) with respect to i 

(i = 2, .•. NC). It yields the physical constraint that the coolant 

rnass flow rerna~ns constant between axial levels j and j + 1. 

According to reference I 8 I the nurnerical solution rnethod based on 

eq. (28) is stable as long as the. rnass flow in axial direction is 

positive. 

A marehing technique through allaxial levels ( j = 2, •.. MC) yields 

the axial Velocity distribution. 

iii) Energy equation 

By analogy with (20) to (24) the first terrn of equation (16) can be 

written: 

'\ < e, ' - i 5 6"_ < e.) '* ~ -
V Sf<~) 

-~ l Mt<~)•- 1"1.< "~'•l 

(29) 

(30) 
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According to the "donor-cell" technique, the last terrn of (30) is dis­

cretized as follows: 

~ [ M~ < ~)~ - 1'\,· < ~>.} 

·= j_ f M .~.-\ 1 ( ~: + 1 - <- ~) ~ .) 
'J !. ~ ~ ~ ~ 

with 

A'f 

A-'~ 

A·~ 

.Ll 

M .A. "....,1UJ> ·7 o 

M.A· "'"-l/~ -< o 

M ).: -tv%) o 

M A' _ _,,~ <O 

Using enthalpy values at axial level j + 1 the above equation becornes 

·~ LM~~h.- M;<kl 

l ( I M,· •AJt,j I- K ~·.,,,.,j) ( ~ ..... -~.) i •' + 

+ ( l M ,· _,,i I d . M •' -·/~' i ) ( f., .. -A t ) ; . ·1 
The first terrn at the right hand side of equation (16) can be written: 

~ <. 1w''> ~ 
Qwf Q ~.'M- • \j ~.'w 

.,;: •t:JI :=. 
v \) V 

Q~~ QtAM 
'll 

src'<W . ~~ \\ R~·.." ~t: Qw -- -- :::: ~ 

V V 

whei"e 

power delived frorn the pin walls to the·volurne 

( 30b) 

(30c) 

(31) 
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= specific power generated in the pin L-W/m
3
_/ 

= average specific power in the volume V of the cell L-W/m
3_7 

= volume of the pins in the cell L-m3
_/ 

s . pl.n 
- 2 -= pin surface in the cell L m _! 

R . = pin radius L m_/. pl.n 

Equation (16) can therefore be discretized as follows 

.~.L·)~··+'\ - t·j· 
Ac s _. 41~ 

-+ (Q p..',.. ) 1\ R ; .. w /). i l -1- -IJ~ + 
V .4-'~ 

+ i. \ ( I M .. •<Jl, i \ - M, •Jii,;) 
'1- VA." 

~ 

P(.·~)t" - r-~.·~· 

ß.~ J't-1/').; 

( t,L· t 4 L') 

+ 

r\>" t 

+ (I M,.._,,~,J· M.: _,,~,j ) ( t i-• - t) i •• J . 

(32) 

Neglecting the first term at the right hand side, which represents the work 

clone by pressure forces in thermal expansion and is negligible with respect 

to the energy input, equation (32) can be written in the form 

(33) 



- 43 -

with the same symbols defined by (26a) to (26c) but replacing the kinetic 

viscosity "'( by the thermal diffusivity J = "\ !:3cp, and 

Qpin 
SOUR CE = 

V 

Using again (27a) to (27c) and 

CC 1 = (h. . • TR + SOURCE) /S 
~J 

equation (33) becomes 

-BB 
j+l + h. 

~' j+l - AA h. l 
~+ ' 

cc'. j+l = 

Equation (35) is used to calculate the coolant enthalpy at an axial level 

j+l. The system of equations obtained writing (35) for every radial node i 

(i = 2, 3, ... NC) is solved numerically by means of the Thomas algorithm 

/7 I. 

( 33b) 

(34) 

(35) 

....) 

The value· of d.J introduced in the above formulas is an equivalent thermal 

diffusivity which takes into account both contributions from molecular and 

turbulent diffusivities. (See section C5). 

1.2.4 Energy balance 

An energy balance is made for every axial mesh of the bundle ~n the following 

way. 

Letting 

it should hold: 

PUCU (JZ) + H (JZ-1) H (JZ) + VLCU (JZ) 

or 

BILH (JZ) + VLCU (JZ) -PUCU (JZ) = 0 

with 

BILH (JZ) H (JZ) - H (JZ-1) = coolant enthalpy balance between levels 

(JZ-1) and JZ 

VLCU (JZ) = power transfered from the coolant to the hexagonal can 

PUCU (JZ) = power released to the coolant. 

(36) 
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These quantities are ealeulated as follows: 

VLCU (JZ) = HKEX (JC) • PEXINT (JC )• (T(NC ,JC) -TEX (JC) ) • DZC (JC) 

PUCU (JZ) = FQ (JZ) ; PCH • DZC (JC) L w I 

Symbols of the above equations are defined in the list of Part II. 

The relative error 

ERR = (BILH (JZ) + VLCU (JZ) - PUCU (JZ) ) I PUCU (JZ) 

ean be printed for every axial mesh from Subroutine IMPRIP. 

1.2.5 Boundary eonditions 

Three eases are available for imposing veloeity and ~ressure boundary 

eonditions: 

{w I 

i) Mass flow (eoolant veloeity) and eoolant pressure are imposed at inlet 

by letting the input parameter MPR = 1. The eoolant pressure distribu­

tion is then ealeulated with a marehing teehnique from bundle inlet to 

the outlet. 

ii) Mass flow and outlet eoolant pressure are imposed if MPR = 2. 

In this ease the inlet eoolant pressure speeified as input is used as 

a starting value for applying the marehing teehnique from bundae inlet 

to outlet. When the ealeulated outlet pressure does not eorr~spond to the 

boundary value imposed, a new tentative inlet pressure is ealeulated 

with the Newton method and the marehing teehnique is applied again. 

: The seheme is repeated till the outlet pressure is approaehed wi thin 

a given toleranee or till a maximumnurober (ITPX) of iterations steps 

has been attained, 

iii) Inlet and outlet :eoolant pressures are imposed if MPR = 3. 

crn ease the input parameter LCS = 1, the programme sets MPR = 3). 

The inlet mass flow is ealeulated eonsistently with the assumed pressure 

distribution. This third ease ean be ehoosen only when the programme 

( 38) 

(39) 

(40) 
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BACCHUS-P is used to initialize the fields for the transient calculation 

(Subroutine BACCP3). 

The BACCHUS-P calculation is always clone in two steps. For the first step 

(IRUN = 1) the hexagonal structure is assumed adiabatic and a preliminary 

temperature distribution of the coolant is calculated. In the second step 

(IRUN = 2) the heat transfer from the can outer surface to the outer medium 

is taken into account to yield a refined coolant temperature distribution. 

1.3 Pin model and calculation of hexagonal can temperature 

Every centered control volume used for the thermal-hydraulic calculation is 

associated to the neighbouring pins consisting of the heater element (fuel 

or electrical heater) and the clad separated from the fuel by a gap. An input 

heat transfer coefficient from fuel to clad is used for the steady state cal­

culation. Besides that the reat flux from the coolant to the structural material 

of the hexagonal can is taken into account.The local coolant temperatures 

are assumed as a boundary condition for the calculation of the temperature 

distributions in the pin and the structural material. Heat lasses fromthe ruter 

surface of the hexagonal can into the surrounding medium e.g. into a bypass 

flow, can also be considered. 

The calculation of the temperature distribution in the pins is clone 1n a 

one dimensional (r coordinate) geometry for every axial mesh of the pin. 

Therefore an azimuthal temperature distribution cannot be obtained and axial 

heat diffusion is considered negligible in comparison to the radial 

diffusion. The coupling between axial meshes of the pin is only provided 

by the coolant. 

1.3. 1 Steady State equations 

The equations for the steady state temperature distribution in fuel, clad 

and structure are straightly derived from the equations of section: B.2 

by setting all time derivatives to zero. 
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i) Fuel 

a <lTB ()TB 
AB "'är + .!.. >. -- + qB = 0 

ar r B ar 

with the boundary condition 

and 
a2T 

2>.--B +q=O 
B ar2 B 

with the symmetry condition 

.. 0 

r=O 

ii) .. Cladding 

3 ( 3TH) + ..!_ AH ar AH är r 

with the boundary conditions: 

aBH {TB(O,RB) 

_ (). 3TH) 
H <lr 

~a 

( ii i) S tructure 

Fs 
°KS -V 

s 

- TH~O, 

= 0 HK 

aTH 
+ 0 qH = 

ar 

~i)_7 = 
_ (). 3TH ) 

H ar R 

(rH co, R ) -a TK(O)_/ 

F 
w 

a --w v8 

r:f.O (I) 

(2) 

r=O (3) 

(4) 

(5) 

Hi 
(6) 

(7) 

Input data for the stationary calculation are,apart from geometrical data, 

power generation in fuel, clad and structure material, the latter coming 

from ~-heating (if any). 
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1.3.2 Definition of geornetrical data for p~n rnodel 

The following geornetrical data are defined for the pin rnodel: 

NMO First axial rnesh of fuel colurnn (see Input description) 

NMl Last axial rnesh of fuel colurnn (see Input description) 

NM2 Nurnber of axial zones in the coolant channel (see Input description) 

NN Nurnber of radial rneshes inside the fuel pellets (see Input description) 

HSPALT 

HKUEKA 

= Length of lower fission gas section (length of axial rnesh 

zones frorn 1 to NM0-1) 

Length of the axial breeder zone (section between axial 

zones NMO and NMl inclusive) 

HTOP = Length of upper coolant rnixing section (axial zones frorn 

HCORE 

NMl+l to NM2) 

= HSPALT + HKUEKA = length of test section frorn inlet to rnesh 

zone NMl inclusive; 

furtherrnore one has (see Fig. 7) 

DRBR 

DRBR2 

R(N) 

RMIN(N) 

QRMIN (N) 

QRPL(N) 

QRMIV 

DRC 

DRC2 

RCI 

RCM 

RCA 

QRPLV 

QRPLH 

QRCA 

QRCH 

QRCMS 

QRCPL 

= ~/NN 

= DRBR1. *-2 

r (N= 1, NN) = 
n 

radial coordinate of fuel nodes (except fuel axial 

node) 

= r - r - DRBR/2 n-1/2 - n 

rn-1/2/rn 

rn+1 /2/rn 
= (~- DRBR/4)/~ 

r - r. = DCAN/2 
rn ~ 

= DRCi<t.-2 

= r, 
~ 

r rn 
= r. + DRC 

~ 

= r = r. + DCAN 
a ~ 

(r. + DRC/4)/r. 
~ ~ 

a (r. + DRC/2)/r. 
~ 1. 

= (r - DRC/4)/r 
a .a 

= (r - DRC/2)/r 
a a 

= (r - DRC/2)/r rn rn 

= (r + DRC/2)/r rn rn 



1.3.3 First evaluation of steady state temperature distributions 

in fue 1 and c lad 

The temperature distribution in the coolant is used as a boundary condition 

for a first estimation of the temperature in clad and fuel. This occurs by 

integrating equations (1) and (5) assuming the thermal conductivity to be 

constant. The integration constants are determined from the boundary condi­

tion that for steady state the heat flux through any cylindrical surface in the 

fuel and clad is equal to the total power generated inside that surface. 

Proceeding inwards from the clad outer surface, where the boundary condition 

given by the coolant temperature is known, one has for the d .. ad outer. node 

temperature 

where Sr 
a 

the powers 

yields T0 

H, 
t=o. 

( 8 ) 

is the clad outer surface per unit axial length and Q~, Q~ are 

generated in fuel and clad, respectively. This boundary condition 

Here and in the following the superscript o denotes values at 

Writing equation (5) in the form 

1 
r 

d 
dr = 0 ( 9 ) 

under the assumption that the thermal conductivity is constant, and inte­

grating over a hollow cylinder one has 

TH(r) = a + b ln r - (10 ) 

where a, b are integration constants. 

Assuming that the influence of the power generation in the clad upon the 
2 

temperature distribution is negligible (hence neglecting the term qHr /4AH), 

the temperature of the clad middle node is derived from the above equation 

imposing the boundary conditions 
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which gives the constants a, b and yields: 

+ ln 
r 

a 
r 

m 

= ( 11) 

(12) 

where the thermal conductivity is calculated with reference to the known 

temperature T (r ). 
. H a 

The temperature of the clad inner node is derived imposing the boundary 

conditions: 

(d:~) Qo 0 
= + QH/2 - 21TA r B H m 

r m 

which yields 

Qo 

Q; + 
H 

2 
r 

0 0 m 
TH(ri) THm + 

21TAH 
ln 

r. 
1 

(13) 

( 14) 

The temperature of the outermost fuel node is given by the boundary condition 

(T - T
0 

) 
B NN H r. 

1 
(15) 

The temperature distribution in the fuel is described under the assumption 

of constant thermal conductivity by the equation 

1 _:1_ (r 
dr 

dTB) 
dr 0 

(16) 
r 

Integrating one has 
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The integration constant a represents the fuel axial temperature 

and is determined from the boundary condition 

0 To TB(rNN) = 
B NN 

which yields 

2 
0 To qB rNN 

TBO = + 
B NN 4;\B 

The fuel temperature 1n any internal node N (N = 1,2 ... ,NN-l) is 

then given by 

This estimation of the temperature distribution in clad, and fuel 

(a = TBO) 

( 18) 

( 19) 

(20) 

is not definite because the thermal conductivities were calculated with 

reference to a temperature different from the yet unknown temperatures of 

the respective nodes. The preliminary temperature distributions are there­

fore only used as first approximations to start the refined calculation per­

formed iteratively by means of the Gauss-Seidel iteration scheme, as ex­

plained hereafter. 

1. 3. 4 Refined tempera ture distributions in fuel and clad with the Gaus s­

Seidel iteration method and calculation of structure temperature 

i) Fuel 

Taking for an axial mesh the annulus delimited by the cylindrical surfaces 

Sn-l/2 , Sn+l/2 with radii rn+l/ 2 as a control volume, and irttegrating 

equation (1) over the outer surfaces of this control volume one has 
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ClT0 ClT0 

- f :\ o ___!! dS + f Ao B dS + 0 V 0 (21) qn = B Clr B Clr n s n-1/2 8n+1/2 

or 

-:\ 
B,rn-1/2 

(:~;) s n-1 /2 
+ :\ 

B,rn+1/2 
(:~;) 8n+l/2 + o V 

qn n = 0 

r n-1 /2 rn+1/2 
(22) 

where V is the volume of th~ annular section belanging to the considered n 
axial mesh zone. Space discretisation of this equation yields the algebraic 

equation, 

Ao To + Bo To + Co To = Qo (23) 
n B n n B n-1 n B n+l n 

with 
r n-1/2 rn+l/2 Ao = :\ + :\ n B,rn-1/2 r B,rn+l/2 n r n 

(24a) 

B<? r n-1/2 n = - :\ 
B,rn-1/2 r n 

(24b) 

Co = - :\ 
rn+ I /2 

n B,rn+l/2 r n 
(24c) 

Qo 0 D.r 2 = qn n B (24d) 

and D.r = rn+ I /2 - r B n-1/2 (24e) 

The above equation is applicable to all fuel innernal nodes (n I , 2 ••• , NN-1 ) • 

For the fuel outermost node, taking as control volume the annulus delirnited 

by the cylindrical surfaces with radii rNN-I/ 2 , rNN' one has 
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<lTB 
~ dS - aBH 8NN (TB,NN - THi) + qNN VNN = O 

(25) 

which yields the algebraic equation 

~ T~,NN + B~ T~,NN-1 (26) 

with 

>..rNN-1/2 (2ja)_ 

(27b) 

0 tJ.r CNN = -aBH B (27c) 

tJ.r 2 r 
0 B NN-1/4 · 

QNN = 2 
q 

rNN NN (27d) 

For the fuel central node, taking as control volume the cylinder of radius 

r 112 , one has 

+ 

which yields the algebraic equation (the superscript 11 ö 11 refers to the 

stationary calculation the subscript to the axial fuel node) 

with: 

A 'o T o 
o B,o + c 0 0 

o TB, I 

A o = >, 
rl/2 0 

c 0 = ->.. rl/2 0 

tJ.r 2 
Q 0 B = qo -4-· 0 

= Q 0 
0 

(28) 

(29) 

(30a) 

(30b) 

(30c) 
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ii) Cladding 

'For the clad inner node, taking as control volume tbe annulus delimited by 

the cylindrical surfaees with radii ri, ri+l/ 2' one has 

(31) 

which yields the algebraic equation 

(32) 

with 
0 0 'Ao ri+J/2 p.1li aBH t:.r + 

H H,ri+J/2 r. (33a) 
1. 

0 0 

BHi -o:BH t:.rH (33b) 

0 -)...0 ri+J/2 
CHi H,rl+l/2 r. 

1. 
(33c) 

ri+l /4 t:.rH 2 
0 

QHi r. -2- qHi (33d) 
1. 

For the clad middle node, taking as control volume the annulus delimited 

by the cylindrical surfaces with radii rm_ 112 , rm+J/ 2 one has 

- f 
ClTH 

'AH 8'r dS + j = 0 (34) 

s m-J /2 5m+l/2 

which yields the algebraic equation 

o To + Co To 
+ B Hl.' Hm Hm Ha (35) 

with 
r m-1 /2 r 

m+1 /2 ~m 'Ao 0 = + 'Am+l/2 H,m-1/2 r r m m 
(36a) 

r 
m-l/2 Bo -)...0 

Hm H,m-J/2 r 
m 

(36b) 

r m+1 /2 Co -)... 
Hm H,m+l/2 r 

m 
(36c) 

(36d) 
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For the clad outer node, taking as control volume the annulus delimited by 

the cylindrical surfaces with radii rm+ 112 , ra one has 

which yields the algebraic equation 

~~ T o + B o To + c 0 To 0 

Ha Ha Hm Ha K "" QHa 

r a-1/2 with ~0 
>.. + o:HK L\rH = 

~a H,ra-1/2 r a 

r a-1/2 B o = ->.. 0 
Ha H,ra-1/2 r a 

c 0 0 
L\rH = -a.HK Ha 

~rH r a-1/4 0 0 
QHa = -- qHa 2 r a 

iii) Structure 

Equation (12) can be Straightforward written in the form 

A o T o + B o T o + c 0 T o = Q 0 
s s s K s w s 

with 

A o 0 
+ a.w 

0 Fw 
s = a.KS Fs 

B o = 0 

s -a.KS 

c 0 = 
o Fw 

-a. -s w F
8 

Q 0 = 0 vs 
s qs 

Fs 

The above equations form a system of linear algebraic equations 

which can be written in matrix form as 

A • T = Q 

(37) 

(38) 

(39a) 

(39b) 

(39c) 

(39d) 

(40) 

(41a) 

(41b) 

(41c) 

. (41 d) 

(42) 
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where A is a tridiagonal square matrix, T is a column vector containing the 

unknown node temperatures and Q a column vector with the power generation 

terms. 

The solution of this linear system yields the stcady-state temperature dis­

tribution. It is carried out with the iterative Gauss-Seidel method assuming 

as initial distribution in fuel and clad the one supplied by the analytical 

solution of the respective equations under the assumption of constant mate­

rial properties. 

1.4 Coupling of BACCUHS-P (steady state) to BACCHUS-T 

(transient calculation) 

The steady state calculation is performed with a marehing technique from the 

bundle inlet to the outlet. Therefore velocity components and coolant phys­

ical properties are defined at axial nodes JZ (JZ = 2, MZ). 

The coolant radial velocities are defined on the planes parallel to the 

bundle axis through the pin axes. The other quantities (w, h, physical prop­

erties) are defined midway between the above planes. 

For the transient calculation (both two- and three-dimensional) physical 

quantities are defined on staggered meshes. This requires a re-initialization 

of velocity components and coolant physical properties before the programme 

control is transfered to the modules for the transient calculation. This is 

clone in the Subroutine BACCHP. The correspondence between the axial nodes 

used in the steady-state calculation and the axial meshes used in the 

transient calculation is sketched ~n Fig. 8. 

Before the programme control is transfered t'o the &lbroutine TIER3, wich is the 

driving programme for the 3-D transient calculation, a quasi-stationary cal­

culation is performed in Subroutine PERM3. It is a time-dcpendent computation 

with coostant :inlet and boundary conditions, which is carried out till some 

convergence criteria are satisfied. 

Typically, a few hundred time steps are required for reaching a new steady­

state, This calculation is needed because of the different physical modelling 

in BACCHUS-P and ßACCHUS-T. It offers the following advantages with respect to 

the steady-state calculation of BACCHP 

coolant heat diffusion in axial direction is not neglected 

the radial pressure distribution is calculated 
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Fig. 8: Indexing of centred and staggered meshes in axial direction. 
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in the radial direction,the calculation of convective terms is included 

in the momentum and the energy equations 

in case of blockages (which cannot be handled in steady-state calculations) 

completely new ~low and temperature fields are calculated by simulating 

a large pressure drop in the blocked meshes. 

