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Abstract

The computer programme BACCHUS implemented at KfK includes a steady-state
version, a two-dimensional and a three-dimensional transient single-phase
flow version describing the thermal-hydraulic behaviour of the coolant
(sodium or water) in bundle geometry under nominal or accident conditions.
All versions are coupled with a pin model describing the temperature dis-
tribution in fuel (or electrical heaters) and cladding. The report des—
cribes the programme from the viewpoints of the geometrical model, the
mathematical‘foundations and the numerical treatment of the basic equa-
tions. Although emphasis is put on the three—dimensional version, the
two-dimensional and the steady state versions are also documented in self-

consistent sections.

BACCHUS-3D/SP, ein Rechenprogramm fiir die dreidimensionale Beschreibung

der einphasigen Natriumstrbmung in Biindelgeometrie

Zusammenfassung

Das Computerprogramm BACCHUS, das im KfK implementiert ist, enthdlt eine
stationdre, eine zwei~ und eine dreidimensionale transiente einphasige
Version zur Beschreibung der Thermohydraulik eines Kihlmittels (Natrium
oder Wasser) in einer Biindelgeometrie unter Nominal- oder Unfallbedingun-
gen. Alle Versionen sind mit einem Stabmodell zur Beschreibung der Tempera-
turverteilung im Brennstoff (oder dem elektrischen Heizer) und der Hiille
gekoppelt. Im Bericht wird das Programm hinsichtlich des geometrischen Mo-
dells, der mathematischen Grundgleichungen und ihrer numerischen Behand-
lung beschrieben. Obwohl die dreidimensionale Version im Vordergrund steht,
werden auch die zweidimensionale und die stationdre Version in sich abge-

schlossen dokumentiert.
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Introduction

The three-dimensional version of the computer programme BACCHUS has been
developed at KFK since the beginning of 1980. The starting point for this
development were two two-dimensional programmes delivered from the CEN
Research Centre of Grenoble (France) in the frame of a French-German cooper-—
ation. The two programmes were: a) BACCHUS-P /1/, /2/ describing steady
state single-phase and two-phase flow of sodium in reactor bundles;

b) BACCHUS -T /3/ a transient programme version describing sodium single
phase flow under accident conditions like pump run-down, up to boiling in-
ception. In these programmes only thermal-hydraulic effects were described

without a fuel pin model,

Work done at KFK concentrated first to assess the performances of the two-
dimensional transient BACCHUS-T programme by calculating three 7-pin bundle
out-of-pile experiments performed in the sodium loop (NSK) at the Institut
fiir Reaktorentwicklung at KfK /4/. Results of the calculations showed that
at least in case of rapid transients a pin model was necessary for des-
cribing the temperature distribution in the fuel elements, hence the tran-
sient heat fluxes into the coolant. Therefore, the first programme implemen-
tation consisted in coupling the thermal-hydraulic calculation to a fuel pin
model, as explained in section C 4. Results of the programme verification

against bundle experiments will be shown in Part III of this documentation.

Some further programme improvements, concerning the two-dimensional version,
aimed at accelerating the convergence of the iterative solution for the

coolant pressure field and are reported in section C 3.

The largest part of this report is dedicated to the new development of the
three-dimensional programme version done at KfK. The new programme makes

use of a different technique for solving the Poisson-like equation describing
the coolant pressure field, namely the Alternating Direction Implicit (ADI)
method derived from the original work by Peaceman and Rachford /5/. It offers
the great advantage of reducing the solution of a three-dimensional problem
to the solution of simpler one-dimensional problems. However, an iteration
procedure is still required. The problem of accelerating the convergence of
the ADI scheme has not yet been dealt with and may be object of future de-
velopment. Due to the large number of cells in the three-dimensional case,

a numerical solution by a direct method, for instance by a matrix inversion




_2_

technique, is not efficient with regard to computing time. In the two-
dimensional case, however, a direct matrix inversion method has been incor-
porated as an alternative to the several iteration schemes based on the SOR
method. It has been found to be superior to the iterative methods because it
eliminates spurious oscillations in the time and space distributions of the

dependent variables.

For the sake of completeness, the two-dimensional programme version, which
still exists as an independent programme, is also documented in this report

in a self-consistent section (C 3).

The two- and three-dimensional BACCHUS programmes are in continuous develop-

ment. This report documents the versions of July 1982.




PART I - The physical model and the mathematical foundations

A) Geometrical model

We consider separately the geometrical model adopted for the thermal-hydrau-
lic calculation and that used for the fuel or electrically heated pins. We

assume that the pins are arranged on a hexagonal lattice, as shown in Fig. 1.

1. Thermal-hydraulic calculation

1.1 Control volumes

The conservation equations describing the sodium single-phase flow are written
first in a local form, then integrated over appropriate control volumes. Ac-
cording to the ICE technique, explained in section C 2.1, a staggered mesh is
used for defining the several dependent variables (components of coolant veloc-
ity, pressure, enthalpy) and correspondingly different cells are used for making

the macroscopic balances.

With reference to Fig. 2, taken from reference /2/, we comsider the following
control volumes. The control cells are bounded in radial direction by planes
parallel to the bundle z axis through the pin axes. Let Ar be the distance be-
tween the internal and external bounding planes, i.e. the width of the hexa-
gonal ring. Planes perpendicular to the z axis define the following control cells
of length Az in the axial direction:

- Control volume VI is bounded in axial direction by two planes perpendicular
to the bundle z axis and a distance Az apart, in radial direction by planes
through the pin axes. This control cell is used for volume-averaging the
coolant energy equation, and the continuity equation.

-  Control volume VII is obtained by displacing VI by Ar/2 in radial direction.
It is therefore bounded in the radial direction by planes parallel to the
bundle axis passing midway between the pin axes. This control cell is used

for volume - averaging the radial component of the coolant momentum

equation.

- Control volume VIII is obtained by displacing VI by Az/2 in axial direction.

It is used for volume - averaging the axial component of the coolant momen-

tum equation.
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Fig. 2: Control volumes used for macroscopic balances
. 2a) Perspective view
VI for the energy equation
VII for the radial component of the momentum equation
Verr for the axial component of the momentum equation
VIV for the azimuthal component of the momentum equation
2b) Cross sectiom
2b1) VI’ VIII centred or axially displaced control volume

2b2) VII radially displaced control volume
2b3) VIV control volume displaced in the azimuthal negative direction

2b4) VIV control volume displaced in the azimuthal positive direction




Fig. 2b) Cross section

Fig. 2b1) VI’ \Y centred or axially displaced control volume
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Fig. 2b2) Vit radially displaced control volume




Fig. 2b) Cross section

‘Fig. 2b3) VIV control volume displaced in the azimuthal

negative direction

Fig. 2b4) V.. control volume displaced in the azimuthal

v
positive direction




Control wvolumes VI to VIII are bounded in the azimuthal direction by two

planes passing through the bundle axis and forming an angle of 30 degrees.
One of these planes is perpendicular to the hexagonal can, the other passes
through the axis of a corner pin. The full bundle is thus divided azimuthally
into twelve sectors.

= Control volume Viy is obtained by taking the two adjacent halves of cells

like VI' V.., is used for volume-averaging the azimuthal component of the

IV
coolant momentum equation.

1.2 1Indexing conventions

Following conventions are adopted for indexing the control cells: .

- Axial direction. Index JC = 2, 3, ... MC denotes the control volumes VI of
length Az = DZC (JC). Control volumes V displaced by*Az/2 are indexed

by JZz =2, 3, ... MZ.

11T’
Meshes JC = 2 + MC and JZ = 2 4+ MZ correspond to physical partitions of the
bundle in axial direction. Meshes JC = 1 and JC = MC + 1 are dummy meshes

used for introducing boundary conditions.

- Radial direction. Index IC = 2, 3, ... NC denotes the control volumes VI.
IC = 2 refers to the inner hexagonal control volume; IC = NC is the control
volume bounded externally by the hexagonal can and internally by a plane
through the axes of the outermost pins. Meshes IC = 1 and IC = NC + 1 are

dummy meshes wused for introducing boundary conditions.

Index IR = 1,2, ... NR refers to the control volumes VII' IR = 1 is a mesh
centred on the axis of the central pin with width Ar/2. IR = NR is the control
volume bounded externally by the hexagonal can and internally by a plane tangent

to the outermost pins.

- Azimuthal direction. Index IT = 2, 3, ... NTH = 13 refers to the twelve
azimuthal sectors bounded by planes passing through the bundle axis and
forming 30 degrees angles. Index ITR = 1, 2 ... 13 denotes these planes
(planes ITR = 1 and ITR = 13 coincide).Meshes IT = 1 and IT = NTH + 1 are
dummy meshes used for deriving boundary conditions when integrating with

the ADI method along the azimuthal direction.




Control cells and indexing conventions are shown in Fig. 1 for the case of a

37-pin bundle.

(IC, JC, IT) is indexed as node (i, j, k). The cells faces are indexed as

i+ 1/2, j +1/2, k + 1/2 respectively.

1.3 Definition of dependent variables

According to the TCE technique, described in section C.2.1, space discreti-
zation of the conservation equations describing the fluid flow is done with
reference to staggered meshes. Scalar quantities, like coolant pressure, ent-
halpy and other physical properties of the fluid, are defined at the centre
point (i, j, k) of a control volume. Velocity components of the coolant (u,
w, v for the r, z, s directions respectively) are defined at the mid points

of the boundary faces. These conventions are shown in Fig. 3.

1.4 Volume Porosity and Surface Permeabilities

All cells are characterized by a total volume V, a volume occupied by the fluid
Vg, an area A, of the solid (wall)-fluid interfaces, by the areas of the lat-

eral faces, St’ S, , (top, bottom, perpendicular to the z axis of the bundle),

b
S, Se (internal, external, perpendicular to the radial coordinate r), Sm, S

L p
(bounding the cell in the azimuthal direction, where the subscripts m (minus),
p (plus) denote the sequence considered in the positive clockwise direction).
These geometrical elements are used to define volumetric porosities and surface

permeabilities for every cell.

Let Sf s Sf R Sf s Sf R Sf R Sf be the flow areas of the bounding faces. We

define®the Burfate pefmeabT1itiBs as ratios of the flow areas to the total

areas, i.e.:

€, Sft/st Surface permeability at the top cross section (1)

€y = Sfb/Sb Surface permeability at the bottom cross section (2)

Y, = Sf./Si Surface permeability at the inner cross section (3)
i

Y, = S¢ /Se Surface permeability at the outer cross section (4)
e

Em = S¢ /Sm Surface permeability at the azimuthal left cross section (5)
m

Ep =S¢ /Sp Surface permeability at the azimuthal right cross section (6)
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Fig, 3: Definitionof velocity components and scalar

quantities on staggered meshes
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The volume porosity of a cell is defined as the ratio of the volume occupied

by the fluid to the total cell volume, i.e.:

£ = Vf/V (7

In an undisturbed geometry the volume porosity is equal to the surface

permeabilities in the axial direction:
€=€ = € (83)

or

V./v=s8_/8 =8_/8 (8b)

The definition of the surface permeabilities for the radial direction is

shown in detail in Fig. 4 with reference to the centred cells VI and to

the displaced cells V The following nomenclature has been adopted:

11
a) Centred cells VI
v, = PSI (IC) (9)
b) Displaced cells VII
Y = PSIR (IR) (10)

i+1/2

where index i denotes the node at the centre of control volume VI and

i + 1/2 refer to its radial boundary faces.

In the volume averaged conservation equations one must consider the
surface to volume ratios. With reference to Fig. 5 these ratios are

obtained for the radial direction as follows:

a) Centred cells VI (Control volume (ABFE) » Az)

i}

EA > Az

0l
]

(EC - AC) + Az

('M . A’L) b2 (1)

6

Inner surface Si

FB v Az

1t
|1}
1

(FD + DB) « Az (AA + -2;5 A”‘) b2 (12)

outer surface 8§
e

with As = MN (13)
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FRECM(T9) S /S
P Y
FAce? (T¢) Se [Sane
Y
St' /SN\M'
Se /qu;

The radial surface to volume ratios are then
As- B A2) A ‘(_Tsy)’l
5, (La z ) &2 } 4 )5
v A2, 0a D2 A%
. \E An)p ( ,)'})An
. = 2 4o =)=
v Aa. ba. b2 An
with  FACCM (IC) = (1 - -[E )éﬁ? =
6 by
FAGCP (IC) = (1 . ‘E)éil. -
6 / A>

b) Displaced cells V

Inner surface 8§ .
mi

outer surface S =

with
one has
im_1=_L
v Ar
S
me - 1
\'% Ar
where
FACRM (IR)
FACRP (IR)

il

1

1T

= MN . Az =
™V ¢« Az =
me
FB = As + é.E
12 9\,03

6 An

(FB - DB) Az =

(FB + HV) Az

(Control volume (MNVT).Az)

-

(FB - —%Ar) Az

3
(FB + <2 Ar) A2

(' i

Ve - PRC(Te) + 647

6 An
V3. PRC(Tc) + 6An

g

FACRM (zR) St [Se

>.=

A A%
) FACRP(TR) Swe [Se
) An - A

6 A» -
1- — = Om /S
V3 PFc(lc) + 6 &% ™ /Se
1 + 6A3L = 5/“,\@ /Se =

V3. PFC(IC) + 6An

Q- FAceM (IR) |

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)
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IR=1
Dr"‘""g i\ ——C
; | Wi |R=2{

PSI (IC) W= Y ~+—

ol
PSIR (IR) W11

Fig. 4: Definition of radial surface permeabilities

il N\AC FACCM (IC) | i-1/2

M B racrM mb i=ic

F\S"/ B ) FaccP (Ic) / \i+1/2=1R

FACRP {IR) 7 i+1

Fig. 5: Definition of geometry coefficients




2. Fuel pin model and structure

Every control volume VI of the bundle is associated to an equivalent fuel
pin with geometrical data corresponding to those of the real pins. Fig. 6a
shows the fractions of the fuel pins associated to the control volume ABCD
which are considered for defining the equivalent pin of Fig. 6b. Its confi-
guration corresponds to the geometry of the SNR type reactor having a lower
fission gas plenum. The pin consists of a heating element (fuel or electri-
cal heater), and a cladding, separated from the fuel by a gap of given width.
The coolant temperature in the cell considered is used as boundary condition
for the calculation of the temperature distribution in the pins. For the
outermost control volumes the structural material of the hexagonal can is

taken into consideration in a similar manner.

In fuel, clad and structure only radial heat conduction is considered. Heat

conduction in the coolant is negligible compared to convective heat transfer
which affords the coupling between the axial meshes of the channel. Within

an axial mesh up to 6 nodes are considered in radial direction in the fuel,

3 nodes in the clad, and 1 for the structural material. The one-dimensional
heat conduction equations are solved rigorously for fuel and clad with refer-
ence to an axisymmetrical cylindrical coordinate system centred on the fuel
pPin axis, while the assumption of a linear temperature profile in the struc-
ture is made. The structure outer surface can be considered either as adia-
batic or as transfering heat to the outer medium, the latter being normally

required for the theoretical interpretation of experiments.

The transient calculation of temperature distributions in the pin is carried
out for fuel, clad and structure by discretizing the radial heat conduction
equations with a half-implicit (Crank-Nicolson) scheme and solving them nu-
merically by means of direct inversion of a three-diagonal matrix. The heat
flux beyond the structure outer surface is assumed as boundary condition.
The fuel-clad gap conductance, which depends on the gap width and on the
composition of the filling gas, influences strongly the fuel temperature dis-

tribution, and is calculated in a user written subroutine.

The gradient of the calculated temperature distribution at the clad outer sur-
face is thenused to compute the new heat fluxes into the coolant which repre-
sent the coupling between the thermal hydraulic calculation and the fuel pin
model. These heat fluxes are not updated during the iteration steps necessary
for the thermal-hydraulic calculation (see section C 2.4) but are kept con-

stant up to next time step.




Fig. 6a

—— ——

Fig. 6b Fig. 6:
Geometrical configuration of an

equivalent fuel pin associated to

; control volumes used for thermal-
mixing 2 hydraulic calculation. The struc-
chamber 2 ture (hexagonal can) 1is present

4 structure only for the outermost control
Upper volumes of the bundle.
blanket coolant

channel
fuel
core
clad
lower
blanket
fission gas
plenum
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B) Basic Equations

1) Conservation equations for three-dimensional thermal hydraulic

descriptién of single-phase coolant flow

1.1 Conservation equations in local form

The three-dimensional single phase flow of the coolant can be described

in the local form by the following equations.

i) Continuity equation

3%9+ T p V=0 7 = (u,w,v) (1)

ii) Momentum equation

5e (o) + ¥ ¥ = N () - Np +pg - B (2)

which is equivalent to the three scalar equations for axial, radial and

azimuthal directions, respectively:

3 : 2
'TE—M + - (pw\?) = Neugw) - %122 - g - D ﬁaz (2a)
3 -» : i
3¢ (w + T (eu) = T uqu) - 22 - & (2b)
2oem e T v = T Gy - 2B (20)

iii) Energy equation

"a“i‘(ph)-é- g pt{\7 = ' 03 Yh+0Q (3)




where

D, = drag force per unit volume at the fluid-solid interface [_kg/m2s2_7
g = gravity acceleration [—m/sz_7

h = specific coolant enthalpy Z—J/kg_7

n = unit vector

P = static pressure [_N/m2_7

Q = source of power supplied to the coolant Z_W/m _7
r = radial coordinate L_m_7

s = azimuthal coordinate / m_/

t = time /s /

u = radial component of coolant velocity Z_m/s_7

v = azié;thal component of coolant velocity [—m/s_7
V = coolant velocity (vector) [ m/s ]

w = axial component of coolant velocity Z_m/s_7

z = axial coordinate, main flow direction [im_7

Y
1]

effective thermal diffusivity (taking into account both molecular

and turbulent diffusivities) é-m2/8_7

M = effective dynamic viscosity [-kg/m s_/
— 3..

S = coolant density / kg/m _/

Remark:

The '"radial" and "azimuthal" components are referred for convenience to
a local cartesian coordinate system.

The effective thermal diffusivity ® and the effective dynamic viscosity u
are calculated taking into account both the molecular and the turbulent
contributions. Details of these calculations are given in sections

C 5.2 and C 5.3, respectively.
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1.2 Conservation equations averaged over the control volumes

The conservation equations for mass, momentum and energy are integrated over

appropriate control volumes and transformed into 'volume-averaged' equations

using a staggered mesh. The control volumes used are VI to VIv as defined

in section A 1.1.

Volume integrals are transformed into surface integrals by means of the Gauss
theorem, time derivatives of volume integrals by means of the Leibniz theorem.
The most general form of these theorems for a single phase fluid is reported

hereafter. It is derived from the two-phase flow equations given in reference

/6/.

Consider a volume of fluid Vf delimited by wall surfaces Sw and interfaces S,
which in the most general case separate the fluid from another medium. In gene-
ral the positions of the interfaces are time dependent. Their rate of displa-

cement be v,; T be the normal vector of a surface directed outwards.
i

a) The Leibniz theorem states that for any scalar function f

.D_Jgow': I8 v +§ g oveem as | (4)
ot ), L0t ‘
\/r \/g S

b) The Gauss theorem for a vector or . tensor 5 is

jV'Eo\V - J Bmas f%ﬁws | (5)
Ve S S0

When the interfaces Si are fixed the Leibniz theorem becomes

9 g g av DR
- = | &L 6)
ot e

In general the interfaces consist of several parts; .g. of top and bottom
surfaces Sl and 82 normal to the Z-axis and of side surfaces Ss) therefore

the surface integral has to be taken over all parts, i.e.

S E*@AS,JE%AS*‘(E'@AS +§'é-;w\,s (7)
> 5 3 S
A 2

5
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which can also be written as
(3w Q_gB%cW +g€~aag .
v

where Bz is the Z-component of B.

i) Continuity equation

We refer to the control volume VI of Fig. 2 and use the indices t, b, e, i,

P, m to demote the boundary surfaces (S): top, bottom (z direction), external,
internal (r direction) plus, minus (for the positive-clockwise- and negative
azimuthals directions) respectively. Let V be the total volume of the control

cell and Vfbe the volume of the fluid in it (index f refers to the fluid).
It holds
v = 8283 8 _ S, b2 _ S, b2

= B2 (S0+Se)/2 . A2 Seypn 9)
Sp(w ), 83 = Sy (wrp),, b

i

with Sie/Z = (Si+Se)/2. The angle B is defined as shown in Fig. 5.

Integrating equation (1) over the volume Vg of the fluid in the control cell gives

o S
S L3 av o | dev gV ) av oo (109

Applying the Leibniz and Gauss theorems and introducing the velocity components
vields

‘DDt g [SEIA g gwW A4S _ gw 45 ¢
g St St
(11)
,,_X QU A4S ._S S,u,o\& + g 3 48 . g AS L0
Sge S¢¢ Ste 3§ e
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We introduce the following definitions of volume and surface averaged quanti-

ties for any scalar function 2:
. Al

b, . ‘,Lj £ av (12)
i |

V¢
<ty - .i_g § 45 (13)

Sp
¥ 75
By means of (9), (12), (13) and the definitions of the porosity and permeability
équation (11) becomes: ’

£ U<

{<Sw>t - <%, b} . 1;31 [‘Ye Fe<§Wy - Yo F»'<S‘*>~'l ¢

s
ot A2
4 {__EE___ <85 _j_w,_*__ <€V | =0 (14)
by L(wp)p (w0 B ) .
with Fo = SQ /‘S‘L‘L’/’L (14b)
Fow Sef Seer, (14c)

This is the volume-averaged continuity equation. It is combined with the volu-
me—-averaged momentum equations to derive a discrete Poisson-like equation,

as explained in section C. 2.1

ii) Momentum equations

a) Axial momentum equation

Integration of eq. (2a) over the volume Vf of the fluid in the control cell

yields

J —a;gw av + j o (g‘w—;/) W J d,(\) (},\Vw) aV .
. ) v
£ [
“ng— v ugjg a [ By
Vi Vg Vp

(15)
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By means of the Leibniz and Gauss theorems one has

j)_J o av o, J [gw)w SN _j (‘gw)w aAs .*.g(gw),w as .,

o . gt Sfo Ste
_S (SW>M RN +j (gw)\r dd _J (gw)q A (16)
> S 3
-f,u?_woas pr)was+J/&fl\aas pdw s
5& D2 Sf Q Sfe AR JSJ?«" on
o Dw
+ jﬁ M ‘w4 S MVDVO AS ;
DA SN
St S
- g? ds *J pas 3J Q AN ,_J D, mpdV
e e “ Vi

Letting D = Do . Vf/S , & similar treatment as for the continuity

equation leads to

z
]
+ ~i— .—!Eﬂ—- }*é?ﬁ.y - ?W% /-}k Qli wl ot
b9 Cwﬁ)fa ¢d p (s B3)m RN

Eq. (17) is the volume-averaged axial momentum equation.
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b) Radial momentum equation

Integration of eq. (2b) over the volume Vg of the fluid in the control cell

yields, with the same procedure as for equations (15) to (17):

¢ 5 <SWy ;_—% [(SMY"% - <S'“W7,ol +A%L{‘V¢fa<5’u7e - Yi r»‘S"L?;l +
i_ gf . BTN g , $"“ A AT 1

= £l epdi, . Fe < L WeFeop i, )

b wa )kw b\ VQ ‘ )A 70 - ¥ }Afmh\f

LS

h

D o du \+
(cm,;) )L% P (wo(z),m<)k9.}> MA-

4 1S .-
e {-'“P% + W’hl - 2 ) W

c)

N

Azimuthal momentum equation

Integration of (2¢) over the volume Vg gives similarly:

DE

ey

¢ 0 <§°’>3 +_[§_%K<§«TW> <Sd\»\)7b‘\+b K\VQ e<§°M> VA’FA;‘<§’IM>{\+
o

4

*-
%)

5
sl

It

-

Foosh L Em ed) l
{(“”F‘)f <5 i Cwﬁ)m <

] Rl MO
)A'T7 )Arﬁ%ol K\PQFG /‘——M—% u<)aﬁ—>;\+ (19)

‘., By
() ’*9” G pym ﬂ
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iii) Energy equation
(3) over the volume V of a control cell. Because the

We integrate eq.
coolant density is not defined outside Vf, this is equivalent to inte-
grate the first three terms over the volume V_ of the fluid:

J Dt‘ S?‘/ elv +J i (gﬁ.:/) AV j o'y @3" A B\z) W +J Q A, (20)
b Yy % v

Applying the Leibniz and Gauss theorems one has

.~S bV, j‘g?vw a5

Dt
‘4 Sp S Ste 5.
+SS&VA5 _J.S&Vig =
¢ S 1)
= :\4 % ads _F; &fg_ aS + V(S'; P"E‘L 4SS _ g;,, % 48
q,. O KL ) =
JE{' ‘)gb Sge Sg‘v
+SS3’«E§LO\S .-jgi?&,«s *SO”W

Introducing the definitions of volume porosity and surface permeabilities and

using (12), (13) yields:

by« Elesho - <3‘“‘“““’\ &l

Eq. (22) is the volume-averaged energy equation.

Ve le8 I“%e A Se"“%'\ *
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2) Equatioms for fuel pin and structural material

i) Fuel

The equations describing the space and time temperature distribution in

the fuel are (without taking into account heat conduction in axial direc-

tion):
5T 5T T
d B + 1 B B
D 2By +1, '8 - °B 0)
7w P53y ) T T Y9 °p CpB TS : (1)

3T _ - _ y (2)
- Oy a% ) gy L T(tsRg) = Tp(tsRyy) /
RB
and the initial condition
T =
5 (0,1) Tao (r) (3)
On the fuel axis it holds:
32T oT
2hy B o+ qp = pp c B (r=0) (4)
2 PR ot
or
with a symmetry condition
oT
B
(5;“)r=0 =0 (5)
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In the above equations symbols are defined as follows:

Cp = fuel specific heat (J/kgoC)
B
dg = specific power generated in the fuel (W/m3)
r = radial coordinate (m)
Rg = fuel outer radius (m)
Ry = radius of the inner clad surface (m)
t = time (s)
Tg = fuel temperature (°C)
Ty = clad temperature °c)
Opy = fuel-clad heat transfer coefficient (W/m2 °c) .
g = fuel thermal conductivity (W/m C)
Py = fuel density (kg/m3)

ii) Cladding

The equation describing space and time temperature distribution in the clad

is
P T T (6)
5r 'H TBr r "B or I °u p, ot
with the boundary conditions
_ 3 BT,
gy L Tp(t:Rg) = TytuRy) /= = Oy = Rui "
8Ty o /T (t,R )-T (t) ] (8)
-, 0 =) a £ T fEoRyy Tt E
H BrRH
a
and the initial condition
TH(o,r) = THo(r) (9)




Symbols
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are defined as follows:

specific heat of clad material (J/kgOC)

specific power generated in the clad (W/n?)
fuel outer radius (m)

radius of inner clad surface (m)

radius of outer clad surface (m)

fuel temperature ( C)

clad temperature (OC)
coolant temperature (°c)
.. 20
fuel-clad and clad-coolant heat transfer coefficients (W/m~7C)
} )
thermal conductivity of clad material (W/m C)

. . 3
density of clad material (kg/m™)

iii) Structural material

Assuming the structural material of an axial mesh zone concentrated into

one node, the equation describing the time dependence of its temperature

is
FS - = Fw - 7
P ANORERONEEEENE A O X (10)
dT¢(t)
: (£) = pqc o ——
+ qs SpS dt

The first two terms at the left side represent the boundary con-

ditions, i.e. the energy transfer from coolant to the structure and from

the structure surface to a surrounding medium (for instance to a by-pass

flow with temperature Tw(t».




In the above equation symbols are defined as follows:

specific heat of structure material (J/kg °0)

inner surface of structure per unit axial length (m)
outer surface of structure per unit axial length (m)

energy produced in structural material per unit volume and time
3
(W/m™)

time (s)
)
coolant temperature ( C)

structure temperature ( C)
. . o
surrounding medium temperature ( C)

. . . 2
volume of structural material per unit axial length (m )

. . 2 0
heat transfer coefficient coolant-structure (W/m C)
o

. . . . 2
heat transfer coefficient structure-surrounding medium (W/m~ C)

. , 3
density of structural material (kg/m )




C) Numerical treatment of the basic equations and programming details

1) Steady State Calculation BACCHUS-P

1.1 General

The transient two- or three-dimensional thermal-hydraulic calculations is

preceeded by a steady state calculation which is performed in two steps:

a) a real steady state calculation carried out by solving a simpli-
fied set of conservation equations in a two-dimensional (r, z)
geometry with a loose coupling of subchannels in the radial

direction;

b) a transient calculation with constant boundary conditions, which

therefore approaches eventually a steady state.

Step a) is considered as an initialization for step b) and allows reaching
a convergence to the steady state after only a moderate number of time steps.
At the end of step b) time is set to zero,and the real transient calcula-

tion with time dependent boundary conditions starts.

Step a) is performed with a programme package called BACCHUS-P which is
documented in this section C.1. The basis of the thermal-hydraulic calcula-
tion is also reported in reference /1/. The conservation equations for
mass, momentum and energy are solved in BACCHUS-P under the simplifying

assumptions that

i) heat diffusion inaxial direction is negligible

ii) the coolant pressure is uniform at an axial level

of the bundle

iii) the radial coupling between control volumes is described by

diffusive transport of momentum and enthalpy.

For a two-dimensional (“%,2) geometry (see section C.3) the calculation
made in BACCHUS-P yields a preliminary field of pressure, enthalpy and ve-
locities (radial and axial) for the full bundle. In three-dimensional (r,
z, 8) geometry (section C.2) the BACCHUS-P calculation is done for every

azimuthal sector; the azimuthal velocity components are initialized to zero.
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1.2  Thermal-hydraulic calculation

1.2.1 Basic equations

The steady state calculation is performed by solving numerically the follow-

ing system of simplified conservation equations:

i) Continuity equation

D_‘w'_ ! (1)
D2 (S >'—M

ii) Momentum equation

2 (59%) +53 + ffwa P2 (r] o

iii) Energy equation

Bl %0 - Z(5R) o

D% o

l

In equation (1) to (3) symbols are defined as follows

Dh =  hydraulic diameter Z—m_/

fw = wall friction coefficient

g = gravity acceleration [_m/32_7

h = gpecific enthalpy [_J/kg_7

m’ = mass flux in radial direction per unit length [-kg/m §7

P = pressure [fN/m2_7

q, = heat flux from wall to coolant per unit axial length Z_W/m3_7

Q¢ = _?_ (gol. 9& = gpecific enthalpy exchange due tg tugbglent
mixing per unit axial length ' "/ /

r = radial coordinate / m_/

u = radial component of velocity / m/s_/




- 31 -

w o= axial component of velocity Z—m/s_7

z = axial coordinate Z_m_7

~ - -
o = /x/<§cf = thermal diffusivity / mz/s_/

= coolant specific heat at constant pressure [_J/kg 00_7

= coolant thermal conductivity / W/m oC_/

dynamic viscosity [_kg/m 5_7

1) \F >
I

= density [~kg/m3_7

1.2,2 Conservation equations averaged over the control volumes

We consider a hexagonal ring-shaped control volume of lengths Ar, Az in

the radial and axial directions, respectively,and let be

S¢ the area of the top cross section surface

Sy, the area of the bottom cross section suface

S¢ the area of the inner surface

Se the area of the external surface

Sft the cross flow area at the top section

S@b the cross flow area at the bottom section

S#t the cross flow area at the inner surface

S fe the cross flow area at the external surface

#@ = Sfi /Si the radial permeability at the inner surface

Yo = Sfe /Se  the radial permeability at the external surface

?l. = the distance of the inner surface from the bundle axis

e = the distance of the external surface from the bundle axis

v = Ax. Az = the cell volume per unit length of the azimuthal
direction

V¢ = the cell volume occupied by the fluid
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¢ = 3 /St = Sf /Sb = Vf/V the volume porosity.
f b

It holds (for the unit length in the azimuthal direction)

i

V = Ar ‘Az = st.Az sb-Az (4a)

12
0

Lol r S Ar
1 e

iR

(4b)

i)

Continuity equation

Integrating equation (1) over the volume of the fluid Vf and replacing the
volume integral of the divergence term by surface integrals yields:

. e
J gw s gsw 3% - - m dn dS (5)
St S

Sp(n) Tn;
when S

£ (r) is the area of the hexagonal cylindrical surface parallel to
the bundle axis.

Letting

Ne

:j ! dn .,_/‘c;r_7=[kg/m2s_7 . (6)

.

.S(& = (;a

and introducing surface averaged values at the top and bottom sections
one has

St T ¢ T Sfb<gw>b=—g G 45 (7)
Sg(:n.)
Dividing by V and using
eV €S, Ar Az
R (8)
£ Se M

= Sgb Az
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yields

3 We _ .ews | 4| 65 d8 (9)
I < S >{ < S )'b] = Y —g;

ii) Momentum equation

Integrating equation (2) over the volume of the fluid Vf and replacing the

volume integrals of the divergence terms by surface integrals yields:

( 3\»1&5 .__JSW?'JS + 3J3 av +S,P-is _J pasS .

St 50 Ve St S¢p
(10)
. \320’
SO N LN, o 4S dn
BNy YRR~ o2
Ve 25 e TSp(=)
A similar treatment as for the cpntinuity equation gives
. 2 2 .
Spe<SWo, - e, < SWo +3V5;<S>5 +5gt<?>t < Sp<Po, =
2 (11)
__V 3w S ow S, . dw
= §<fw'§-§ﬁj>3 - £Q</&®—sz>e + TP <M 53;>&
when the symbol < 7, is used for volume averaged quantities.
Dividing by V, taking into account (8) and
V=g B2 = g A% /\
¢ fe Ve (12)

I}

=g, D2 Sei AJL//WQ

1 f
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yields

T T
- [dw%- <3w>b] +13<8, + £ l<f’>t : <F>~b] -

(13)
1
‘W w 9\»
.:‘f<fws——>5 )““”D—> Nl ]
9,0,
iii) Energy equation
Integrating equation (3) over the volume of the fluid (and replacing the
volume integrals of the divergence terms with surface integrals) yields:
ggwe\/ 45 _JSst _jwfds .‘_'(wfds -
>t St St St
(14)
gg?wav .;27_5 S ¢l % 4o 4n
v 0% : Sgla) o5
Using equations (4) and introducing surface and volume averaged values
one has
Sp wt’v ,
fe <3V - S¥b<SWK>b - Sgt<w?>t # Sp<WPs, -
(15)

=V <, . ge<30\ DPV 53_ <SoL f“
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Dividing by V, taking into account (8) and (12) yields

£ sty - csuby |- & [aun, o |

(16)

Ve ¢ o W 1 b
= < v, — OL — — — 7.

Equations (9), (13) and (16) are the basic volume averaged conservation

equations which are solved numerically as explained hereafter.

1.2.3 Numerical solution of the volume-averaged conservation equations

i) Continuity equation

Let us refer to the control volume like that shown in Fig. 3, but dropping

the azimuthal discretization. Let zj be the axial level of mesh node (i,j)

d .
an AzJ+1/2

the volume of the cell. Discretization of equation (9) yields

be the distance between two consecutive axial nodes and Vij

¢ . W A 1M, U L T
L \SWZL./‘),P\ _<S >L" = - A.wllw\*‘\ ;_-A/“J‘_/\ (17)

fl o %y
yHil2 v‘;

with the definition of mass flow
Me) - Sy6) 6n = Spen) - S o [M]. [kls] o

Using E/L%-z jaﬁ; = *Eﬁi_ it yields (dropping the symbol < > )
%

‘ ‘ ' S w) (19)
M“”/u)'*" = M‘-""/wb*" - (S{ZSW)L‘»J’M _( 5‘3 A
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which is used to calculate the radial mass flow under the simplifying assump-

tion of an uniform radial pressure distribution.

ii) Momentum equation’

Introducing the difference operator [&Z by the definition

= - (20)
AZ = <¢>£ <@>b
for any scalar quantity @, the first term of equation (13) can be written

£ | <ew ng e A w” (21)
— < > — = = ‘< > '
Az [ : ¢ < b D ¢ 3

We assume that for any two scalars ¢% /qbz
<¢4'¢z>-= <‘b4>“\’ﬂbz> (22)

Using (22), applying the chain rule of differentiation to (21) and combining

with the discrete continuity equation (9) yields

£ A Wl>__2_A<W><W'>-_-
A2 2 <3 " ke ¢ S
£
Dz

it

<gwy By<ws §<W> By<gwy 23

i

£ <3w Ay<ws 4 [ GpxW>dS

| Sp(n)
Hence applying (18)

£ A, <8W> = E <]Wy By <ws

The last term of equation (24) is descretized according to the '"donor-cell"

technique as follows (dropping the symbol < > ):
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A (M% <KWy, MA\'<W>A:> _
\Y)
¥ e, 1 * e \
— _'4_. MA\+4/1 (W'L\*””a’__ : wy?) _ MA"‘/L (W'L""/'a,_ '\W>A_) (24b)
V/.‘)
with
" < Wy +'f ML‘+~{/% >0
Vv¢‘+4/
n, =
WY cp Mypg <0
W¢ .<W>4L‘-4 /(«‘f M'L‘"",L >O
A-dfy = ,
<IWYy cp o Moeoy, <2

Using axial velocities at level j + 1 the above equation can also be written:

’

4 (M@<W>Q - MA‘<W‘>;> -
V

( IM*\”’MS\" M"”’“Z'j (W*“ i WC))‘M + (24¢)

Using these conventions eq. (13) is discretized in the following form
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+
) D2 N 3
_ fb FA-‘/J'f‘\ F«Lé L (SYSF> (W WL‘ 4> _(SY Sg)
Azo*”% V‘& A2 L'é'i et A
- (‘i SW%B .
9Dy, N

Equation (25) can be written in the form

W,c-a,b'm (-64— BL) + W e ((\« +Rh2 B4 LB Te) .

+ Ween e (<M R2) L CA €3 CBCy B P

with
X TN
:2 VA" A 4/9-) ,).
39. 4 (3Y54’>
V"S A= ""4/2;5
R4 _ 4 (\P\- M
gvtg "'"‘/‘1,)

(25)

(26)

(26a)

(26b)

(26¢)

(264)




TR _ 4 (ssw)“
A2y, ’
C/\ - WL‘& * TR
cq_ 3g| ‘34',)‘“ + Su‘).
2
¢y g
A%)'Q-J,Q,
_ . 2
CY - 5 (f Sw )
ChH - Rk &
AQSH/%
Letting

S._ RV LA% . B, B2 TR

RR. (a4, R2) /S
Ba. (B4.82)/S

cc o (carCa _c3_ci) /s

P . -5 /s

equation (26) becomes

~66 ‘V\);,‘-‘\,)'-\-'\ 4 WL')‘.‘.'\ — HRW

Ker yet = bD

(26e)

(26f)

(26g)

(26h)

(261)

(263)

(27a)
(27b)

(27¢)

(274d)

(27e)
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Equation (28) is used to calculate the axial velocities and the coolant
pressure at an axial level j + 1. Writing it for every radial node i

(i = 2...NC) it supplies a system of equations with a three-diagonal
matrix of coefficients for the axial velocities. As eq. (28) contains
the unknown pressure térm f%)s'l a further condition is necessary

for applying the solution algorithm by Thomas /7/.

This condition is supplied by summing éq (19) with respect to i
(i = 2, ,..NC). It yields the physical constraint that the coolant

mass flow remains constant between axial levels j and j + 1.

NC 4 Ne _
23:4' (S'gswlt',sw\ = %A— (5£ Sw)ﬁ‘\\' (29)

According to reference / 8 / the numerical solution method based on
eq. (28) is stable as long as the mass flow in axial direction is
positive,

A marching technique through all axial levels ( j = 2, ... MC) yields

the axial velocity distribution.

iii) Energy equation

By analogy with (20) to (24) the first term of equation (16) can be

written:

) .
5 X<SW&/>{ - <SV°€V>b = fi A, <S"‘)€v>~_«

A
bt (30)

- i_%_ < QW A%<€»7 _ 1 Gn <hy a5 -
v Sp(x)
[Mgd»»e - M;<9\7;l

= 2_ W'A<9\) A
Aa<S> ? v
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According to the '"donor-cell" technique, the last term of (30) is dis-

cretized as follows:

i [MQ<Q\)Q - ML‘ -<€V7,jl=

v
(30b)
¥ ' *
= '.i MA\VL (&A«W’l - <&7,«:) - MA"‘/&, (e‘ A‘"‘I% - <£"7A')
V[S b %
with
* <o #f Miiiyg 2o
A edfg, =
< ﬁu\ﬂ f M cajg <0
&* < a) A'—" }-‘g M,(,‘—A/% 7e
A-Alg =
< bos S Meoag <o
Using enthalpy values at axial level j + 1 the above equation becomes
L Meshoy M.
vV A
.4 M. M, '(ﬂ- K')~ '
" Qv ( O N TR (300
_+ ( lM"‘—A/i)i \'{— M/L‘-A/Q’S) (‘K’L'-A - RL‘)$+4 »
The first term at the right hand side of equation (16) can be written:
' 0V)£ Q?\IN\: ° \] \h‘w
’\'TW)S = = =
\ V (31)

v

v

v . %

= _Q__(\:_:v 5. ‘A% - % n R‘UW\ A% - Qw
V [nw V

whega

wa = Vf‘<?w75 power delived from the pin walls to the volume

€ Vf of the coolant Z—W_7
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‘e . DN
pin specific power generated in the pin / W/m _/
3_
!

Q = average specific power in the volume V of the cell / W/m

Vpin = volume of the pins in the cell [_m3_7
_2_

Spin = pin surface in the cell / m _/

Rpin = pin radius Z_m_7.

FEquation (16) can therefore be discretized as follows

.&435+4 - R‘s' £ W, FUtS*A = FUJ N

e
} A%)'-tl/a_, A2 J"“U‘L

i

Neglecting the first term at the right hand side, which represents the work
done by pressure forces in thermal expansion and is negligible with respect

to the energy input, equation (32) can be written in the form

Poagon (80-82) 4 he o (R ey 80,80 TR)

R pa (R0 L L TR soukcE (33)
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with the same symbols defined by (26a) to (26c) but replacing the kinetic

viscosity ¥ by the thermal diffusivity ;{ = A /SC(,, and
Qpin 9
SOURCE = Q, = ( — i ® U Ryin Az [+l (33b)

Using again (27a) to (27¢) and
cc' = (hij « TR + SOURCE)/S (34)
equation (33) becomes

—BB A . . . - . . = '-
hl—l, i+l * hl, j+1 AA h1+1, j+1 ce (35)

Equation (35) is used to calculate the coolant enthalpy at an axial level
j*1. The system of equations obtained writing (35) for every radial node i

(i =2, 3, ...NC) is solved numerically by means of the Thomas algorithm

/77

~
The walue of @ introduced in the above formulas is an equivalent thermal
diffusivity which takes into account both contributions from molecular and

turbulent diffusivities., (See section C5).

1.2.4 Energy balance

An energy balance is made for every axial mesh of the bundle in the following
way .

Letting B%l = Ny (ZC) = 2(32‘) - 2'(.5‘13'“'\) (See fig. 8)

it should hold:

PUCU (Jz) + H (Jz-1) = H (Jz) + VLCU (Jz)

or

BILH (JZ) + VLCU (Jz) -PUCU (Jz) = O (36)
with

BILH (JZz) = H (J2) - H (JZ-1) = coolant enthalpy balance between levels

(JZ-1) and JZ

VLCU (JZ) = power transfered from the coolant to the hexagonal can

PUCU (JZ)

power released to the coolant.
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These quantities are calculated as follows:

NC Ne -
\-\(S%) i Z,‘ S w; Sg~ &L‘ . Zn R¢(Ic)32.).‘w(‘LC,;g),SFC(XC)'H(IC,S%) L\/J]( )

2 v 2 37
VLCU (JZ) = HKEX (JC) « PEXINT (3¢): (T(NC,JC) -TEX (JC) ) » DZC (JC) 1'w_7 (38)
PUCU (Jz) = FQ (JZ) « PCH » DZC (JC) [ W/ (39)

Symbols of the above equations are defined in the list of Part IT.

The relative error
ERR = (BILH (JZ) + VLCU (JZ) - PUCU (Jz) ) / PUCU (JZ) ' (40)

can be printed for every axial mesh from Subroutine IMPRIP.

1.2.5 Boundary conditions

Three cases are available for imposing velocity and pressure boundary

conditions:

i) Mass flow (coolant velocity) and coolant pressure are imposed at inlet
by letting the input parameter MPR = 1. Thé coolant pressure distribu-
tion is then calculated with a marching technique from bundle inlet to

the outlet.

ii) Mass flow and outlet coolant pressure are imposed if MPR = 2,

In this case the inlet coolant pressure spécified as input is used as

a starting value for applying the marching technique from bundle inlet

to outlet. When the calculated outlet pressure does not correspond to the
boundary value imposed, a mew tentative inlet pressure is calculated
with the Newton method and the marching technique is applied again.
: The scheme is repeated till the outlet pressure is approached within

a given tolerance or till a maximum number (ITPX) of iterations stéps

has been attained.

iii) Inlet and outlet ‘coolant pressures are imposed if MPR = 3,

(In case the input parameter LCS = 1, the programme sets MPR = 3).
The inlet mass flow is calculated consistently with the assumed pressure

distribution. This third case can be choosen only when the programme
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BACCHUS-P is used to initialize the fields for the transient calculation

(Subroutine BACCP3).

The BACCHUS-P calculation is always done in two steps. For the first step
(IRUN = 1) the hexagonal structure is assumed adiabatic and a preliminary
temperature distribution of the coolant is calculated. In the second step
(IRUN = 2) the heat transfer from the can outer surface to the outer medium

is taken into account to yield a refined coolant temperature distribution.

1.3 Pin model and calculation of hexagonal can temperature

Every centered control volume used for the thermal-hydraulic calculation is
associated to the neighbouring pins consisting of the heater element (fuel

or electrical heater) and the clad separated from the fuel by a gap. An input
heat transfer coefficient from fuel to clad is used for the steady state cal-
culation. Besides that the heat flux from the coolant to the structural material
of the hexagonal can is taken into account. The local coolant temperatures

are assumed as a boundary condition for the calculation of the temperature
distributions in the pin and the structural material. Heat losses from the outer
surface of the hexagonal can into the surrounding medium e.g. into a bypass

flow, can also be considered.

The calculation of the temperature distribution in the pins is done in a
one dimensional (r coordinate) geometry for every axial mesh of the pin.
Therefore an azimuthal temperature distribution cannot be obtained and axial
heat diffusion is considered negligible in comparison to the radial
diffusion. The coupling between axial meshes of the pin is only provided

by the coolant.

1.3.1 Steady State equations

The equations for the steady state temperature distribution in fuel, clad
and structure are straightly derived from the equations of section: B.2

by setting all time derivatives to zero.
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i) Fuel
T 3T
9 B .1 B
< i - — 4 = r#0 1)
5t B 3T * T or g = 0 ? (
with the boundary condition
s T 7 (2)
- A -5;—> = ogy /Tp(0, Rg) - T,(O, Ryi)_/
RB
and
aZTB
2 AB + qB = 0 r=0 (3)
dr2
with the symmetry condition
aT
dr
r=0
ii) . Cladding
aT aT
] H 1 H
[ S e — ——— + =
or (AH or > T AH or Iy 0 (5)

with the boundary conditions:

_ _ ( oT,
agy £ Tg(0sRg) = Ty0, Ry) /= =y 57 N

Hi (6)
aT _ - _ -
- (AH _3% = Sy [TH(O, Ra) TK(O)_/
RHa
(iii) Structure
Fg - - Fo - -
Oq P [ T0) - Tg(0)_/ = o Vg [140) =T (0.7 +q, =0 (D

Input data for the stationary calculation are,apart from geometrical data,
power generation in fuel, clad and structure material, the latter coming

from X—heating (if any).