1.5 Short description of BACCHUS-P Subroutines 

The steady-state calculation is made by transfering the control to the fol­

lowing Subroutines in the sequence: 

al) MAIN/LECT a
2

) BACCP3 

b) CHAUF 

c) INIT 

d) IMPRIP 

e) PRESS 

f) ITERBP 

g) VI TAX 

h) CFAX 

i) TRIDIB 

j) ENTH 

k) LHTSTX 

1) WWSTX 

m) TRIDIA 

PRESS (2nd run) 

IMPRIP (2nd run) 

n) FPHU 

o) BNDRYP 

p) BNDRY3 

q) BNDRYH 

r) PHYSL 

s) TBR03 

The ma~n calculations made in these Subroutines are explained hereafter. 
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a 1) MAIN Programme / Subroutine LECT 

When the BACCHUS-P programme is used as stand-alone or the calculation has 

to be stopped at the end of the steady-state, a set of input-data (see 

section 1.6) is read by calling Subroutine LECT. In this case a transient 

calculation cannot follow. 

a2 ) Subroutine BACCP3 

This is the control programme for the steady-state calculation when BACCHUS-P 

is used in combination with the transient programme. Besides the transfer 

from the nodes to the staggered meshes is made for the subsequent quasi-sta­

tionary calculations performed in Subroutine PERM. 

b) Subroutine CHAUF 

The coolant physical properties are calculated according to theinput enthalpy 

value HZERO, and the axial power distribution is normalized and stored in 

array FQ (JZ), JZ = 2, ... MZ. 
- 3 -

The fields containing the fuel power density QVOLL L W/m _/and the steady 

state heat fluxes at the clad outer surface QQQl L-W/m
2_7 are initialized. 

c) Subroutine INIT 

The velocity components and the physical properties of the coolant at the 

inlet dummy node (JZ = 1) are initialized. 

d) Subroutine IMPRIP 

i) 1st run. Input and further geometrical data are printed in the following 

sequence: 

geometrical data of the bundle, including hydraulic diameters 

geometrical data defined at the interface between central meshes and 

in the central meshes namely 

number, surface, and perimeter of pins in the control volumes 

coolant flow area and total area of the displaced control volumes 

radial porosities 

inlet and outlet boundary conditions 

physical properties of coolant at inlet. 
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ii) 2nd run. The BACCHUS-P ealeulation Ls done with a marehing teehnique from 

the bundle inlet to the outlet. At the end of the BACCHUS-P ealeulation 

following data are printed for every axial level: 

eoolant enthalpy, density and temperature, 

axial veloeity, axial and radial mass flows 

thermodynamie title and void fraetion of two phase fluid (set to zero 

in ease rif single phase flow) 

eoolant pressure and axial pressure drop 

enthalpy balanee between bundle inlet and the axial level eonsidered. 

e) Subroutine PRESS 

The ealeulation of eoolant pressure axial distribution, eoolant enthalpy and 

veloeity is done by ealling Subroutine ITERBP. When the eoolant pressure at 

the bundle outlet is given as a boundary eondition (MPR = 2), this subroutine 

eheeks whether this value has been attained within a given toleranee. If this 

is not the ease a new iteration step from bundle inlet to the outlet is done 

after modifying the inlet pressure using the Newton method. A maximum nurober 

of iteraetion sweeps (ITPX) is speeified by input. 

f) Subroutine ITERBP 

The eomputation of eoolant veloeity and enthalpy is done for every axial level 

from bundle inlet to the outlet with the marehing teehnique. For every axial 

level JZ (JZ = 2, MZ) are eomputed: 

eoolant axial veloeity and eoolant pressure, by ealling subroutine VITAX 

eoolant enthalpy, by ealling subroutine ENTH 

two-phase flow parameters 

radial mass flow, aeeording to equation C 1.2 (19) 

enthalpy balanee from the bundle inlet to the axial level under eonsider­

ation, aeeording to equation C 1.2 (36) 

g) Subroutine VITAX 

The eoolant pressure and axial veloeities at a given axial level JZ are com­

puted by solving numerieally the system of equations (28) (Seetion C 1.2) 

with the auxiliary eondition given by equation (29). Tqe numerieal solution 
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is obtained with the Thomas algorithm I 7 I applied in Subroutine TRIDIB. 

h) Subroutine CFAX 

The friction coefficient for the coolant flow is calculated. 

i) Subroutine TRIDIB 

It solves numerically an equation of the form AY 1 + PY 2 = B where A is a 

three-diagonal matrix, Y
1

, Y
2 

are unknown vectors, P and B are known vectors. 

A further condition relating the components of Y
1 

and Y
2 

is given so that 

the Thomas algorithm I 7 I can be applied. This Subroutine is called by Sub­

routine VITAX for solving the system of equations (28) under the restraint 

represented by equation (29) of section C 1.2. 

j) Subroutine ENTH 

The coolant enthalpy distribution at an axial level JZ is calculated by 

solving numerically eq (35). The inversion of the three-diagonal matrix of 

coefficients is done in Subroutine TRIDIA. It also computes the hexagonal can 

temperature according to equation (40) of section C 1.2. 

k) Subroutine LHTSTX 

The coefficient for the heat transfer between coolant to clad (or structure) 

wall is calculated. 

1) Subroutine WWSTX 

The heat transfer coefficient form the outer surface of the hexagonal can 

structure to the outer medium is calculated. 

m) Subroutine TRIDIA 

A system of linear equations with a three-diagonal matrix of coefficients is 

solved numerically by means of the Thomas algorithm I 7 1. It is called by 

Subroutine ENTH for solving the system of equations (35) of section C 1.2. 

n) Subroutine FPHU 

The boundary conditions for pressure, enthalpy and coolant velocity components 

are calculated . 
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o) Subroutine BNDRYP (Entry in BNDRY3) 

For a11 dumrny meshes the pressure boundary conditions are imposed according 

'to the input data. 

p) Subroutine BNDRY3 

The boundary conditions for the coo1ant ve1ocities and mass f1ows in the 

dummy meshes are imposed, according to the input parameters. 

q) Subroutine BNDRYH (Entry in BNDRY3) 

The boundary conditions for the coo1ant entha1py in the dummy meshes are 

imposed, according to the input parameters. 

r) Subroutine PHYSL 

The physica1 properties of the coo1ant (sing1e phase) corresponding to a 

given entha1py are calcu1ated. 

s) Subroutine TBR03 

The steady state temperature distributiornin the fue1 and c1ad are ca1cu1ated 

as exp1ained in section 1.3. A first eva1uation of the steady state tempera­

ture distribution is made by integrating the heat diffu~ion equation under 

the assumption of constant physica1 properties of the fue1 (section 1.3.3). 

A refined ca1culation which takes into account the temperature dependence 

of the physica1 properties is obtained by solving numerica11y the dis­

cretized Fourier equations by means of the Gauss-Seide1 iteration method 

(section 1.3.4). 

1 6 I d . . + . nput escr~pt~on 

The fo11owing formats are used for reading input data: 

integers: 18 I 4 

rea1s 7 G 10.4 

+ 
Cerresponds to the stand of the programme as of Deceffiber 1981. 



Card 1 TITRE 

Card 2 MD 

, I .. • 
I 
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Title of up to 80 alpha-numeric digits 

Dimensions of arrays in COMMON Blocks 

ND for axial (MD) and radial (ND) discretization. 

Card 3 NCAS 

IST0P 

Card 4 NC 

Card 5 PITCH 

Number of cases which can be calculated. All cases assume 

the same bundle geometry and differ in the boundary con­

ditions. 

0 Steady-state calculation only is perfQrmed. 

Number of radial meshes in the bundle. 

Pitch (m) 

DIA Pin outer diam&er(including cladding) (m) 

GAP Width of external coolant flow surface (m) 

Card 6 

Card 7 

Card 8 

DFIL 

HELIC 

NZci 

ML(I), 

I=l ,NZ0 

ZL(I), 

I=l ,NZ!P 

Card 9 NQ 

Card 10 ZQ(I), 

I=l ,NQ 

Card 11 QZ(I), 

I=l,NQ 

Card 12 TITRE 

Card 13 MPR 

Card 14 PZER!P 

PKOO 

DHPZO 

This surface is bounded externally by the hexagonal can and 

internally by a plane passing through the axes of the outer­

most pins. 

Diameter of helicoidal spacers (m) 

Pitch length of helicoidal spacers (m) 

Number of axial sections 

Number of axial meshes in the NZ0 axial sections. 

Length of axial sections 

Number of nodes in which the power profile is given 

Axial coordinates of the nodes for power profile L m / 

Normalized profile of power density 

Title of up to 72 alpha-numeric digits describing the case 

being run 

= 1 Inlet coolant pressure as boundary condition 

= 2 Outlet coolant pressure as boundary condition 

2 Coolant outlet pressure (N/m ) 

Coolant inlet pressure (N/m2) 

Axial distance between coolant upper free level and bundle 

outlet (m) 



Card 15 

Card 16 

Card 17 

Card 18 

Card 19 

Card 20 

Card 21 

Card 22 

Card 23 

TZERV) 

WZER~ 

PUlS 

CDIFFO 

CDIFFI 

CDIFTO 

CDIFTl 

NITMAX 

EP 

} CFA 

CFB 

CFMEl ~ 

CFME2 ) 

EPSEX 

PPSI 

DABST 

NMO 

} 
} 
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0 
Inlet steady state coolant temperature ( C) 

Inlet steady state coolant axial velocity (rn/sec) 

Total power of the bundle (W) 

Coefficients C
0

, c
1 

for calculating the turbulent momentum 

diffusivity according to V"eff = c1 + C
0 

sW Dh 

Coefficients C
0

, c
1 

for calculating the turbulent diffu­

sivity for heat according to aeff = c1a + C
0 

s W Dh. 

We suggest c
1 

DIA 
= l- PITCH c = 1. 

0 

Maximum iteration nurober for coolant pressure convergence 

( = 10). 

Tolerance for coolant pressure convergence (1. E-04) 

Coefficients for calculating the friction factor CFO 

according to the formula CFO = CFA / (REY if., ~ CFB) 

Coefficients for modifying the calculation of the friction 

coefficient CFO according to the Novendstern relationship: 

CF = CFO x CFM 

with 

CFM = (CFMl + CFM2 x REY xx CFMEl) xx CFME2 

and 

CFMl 1•034 /((PITCH/DIA) xx 0•124) 

CFM2 = 29·7 'X (PITCH/DIA) 'X 6·94 I (A/DIA) 'X'X 2·239 

(A = pitch length of wire wraps (See Subroutine CFAX)) 

Thickness of hexagonal can (m) 

Coefficient for calculating pressure drops 1n case of 

grid spacers ßp = PPSI x Dh/DABST 

Distance between grid spacers (m) 

First axial mesh of fuel column. 

(The section JC = 2 7 (NM0-1) is regarded as fission gas 

plenum). 

NMl Last axial mesh of fuel column. 



Card 24 

Card 25 

Card 26 

Card 27 

Card 28 

Card 29 
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CNNl Coefficients to deterroine the clad-coolant heat transfer 

CNN2 coefficient h corresponding to the Nusselt nurober 

CNl 

CN2 
N 

u 
= ~D = CNNl + CNN3 • RECNl . PrCN2 ( Tw )CN3 

A Tbulk 

CN3 (Tw = wall teroperature, Tbulk = coolant bulk teroperature) 

RBRR 

DCANN 

DBONDD 

ANTBB 

ANTCC 

ANTKK 

ANTSS 

IS 

NDCCLiUP 

IDEB 

IFIN 

IPAS 

Fuel radius (ro) 

Clad thickness (ro) 

Gap width (between fuel and clad) (ro) 

Percentage of power produced in the fuel 

Percentage of power produced in the clad 

Percentage of power produced in the coolant 

Percentage of power produced in the structure 

Steady state results are printed for all axial nodes 

(IS = O) or for roeshes for ~hich output is desired as 

specified in next two cards (IS r 0) 

Nurober of axial sections for which a full output 1s 

required 

First axial node for which output is desired 

Last axial node for which output is desired 

Results of every IPAS-th node between IDED and IFIN 

are pr in ted. 

Card 29 is repeated NDC~UP tiroes. 

Cards 28, 29 arenot required if IS = 0 (Card 27). 
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2) Transient three-dimensional (3D) thermal hydraulic calculation 

The use of the ICE (_!mplicit_Qontinuousfluid ~ulerian) technique by F.H. Har­

low and A.A. Ansden /9/ for the numerical treatment of the thermal hydraulic con­

servation equations is explained in this section. Emphasis is put on the de­

rivation of a Poisson - like equation for the coolant pressure, which is an 

essential feature of the ICE technique. In the present programme version the 

numerical solution of the Poisson equation is obtained with the Alternating 

Directions Implicit (ADI) method which is used iteratively within one time 

step. It is based on the well known scheme by Peaceman-Rachford/5/andibughs/10/. 

2.1 The ICE technique 

Referring to reference /9/for a detailed description, we recall briefly the main 

features which characterize the Implicit Continuous-fluid Eulerian (ICE) Tech­

nique, as applied to the volume averaged conservation equations derived in 

section B. 1.2. These equations are discretizedwith respect to time by intro­

ducing two weighting parameters G- , 1-$-(o ~e--~ 1) for quantities referred 

to time steps t 
1 

and t , respectively. Space discretization is done with 
n+ n 

reference to "staggered" meshes as shown in fig. 2. 

This discretization technique offers the advantage that in the three scalar 

momentum equations values of the fluid pressure are defined at either side 

of the velocity components in the respective axis direction. This allows com­

bining momentum and continuity equations to obtain a seven-point formula for 

pressure-values at time t 
1 . n+ 

as it would be generated by space - discretiza-

tion of a Poissson equation. The main disadvantage consists in the fact that 

the divergence terms in the continuity equation require the calculation of 

fluid density at the mesh interfaces, which implies the use of an interpola­

tion formula between known centre values. 

As far as time - discretization is roncerned, fue fullowingideas form the basis 

of the ICE technique: a) Convective terms are treated explicit1y. b) Terms 

describing spatial pressure distribution are treated implicitly; divergence 

terms of fue mntinuity e:ruation, which rescribe fue space,distribution of the fluid 

density, are also treated implicitly. c) Terms describing friction pressure 
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drops are treated half-implicitly in the BACCHUS programme. It is well known 

that the implicit treatment of pressure dependent terms removes the very re­

strictive constraint of time steps smaller than the minimum of A€J-/G. 
= mesh lengths in the z, r, s directions, c = speed of sound). 

As shown in detail in the following sections, the application of the ICE tech­

nique implies the following steps: 

i) Momentum and continuity equations are combined to derive a Poisson equa-
. n2pn+ 1 n . b. h . · · · 1 1 tLon v = G descrL Lng t e pressure dLstrLbutLon at tLme eve 

n+l. The right-hand side Gn of this equation contai~convective and dif­

fusivity terms calculated explicitly at time level n as well as pres­

sure terms at the same time t • 
n 

ii) The Poisson equation is solved numerically, yielding the space distri­

bution of pressure at time t 
1

. n+ 

iii) The new pressure values are introduced into the scalar momentum equa­

tions which are solved explicitly for the mass flows in the respective 

directions. Velocity fields at time t 
1 

are hence obtained. n+ 

iv) The new velocity values are introduced into the energy equation which is 

solved for the fluid enthalpy. Physical properties of the fluid are then 

calculated at time tn+l' 

v) Time is updated and the calculation cycle starts again from ii) for 

the following time step. 

2.2 Finite difference form of the volume averaged conservation equations 

i) Continuity equation 

Let 9-c:... (D\"lJ'c,~-\) be a time-discretization parameter and n, n+l be superscripts 

referring to time levels tn, tn+l respectively. Space and time discretization of 

eq. B.l. (14) yields for the control volume v
1 

shown in Fig.2: 
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For the reason mentioned in section 2.1, the divergence termsin the continui­

ty equation are treated implicitly. In eq. (1) and in the following ones the 

symbols ~ >3 ,< > denoting volume and surface averaged quantities are dropped 

for simplicity. 

We refer to the list at the end of this section for all new symbols intro­

duced in the following equations. 

ii) Momentum equations 

a) Axial momentum equation 

Space and time discretization of eq. B.l (17) foir the control volume 

VIII shown in fig. 2 yields 
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As remarked before, convective and diffusive terms are treated explici tly 

with respect to time, pressure terms implicitly and the term representing 

friction pressure drops is treated half-implici tly. ~'\'V\ ( 0 ~ &""" ~ 1.) 
is a time-discretization parameter for the pressure terms in the momentum 

equations. The last term of eq. B. 1 ( U) has been rewri tten taking into account 

that 

Sw <t Sw f fw E 4 (3) ·- - -- -.::. ·- -::::. -
\j V~ Sg. .Dt; 

·f-: "X (4) 



where 

\)tv = 

' s ~ 
fw = 

f) X = 

Letting 

FC~Z 

FWZ 
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hydraulic diameter L m_/ 

- 2 -
cross flow area for the fluid L m _/ 

wetted wall perime ter L-m) 

friction coefficients, 

= 
f lwnl 

2 Dh 

1 1 = 
l+~t • fhvnl l+flt • FC~Z 

n 
n 2D 

h 

eq. (2) can be rewritten 

(5) 

(6) 

(7) 

MM _ F<R _ fH _ f:tVT:r 
) ).·,I ~-11t.. ~ ,L ·, l. ~ 1/ll ~ 

K 
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b) Radial momentum equation 

Space and time discretization of eq. B.l (18) for control volume 

VII shown in fig. 2 yields 

·+ 

The velocity M.~ in last term of ep. (8) is defined by 

M,·+ - M- L4 P- rr .D11. 
l4 (?- J)) 

where D is the pin diameter and P the pitch. 

(9) 
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Letting 
f-w ~M~'~\ FC~R 1 = -
Sg_ '}, 

,.f -1 
FWR = = 

·l+ b.t""' :fw .~ \lA*'""' \ -1 + t::.t I fC ifJR 
fV" 

s~ 1, 

eq. (8) can be rewritten 

-1 

t CVRR + CVR\ _ f~7: _ f~~ 

c) Azimutha1 momentum equation 

Space and time discretization of eq. B.1 (19) for the contro1 

vo1ume VIV of fig. 2 yie1ds 

( 10) . 

(11) 

(12) 
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-f~. 1-+ ,.tj~ 

The velocity .\f"' in last term of eq. (13) is defined by a formu1a 

equivalent to (9). 

Letting 

i 

~~ M;~ fw f \v-*Ml 
eq. (13) can be written 

5t ~ 

(14) 

( 15) 
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(
' ')i'Jq.~ 
)'J' ·. ' ' 

,1. 1) ; K., '~/1_ 
(16) 

( cv-rr .. CV'i'R , 
.'VI 

fw~ 
~-·, \1 

r-.~1J~..-

Equations (7), (12), (16) are the basic equations for the calculation of the 

mass flows, when the updated pressure field has been obtained (see section 

2. 5). 

iii) Energy equation 

The volume-averaged energy equation B.l. (22) is discretized with reference 

to the control volume v
1 

shown in fig. 2 . All terms are treated explicitly 

with respect to time. The discretized equation is as follows: 
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(17) 

2.3 Derivation of a Poisson - like equation for the coolant 

pressure distribution 

The ICE technique allows to derive a difference equation for pressure values 

from the continuity and momentum equations as it would be obtained dis­

cretizing a Poisson equa:tion. From the practical viewpoint the procedure is as 

follows: 

Consider the finite differences form of the volume averaged continuity equa­

tion (1). Replace the values of the mass flows at time level n+l by using 

the momentum equations (7), (12), (16) written for the nodes i, j~l/2, k/ 

i~l/2, j,k/ i, j, k~l/2 respectively. From the equation of state replace the 

time-difference of coolant density in (1) by 

IV'\ '"-
lW ( .... ~ ) ~ A''r; .) .A.'l K 

~ 

ft''r, f"'·l·(, - 2. 
l ' G ~·~·K j ' 

with 
(. 2. = df/d'5· 

Rearranging one derives a linear algebraic equation for the unkowns 

Mtl ftll t-1 

G·_.·,r.._,,., I f.~·jl"'-" 
which can be written 

(18) 

(19) 
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(20) 

""' F\tJ~ . . • + 
A. ) l "''"-

" 

? 4.'; I' 
\ = 

NV 

G ,, + 
('L ""' ,.t. ) " • 

A • j'" 
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The right-hand side G~ 'k is given fully in the next equation. We introduce the 
l.J 

coefficients CKN, CKS, CKW, CKE, CKTP, CKTM (defined in the list at the end 

of this section) which depend only on the bundle geometry and discretization. 

Dropping the subscripts ijk for these geometry coefficien ts, eq, (20) can be 

written: 

+ 

lW 

FWi 
.A,J )' +AfL 1K -

Mt I "" r, 1 •• 
Ci\ E • FW ~ . A..' +"h I), K 

Ä ·t I ) '' 

Mt- I ~ 

p_A 'i I~~~ f\ • CKTf~ FWi . · 
A. ~ 

~t-Att 

Mt I 

\ 
LCKN' 

lW 

r · .. Fw:c 
-4-' 1 )\";,_ 1 K 

..lJ" 

+ 

+ 

+ 

,yJ 

+ f.._'i-t\,)'" 

(II 

C\<.e,FWR . .-<1 .... 
,..!. + L ' 

)• K 

_!V> 

C KTf' . f\\1 I . , .... 
A. ' • 

KtA/L 

M 

• C K & • FW R .... 
.t't-Ah ~~· k. 

Cl\ iM • 

/IN fV'I 

F. . CKVJ FW R -t . ~ 

-t.'-'\')'t:. 4 • '1,) K 

(21) 

,-w FW_I\'Y lW 

FWT ~ l 1 ~c (1-11".) 1'..< • .' + + f.-~.·J',Ia ~ ,C\\Tr, I 'I .... f .. Cl\ TM. 
.A l 

t l ",. ... ,I. 
~-" "-"I~,. 



·+ 

f(V 

CI\IP . f\IJ i .t') 
k-t illt. 
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+ 

(21) 

C:..V R~ ",. CV(2..1 _ F~c _ ff!R _F~\)M • fWI\~ + 
. .A.'-A/i_ "-.-'YL 

)' K ) II. 
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MI 

<:V I I_ F H _ f IR FWI 
,t' ~ + 

K-rllft 

Equation (21) can be written 1n the following cornpact form (ratios of volurne 

porosities at different axial locations are equal to one in undisturbed georne­

try and are therefore dropped as rnultiplying factor): 

1\11~1 't 
f ... c~s 

.A. I)-~ tl'\ 

1\1\1 

FLUR .. 
A. ~ K 

'L 

[ .%·,," ',·, ( SR • F W R ) ~ f 1\ C.(.~ ,:_ + 
l:)c ~tM 

A.sz<· 'L.·.- 4h 1 )'r, .A. t--1/LI) K 

Uc ~t 2 lr'i·•·'" (s•·FW1r _ + M 

b. 'Jk (().')~· <t_),, ,t'~IKI-"/1.. 
,A. ) I~ t ~/ i.. 

-+ f " r:~" 
.{.) K • '!.(IN 

c . ' 
,A.~IC. 

The nurnerical solution of the discrete Poisson - like equation (22) 1s 

explained in tlrre next section. 

(22) 

(21) 
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List of Symbols used in the previous equations. 

CKN ... 
" ~ K :::: 

(23) 

(24) 

(25) 

(26) 

(27) 

f .t' 3' I K - 'Y l. .. A 'J " " b ';) '(:., - ''h • Ce? p ~- 'Y ~ 
(28) 

CKt.t'}~" -=- (CKN ·t- C\<.~ + CKE + C.KW ·-r CK Ti' -t C.:.K T K J A'j'K (29) 

~ (V" 

C K .J "'') K CKI\1 " u f\\)"1;- ' ' 4/ - A ~ r, ). I ) T ·t, 1<: 
(30) 

fi/V 

CK$1-., CKS · · • i=w~ .. 
. _A. } " - .t j K ..4,l--4/l1 K 

(31) 

(32) 

(33) 

(34) 

(35) 
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CKC~ I • 

..4 ~ K -

·~ ·+ CKT~ •. 
,~.)K 

M 
FW.t I • 

,(..lj.±"fL,k. 

R.'V\1 r\v . . 
,~. !· 1-z , ) K 

M 

F'W T . ' r- .. A 
..tiJ''-1'1. 

f(Dt!W··~ 
J .!' VL 

FCORIW,.j.-{ 
"- _ I t 

-1 /(4 + 
tW 

~t-1'\\. l r CO~ ~ :±' "h-) .". 

·- ~ /( ~ + ~t . 
M fCO RM.A'± -1/z.) 

~ A/(1-+ ht • 
""' F<OT; .t'"/2.)· 

!·I w';l ~±AlL"' \ 
:: 

.2 j)~ 

.-1 (f,.) i -::::: -
~ s~ ,..~.· ± ~.~~...· 

l.t',)·Hk,l\ 

~};)'•1ft. 

l ·~ ~ \ 
.A,t 4-' ± II( l1 l' 1'\. 

(36) 

(37) 

(38) 

~ 
(39) 

(40) 

( 41) 

(42) 

(43) 

(45) 

(46) 
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(4 7) 

(48) 

(49) 

(52) 

(53) 

(55) 

1\-.1 

CV'i.t . 
..<.I)', 1:: ·Hh -::. 

(56) 
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(57) 

c V n: .. ~·· K+4h ~ (ll~ ~ ~ p ).~ l' l (rs~TI.I"" - (1 j V I.ir-1 (58) 

"~ 1/1. 

(59) 

(60) 

(61) 
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fW "* ( -1' Kt .. 
..t ) K -+ f I ~ ' A- •l K 

• CKW ,, 
,A ) 1;. + 

c kS"' I 

Jl ft\ 
CKf .- + + 

(65) 

(66) 

flR _ Ft:T )""' (67) 

-t.'l\'tAh 

" 
+ <:.VRI _ fR"t _ F~R _F-R\)""' 

A.'+-l/t,J
1

1", 

(68) 

(70) 

Right-hand side of equation (22). (71) 
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Furtherrnore, the following syrnbols are used in the prograrnrne: 

Fl 

F9 = 

F2 = 

F8 

DZC (JC) 

DZZ (JZ) = 

DRC (IC) 

DRR (IR) 

PFC (IC) 

EPS (IC) = 

EPR (IR) 

EPT (IT) = 

PSI (IC) 

GSIT (IC,IT) 

GSITR (IC,ITR) 

C0SB12 (ITR) 

SFR (IR) 

SFTR (IC, ITR) 

PAR (IR) = 

PATR (IC, ITR) 

CF = 

SCSQ 

PSIR (IR) = 

FACCM(IC) 

FACCP(IC) 

FACRM(IR) 

FACRP (IR) 

&.;.. 

-1- t1c.. 
81\\N 
-1 - & """"' 
/)..?.:: • 

~ 

b.?:~+~ll... 

ß.·~l· 

A. ~ ,' + .~, z.. 

111: 
z.~ 

~ ~..· i- -1/z.. 

t k -t-J/2 

'f.L 

t',·K 
?.· .. r., ... -111.. 

(,ol) I~ K + ..j I 2. 

s ~ A.'+41z.. 

sf ..t' I K +-i/L 

f..v t'1"-lil.. 

Pw ~·' "-"~- 112. 

f 
'2. c .. 

.{ ~ 1<. 

\J( ..~.· + 1/z. 

A."l.: ~ ·- .. ~ 
6 ß ~K 

~ -+ ~ ö.-rz..: I ö ~"' 
6 

-1 ·- 6. U~K(t.R) I c ~ . i'FC.(t<.) + 6' I>RP.(tt')) 

--1 + 6 · D~R(Ii\)/(v$• PFC(tl:.) + ,, J)~~(~R)) 

The following syrnbols are introduced for sav1ng cornputing time: 



cuc 

UC0L 

UC0LT 

GUC0L (IR) 

GUC0T (IC, ITR) 

EPDD (IC, JC) 

EPDZ (IC, JZ) 

ERDD (IR, JC) 

PFC0S (IC, ITR) 

CGEP (IC) 

GSC0S (IC,ITR) 

GCC0SE (IC, ITR) 

PSER (IR) 

PS FARM (IC) 

PSFARP (IC) 

PSFACM (IR) 

PSFACP (IR) 

PSMDP (IR) 

PSPDM (IR) 

PSERP (IC) 

PSERM (IC) 

GSIDP (IC,IT) 

GSIDM (IC,IT) 
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4. r nc::" - rr ·ölt\ 
= 

4 ( f 1 r c. \-1 - o ' 1l ) 

cuc • .AAl 

= cuc ' "" 

= 

= 

= 

= 

= 

= 

l (.fw) 
~ sr .A • + ~ lz. 

~ (fw 
'f , Se ) ,).'1 K-+ -4jz. 

f •. :/ b>t:~ 

~L· /Ac rt 4/2.. 

f.t~K"T-4/z._ ~(.(Y)~r:,"t--f/1.. 

t.".K..;.-4/2. I ('it'• Ul>pr:.'t-4/t.) 

'fl A.. 'H/2.. 1 z ... · .. -4,~-

PSI (IR) FACRM (IR) 

PSI (IC+1) FACRP (IR) 

PSIR (IR-1) FACCM (IC) 

PSIR (IR) FACCP (IC) 

PSIRM (IR) / PSIRP (IR) 

PSIRP (IR-1)/ PSIRM (IR-1) 

~" I ~Kt{ 
"fr, / ~r. -1 

= 

'\) A. I '\-' A.. ~ 'l 

'\}.t' I 'V.t'-1. 
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and the following time step - dependent syrnbols 

DTSQ 
1t2. 

IV'> 

t. 
DTSQl !:}(.. I ~tM 

DTSQ18 ee- (1-&~) b.t~ 

CFDT 8' c.. . B""' ~t 1.. 
1\f\ 

DTEPl (IC, JC) ~ 'i ' 0\;..- L b.-l:,... /i:::.r~· 

DTEP9 (IC, JC) (1-~(.) iL' b.t...._/1::/?:j 

DTDRl (IC) t)'"' ~t!Vt. I ß~.: 
DTDR9 (IC) = (~ - '& c.) ~ t M I 6 Tf.l' 

DTPFl (IC) ()'c ~ t NV / Ö-':1~ 

DTPF9 (IC) = (1-lJ.-.,) iltM /1::.!>~· 

DTSZl (JC) -- 5'-., ~1:: I ß-r; 

= t\ ~ lJ M1.. I b rz L 1 

DTSRl (IC) {/\_. 

DTSPl (IC) = 'bc, t..t: M1- I~/) ~ 

(IC, 8.;, 8""' ~t 1. I CKc.*' ,. 
. -z.""' 

AA JC,IT) = + 'c' ,(..' \. K I (. . . 
M .Al" A.j(,. 

BB (IC, JC, IT) ·- e (.. b ~'~"' bt '!. . c ~ 'bl' .. 
N' .Ajl\ 

cc (IC, JC, IT) ·- 8c..&* hr t 

"" 
.. CKN1' .. 

.A.JI" 

DD (IC, JC, IT) = - B'c &l'f'lt\ ~t 1 
M 

. CK\/11 1 ·· A J (, 

EE (IC, JC, IT) ·-Be- &rw- u- t 
NI • CKf\·· ~ (, 

(IC, - l7c, 8""' ~tM 
'L c - \<' ATM JC, IT) = . K II"\ .A'j'r;. 

- Bc.. &~ b,t 1.- e_r--')-f 
ATP (IC, JC, IT) 

. ' I t '' • M ..Al"' 
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2.4 Nurnerical Solution of the Poisson-equation. 

The Alternating Direction Implicit (ADI) rnethod. 

Write the Poisson equation (22) in the form 

A. 'k 
n+l 

+ B. 'k 
n+l 

c. 'k 
n+l 

+ D. 'k 
n+l 

P· 'k P· ' 1 k + p .. 1 k p, 1 . k + ~J ~J ~J ~,]- ' ~J ~,J+ ' ~J ~- 'J' 

E,. n+l 
+ ATM. 'k 

n+l 
+ ATP. 'k 

n+l n 
p, 1 . k Pi,j,k-1 p .. k 1 G. 'k ~Jk ~+ 'J' ~J ~J ~ 'J' + q 

( 72) 

n 
where G,. collects all convective, diffusive and pressure terrns at time 

~Jk 
level t . 

n 

According to the Alternating Direction Irnplicit (ADI) technique we integrate - - -
equation (72) in each of the three coordinate directions separately. We re­

duce therefore the solution of a three dimensional problern to the simpler 

solution of three one-dirnensional ones. After every integration in one direc­

tion the fully updated pressure field is used for the subsequent integration. 

The three integration steps are as follows: 

- Step 1. Integration along the axial z coordinate (j=2,3, ... MC) for every 

radial and azirnuthal (i,k) rnesh. Equation (72) is written in the 

form 

A. 'k 
(1) 

+ B. 'k 
(1) 

+ c. 'k 
( 1) 

= p. 'k p .. 1 k p .. 1 k 
~J ~J ~J ~,]- ' ~J ~,J+ ' 

n n n = G. 'k D, 'k p, 1 . k - Eijk p. 1 . k 
~J ~J ~- 'J' ~+ 'J' + (73) 

n 
- ATM. 'k · p. , k l - ATP. 'k 

~J ~,], - ~J 

n 
P· ' k 1 ~, J' + 

where pressure values at the right-hand side, provisionally con­

sidered as known, are taken first frorn the previous time step. Equation 

(73) yields for every (i,k) a systern of equations with three-diago­

nal rnatrix of coefficients. Its solution is direct and gives a new 

pressure field p~lk) which is used for next integration step. 
~J 
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- Step 2. Integration along the radial r coordinate (i=2,3, ... NC) for every 

axial and azimuthal rnesh (j,k). Equation (72) is written in the form 

A. 'k 
(2) 

+ D. 'k 
(2) 

+ E. 'k . (2) 
p. 'k p. 1 . k p. 1 .. k 1] 1] 1] 1- , J' 1] 1+ , J, 

n 
- Bijk 

(1) 
c. 'k 

( 1) 
= G. 'k p .. 1 k - . p .. 1 k 1] 1, J- ' 1] 1, J + ' + (74) 

(1) 
- ATM. 'k · p. . k l - ATP. 'k 1] 1,], - 1] 

(1) 
p .. k 1 

1, J' + 

The pressure field p~~k) from previous step is used at the right-hand 
1] 

side. Solution of the system of equations (74) yields the updated 
(2) 

pressure field pijk' 

- Step 3. Integration along the azimuthal s coordinate (k=2,3, ... NTH) for every 

axial and radial mesh (i,j). Equation (72) is written in the form: 

(r+l) 
A .. 1 ' p. 'k + ATM. 'k 1]< 1] 1] 

(r+l) 
p. . k 1 + ATP. 'k 
1' J' - 1] 

(2) 
P· . 1 - C. 'k f.,J- ,k 1] 

(2) (2) 
p. 1 'k - E. 'k • p. 1 'k' 1- ,J 1] 1+ ,J 

(2) + 
p .. 1 k 1,]+ ' 

(r+l) 
p .. k 1 

1, J, + 
= 

(75) 

(r+l) 
Equation (75) yields the updated pressure field p. 'k , where r re-

1J 
presents an iteration index. This pressure field is used for next 

iteration which consists in applying again equations (73) to (75). 

The iteration is terminated when two subsequent solutions of the 

pressure field differ by less than a g1ven tolerance. On anaverage, 

10 to 20 iteration steps are necessary for reaching a tolerance 

of lo-5 . 

Future prograrnrne developments may involve the implementation of accelerating 

convergence procedures in the ADI method as suggested for instance in references 

/11/, /12/ or, as an alternative to time-consuming iteration schemes, direct 

methods can be taken into consideration for instance: a) methods based on 

cyclic reductions (a review of such methods 1s given in reference /13/); b) 

application of Fast Fourier Transform /14/; c) direct inversion of the bleck­

tridiagonal rnatrix of coefficients /15/, /16/, /17/. 
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2.5 Numerica1 so1ution of the momentum equations 

Once the numerica1 so1ution of the Poisson-equation (72) has given the coo1ant 

pressure fie1d at time 1eve1 t 
1

, the discretized momentum equations (7), (12), 
n+ 

(16) yie1d direct1y the mass f1ows in the three coordinate directions at the 

same time 1eve1. The stabi1ity of the numerica1 so1ution of the coup1ed con­

tinuity and momentum equations is favoured by the ha1f-imp1icit treatment of 

the termsrepresenting friction pressure drops in equations (2), (8), (13). 

2.6 Numerica1 so1ution of the energy equation 

n+1 
The discretized energy equation LS so1ved exp1icit1y with respect to (h). 'k using 

LJ 
the nass flows at time 1eve1 t 

1 
and entha1pies at time leve1 t n+ n 

t\.t 
+ __ n_ 

( -CVEZ - CVER - CVET + QZ + QR + QT ] ~jk 
E:ijk 

+ t\.t 
n 

n 
Q .. k LJ 

+ 

where the convective and diffusive terms are given by 

n 
(CVEZ). 'k LJ 

n 
(CVER). 'k LJ 

n 
(CVET). 'k = 

LJ 

(QZ)~.k 
LJ 

n 
(QR). 'k LJ 

(QT)~.k 
LJ 

From (17) one derives: 

(76) 

(77) 

(78) 

(79) 

(80) 

( 81) 

(82) 

Further programme detai1s regarding the finite differences schemes used for ca1-

cu1ating convective and diffusive terms in the above equations are given in 

section 6.2. 



2.7 Calculation of the pressure gradient terms in the momentum eguations. 

We refer to Fig. 9 for the definition of the control volumes in the three 

coordinate directions. Let us recall Green's theorems with reference to 

the coordinate axes (r, s) 

:: ). f (n,s) N- x :JL d0 
r 

... ~- ~(~,~) .iV,'1-S -Ar 
r 

where s is a surface in the (r, s) plane bounded by a curve r, M· is the 

outward normal to r and r, s are unit vectors of the coordinate axes. 

The basic equations B.l (1) to B.l. (3) are integrated over the volume V of 

(83a) 

(83b) 

a cell. Taking into account that the physical properties of the coolant are 

defined only in the volume V f this is equivalent to integrate over the volume 

Vf of the fluid. The calculation of pressure gradient terms requires a dif­

ferent treatment for the coordinate directions. In the z direction the pres­

sure forces act only on the fluid cross flow sections normal to the bundle 

axis, thus the pressure gradient term can be integrated on V f. For the 

radial (and azimuthal) direction the pressure forces act also on the pin 

surfaces. The component of the forces acting on the pin surfaces 1s the 

same which would act on the cell boundaries in absence of the pins. The 

pressure gradient term requires therefore to be integrated over the volume V 

of the cell. 

i) Axial direction. We refer to the control volume TGLV displaced by f'.,z/2 

in axial direction. The pressure gradient term in the momentum equation 

B.l.l5 is calculated as follows: 
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ii) Radial direction. We refer to a control volurne like TGLV but displaced 

by ~r/2 in radial direction. The pressure gradient terrn in the radial 

rnomenturn equation is calculated by applying (83a) as follows 

The contribution frorn the last integral is zero. Hence 

~ ~t l-<f>;(>r.- + ~L )+ <P/e(VL- ~L )} ., 

-~ ~"' Ö)J (<f'i - <p>e) = ~'1. (<p>,· - 'P 7 <) 
The assurnption rnade in deriving (86) is that the pressure varies linearly 

along ~r. 

(84) 

(86) 
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iii) Azimuthal direction. The control volumes for the azimuthal direction are 

defined by splitting a 30 degree azimuthal sector' into two halves having 

equal volumes. The angle ßR in Fig. 9 is chosen so that TB = BG thus 

giving tgßR = 1/2 V3. We must consider two different control volumes: 

a) Control volume ABCD centred areund an axial plane normal to the hexagonal 

can. Applying (83b) one derives 

(87) 

The contribution> of the first and third integrals are zero, hence 

..::: 

b) Control volume BGHILC centred about an axial plane passing though the 

corner of the hecagonal can. Applying (83b) one derives 

.i. J Pr :1.v ." ·v ~ V o~ 

Because of the symmetriy with respect to the GL plane we assume 

N ~ S~ f M y./i o\ r = o 
BG--

N ~ S~ f 1\\ l\1) .~ r = D 

Lc 

(88) 

(89) 

(90) 

(91) 
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Hence 

~ 5 '()f Jl} ~~ lH (W)~~~rf - ßc W> p._ ~ f>..,.. 1 ~ -
{)~ 

V (92) 

1).~ l ß~ l-< p) i' -- " p ) IW-1 1.. l< p) - < f"J 1 = - • 
V /))) f ryv. 

ll r = AO · cos ß 
- p 

), 'BC·cosßm 

Fig. 9: Definition of control volumes for the azimuthal direction 



3. Transient two-dimensional (2 D) thermal hydraulic calculation 

In this section the two-dimensional transient single-phase flow version of 

the BACCHUS programme (BACCHUS-2D/SP) is documented with respect to the ther­

mal hydraulic calculation. The equations are similar to those of the three 

dimensional case but the azimuthal component is suppressed. The transient 

calculation is preceeded by a steady-state calculation with the BACCHUS-P 

programme, as explained in section C 1. The link between the steady-state 

and the transient programmes is explained in section C 1.4. The calculation 

of the temperature distributions in fuel, cladding and structure materials, 

which determines the heat fluxes into the coolant, is clone as explained in 

section C 4 for both the 2D and 3D programmes. 