1.3.2 Definition of geometrical data for pin model

The following geometrical data are defined for the pin model:

NMO  First axial mesh of fuel column (see Input description)
NMl Last axial mesh of fuel columm (see Input description)
NM2 Number of axial zones in the coolant channel (see Input description)

NN Number of radial meshes inside the fuel pellets (see Input description)

HSPALT Length of lower fission gas section (length of axial mesh

zones from 1 to NMO-1)

HKUEKA = Length of the axial breeder zone (section between axial
zones NMO and NM1 inclusive)

HTOP = Length of upper coolant mixing section (axial zones from
NM1+1 to NM2)

HCORE = HSPALT + HKUEKA = length of test section from inlet to mesh

zone NM1 inclusive;

furthermore one has (see Fig. 7)

DRBR = RB/NN
DRBR2 = DRBREA2
R(N) = r (N=1, NN) = radial coordinate of fuel nodes (except fuel axial
n
node)
RMIN(N) =1 _y/p =1 ~ DRBR/Z‘
QRMIN(N) = rn—l/Z/rn
QRPL(N) = rn+1/2/rn
QRMIV = (Ry ~ DRBR/4)/RB
DRC =y =T, = DCAN/2
m i
DRC2 = DRCk%2
RCI = r,
RCM =y =71, + DRC
m i
RCA =y =1, + DCAN
a 1
QRPLV = (ri + DRC/4)/ri
QRPLH = (r, + DRC/2)/r;
QRCA = (ra - DRC/&)/r_a
QRCH = (ra - DRC/Z)/ra
QRCMS = (rm - DRc/z)/rm
QRCPL = (r_ + DRC/2)/r_
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1.3.3 First evaluation of steady state temperature distributions

in fuel and clad

The temperature distribution in the coolant is used as a boundary condition
for a first estimation of the temperature in clad and fuel. This occurs by
integrating equations (1) and (5) assuming the thermal conductivity to be
constant. The integration constants are determined from the boundary condi-~
tion that for steady state the heat flux through any cylindrical surface in the

fuel and clad is equal to the total power generated inside that surface.

Proceeding inwards from the clad outer surface, where the boundary condition
given by the coolant temperature is known, one has for the clad outer node

temperature

o _ .0 _ A0 o (8)
* HK (THr Ty) Sra U *+
a

o}

where S, 1is the clad outer surface per unit axial length and Qg, Q; are

a
the powers generated in fuel and clad, respectively. This boundary condition
yields T Here and in the following the superscript o denotes values at

[} rao
t=o0.

Writing equation (5) in the form

L R V. S (9)
r dr dr AH

under the assumption that the thermal conductivity is constant, and inte-

grating over a hollowcylinder one has

2
q..r
T{(r) =a+b lnrtr - o
H 4AH 10)

where a, b are integration constants.

Assuming that the influence of the power genmeration in the clad upon the
temperature distribution is negligible (hence neglecting the term qu2/4AH),
the temperature of the clad middle node is derived from the above equation

imposing the boundary conditions
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dT
H - 0 o
TH(ra) = THa - 2‘1r>\Hra ('a;—') . = QB + QH (]_1)
a

which gives the constants a, b and yields:

Qo + Qo -
o _ 0 B H In "a
TH (rm) - THr‘ * TomA. r (12)
a H m

where the thermal conductivity is calculated with reference to the known

temperature TH(ra).

The temperature of the clad inner node is derived imposing the boundary

conditions:
dT o o}
_ H =Q +Q )
2mAL T <"E?7> B H/2 (13
T
m
which yields
o
| gt (1)
o) .0 B 2 m 14
TH(ri) - THn1 * ZNAH In r.

The temperature of the outermost fuel node is given by the boundary condition

° (T -T2 ) = Q@

“BH B NN Hr. B (15)

The temperature distribution in the fuel is described under the assumption

of constant thermal conductivity by the equation

1 4 aTy B, (16)
x dr \© dr AB
Integrating one has
2

q.T ‘

B (17)
T .(r) =a -
B 4




_SO_.

The integration constant a represents the fuel axial temperature (a = TBO)

and is determined from the boundary condition

T ) = 12 (18)

(ryy B NN

o}
B

which yields -

2
q r
o _ .0 B NN
o ~ Ty * X (19)

The fuel temperature in any internal node N (N = 1,2...,NN-1) is

then given by

o o 2 2
P ) =10 4 (Tgo ~ Toy) “ww = 7o (20)
B 'n BNN L2
NN

This estimation of the temperature distribution in clad, and fuel

is not definite because the thermal conductivities were calculated with
reference to a temperature different from the yet unknown temperatures of
the respective nodes. The preliminary temperature distributions are there-
fore only used as first approximations to start the refined calculation per-
formed iteratively by means of the Gauss-Seidel iteration scheme, as ex-

plained hereafter.

1.3.4 Refined temperature distributionsin fuel and clad with the Gauss-

Seidel iteration method and calculation of structure temperature

i) Fuel

Taking for an axial mesh the annulus delimited by the cylindrical surfaces

. .. _ . ti
Sn—1/2, Sn+1/2 with radii rn+1/2 as a control volume, and integrating

equation (1) over the outer surfaces of this control volume one has
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. aT% . aT; .

é B or * é AB or 1, Vn 0 (21)
n-1/2 n+1/2
or
aTg 3Ty
...)\ . S + )\ cmcm— S - [o) V - O
B’rn—1/2 or n-1/2 B"rn+1/2 or n+l1/2 % n
Ta-1/2 Th+1/2

(22)

where Vn is the volume of the annular section belonging to the considered

axial mesh zone. Space discretisation of this equation yields the algebraic

equation.
o .0 0 0 0 .0 - o 23
An TB n+ Bn TB n-1 " cn TB n+l Qn (23)
with . .
A =0, a-l/z Mg p onti/2 (24a)
n >Th=1/2 “n “ntl/2 r
0 r
B _ . n-1/2 (24b)
Tn-1/2 o
r
¢ = -y _n+l/2 (24c)
’rn+1/2 Tn
) o ‘
Q = 9, org? (24d)
and = -
Aty = Tov12 T Tami/2 (24e)
The above equation is applicable to all fuel internal nodes (n = 1,2...,NN-1).

For the fuel outermost node, taking as control volume the annulus delimited

by the cylindrical surfaces with radii TN °ne has

INN-1/2°
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3T
B -
é ‘oo o3 95 T opy Sy (Tpamw ™ Tyy) tw Yy < ©
NN-1/2 (25)
which yields the algebraic equation
o ,0 o .0 o .0 _ .0
Ay Teoow B Teoen-1 t Cgw Thi T A (26)
with
° L e I o (27)
AN W-1/2 T r BH 2T &k
r
0 NN-1/2
B “Ar (27b)
NN NN~1/2 N
e = - A | :
NN T "%pu g (27¢)
Ar r
o B NN-1/4
W T T Ty (274)

For the fuel tentral node, taking as control volume the cylinder of radius

rl/2’ one has

ABTB ’
(- or s+ 9 Vo =0 (28)

which yields the algebraic equation (the superscript "o'" refers to the

stationary calculation the subscript to the axial fuel node)

with:

o 0 .0 o
= 29
TB,o * Co TB,l Qo (29)
= )
rl/2 (30a)
= =)
rl/2 (30b)
Ar_2
B . (30c)

n
fal
@]
b~




ii) Cladding
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For the clad inner node, taking as control volume the annulus delimited by

the cylindrical surfaees with radii L.y Ti4q/p» ORE has

Oy, (T

T..)

BH “"B,NN  "Hi

H

s, - [

which yields the algebraic equation

(o} (o]

. , ,
AHl THl BHl TB,

with

(o] o

Hryy1/2

2
_Tivie by

W Chi Tym T Qi

x; Tiv1/2
'Ti41/2 T
ri+1/2
r.,
1

T, 2
i

i

3T
(_AH ) 95 Ty Vs 7O

(31)

(32)

(332) -

(33b)

(33¢)

(33d)

For the clad middle node, taking as control volume the annulus delimited

by th i i i i
y e cylindrical surfaces with radii rm—1/2’ rm+]/2 one has

-/

Sm—l/

T
Ty

AH ar

ds

2

aTﬁ
+ g T A8t ay Yy
S or m m
m+1/2

which yields the algebraic equation

AHm THm
with

S =

BY = -

e

o _o o o 0
Y Bom Toi T Com THa T Qm

2° rm—l/2 + 0 rm+1/2

H,m~1/2 r m+1/2 T
m m

x rm—l_/2

H,m-1/2 T
m

\ rm+1/2

H,m+!/2 T
m

(34)

(35)

(36a)

(36b)

(36¢)

(36d)
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For the clad outer node, taking as control volume the annulus delimited by

the cylindrical surfaces with radii Tol/2° r one has

BTH
—é AH or ds - aHK (THa - TK) Sra * ya vHa =0
m+l/2

with APO = ) ii;liz + 0., AT
1a H’ra-l/Z r, HK H
BO =)0 Ta-1/2
Ha H,ra_l/2 r,
o o
CHa = aHK ArH
q o _ Ary Ta-1/4 )
Ha 2 ra Ha

iii) Structure

Equation (12) can be straightforward written in the form

o o o o o o _ o
AS TS + BS TK + CS Tw QS
with
A o _ o, o 0 EE
S ks W F
S
(o] = - 0
Bg ®ks
F
o o W
Ce = -a, =
S
W FS
Q o = o .Yi
s  9g Fy

The above equations form a system of lineat algebraic equations

which can be written in matrix form as

(37)

(38)

(39a)

(39b)

(39¢c)

(394)

(40)

(41a)

(41Db)

(41¢)

(41d)

(42)




where A is a tridiagonal square matrix, T is a column vector containing the
'unknown node temperatures and Q a column vector with the power generation
terms,

The solution of this linear system yields the steady-state temperature dis-
tribution. It is carried out with the iterative Gauss—Seidel method assuming
as initial distribution in fuel and clad the one supplied by the analytical
solution of the respective equations under the assumption of constant mate-

rial properties,

1.4 Coupling of BACCUHS-P (steady state) to BACCHUS-T

(transient calculation)

The steady state calculation is performed with a marching technique from the
bundle inlet to the outlet. Therefore velocity components and coolant phys-—

ical properties are defined at axial nodes JZ (JZ = 2, MZ).

The coolant radial velocities are defined on the planes parallel to the
bundle axis through the pin axes. The other quantities (w, h, physical prop-

erties) are defined midway between the above planes.

For the transient calculation (both two- and three-dimensional) physical
quantities are defined on staggered meshes. This requires a re—initialization
of velocity components and coolant physical properties before the programme
control is transfered to the modules for the tranmsient calculation. This is
done in the Subroutine BACCHP. The correspondence between the axial nodes
used in the steady-state calculation and the axial meshes used in the

transient calculation is sketched in Fig. 8.

Before the programme control is transfered to the Sbroutine ITER3, which is the
driving programme for the 3-D transient calculation, a quasi-stationary cal-
culation is performed in Subroutine PERM3. It is a time-dcpendent computation
with constant inlet and boundary conditions, which is carried out till some
convergence criteria are satisfied.

Typically, a few hundred time steps are required for reaching a new steady-
state. This calculation is needed because of the different physical modelling
in BACCHUS-P and BACCHUS-T. It offers the following advantages with respect to
the steady-state calculation of BACCHP

- coolant heat diffusion in axial direction is not neglected

- the radial pressure distribution is calculated




BACCHUS-P BACCHUS-T
DUMMY NODE™ omep 1 DUMMY MESH
JZ=M7. DZC (MCP1)=0
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A
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. N W,
wij4L§Z=J E§ JZ= i boi+1/2
pP. . N
1] ~ a 1C=i
[
2 Yi-1/2 % Jc=5 ©p, XVit1/2
O ]
N
a
. (LJZ—J"]. _ JZ=1~-1 *w
- f i-1/2
1-1/2,5-1 Yis1/2,5-1 , i1/
JC=3719
IR=i-1/2 IR=i+1/2
< v
JZ=2L7

DUMMY NODE JC=2

JC=1 DzC (1) = 0

+ DUMMY MESH

Fig. 8: Indexing of centred and staggered meshes in axial direction.
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in the radial direction;the calculation of convective terms is included

in the momentum and the energy equations

in case of blockages (which cannot be handled in steady-state calculations)
completely new flow and temperature fields are calculated by simulating

a large pressure drop in the blocked meshes.

1.5 Short description of BACCHUS-P Subroutines

The steady-state calculation is made by transfering the control to the fol-

lowing Subroutines in the sequence:

al)

b)
c)
d)
ne)
£)
g)
h)
i)
i
k)
1)

m)

n)
o)
p)
q)
r)
5)

MAIN/LECT

CHAUF
INIT

IMPRIP

PRESS

ITERBP

VITAX

CFAX

TRIDIB

ENTH

LHTSTX

WWSTX

TRIDIA

PRESS (2nd run)
IMPRIP (2nd run)
FPHU

BNDRYP

BNDRY 3

BNDRYH

PHYSL

TBRO3

a2) BACCP3

The main calculations made in these Subroutines are explained hereafter.
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al) MAIN Programme / Subroutine LECT

When the BACCHUS-P programme is used as stand-alone or the calculation has
to be stopped at the end of the steady-state, a set of input-data (see
section 1.6) is read by calling Subroutine LECT. In this case a transient

calculation cannot follow.
32) Subroutine BACCP3

This is the control programme for the steady-state calculation when BACCHUS-P
is used in combination with the transient programme. Besides the transfer
from the nodes to the staggered meshes is made for the subsequent quasi-sta-

tionary calculations performed in Subroutine PERM.

b) Subroutine CHAUF

The coolant physical properties are calculated according to theinput enthalpy
value HZERO, and the axial power distribution is normalized and stored in
array FQ (Jz), JZ = 2,...MZ.

The fields containing the fuel power density QVOLL [_W/m3_7and the steady

- 2 e e e s
state heat fluxes at the clad outer surface QQQl [ W/m _/ are initialized,

¢) Subroutine INIT

The velocity components and the physical properties of the coolant at the

inlet dummy node (JZ = 1) are initialized.

d) Subroutine IMPRIP

i) 1st run. Input and further geometrical data are printed in the following
sequence:
- geometrical data of the bundle, including hydraulic diameters

- geometrical data defined at the interface between central meshes and

in the central meshes namely
- number, surface, and perimeter of pins in the control volumes
- coolant flow area and total area of the displaced control volumes
- radial porosities
- 1inlet and outlet boundary conditions

- physical properties of coolant at inlet.
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ii) 2nd run. The BACCHUS-P calculation is done with a marching technique from
the bundle inlet to the outlet. At the end of the BACCHUS-P calculation

following data are printed for every axial level:
=~ coolant enthalpy, density and temperature,
- axial velocity, axial and radial mass flows

- thermodynamic title and void fraction of two phase fluid (set to zero

in case of single phase flow)
- coolant pressure and axial pressure drop

- enthalpy balance between bundle inlet and the axial level considered.
e) Subroutine PRESS

The calculation of coolant pressure axial distribution, coolant enthalpy and
velocity is done by calling Subroutine ITERBP. When the coolant pressure at
the bundle outlet is given as a boundary condition (MPR = 2), this subroutine
checks whether this value has been attained within a given tolerance. If this
is not the case a new iteration step from bundle inlet to the outlet is done
after modifying the inlet pressure using the Newton method. A maximum number

of iteraction sweeps (ITPX) is specified by input.
f) Subroutine ITERBP

The computation of coolant velocity and enthalpy is donme for every axial level
from bundle inlet to the outlet with the marching technique. For every axial

level JZ (JZ = 2, MZ) are computed:

~ coolant axial velocity and coolant pressure, by calling subroutine VITAX

— coolant enthalpy, by calling subroutine ENTH

= two-phase flow parameters

- radial mass flow, according to equation C 1.2 (19)

- enthalpy balance from the bundle inlet to the axial level under consider-
ation, according to equation C 1.2 (36)

g) Subroutine VITAX

The coolant pressure and axial velocities at a given axial level JZ are com-

puted by solving numerically the system of equations (28) (Section C1.2)

with the auxiliary condition given by equation (29). The numerical solution
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is obtained with the Thomas algorithm / 7 / applied in Subroutine TRIDIB.
h) Subroutine CFAX

The friction coefficient for the coolant flow is calculated.

i) Subroutine TRIDIB

It solves numerically an equation of the form AY1 + PY2 = B where A is a
three~diagonal matrix, Yl’ Y2 are unknown vectors, P and B are known vectors.

A further condition relating the components of Y1 and Y2 is given so that

the Thomas algorithm / 7/ can be applied. This Subroutine is called by Sub-
routine VITAX for solving the system of equations (28) under the restraint

represented by equation (29) of section C 1.2.
j) Subroutine ENTH

The coolant enthalpy distribution at an axial level JZ is calculated by
solving numerically eq (35). The inversion of the three-diagonal matrix of
coefficients is done in Subroutine TRIDIA. It also computes the hexagonal can

temperature according to equation (40) of section C 1.2.
k) Subroutine LHTSTX

The coefficient for the heat transfer between coolant to clad (or structure)

wall 1s calculated.
1) Subroutine WWSTX

The heat transfer coefficient form the outer surface of the hexagonal can

structure to the outer medium is calculated.
m) Subroutine TRIDIA

A system of linear equations with a three-diagonal matrix of coefficients is
solved numerically by means of the Thomas algorithm / 7 /. It is called by

Subroutine ENTH for solving the system of equations (35) of section C 1.2.
n) Subroutine FPHU

The boundary conditions for pressure, enthalpy and coolant velocity components

are calculated.
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0) Subroutine BNDRYP (Entry in BNDRY3)

For all dummy meshes the pressure boundary conditions are imposed according

‘to the input data.
p) Subroutine BNDRY3

The boundary conditions for the coolant velocities and mass flows in the

dummy meshes are imposed, according to the input parameters.
q) Subroutine BNDRYH (Entry in BNDRY3)

The boundary conditions for the coolant enthalpy in the dummy meshes are
imposed, according to the input parameters.
s

)

r) Subroutine PHYSL

The physical properties of the coolant (single phase) corresponding to a

given enthalpy are calculated.
§) Subroutine TBRO3

The steady state temperature distributionsin the fuel and clad are calculated
as explained in section 1.3. A first evaluation of the steady state tempera-—
ture distribution is made by integrating the heat diffusion equation under
the assumption of constant physical properties of the fuel (section 1.3.3).

A refined calculation which takes into account the temperature dependence

of the physical properties is obtained by solving numerically the dis-
cretized Fourier equations by means of the Gauss-Seidel iteration method

(section 1.3.4).

1.6 Input descpiggion+

The following formats are used for reading input data:
- integers: 18 I 4

~ reals : 7 G 10.4

+
Corresponds to the stand of the programme as of December 1981.




Card

Card

Card

Card

Card

Card

Card

Card

Card

Card

Card

Card

Card

Card

10

11

12

13

14

TITRE

MD
ND

NCAS

IST@P
NC

PITCH
DIA
GAP

DFIL
HELIC

Nzd

ML(I),
I=1,Nz¢

ZL(1),
I1=1,NZ¢
NQ
zQ(1),
I=1,NQ

Qz(1),
I=1,NQ

TITRE

PZER{Y
PKOO
DHPZO
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Title of up to 80 alpha-numeric digits

Dimensions of arrays in COMMON Blocks

for axial (MD) and radial (ND) discretization.

Number of cases which can be calculated. All cases assume
the same bundle geometry and differ in the boundary con-

ditions,
= 0 Steady-state calculation only is performed.
Number of radial meshes in the bundle.

Pitch (m)

Pin outer diameter (including cladding) (m)

Width of external coolant flow surface (m)

This surface is bounded externally by the hexagonal can and
internally by a plane passing through the axes of the outer-

most pins.

Diameter of helicoidal spacers (m)

Pitch length of helicoidal spacers (m)

Number of axial sections

Number of axial meshes in the NZ@ axial sections.

Length of axial sections

Number of nodes in which the power profile is given

Axial coordinates of the nodes for power profile [—m_/

Normalized profile of power density

Title of up to 72 alpha—numeric digits describing the case

being run

1 1Inlet coolant pressure as boundary condition

]

2 Outlet coolant pressure as boundary condition

Coolant outlet pressure (N/mz)
Coolant inlet pressure (N/mz)
Axial distance between coolant upper free level and bundle

outlet (m)
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Card 15 TZERD Inlet steady state coolant temperature (OC)
WZERQ Inlet steady state coolant axial velocity (m/sec)
PUIS Total power of the bundle (W)

Card 16  CDIFFO } Coefficients Co, C1 for calculating the turbulent momentum

i ivi i = C, +
CDIFFI diffusivity according to “(éff 1 CO eW Dh
CDIFTO } Coefficients C,> ¢, for calculating the turbulent diffu-
CDIFT1 ) sivity for heat according to %gg T Cla + CO e W Dh.
: DIA
= ]= ————— C =1,
We suggest C1 1 PITCH AN

Card 17 NITMAX Maximum iteration number for coolant pressure convergence

( = 10).
Card 18 EP Tolerance for coolant pressure convergence (1. E-04)

Card 19 CFA } Coefficients for calculating the friction factor CFO
CFB according to the formula CFO = CFA /(REY & %CFB)

Card 20 CFME1 g Coefficients for modifying the calculation of the friction
CFME2

coefficient CFQO according to the Novendstern relationship:
CF = CFO x CFM

with

CFM = (CFM1 + CFM2 x REY xx CFMEl) xx CFME2

and
CFM1 = 1+034 / ((PITCH/DIA) xx 0°:124)
CFM2 = 297 x (PITCH/DIA) % 6:94 / ()\/DIA) xx 2:239

(A = pitch length of wire wraps (See Subroutine CFAX))
Card 21  EPSEX Thickness of hexagonal can (m)

Card 22  PPSI Coefficient for calculating pressure drops in case of
grid spacers Ap = PPSI x Dh/DABST

DABST Distance between grid spacers (m)

Card 23 NMO First axial mesh of fuel columm.
(The section JC = 2 + (NMO-1) is regarded as fission gas
plenum),

NM1 Last axial mesh of fuel columm.




Card

Card

Card

Card

Card

Card

24

25

26

27

28

29

CNN1
CNN2
CN1
CN2
CN3

RBRR
DCANN
DBONDD

ANTBB
ANTCC
ANTKK
ANTSS

IS

NDC@uP

IDEB
IFIN
IPAS
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Coefficients to determine the clad-coolant heat transfer

coefficient h corresponding to the Nusselt number

N, = %2 - CNN1 + CNN3 + RESML . pyON2 (EIE~—)CN3
' bulk
(Tw = wall temperature, Tbulk = coolant bulk temperature)

Fuel radius (m)
Clad thickness (m)
Gap width (between fuel and clad) (m)

Percentage of power produced in the fuel
Percentage of power produced in the clad
Percentage of power produced in the coolant

Percentage‘of power produced in the structure

Steady state results are printed for all axial nodes
(IS = 0) or for meshes for which output is desired as

specified in next two cards (IS # 0)

Number of axial sections for which a full output is

required

First axial node for which output is desired

Last axial node for which output is desired

Results of every IPAS-th node between IDED and IFIN
are printed.

Card 29 is repeated NDCPUP times.

Cards 28, 29 are not required if IS = O (Card 27).
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2) Transient three-dimensional (3D) thermal hydraulic calculation

The use of the ICE (Implicit Continuous fluid Eulerian) technique by F.H. Har-
low and A A. Arsden /9/ for the numerical treatment of the thermal hydraulic con-
servation equations is explained in this section. Emphasis is put on the de-
rivation of a Poisson - like equation for the coolant pressure, which is an
essential feature of the ICE technique. In the present programme version the
numerical solution of the Poisson equation is obtained with the Alternating
Directions Implicit (ADI) method which is used iteratively within one time

step. It is based on the well known scheme by Peaceman-Rachford /5/ and Douglas /10/.

2.1 The ICE technique

Referring to eference /9/for a detailed description, we recail briefly the main
features which characterize the Implicit Continuous-fluid Eulerian (ICE) Tech-
nique, as applied to the volume averaged conservation equations derived in
section B. 1.2. These equations are discretized with respect to time by intro-
ducing two weighting parameters & , 1-0 (0 Q5 1) for quantities referred

to time steps t, and € respectively. Space discretization is done with

+1
reference to "staggered" meshes as shown in fig. 2.

This discretization technique offers the advantage that in the three scalar
momentum equations values of the fluid pressure are defined at either side

of the velocity components in the respective axis direction. This allows com-
bining momentum and continuity equations to obtain a seven-point formula for

pressure—-values at time tn as it would be generated by space - discretiza-

+1
tion of a Poissson equation. The main disadvantage consists in the fact that
the divergence terms in the continuity equation require the calculation of

fluid density at the mesh interfaces, which implies the use of an interpola-

tion formula between known centre values.

As far as time - discretization is concerned, the followingideas form the basis
of the ICE technique: a) Convective terms are treated explicitly. b) Terms

describing spatial pressure distribution are treated implicitly; divergence
terms of the continuity equation, which describe the space distribution of the fluid

density, are also treated implicitly. c¢) Terms describing friction pressure
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drops are treated half—implicitiy in the BACCHUS programme. It is well known
that the implicit treatment of pressure dependent terms removes the very re-
strictive constraint of time steps smaller than the minimum of AQJ,/C

( Aed, = mesh lengths in the z, r, s directions, ¢ = speed of sound).