3.1 Conservation equations Ln local form 

The two dimensional single phase flow of the coolant can be described in the 

local form by the following equations. 

i) Continuity equation 

ii) Hornenturn equation 

which is equivalent to the two scalar equations for axial and radial direc­

tions, respectively: 

.Q... c~~) + 'J .. (gwV) \J • (JA 'J •vJ ) -- Dt ·- ! d - D •1\11. - z. 7>t '1>-t-

~(~u) + \1~ c~~ VJ - '~ ~ ( r " «) - _v f D • %->1. 
f>& 'G))Z. 

(1) 

(2) 

(2a) 

( 2b) 



iii) Energy equation 

The symbols are the same as in section 2. For convenience the "radial" 

velocity component is referred to a local cartesian coordinate system. 

3.2 Conservation equations averaged over the control volumes 

(3) 

The conservation equations for mass, momentum and energy are integrated over 

appropriate control volumes and transformed into a"volume-averaged" equation 

using a staggered mesh. The following control volumes are defined for the 

volume averaging procedure (see Fig. 2) in analogy to the 3D case. 

VI is used for the continuity and the energy equation. It consists of a 

control cell bounded radially by vertical planes through the pin axes, 

and axially by horizontal planes located a distance ~z apart. 

Valurne VII is used for the radial components of the momentum equation. 

It consists of a hexagonal ring bounded radially by vertical planes 

midway between the axes of the pins. 

Valurne VIII is used for the axial component of the momentum equation. It 

is obtained by translating the control volumeVI by ~z/2 in axial direc­

tion. 
Cmtrary totre 3D case,the control volumes form rings instead of sectors. 

Valurne integrals are transformed into surface integrals by means of the Gauss 

theorem, time derivatives of volume integrals by means of the Leibniz theorem 

(see section B 1.2). 

i) Continuity equation 

We refer to the control volume VI of Fig. 2 and use the indices t, b, e, i, 

to denote the boundary surfaces (S): top, bottarn (z direction), external, 

internal (r direction) respectively. Let V be the total volume of the control 

cell and Vf be the volume of the fluid in it (index f refers to the fluid). 

The following definitions of volume porosity and surface permeability are in­

troduced, as in the 3D case: 
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s = Vf/V = volume porosity 

s =,s /s 
t ft t 

sb= 8fb/sb } surface permeabilities for the .axial direction. In case 

of undisturbed geometry these ratios are equal to the 

volume porosity 

lf' sf ;s e e e 
surface permeability at the outer radial surface 

IJ'. = sf./s. ]. ]. ]. 
surface permeability at the Lnner radial surface. 

It holds 

V .",. St·~?: ~ Sb·~t- (4) 

.t:.J?. ( s~ + s Q. ) /~ _ 

where S J.s the surface midway between S. and S . 
m J. e 

Integrating equation (1) over the volume Vf of the fluid J.n the control cell 

gLves 

(5) 

App1ying the Leibniz and Gauss theorems and introducing the velocity components 

yields 

T i )\N 

.) ft 

+ s gu,l~ 
Sfe-

s. ) w j~ 
s~b 

·- 5 3Vv 1~ ·::0 

s~l· 

We introduce the following definitions of volume and surface averaged 

quantities for any scalar function f: 

<. J) ~ ': i S f du 
Vg V~ 

-<1 > - i. l J dS 

St s~ 

(6) 

(7) 

(8) 



By means of (4), (7), (8) and using the definitions of the porosities and 

permeabilities 1 equation (6) becomes: 

with 

F S /S 
e e m 

F. S. /S , 
l. l. m 

This is the volume-averaged continuity equation. It is combined with the 

volume-averaged momentum equations to derive a discrete Poisson-like 

equation, 

ii) Momentum equations 

a) Axial momentum equation 

Integration of eq. (2a) over the volume Vf of the fluid in the control cell 

yields 

i dv..-(swli) ~~ 
"{ 

(10) 

( 11) 
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By means of the Leibniz and Gauss theorems one has 

·- J (~w)w ;,\S + 

s~b 

+ S ($w) .tv olS _ 5 (3w) .4 o\~ = 

S~e -S~l· 

·.= 5 )A ~w G{ 5 _ ( fv Pw d s ·+ ( !'- ~~ J s _ s y. -~ d<_, + 
S <Ur j ~ 7: j ()~ 'i)~ 
~t s~ 6 s+e .s~ l. 

A similar treatment as for the continuity equation leads to 

( 12) 

( 13) 
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b) Radial rnornenturn equation 

Integration of eq. (2b) over the volurne Vf of the fluid in the control cell 

yields, with the sarne procedure as for equations (11) to (13): 

iii) Energy equation 

Integration of eq. (3) over the volurne Vf of the fluid in the control cell 

yields 

Applying the Leibniz and Gauss theorerns one has 

+jtX~J. 
V 

Introducing the definitions of volurne porosity and surface perrneabilities 

and using (7), (8) yields: 

·+ 

Eq. (17) is the volurne-averaged energy equation. 

(14) 

(16) 

(17) 
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3.3 Finite difference form of the volume averaged conservation equations 

i) Continuity equation 

Let g. (o ~ g. ~ 1) be a time-discretization parameter and n, n+l be superscripts 
c c 

referring to time levels t , t 
1 

respectively. Space and time discretization of 
n n+ 

eq. (9) yields for the control volume VI shown in Fig. 2: 

1111 ... 1 lW s A·~· -- s J.·; 
L·~ + 

~t/111, 

f .. l M•' -+ 8'" 'J (sw) .. 
b.c. ...I,) lr1h l 

In eq. (18) and in the following ones the symbols < )!, 1 <) denoting volume 

and surface averaged quantities are dropped for simplicity. 

We refer to the list at the end of this section for all new symbols intro­

duced in the following equations. 

ii) Momentum equations 

a) Axial momentum equation 

Space and time discretization of eq. (13) yields for the control volume 

VIII shown in ~ig. 2: 

(18) 

( 19) 
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Convective and diffusive terms are treated explicitly with respect to time, 

pressure terms implicitly and the term representing friction pressure drops 

is treated half-implicitly. ~ (o :<9" s_ 1) is a time-discretization para-
m " m 

me ter for the pressure terms in the momentum equations. The last term of eq. 

(13) has been rewritten taking into account that 

Sw -v 

f"= 

where 

Dh = 

sf = 

pw 

f, X 

Letting 

FC0Z 

FWZ 

z ?v> ( .fw E 4 
:: = - -= 

V~ s~ D~ 

4X 

hydraulic diameter L-m_/ 
cross flow area for the fluid L-m2 7 
wetted wall perimeter L m_/ 

friction coefficients . 

l+ß.t 
n 

1 1 
l+b.t FC0Z 

n 

eq.(19) can be rewritten 

(20) 

( 21) 

(22) 

(23) 

(24) 
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b) Radial momentum equation 

Space and time discretization of eq. (14) yields for control volume VII 

shown in Fig. 2 

+ 

·- f~. I ·t 
A J 1 

The velocity u* in last term of eq. (25) is defined by 

where D ~s the pin diameter and P the pitch. 

(25) 

(26) 
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Letting 

fw ·f ~M~ ~ \ FC~R = -
$~ t 

:i 1. 
-FWR 

~1' 1\t""' ~ FcqR 4+ bt.w !."., ~ \ut"'\ 
5~ q, 

eq.(25) can be rewritten 

l •d • 
A -rh_ I) 

( CVP.:r + C.VRR _ 

Equations (24), (29) are the basic equations for the calcu1ation of the 

mass f1ows when the updated pressure field has been obtained. 

iii) Energy equation 

The volume-averaged energy equation (17) is discretized with reference 

(27) 

(28) 

(29) 

to the control vo1ume V shown in fig. 2. All terms are treated exp1icit1y 
I 

with respect to time. The discretized equation is as follows: 
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(30) 

fW 

Q .. _D. 
). \ 

3.4 The Poisson equation for the coolant pressure distribution 

The IC~ technique allows to derive a difference equation for pressure values 

from the continuity and momentum equations as it would be obtained dis­

cretizing a Poisson equation. From the practical viewpoint the procedure LS 

as follows: 

Consider the finite differences form of the volume averaged continuity equa­

tion (18), Replace the values of the mass flows at time level n+l by using 

the momentum equations (24), (29) written for the nodes j.:_ 1/2 and 

i.:_l/2, respectively. From the equation of state replace the time-difference 

of coolant density in (18)by 

1. c '' 
\ ) 

f~. \ 
A l ) 

with 

:: 

Rearranging one derives a linear algebraic equation for the unknowns 

'"I-~ 

f " ' ,l \ 

which can be written 

(31) 

(32) 



-
1\1 +A 

l f 
.A ·, ). - -1 

11.11-1 

l f 
.J..'+A, )' 

,... +-I 

l f. h • 
A - I) 

+ 
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f,·j 1 ""' FW't 

bt.' i:>"l:f-~h' ..~.·, )' -lh 
~ 

'f,~.·t-1h,.} 

l ' ' 
A.Hh>.~ 

lfA··~hl) 

f ' 1 . 
.1.-/'-1) 

~=-Acc..t> ~· 1 . 
'• ~'!ll· l}Ji., . 

L +J/2.. 

v PAce M~ 1· ' b. 'JZ. l. , 1Yz ." ~, 
.A • 1.. 

·t- ~\ -.'2. 
(. ' I 

,<. l 

. &'-'8~ ~t 1.. 

""' i' 

tvv . e & ht 2 
FWR. 

;.' +-lf ' L IVv.. M. -t 
/.. I ) 

M 

,, Be {)M\ ~t 
1.. 

fW R . . 
.A.-1/tl) i\11 

f ,, 
( j 

(33) 

+ 

The right-hand side G~ 'k is given fully in the next equation. We introduce the 
~J 

coefficients CKN, CKS, CKW, CKE, (defined in the list at the end of this 

section) which depend only on the bundle geometry and discretization. 

Dropping the subscripts ij for these geometry coefficients, eq. (33) can 

be written: 



(Je ~i 2. 

+ M 

ßt I 

~ 

~ '~t t 
<:.- "" 

~"/;} 

+ 
t1c ~t.",.l. 

A'Sl..l· 

~c ß.t""Z-

I>"JZ.: 

i" [-<., 
J 

- 106 -

(34) 

+ f tv.J •• CKW fWi\"" \&',(-1-&)b.tz_. 
A. • _II ' L· ry.. No -1" 

A'-<\1) t I) 

, FA<:..lP-.. ·-

l.f'A·---1/t-n' ~ FAC<-M~.:-( (VK!:--tCVRI\ _ r~·t- _FR~)'~ 
L . -"!~. n' ,.~ ·-1 I ) 

'IN 

, r-wi\ 



- 107 -

Equation (34) can be written in the following compact form (ratios of volume 

porosities at different axial locations are equal to one in undisturbed geome­

try and are therefore dropped as multiplying factor): 

+ 

'VV 

(IN 

t'RC , , 
,( l 

( ~~. FWR)~ : F~C.c..P: 
,1.4})) 

'V,(·-t,)' 
~ ' .I ' 
A-t I) 

.f,·: .L f '' ~ • . .( ~ 1. lW 
c . 

.t • 
l 

+ 

The numerical solution of the discrete Poisson - like equation (35) is 

ex:plained in t;he next section. 

(35) 
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List of Symbols used ~n the previous equations. 

CK.:) .. 
.( ~ -

(' K E · • . ~ :: 

C.Kf' ~ .. 
_.( ) = 

c..~w"·.A. .. 
J ..... 

C:KC~ .. -
• ! 

MI r-"' 'l 
..t', ~· ± A;'-

FWI\ 
./Yw 

..t.':t ~hn' 

M 

Fe~ t- ). ± '*h 

'W 

P c q> R 
.t:±"h 

Al!. 0 1::.1: i -+1/z_ 

f(. 

ß.:c ~· , ~t ). --th 

\t'.i+-ihn' "i=AccP~ 

f..: dh I ). " A "'7. ,' ) A. l1 " ... 4h 

\jJ ~:- -41z 1 J. ·· F-A c U1,· 

'i.-<.'-1/t,>' ., ß.Yl.,' , ~J'lt'-"h 

C\<N.. fWt""' .. 
"~ > . A. I} t1/L 

M 

C,K ~. · i ., F W i , . .1 'J .... ,l'""l. 

M 

t.K f · · ., FWR 
A ~ -t'•11L lj 

""' c. tntJ · · ) FWR. 
A ~ )..' -1h) j 

~· 

C.l'\~>f .. C.K(f., CKtJ)., + + A ~ "( J l t 

1/(t-r . f (. ~ ~ lW. + ",, ) ~t ....... 1\i'o ) - L 

- 11 ( 1 + ~t,.", • FC~Krv.. 
4 

J 
.{. ± h 

tW 

f I 'I/JA·) i ± ""- \ 
-::: 

:t Dev 

e'" ) . . + 1 ~ • ~~±! •. 1 :: 1. 
9.J 5 f .A.±t 'j_} 

t.KW~ .... l .. 
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C.VRr IVV 

A'-+11 \ ::: 

CV~~·""' 
"'-'+1/~.'; -= 

f R .t !W. • 
A -t 1ft I ) -

FR R tw 

A.. +11L) }' -= 
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- f f/W . CKNt-, . 
• • J A. I 

"~., ) ~ ~ " + f.' . 
). I l - '\ 

lW 

fR t .. 
A. ~ -

_ ( c \J ·~ 1: t C V ·c R _ & V ~r: _ t: l ·t _ F t- ~ J lW 

A' J i •1Jz_. 

_ (cv~1: + CVRR _ fRt: _ FR~ )1\N 
.A.'t1fl1~· 

(, I t.'w) 
"C ~ .t . ~· c. J.. ~ 

right hand side of equation (35). 
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Furthermore, the following symbols are used 1n the programme: 

Fl = t1c... 
F2 = &I'WII 

DD12(JC) = /Yt · ·1-
.) Ä&~;-1. 

DZC (JC) = /::,.?;.. 
.\ 

DZZ (JZ) bc.)'+-111. 

DRC (IC) = ~"2.\.' 

DRR (IR) = A "2. ." +-l11. 

EPS (IC) t A'' 
.) 

EPR (IR) ~.{' .. 11:.,; 

PSI (IC) = 't'-l 
PSIR (IR) \J( t' +i/ L 

SFR (IR) = !)~~·d(l. 

PAR (IR) = fw 4.' .. hz. 

CF = ~ 
SCSQ c. 2. ' ' 

Ä ~ 

The following symbols are introduced for sav1ng computing time 

cuc 

UC~L 

DTSQ 

CFDT 

AA (IC,JC) 

BB (IC,JC) 

cc (IC,JC) 

DD (IC,JC) 

EE (IC,JC) 

/_, ~ f' I 'i ( i-1 - 1{ • i)l tl-
= 

/j (('li'C" -JHA-) 

= cuc . u 

bot 1.. = '1.\, 

= 'b' c" & lW\. 

= ~.t'\' = 
B t' • . l -

= C:~· -
o .. 

' ~ -
= E .. 

' ~ 
..... 

ß t- t. • C~t*. · tri;.&'""' -+ 
"' .A .\ 

-~c 8,.."... 
•. ·z. .. ;,:. 
~t • (K S .. 

M -'j 

_[)" &lW\ /:ii:; l • C K.N"· · 
M '~ 

-l7c..9fWI, /lt~ I c I< vJ ;\',A 'j 

- B" e"""' /lb2. ·C"t:* .. 
1\11 ..t J 

'LIW 

~.(·j· I c .. 
~ ~ 
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3.5 Numerical solution of the Poisson equation 

Tite numerical solution of the Poisson equation for the coolant pressure dis­

tribution can be performed either with iterative methods or by means of a 

direct matrix inversion technique. The iterative methods are 

i) Successive Overrelaxation (SOR) with or without the automatic search 

of the optimum relaxation parameter. 

ii) Alternating Direction Implicit (ADI) method. 

The matrix inversion method is based on a factorization technique which takes 

advantage of the block-three-diagonal structure of the matrix of coefficients 

of the Poisson equation. 

In the following sections these methods are explained in detail in the order 

~n which they were developed and linked to the main programme. Their advan­

tages or drawbacks with respect to each other will be discussed briefly at the 

end of the section. 

3.5.1 The SOR Method 

The mathematical foundations of the Successive Overrelaxation (SOR) method are 

given in references /11/, /12/, /15/. The programme user can choose between 

the following varieties of the SOR method by specifying the input parameter 

NPN (see input description): 

a) SOR method with an input specified (optimum) relaxation parameter (Sub­

routine SL(<?R). 

b) Automatie search of the optimum relaxation parameter for every time step 

by means of the so-called "basic iterative method" (Subroutine SL(<?MX) 

and subsequent call for Subroutine SL(<?R. 

c) Search of the optimum relaxation parameter by means of the "First Method" 

of reference /11/ (Iteration with Simultaneaus or Successive Relaxation) 

(Subroutine SL(<?M) and subsequent call for Subroutine SL(<?R. 

d) Search of the optimum relaxation parameter by means of the "Third Method" 

of reference /11/ (Subroutine SL(6R2) with subsequent call for Subroutine 

SL(<?R. 
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In the following metho~ a) to d) are analyzed in detail. 

a) Subroutine SL0R. The SOR method by input specified (optimum) relaxation 

parameter ul. 

The discrete form of the Poisson equation (35) is solvediteratively by means 

of a line-method, a line consisting of the axial meshes (j = 2, ... MC) paral­

lel to the bundle axis for a fixed radial mesh index i. Letting r be an 

iteration index within the time step t , t 
1

, equation (35) yields 
n n+ 

'1!. ...... ~· T" ~ Jl. t- ... 'N :nt-1\ ~ 

f.\A·~ ßA" c .. f•,;~ ~ G .. 0 .. ,... 
f '~ . (36) f,·~ t·ll' -~ f. ~. ·- t= ' ' + ~ -T ,( ) '::: .,( l - '~ A J 

;. - 'l ,.(,.-\ I l 
)f 

~= G. '. 
.A l 

(j 2, 3., .MC) 

r+l 
When eq. (36) is written for a radial mesh i, the last available value pi-l,j 

~s used at the right-hand side. Equations (36) (j 2, .•. MC) form a system 

of algebraic equations with three-diagonal matrix A of coefficients 

A . y A = (37) 

where Y represents the vector of unknown pressure values (y
1 

YN = Pi,MC (N = MC-1) ). 

The matrix equation (37) ~s solved by means of the Thomas algorithm /7/. In 

a first sweep (j = 2 •.. MC) it is reduced to the equation 

A't.<- • y D ~ *'" A = 

where the matrix A~ is upper bi-diagonal with a .. 
JJ 

and the upper diagonal is defined by 

·~ 
Cl = c,..;t>.. ... (j 

·*- c ~· """' 
(N 

c. 1 J+ o. ~·.,. ... - b j' + ... c"'. 
) 

1 (j = 1, •.. N) 

= 1,2 ... N-1) 

= MC-1) 

(38) 

(39) 
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The vector D:»- ~s defined by 

d'* cL,J~I\ 1\ .... 

... ~ ;-.1\ - b .).1-1\ J>\1.· 
d,, \ 

~ +"' = 
1).. • A ~b· Ci-· ~-t j + \ II 

"' The second sweep yields the solution vector Y 

(j 1, 2 ... N-1) (40) 

N 'i' 
,.4 ·- d": ·- C· ){. (j = N-1, N-2, ... 1) (41) 

"' ()~- ~ 0 <)~~.(· 
Y ~s the exact solution of eq. (36) but only a first approximation totre solution Y 

ofeq. (35), which is then obtained by means of the iterative scheme 

(42) 

A~r+l r 
where the vector Y - Y has been determined by an exact displacement (w=l). 

The scheme is then applied to the other lines i (i = 2, , . , NC). The iteration 

is carried on till a convergence criterion is satisfied: 

[ I 
where s is an input value. 

.t' ·: 9. ' , . N (.. 

~=.2. 1 ,.M<.. 

b) Subroutine SL~MX. Search of optimum relaxation parameter by the 

"basic iterative method", 

(43) 

The subroutine SL~MX works basically with the same iterative scheme explained 

previously for the subroutine SL~R .but at the same time it performs a search 

of the optimum relaxation parameter. The principles of the relaxation theory 

by Young and Frankel /18/, /19/ which form the basis of this part of the 

programme are summarized in the following. 

The successive overrelaxation method (SOR) for the matrix equation 

A ' Y = b (44) 
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is expressed by the iterative scheme /12/ 

(...· 

where 

:fw -1 
(w U + ( 1-w) I) = (I-wL) 

c D-l b 

D diag A 

c D-A 

B D 
-1 

C = L + U 

L strictly lower triangular matrix 

u = strictly upper triangular matrix 

I = unity matrix 

For w = 1, the Gauss-Seidel (G-S) method, it holds 

with 

For the Jacobi (J) method one would use 

c . 

(~ <W <:i) (45) 

(46a) 

(46b) 

(46c) 

(46d) 

(46e) 

(46f) 

(46g) 

(46h) 

(47) 

(48) 

(49) 

The convergence of the iteration scheme (45) is controlled by the maximum 

modulus of the eigenvalues of l\N. Hence arises the exigence of searching the 

value of the overrelaxation parameter w for which the maximum modulus is 

minimized. Let Ai denote the eigenvalues of {f w. 
They satisfy the equation 

dJJ: [X w ·- ~ ~ } ~ o 

Q(") =v• 
(SO) 

The relaxation theory shows that there is a relationship between the eigen­

values >-.. of the matrix :fw and the eigenvalues ]1. of the i teration matrix B 
~ . ~ 

of the Jacobi method which satisfy the equation 

ckl [ ß ·-r J 1 ... o 

?(~A-)::.0. 

(51) 
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The relation between the roots of the characteristic equations (SO) 

and (51) is 

If w 1 

(52) 

(53) 

The optimum ov~rrelaxation parameter is that which minimizes (52) and 

is given by 

(54) 

where 

(55) 

To the optimum overrelaxation parameter corresponds the minimum value of the 

maximum modulus of the roots of (50) 

(56) 

The problern of finding the optimum overrelaxation parameter is therefore 

reduced to the problern of finding the maximum modulus ~Nof the eigenvalues of 

the matrix of the Jacobi method. If )A-N., i the Jacobi method converges, 

so does the SOR rnethod for real w (1< w '(2) and the best convergence rate 

is achieved for w = ·~. 

The rnaxirnurn rnodulus ~N can be calculated as follows. 

The solution Y of equation (44) satisfies exactly equation (45) 

. ~ 

y = :IN 'Y 1- (~- w L r w <-. (57) 

Subtracting (57) frorn (45) yields 

= ctw (Y~- Y) (58) 
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or 

with the definition of the vector error 

eJZ. : yn,- \', 

Repeated application of (59) (r, r-1 ... r= 0) yields 

Let 

t> 
. e • 

be the increment of the solution vector at the iteration step r. 

Analogously to eq. (61) one derives 

Equations (61) and (63) characterize a stationary iteration scherne. 

(59) 

(60) 

(61) 

(62) 

(63) 

Let b 1 , b
2 
... bN be the set of the eigenvectors associated to the eigenvalues 

Aj of tw. 
It holds 

(j = 1,2 ... N). (64) 

Let assurne Al < A
2

" ... <AN. The eigenvectors b j form a basis of the N-dirnen­

sional space; hence the solution incrernent $0 
can be written as a linear corn­

bina tion of b. 
J 

(65) 

where h. (j = 1, 2, •.. N) arereal constants. 
J 

Frorn (63) and (64) one derives 

(66) 



- llR -

The error 0 is the smaller, the larger t:he max1mum eigenvalue1:l AN is ~vith 

respect to AN-l and the larger the iteration index r. 

The maximum eigenvalue AN is then approximated by the limi t of the ratio 

of the norms of the solution increments S 32.. 

f1.= t·Wv ~ ~JtT~ ij .e·'"" 
\\ ~; + ~ t tJ b N \\ 

- -
JL...:.;.~ \\'S Sl.l\ .Jl.~cP 

\i ~: .fvN brJ \\ (67) 

. .l1.-to\ 

. \\ b iJ \\ = t·ll,\\ ~ - i\tL 
.YZ7d> ).NS!. \\ hrl ~ 

If w 1 (Gauss-Seidel iteration) 

~ . 2 
V·:: AN = fN • (68) 

If w # 1 the relation between & (= AN) and ~N is given by /12/ 

(69) 

In the Subroutine SL~MX two iteration cycles are performed: 

i) iterating with w = 1 and applying (67) yields 
!V 

hence a first estimation of wb by (54) 

ii) iterating with w =~band applying (67), (69) and (54) yields a final 

value for wb. 

The iteration steps are useful not only for the estimation of the optimum 

relaxation parameter, but also for approaching the solution vector Y. The 

final solution for the time step is then obtained by entering into Sub­

routine SL~R with w = wb, 

c) Search of optimum relaxation with Subroutine SL~M 

We consider the matrix equation (44) with b'.::o. The solution is then Y·=. o. 

Let try to determine this solution numerically by iterating with the Jacobi 

method of simultaneaus oisplacements (49) and starting with a vector 

yo E: 1. One has 

(70) 
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Let b. (j = 1,2 ... N) be the set of eigenvectors of B associated to the 
J 

eigenvalues JA-j ( f~, < f-z. ~ ·.. < ftJ) 

(71) 

0 
The vector Y can be written as a linear combination of the b. 

when h. are real constants. It follows 
J 

The maximum eigenvalue fN can then be approximated by 

\\ JA-N3lT'I t N b N \\ 
~ 

\\JA;~ fvN bN \\ 

J 

According to reference /20/ ~N can be determined in practice by means of 

the bounding relations 

where 

~lW- I'M~'M = .;.: 

~1\M -::.. I'(V\ Ov )4 ~· 

(~~·)~ 

Cd,· ) ""-" 

(~~·)""' 

c ~ \' ) ""- '\ 

:( ' '' .... 

(72) 

(74) 

(75) 

(76a) 

(76b) 



- 120 -

where y. are the cornponents of the vector Y. 1. 

If successive displacements with w = 1 are used instead of simultaneaus dis-
2 

placements the sequences (76) tend to }lN. 

Corresponding bounds of the optimum relaxation parameter ~ are given by 

( 77) 

with 

W.-vr- = (78a) 

w .-w- ( 78b) 

In the subroutine SLOM the upper bound w 1.s taken for the optimum relaxation 
m 

parameter wb because a slight overestimation of wb is always better than an 

underes timat ion. 

d) Search of optimum relaxation parameter with Subroutine SLOR2. 

Assurne a relaxation parameter w presumably smaller than the optimum wb. We 

apply to equation (44) A · Y = b the iteration scheme (45) in three subsequent 

s teps: 

i) 1st Step. Assuming a starting vector Y
0

;: o we iterate equation (44) m 

times to get a first numerical solution Y1 Y(m): 

b 
yields 
·--~ 

y = y(m) 
1 • 

(79) 

ii) 2nd Step. We set the .right-hand side of equation (44) equal to zero and 

iterate (m-1) times starting from the previous numerical solution 

Y
(m) . . 

1 1 
. (Zm-1) 

, gett1.ng a new numer1.ca so ut1.on Y : 

Let 

A . y(m) 

R, 
2 

= 0 

yields 
--....;t:;:> 

y(2 m-1) 

be the square of the length of the vector Y2. 

(80) 

(81) 
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iii) 3rd Step. Iterate equation (44) once more starting from the 

numerica1 so1ution Y( 2 m- 1) to get y( 2m) 

Let 

A • y(2 m-1) 

9, 
3 

0 

yie1ds 
-----f;>' Y = y(2m) 

3 

be the square of the 1ength of the vector Y
3

. 

(2m)'lll 
We define a new vector Y as the sum of vectors Y

1 
and Y

3
: 

y y(m) + y(2m). 
y1 + 3 = 

The SOR method is expressed by the iterative scheme /12/ 

with 

F 
-1 -1 

(J-(A)L) W D b. 

Equation (85) yie1ds the iterative formu1a 

Af h 1 d . yo h ter t e st step ma e w~th E o one as 

+ t 

t- F. 

(82) 

(83) 

(84) 

( 85) 

(86) 

(87) 

(88) 

The 2nd and 3rd steps have been started from this numerica1 so1ution 

(88) and carried out for say m1 further steps. Thus they yie1d (with 

b:: o, hence F:::o for these steps) 

( 89) 



Using (88) one has 

If m 
I 

m 
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Combining (88) and (91), equation (84) yie1ds 

(90) 

(91) 

(92) 

(93) 

Equation (93) is consistent with (87) because it cou1d have been obtained 

by app1ying the first step 2m times. 

Wh f · h d d d · b · 1 1 · Y( 2m) en per orm~ng t e 2n an 3r s tep w~ th ·.= o the numer~ca so u t~on · 

approaches the zero vector, say ~. which is the true so1ution. One has 

therefore 

where E is the error vector. 

( 94) 

Let (e
1

, e
2

, .... eN) be the set of eigenvectors associated to the eigenva1ues 

A. (j = 1,2, ... N) of:fw· It ho1ds 
J 

(9S) 

The eigenvectors e. form a basis of the N-dimensiona1 space, therefore the 
1 J 

error vector E can be written as a linear combination of the e. 
J 

(96) 

where h. (J. = 1 2 N) 1 t t J , ,.... are rea cons ans. 
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Recursive application of eq. (95) yields 

... 

Let assume Al'( A
2 

<: •• •.(AN. Dividing the right band side of eq. (97) by 

the eigenvalue of maximum modulus A one has . N 

The maximum eigenvalue A is then approximated by the limit of the ratio 
N 

(97) 

of the norms of two subsequent error vectors as the iteration index r tends 

to infinity 

\\ t Sl. \\ 

\\ t ~-~ \\ 

\\ ~tJ Q.N Xt-1
11

_;, L { T o ( -;;~ r-\ ~~-\ ~N-~ 1 \\ 

In the programme AN is approximated by 

iJ = ~t-r « V e-; \\ '( ( 1 tv.- ) \\ \\ '( ( t '"') ·- cp 'l\ \\ t 1. ~ \\ 
;;:: -

fL \\ '( ( 1. .-".- \ ) \\ \\ '(Ü~-") ·- t \\ \\ t?. ~-" \\ 

(99) 

( 100) 

The corresponding eigenva1ue of the iteration matrix B of the Jacobi method 

is then 

( 101) 

Equation (54) yields thEm the optimum relaxation parameter Wb. 
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3.5.2 Alternating Direction Implicit (ADI) method 

Write the Poisson equation (35) in the form 

n 
where G .. collects all convective, diffusive and pressure terms at time 

~J 

level t . 
n 

( 102) 

According to the Alternating Direction Implicit .(ADI) technique we integrate 

equation (102) in each coordinate direction separately. We reduce therefore 

the solution of a two dimensional problern to the simpler solution of two 

one-dimensional ones. After the first integration in one direction the 

fully updated pressure field is used for the subsequent integration. The 

two integration steps are as follows: 

- Step 1. Integration along the axial z coordinate (j = 2,3, ... MC) for 

every radial mesh. Equation (102) is written in the form 

lVV lW .-
t: .. r 

) j ..t' ~ ~ • 
lj 

(103) 

where pressure values at the right-hand side, provisionally considered as 

known, are taken from the previous time step. Equation (103) yields for 

every (i) a system of equations with three-diagonal matrix of coefficients. 
(1) 

Its solution is direct and gives a new pressure field p.. which is used 
~J 

for the next iteration step. 

- Step 2. Integration along the radial r-coordinate (i = 2,3, ... NC) for 

every axial mesh (j). Equation (102) is written in the form 

(104) 
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The pressure field p~~)fiom the previous step is used at the right-hand side. The 
1] 

solution of the system of equations (104) yields the updated pressure field 
(2) 

pij . 

Equations (103) and (104) are applied repeatedly, 

The iteration is terminated when two subsequent solutions of the pressure 

field differ by less than a gi.ven tolerance. On anaverage ~ a few i teration sweeps 
• -5 

(4 to 6) are necessary for reiching a tolerance of 10 , 

3.5.3 Direct matrix inversion 

The system of equations (35) (i = 2,3, ..• NC; j 

coefficients which can be written in the form 

2,3,, •. MC) has a matrix of 

"" ß"' 

c 
" f.\2 ß.l.. 

CL. "3 oJ (lOS) 

''' ... 

with M = MC-1. Matrix A is block-tridiagonal. The blocks of the main diagonal 

are tridiagonal matriees with dimension (NC-1) x (NC-1) and have the form 

( 106) 
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The blocks B., C. (j 
J J 

1, 2, •.• M-1) are diagona 1 ma trio.:.es and are gi ven by 

c ' 
1.~ 

(107) 

c ~· - ( 108) 

. '' .. 

Blocks A. are fully s.tored, while blocks B., C, are stored 1.n diagonal form. 
J J J 

The system of equations (35) can be written as 

A • P = b ( 109) 

when the unknown vector P has (NC-1) • (MC-1) components given by 

pk = p .• 
l.J 

1. 2, 3, •.. Ne 
(110) 

j 2, 3, •.. MC 

k (j-2) • (NC-1) + i-1 

Equation (109) is solved with respect to P by inverting matrix A with the 

method of reference /16/. 
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We apply a transformation T to matrix A and reduce it to the form 

( 111) 

·- - - - -I 

c~ ß2 A 2. 

(,3 ß 4 

c 
5 t?>6 

The block-dirnensions of subrnatrices ~n (111) are 

A 
a (n x n) with k = M .; 2 

~ (n X k) n = M- k 

A (k x n) (k ~ n) 
c 

Ad (k X k) 

Rearranging of blocks A. (j = 1,2, ... M) frorn rnatrix A to rnatrix'i is rnade 
J 

according to the reordering vector R defined by 
e 

with the definition of the rnatrices 

H :: 
y.:: 

f.\,. li:" 
1\~ - \\· \\b 

( 112) 

( 113) 

( 114) 



rJ 
matrix A can be written 

"' "qv ~b .M, 
R - -

~ .... A~ \\ 

where U ~s the identity rnatrix. 

,J 
The inverse of matrix A is 

_lj 

,"\) \ A"" \\b 
Jf - ~ 

~<..- ~d 

1 - t y-" k 
.:::: 