As shown in detail in the following sections, the application of the ICE tech-

nique implies the following steps:

i) Momentum and continuity equations are combined to derive a Poisson equa-
. 2 n+l
tion V pn

n+l. The right-hand side G" of this equation contains convective and dif-

n iy e . . . .
= G describing the pressure distribution at time level

fusivity terms calculated explicitly at time level n as well as pres-

sure terms at the same time tn.

ii)  The Poisson equation is solved numerically, yielding the space distri-

butio f t ti t
no pressure a .1me n+1

iii) The new pressure values are introduced into the scalar momentum equa-
tions which are solved explicitly for the mass flows in the respective

directions. Velocity fields at time t .1 are hence obtained.

iv) The new velocity values are introduced into the energy equation which is
solved for the fluid enthalpy. Physical properties of the fluid are then

calculated at time t .
n+l

v) Time is updated and the calculation cycle starts again from 1ii) for

the following time step.

2.2 Finite difference form of the volume averaged conservation equations

i) Continuity equation

Let & (O\V&¢§4) be a time-discretization parameter and n, n+l be superscripts

referring to time levels s respectively. Space and time discretization of

t
n+l
eq. B.1. (14) yields for the control volume VI shown in Fig.2:
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For the reason mentioned in section 2.1, the divergence termsin the continui-
ty equation are treated implicitly. In eq. (1) and in the following ones the
symbols & >4,< > denoting volume and surface averaged quantities are dropped
for simplicity.

We refer to the list at the end of this section for all new symbols intro-

duced in the following equations.

ii) Momentum equations

a) Axial momentum equation

Space and time discretization of eq. B.1 (17) for the control volume

i i ield
Vipp shown in fig. 2 yields
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As remarked before, convective and diffusive terms are treated explicitly
with respect to time, pressure terms implicitly and the term representing
friction pressure drops is treated half-implicitly. &W( 0L Srv.\, Ny 1)
is a time-discretization parameter for the pressure terms in the momentum

equations. The last term of eq. B.1 (17) has been rewritten taking into account

that

Swo . %dw EP - g b (3)
v

f=4X )
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where
Dﬁ\, = hydraulic diameter [-m_7
' 52, = cross flow area for the fluid [—m2_7
/Pw = wetted wall perimeter Z_m_7
ﬁ;x = friction coefficients,
Letting
n
rogz = LW (5)
2D
h
1 1
FWz = - = —— (6)
1+he_, £16" L+AL, + FOPZ
" 7D
h
eq. (2) can be rewritten
LA
< Ay w41 K
' w 8 kt e Mt
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b) Radial momentum equation

Space and time discretization of eq. B.1 (18) for control volume

v shown in fig. 2 yields

IT
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E"*"/Q’)‘ K ( BA 4[1)),2‘: ( )A 1)) K ;
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)0 y K Acz/(dh Al R AAK‘

(S%M*‘>)_ o

ERPIL

* m

M

The velocity M* in last term of ep. (8) is defined by

P 4Tt r)
L(P D) | (9)

where D is the pin diameter and P the pitch.
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Letting 49 .
FOOR . \M \ (10)
5@ 3J
A
T ) S e (11)
44 h"cM ’ﬁ“_’ _.ﬁ \M*‘fw\ 4+MM- FCPR
Sﬁ 9

eq. (8) can be rewritten

Mt
< M> =
A,y g (12)

' W ; mat
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Tt vk L*i
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)i V

c) Azimuthal momentum equation

Space and time discretization of eq. B.1 (19) for the control

volume VIV of fig. 2 yields




....72_.

C apd "~
- - AR
24‘ . i (SV)A',)',K-M/), (3 B/‘))IK*"“‘L (13)
,),K*% - +
At,,
By ket ( w) (Jwy ( Fg«ru) <‘VFSJu>
l' — ) vt bl v 4
bl-s' S A,p't ,_”-'L A”- Y Z’) Ah’ ’
K*‘“[_ i"\-(-A/ R+4/1 K""Il .
f 'v ( ~J )
(M wp) K( 5 Sikan TS
r+4lu .
5 T/ 9 M D w ’ (9 W D
_ 8k, vy vy . A ( F _g_) M ,
R [ R 2 J B (L7 N (R B
RK+f2 ) K+4y . < 4Z ) 'L))
1/t Kedfr °

-t (PR (]
(ls%(mr;)u”./th /é 45y Ked /LL(DA Ak '

8 MMl 4 - ) ~w ~w X
R V PO f*w\ o) [f*")'»m Pl

+(M ) A
— () e,

A () 0

The velocity ¥ ¥ in last term of eq. (13) is defined by a formula

equivalent to (9).

Letting
Fegr. Po € IJ“‘I (14)
‘S«f’ ﬁ,
FWT _ 4 L
i B, Pw £ \\va] A+ M, FCOPT (15)
eq. (13) can be written 5’? 2
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Equations (7), (12), (16) are the basic equations for the calculation of the

mass flows, when the updated pressure field has been obtained (see section
2.5).

iii) Energy equation

The volume-averaged energy equation B.1l. (22) is discretized with reference
to the control volume VI shown in fig. 2 . All terms are treated explicitly

with respect to time. The discretized equation is as follows:
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2.3 Derivation of a Poisson - like equation for the coolant

pressure distribution

The ICE technique allows to derive a difference equation for pressure values
from the continuity and momentum equations as it would be obtained dis-
cretizing a Poisson equdtion. From the practical viewpoint the procedure is as

follows:

Consider the finite differences form of the volume averaged continuity equa-
tion (1). Replace the values of the mass flows at time level n+l by using
the momentum equations (7), (12), (16) written for the nodes i, j+1/2, k/
i+1/2, j,k/ i, j, k+1/2 respectively. From the equation of state replace the

time-difference of coolant density in (1) by

M A ~ ) Mt A o >
Sm\- §. .= o (ﬁ - ﬁ-)‘,\ (18)

A-“‘K '-|&.K 'j(\
with ‘
C?‘___ d"F/dS' (19)

Rearranging one derives a linear algebraic equation for the unkowns

M A At ml M\ mrl Mmtl mti
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which can be written

|
i
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The right-hand side G?. is given fully in the next equation. We introduce the

jk
coefficients CKN, CKS, CKW, CKE, CKTP, CKTM (defined in the list at the end
of this section) which depend only on the bundle geometry and discretization.

Dropping the subscripts ijk for these geometry coefficients, eq. (20) can be

written:
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Equation (21) can be written in the following compact form (ratios of volume
porosities at different axial locations are equal to one in undisturbed geome-

try and are therefore dropped as multiplying factor):
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The numerical solution of the discrete Poisson - like equation (22) is

explained in the next section.

(21)
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List of Symbols used in the previous equations.
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kR+4f, Kedly
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Furthermore, the following symbols are used in the programme:

Fl
F9
F2
F8
DzC (JC)
pzz (JZ)
DRC (IC)
DRR (IR)
PFC (IC)
EPS (IC)
EPR (IR)
EPT (IT)
PSI (IC)

GSIT (IC,IT)
GSITR (IC,ITR)
CASB12 (ITR)

SFR (IR)

SFTR (IC, ITR)
PAR (IR)

PATR (IC, ITR)
CF

SCsQ

PSIR (IR)

FACCM(IC)
FACCP(TIC)
FACRM(IR)

FACRP(IR)

The following symbols

- Y

nwv

- O

= [;2&

= A}S,,{/L
= An¢

= A2z
= Ay

= b2

= ic'«‘-dlL

&
4
= U
A

- EKH;;

= \j,]L

= (?L‘r\
= ‘?t'.’l’\"'“)'

= COOPB v din

= 5€4w4lz
= S?_ Ay RAIL

Pw el
= Pw 4Hre il

= {1
= ¢ A yw

= WA'-b Ala

4o AX
& D
e B anc/ps,
6 .
4 6. DRR(TR) /('\B RFC(IC) 46 PRR(IM))

e 60 DRR(IR) /(W3 PFC(IC) + € DRRCEN)

]

are introduced for saving computing time:




cuc
UCPL

UC@LT

GUCPL (IR)
GUC@T (IC, ITR)
EPDD (IC, JC)
EPDZ (IC, JZ)
ERDD (IR, JC)
PFC@S (IC, ITR)
CGEP (IC)

GSC@s (Ic,ITR)
. GCC@SE (1c, ITR)
PSER (IR)
PSFARM (IC)
PSFARP (IC)

PSFACM (IR)

PSFACP (IR)

PSMDP (IR)

PSPDM (IR)

PSERP (IC)

PSERM (IC)

GSIDP (IC,IT)

GSIDM (IC,IT)

1

1

1

i}

1
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L-PITCH — W DIA
L (PrTen - D)

CUC « AL

CUC »

.f&)
% Sp /Al

£ f‘:’.)

2\ 5S¢/ Ahwedly
‘ipi/ 152&

2(.‘ /A%A‘# 42
SA'H{L /A%\\

A":)y:° cmpﬁ+4[1
82&
‘?LLK?"IL /(MPK"‘”L

S[ox,muz / (e prmm)

WA'H/L / a4y

PST  (IR) - FACRM (IR)
PST (IC+1) * FACRP (IR)
PSIR (IR-1) - FACCM (IC)
PSIR (IR) - FACCP (IC)

PSIRM (IR) / PSIRP (IR)

PSIRP (IR-1)/ PSIRM (13—1)

. »

\v ,('fﬂg_ /21'0-4/2_
% .

\P A=y /24'-'“:.

‘?ﬂ / %R?i
\?K / ‘%h-‘

2

e
Y-
Yy
Vi [ Yo
Vo [ Ya-a
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and the following time step - dependent symbols

DTSQ
DTSQ1
DTSQ18

CFDT

DTEP1 (IC, JC)
DTEP9 (IC, JC)
DTDR1 (IC)
DTDR9 (Ic)
DIPF1 (IC)
DTPF9 (IC)
DTSZ1 (JC)
DTSR1 (IC)

DTSP1 (IC)

AA (IC, JC,IT)
BB (IC, JC, IT)
cc (1c, Jc, IT)
pp (IC, JC, IT)

EE (IC, JC, IT)

ATM (IC, JC, IT)

ATP (IC, JC, IT)

il

I

|

1}

2

AN

At
S+ At

B (1-8aa) At
Oc D, At

B, ¢ At,, /A%
(4-50) ic At /b2
B A&, /Ax.
(1-%.) AL, /o
b bt,, /AN
(4-9.) At., [AN;
De Anf /A%g

O Ak, /bn.

Ve At,“l /A/)J

MW

1 - R N l v7.

- 8(/ 6,\“ Bt’v‘l . c K g"

AI\)‘r\

- B8, De" . CKNT

A‘\)‘f\

= BQ 8/\\“ A{’Mz . CKWXA'\)'(\

B B B L CKEY

S0 Om NG - CKRTMY
Oc O A -

- %
CR1¢ /"jr\'
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2.4 Numerical Solution of the Poisson-equation.

The Alternating Direction Implicit (ADI) method.

Write the Poisson equation (22) in the form

A . .n+l . n+l . n+l . .0+l

L4 ’ » + . . . . . s L3 L4 *
1k lek Ble pl,J—l,k * Cle pl,J+1,k * Dljk pl—l,J,k *

(72)
E.. . ?+1 + . n+l . .n+l _ N
iik T Pian,i PA™Mi T PE k-1 T AP gk PiLiLke1 T Gk

where G?,
1jk

level t .
n

collects all convective, diffusive and pressure terms at time

According to the Alternating Direction Implicit (ADI) technique we integrate
equation (72) in each of the three coordinate directions separately. We re-
duce therefore the solution of a three dimensional problem to the simpler
solution of three one-dimensional ones. After every integration in one direc-
tion the fully updated pressure field is used for the subsequent integration.

The three integration steps are as follows:

- Step 1. Integration along the axial z coordinate (j=2,3,...MC) for every

radial and azimuthal (i,k) mesh. Equation (72) is written in the

form
. (D . (D . (D -
i3k Pijk T Bisk T PiLi-t,k Y Gk T OPiLielk T
n n n
=G,. =D,, P . .. =F.,. ° .
ijk ijk pl—l,J,k Ele pi+1,3,k + (73)

n

TOATM ik Pi, kel

n
ik Pi,g,k-1 C ATRS
where pressure values at the right-hand side, provisionally con-

sidered as known, are taken first from the previous time step. Equation
(73) yields for every (i,k) a system of equations with three-diago-
nal matrix of coefficients. Its solution is direct and gives a new

pressure field pE%ﬁ which is used for next integration step.
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- Step 2. Integration along the radial r coordinate (i=2,3,...NC) for every

axial and azimuthal mesh (j,k). Equation (72) is written in the form

(2) L (2) (2)
.. " pP..,. +D,,. "+ Pp. . R =
1k lek ijk pl—l,J,k * El]k p1+1,J,k
n (1) (1)
=G.. —B,. - p.. - C... «p,"
i3k Cijk o Pi,i-1,k 0 Cijk O PiL 41,k o+ (74)
(D) (1)
- ... PL L - ATP,. =+ p. .
ATMle pl,J,k—l ijk p1,J,k+l
The pressure field pi}i from previous step is used at the right-hand
side. Solution of the system of equations (74) yields the updated
. (2)
field p.. .
pressure fie lek

— Step 3. Integration along the azimuthal s coordinate (k=2,3,...NTH) for every

axial and radial mesh (i,j). Equation (72) is written in the form:

(r+1) (r+1) (r+1)
.. * ., + .. * .. + .. : .. =
ik Pige T A™Mige T P e T A T P g ke
n (2) (2)
=G,, —B., = p."" - C,.. *p.".
Gle 1ik p},]“l,k ijk pl,J+l,k (75)

(2) (2)
- D.. * p. .. —E.. *p, -
1jk p1—1,Jk ijk p1+1,3k
(r+1)
ijk
presents an iteration index. This pressure field is used for next

Equation (75) yields the updated pressure field p , where r re-
iteration which consists in applying again equations (73) to (75).
The iteration is terminated when two subsequent solutions of the
pressure field differ by less than a given tolerance. On anaverage,
10 to 20 iteration steps are necessary for reaching a tolerance

of 107°.

Future programme developments may involve the implementation of accelerating
convergence procedures in the ADI method as suggested for instance in references
/11/, /12/ or, as an alfernative to time-consuming iteration schemes, direct
methods can be taken into consideration for instance: a) methods based on

cyclic reductions (a review of such methods is given in reference /13/); b)
application of Fast Fourier Transform /14/; ¢) direct inversion of the block-

tridiagonal matrix of coefficients /15/, /16/, /17/.
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2.5 Numerical solution of the momentum equations

Once the numerical solution of the Poisson-equation (72) has given the coolant

pressure field at time level ¢t the discretized momentum equations (7), (12),

n+l’
(16) yield directly the mass flows in the three coordinate directions at the
same time level. The stability of the numerical solution of the coupled con-
tinuity and momentum equations is favoured by the half-implicit treatment of

the terms representing friction pressure drops in equations (2), (8), (13).

2.6 Numerical solution of the energy equation

, . . . - . n+l
The discretized energy equation is solved explicitly with respect to (h)ijk using

the mss flows at time level . and enthalpies at time level t - From (17) one derives:

1
n+l n
Oh)ise = O™ *

At
+ —& {—CVEZ - CVER - CVET + QZ + QR + QT ] nooa (76)

€., 1jk

1jk
n

* Atn Qijk

where the convective and diffusive terms are given by

]

fl" {7 ntv ; Mf" oy N5
(CVEZ)I]:-ljk gy K?\? (gw) )L‘)S“/Lm (% (SW) )»“;/S‘A/L\ 77)
18 .

b%j
O S B F&M@M)mm) _ (qv&"“(gu)mw) | (78)
y & , .
o p M - 3 MEA L g/o, M
(CVET)?.k = 1 KCE&\——Q—) LT (ﬁi——) *3 X (79)
J O3y (‘MP K*}(‘L uy)", ' K-42

o "y w ~ 0 \v o
(Qz)r.‘.k . Ferw & 9..%1) - é% D-\’i) o (80)
+ hey VT S ayrdiag s Ot Ja Ak .

/. G ~ / ~ ()ev faad
n A [ e D_&) (v .:_\
Wi = N K\\\)Fg DS awdpyy ik oo 4y R (81)
~N Y v ~ DL )
PERA 34 & 55
(o)™, = — (-——-—-9—-—— - ' (82)
13k Abl’\ M? 1, "’ is +4(y U:/,)P A')}', k-119 ‘

Further programme details regarding the finite differences schemes used for cal-
culating convective and diffusive terms in the above equations are given 1in

section 6.2,
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2.7 Calculation of the pressure gradient terms in the momentum equations.

We refer to Fig. 9 for the definition of the control volumes in the three
coordinate directions. Let us recall Green's theorems with reference to

the coordinate axes (r, s)

{(, Df‘(z”)) dn-dn 2 S f(ﬂ,s)ﬁxﬁ dy (83a)
4 P

0

s ¢° v

where S is a surface in the (r, s) plane bounded by a curve I', @ 1is the

outward normal to I and r, 8 are unit vectors of the coordinate axes.

The basic equations B.1 (1) to B.l. (3) are integrated over the volume V of
a cell. Taking into account that the physical properties of the coolant are

defined only in the volume V_ this is equivalent to integrate over the volume

f
Vf of the fluid. The calculation of pressure gradient terms requires a dif-
ferent treatment for the coordinate directions. In the z direction the pres=—
sure forces act only on the fluid c¢yoss flow sections normal to the bundle
axis, thus the pressure gradient term can be integrated on Ve. For the
radial (and azimuthal) direction the pressure forces act also on the pin
surfaces. The component of the forces acting on the pin surfaces is the

same which would act on the cell boundaries in absence of the pins. The

pressure gradient term requires therefore to be integrated over the volume V

of the cell.

i) Axial direction. We refer to the control volume TGLV displaced by Az/2
in axial direction. The pressure gradient term in the momentum equation

B.1.15 1s calculated as follows:




(84)

s . cpy
i 'E_{\e’k - <Pl

ii) Radial direction. We refer to a control volume like TGLV but displaced

by Ar/2 in radial direction. The pressure gradient term in the radial

momentum equation is calculated by applying (83a) as follows

“_J Qf_ dv . LJ S ?)j’_o\s'g\b?, __:‘_J 5 ‘P/;'K;L dx'é?: =
V) o N e S‘DTL v

b Y (85)

= J_l»“ fﬁwfﬂ Ax +j‘/P/'v‘w~fi 3 ,,CS' F":“i 3y ‘i'J;PI;I\JTLAzS‘X‘
v G 51 LV Vi .

TG GL

The contribution from the last integral is zero. Hence
4 Qi’ av . & ._<19-7.T—<r._ \m_’f 6L B+ -<P7e‘v-L z
AN v * %
~ B . (86)
= __% {»‘_<F'7;'TG - %—(’(?7/" +<P7Q> ZL “+ <’f7e’ \/LX =
Vv

e

= %?i &- <P, (ﬁ" + 2%)4— .<?‘7Q(VL ) ?—)} =

2

- _Avj‘ Ay <'<Pn— <P>e) = g;a (‘<?>~' “PN)

The assumption made in deriving (86) is that the pressure

varies linearly
8long Ar.
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1ii) Azimuthal direction. The control volumes for the azimuthal direction are
defined by splitting a 30 degree azimuthal sector into two halves having
equal volumes. The angle BR in Fig. 9 is chosen so that TB = BG thus

giving thR = 1/2 VE. We must consider two different control volumes:

a) Control volume ABCD centred around an axial plane normal to the hexagonal

can. Applying (83b) one derives

Dp 4% - A%' wrd dp
: | e av g [Deasar o b | panidy

b2 7o L (87)
M moxS dy 4 mAd dx « mnd dy mxjy d
= 7 A/P X 6, ¥ _ f) 6 ? d/ P 5
AR B¢ <D
The contributioms of the first and third intégrals are zero, hence

0f av . M| o 60 (ma) - cpy DB (won
v, 5 e e, ( )f A CON

_Az-An{ 5 - < \: _A_K< ” --<P>l
v <P}‘r’ <1>>w. A ?{, o |

b)  Control volume BGHILC centred about an axial plane passing though the

(88)

h

corner of the hecagonal can, Applying (83b) one derives

L0 gy, x_J gt”ita&ew: ézjfwmo‘y-_
V 0 V Z5a S‘“ v (89)

= E\;\SAP/\U/’) /)\K ra-S ,19/\7»5 dk +JA4)A:M;J6 .\.J ,Pnz-nz o\xl,
B w3 paRe %y

Because of the symmetriy with respect to the GL plane we assume

g /mef?_o\x ~ 2'5,.?&0’ &( =0 (90)
o 8¢

B

J 1”;”—"’\{ rgiJ frqxzo\x =0 (91)

TLL LC
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Hence

ij % v é}{‘ﬁ wpe <p7, - BC mp&q*)ml:
v 0 v

= M\‘/ﬁ’l ['<P7,= - <P7ml = é_ls [q))f’ ) <P'7”“} .

Fig. 9: Definition of control volumes for the azimuthal direction

(92)
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3. Transient two-dimensional (2 D) thermal hydraulic calculation

In this section the two-dimensional transient single-phase flow version of
the BACCHUS programme (BACCHUS-2D/SP) is documented with respect to the ther-—
mal hydraulic calculation. The equations are similar to those of the three
dimensional case but the azimuthal component is suppressed. The transient
calculation is preceeded by a steady-state calculation with the BACCHUS-P
programme, as explained in section C 1. The link between the steady-state

and the transient programmes is explained in section C 1.4, The calculation
of the temperature distributions in fuel, cladding and structure materials,
which determines the heat fluxes into the coolant, is done as explained in

section C 4 for both the 2D and 3D programmes.

3.1 Conservation equations in local form

The two dimensional single phase flow of the coolant can be described in the

local form by the following equations.

i) Continuity equation
~ - —
(_b"_f_ + Ve gV Vs (n,w) M

ii) Momentum equation
D(s¥) + T gVV L T (pVV)-Vp g3 D 2

which is equivalent to the two scalar equations for axial and radial direc-

tions, respectively:

9 (W) o N fewV] _ V- (uTw) _ Or oy D.m (2a)
D) v (guV) v (pv) L Ry R, :

1]

C(pVa) _ 2% _Fea, (20)

e b -
5;'(8‘A) + v (?‘“Vv éEE
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iii) Energy equation

%OF(S&) ST AVANE X R A (3)

The symbols are the same as in section 2. For convenience the 'radial"

velocity component is referred to a local cartesian coordinate system.

3.2 Conservation equations averaged over the control volumes

The conservation equations for mass, momentum and energy are integrated over

appropriate control volumes and transformed intoa''volume-averaged'" equation

using a staggered mesh. The following control volumes are defined for the

volume averaging procedure (see Fig.2) in analogy to the 3D case.

- VI is used for the continuity and the energy equation. It consists of a
control cell bounded radially by vertical planes through the pin axes,

and axially by horizontal planes located a distance Az apart.

- Volume VII is used for the radial components of the momentum equation.
It consists of a hexagonal ring bounded radially by vertical planes
midway between the axes of the pins.

= Volume VIII is used for the axial component of the momentum equation. It
is obtained by translating the control volumeVI by Az/2 in axial direc-

tion.
Caitrary to the 3D case,the control volumes form rings instead of sectors.

Volume integrals are transformed into surface integrals by means of the Gauss
theorem, time derivatives of volume integrals by means of the Leibniz theorem

(see section B 1.2).

i) Continuity equation

We refer to the control volume VI of Fig. 2 and use the indices t, b, e, i,
to denote the boundary surfaces (S): top, bottom (z direction), external,
internal (r direction) respectively. Let V be the total volume of the control
cell and Ve be the volume of the fluid in it (index f refers to the fluid).
The following definitions of volume porosity and surface permeability are in-

troduced, as in the 3D case:
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e = Vf/V = volume porosity

€t=!8ft/st " surface permeabilities for the axial direction. In case
£ = Sfb/sb of undisturbed geometry these ratios are equal to the
volume porosity »
We = Sfe/se = surface permeability at the outer radial surface
Wi = Sfi/Si = surface permeability at the inner radial surface.
It holds ,
v o= Bn. Baoda o Siobr = Spebde (4)

An (Sc+Se)/2 - M S,

where Sm is the surface midway between Si and Se.

Integrating equation (1) over the volume V. of the fluid in the control cell

£
zives
98 dv |, | der(3V) 4V 2 0. (5)
Ot

v

Applying the Leibniz and Gauss theorems and introducing the velocity components

yields
fa%'j gV J gw S _ ngs .
B 3¢ b (6)
+ S Qu S _ S ju 45 _o,
ng S?C

We introduce the following definitions of volume and surface averaged

quantities for any scalar function f:

<;>5 = i{j‘vﬁw (7
¢

ds e L[4 (o
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By means of (4), (7), (8) and using the definitions of the porosities and

permeabilities,equation (6) becomes:

% ,.Q_<3>5 & _E._ {:(SW?* - <Sw7b‘k + é-;L X\PQFQ <g“’>e-—‘{}.,' F\..<Su'7":l ':O (9)

ot A2
with
F =8 /8
e e/ m
(10)
F, =8, .
i 1/Sm
This is the volume-averaged continuity equation. It is combined with the
volume-averaged momentum equations to derive a discrete Poisson-like
equation,
ii) Momentum equations
a) Axial momentum equation
Integration of eq. (2a) over the volume Vf of the fluid in the control cell
yields
g_g_gw Wy (oo gV YAV
ot |
¢ ﬁ; (11)
= dev (/&Vw) v Qﬁ av 3S3A\f _loem ad
v‘bz ¢

? % "




- 08 -

By means of the Leibniz and Gauss theorems one has

@..J gw dV +J‘ (Sw)waﬁ ,_'S. (gw}vod.s +

Ot "’Jé 5. Sp
+S (gw)mds _S (SW>M9\S: (12)
Sge 5@"

~=SMD“’0\5 S/ADwag +S Dw 4s j/w%) ds .

A similar treatment as for the continuity equation leads to

D < ¢ R R ) p| . J o .T" W “X‘_

%gt SW> + &_%_ {<Sw)t'<3\~7bx + EQKVQFQ<SVULL7Q \K L.<§ >0\ =

= & <)’“D"" -f<)&. + WYe \’e/)ﬁ)\” ._\\{.F:«)@ixk +
A?‘ ()2 t D b. P}

¢ . | i S 8. o (13)
+ Ei_ [—-(P)e + <P7b<} - 23'(3)3 - 'T\?}_ <D M’%7w.
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b) Radial momentum equation

Integration of eq. (2b) over the volume Vf of the fluid in the control cell

yields, with the same procedure as for equations (11) to (13):

2 (A
<gw7 + & ww., _ . uva + X Fo<uy - w.FogcQuy|
(Dt e &’(g 7{___ <g b e WQQ. S Q Wv S =

. D (14)
=.e_{<»?_e- e, \+;K%w«g@e.-v‘-ﬂ«/k,jg;-n\*

Az ‘Dg Q¢ b
R AR LI
(1502 \J

iii) Energy equation

Integration of eq. (3) over the volume Vf of the fluid in the control cell

yields
L 0 (gh) 4 S.m (3hv) 30 —j de @ ) A j Q 4V, (15)
8 ot | ¥ V&

Applying the Leibniz and Gauss theorems one has

w ) as _ | AS
33% 5T g as S CLEe o [ ghe [ ghu .
jsau ‘% 5 _ Jg;}, 0 45 Jg o Q\S;jgab M 45 jaw.
S ., Ot °EY v
fe 506 Spe

Introducing the definitions of volume porosity and surface permeabilities

and using (7), (8) yields:

¢ %<3K73 . /_iz K,\glw% - <g&w~;bx " &J\VQF“S& My, - B ‘3&“’~l‘
g 9& 9& Yo « DR R R 0& o
2_%3"\'% >e"3‘}' b\ g;l'\\vee gd“ '\V° <SAQ)n °'1'

Q
e < '75.

Eq. (17) is the volume-averaged energy equation.
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3.3 Finite difference form of the volume averaged conservation equations

i) Continuity equation

Let 9c (0g® g1) be a time-discretization parameter and n, n+l be superscripts
c

referring to time levels ts t respectively. Space and time discretization of

n+1
eq. (9) yields for the control volume VI shown in Fig. 2:

SMU S:w
2 Ay T oy
2‘3 . + (18)
At,,
f‘s~ | Mt m Tl
A N g WAL [ e
A}j le‘) +4I)_ “",‘)"JIL L,‘)*'{/l /) Y
el . N k) y 8 a o~ w
L(wT3ue) o (wRse) ) (&vrgu). (wrswe) |0
4«-1/”) A‘_J/z,‘)‘_ Axe Ai-“{,)' A=Yy
In eq. (18) and in the following ones the symbols‘()5 , < » denoting volume
and surface averaged quantities are dropped for simplicity.
We refer to the list at the end of this section for all new symbols intro-
duced in the following equations.
ii) Momentum equations
a) Axial momentum equation
Space and time discretization of eq. (13) yields for the control volume
VIII shown in Fig, 2:

.’ Mt w )
O i () ).
Ay, - - ' o

b, A N 19)
. - "

+ (Y\—Swu) (wrsW\&) _ 2&))#1{,’ }4()\,\) _(f/\ Di) +
Al A= Az,' D% A 14A Dt v
yetin )"“L .)*4/1. )) Ay

. Mt '

}A, 9\&/ ( a E;.J')fﬁ,, P - el 4

- /A e | Ve — v fA"
b\‘(_ A%l fDJL A=Al AZ" p ,4,,31-4 J
5*‘/1 i yri

N e _E._Q—IWM W " - =0
+[4 ) 2 [f’“),“ X (zg)«cd*‘/z, ; 3—:( De\ \ \(S ) )C'\\.MIL

Az—)*‘llz,
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Convective and diffusive terms are treated explicitly with respect to time,
pressure terms implicitly and the term representing friction pressure drops
is treated half-implicitly, Sﬁl(o;seg € 1) is a time-discretization para-

meter for the pressure terms in the momentum equations. The last term of eq.

(13) has been rewritten taking into account that

v Vg Se by,
- (21)
f=4X
where
D, = hydraulic diameter [ m ]
Sf = cross flow area for the fluid Z_m2_7
p, = wetted wall perimeter /[ m/
£, X = friction coefficients ,
Letting
n
FCPZ = §‘§ ‘ (22)
h
1 1
FWZ = = — (23)
1+ At £l L+At Fc@z
" 7D
h
eq.(19) can be rewritten
. (24)
Sw m A . WBM | 8% htm myi FM}' .
. - S N B ; 19»"44 - A\ *
Ay, Ay il A*)‘*’/; ) .
A0V [ 5~ o b | raq _6vz|
S )R o7 S P | = |Cver (CVER - PR _F2R 6VR
By Lyt by Suy =
S+, LA R Y A)‘)H/?.
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b) Radial momentum equation

Space and time discretization of eq. (14) yields for control volume VII

shown in Fig. 2

M\-" w

(SM)L"‘4IZ,S - <3(~BA’4J[L’S
"""‘11.13l : K +
N
R - W i M
A‘//”) l&w MW " . 4 yF {,{,7.) v U.l
\ S A4l T (S ),L'le N A_;L- . \V S ,L'u— (Y S .
)ﬁ'”)_ : S"”l A4l 5' "J
Ly, O‘ D ( D )“‘ (25)
B ‘ll’%' ‘5— JUTI )’v Dk 4'wdly
J y+1l2 y -
% wm
oA <\fr/,¢ ?_LL) (\.\)F)k DM)
Ly CRRPRTI 0™ !
8/\» M Mt A Bm w w
il f * f)‘l - f i
A2y, " A Aacyqy, L T4 Ay
4_( ﬂu“uwl (s )) 0
A A4y
The velocity u® in last term of eq. (25) is defined by
; 2
S (1))
YT l‘____‘_ (26)
4(¢-D)

where D is the pin diameter and P the pitch.
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Letting f g
oo |
o _S—g— El l (27)
WR = 4 - 4
F Ay D P E\u*‘“\ T he bt s FCQR (28)
3¢ 2

eq.(25) can bg rewritten

(Su)%*i .

Aedje,y

IO B, Bl o WL

v VRS O (29)
A4l . .. 1) \
)) ,(,Q-4/’.,3 A’Z*.*“L

(1-0,.) bk, o wo
- W) X:P&:&*‘," ~ f,t')._\ *

ZA'H/L )y ° A, 4 I/L

_ M. [cvez , CVRR _ FRE _FRR > TS
E,('H/ ') ) Al g A.‘“L’J'
L

Equations (24), (29) are the basic equations for the calculation of the

mass flows when the updated pressure field has been obtained.

iii) Energy equation

The volume-averaged energy equation (17) is discretized with reference
to the control volume VI shown in fig. 2. All terms are treated explicitly

with respect to time. The discretized equation is as follows:




N Y2 "
39\’ A -(g ﬁ)x" 4 ) ™ "
tt). ( ) ! ! —-L (S&'w) Svadp, (5&w> ‘ ¥
b e, ON7 -l
/L "F &‘ v s = &M)M ‘ ' (30)
* A% K'(W 3 M>*“H/L))' (\yrs A=Al )' "

- o e ~ w
gy gk Ll ) L (em k)
A%)r PER R \Mz 0 <-4 A DN Ly, 0% "'4/;»3
- QL Lo,

A\

3.4 The Poisson equation for the coolant pressure distribution

The ICE technique allows to derive a difference equation for pressure values
from the continuity and momentum equations as it would be obtained dis-
cretizing a Poisson equation. From the practical viewpoint the procedure is

as follows:

Consider the finite differences form of the volume averaged continuity equa-
tion (18). Replace the values of the mass flows at time level n+l by using
the momentum equations (24), (29) written for the nodes j* 1/2 and

i+1/2, respectively. From the equation of state replace the time-difference

of coolant density in (18) by

‘M‘A mw "~ mad ~
0 (31)
LI S R

with
2

¢ . odpfds. (32)

Rearranging one derives a linear algebraic equation for the unknowns

M A A an b myd Mokl
1’ v I3 P N . / 1) . ../ /f P ) ,P v )
Aad Aty ) Ay A5y

A

which can be written




;' 33
Br ety (33)

A=A . ) .
A=Ay A?"'LHA-UL
LY f e - A i‘j FVXZNV
+ 1:) t’ .r\)\)2' -'1/ ; ; A,)l"{/L +
. A )1‘ s .
‘J bts‘ ’ AZ.).+//L , : Az) D ) 4/L
_ 'Y
VAH/“) F“CCP.,' FWRM \V,CJ/,_ ° rACL ML ) ‘,w‘z .
' NP TR et
24’-.{ " -‘AHDZC ",_AQ"*{/L y A -%)) A <4,
L <
. 2 2, w
! N N
* 8CQW Aﬁn * 3 = I‘J
C "j‘

The right—hand side G?.k is given fully in the next equation . We introduce the
1]

coefficients CKN, CKS, CKW, CKE, (defined in the list at the end of this
section) which depend only on the bundle geometry and discretization.

Dropping the subscripts ij for these geometry coefficients, eq. (33) can

be written:
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Equation (34) can be written in the following compact form (ratios of volume
porosities at different axial locations are equal to one in undisturbed geome-

try and are therefore dropped as multiplying factor):

, { aad mih : ‘ n
%- e CORNT f)w L CRS _ CCKEX P ckw® b. B, AtM .
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) Ml > ¥ {:L . R
+ 1’4'5 f ke B O, A L gy /CH' g =
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_ o ers” PrRC™, _ FLUZ" . _ FLUR
- ot A AT Ay F (35)
J 3 ) \
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A%S Ay oyt
4 Bo 'AtML i\*)"#l{){ (SR' FW K)N ’FAC(’P\_’ 4
bre Lt )
3 ‘ ~ ’
_ \Vi'%») (5?\ . FW R) ; FRCLM¢X +
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M Z
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} o am
C..
A}

The numerical solution of the discrete Poisson - like equation (35) is

explained in the next section.
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List of Symbols used in the previous equations.
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Furthermore, the

Fl

F2
DD12(JC)
DZC (JC)
DzZ (JZ)
DRC (IC)
DRR (IR)
EPS (IC)
EPR (IR)
PST (IC)
PSIR (IR)

SFR (IR)
PAR (IR)

CF
SCSQ
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following symbols are used in the programme:

LI}

i}

O

O

b%\)' * A2$+4.
N

AZA'H,?_

AN

R I

fx'a'

Ty,

Vi

Y,
b@‘- vif2

fw ety

The following symbols are introduced for saving computing time

Cuc

UCPL
DTSQ
CFDT
AA (IC,JC)
BB (IC,JC)
cc (1¢,JC)
DD (IC,JC)

EE (IC,JC)

L« PiTCH -~ % - Dik
4 (Prveu - dik)

CUC * u
2

bE .
Ve O, Db

T o * O r M,
ﬂd,l\‘ = a’t SI\M Atm . CRC A'S -+ i"é /C A.\\
; , s PR
6(3 = ‘8(‘. 8~w AtM ° CKS‘;J

) , ¥
Cog = -0, 8,, AbZ- CRNT,
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3.5 Numerical solution of the Poisson equation

The numerical solution of the Poisson equation for the coolant pressure dis-
tribution can be performed either with iterative methods or by means of a

direct matrix inversion technique. The iterative methods are

i) Successive Overrelaxation (SOR) with or without the automatic search

of the optimum relaxation parameter.

ii) Alternating Direction Implicit (ADI) method.

The matrix inversion method is based on a factorization technique which takes
advantage of the block-three-diagonal structure of the matrix of coefficients

of the Poisson equation,

In the following sections these methods are explained in detail in the order
in which they were developed and linked to the main programme. Their advan-
tages or drawbacks with respect to each other will be discussed briefly at the

end of the section.

3.5.1 The SOR Method

The mathematical foundations of the Successive Overrelaxation (SOR) method are
given in references /11/, /12/, /15/. The programme user can choose between
the following varieties of the SOR method by specifying the input parameter

NPN (see input description):

a) SOR method with an input specified (optimum) relaxation parameter (Sub-

routine SL@R).

b) Automatic search of the optimum relaxation parameter for every time step
by means of the so-called "basic iterative method'" (Subroutine SLEMX)

and subsequent call for Subroutine SL@R.

¢c) Search of the optimum relaxation parameter by means of the "First Method"
of reference /11/ (Iteration with Simultaneous or Successive Relaxation)

(Subroutine SLPM) and subsequent call for Subroutine SL@R.

d) Search of the optimum relaxation parameter by means of the "Third Method"
of reference /11/ (Subroutine SL@PR2) with subsequent call for Subroutine

SLgR.
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In the following methods a) to d) are analyzed in detail.

a) Subroutine SLPR. The SOR method by input specified (optimum) relaxation

parameter w.

The discrete form of the Poisson equation (35) is solved iteratively by means
of a line-method, a line consisting of the axial meshes (j = 2, ...MC) paral-
lel to the bundle axis for a fixed radial mesh index i. Letting r be an

iteration index within the time step £ T € 1’ equation (35) yields

N+A Ned aed W ned

n
Uy Py o+ B Popae o Gy Bpan = Gy = Dy f*"‘u' - B f*'*"a' (36)
%k
GlA (3 = 2,3...MC)

=

When eq. (36) is written for a radial mesh i, the last available value p }

is used at the right-hand side. Equations (36) (j = 2, ...MC) form a system

of algebraic equations with three-diagonal matrix A of coefficients

AY=Q A= (37)

where Y represents the vector of unknown pressure values (y1 = piz,y2 = Piqgeee

Iy T pi,MC (N = MC-1) ).

The matrix equation (37) is solved by means of the Thomas algorithm /7/.

a first sweep (j = 2 ... MC) it is reduced to the equation

> K 1 C
A* ~y=p¥* R ! (38)
ole
2
where the matrix A% is upper bi-diagonal with a5 = 1 (G=1, ...N)
and the upper diagonal is defined by
o K = Cafoy (j = 1,2 ...N-1)
' ' = MC-1) (39)
o Cysa (v =
j*1 #

0”3‘*4 qlb_'.‘-&ﬂ c‘)
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The vector D¥ is defined by

* .
d/\ = C\A/"M
&
A djen = bya 3 (j = 1,2...8-1) (40)
e -
0’\‘*4 _b\)‘*‘ C\')
~
The second sweep yields the solution vector Y
~ ¥
;AXN - dy
¢ L. Cu \ 1 = - - . e ].
~ AA\ = d ) A'% yed (j = N-1, N-2, 1) (41)

Y is the exact solution of eq. (36) but only a first approximation tothe solution Y

of eq. (35), which is then obtained by means of the iterative scheme

n
Y-nw ) Yn, W (an\m Yn) Dewsl (42)

1 Y" has been determined by an exact displacement (w=1).

~Nr
where the vector Y
The scheme is then applied to the other lines i (i = 2, ... NC). The iteration

is carried on till a convergence criterion is satisfied:

NNV %

Neh n
fl'g - f’“i \ e st (43)

3=

1
w
2
o

where € is an input value.

b) Subroutine SL@MX. Search of optimum relaxation parameter by the

"basic iterative method",

The subroutine SLPMX works basically with the same iterative scheme explained
previously for the subroutine SL@R but at the same time it performs a search
of the optimum relaxation parameter. The principles of the relaxation theory
by Young and Frankel /18/, /19/ which form the basis of this part of the

programme are summarized in the following.

The successive overrelaxation method (SOR) for the matrix equation

A*Y=0b (44)
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is expressed by the iterative scheme /12/

N4A

n -1 _
Y = oﬁw\( +(’3—mL>wc‘ <4<w<1) (45)

where

Lw = @t wus e D (46a)
c = D_1 b (46b)
D = diag A (46¢)
C =  D-A (46d)
B = plc=1L+u (46e)
L = strictly lower triangular matrix (46£)
U = gtrictly upper triangular matrix (46g)
I =  unity matrix (46h)

For w = 1, the Gauss—-Seidel (G-S) method, it holds
A+t n A -
Y = &’,Y + (’5—L§ C (47)

with

. ."‘\
£ = (’5_ L) 0w . (48)
For the Jacobi (J) method one would use

A ;
Yo BY™ ¢, (49)

The convergence of the iteration scheme (45) is controlled by the maximum
modulus of the eigenvalues<ﬁf$w. Hence arises the exigence of searching the
value of the overrelaxation parameter w for which the maximum modulus is
minimized. Let Ai denote the eigenvalues of &Ja.

They satisfy the equation
dat [, - /\’31,0 |
QN 20,

The relaxation theory shows that there is a relationship between the eigen-

(50)

values A; of the matrixziu,and the eigenvalues Hy of the iteration matrix B

of the Jacobi method which satisfy the equation
olp,k[%--/xi\l»;@ (51)
PR) =0,
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The relation between the roots of the characteristic equations (50)

and (51) is

(/'\+m-4')1 2 (52)
= W M
/\

If w=1

A= /LLZ (53)

The optimum overrelaxation parameter is that which minimizes (52) and

is given by

2
U)b = —
e \a-p e (54)
where
Mo = wexg | ol (55)

To the optimum overrelaxation parameter corresponds the minimum value of the

maximum modulus of the roots of (50)

A . MM {/w\ouyi l'xw«(w")'\.% = Wy =14 (56)

Ay

The préblem of finding the optimum overrelaxation parameter is therefore
reduced to the problem of finding the maximum modulus )b”of the eigenvalues of
the matrix of the Jacobi method. If )LN<1 the Jacobi method converges,

so does the SOR method for real w (1< w<2) and the best convergence rate

is achieved for w = .

The maximum modulus /ﬁlcan be calculated as follows.

The solution Y of equation (44) satisfies exactly equation (45)

oA
y = &y Y P (3-wl) we, (57)
Subtracting (57) from (45) yields

AR . Ly (Y“- Y) (58)




or

P P o | (59)

with the definition of the vector error
4 n
e = Y - Yl (60)
Repeated application of (59) (r, r-1 ... r= 0) yields

A °

N+
) = aﬁ v €, (61)

w
Let

'SJZ .\(Jz+4 _»T)z Y’lﬂ_ T 3 (Y’EY)

= = 2 (62)
Rt
Y Y -
be the increment of the solution vector at the iteration step r.
Analogously to eq. (61) one derives
4 o* . £, £5° (63)
= M = e = O, .

Equations (61) and (63) characterize a stationary iteration scheme.

Let bla b2"' bW be the set of the eigenvectors associated to the eigenvalues
?
>‘j of éﬁco. '
It holds
£ bé- - )‘j b, (5 = 1,2...8), (64)
Let assume Al < A2<... <A . The eigenvectors b, form a basis of the N-dimen-—
N

. . . o . .
sional space; hence the solution increment S can be written as a linear com-

bination of bj
50': f\‘d l)/. * ﬁz t’z*' v * {"N BN (65)

where hj (j =1, 2,...N) are real constants.

From (63) and (64) one derives

5x= {,4 ):1134 - ﬁ, XJ: bz *.'” - ﬁ'N}‘j \'“’N (66)

=

ﬁ[m(%ymkm(gy@kw +@@F

p)
M [t oo ]

1}

11
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The error O is the smaller, the larger the maximum eigenvalues XN is with

respect to AN— and the larger the iteration index r.

1

The maximum eigenvalue A_ is then approximated by the limit of the ratio

N
. . 2
of the norms of the solution increments S

IV Uidl I DY
A= e “351“ S P “ 'A: {)VN by “ (67)

= e"w _)_‘sz . __\_k_).ﬂ_\\ = /\N
22e A Wbyl

If w =1 (Gauss—Seidel iteration)
A 2
8
B My = P o (68)

If w # 1 the relation between ¥ (= AN) and u_ is given by /12/

N

O +w -4
P -
N w s (69)

In the Subroutine SLPMX two iteration cycles are performed:

i) iterating with w = 1 and applying (67) yields O- )ﬁ:
~
hence a first estimation of w_ by (54)

ii) iterating with w = %b and applying (67), (69) and (54) yields a final

value for wb.

The iteration steps are useful not only for the estimation of the optimum
relaxation parameter, but also for approaching the solution vector Y. The
final solution for the time step is then obtained by entering into Sub-

routine SL@R with w = wb.

c) Search of optimum relaxation with Subroutine SL@M

We consider the matrix equation (44) with b:xzo. The solution is then Y= o.
Let try to determine this solution numerically by iterating with the Jacobi
method of simultaneous displacements (49) and starting with a vector

Y= 1. One has
NeA n El 3 lea Sﬁf‘ 0
Y * = BY - Y ,"-'_ ’ (7 )
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Let bj (j = 1,2...N) be the set of eigenvectors of B associated to the

eigenvalues )'Lj (/\M\ g < P
Bbo = )‘(b‘ bJ'o ’ (71)

o . . . .
The vector Y can be written as a linear combination of the bj

K
) < , ,
Y~ - 2“ evo b, (72)
when hj are real constants. It follows

'VJL*“
\

N 4
o f. AT )
2” &A (Vﬂ b; - (73

TeA Rt
R A Paor b (’_‘_) X
S
5244 . /uN_"JLv'\X
=M { Nb.'4"o(7;;) ’
The maximum eigenvalue P’N can then be approximated by
A (Y= .oy &\\\{nw“\
= W 2 Ww e s
fus nM(w S \ wee LITHL 7

_ e b bl
= X =y . - °
WAy b g
According to reference /20/)*N can be determined in practice by means of

the bounding relations

}_«s'-- s M s Fus P D < e Ny (75)

where

)\m - M (3‘)’“" ((vw: 1,2, .. "L) (76a)

(3) (76b)
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where y,; are the components of the vector Y.

If successive displacements with w = 1 are used instead of simultaneous dis-
2

N’

Corresponding bounds of the optimum relaxation parameter w are given by

placements the sequences (76) tend to M

W SW <o < Wan s Wo ¢ Wo SWmeonr § e g Wy (77)
with
Waw 2
= BN e (78a)
N VA'-AfM
"y A
WW = 1]
: e (78b)
TeVa-mr

In the subroutine SLOM the upper bound 0 is taken for the optimum relaxation

parameter w_ because a slight overestimation of w, is always better than an

b b
underestimation.

d) Search of optimum relaxation parameter with Subroutine SLOR2.