- y-" 14 

with 

I - A -" 
IN 

2 = - A -" 
(;y 

~~~ + 

. _1 
·- '( 

Hb 
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0 "~ 
ll 0 

A -" ··" ~b V k Ov I 

H 

'2 y -"' 

y·-'\ 

(""" )t. ~) 

(tv.x ~). 

\\b 

y 

·- A 0:" ~ b Y -" 

y-" 

( 115) 

(116) 

(117) 

( 118) 

Matric.es I, H, Z, Y are given in terrns of the b1ocks of the known matrix A by 

(tv.><IIA) (119) 

~" t-\ 

Ht Ez. 

\-\3 E~ 
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with 

\-\o 
-~ 

:: c 9. 0 l· - c ~ l 0 -'\ Pt ~~0-'\ ( 121) 
A ~ -'\ A. 

.- B 0 IA04'\ ß 0 

A-\ (122) 
t ~0 ·.: -= ' "2• 2• ?l..lo-\- '\ 

' 

l" 
\1 t 

" 2. 
( 123) 

vz. t~ 
·v · .. 

) '· . 

with 

-" 10 - 1' ß2A.o-" - ·- A:!~o-" . ß2 .0 -" 

.(. :: ..(.. 

(124) 

V ,~..0 - 1. A.OH c 0 = A ~." ' c 0 = 1. l ' '2. ~ +'\ z~ ) 

( 125) 

( 126) 

with 

ßl. = - ~. i3 2A • + o\ (i = 1,2 ... K-1) ( 127) 
J .c, 

(I o 
.-1. :: - 1-\.c:~-~ c ' '2-"j (i = 1,2 .•. K-1) (128) 

R' 0 11 'Z..Ao - 1-\ .. ß 0 
(i = 1, 2 ... K) ( 129a) 

.j. = .\. LL - ... 

For i'(n an additional term E. c2i ~s added to A'o ~n (129) which thus becomes 
~ ~ 

A'. = A2i - H. B2i-1 Eo . 
c2i (i 1,2, ... K) ( 129b) 

~ ~ ~ 

(i < n) 
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We define further fo11owing matrices 

X = y-1 (k X k) (130) 

F = -X • H (k x u) (131) 

L = Z · F = -z X H (n x u) (132) 

G = Z . X (n x k) (133) 

Letting X .. (i,j = 1,2, •.. k) be a b1ock of matrix X, the b1ocks of matric.es 
l.J 

F, L, G are given by 

F. ·- - 'X.i.~ ' 1-\o\ (i 1, 2, ... K) ( 134) 
.A.'\ 

F .. ·- ·-(X • E . ·1- f..,, \-\~) (i = 1,2, ... K) (135) 
A ~ ,t' I~ - "\ J --\ Al 

(j =2,3, ... K) 

( ~~ 1\t\) k ) 
... 

- x..A-\< 
... 

\" ..t.' M -:: \:K (i = 1,2, ... K) (136) 

6 ... ~ ·- tl\ , X. (j 1,2, ... K) (137) - ... 
~ 

G.t·· - V.~.·-" . X. ' ". ·+ l ' . ]\. .. (i 2,3, ... K) ( 138) 

~ - A- I~ ). "l (j 1, 2, ... K) 

(~{ M"> K) G-1\>.~ ·:: \[ i' ·X'(.. (j = 1,2, ... K) ( 139) 

~ 

L"~ l . 
F"~ (j = 1,2, ... n) (140) - " 

L . I - \[i--1 .. F . . + l· F .. (i = 2,3, ... K) ( 141) 
.4. ~ )--'I, j .(. 

). ~ 
(j 1,2, ... K) 

(' M'> \<) L . - V\( . f~~ (j = 1,2, ... n) ( 142) 
Ny~ 
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With the definitions (130) to (133) matrix A-l can be written 

!+L G 
(143) 

-1 
If X = Y were known, matrices L, G, F could be calculated easily and 

,J_l 
therefore A would be known. The problern of inverting matrix A is there-

fore reduced to that of inverting matrix Y which is also block-tridiagonal. 

The same procedure followed so far for matrix A can therefore be applied in 

a second step to Y = Y(l)' where index (1) refers to the application of the 

first step. Through application of successive steps we reduce the problems 

to the inversion of matrices of decreasing dimensions 

Y()}) 
1 

... Y(s) 

till after S steps we get a matrix of the dimension of a single block 

(NC-1) x (NC-1) which can be inverted easily, thus yielding 

( 144) 

This comp1etes the forward chain of the method, consisting in reducing the 

problern of inverting a larger matrix to that of inverting a smaller one. 

After the S-th step and after inverting Y
8 

we calculate 

X c~-1> 
(1.tL)~ 

(145) 

~here T
8

_
1 

is the transformation applied at the (S-l)th step on Y
8

_
1 

to get 

Y8_ 1, like in (111). The transformation implies in practice a rearranging 

of the blocks of Y(S-l) according to the reordering vector (112). 

Repeated application of (145) for the backward chain yields x
8

_
2

, x
8

_3, .... 
.J-1 

... up to x
1 

=X. Formula (143) yields then A . 

In practice we solve equation (109) using formula (143) but without cal­

culating ithe full matrix ~-l which '"ould reqoire a large storage area 
,u 

in the computer. After transforming matrix A into A as in (111) we reorder 
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also the vectonP and b according to the reordering vector (112) to get 
,.J t.J 
P, b. Equation (109) is thus transforrned into the equivalent one 

rJ ,.J ,.) 

A P = b • 

Its solution ~s 
N tv-1 ,... 
P = A • b 

or partitioning according to (143) 

Frorn (148) one derives 

"' p 
a 

= 

I + 1 

F 

N 

F • b a 

G 

X 

"" + X • b b 

r..J 
b 

a 

( 146) 

( 14 7) 

( 148) 

( 149a) 

(149b) 

Terms in equations (149) are calculated in the following sequence, for sav~ng 

s torage area: 

i) 

ii.) 

iii) 

iv) 

v) 

cornpute rnatrix G with (137) to (139) us~ng a storage area SS 
_.) 

cornpute G • b 
b 

cornpute rnatrix F (in the sarne storage area SS) with (134) to (136) 

cornpute F 

cornpute X 

_.) 
• b 

a 
rl 
bb 

ward steps) 

(rnatrix X is known as the result of the first S-1 back-

vi) cornpute rnatrix 1 with (140) to (142) in storage area previously used 

for X 

vii) 

viii) 

cornpute rnatrix I with (119) and I+1 

,.J 
cornpute (I+1) b • 

a 

Thus only two s torage arrays are needed for the rnatrices, each one as large 

as one forth of the rnatrix A. 

,..; 
A backward transforrnation of P according to the reordering vector (112) 

yields the solution vector P of equation (109). 
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3.5.4 Comparison of the above methods 

Iterative solution of large linear systems is in general compulsory when 

storage area requirements and computing time have to be minlmized. When apply­

l.ng the SOR or the ADI methods only the coefficients of equation (35) and 

its right-hand side must be memorized. The solution method requires only 

negligible additional storage area. The direct inversion method explained 1.n 

section 3.5.3 requires on the contrary the storage of the blocks of the tri­

diagonal matrix of coefficients A (105), two additional storage areas equal 

to one fourth of the matrix A, and additional working fields for the storage 

of matrices H., E,, Z., V., B ., C ., A. 
1. 1. 1. 1. 1. 1. 1. 

(see formulas (121), (122), (124), 

(125), (127) to (129). For this reason we use in the actual programme version 

the direct matrix inversion method for bundles with 37 pins or less and the iter­

ative methods for larger pin bundles. 

The advantages or drawbacks of each method are now outlined shortly: 

i) SOR Methods. 

The Gauss-Seidel iteration scheme can be applied using subroutine SL0R with 

w = 1. It converges unconditionally but the convergence rate is poor. Sub­

routine SL0R is advantageaus when the optimum relaxation parameter w = wb 

is already known, for instance from previous calculations, or can be 

estimated within sufficient accuracy. 

When the optimum relaxation parameter is not known it must be calculated 

with one of the Subroutines SLOMX, SLOM or SLOR2. These three subroutines 

g1.ve with a good accuracy the same results for wb but they require a quite 

different calculation effort. 

Subroutine SLOMX is the fastest one. It gives a sufficient estimation of 

Wb in 5 - 10 iteration steps and presents the advantage that, when searching 

for wb, the iterations contribute already to the solution of equation (44) 

(see 5.3.1 b). However a very accurate P.stimation of wb requires about 

30 - 40 iteration steps. 

The method used in subroutine SLOM solves the matrix equation AY = b with 

b = o. Its solution Y = o is approached by the error vector Er = Yr. 

According to reference /11/ greater accuracy in the estimation of wb 1.s 

attained in fewer iterations when the solution coincides with the error 

vector. The disadvantage consists in the fact that, when iterating with 



b = o for determining wb' the iterations are wasted because they do not 

contribute to the solution of equation (44). 

The disadvantage of subroutine SLOM is removed in subroutine SLOR2 which 

iterates eq. (44) without modifying the right-hand side. Subroutine SLOR2 

yields a very accurate estimation of wb but requires a large nurober of 

iterations (more than one hundred). It cannot therefore be used for every 

time step in a larger calculation. It can be applied Ln a separate run to 

estimate wb for subsequent use in subroutine SLOR. 

In practice we suggest the application of Subroutine SLOR when wb has been 

already estimated, otherwise the application of Subroutine SLOMX. 

ii) The ADI Method 

In case of large bundles the Alternating Directions Implicit method is 

slightly more efficient than the SOR methods. For blockage calculations 

the mass unbalance, calculated for every cell by verifying the coolant 

continuity equation, is smaller than with other iterative methods. How­

ever, a small time step (about 0.5 ms) is required. So far it has not 

been attempted to aceeierate the convergence of the ADI method. 

iii) The direct inversion method 

As explained above it is used at present only for small bundles (37 pins 

or less) for the purpose of saving storage memory. The calculation time 

per time step is considerably larger than with the iteration methods but 

it allows, even in case of blockages, a larger time step. The mass un­

balance is several orde~of magnitude smaller than with iterative methods. 

The matrix inversion allows therefore a steady-state to be approached 

in blockage calculations more rapidly than with the other methods. When 

calculating transients with fast mass flow run downs the numerical 

solution does not present oscillations typical of the iterative methods. 

The following Table I gives the computer time required on the IBM-3033 

for one numerical solution of the Poisson equation for the pressure 

field in case of 7, 19 and 37 pin bundles with 40 axial meshes. The 

CPU time given in the table includes the time necessary for filling 

the matrix of coefficients, for calculating the residuals and the time 

for printing the solution vector (pressure field), and the vector of 

residuals. 
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Bund1e Nurober of Nurober of Dimension of CPU-time 

axial meshes radial meshes matrix of coefficients ( s) 

7-Pin 40 2 80 X 80 0·37 

19-Pin 40 3 120 X 120 o·69 

37-Pin 40 4 160 X 160 1'18 

I -----------1 

Table I. CPU time required on the computer IBM-3033 for one so1ution of the 

Poisson equation for the pressure field with the matrix inversion 

method (including calculation of residuals and printing of results). 

3.6 Numerical solution of the momentum equations 

Once the numerica1 solution of the Poisson-equation (35) has given the coo1ant 

pressure fie1d at time level t 
1

, the discretized momentum equations (24), 
n+ 

(29) yield directly the mass flows in the two coordinate directions at the 

same time level. The stabi1ity of the numerica1 so1ution of the coup1ed con­

tinuity and momentum equations LS favoured by the half-implicit treatment of 

the terms representing friction pressure drops Ln equations (19), (25). 

3. 7 Numerical solution of the energy equation 

The discretized energy equation is solved explicitly with respect to 

using the mass f1ows at time leve1 t 
1 

and enthalpies at time leve1 
n+ 

From (30) one derives: 

where the convective and diffusive terms are given by 

(h)~~l 
LJ 

t . 
n 

( 150) 
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c vc l 
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C\Jtr\"" .. ~ l (-vF.stv""r. . ('t'fS~"-f ·\ (152) 
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M l ~'V F J: Df, f _ ~'V~ ~ ~~ ) \ 0.. \\ .t'' , ~ (154) 
~ ·-

ß~~ · <J~ ~·'<",~,; ro"l.. .t·-~~z,~ · 

Further programme detai1s regarding the finite differences schemes used for 

calculating convective and diffusive terms in the above equations are given 

in section 6.2. 
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4. Numerical treatment of time dependent heat diffusion equations for 

fuel pin and hexagonal can 

The coolant temperature in every control volume is assumed as boundary con­

dition for calculating the temperature distributions in fuel and cladding. 

For the outermost control volumes the temperature of the hexagonal can is 

also calculated, taking into account the heat flux beyend the outer surface. 

Referring to a given axial mesh zone with index M (M = 1, ... NM2) space and 

time discretisation of the equations of rection B. 2 is,'d:one as follows. With refer­

ence to the sketch shown in Fig. 7, the fuel radius RB is divided into NN seg­

ments of length LlrB = RB/NN defining the position of NN+l radial nodes: 

r = O, r (n=l, .. NN)WithrNN = R . To every internal node is associated the 
o n B 

mass of fuel material comprised in the annulus of radii rn-l/ 2 ' rn+l/ 2 ' re-

presented in the figure by the shaded area areund the node of coordinates 

(ZM+l/ 2 ,rn). To the axial node is associated the mass within the cylinder 

of radius r
112

; to the outermost node the mass in the annulus with radii 

rn-l/ 2 ' RB. The clad material is associated to three nodes of radial co-

ordinates r., r , r 
~ m a 

(inner, middle, outer node) (with r = (r. + r )/2). 
m ~ a 

Let ~rH = (r - r.)/2. The mass 
a ~ 

of clad material associated to the middle 

node is therefore roughly twice the masses associated to the lateral nodes. 

The problern time is discretized in a sequence of time steps ~t = t - t 1 . 
n n n-

We use indexes h, h-1 for the symbols of physical magnitudes calculated at 

the time points t , t 
1
,respectively. 

n n-

a) Fuel 

i) Inner node 

With reference to the annulus (rn-l/ 2 , rn+l/ 2 ) of unit axial length as con­

trol volume, equation (B.2.1) may be written: 

-f ClTB(r,t) 
>.. Clr 

s 
n 

dS + q V 
n n 

(I) 
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where Vn denotes the volurne of the annulus and the integral is calculated 

for both lateral surfaces (Sn= Sn-l/2 U Sn+l/ 2). 
Hence: 

· (ClTB) -A - 27rr + 
rn-l/ 2 Clr r n-1/2 

n-1/2 

Cl TB 
q 27rr ~r = p c 2rrr ~r ---

n n n p n Clt 
n 

Terms of this equation are approxirnated by 

(2) 

A . 
r n-1/2 

+ (1-6) ~\ r::B)· . \ h-l l n-1 /2 V r0_11 ~ 
(3) 

B,n B,n-1 + Th - Th ] 

~r 
( 1-6) ~Ah-1 T-~~~n-~ ___ T_~~~n-1-_ll l rn-1/2 6r .J 

(4) 

L h T~,n+l- T~,n~ + (1-8) Lh-1 
= 6 lrn+l/2 --~~~r----~1 lrn+l/2 

Th-1~ B,n 
h-1 

T -B,n+l 
I'Jr 

qn = 6 h +(T-e) h-1 qn qn (5) 

~ 
Th _ Th-1 

= B,n B,n (6a) 
Clt ~t n 

+ (1-8) p~-1 (6b) 
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where 8 ~s the time discretization parameter. 

Introducing equations (3) to (6) in (2) one has: 

h h h h 
+ B TB + C T 

n n-1 n Bn+1 

= Ah-1 h-1 h-1 h-1 h-1 h-1 
T + B TB + C TB + Q 

with 

eh 
n 

n B n n n n n-1 n+1 

c 

= -8 Ah 
B,rn+1/2 

h 

rn-1/2 
r 

n 

PB,n 

h-1 + (l-8)p 
B,n 

rn-1 /2 
r 

n 

rn+1/2 
r n 

h-1 ( h-1 
r n-1/2 h-1 rn+1/2 

A - ( 1-8) + A = n 

!'::.r 2 
+ __ B_ 

Mn 

AB,rn-1/2 r B,rn+1/2 n 

(8 h h + (1-8) ph-1 c h-1 ) 
PB ,n c B P PB,n ,n B,n 

Bh-1 =(1-8)Ah-1 
n B,rn-1/2 

rn-1/2 
r 

n 

rn+1/2 
r 

n 

r n 

(7) 

+ 

(8a) 

(Sb) 

(Sc) 

) 

(8d) 

(Se) 

(8f) 

(8g) 



- 140 -

ii) Gutermost node 

Making a thermal balance for the annulus (rNN-l/ 2 , rNN =RB), taking into 

account the boundary condition for the heat transfer to the clad, equation 

(B.2.1) yields 

With space and time discretization as above, the following algebraic 

equation ~s obtained 

h-1 
ANN 

with 

h-1 
TB,NN + 

h-1 
BNN 

h-1 
TB ,NN-1 

~= + 8 Ah 
rNN.:..l/~ 

h-1 - (1-8) Ah = 

h-1 + c 
NN 

rNN-1/2 

rNN 

!:::.r 2 
B 

+--
2!:::.t 

n 

h-1 
THi + QNN 

+ 8 h 
a.BH 

rNN-1/2 
ANN 

rNN-1/2 rNN 

t::.r 2 rNN-1/4 (e h + __ B_ 
PNN 2!:::.t rNN n 

tmB .... 

- (1-:-8) h-1 
t::.rB + a.BH 

h h-1 ch-1) c +(1-8) PNN 
PNN PNN 

(9) 

(lo) 

( II a) 

( llb) 

( II c) 

( II d) 
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h-1 (I -8) h-1 rNN-1/2 
BNN = \ 

rNN-1/2 rNN 

h-1 h-1 

CNN = ( 1-8) etBH l'.rB 

l'.r 2 rNN-1/4 ( h h-1) B 
QNN =-- 8qNN + (1-8) qNN 2 rNN 

iii) Centra1 node 

Simi1ar1y, for the fue1 centra1 node one derives the a1gebraic 

equation 

h-1 h-1 
+ o TB1 + Qo 

with 

Ah 48 \h 1 ~ h eh + (1-8) 
h-1 h-1) 2 = +- Po c l'.rB 

0 rl/2 l'.t Po 
Po Po n 

eh = -48 \h 
0 rl/2 

h-1 
-4(1-8) h-1 +_I_ (e h + < 1-8) 

h-1 eh-!) 2 
A \ c Po l'.rB 0 rl/2 l'.t Po Po Po n 

h-1 4(1-8) h-1 c = \ 
0 rl/2 

(I I e) 

( 1 I f) 

(I I g) 

(12) 

(13a) 

(13b) 

(13c) 

(13d) 

(13e) 
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b) Cladding 

i) Inner node 

Equation (B.2.6) yields, with the sarne space and time discretization as 

above, the algebraic equation 

with 

Ahi Th + Bh Th + Ch Th = 
-~ Hi Hi B,NN Hi Hm 

h-1 h-1 h-1 h-1 h-1 h-1 
= ARi THi + BHi TB,NN + CHi THm + QHi 

I +--
' ll t n 

ri+l/4 
r. 1. 

t:,r 2 
H 

2 

ri+l/2 
r. 1. 

( 
h h h- I c h-1 J 8pH1.' c + (1-8) PH1.' 

PHi PHi 

c~i = -8 >-~ ri+l/2 
r. 1. r i+l/2 

h-1 
-(1-8) 

h-1 
t:,rH (1-8) ABi = aBH - h-1 ri+l/2 

1-
Hri+t/2 r. 1. 

I ri+l/4 
t:,r 2 

H 
+ -- -2-6t r. 

n 1. 
(ap~i h h-1 ch-1) c + ( 1-8) PHi 

PHi PHi 

h-1 h-1 
BHi = (l-8)aBH llrH 

h-1 ( 1-8) h-1 ri+l/2 
8Hi = '-H r. 

ri+l/2 1 

ri+l/4 llr 2 

(8 
h 

+ ( 1-8) q~~ I) QHi 
H 

= -2- qHi r. 1. 

( 14) 

( !Sa) 

(!Sb) 

(!Sc) 

(!Sd) 

(!Se) 

( ISf) 

(ISg) 
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ii) Middle node 

For the middle clad node one derives 

~ Th + Bh h h h 
• TH . + CHm THa m Hm Hm .~ 

(16) 

h-1 h-1 h-1 h-1 h-1 h-1 
+ QHm AHm THm + B THi + c THa Hm Hm 

with 

~= a (Ah rm-1/2 
Hrm-1/2 rm 

+ \h 
Hrm+l/2 

rm:~/2) 

+_I_ ~p~m eh + ( 1-8) h-1 h-1 ) b.r 2 
6t p PHm cp H n m Hm 

( 17 a) 

Bh = \h 
r m-1 /2 -e Hm Hr m-1/2 r m 

(17b) 

eh = -8 \h rm+l /2 
Hm Hrm+I/2 r m 

(17c) 

h-1 - (1-a)(h-1 
r m-1 /2 h-1 rm:~/2) 

AHm = + \ 
Hrm-1/2 r Hrm+l/2 m (17d) 

+_I_ (e h h h-1 h-1) .. 
PHm c + ( 1-8) PHm c b.r 2 

b.t PHm PHm H n 

h-1 h-1 r m-1 (2 
BHm = (1-8 ) \ 

Hrm-1 /2 r m 
( 17 e) 

h-1 
= (t-8) 

h-1 rm+1/2 
CHm \ 

Hrm+l/2 r m 
( 17f) 

QHm = (8 
h h-1 2 

qHm + (l- 8) qHm ) b.rH (17g) 
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iii) Outer node 

For the out er clad node one der ives 

~a h Eh h + eh Th THa + THm = Ha Ha K 

h-1 h-1 + Eh-1 h-1 h-1 h-1 
+ QHa = ARa THa THm + CHa TK Ha 

with 

Ah Ah 
r a-1/2 h 

= 8 + 8aHK .6rH + Ha H ra-1/2 r a 

.6r 2 r 
I a-1/4 (ep~a h h-1 H + (1-8) + -- 2 c PHa .6th r 

Eh 
Ha 

CHa 

h-1 E. Ha 

h-1 
CHa 

QHa 

a PHa 

Ah 
r a-1 /2 

= -6 Hr 
a-1/2 r 

a 

= -8 .h 
.6rH Cl. HK 

= -(1-8) h-l .6r - (1-6) Ah- 1 
aHK H Hra_

112 

.6r 2 
I H 

+ .6th -2-
r a-1 /4 

r 
a 

h-1 r a-1/2 
= (I -8) A 

Hra-1/2 r a 

( 1-8) h-1 
aHK .6rH 

.6rH ra-1/4 
(6 

h (1-6) h-1) = -2- r qHa+ qHa 
a 

r a-1 /2 
r 

a 

(18) 

(19a) 

c h-1 ) 
PHa 

(19b) 

( 19c) 

(19d) 

(19e) 

( 19f) 

( 19g) 
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c) Hexagonal can 

Sirnilarly, discretization of equation (B.2.10) for the hexagonal can yields 

Fs ~ h h h h-1 (Th-1 - T~-1) J VS 8aKS(TK- TS) + (l-8)aKS + K 

F ~ h (Th - v: B - Th) + ( 1-8) h-1 (Th-1 _ Th-1) J + a a w s w w s w 

+ 8 h 
+ ( 1-8) h-1 h c~ + (l-8)ph-I Ch-I) qs qs = (eps s 

which can be written: 

Ah Th 
s s 

= A 

with: 

eh 
s 

h-1 
As 

h-1 
l)s 

h-1 
es 

Qs 

+ Bh Th + eh Th 
S K s w 

h-1 h-1 
Ts + Bh-1 

s 

= 

h· 
-e aKS 

F 
w 

s 

h -e -a F8 w 

= -(1-8) ( h-1 
aKS 

(1-8) h-1 
aKS 

F 
(1-8)~ ah-l 

F
8 

w 

vs h 
Fs 

(8 qs + 

h-1 
TK 

F 
+ VI 

Fs 

( 1-8) 

Ps Ps 

h-1 h-1 
+ es T + Q w s 

H 
c + 

Ps 

.h-1) +_I_ vs " h 
(8ps w 6th Fs 

h-1 
qs ) 

h h-1 
Ts - Ts 

6th 

(21) 

(22a) 

(22b) 

(22c) 

h h-1 + ( 1-8) c PS c 
Ps 

(22d) 

(22e) 

(22f) 

(22g) 

h-1 ) 
Ps 
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In the above equations, the coefficient A always refers to the node under 

consideration, the coefficient B refers to the adjacent node at the fuel 

axis side, C refers to the adjacent node in the outward direction. 

d) Numer ical so lut ion 

The above difference equations may be written in matricial form as 

B (23) 

where M is a tridiagonal matrix containing the left-hand side coefficients. 

Taking NN+l nodes in the fuel and 3 in the clad M becomes a square matrix 

with NN+4 rows and columns. T is a column vector containing the unknown 

temperatures at time t . B is a column vector formed by the right hand 
n "' 

side of the above discretized equations. It is not completely known because, 

besidesall temperatures and physical quantities at timet 
1 

(with index h-1) 
h h n-

it also contains the unknown terms p c . These are calculated with reference 
p 

to a temperature obtained extrapolating the gradient from the previous time 

step 

Equation (23) is solved by means of a direct numerical method using 

the Thomas algorithm /7/. 

e) Programming details 

FORTRAN symbols are given hereafter with reference to 

i) equation (7) for fuel inner nodes 

ii) equat ion (16) for the clad middle node 

iii) equat ion (21) for the hexagonal can. 

(24) 
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i) Fuel inner node 

DRBR RBR/NN 

DRBR2 DRBR)-.~2 

QRMIN(N) = rn-1//rn 

QRPL(N) rn+l//rn 

Mm = fuel density at node n 

CPB fuel specific heat at node n 

XLBN1(N) = fuel thermal conductivity at node n 

ii) Clad middle node 

DCAN = r - r. 
a ~ 

DRCC r - r. DCAN/2 
m ~ 

DRCC2 DRC~~2 

r. + (r - r.)/4 
QRPLV ~ m ~ 

r. 
~ 

r. + (r - r.)/2 
QRPLH ~ m ~ = r. 

~ 

QRCMI rm-1/2/rm 

QRCPL rm+l//rm 

RQ}H = middle node clad density 

CPH = middle node clad specific heat 

XLCINl = inner node clad thermal conductivity 

XLCANl = out er node clad thermal conduct ivity 

iii) Hexa~onal can 

FWFS FW/FS 

VDUF F
8

/F
8 

R~S density of structure material 

CPS = specific heat of structure 

WWST = aw = heat transfer coefficient from the structure 

out er surface to the surrounding medium. 

HKEX aKS = heat transfer coefficient coolant-structure. 
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5. Constitutive equations 

The basic equations describing the thermal-hydraulic behaviour of the coolant 

must be complemented by additional equations for calculating friction pressure 

drops, heat transfer coefficients and turbulent momentum exchanges of mass 

and enthalpy. 

5.1 Friction pressure drops and pressure drops due to grid spacers 

The frictional pressure drops are calculated by means of the relationship 

by Novendstern 1211 which also takes into account the contribution due to 

the w1re wraps. The friction coefficient is given by 

f 

with 

f 
0 

f 
m 

CFMl 

CFM2 

= 

= 

= 

f 
0 

a . 

CFM 

R 

= 

1.034 

(29.7 

f ( 1) 
m 

-b 
(2a) 

e 

(CFMl + CFM2 ~ 
R CFMEl)CFME2 (2b) 

e 

I ( ( p I D ) ·~ .... 0 . 12 4 ) (2c) 

( p I D ) •*- :)14 6 . 9 4) I ( ( A I D ) ·~ * 2 . 2 3 9 ) . (2d) 

R 1s the Reynolds nurober of the undisturbed flow, P is the pitch, D the 
e 

diameter of the pins, A the pitch length of the wire wraps. For turbulent 

flow the following values of the coefficients are suggested: 

a 0.316 

b o. 25 

CFME 1 = 0. 086 

CFME2 = 0.855 

In case wire wraps have not to be simulated the input parameter >- (=HELIC) 

1s set to a large value, thus giving CFM2 ~ 0. 

If grid spacers must be simulated, the pressure drops in the grids are calcu­

lated as the sum of two contributions: an irreversible pressure drop at the 

grid entry and frictional pressure drop along the grid. The pressure recovery 

at the downstream edge of the grid is considered as negligible. Within the . 

grids mass flows in transverse directions are suppressed, therefore only pres­

sure drops in axial directions are taken into account. These are given by 
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ll r~ ':;::. ( .b.p) ~'J\~ + (ßp) f7UX-h'-.w-= 

where: 

A 

f 
r 

K 
e 

s. 
6 

= 

= 

= 

3 '1. (i- ·~ )'~ fJt 3 L~ w.,'l 
:: - \Ne ·+ ::::: 

~ ~ De., ~ A 1. 

\.(q_ 
'2.. f . 'J. g \Ne, "2. _3 Lj w0 

:::. - + 
"' 2 De" A2 

J 

~ ~ VJ. 

s.~ - "'6 
ratio of reduced to undisturbed flow area 

hydraulic diameter of the 

friction coefficient for the grid 

(
• 1 s \l c· .. )2. 1

- .., /s J ) = ,(- 'lt resistance coefficient at grid inlet 

grid axial length (m) (L < 11z) 
g-

flow area upstream of the grid (m2) 

flow area through the grid (m2) 

\N~ flow velocity upstream of the grid (undisturbed bundle) (m/s) 

·w d flow velocity through the grid (m/s) 

3 coolant density (kg/m
3

). 

An equivalent resistance coefficient for the grid is defined by 

l\ b-= I<e -f't L ~ (4- 4 r fn L~ 
+ --::: - +-

D~6 H'l. A D~ nz. 
ö 

and an equivalent friction coefficient by 

f~ --::: ~~ · 0~ /IYl , 

Dh ~s the hydraulic diameter of the channel flow without grid and öz 

(3) 

(4) 

(5) 

~s the mesh length. The programme user can choose between modelling the 

grid spacers in their actual position, as explained above, or simulating 

the pressure drop by smearing the local contribution uniformly over all 

axial meshes. In the latter case, the friction coefficient due to the grid 

~s 

f 
g K. · Dh / DABST lg (6) 
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where DABST is the distance between two consecutive grids. 

The roughness of the upstream edge of the grid is taken into account by 

rep1acing the f1ow areas ratio in K = (1 - 1/A)
2 

by 
e 

2 
(c(A -1) + 1) A 

wherec is an input coefficient ranging from 0 to 0.4. 

Taking into account the contribution to the pressure drop due to the 

grid spacers the total friction coefficient is calculated as 

= f + f 
g 

which is introduced into equation C.2.5 to give 

FC~Z 

5. 2 Laminar and turbulent shear str.esses 

The momentum exchange between adjacent control volumes is calculated by 

adding a turbulent contribution to the molecular shear stresses. This is 

justified by a time-smoothing procedure which is applied to the momentum 

conservation equations as explained in the following section. 

(7) 

(8) 

(9) 

The volume-averaging technique applied to the conservation equations, as ex­

plained in section B 1.2, yields a balance of bulk values for physical quan­

tities defined at a given time. In reality the flow is characterized by 

turbulent fluctuations of all dependent variables (pressure, velocity com­

ponents, enthalpy) around mean values.These fluctuations are taken into 

account by the introduction of an effective viscosity which is derived as 

follows. 

Let us consider for instance the axial component of the momentum equation 

for the coolant, written in the local form 

(10) 
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where we neglect for simplicity the gravity and the frictional resistance 

terms. ~~ is the molecular dynamic viscosity. In eq. (10) the pressure and 

velocity components are instantaueaus values, including turbulent fluctua­

tions. 

We write the dependent variables of eq. (10) as the sum of a mean value 

and of an instantaueaus fluctuation 

- + u' u u 

w = w + w• 

V = V + v' 

p = p + P' 

where.the mean values are defined by 

. t -r~t 

,u : .i. J ..u, d t 
At 

t 

( lla) 

(llb) 

( 1lc) 

(lld) 

(12) 

and similar expressions for the other variables. The time interval ßt 

should be large enough \·dth respec t to the period of the turbulent os­

cillations to insure that the time-average of the fluctuatioris of the 

dependent variables vanishes (~'= o and similar). 

Introducing eqs. (11) into eq. (10) yields 

(13) 

Whilst the time-average of the turbulent fluctuations are equal to zero, 

the cross correlation terms w'w', w'u', w'v' give a non-vanishing contri­

bution in the time-smoothing of eq. (13), which therefore yields 
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(14) 

DP -- . 
0r 

The last three terms at the left side are the contributions of the turbulent 

f1uctuations and usually referred to as "Reynolds stresses 11
• They are con­

sidered as components of a second-order tensor 

Nt sw•L:.• L- P?.. ;:: 

.vt S w•w• (.. l:e- "" 

where the superscript t means turbulent. 

A similar treatment is made for the radial and azimuthal scalar momentum 

equations which yield the following time-smoothed equations: 

/) (.v ii ~) . 
T ·- .) t" 

'"J -.~ 

Eqs. (14), (16), (17) are the so-called Reynolds equations. They can be 

written in vector notation as 

(15a) 

( 15b) 

(15c) 

(16) 

(17) 
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where ~e is the laminar shear stress tensor which depends on the time­

smoothed components of the velocity vector V (the bar derrotes here time­

average) and 

,t.tl .(..(I .u'w' ..u 1v-' 

''t' 1: :::: ) w' u.' ""' \\)I W'0-' 
-·\1'-tt I \TIW' v-' v-1 

is the turbulent stress tensor. The laminar and turbulent shear stresses 

are calculated as follows. 

The components of the laminar stress tensor are given by 

..,.,.. e 
c ;_ 

.{.J< 

(18) 

( 19) 

(20) 

wlere V. are the components of the time-smoothed velocity vector V in the 9.;, 
~ ~ 

coordinate directions, bik is the Kronecker delta, k is the bulk viscosity. 

In the following we assume k=o. 

This equation shows the symmetry of the laminar shear stress tensor. 

- ~-The vector term - L ·q ~ t 1 in eq. (18) ~s g~ven by 

(i,k=r,z,s) (21) 



- 1 '){~ -

The component in the axial direction is for instance 

(22) 

For the derivation of eq. (22) ,.,e made the assumption that the dynamic vis­

cosity is constant. Furthermore, we use eq. (22), and the equivalent ones for 

the other two coordinate directions, for an incompressible flow so that the 

divergence of the velocity vector is zero, hence 

which has the form of the viscosity term in equation B 1.1 (2). 

The definition of the turbulent stress tensor (19) shows its symmetry. Its 

components are calculated by means of half-empirical expressions which take 

into account: i) an analogy with the analytical form (20) of the laminar 

components; ii) geometry coefficients represented by the volume porosity 

and surface permeabilities; iii) a typical length which is intended as a 

generalization of the "Prandtl's mixing length" representing the penetration 

depth of the momentum transfer; iv) the constraint imposed by the symmetry. 

Thus the following expressions are used for the components of the turbulent 

stress tensor: 

(23) 
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t _ 3c, [(c ar .i,iy + c q'lt e- ~ Ui) t' Jt~ -::. )-«'w' 'fl ß'tw - ~~ ( 2l~a) 
-

<ot-

"tt s..u'v' -$Co \{-' ~lt I :ü:[ ~ (}l_ ( 24b) 
'1-)).. : -

()~ 

vt s ,ulv-' _ jC, ((ft·~ _uy • ( 'i' H ~Jf' ( J;; UU) (24c) 
L. ~s -;:::. - i" ·-u..,~, 'J1 

).lt 3 w' u1 l -. ( . -n ., , ( u- U.< ) -sc() ('Y~~w) + ttö.~..u -~ (24d) 
(.. 1:)}.. -:. = -+ -

~') :c ~) ,;z.. 

t't 
-::. j w'·w; ::. -_)Cu~ lYt lwl ~ t~ (24e) 

e7: 
rtfc 

t: S w'.r' _ s , , u r ", w r + ( , 1\l; ~ r f, ( g! qw) 't ~ ~ -;:: t 
(24f) 

-
J-1 

1; 
.) -v'JA.' -3"~'L (rl\JZ~)'L • (r 11, .;:r}"'( {)(> t ~ ~) (24g) 

"'(})Jt '= ~ 

() -') J .. 11 .. 

Nt -.)Co[ (f ~~ ~)'l. T''( {):;) 3 ·::I/ W I _,_(r~lj·~r J·~ ( 2L~h) 
L ~ :C -::. - t 

'J~) Dt 

1: 3 ~I \II t~~l~\1()~ (24i) 
't )) 1 - - -.$Ca CU,\ 

where c · d' · -1 .. 
0 1s a 1mens1on ess coeff1c1ent to be determined by comparison of 

computed with experimental results. 
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The expressions (24) can be written 

where the mixing lengths L. are given by 
1. 

L.Tt - \fl b.~ 

ll.- = ~ fit 

Li_) = r b. ~ I 

or in the compact form 

(i=k) 

(i:fk) 

(25) 

(26a) 

( 26b) 

(26c) 

IV{:- t 
- f.~.·r.. ( Dv~· ~ uv ) (i,k=r,z,s) (27) 

l 
,t'r,. 

·'\-

~r,· - ue r-

with the definition of the turbulent dynamic viscosity 

- S Ce (i:fk) 

::: 3 Co L~ r~ "'I (i=k) 

which takes into account the anysotropy of the porous medium. 

We therefore write formally the turbulent momentum transfer for the j-th 

component of the momentum equation as 

( j =r, z, s) 

(28) 

(29) 

and the divergence of the turbulent stress tensor, similarly to eq. (23), as 

(30) 
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5.2.4 Effective shear stress tensor -----------------------------
From a formal viewpoint an effective shear stress term can be defined by 

as the sum of the molecular and the turbulent contributions. 

The time-smoothed momentum equation (18) can thus be written 

+ 

The divergence of the stress tensor is given, according to eqs. (23) 

and (30) by 

·- \J ;, ~ = - 'I " ( r e + '(:" t-) - v"(fl~+ft)"v 
v~(fl'lv) 

with the definition of the effective dynamic viscosity 

(31) 

(32) 

(33) 

( 3L~) 

Eq. (32), with the divergence of the stress tensor given by (33), is the 

governing momentum equation of section B 1.1 (eq. (2)), upon which the 

volume-averaging procedure is then applied, as explained in section B 1.2. 

The calculation of water experiments in unheated 19-pin bundle /22/ and com­

parison with the experimental results have allowed an estimation of the op­

timum value of the coefficient c in (24) (c = 0.12). Previous results of the 
0 0 

theoretical interpretation of these·experiments are given in reference /23/. 

5.3 Turbulentexchange of enthalpy 

The enthalpy exchange bet\V'een adjacent control volumes is calculated, like 

the momen turn transfer, by taking into account a molecular and a turbulent 

contribution. The theoretical justification for the latter arises from time­

smoothing of the energy equation for the coolant, which takes into account 

the mixing effects due to the turbulent fluctuations of the depending 

variables. 
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Ornitting the unessential source term, we recall the energy eq. B 1 (3), 

which refers to the instantaueaus values of the variables 

(35) 

where r.le is the molecular thermal diffusivity. 

Using eqs. (lla) to (llc), also writing the instantaueaus coolant enthalpy 

as sum of a mean value and of a turbulent fluctuation 

(36) 

and applying to eq. (35) the time-smoothing procedure, as in the previous 

section, one derives 

~ (~ ~) ·t- _() (-~ ~ ~) -t- ·~ (" ~ ~ w) 
7Jt 'ZOt- ~H (37) 

• ;, ( $ ~~' ) • g J ~ ~'v· ) -
The last three terms at the left side arise from the cross-correlations 

between the turbulent fluctuations of the coolant enthalpy and of the 

velocity components and represent an additional energy flux in the coolant. 

The terms in brackets can be considered as the components of a "turbulent 

energy flux" vector defined by 

?~ -: 3 ~I -u' 

9~ ~ s~'wl 