Assume a relaxation parameter w presumably smaller than the optimum wy . We

apply to equation (44) A - Y = b the iteration scheme (45) in three subsequent

steps:
i) lst Step. Assuming a starting vector Y%= 0 we iterate equation (44) m
times to get a first numerical solution Y, = Y(m):
yields
AY = b Y, = y(m (79)

ii) 2nd Step. We set the right-hand side of equation (44) equal to zero and

iterate (m-1) times starting from the previous numerical solution

Y(m), getting a new numerical solution Y(Zm—l):
yields _
A - Y(m) -0 Y2 = Y(2 m 1). (80)
Let ‘
o .2 (81)
Yy T I ¥y “

be the square of the length of the vector Y2.
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iii) 3rd Step. Iterate equation (44) once more starting from the

numerical solution Y(? m-1) to get'Y(gm)
_ yields
A Y(‘z w1 2 1, = Y(lzm) (82)
Let
L, = "Y il L “Y(zm) u ’ (83)
3 3
be the square of the length of the vector Y3.
. (2m)* .
We define a new vector Y as the sum of vectors Y1 and Y3.
y(Zm* Y, +Y, = y(m , ym (84)
The SOR method is expressed by the iterative scheme /12/
" = xw y™ 1 F (85)
with
-1 -1
F=(J-®wL)wD b, (86)

Equation (85) yields the iterative formula
e w4 w1 = = (87)
W W ,wo e VE oo L
After the 1lst step made with YOE'o one has

, A=A m-1 -
A ¢ Ford, F e v ST o F (88)

[2V]

The 2nd and 3rd steps have been started from this numerical solution
(88) and carried out for say m'! further steps. Thus they yield (with

b =0, hence Fzo for these steps)

SR SR SR At RIS SOt
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Using (88) one has

y (e mty £Ww (oﬁwm-ﬁh‘_‘ . e SuF ff)‘ (90)

-

Ifm=m

Y('““) . ogww (S(:M-A Fox oo 0* ‘i'w‘: * F). (91)

Combining (88) and (91), equation (84) yields

Y(‘LM\)% . Y('M) . Y('le)': (I *\-&wfw)(cﬁ:-‘F . o *.wa ‘-F) (92)

-4 ™ R ) -
oe(,fzjw )F o .\-csw y +(§ Fe o0 <F, (93)

w

Equation (93) is consistent with (87) because it could have been obtained

by applying the first step 2m times.

When performing the 2nd and 3rd step with b=o0 the numerical solution Y(zm)

approaches the zero vector, say @, which is the true solution. One has

therefore

Y('Zm) - ¢ = E2m (94)

where E is the error vector,

Let (el,

A, (3=
FIL.

....eN) be the set of eigenvectors associated to the eigenvalues

e
23
32,...N) of £,,. It holds

Oew eJ‘ = )‘\' es- (95)

The eigenvectors e. form a basis of the N-dimensional space, therefore the

| , ..
error vector E° can be written as a linear combination of the ej

N N (96)
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Recursive application of eq. (95) yields

. JL-4A . Q-A - (97)
E’L - ,\4 &4‘24 ¥ ﬁ, Q o -r)\N [{"NQ‘N’

Let assume_A]'<A2 < "”(AN' Dividing the right hand side of eq

. (97) by
the eigenvalue of maximum modulus_kN one has
_ R4 2-A Lo
‘ An- : (98)
= )\N &NQN{/""' (é_“\ e"/.e,‘ LR 3 <._£_A— eVN_,‘ \)JN-'\ .
b YYs M

The maximum eigenvalue AN is then approximated by the limit of the ratio

of the norms of two subsequent error vectors as the iteration index r tends
to infinity

9: &M \E““
R T

e “&Nme;““ [Ax* o( ﬁrAYv~&NJ *nq\ “
Il B “e\' y’ 311[4*0(}”.4

-

. (99)
-9 ) AJU '
PP \LN e, )‘N \\
In the programme XN is approximated by
— i . (2w Lw |
WV u Al W LG L oo
b,

R T

The corresponding eigenvalue of the iteration matrix B of the Jacobi method
is then

/‘A’~= B «w -4 .

(101)
w Vo

Equation (54) yields then the optimum relaxation parameter Wy,
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3.5.2 Alternating Direction Implicit (ADI) method

Write the Poisson equation (35) in the form

M g\ M m4A Mt - W

R, B ¢ D E G (102)
i Vo ° ," \ -+ N E N 4 't = v
3 PAa N Y8 fz,&d o) Pﬂd*‘ * Yy fl;gs ¥ 4 fZRﬁj 49

n . . . .
whﬂszij collects all convective, diffusive and pressure terms at time

level t .
n

According to the Alternating Direction Implicit (ADI) technique we integrate
equation (102) in each coordinate direction separately. We reduce therefore
the solution of a two dimensional problem to the simpler solution of two
one-dimensional ones. After the first integration in one direction the
fully updated pressure field is used for the subsequent integration. The

two integration steps are as follows:

~ Step 1. Integration along the axial z coordinate (j = 2,3,...MC) for

every radial mesh. Equation (102) is written in the form

R.. (1) (1) (a) . o ~w

v B“S P»;WA * CIS fA}jw4‘= GAS "'DUS Pﬁbﬂj - t‘S fi\%d (103)

where pressure values at the right-hand side, provisionally considered as
known, are taken from the previous time step. Equation (103) yields for
every (i) a system of equations with three—diagonal matrix of coefficients.
Its solution is direct and gives a new pressure field pi;) which is used

for the next iteration step.

Step 2. Integration along the radial r-coordinate (i = 2,3,...NC) for

every axial mesh (j). Equation (102) is written in the form

(v) (2) - (2) - (4 (a)
Q... D . E. G..-B.. -C.. (104)
4 f)x‘s e ] f,t'+h”' ¥ “) ‘PA'-“Q‘ = 4) “) P oyt C/‘ d 13‘-';\\"'1
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The pressure field pi})ﬁbnlduzprevious step i1s used at the right-hand side. The

solution of the system of equations (104) yields the updated pressure field
(2)

pij .

Equations (103) and (104) are applied repeatedly,

The iteration is terminated when two subsequent solutions of the pressure

field differ by less than a given tolerance. On anaverage, a few iteration sweeps
: 5

(4 to 6) are necessary for reaching a tolerance of 10

3.5.3 Direct matrix inversion

The system of equations (35) (i = 2,3,...NC; j = 2,3,...MC) has a matrix of

coefficients which can be written in the form

R, B,
¢y 8, B,
H’ = Cv_ n3 53 (105)

¢

M- RM-'\ 6)4_4

Cuar o Rp

with M = MC-1. Matrix A is block-tridiagonal. The blocks of the main diagonal

are tridiagonal matrices with dimension (NC-1) x (NC-1) and have the form

/‘ts: Dss ﬁal. ES. (106)




- 126 -

The blocks Bj, Cj (j =1,2,...M-1) are diagonal matrices and are given by

(o]

2y

.
u

(107)

o

Nc,i

(108)
y = B%g

Blocks Aj are fully stored, while blocks Bj’ C., are stored in diagonal form.

The system of equations (35) can be written as
(109)
when the unknown vector P has (NC-1) + (MC-1) components given by

P = Pig

He
I

= 2,3,...NC
j=2,3,...MC
(j-2) + (NC-1) + i-1

(110)

=
il

Equation (109) is solved with respect to P by inverting matrix A with the
method of reference /16/.
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We apply a transformation T to matrix A and reduce it to the form

8
: (111)
Cy 65
nm :Rb
Aoy
Qq
ﬂé

The block—dimensions of submatrices in (111) are

Aa (n x n) with
Ab (n x k)
Ac (k x n)
Ay (k x k)

Rearranging of blocks Aj (j =1,2,

k=M=~ 2
n = M-k
(ks n)

. . o~
...M) from matrix A to matrix A is made

according to the reordering vector Re defined by

K ~a‘e~4
R (8) = {
2(0-m)
with the definition of the matrices
W= R Aa
Y": “A - .\\‘“b

L
S (112)
Lym
(‘\wm) (113)
(114)

(K.x K)
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matrix A can be written

: A Mg Moo | |Re R (115)
Ao B | W oW 0o Y
where U is the identity matrix.
~
The inverse of matrix A is
R TRt e Y T - N e Y
Re Ay XY v
(116)
1-2Y" 2 Y-
Sy Y-
with
A
L = \:\w (m, » ’\o\-) (117)
= -0 Ry (mx K. (118)

Matrices I, H, Z, Y are given in terms of the blocks of the known matrix A by

T Q;
pen -4 -4
o= ﬂw - L - g& (M x M) (119)
—LB R’A
. 5‘
b, E
4 A Ea
H = Hc' A‘ X
= W, E, (‘” m)  (120)
“3 E3‘




with
W, -
B
-4
2.0 4,
with
E
V/L': -
Yo By~ iR
with
i
B,
¢’
',

For i¢n an additional term Ei - C

BZL ‘LA'*'\ - B'lt
21
- | v, g
VZ ZS
\/5‘
—A
244 T g95'4
T , -4
LL%« CzJ = - chv\ :
A 8
} ) i
¢, A, 8,
! ) )
CL QS Bs
= _I:L. ' 24 44
= - HL\4 ' CzJ

Rzi - Hi‘th-a -

2i
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B

2.4

C * v
" )

< C.. (
1

(

is added to A'i

1 =

... K=1)

.o K-1)

.. K)

1,2,...K)

i <n)

(121)

(122)

(u»x k) (123)

(124)

(125)

(126)

(k= %)

(127)

(128)

(129a)

in (129) which thus becomes

(129b)
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We define further following matrices

x =y

F=-X-H
L=z+F=-2XH
¢=1z"X

Letting Xij (i, = 1,2,...k) be a block of matrix X, the

F, L, G are given by

FA:/\ = ‘Xi'\ - H’\

(k
(k
(n

(n

X

X

X

k)
u)
u)
k)

(i

(i
(J
(i

(]

(i
(]
&

(i

(i
(j
(j

(130)
(131)
(132)
(133)

blocks of matrices

1,2,...K)  (134)
1,2,...K) (135)
2,3,...K)

1,2,...K)  (136)

1,2,...K)  (137)

2,3,...K) (138)
1,2,...K)
1,2,...K)  (139)

1,2,...n) (140)

2,3,...K)  (141)
1,2,...K)
1,2,...n) (142)
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With the definitions (130) to (133) matrix A_1 can be written

T+L G
-A (143)

F X

If X =Y ! were known, matrices L, G, F could be calculated easily and
therefore X_l would be known. The problem of inverting matrix A is there-
fore reduced to that of inverting matrix Y which is also block-tridiagonal.
The same procedure followed so far for matrix A can therefore be applied in
a second step to Y = Y(l)’ where index (1) refers to the application of the
first step. Through application of successive steps we reduce the problems

to the inversion of matriees of decreasing dimensions p
Ym) , Y2y, 0 Y(A), L Y(s)

till after S steps we get a matrix of the dimension of a single block

(NC-1) x (NC-1) which can be inverted easily, thus yielding

(s)’ (144)

This completes the forward chain of the method, consisting in reducing the

problem of inverting a larger matrix to that of inverting a smaller one.

After the S-th step and after inverting YS we calculate

A (T +L) G
. - 1 - S S5 Ll
K(say = Y(smay * Tomn = ol Veea (145)
Fy K
where TS 1 is the transformation applied at the (S-1)th step on YS_l to get
~ -

YS—l’ like in (111). The transformation implies in practice a rearranging

of the blocks of Y according to the reordering vector (112).

(s-1)

X

Repeated application of (145) for the backward chain yields XS—Z’ g_3 "

. =1
= X. Formula (143) yields then A .

LR

up to X1

In practice we solve equation (109) using formula (143) but without cal-

culating the full matrix X_l which would require a large storage area

A .
in the computer. After transforming matrix A into A as in (111) we reorder
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also the vectorsP and b according to the reordering vector (112) to get

~N o~

P, b. Equation (109) is thus transformed into the equivalent one

~ o~

A+P=b, (146)
Its solution is

N —

b =31.3 (147)
or partitioning according to (143)

~ o~

Pa I+ L G b

fJ = L] ’B’a . (148)

Pb F X b
From (148) one derives

~ ~ ~;

P = (I+L) b_+ G . b (149a)

a a b
5. - g b (149b)
Pb F ba + X b

Terms in equations (149) are calculated in the following sequence, for saving

storage area:

i)
ii)
iii)
iv)

v)

vi)

vii)

viii)

compute matrix G with (137) to (139) using a storage area SS

~
compute G * b

b
compute matrix F (in the same storage area SS) with (134) to (136)
)
compute F « b
Na
compute X * b, (matrix X is known as the result of the first S-1 back—"

b
ward steps)

compute matrix L with (140) to (142) in storage area previously used

for X
compute matrix I with (119) and I+L

~
compute (T+L) ba'

Thus only two storage arrays are needed for the matrices, each one as large

as one forth of the matrix A.

~J

A backward transformation of P according to the reordering vector (112)

yields the solution vector P of equation (109).
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3.5.4 Comparison of the above methods

Tterative solution of large linear systems is in general compulsory when
storage area requirements and computing time have to be minimized. When apply-
ing the SOR or the ADI methods only the coefficients of equation (35) and

its right-hand side must be memorized. The solution method requires only
negligible additional storage area. The direct inversion method explained in
section 3.5.3 requires on the contrary the storage of the blocks of the tri-
diagonal matrix of coefficients A (105), two additional storage areas equal

to one fourth of the matrix A, and additional working fields for the storage
of matrices Hi, Ei, Zi’ Vi, B Iy C i A ; (see formulas (121), (122), (124),
(125), (127) to (129). For this reason we use in the actual programme version

the direct matrix inversion method for bundles with 37 pins or less and the iter-—

ative methods for larger pin bundles.
The advantages or drawbacks of each method are now outlined shortly:
i) SOR Methods.

The Gauss-Seidel iteration scheme can be applied using subroutine SL@R with
w = 1. It converges unconditionally but the convergence rate is poor. Sub-
routine SLPR is advantageous when the optimum relaxation parameter w = W
is already known, for instance from previous calculations, or can be

estimated within sufficient accuracy.

When the optimum relaxation parameter is not known it must be calculated
with one of the Subroutines SLOMX, SLOM or SLOR2. These three subroutines
give with a good accuracy the same results for wb but they require a quite

different calculation effort.

Subroutine SLOMX is the fastest one. It gives a sufficient estimation of
w0 in 5 - 10 iteration steps and presents the advantage that, when searching

for w_, the iterations contribute already to the solution of equation (44)

b’

(see 5.3.1 b). However a very accurate estimation of w, requires about

b
30 -~ 40 iteration steps.

The method used in subroutine SLOM solves the matrix equation AY = b with
b = o, Its solution Y = o is approached by the error vector BN =Y.

According to reference /11/ greater accuracy in the estimation of Wy 1s
attained in fewer iterations when the solution coincides with the error

vector. The disadvantage consists in the fact that, when iterating with




ii)

iii)
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b = o for determining w,_, the iterations are wasted because they do not

b’
contribute to the solution of equation (44).

The disadvantage of subroutine SLOM is removed in subroutine SLOR2 which
iterates eq. (44) without modifying the right-hand side. Subroutine SLOR2

yields a very accurate estimation of w, but requires a large number of

b
iterations (more than one hundred). It cannot therefore be used for every

time step in a larger calculation. It can be applied in a separate run to

estimate Wy for subsequent use in subroutine SLOR.

In practice we suggest the application of Subroutine SLOR when W, has been

already estimated, otherwise the application of Subroutine SLOMX.

.The ADI Method

In case of large bundles the Alternating Directions Implicit method is
slightly more efficient than the SOR methods. For blockage calculations
the mass unbalance, calculated for every cell by verifying the coolant
continuity equation, is smaller than with other iterative methods. How-
ever, a small time step (about 0.5 ms) is required. So far it has not

been attempted to accelerate the convergence of the ADI method.

The direct inversion method

As explained above it is used at present only for small bundles (37 pins
or less) for the purpose of saving storage memory. The calculation time
per time step is considerably larger than with the iteration methods but
it allows, even in case of blockages, a larger time step. The mass un-—
balance is several ordersof magnitude smaller than with iterative methods.
The matrix inversion allows therefore a steady-state to be approached

in blockage calculations more rapidly than with the other methods. When
calculating transients with fast mass flow run downs the numerical

solution does not present oscillations typical of the iterative methods.

The following Table I gives the computer time required on the IBM-3033
for one numerical solution of the Poisson equation for the pressure
field in case of 7, 19 and 37 pin bundles with 40 axial meshes. The
CPU time given in the table includes the time necessary for filling
the matrix of coefficients, for calculating the residuals and the time
for printing the solution vector (pressure field), and the vector of

residuals.
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Bundle Number of Number of | Dimension of CPU~-time
axial meshes radial meshes matrix of coefficients (s)
7-Pin 40 2 80 x 80 0-37
19-Pin 40 3 120 x 120 0°69
37-Pin 40 4 160 x 160 118

Table I. CPU time required on the computer IBM-3033 for one solution of the
Poisson equation for the pressure field with the matrix inversion

method (including calculation of residuals and printing of results).

3.6 Numerical solution of the momentum equations

Once the numerical solution of the Poisson-equation (35) has given the coolant

pressure field at time level t the discretized momentum equations (24),

n+1’
(29) yield directly the mass flows in the two coordinate directions at the

same time level. The stability of the numerical solution of the coupled con-
tinuity and momentum equations is favoured by the half-implicit treatment of

the terms representing friction pressure drops in equations (19), (25).

3.7 Numerical solution of the energy equation

. * . 3 3 . . +
The discretized energy equation is solved explicitly with respect to (h)?jl

using the mass flows at time level tn and enthalpies at time level €,

+1
From (30) one derives:

N

AR
K

(s%)

) m .
= (39\) . B K_cvez - CVER + QT +QR+&1
) A

) Eay £y

where the convective and diffusive terms are given by

(150)
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Further programme details regarding the finite differences schemes used for

calculating convective and diffusive terms in the above equations are given

in section 6.2.
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4. Numerical treatment of time dependent heat diffusion equations for

fuel pin and hexagonal can

The coolant temperature in every control volume is assumed as boundary con-
dition for calculating the temperature distributions in fuel and cladding.
For the outermost control volumes the temperature of the hexagonal can is

also calculated, taking into account the heat flux beyond the outer surface.

Referring to a given axial mesh zone with index M (M = 1,...NM2) space and
time discretisation of the equations of section B.2 is.done as follows. With refer-
ence to the sketch shown in Fig. 7, the fuel radius Ry is divided into NN seg-

ments of length Ar_ = RB/NN defining the position of NN#! radial nodes:

B

r, =0, rn(n=l,~-NN)WithrNN = RB. To every internal node is associated the

mass of fuel material comprised in the annulus of radii r » T , re-
n-1/2 n+l/2
presented in the figure by the shaded area around the node of coordinates

(ZM+1/2 ,

of radius r

rn)' To the axial node is associated the mass within the cylinder

1/2; to the outermost node the mass in the annulus with radii

Ta-1/2° RB' The clad material is associated to three nodes of radial co-

ordinates r,, r , r (inner, middle, outer node) (with r_ = (r, + r )/2).
i° 'm’ Ta m i a

Let ArH = (ra - ri)/z. The mass of clad material associated to the middle
node is therefore roughly twice the masses associated to the lateral nodes.

n-1’
We use indexes h, h-1 for the symbols of physical magnitudes calculated at

The problem time is discretized in a sequence of time steps Atn =t -t
the time points € tn_l,respectively.

a) Fuel
i) Inner node

With i 1 -
i reference to the annulus (rn-l/Z’ rn+1/2) of unit axial length as con

trol volume, equation (B.2.1) may be written:

) >\BTB(r,t) s s v - BTB (1
s or 99 "n © pncpnvn Bt

n
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where Vn denotes the volume of the annulus and the integral is calculated

f =
or both lateral surfaces (Sn Sn—1/2 U Sn+1/2)'

Hence:
Y s 2nr + A s omr *
Toe1/2\0T /. n-1/2 roer/2 \°r Jy n+1/2
n-1/2 n n+1/2
(2)
BTB
qn2nrnAr = pncpn2nrn Ar Tl
Terms of this equation are approximated by
a1, a1, b AN L
A — =6 |\ — + (1-8) |A Fyea
r ar r ar r ar
n~-1/2 1/2 n-1/2 n-1/2 r 1/2
n n—l/? ‘
(3)
h Tg n” Tg I h-1 Tg_l - Tg—;-l
= § >‘r ; A = + (1—8) A 2 >
n-1/2 r Tn-1/2 Ar
(aTB) BTB) h [a7 h-1
A — =8 | — + (1-8) A k——-
r ar r or : or
+
n ]/2 rn+]/2 n+l/2 rn+]/2 n+]/2 /rn+]/2
(4)
h h h-1 h~1
h TB,n+1” TB,n h-1  'B,n+!1” 'B,n
=8 Ar Ar + (1-8) |2 Ar
n+1/2 n+l1/2
. h . h-l
a, =8 q_ +(T e)qn (5)
ot Ten” Tha
i - & >
3t At (6a)
v}
. h h .y h-1 n-1 (6b)
Py Cp =8 p_ ¢, + (1-9) Pn %

n n n
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where 0 is the time discretization parameter.

Introducing equations (3) to (6) in (2) one has:

h h
A Tg + Bh Tg + C Tg =
n n n—-1 n n+1
(7)
- Ah-l Th—l + Bh—l Th-l + Ch—l Th—l + Q
n B n B n B n
n n—1 n+1
with
. . c
- +1
RN ncl/z b nr/2> .
n Birc1/2 Tn Toe1/2 n
Ar 2 ( A
B [(h h h-1 h-l (83)
+ —— |8p c + (1-8)p c a
At Bn P B,n "Pp n
h h Ta-1/2
B' = -6 ) i (8b)
n B, n-1/2 n
h r +1/2
Ch = -8 A _ari/e (8¢)
n B’rn+l/2 rn
T
- - h—-1 n+1/2
ADTl o oy [aB! n-1/2 el : )
Th-1/2 Tn s Toel1/2 n
Ar 2
B h h h=1 h-=1
+ Bp c + (1-8) p c (8d)
Aty ( B,n pB,n B,n pB,n
r
SRR e e
n ' n-1/2 n
T
"™ = (1-0) ) ~atl/2 (8£)
'To+l/2 Tn
h=1
= 2 - (8g)
Q, bry (8q_ + (1 e)qn )
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ii) Outermost node

Making a thermal balance for the annulus (r = RB), taking

NN-1/2" TNN

into

account the boundary condition for the heat transfer to the clad, equation

(B.2.1) yields

- ‘s 98 7 opy ST T Tai) * dmVay T
NN-1/2 o7,

= g G Vi ——
NN Pay NN 3t

With space and time discretization as above, the following algebraic
equation is obtained
h _h h h
h Th

AT +
nn'B, N T B Tm,mv-1 * Cnw Thi

_ h-1 _h-1 h-1 _h-1 h-1 _h-1
= A
N TRen T Py Boww-1 Oy Tt Q
with
h h TNN-1/2 h
ANN= +6 A, + 8 Opy ArB *
NN=-1/2 NN
Ar 2 Tornre -
R 2AE NN-1/4 (g EN h +(1'9)°;N1 .
n TNN NN
h NN~
Bh1= PR NN-1/2
NN INN-1/2 NN
h h
Cyn= ~ 9 opy Arp
h-1 h TNN=-1/2 h-1
ANN =~ (1-8) A —_ - (1-98) Gpy Arp ¥
TaN-1/2 NN

Ar 2 - -
N ZAz N§ 14 g QEN $r-0) p;Nl h-l
n NN PN

(9

(10)

(11b)

(11e)

(114d)
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r
BE;’ = (1-86) AS 1 _§§_112_ (lle)
MN-1/2 TN
-l (1-8) ah_] Ar (11£)
NN BH B
_ bre? Tavi/4 od + (1-8) ™! (11g)
R ) T NN NN
NN
i11) Central node
Similarly, for the fuel central node one derives the algebraic
equation
h,.h . h,_h _  h-1 _h-1 h-1 _h-1
Ao TBo * o TBI " Ao TBo * o TB] * Qo (12)
with
AE = 40 A: + %E— Gpg o+ (1-8) pg—l ch-]> Aré (13a)
1/2 n Po P,
c? = 40 21 (13b)
T1/2
h~1 h-1 1 h h-1 h-1 2
A = -4(1-8) A + —— (6p ¢+ (1-8) p c > Ar (13c)
o r1/2 Atn ( ° P, o po B
cg"’ = 4(1-8) AP (13d)
T1/2

Q. = (8 qg + (1-9) qto]_])ArB2 . (13e)
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b) Cladding

i) Inner node

Equation (B.2.6) yields, with the same space and time discretization as

above, the algebraic equation

h _h h _h h .h
Agi T * Bai Teoan ¥ Cui Thm
(14)
b1 h-l h-1 ,h-1 h-1 -h-1
=&y Tai Y Ba Teow t Cmi Thm T Qi
with
h h h Ti+1/2
AH. = Bapy AT, + 0 A — (15a)
: ri+l/2 i
1 Ti+1/4 bry? h h h-1 h-1
YT ) Boy; o, T 78 oy ep
. At r, . Pyi Hi
h _ . h (15b)
Bui 6 apy ATy
oo g iiilig (15¢)
Hi r.
Ti+1/2 1
T
h-1 h-1 h~1 i+1/2
= =(1-8) o Ar, = (1-8) A /e
AHl BH H Hri+l/2 ri
2
1 Tis1/4 BTy h h h=1 h-1 (15d)
* At T 5 Bpy; ¢t (170) py,
n i Pyi pHi
h-1 h-1
By  © (1—e)aBH Ary ‘ (15e)
P71 (1ogy AD! Tir1/2 (15£)
Hi H ) ri
Ti+1/2