~~~ ·.: s ~' 
which add to the molecular contributions 

·-
1~ 

.e J~ 
- -)du --

r;):Jz_ 

, ~t.- ·~ DP: ..... -s~ .. _ 
Dt 

e - j~e ;)[ /1 - 0 

';;)~ 

(38a) 

(38b) 

(38c) 

(39a) 

(39b) 

(39c) 
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The components of the turbulent energy flux vector are calculated in the 

programme BACCHUS by means of the follow~ng half-empirical expressions 

{:; s~~tt' - ~ cC'i' r ~ 'l- C w '- -+ 
~ 'L) -1/2. J ~ 

1'1- -: -
() ·'Z.. 

(40a) 

(40b) t S ~·w~ ( -1. ;;.·t-ylz. D[ 
9 t- sc z. /). t: .M. 1" .... -::: - vr 

~) t:-

1~ 
~1 .... 1 - ~ cv 'i' ~ l~d ( ;;1. ;- w,_) 11

1, D~ 
·::. s ." ·::. 

{).~ 

(40c) 

where c
0

T is a dimensionless coefficient to be determined by comparison 

with experimental results. The use of the surface permeabilities in these 

equations accounts for the anisotropy of the porous medium. 

The expressions (40) can be written 

(i=r,z,s) 

with the definition of the eddy diffusivities for heat transfer 

(i=r,z,s) 

(j ,kii) 
or 

An effective energy flux vector can then be defined as the sum of the 

molecular and eddy contributions by 

(41) 

( 42a) 

(42b) 

(42c) 
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(i=r,z,s) 

with the definition of the effective diffusivity for heat transfer 

( L~4) 

The divergence of the energy flux vector is 

Using eq. (45) the time-smoothed energy eq. (37) can be written 

which has the form of eq. B 1.1 (3), This is the time-smoothed equation 

upon which the volume-averaging procedure is applied, as explained in 

section B 1.2. 

The dimensionless coefficient c
0

T has been estimated with the interpreta­

tion of sodium experiments in electrica11y heated 19-pin bundle /24/. The 

suggested value is c
0

T = 0.01, 

(45) 

(46) 
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5.4 Wall-coalant heat transfer coefficient 

The cladding to coolant heat transfer coefficient hCK is calculated for 

single phase flow by means of the Nusselt number 

NM, 
'::. 

where 

A 

Dh 

R 
e 

p 
r 

Tbulk = 

T wall 

Default 

a) for 

CN'\ 
CNNl. ! K e 

coolant thermal conductivity (W/m °C) 

hydraulic diameter (~) 

flow Reynolds nurober 

Prandt number 

( oc) coolant bulk temperature 

0 
wall temperature ( C). 

values of the coefficients are 

sodium: CNNl = 7 

CNN2 = 0.025 

CNl = 0.8 

CN2 = 0.8 

CN3 0 

/25/ 

b) for water: CNNl o. 
CNN2 0.023 

CNl 0.8 

CN2 0.4 

CN3 o. 

(47) 

(48) 

(49) 

The heat transfer coefficient h between the coolant in the outermost radial 

control volume and the hexagonal can ~s calculated by means of the formula 

1 
h + 

1 
h 

c 
(50) 

hsK ~s the heat transfer coefficient structure to coolant due to convection 

given by (47) and h ~s the heat transfer coefficient due to conduction in 
c 

the hexagonal can under the assumption of a linear temperature distribution 

through its thickness. 
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The conductive term is calculated as follows. Let 

TK be the bulk sodium temperature 

Ts be the structure temperature (calculated 1n only one node at the 

centre of the hexagonal can) 

s be the thickness of the hexagonal can 

VSTRUK the structure volume per unit axial length 

F the structure inner surface per unit axial length 

VDUF (=VSTRUK/F) ratio volume to inner surface of the hexagonal can 

q heat flux through the structure 

ÄS structure thermal conductivity 

x a coordinate with respect to an axis with origin at the structure 

inner surface and oriented outwards. 

In case a linear temperature distribution through the hexagonal can is assumed 

T(x) = T - 2 
K 

the heat flux q 1s given by 

q = - Ä grad T :!.. Ä s s 

Equation (52) can be written 

with 

q 

h 
c 

= 

= 
VDUF/2 

X 

The overall heat transfer coefficient will therefore be given by 

1 
h 

= + 1 
ÄS/(VDUF/2) 

('51) 

(52) 

('53) 

(54) 

(55) 
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6. Further programme details 

6.1 Boundary conditions 

According to the original MAC method /26/, from which the ICE technique has 

been derived, the boundary conditions are imposed both at free surfaces and 

at solid boundaries by using virtual cells. 

In general, the application of boundary conditions for the scalar quan-

t ities ( pressure, enthalpy and density of the coo lant) is Straightforward: the 

values in virtual cells are set equal to those in the adjacent physical 

cells. This applies for free surfaces and for solid boundaries. The only 

exception is made when the value corresponds to a given input function. 

The boundary conditions for the velocity components depend on the physical 

conditions at the boundary cells. We therefore distinguish 

a) free surfaces: the velocity component normal to the free surface 1s con­

served; the velocity components parallel to the free surface are assumed 

to vanish at the surface (the value in the virtual ce11 is set equal in 

absolute value to the value in the physical cell, but with opposite 

sign). 

b) solid boundaries: the velocity component normal to the solid surface 

1s set to zero in the virtual cells; the velocity components parallel 

to the surface are assumed to vanish at the surface. 

According to these rules, the most usual boundary conditions are as follows: 

i) Bundle inlet ("South" boundary) 

In case pressure boundary conditions are imposed: 

p. 1 = fs(t) (la) 
1, ,k p 

wi,l,k wi,2,k (i 2, ... NC) (lb) 

(k 2, ... NTH) (lc) ui,l,k -u. 1,2,k 

v. 1 = •v. (ld) 
1, ,k 1, 2, k. 
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In case velocity boundary conditions are imposed: 

Pi, l,k Pi,2,k (2a) 

w. f 8 (t) ( 2b) 
1.' 1 'k w 

ui,l,k -u 
i,2,k 

(2c) 

V i, 1, k = -v (2d) 
i, 2, k. 

f:, f: are given time functions for pressure and axial velocity components. 

For the other scalar quantities yield the same boundary conditions as for 

pressure. 

ii) Bundel outlet ("North" boundary) 

For pressure boundary conditions: 

Pi ,MC+l, k 

wi ,MZ+l, k 

ui,MC+l,k 

V i,MC+l, k 

w. k 1. ,MZ, 

u. k 
1. ,MC, 

= V 
i,MC,k 

N 
where f 1.s a given time function. In this case it is meaningful not to 

p 
suppress the radial and azimuthal components of the velocity at bundle 

outlet. 

For velocity boundary conditions 

Pi ,MC+l, k = Pi,MC,k 

w i ,MZ+ 1, k 
fN(t) 
w 

u. 1 1.,MC+ ,k -u 
i,MC,k 

v. 1 1.,MC+ ,k -v i ,MC, k 

where fN 1.8 a given time function. w 

(3a) 

(3b) 

(3c) 

(3d) 

(4a) 

(4b) 

(4c) 

(4d) 
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iii) Inner pin boundary ("West" boundary) 

This is usually a solid boundary, therefore 

Pl,j ,k p . k 
2' J' 

(Sa) 

wl,j ,k -w 
2, j 'k 

(Sb) 

ul,j ,k = 0 (Sc) 

vl ,j, k = -v 
2 ,j 'k 

(Sd) 

iv) Inner surface of hexagonal can ("East"boundary) 

PNC+l,j ,k p . k NC,J, 
(6a) 

WNR+l ,j 'k w . k NR,J, 
0 (6b) 

UNC+l,j,k 0 (6c) 

vNC+l,j,k 
= -v (6d) 

NC,j ,k 

The axial velocity component 1s defined at the physical boundary 

IR = NR which coincides with the inner surface of the hexagonal can, 

and therefore set to zero. 

Boundary conditions (S) and (6) could be replaced by other ones if the 

"east" or "west" boundaries were not solid. 

In the azimuthal direction there are not physical boundaries for the 

full bundle, we therefore set, for the virtual cells K = 1 and 

K =NTH+l 

p .. 1 
1' J' 

= p .. 2 
1 'J' 

and similarly for the velocity components. 

The mostly used boundary conditions are (S) and (6) at the solid 

boundaries, pressure boundary conditions (3) at outlet and either 

(1) or (2) (pressure or velocity imposed) at bundle inlet. 

(7) 

(8) 
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6.2 Finite difference schemes 

The programme user can choose between central and upwind differences for cal­

culating the convective and diffusive terms in the momentum and energy equa­

tions. We show some examples of the application of these differencing 

methods. 

i) Calculation of 

a) Central difference 

Q w 
..) ' . .'WI 

..t J K 

. ., 
( \NA.·,j·'"-'lz

1 
K + \N,~_·, \-Afl,l<. ,~-::: 

'2. 

b) Upwind (donor-ce11) difference 

[ (3w) v~J .. '2 

( 4 ·+ S,~M ~rw.) -:: {. .) . \N 
/..·, ~· -1h., " 

+ 
,( l r-, 'l ). J. ,, 

i. 3 '. 
2 

( 4- :),$""' w~) + 'W .. 
:~ J. J K ).I) .. 4h I K 

with 

. w .. J ) 

t- ..t , ) - ~tz, '" • 

ii) Ca1culation of [()w) w} ,~.· .. 4/L, ~·~Atz, k 

( (gw)is the convective term; u is the transported quantity) 

a) Centra1 difference 

[(~w)AN1. 
.(.. '"1tz..' 
_)'+.f{LI 1;, 

(9) 

( 10) 

( 11) 

(12) 
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b) Donor-cell difference 

(13) 

((3\N)~ J ' 
;.. ... 1/'1 .. 1 
) -+1J·z, k 

with: 

(14) 

(15) 

iii) Calculation of (3 ~ W ') , , 
.t.l) ·Hht '' 

~n the energy equation 

a) Central difference 

(.16) 

with 

b) Donor-cell difference 

(19) 
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iv) (20) 

with 
(21) 

v) 

(r (22) 

Table II shows the three-dimensional arrays used for calculating the con­

vective and diffusive terms in the momentum and energy equations. The meaning 

of the symbols, for instance for the axial z direction, is as follows: 

GZ 

RIDW2 

RlbWU 

RlbWUT 

DWDZ 

DWDR 

DWDT 

sw 
(~ w) ·w 

(~w) w 

= (3w)"' 
= ( 'dw ;8 t-) fv 
= ('Uw (u-;;z) fv 
= ((Jw(v~)r 

CVZZ, CVZR, CVZT 

FZZ, FZR, FZT 

FWZ,GVZ ~ 

RlbEW = _3 ~W 
DTD z = ( ~ 'T' I u t-) ~\ 

~ See list of symbols at 

section C.2.3, Page 79 ff. 

and similarly for the other coordinate directions. (UT is the FORTRAN 

symbol for the azimuthal velocity component v). 



U(IR,JC,IT) W(IC,JZ,IT) UT(IC,JC,ITR) 

GR(IR,JC,IT) GZ(IC,JZ,IT) GT(IC,JC, ITR) 

r0U2(IC,JC, IT~ ~0W2(IC,JC, IT8 [R0UT2(IC,JC, ITj 

[R0UW(IR,JZ,IT)1 [R0WU(JR ,JZ, IT)) [R0UTW(IC,JZ, ITR)) 

[_R0UUT( IR, JC, ITR)] [ R0WUT( IC, JZ, ITR~ [R0UTU(IR,JC,ITR~ 
t?UDR(IC,JC, IT)} [?wnz( IC, JC, IT)] [DUTDT(IC,JC,IT)j 

[nunz (];B:, JZ, IT )) jpWDR(IR,JZ, IT)_l (DUTDR(IR,JC,ITR~ 
[DUDT( IR, JC, ITR) J ~WDT(IC,JZ, ITR)j [DUTDZ( IC, JZ, ITR)j 

CVRZ( IR, JC, IT) CVZZ(IC,JZ,IT) CVTZ(IC,JC,ITR) 

CVRR(IR,JC,IT) CVZR(IC,JZ,IT CVTR(IC,JC,ITR) 

CVRT(];ß,JC, IT) CVZT(IC,JZ,IT) CVTT(IC,JC,ITR) 

[FRZ (IR, JC, IT )1 \Yzz( IC ,Jz, ITÜ [FTz( IC, JC, ITR) 1 
[FRR (IR, JC, IT)l ~ZR(IC, JZ, IT)) [FTR(IC ,JC ,]J'.!~)j 
[FRT( IR, JC, IT).\ [FZT(IC,JZ,IT)_\ [FTT( IC, JC, ITR)j 

FWR(IR,JC,IT) FWZ(IC,JZ,IT) FWT (IC,JC,ITR) 

GVZ(IC,JZ,IT) 

l~0EU(IR,JC, IT)J [R0EW( IC ,~~' IT)) [R0EUT( IC, JC, ITR)j 

l~TDR(IR,JC, IT)) ~TDZ( IC ,JZ, IT)J [nTDT( IC, JC, ITR)] 

Tab1e II 

List of arrays for calcu1ating convective and diffusive terms of the momentum 

and energy equations. Indexes IC,JC,IT (= i,j,k) refer to the centre of a 

ce11; indexes IR,JZ,ITR (= i ~ 1/2, j ~ 1/2, K ~ 1/2) (underlined) refer to 

the ce11 boundaries. Arrays in parenthesis L _/ have been spared in the 

most recent programme version (for instance R0W2 is stored temporarily in CVZZ) 

but they are listed for the sake of c1arity. 
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6.3 Power Normalization 

We define the power of the fuel bundle P and the power distribution by means 

of three sets of coefficients which give relative values of the specific 

power: 

a) for the radial power distribution 1n the 

fuel or electrically heated pins 

b) 1>~/l.>~l'" -;.1.1'" ~"'" for the axial power distribution 

c) ~ 
2. 2. I 

for the power distribution at an axial 

level in radial and azimuthal directions. 

The bundle power can be written 
NTI1 "'(.. N<.. 

.P LK l· I.- p .. - - _.(.} K. 
2. 2 l l.. 

where P. 'k is the power 1n a control volume given by: 
1J 

Q '• 
J.)i< 

( '" ·v ·':'1, v II\ · & + c' c 

(23) 

( 24.) 

Q. 'k is the mean specific power in the cell and the T 1 s are the fractions of 
1] 

the power generated in fuel, cladding,coolant and structural material respec-

tively. These fractions are given by: 

(j' 
9a /a (25a) ß -= 

? '- - q" I~ (25b) 

Tr.. - ~"' /Q (25c) 

'T'.s ·.::: 1s /Q (25d) 

where qB, qc, qK, q
8 

are the specific powers 1n the four media. These are 

normally known by experimental information or theoretical calculations. 

Equation (24) can be written 

V ?ß ß + 
(26) 
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using (25), or 

1' . ' 
. .t)r .. = 

(27) 

with the definition 

(28) 

The power in the cells 1P. 'k is obtained by ncrrnalizing the to.tal power P by 
~J ' 

rneans of the sets of coefficients b) and c) in two subsequent steps: 

i) Norrn'alization with respect to the axial direction 

Frorn the relation: 

(power generated at 
axial level j) ~ 

bundle power 

.. V· 
d 

.r 
-~-·V· 

J A 

we derive the rnean specific power at axial level j 

(' '-) Q. 
A 

·= 

where 

takes into account the volurne of the j-th axial rnesh of the bundle. 

(29) 

(30) 

(31) 

ii) Norrnalization with respect to the radial and azirnuthal distributions. 

Frorn the relation 

cell power 
(power generated at 
axial level j) 

we derive 

Q.t'j'K '\f~·.)'K 
(32) 

Q) 2:.L·~ 'I:},\~ 

(33) 
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The linear p1n power is g1ven by 

(34) 

when RB 1s the fuel radius, Ra, Ri are the outer and inner radii of the 

clad. 

The heat fluxes out of the p1ns are 

(35) 

The set a) of coefficients is used to calculate the radial power distribution 

Q (n = 0,1 ... NN) in the fuel. Frorn the relation 
n 

{Power in fuel volurne 

\ Fuel power = 

we derive 

(Qs.v.) .. ( t,, Q •rß ~s ) 
-::. ,._,N (37) 

..t ~ r, ~M S".. \j 3M .t'i" G . 

VBn is the volurne of the fuel cell within the cylindrical surfaces of radii 

Rn-1/2' Rn+l/2' 

Following rna1n FORTRAN syrnbols are used 1n the prograrnrne: 

FACR for f/W n 

QZ. 
J ~; 

QRTik ~ . 
.t.r. 
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FAK for a.A-\" rrß vf? /~Mt"'Vß-w ~n (37) 

V~LBR. 'k 
~J 

V~ .. 
J. ~ K 

VBRZ. ·- . -v (31) 
J L.A-'r.. V ..t')'K in 

VQRT. 
J ~ ,...·!( ti.A-.~ V ~·J·~ 

Q1V~. 
J 

&(~) 

- ~ 
in (30) 

QGRT. Q· 
~n (30) J .) 

QVcbLL. 'k l.J Q.t·~·r... in (33) 

QV~LLO. 'k 
~J 

& . .L:~·~ at t=O 

QV~LLA. 'k 
~J 

Q..t\'K at t n-1 

QQQ1. 'k 
~J <P_.~.•.j'K ~n (35) 

QLIN. 'k 
~J tA_'~'K ~n ( 34). 

6.4 Check of rnass balance 

The coolant rnass unbalance is given for every control cell by the continuity 

equation C.2 (1) 

+ (38) 
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In the prograrnme we check the mass conservation in terms of mass flow by 

means of: 

value of D. 'k 
l.J 

(39) 

gives an information about the convergence behaviour of The 

the numerical scheme used for the numerical solution of the Poisson equation. 

A good convergence is achieved when max\DijJ is less 

In the steady state the mass unbalance is given by 

-5 
than about 10 . 

D;) 
t'~" (~·w) , 5ft - (sw) " . s~b + ·- ).'/ ~·t-1/1, k A-1)...,/fltl\ 

-t () tt) . s 
,.~_·,..-~,,, ).; " ~ 'C. 

(S-4) . 
.( ~ -1/21 i' " 

. sf,' + 

-T (5 -J') . s~ - () -~) . s? [ "ö I-~ 1 
'. ~""' ...~.·~)·, "'•1fl.. r Ä ) I K ··1f 2 

6.5 Check of enthalpl balance 

. (40) 

The enthalpy balance requires that in the steady state the power supplied 

corresponds to the sum of the power transported by the coolant and of the 

power lost beyond the hexagonal can. 

In the transient case the temperature increment in every medium must account 

for the difference between power generation and power lost or transported 

by the coolant. 

The power transported by the fluid PH equals the difference between the 

enthalpy flows at outlet and at inlet of the bundle per unit time 

{w_7 

The enthalpy flows per unit time at outlet (North) and inlet (South) of 

the bundle are given by 
N.;., 111' r 1\ 

ft ' . (:$ 'v\1 ) ' s f ' [w} " ll ~K N 
~ 

..-(. I M 'i; I " ,l 'J M l: I K • A. i" 
'2. 2 

No;.. NTII 

[\N} ~ . ~: ~" t. . (s w) .. . s1 . ~ ':::: A.. ,. J., k. L I >1 1 K i. i'\ 
'Z. 2.. 

(41) 

02) 

(43) 
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The power lost beyond the hexagonal can LS 

[w] 
where 

uL.w heat transfer coefficient structure to surrounding medium 

(W/m
2 0

e) 

Fw outer surface of hexagonal can per unit axial length (m) 

T S hexagonal can temperature (
0

e) 

T\H surrounding medium temperature 
0 

( e). 

In the steady state it holds 

p = 

where P is the input power. 

The power stored in the sodium during a transient is 

N~ Mc.. NT I-I 

(~1\1~: ~~'j'rt) 
M4-1 

~f P"·= .:L 2:~ i· ~r. ~ ~=l:· 
,( 'J'r-.. 

.) L'.} i' Ist,.,. 1. '2. ~ '2. Aj" 

where h LS the coolant enthalpy. 

The powered stored Ln the fuel during a transient is 

(44) 

(45) 

(46) 

~~~ [(:scp) Vß (t:r'.- T ;)·\ .. t FAt~.K 
0 ß ~ t/jl~l ~ 

(47) 

M 

where TB is the fuel temperature. VB is the volume of the fuel associated 

to the radial fuel node n, between the cylindrical surfaces of radii rn.::,l/Z 

(see section A.2). FAeik is the fraction of fuel pin associated to the con­

trol cell (i,j,k). 
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The power stored in the clad during a transient is 

(48) 

The index ~ refers to the three nodes considered in the clad. 

The power stored in the hexagonal can during a transient is 

( 49) 

The overall enthalpy balance requires that during a transient 

p = p + p + PB + p + p + p 
H K C S X I w I - - . (50) 

In a steady state PK ~ PB PC ~ P
8 
~ 0 and eq. (50) reduces to (45). 

The power P calculated with eq. (50 ) differs in general from the specified 

input power 

(51) 

- 3-
where Q. 'k lW Im I ~s the power density calculated as explained in section 6. 3. 

~J - -

The relative error 

e 

gives a measure of the accuracy of the calculation. Typically is e ~ 10-
3

. 

The programme calculates also the energy released from the beginning of 

the transient by integrating the instantaneous power over the subsequent 

time steps: 

(t 
j P(t) Jt 

D 

l'o c. ~ J t P" (t) .I t 
D 

For consistency the percentual error 

(52) 

(53) 

(54) 

(55) 
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should vanish with increasing time Ln a quasi-stationary calculation 

run with constant power. 

6.6 Time step control 

Previous programme versions were run usLng the Alternating Direction Implicit 

(ADI) method for the solution of the Poisson equation with a constant time 

step in the range 1 - 4 msec. A reduction of the CPU time in the calculation 

of the pressure field of up to fifty percent has been obtained with a time 

step optimization which works as follows. 

We call tolerance 
r+l r 

ma x ( ( p . . k - p .. k) 
LJ LJ 

the maximum of the relative pressure change in the full definition domain 

in two subsequent iterations with the ADI method. The iterative sweeps must 

be repeated till the tolerance decreases below aninput value TOL (about 

l0-
5

). The calculation practice has shown that 

i) the tolerance which can actually be reached is inversely proportional 

to the time step ~t; 

ii) the mass unbalance D. 'k (see Section 6.4) is roughly proportional to 
LJ 

the product of the tolerance with the time step; 

iii) the nurober of iterations (ITER) necessary to reach a g1ven tolerance 

is directly proportional to the time step and inverselyproportional to 

the tolerance itself. Therefore following empirical relations can be 

written: 

TOL · ~t r::!. c
1 

D . 'k ::P TOL · ~ t 
LJ 

. ITER 

(56) 

(57) 

(58) 

where c
1

, c
2 

are constants and the symboljP means proportionality. 

The problern of minimizing the calculation time (tCPU) necessary to simulate 

a problern time tp consists in finding the optimum time step (or, for (58), 

the optimumnurober of iterations) which allows to approach the extremum of 

the functiori tCPU / tp = f (~t~ 
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Let assume to calculate a transient problern for a bundle with a nurober of 

NC, MC and NTH control cells in the radial, axial and azimuthal directions 

respectively, and introduce the following calculation time normalized to 

the problern time 

7: = 
1 (59) 

NC·MC·NTH 

The normalized time is given by the following equation, derived from the 

calculation practice, 

t = ~t (a + b · ITER) 

or,by means of (58), 

?: = 
c b 

a + _2_ 
L'>t c

1 
. ilt 

(60) 

(61) 

When using the IBM 3033 computer the constants in eqs. (60), (61) have the 

values: a = 1.16 x 10-3 (sec), b = 9.15 x 10-5 (sec). The constant a re-

presents the CPU time necessary to make the explicit calculation within 

one time step while the constant b represents the CPU time for one iter­

ation sweep in the numerical solution of the Poisson equation, which then 

must be multiplied by the nurober of iterations. 

A plot of the normalized time ~ as function of the iteration nurober is 

shown in Fig. 10. The corresponding values of the time step are also shown 
-6 -2 in the plot for a case c

2
;c

1 
= 10 sec which holds for a slow transient. 

The minimum of ~ is obtained differentiating with respect to ilt in eq. (61) 

and imposing the extremum condition, which yields,with the above given pro­

portionality constant, 

-3 
3. 5 x 10 sec 

(62) 

13 



If we a11ow a deviation up to about 5% from the minimum ~ , which corresponds 

to the optimum ITER = 13, the iteration number can vary in the range 
opt 

6 /V..! 
- 2 ITER t ~ ITER ~ 2· ITER N 26 

op opt 
(63) 

This range for ITER has been found acceptab1e for all ca1cu1ations made wi th 

different transient conditions and bund1e sizes. 

The computer prograrnrne changes autornatica11y the time step to insure that 

the iteration number remains in the above range. In practice, this is done 

as fo11ows: the mean iteration number is ca1cu1ated over twenty time steps. 

If it exceeds the upper boundary in (63) the time step is divided by f2, 
rounded to half-millisecend steps (for instance 0.00141 rounded to 0.0015), 

and then kept constant for the fo11owing twenty time steps. Converse1y, if 

the iteration number becomes sma11er than the 1ower boundary in (63), the 

time step is mu1tiplied by \f'Z. 

Moreover, we use the re1ation (57) to ensure that the mass unba1ance D. 'k 
6 ~] 

a1ways remains just sma11er than an input va1ue (OMEGA~ 10- ), (without 

needing to become srna11er by a 1arge factor). This imp1ies that a reduction 

of 6t can be accompanied by an increase of the given to1erance for the 

so1ution of the Poisson equation. Converse1y, a 1arger öt imp1ies a srna11er 

(sharper) to1erance. 

As a ru1e, after optimizing the time step with the method exp1ained above, 

we check if the fo11owing constraint is satisfied (see Ref. /27/): 

C..t " ""'"' '. t ,, 

~~~~ "-l" I Iw' l~i j~\ . ~V' ~y :t ·- ..... .;- ~- -\- .;-

I)~ bJt b') .brz.. /:)~2 

(64) 

where 

~65) 

(66) 

s ' ' { ) A/)1r.,-.C 1. (67) 

(68) 
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Fig. 10: Normalized calculation time versus number of iteration sweeps with the ADI method. 
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List of symbo1s 

(On1y symbo1s used throughout the report are 1isted) 

c 

c 
p 

D 

F 

g 

h 

K 

-'9 n 

Nu 

p 

p 

q,Q 

r 

R 

s 

s 

t 

T 

u 

V 

V 

w 

z 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

(dp/d~) 1 / 2 
sound velocity (m/s) 

specific heat (J/kg) 
2 

pin diameter (m) / drag force per unit surface (kg/m sec ) 

drag force per unit volume (kg/m
2

s
2

) 

hydraulic diameter (m) 

friction coefficient 

geometric factor (See eq. B.l.l4) 

gravity acceleration (m/s
2

) 

specific enthalpy: (J/kg) 

resistance coefficient 

unit vector 

Nusselt nurober 

pressure 

pitch (m) 

Prandt1 nurober 

specific power (W/m
3

) 

radial coordinate (m) 

radius (m) 

azimuthal coordinate (m) 

2 
surface (m ) 

time (s) 

( oc) temperature 

radial component of coolant velocity (m/s) 

azimuthal component ci.f coolant velocity (m/s) 

volume Cm3 ) /velocity vector (m/s) 

axial component of coolant velocity (m/s) 

axial coordinate (m) 
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Greek symbols 

heat transfer coefficient (W/m
2 0

c) 

thermal diffusivity 
2 (m /s) 

angle between planes through the bundle ax1s bounding an 

azimuthal control volume (See Fig. 9) 

volume porosity and surface permeability with respect to the 

axial direc tion 

time discretization parameter 

A thermal conductivity (W/m-°C) 

dynamic viscosity 

kinematic viscosity 

(kg/ms) 

(m
2
/s) 

r surface permeability with respect to the azimuthal direction 

$ density (kg/m
3

) 

X friction coefficient 

f surface permeability with respect to the radial direction 

Indices 

b bottarn 

B fuel 

e exterior 

f fluid 

g grid 

H cladding 

1 interior/identifier of cells in radial direction 

j identifier of cells in axial direction 

k identifier of cells in azimuthal direction 

K coolant 

1 laminar 

m minus (previous-one in azimuthal direction) 

n time discretization 

p plus (subsequent in azimuthal direction) 

S structure (hexagonal can) 

t top/turbulent 

w wall 
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