T, Ar. 2
i+1/4 "°H h h-1
. = . - , 15
Qy (e qg; * (1=8) qp, > (15g)
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ii) Middle node

For the middle clad node one derives

h _h h h h _.h
AHm THm * BHm ° THi * CHm THa =
(16)
_h=1 _h-1 h-1 _h-1 h-1 _h-1
AHm THm * BHm THi * CHm THa * QHm
with
A = © (Ah Tot/z o gh Imt1/2
Hrm—1/2 Tn Hrm+1/2 Tm
(172)
1 h h h-1 h-1 5
X GH ¢ *U=0) o o > bry
n m m Hm
Y
By = 6 o ol/2 (17b)
rm—l/2 T
r
Cgm = -0 Ah _mt+1/2 (17¢)
rm+1/2 T
r r
AHh I Pl m-1/2 , b=l m+1/2
m H -1/2 T Hr +1/2 rm
m m m (174d)
I h b h-1 h-1Y,_ 5
+— (8 p ¢ + (1-8) o * Ar
Atn ( Hm Phm Hm Hm i
h-1 h-1 Tm-1/2
By =(1-e) a - (17e)
m Tm-1/2 m
h-1 h-1 To+1/2
Cpm = (178) 2y = (17£)
Tm+1/2 m

O = (0 agy + (1-)af ') ar, 2 (17g)
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iii) Outer node

For the outer clad node one derives

h _h h _h h h _
AHa THa * BHa THm * CHa TK -
(18)
_ h=1 _h-1 h-1 _h-1 h-1 . h-1
AHa THa ¥ BHa THm ¥ CHa TK * QHa
with
Al g h Tasl/2 b,
Ha H r HK H
ra—1/2 a (19a)
1 AT Talys h h h=1 h-1
YA 2 " 8opa S * (178 oy c
h a a pHa pH
h T
BHa = -0 Agr arllz (1)
a~1/2 a
C = -6 & & (19¢)
Ha gk Ty c
AT L Ceey o™ ar - (1og) AP Ta-1/2
Ha %k °Ty Hr T
g—1/2 a (19d)
L S h h h=-1 h-1
Y P T 0pa o ¥ (78 oy c
h a pHa pHa
h-1 h-1 Ta-1/2
By, = (1-8) Ay — (19e)
a-1/2 a
h-1 h-1 .
Cua = (1-8) o bry (19£)

= h-1
QHa VA r, G’qHa+ (1-8) Iha ) (19¢)
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c) Hexagonal can

Similarly, discretization of equation (B.2.10) for the hexagonal can yields

F
S h h h h—-1 h-1 h=1
vg [?a S(TK TS) + (] e)aKS (TK TS )] +
L R h-1 , h-1  h-I
- Vg 0 o (TS - Tw) + (1-8) aw (TS Tw Y I+
b bl
h h~-1 h _h h=1 _h-1 S S
* 8 qq + (1-8) qg = (0pg Cp + (1-8)pg Cp ) it
S S h
which can be written:
h ..h h . h h ,.h
AT + =
s Tg BS TK + CS Tw (21)
_ ,h-1 _h-1 h-1 , h-1 h-1 _h-1
AS TS + BS TK + Cs Tw + QS
with:
F \Y
h h w h) 1 S < h h T h=1 h-=1
A, =8lo,. *+=— a |+ — =— (6p, c_ + (1=8) p c (22a)
S (KS FS \Y Ath S S Pg S Pg
h h
= - 22b
BS 8 aKS ( )
F
Ch = -9 W OLh (22C)
S F w
S v
F \Y
h-1 h-1 w h-1 ] S . h h h-1
A = - (1-6) (q + — 0 ) + —— — (Bp_. C + (1-8) p
S KS Fg Oty Fq S Pg s
(224)
h=1 h-1
= - 2
BS (1 6)aKS (22e)
F
h-1 w h-l
Cg = (I-0)F o (22£)
S
Vs h h-1
= = - 2
Qg 7 (8.qg *+ (1-0) 4g ) (22g)

S
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In the above equations, the coefficient A always refers to the node under
consideration, the coefficient B refers to the adjacent node at the fuel

axis side, C refers to the adjacent node in the outward direction.

d) Numerical solution

The above difference equations may be written in matricial form as

M:T =B (23)

where M is a tridiagonal matrix containing the left-hand side coefficients.
Taking NN+1 nodes in the fuel and 3 in the clad M becomes a square matrix
with NN+4 rows and columns. T is a column vector containing the unknown
temperatures at time tn. B is a column Yéctor formed by the right hand

side of the above discretized equations.iIt is not completely known because,
besides all temperatures and physical quantities at time tn_1 (with index h-1)
it also contains the unknown terms phcg. These are calculated with reference

to a temperature obtained extrapolating the gradient from the previous time

step

n+l _ n 3Tn
T =T + (at) Atn . (24)

Equation (23) is solved by means of a direct numerical method using

the Thomas algorithm /7/.

e) Programming details

FORTRAN symbols are given hereafter with reference to

i) equation (7) for fuel inner nodes
ii)  equation (16) for the clad middle node

iii) equation (21) for the hexagonal can.
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i) Fuel inner node

DRBR =  RBR/NN

DRBR2 = DRBR¥#2

QRMIN(N) = rn_l/z/rn

QRPL(N) = rn+1/2/rn

RPB =  fuel density at node n

CPB =  fuel specific heat at node n
XLBN1(N) =  fuel thermal conductivity at node n

ii) Clad middle node

DCAN = r -r,
' a i
DRCC = r_ -r, = DCAN/2
m i
DRCEG2 = DRCGkk2
r, * (rm - r.,)/4
QRPLV = e
r.
i
r, + (r - ri)/Z
QRPLH = —+ L
T,
i
QRCMI = rm—l/Z/rm
QRCPL = 'rm+1/2/rm
R@H = middle node clad density
CPH = middle node clad specific heat
XLCINl = inner node clad thermal conductivity
XLCAN1 = outer node clad thermal conductivity

iii) Hexagonal can

FWFS = F_/F,

VDUF = FS/FS

RPS = density of structure material

CPS = sgpecific heat of structure

WWST = oy = heat transfer coefficient from the structure
outer surface to the surrounding medium.

HKEX = 0,, = heat transfer coefficient coolant-structure.

KS
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5. Constitutive equations

The basic equations describing the thermal-hydraulic behaviour of the coolant
must be complemented by additional equations for calculating friction pressure
drops, heat transfer coefficients and turbulent momentum exchanges of mass

and enthalpy.

5.1 Friction pressure drops and pressure drops due to grid spacers

The frictional pressure drops are calculated by means of the relationship
by Novendstern /21/ which also takes into account the contribution due to

the wire wraps. The friction coefficient is given by

f = £ - f | (D

(o] m

with

-b

f = a -+ R (2a)
(o] e

fm = CFM = (CFM1 + CFM2 +« ReCFMEl)CFME2 (2b)
CFM1 = 1.034 / ( (P/D)x% 0.124) (2¢)
CFM2 = (29.7 * (P/D)#%6.94)/({)\/D)%%2.239), ' (24)

Re is the Reynolds number of the undisturbed flow, P is the pitch, D the
diameter of the pins, A the pitch length of the wire wraps. For turbulent

flow the following values of the coefficients are suggested:

a = 0.316

b = 0.25
CFME1L = 0.086
CFME2 = 0.855

In case wire wraps have not to be simulated the input parameter A (=HELIC)

is set to a large value, thus giving CFM2 & O.

If grid spacers must be simulated, the pressure drops in the grids are calcu-
lated as the sum of two contributions: an irreversible pressure drop at the
grid entry and frictional pressure drop along the grid. The pressure recovery
at the downstream edge of the grid is considered as negligible. Within the
grids mass flows in transverse directions are suppressed, therefore only pres-

sure drops in axial directions are taken into account. These are given by
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<

i 2
‘L 2. L wb
. S w, (1_.4_) L hshywe (3)
2 A Naz A*
, i ‘&
. S T, W, faskyw
where
Z& W,
A = S * T ratio of reduced to undisturbed flow area
R
Dh = hydraulic diameter of the grid / m_/
g
fr = friction coefficient for the grid
K, = (4‘ EH /53\ (A' ~ resistance coefficient at grid inlet
Ly = grid axial length (m) (L < Az)
3 g
D¢ = flow area upstream of the grid (mz)
Eg, = flow area through the grid (mz)
W, = flow velocity upstream of the grid (undisturbed bundle) (m/s)

flow velocity through the grid (m/s)

Q&i
]

S = coolant density (kg/m3),

An equivalent resistance coefficient for the grid is defined by

T i’ " ’ “ E; L | SIN’L >.K
Fy= Ko DL\ ﬂl (&) Dt’\sﬂbz :\M:’/( B

and an equivalent frlction coefficient by

ﬁz De\, /AZ (5)

Dh is the hydraulic dlameter of the channel flow without grid and Az

is the mesh length. The programme user can choose between modelling the

i

grid spacers in their actual position, as explained above, or simulating
the pressure drop by smearing the local contribution uniformly over all
axial meshes. In the latter case, the friction coefficient due to the grid
is

£, = K, o Dy / DABST (6)
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where DABST is the distance between two consecutive grids.
The roughness of the upstream edge of the grid is taken into account by

) L 2
replacing the flow areas ratio in K, = (1 - 1/A)" by

A o= (A% -1) 4+ 1) A (7)

wherec is an input coefficient ranging from O to 0.4.

Taking into account the contribution to the pressure drop due to the

grid spacers the total friction coefficient is calculated as

f = f + f (8)

which is introduced into equation C.2.5 to give

(£+£ ) (W)
Fcpz = —EB 22, (9)

2Dh

5.2 Laminar and turbulent shear stresses

The momentum exchange between adjacent control volumes is calculated by
adding a turbulent contribution to the molecular shear stresses. This is
justified by a time-smoothing procedure which is applied to the momentum

conservation equations as explained in the following section.

The volume-averaging technique applied to the conservation equations, as ex-
plained in section B 1.2, yields a balance of bulk values for physical quan-
tities defined at a given time. In reality the flow is characterized by
turbulent fluctuations of all dependent variables (pressure, velocity com~
ponents, enthalpy) around mean values.These fluctuations are taken into
account by the introduction of an effective viscosity which is derived as

follows.

Let us consider for instance the axial component of the momentum equation

for the coolant, written in the local form

D?t_cgw) + Ve (gw\/) - N (/«Q VW) - (g‘_i, (10)
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where we neglect for simplicity the gravity and the frictional resistance
terms. ul is the molecular dynamic viscosity. In eq. (10) the pressure and
velocity components are instantaneous values, including turbulent fluctua-
tions.

We write the dependent variables of eq. (10) as the sum of a mean value

and of an instantaneous fluctuation

u = U+ u' (11a)
w o= W+ (11b)
v = T 4+ v (11c)
b = B+ p! (11d)

where the mean values are defined by
L EeDE
At )
T
and similar expressions for the other variables. The time interval At
should be large enough with respect to the period of the turbulent os-

cillations to insure that the time-average of the fluctuations of the

dependent variables vanishes (u'= o and similar).

Introducing eqs. (11) into eq. (10) yields

_3_[’ W oW X "_)_[« wrw') M')X‘ O_[ W W' ’\';;+w‘l,

S8 ew)] w Zs(w)(@ea) | B g(@ew)(@e) |
(13)

+D%_ \g(@ rw')('\-)‘ f\)")X -\ \-Ne Q(&fw‘)‘\_o%(é‘rf') .

Whilst the time-average of the turbulent fluctuations are equal to zero,

the cross correlation terms w'w', w'u', w'v' give a non-vanishing contri-

bution in the time-smoothing of eq. (13), which therefore yields
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O g%, O (gwE) , D (@) . D (sa¥) .
(14)

The last three terms at the left side are the contributions of the turbulent
fluctuations and usually referred to as '"Reynolds stresses They are con-
tensor

sidered as components of a second-order

€ —
2N = SW (15a)
b "t
Cap = §W'W (15b)
C X i
Uy = gw'y (15¢)
where the superscript t means turbulent.
A similar treatment is made for the radial and azimuthal scalar momentum
equations which yield the following time-smoothed equations
‘\ —_ P . o . — —
% 4 . () (),u,.(,(, ) AU W ( .
8%+ L (38E) + & ($2%) e (3HT) &
D 2 ‘ (16)
PO (gt ) 2 (guwt) LD (qae) L VNG, O
‘0 Ve OF D%
g;(g'&) 2 (sFE) LD (gew) L D (45T,
P VR vt ¥
¢ %) (17)
+.@.(§"'u) 0 (3’3"”') J (3\7':’) V- QVE.DF
Q% V2 "o =V Tyt
L (,5

Eqs. (14), (16), (17) are the so-called Reynolds equations. They can be

written in vector notation as
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D (V) . Geo¥V .ot _ gLt _ N5 (18)
é%(gv)+\15vv.;~Vz’ V-7 - Vp

¢ . .
where ¥ is the laminar shear stress tensor which depends on the time-
smoothed components of the velocity vector V (the bar denotes here time-

average) and

W Wty
¢ . . (19)
T =8 | wu ww wy
ol viw! vivl
is the turbulent stress tensor. The laminar and turbulent shear stresses
are calculated as follows.
5.2.2 Laminar shear stress_tensor
The components of the laminar stress tensor are given by
A ._/ﬁ OV 9V .5 (1/3 -k ) (30 V) Gorm1,2,9) (20)
4y ~ 5 N TS 5
« . Do < A3

whﬂnavi are the components of the time-smoothed velocity vector V in the £i

'

T is the Kronecker delta, k is the bulk viscosity.
i

In the following we assume k=o.

coordinate directions,

This equation shows the symmetry of the laminar shear stress tensor.

The vector term - [’\'jat'e'l in eq. (18) 1is given by

el L5 s ('zi _Q_'t,-K> (i k=r,2,9) (21)

oe;
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The component in the axial direction is for instance

Ot T o 03 ' (22)

@%[}f 2 g;\ MKM (295 - %“”M*@%W% i%)\

(R GR) S0 SR R TIL

For the derivation of eq. (22) we made the assumption that the dynamic vis~—
cosity is constant. Furthermore, we use eq. (22), and the equivalent ones for
the other two coordinate directions, for an incompressible flow so that the

divergence of the velocity vector is zero, hence
. P =
_V,Z,e - V‘(/LVV) (23)

which has the form of the viscosity term in equation B 1.1 (2).

5.2.3 Turbulent momentum transfer

The definition of the turbulent stress tensor (19) shows its symmetry. Tts
components are calculated by means of half-empirical expressions which take
into account: 1i) an analogy with the analytical form (20) of the laminar
components; ii) geometry coefficients represented by the volume porosity
and surface permeabilities; iii) a typical length which is intended as a
generalization of the "Prandtl's mixing length" representing the penetration
depth of the momentum transfer; iv) the constraint imposed by the symmetry.
Thus the following expressions are used for the components of the turbulent

stress tensor:
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where ¢
o

computed with experimental results.

P 2

is a dimensionless coefficient to be determined by comparison of

(24a)

(24b)

(24¢)

(244)

(24e)

(24£)

(24g)

(241)

(241)
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The expressions (24) can be written

. — S e - a1t A S\ (i#k)
t Eoagd R 5 < . . b2 | . 1
[ ~:SV’L‘VK4:___SCO[<L,‘;\/KB +<Lk\/¢) X (D_\_/_k fD_Yi
0l ol (25)
g6 L V| 29 G
8¢ Lo [Viel S
where the mixing lengths Li are given by
L, =y &2 (26a)
L, = ¢ Az (26b)
L’) = ‘? A5/ (26¢)
or in the compact form
ot t 0\-/—4 D\TIK (i,k=r,z,s) (27)
Lok o= “/41K D@k N 20,

with the definition of the turbulent dynamic viscosity

g¢, [("L; VK)L . (Lk '\7{)2 X“L (i#k)
§¢ L l‘_/vl (i=k)

which takes into account the anysotropy of the porous medium

t

P

(28)

1]

We therefore write formally the turbulent momentum transfer for the j—-th
component of the momentum equation as

Nk "){]-‘) Q[ ut Ov) ) ( t 90') ,
2 . %__J . v SRR (j=r,z,s) (29)

and the divergence of the turbulent stress tensor, similarly to eq. (23), as

R R NS )

(30)
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5.2.4 Effective shear stress tensor

From a formal viewpoint an effective shear stress term can be defined by

o= vt ooyt (31)

as the sum of the molecular and the turbulent contributions.

The time-smoothed momentum equation (18) can thus be written

(¢¥) & VegVv . Ve -Vp (32)

n—i"‘_)

0

The divergence of the stress tensor is given, according to eqs. (23)

and (30) by

- Nev 'V“(f€+*fﬁ); vb(#€+}§)vv

T (pyv)

(33)

with the definition of the effective dynamic viscosity

¢
}«L = /,( +/«(t . (34)

Eq. (32), with the divergence of the stress tensor given by (33), is the
governing momentum equation of section B 1.1 (eq. (2)), upon which the

volume—averaging procedure is then applied, as explained in section B 1.2.

The calculation of water experiments in unheated 19-pin bundle /22/ and com-
parison with the experimental results have allowed an estimation of the op-—
timum value of the coefficient <, in (24) (co = 0.12). Previous results of the

theoretical interpretation of these experiments are given in reference /23/.

5.3 Turbulent exchange of enthalpy

The enthalpy exchange between adjacent control volumes is calculated, like
the momentum transfer, by'taking into account a molecular and a turbulent
contribution. The theoretical justification for the latter arises from time-
smoothing of the energy equation for the coolant, which takes into account
the mixing effects due to the turbulent fluctuations of the depending

variables.
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Omitting the unessential source term, we recall the energy eq. B 1 (3),

which refers to the instantaneous values of the variables
- '
DQ_(gK) 4 VeghV o= Ve gd VR (35)
ot

where d} is the molecular thermal diffusivity.

Using eqs. (1la) to (llc), also writing the instantaneous coolant enthalpy

as sum of a mean value and of a turbulent fluctuation
I i
=% +h (36)

and applying to eq. (35) the time-smoothing procedure, as in the previous

section, one derives
oz , ,3* _, D (.7 = D/ = _
2(sh) . L(sh) . D (shw) . L (sh),

D (obiu!) o) 0 (e e ) LY. el VO
_kfé_;t(gw) -rQ,-(S“)v@—(s?” ),v ¢d Vb

(37)

The last three terms at the left side arise from the cross-correlations
between the turbulent fluctuations of the coolant enthalpy and of the
velocity components and represent an additional energy flux in the coolant.
The terms in brackets can be considered as the components of a ''turbulent

energy flux" vector defined by

?’: - Sa’,u' (38a)
9; - Se,:a (38b)
E N (38c)
9 = gk
which add to the molecular contributions
¢ ek
qJL = =04 xS (39a)
¢ gl ok (39b)
Te Dt
?g - gl oh (39¢)
P
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The components of the turbulent energy flux vector are calculated in the

programme BACCHUS by means of the following half-empirical expressions

€ 9\_':;‘ - ¢ ) W+ S" 12 Di’: (40a)
N R I CIR DA
‘ X A = =\l Op (40b)
¢ hlw' Coebr (L)
q r - S = ""S (2} ( ) D—;

c

Y - —a\dly np
Plo’ . _ce py (e wt) Tt Ih (40¢)
75 = §PV = -8y ¢ ( ) N

where coT is a dimensionless coefficient to be determined by comparison
with experimental results. The use of the surface permeabilities in these

equations accounts for the anisotropy of the porous medium.

The expressions (40) can be written

L g o gt o

— (i=r,z,s) (41)

with the definition of the eddy diffusivities for heat transfer

t 'A_' 2 - 'fl')_ .
d/": - CO'T’ LA./ <\/' R \/:;) (l_r>zys) (42&)
: (j,k#i)
or
: " W) (42b)
A, . Cop i (W3
o\,t% - Cop € b3 (471+ 31)4“ (42¢)
[~ -1 1] (42d)
dt,) - Cop £02 (4 +w) .

An effective energy flux vector can then be defined as the sum of the

molecular and eddy contributions by
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?" . 7? N ?e _S,ﬁg_pi}_m - gd ~ e, (43)

<D
=

90('

0

-¢ © Vh (i=r,z,s)
(j,k#1)

with the definition of the effective diffusivity for heat transfer

L o=at v ab . (44)

The divergence of the energy flux vector is

>

T N (§0 7Y aN [s(afva) Wh] =y gdTh

Using eq. (45) the time-smoothed energy eq. (37) can be written

2 ($h) Ve gRV . Ve gd T

ot

which has the form of eq. B 1.1 (3). This is the time-smoothed equation
upon which the volumé-averaging procedure is applied, as explained in

section B 1.2.

The dimensionless coefficient ¢ T
o

tion of sodium experiments in electrically heated 19-pin bundle /24/. The

suggested value is cor = 0.01,

) g g(d et (7)) 2

has been estimated with the interpreta-

(45)

(46)
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5.4 Wall-coolant heat transfer coefficient

The cladding to coolant heat transfer coefficient hCK is calculated for

single phase flow by means of the Nusselt number

b D CNA ChNL T (N3
No o e 2h ot ez s R, v Ba LS 4
A Tuant '
where
by = coolant thermal conductivity (W/m °c)
Dy =  hydraulic diameter ()
Re = flow Reynolds number
Pr = Prandt number
o
Toulk — coolant bulk temperature ( C)
Tsa11 = wall temperature (OCX
Default values of the coefficients are /25/
a) for sodium: CNN1 = 7
CNN2 = 0.025
cNl = 0.8 (48)
CN2 = 0.8
CN3 = 0
b) for water: CNN1 = 0.
CNN2 = 0.023
CN1 = 0.8 (49)
CN2 = 0.4
CN3 = 0.

The heat transfer coefficient h between the coolant in the outermost radial
control volume and the hexagonal can is calculated by means of the formula
1

1 1
- = — o = (50)
h hgi hc

hgg 1s the heat transfer coefficient structure to coolant due to convection
given by (47) and hC is the heat transfer coefficient due to conduction in
the hexagonal can under the assumption of a linear temperature distribution

through its thickness.
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The conductive term is calculated as follows. Let

T be the bulk sodium temperature

T be the structure temperature (calculated in only one node at the

centre of the hexagonal can)
S be the thickness of the hexagonal can

VSTRUK the structure volume per unit axial length

F the structure inner surface per unit axial length

VDUF (=VSTRUK/F) ratio volume to inmer surface of the hexagonal can

q heat flux through the structure

AS structure thermal conductivity

X " a coordinate with respect to an axis with origin at the structure

inner surface and oriented outwards.

In case a linear temperature distribution through the hexagonal can is assumed
T_
(T,~Tg)

T(x) = TK -2 ———x (51)

the heat flux q is given by

(T -T.)
== 2 X S
q =-)ggrad T Ag 572 (52)
Equation (52) can be written
= - (53)
q hc (TK TS)
with N A
h = __§. [ad __._.g . )
c s/2 ~ VDUF/2 (54
The overall heat transfer coefficient will therefore be given by
e : (55)
h hgy AS/(VDUF/Z) .
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6. Further programme details

6.1 Boundary conditions

According to the original MAC method /26/, from which the ICE technique has
been derived, the boundary conditions are imposed both at free surfaces and

at solid boundaries by using virtual cells.

In general, the application of boundary conditions for the scalar quan-
tities (pressure, enthalpy and density of the coolant) isstraightforward: the
values in virtual cells are set equal to those in the adjacent physical
cells. This applies for free surfaces and for solid boundaries. The only

exception is made when the value corresponds to a given input functionm.

The boundary conditions for the velocity components depend on the physical

conditions at the boundary cells. We therefore distinguish

a) free surfaces: the velocity component normal to the free surface is con-
served; the velocity components parallel to the free surface are assumed
to vanish at the surface (the value in the virtual cell is set equal in
absolute value to the value in the physical cell, but with opposite

sign).

b) solid boundaries: the velocity component normal to the solid surface
is set to zero in the virtual cells; the velocity components parallel

to the surface areassumed to vanish at the surface.

According to these rules, the most usual boundary conditions are as follows:
i) Bundle inlet ("South" boundary)

In case pressure boundary conditions are imposed:

_ S
pi,l,k = fp(t) (1a)
Y1,k R (i=2,...N0) (1b)
_ (k = 2,...NTH)
U1k = U ok (1c)
V. = w . (]_d)

i,1,k Vi,2,k,
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In case velocity boundary conditions are imposed:

, £ are given time functions for pressure and axial velocity components.

PPk

Yilk

Y1k

Vi,l,k
f: S

pi,z,k (2a)
£5(¢t) (2b)
W

Y12,k (2¢)
Vi2,k, (24)

For the other scalar quantities yield the same boundary conditions as for

pressure.

ii) Bundel outlet ("North'" boundary)

For pressure boundary conditions:

Pi oMC+1,k

Yi,MZ+1,k
Y1 MC+1,k
vi,MC+1,k

N .
where fp is a given
suppress the radial

outlet,

1

t

a

For velocity boundary

Pi MC+1,k
Vi MZ+ 1,k
Ui,MC+1,k
Vi,MC+1,k

where £N
"

£N(e) (3a)
P
wi,MZ,k (3b)
- YiMCLk (3¢)
ViMC,k (34)

ime function. In this case it is meaningful not to

nd azimuthal components of the velocity at bundle

conditions

= Pi,Mc,k (4a)
) (4b)
_ui,MC,k (4e)
RERICR" (4d)

is a given time function.
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iii) TInner pin boundary ("West' boundary)

This is usually a solid boundary, therefore

PLik  Pa,jk (5a)
1,3,k T Y0k (5b)
Y1,i,k =0 (5¢)
ik V2,5, (54)
iv) Inner surface of hexagonal can ("East'boundary)
Prc+1,i,k = PNe,j,k (6a)
YNR+1,3,k  NR,j,k O (60)
UNe+1l,i,k - 9 (6c)
YNC+1,i,k UNC,§,k (6d)

The axial velocity component is defined at the physical boundary
IR = NR which coincides with the inner surface of the hexagonal can,

and therefore set to zero.

Boundary conditions (5) and (6) could be replaced by other ones if the -

" . .
east" or '"west" boundaries were not solid.

In the azimuthal direction there are not physical boundaries for the

full bundle, we therefore set, for the virtual cells K = 1 and

K =NTH+1

. = b, . 7)
Pi,i1 Pi,j,2 (

.. = .. (8)
Pi i,nrg+1  Pi,j,NTH

and similarly for the velocity components.

The mostly used boundary conditions are (5) and (6) at the solid
boundaries, pressure boundary conditions (3) at outlet and either

(1) or (2) (pressure or velocity imposed) at bundle inlet.
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6.2 Finite difference schémes

The programme user can choose between central and upwind differences for cal-
culating the convective and diffusive terms in the momentum and energy equa-
tions. We show some examples of the application of these differencing
methods.

i) Calculation of [(%W) W.]

0
A

L&N
a) Central difference
- )

L(SW>WX = ll{; SAi\)‘n (W‘-‘/“""{Iz'l‘( * WL‘/ g“ll,’\) = SA" W’\M (9)

A‘Jr\ Jr\

b) Upwind (donor-cell) difference

2

'.<gw) W] "'1."‘ : ;,— SA'J‘K WA',3‘—!/¢,K ( 1+ S\‘(\'M Wm> +

(10)
2 -
1 <, . ( - Soom W
+ 2, S*J'K W,L/)‘M/L’K A SSM A
with
\N(w« = ‘%, (W,L',)'o-ﬂ.‘,_/K i W;', 3‘«1[2';_‘), (11)
* . . " w.
1.1) Calculation of L(S )Wl Cedls, § A2,
(3“015 the convective term; u is the transported quantity)
a) Central difference
[(SW)M‘X = ;-Sm My, (W"'/S"“?,k + WA'M, y Hil, l<) (12)

’ L‘«-{/L)
SRAUI
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b) Donor~cell difference

[(s+)~]

; ész\m W, yy il K (M’W“ - ‘MM\) ¥

JL“""/‘L,
y*ilg, k (13)
4 S Nepet (o = Dl)
with:
o a Tl he. owg. . A2 ) /(B e B,
S = ‘LX(SLJK 4 SL,)\A,k )>/( \ )”) t (14)
| he. v Dy .'b%’fb%' X
+(S"“/)‘r~ yrd +§4'+4¢§M,h \)/( ) )”>
b, + M. M) /(hee s BE,) ()
Yo - % ( Ay ik b?’”\ N i PRSRATE ))/( > ')M)
iii) Calculation of (39\,\,0) . in the energy equation
Ay ) *df7, B

a) Central difference

(Se\)\"\’) = S/W\ &'\M WL‘)J.‘W‘IL)K (16)

Loy rilz, )

with

SM = (‘SL.\)‘K A%-“"" N S*'r)‘H/K M) ) / (VB%)' ¥ b%)\'w) (17)
ﬁ/,w = (%‘\J‘V‘ A%’g” + ev"" )‘*’HK A%S'.) / ([L%)‘ + ﬁ%j‘u) (18)
b) Donor-cell difference

R ; ”\N‘ .
(g&w)b‘, fel, v ;4{ ﬁ“‘"‘ (<3w>*';)"4l’z,k . |3 \-*'u'*’““' "‘\ ’ (19)

+ % &A'/ yehk ( (SW)"})‘MIUV\_ lsw\*./).v%'l")
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T \ T T
iv) ()‘ '5?);‘, Y+, ) - A l‘é:)'ml ( Wy T "“5"") (20)
with . ,
/\fm = (}u\fh ) A%)'M * >‘/“;;\.+4;l'\ ' b%f) /(A%; * A‘HH) L
v) ‘
( | QE_) = /‘*L 1 (‘”ﬂ' A, kT Wf,s’-“z “) . (22)
9 i")‘K L BZ‘)' py YU R i‘

Table II shows the three-dimensional arrays used for calculating the con-
vective and diffusive terms in the momentum and energy equations. The meaning

of the symbols, for instance for the axial z direction, is as follows:

Gz = gW
RgW2 = (§W)w

ROWO = (Qw)w

ROWUT = (Qw)~r

pwpz = (Pw/D¥) p

pwpR = (Dw[0=)

pwpr = (Qw/0a) 4

CVZZ, CVZR, CVZIT % % See list of symbols at
FZZ, FZR, FZT % section C.2.3, Page 79 ff.
FWZ,GVZ %

RPEW = gﬁw

prpz = (RT/d%) A

and similarly for the other coordinate directions. (UT is the FORTRAN

symbol for the azimuthal velocity component v).




U(IR,JC,IT)
GR(IR,JC,IT)
LRQsUz(Ic,Jc,IT)]

[RQSUw(I_R,ﬂ, IT)]

|rovUT(1R, 3C ,_13?_3)]

{pupR (1€, 3¢, IT)]
[;DUDz(;_lg,g, IT)]
LDUDT(_I_PS, Jc ,_I_I_R)J

CVRZ(IR, JC,IT)
CVRR(IR,JC,IT)
CVRT(IR,JC,IT)

[FRZ(_I_I},JC , IT)l
[FRR (1R, JC, 1)
[FRT(1R,9c, )]

FWR(IR,JC,IT)

|ReEU (R, ¢, IT)]

LDTDR(_I_I&,JC, IT)}

Table 1T

- 169 -

W(I1C,JZ,1T)
6z(1C¢,Jz,1IT)
[R(DWZ(IC,JC,IT)]

[RQBWU( IR,JZ,IT )l
[RewvT(1C,92,1TR))
[pwpz(1C,00,11)]
[pwDR (1R, 32, 1T) |

[DWDT(IC,_J_@,_I_'_@_)J

cvzz(1¢,Jz,IT)
CVZR(IC,JZ,IT
cvzT(1C,JZ,IT)

Fzz(1c,92,11)]
[Fzr(1c,32,11)]
[Fzr(1c,32,11)}

FWZ(IC,JZ,IT)
Gvz(1C,JZ,IT)

[RgEw(1c,32,11))

]_DTDZ(IC,;_Z_, IT)}

UT(1C,JC,ITR)
GT(IC,JC,ITR)
[3¢UT2(IC,JC,ITﬂ

[rRpuTH(IC ,32, ITR)|
[RgUTU(IR, JC ,1TR)]
[putpT(1C,3¢C,1T) ]
[DUTDR(}_B,JC,LiLB_)]
[butpz(1C,J2,1TR)]

CvTZ(1C,JC,ITR)
CVTR(IC,JC,ITR)
CVTT(IC,JC,ITR)

[Frz(1c,30, 11R) |
[FTR(1C,3C,ITR)]
[FrT(1C,30, 113)'}

FWT (IC,JC,ITR)

[R¢rUT(1C, C ITR)|

[DTDT( 1C,JC, ITR)]

List of arrays for calculating convective and diffusive terms of the momentum
and energy equations. Indexes IC,JC,IT (= i,j,k) refer to the centre of a
cell; indexes IR,JZ,ITR (= i + 1/2, j + 1/2, K + 1/2) (underlined) refer to
the cell boundaries. Arrays in parenthesis [— _7 have been spared in the
most recent programme version (for instance RPW2 is stored temporarily in CVZZ)

but they are listed for the sake of clarity.



- 170 -

6.3 Power Normalization

We define the power of the fuel bundle P and the power distribution by means

of three sets of coefficients which give relative values of the specific

power:
a) g, f for the radial power distribution in the
Arxzy) e b
fuel or electrically heated pins
b) %1,;2)3/ o 7]:)\)‘/,,. )Z-’Mc for the axial power distribution
c) ob - " " for the power distribution at an axial
227 P Ne ,NTY

level in radial and azimuthal directions.

The bundle power can be written
Nty M

N
b= ZK ZS 2; Eﬁh\ (23)
S 2 3

where Pi' is the power in a control volume given by:

ik

>
‘[}-')'\\

1]

»
-

A

(24)

<
> NMie
=
|
=
]

Q;';’& T\s '~V.~5 * Tc’\/c ¥ .TK'\J& * Ts'\]s) )

Q.ljk is the mean specific power in the cell and the T's are the fractions of
the power generated in fuel, cladding,coolant and structural material respec-

tively. These fractions are given by:

o = 95 /8 (25a)
Te= 9./2 (25b)
Te = 9./Q (25¢)
- & (25d)
Ty = 9 [ R
where 9> dg» 9y dg are the specific powers in the four media. These are

normally known by experimental information or theoretical calculations.

Equation (24) can be written

f"J"‘* S Vs + 1 Ve + T V"\ + { \/5 26)
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using (25), or
(27)

E‘L')‘r‘ = &'L.S.K ¢ ,('\ "

with the definition
(28)

¥
= e Q-V-e R

AR

-

is obtained by naxrmalizing the total power P by

The power in the cells P 1ik)
means of the sets of coeff1c1ents b) and c¢) in two subsequent steps

Normalization with respect to the axial direction

i)

From the relation:

F <:¥

(power generated at (f’ . V- -.
axial level j) _ Q d vd J V& (29)
[ - 73\

bundle power
)

o

we derive the mean specific power at axial level j
— 1 ¥
]50' o P . C—Q' ZL‘K&"'\'“ ,L'S\{ (30)

(4
Q M = =
a .ﬂl’ % Q X 0 Z
% s J' S Ls(\

b (31)

where _ "
V‘ B Z V
3 2. K ).

takes into account the volume of the j-th axial mesh of the bundle.

ii) Normalization with respect to the radial and azimuthal distributions

From the relation

(QLJK ) A)K

cell power -
(power generated at - % -
Z,L'K \y Z'.A‘K obg,‘r; \ l}&

it

=37

axial level j) ] £y
we derive
@5, Vi ) o, ) |
&i ) ( yere VAR ,m‘ \_W/rwf} (33)
4w - r
ZL‘N GLA‘K \].*JK
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The linear pin power is given by

X - Q,L'Sv \'TB * T (267- + Tc""“ (-R: - R“l)l : [w /Mﬂl (34)

f&n R

when RB is the fuel radius, Ra, Ri are the outer and inner radii of the

clad.

The heat fluxes out of the pins are

oy P (35)
¢A‘J.K - l"l‘u /(Q‘RQ)
The set a) of coefficients is used to calculate the radial power distribution

Qn (n = 0,1...NN) in the fuel. From the relation

Power 1in fuel volume Vn QE;M V.j,,w y-v\ VBM (36)

—_ e ——————— e

.. M e W Ll .
ijk Q Ta Vs /oy 5 . \tmvw .
o

Fuel power

we derive
ﬁ Q bgV
A 8
“in SR
C A~ AN

Oan f&K

VBn is the volume of the fuel cell within the cylindrical surfaces of radii

Ro-1/2° Roe1/2°

Following main FORTRAN symbols are used in the programme:

FACR_ for #LN

Z- 4
Qz, %,
RT3 a,
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FAK for  Quyg TaVy / Sa fuVan  in 37
VALBR, .\ Vo, e

VBRZ, 2 i '\{*‘qr‘ in (31)
v S g Vi

QL. Q(S" in (30)
QGRTj (53 in (30)
QV¢LLiJ.k Qu'yk in (33)
QPLLO, .\ Aoy at t=0

QV¢LLAijk &A\w< at t__,
QQQly .y I in (35)
QLINijk Xl¢5’n in (34).

6.4 Check of mass balance

The coolant mass unbalance is given for every control cell by the continuity

equation C.2 (1)

w
- g Ay K

4

( . )-Mﬁ"
w _ (Sw
\ ) vz, i Ay 4[;

i

9 - My i - mel
* 2 (‘P"3“> - (\“S“‘)

Ane J."-’fh, A=y,
&f‘K )'K

(B (e
LA g [ Ay, @y,

Redf, R4y

[ﬁf's'\'< X [ s /’Ws 5]

(38)
‘J“ (Sw - (gw) +
A,\ei "')"412.
'r\ .
(4-8¢) (YFSM) ) (‘WS-“)““ ,
Ao A+l Ay,
)H\ )‘,k

L A-be (:‘?’SJ)M 3 ( 73y Y .
AA"\ M‘} "‘/‘)‘/ MP i

k+j2 R-Al2
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In the programme we check the mass conservation in terms of mass flow by
means of:

The value of Dijk gives an information about the convergence behaviour of
the numerical scheme used for the numerical solution of the Poisson equation,

A good convergence is achieved when maX‘Dijkl is less than about 10 .

In the steady state the mass unbalance is given by
g« (59,02 S (59, e St
,JHI:

A,s-‘lfl,h
+ (s4)

,U+ﬂh)}k (31&>A 11, 1)K

+ (SJ> (S ) Sfm [Kg/;]

A,ylk+{/ 4 j;K’ 1,

(40)

6.5 Check of enthalpy balance

The enthalpy balance requires that in the steady state the power supplied
corresponds to the sum of the power transported by the coolant and of the

power lost beyond the hexagonal can.

In the transient case the temperature increment in every medium must account
for the difference between power generation and power lost or transported

by the coolant.

The power transported by the fluid P_ equals the difference between the

H
enthalpy flows at outlet and at inlet of the bundle per unit time

P2 H_-H /w/_ (41)

The enthalpy flows per unit time at outlet (North) and inlet (South) of

the bundle are given by

s o ), Zh ﬁ/k\.i,h -(‘sw)t—.mﬁ‘ft,h LW] (43)
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The power lost beyond the hexagonal can is

Mc N4 = -
' T W 44

z ZK l.d’wFW (TS“W)l. l_w] ()

Z 2 AT
where
Obuq =  heat transfer coefficient structure to surrounding medium

2
(W/m" °c)

Fu =  outer surface of hexagonal can per unit axial length (m)
‘s = hexagonal can temperature (OC)
Tw =  gurrounding medium temperature (OC).

In the steady state it holds
P = P_+P (45)

where P is the input power.

The power stored in the sodium during a transient is

‘ iy Mo NTH M w mad N
- DS
Pow 4 Z Z_ 2 (ﬁ y ﬁxjn) S T % gk (46)

M, & LIk Ay

where h is the coolant enthalpy.

The powered stored in the fuel during a transient is

NN

Py A {Eﬂ g: 5 Z_,W [(gu V (\W--'\ }J Fac, 7

2 R,
A, -

fad

where TB is the fuel temperature. VB is the volume of the fuel associated

to the radial fuel node n, between the cylindrical surfaces of radii ro+1/2

(see section A.2). FAC, is the fraction of fuel pin associated to the con-—

ik
trol cell (i,j,k).
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The power stored in the clad during a transient is

N Ao NTH 2 - T M) M -~
SO i : T ' ‘ . (48

P-4 420 2y 2 Lo [(Sci’) Ve (Tc -l ﬂ B Gt
2 2 2 4 < Ly,

qu
The index £ refers to the three nodes considered in the clad.

The power stored in the hexagonal can during a transient is

,[(SQP)% \IS (TSMH" T;)}ja . (49)

o

NC N
PS ‘= ;1_ 2 a. Z" iR
e, =8 2

The overall enthalpy balance requires that during a transient

= + + + + + 7/
P Pyt Pt Pyt Po+ Pt Py [ v_/, (50)

In a steady state P, &~ P 72 P, ¥ Py & 0 and eq. (50) reduces to (45).

The power P calculated with eq. (50 ) differs in general from the specified

((32 * V*)A,J‘K (51)

input power

=

([

wf\ﬁz
NF~45
cl

'.‘_.
2t
=, 3= . ) ) ] ;
ere Y. . S e ower ensi calculate as explaine imn section I
wh, sk /W/m™/ is the p d ty calculated 1 d t 6.3

The relative error

P-p
e = D (52)
PD
. . . . -3
gives a measure of the accuracy of the calculation. Typically is e N 10 .
The programme calculates also the energy released from the beginning of
the transient by integrating the instantaneous power over the subsequent
time steps:
-t
Q N N
P~ . S P(e) dt [;] (53)
(o]

j‘t P () dt [3]. (54)

For consistency the percentual error

=\PC _ Pg‘/P; (55)
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thould vanish with increasing time in a quasi-stationary calculation

run with constant power.

6.6 Time step control

Previous programme versions were run using the Alternating Direction Implicit
(ADI) method for the solution of the Poisson equation with a constant time
step in the range 1 - 4 msec. A reduction of the CPU time in the calculation
of the pressure field of up to fifty percent has been obtained with a time
step optimization which works as follows.

( r+1 T r+l
W = P s I ..

e call tolerance {_ max ((lek pljk) / lek;}
the maximum of the relative pressure change in the full definition domain
in two subsequent iterations with the ADI method. The iterative sweeps must
be repeated till the tolerance decreases below aninput value TOL (about

=5
10 7). The calculation practice has shown that

i) the tolerance which can actually be reached is inversely proportional

to the time step At

ii) the mass unbalance Dijk (see Section 6.4) is roughly proportional to

the product of the tolerance with the time step;

iii) the number of iterations (ITER) necessary to reach a given tolerance
is directly proportional to the time step and inverselyproportional to
the tolerance itself. Therefore following empirical relations can be

written:

TOL * At ™~ C (56)
D.., » TOL * At (57)
1jk
2
C_At
, _ At 72
ITER = 02 oL G (58)

where Cl’ 02 are constants and the symbol p means proportionality.

The. problem of minimizing the calculation time (t U) necessary to simulate

CP

a problem time t_ consists in finding the optimum time step (or, for (58),

P
the optimum number of iterations) which allows to approach the extremum of

the f io =
§ unctlog tCPU / tP f (At),
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Let assume to calculate a transient problem for a bundle with a number of
NC, MC and NTH control cells in the radial, axial and azimuthal directions
respectively, and introduce the following calculation time normalized to

the problem time

t
v = 1 CPU (59)

NC-MC*NTH t

The normalized time is given by the following equation, derived from the

calculation practice,

[ !;-(a + b * ITER) (60)
At
or, by means of (58),
a Czb
t=‘A'E+61—.At (61)

When using the IBM 3033 computer the constants in eqs. (60), (61) have the
values: a = 1.16 x 10_3 (sec), b = 9.15 x 10—5 (sec). The constant a re-—
presents the CPU time necessary to make the explicit calculation within
one time step while the constant b represents the CPU time for one iter-—
ation sweep in the numerical solution of the Poisson equation, which then

must be multiplied by the number of iterations.

A plot of the normalized time ¢ as function of the iteration number is

shown in Fig. 10. The corresponding values of the time step are also shown
in the plot for a case CZ/Cl = 10—6 sec"2 which holds for a slow transient.
The minimum of ¢ is obtained differentiating with respect to At in eq. (61)
and imposing the extremum condition, which yields,with the above given pro-

portionality comnstant,

At = (aCl/bCZ)l/2 = 3.5 x lO_3 sec
¢, s (62)
C_ = TITER = 13
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If we allow a deviation up to about 5% from the minimum %, , which corresponds

to the optimum ITERobt = 13, the iteration number can vary in the range
1
~ = ¢ ITER ¢ 2° & 26 (63)
6% ITER . §TITER § 2°TTER

This range for ITER has been found acceptable for all calculations made with

different transient conditions and bundle sizes.

The computer programme changes automatically the time step to insure that
the iteration number remains in the above range. In practice, this is done
as follows: the mean iteration number is calculated over twenty time steps.
If it exceeds the upper boundary in (63) the time step is divided by JE,
rounded to half-millisecond steps (for instance 0.00141 rounded to 0.0015),
and then kept constant for the following twenty time steps. Conversely, if
the‘iteration number becomes smaller than the lower boundary in (63), the
time step is multiplied by V2.
Moreover, we use the relation (57) to ensure that the mass unbalance Dijk
always remains just smaller than an input value (OMEGA 10_6), (without
" needing to become smaller by a large factor). This implies that a reduction
of At can be accompanied by an increase of the given tolerance for the
solution of the Poisson equation. Conversely, a larger At implies a smaller

(sharper) tolerance.

As a rule, after optimizing the time step with the method explained above,

we check if the following constraint is satisfied (see Ref. /27/):

. , A
he mim — — — (64)
! 1[!&‘*L‘vﬂ+‘_ﬂ¢u+&_x+&v_ﬂ
b ba ) 2> bar B2

where
W A . 65)
W = % (wk‘/3'+4(1/ K r NL‘)) 'J/I/K )
— , (66)
Ar = ;: ( MA‘+4I'¢, )'/t‘\ N MA'-‘HL, ')‘,'K )
v = ; ( \YA'/)', Kk +4/, v \T’U) )A/ k-4l ) (67)

v o= Al (68)
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Fig. 10: Normalized calculation time versus number of iteration sweeps with the ADI method.
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List of symbols

(Only symbols used throughout the report are listed)

c = (dp/%?)l/z sound velocity (m/s)

cp = specific heat (J/kg)

D =  pin diameter (m) / drag force per unit surface (kg/m secz)
B; = drag force per unit volume (kg/mzsz)

D =  hydraulic diameter (m)

f = friction coefficient

F = geometric factor (See eq. B.1.14)

g =  gravity acceleration (m/Sz)

h =  specific enthalpy: (J/kg)

K =  resistance coefficient

n = . unit vector

Nu =  Nusselt number

p =  pressure (N/mz)

P = pitch (m)

P, =  Prandtl number

q,Q = specific power (W/m3)

r = radial coordinate (m)

R =  radius (m)

s =  agzimuthal coordinate (m)

S =  surface (mz)

t = time (s)

T =  temperature (°c)

u = radial component of coolant velocity (m/s)
v =  azimuthal component of coolant velocity (m/s)
v =  volume (m3) /velocity vector (m/s)

W = axial component of coolant velocity (m/s)

z =  axial coordinate (m)
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symbols

- XU &

o

< ~ e 5 > R

2
°0)

heat transfer coefficient (W/m
thermal diffusivity (mz/s)

angle between planes through the bundle axis bounding an

azimuthal control volume (See Fig. 9)

volume porosity and surface permeability with respect to the

axial direction

time discretization parameter
thermal conductivity (W/mtoc)
dynamic viscosity (kg/ms)
kinematic viscosity (mz/s)

surface permeability with respect to the azimuthal direction

density (kg/m3)
friction coefficient

surface permeability with respect to the radial direction

Indices

b bottom

B fuel

e exterior

f fluid

g grid

H cladding

i interior/identifier of cells in radial direction
3 identifier of cells in axial direction

k identifier of cells in azimuthal direction
K coolant

1 laminar

m minus (previous-one in azimuthal direction)
n time discretization

P plus (subsequent in azimuthal direction)

S structure (hexagonal can)

t top/turbulent

w wall
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