KfK 3353 EUR 7989d September 1983

Über die Löslichkeit von Plutoniumdioxid in Salpetersäure

B. Kanellakopulos, E. Dornberger, J. Müller, F. Baumgärtner, U. Benedict, D. Dufour Institut für Heiße Chemie

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Heiße Chemie

KfK 3353 EUR 7989d

Über die Löslichkeit von Plutoniumdioxid in Salpetersäure

- B. Kanellakopulos, E. Dornberger, J. Müller,
- F. Baumgärtner⁺, U. Benedict^{*}, C. Dufour ^{*}

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

⁺ Institut für Radiochemie, Technische Universität München

^{*} Europäisches Institut für Transurane, Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

ZUSAMMENFASSUNG

Das Verhalten von ${\rm PuO_2}$ gegenüber ${\rm HNO_3}$ wurde untersucht. Es konnte gezeigt werden, daß ein Zusammenhang zwischen Löslichkeit des ${\rm PuO_2}$ und mittlerer Kristallitengröße des Oxids besteht

Dissolution of Plutonium Dioxide in Nitric Acid

The behaviour of PuO_2 in HNO_3 has been investigated. It is shown that there is a correlation between the solubility of PuO_2 and the average size of the micro-crystalline PuO_2 -particles.

INHALTSVERZEICHNIS

	Seite
Einführung	1
Ausgangsmaterial	2
Herstellung der Pu(IV)-Ausgangslösung aus technischem PuO ₂	. 2
Eigenschaften und Charakterisierung des Pu(C ₂ O ₄) ₂ · 6H ₂ O	3
Charakterisierung des Plutoniumdioxids	6
Löslichkeitsexperimente	11
Literatur	18

EINFÜHRUNG

Die quantitative Auflösung des Plutoniumdioxids ist eine zentrale Aufgabe der Wiederaufarbeitung von bestrahlten Kernbrennstoffen. Dabei sucht man sich aus Rücksicht auf die Prozeßbehälter auf reine HNO₃ zu beschränken. Für diese Säure zählt PuO₂ zu den schwerlöslichen Oxiden.

In der vorliegenden Arbeit wurde der Versuch unternommen, das Verhalten des PuO₂ gegenüber Salpetersäure systematisch zu untersuchen. Die in der Literatur vorhandenen Daten über die Löslichkeit des PuO₂ divergieren stark, manchmal sind sie sogar widersprechend ¹⁻³). Bemerkenswert ist, daß viele der Ergebnisse nicht reproduzierbar sind.

Um diese Diskrepanzen zu überwinden oder zumindest zu verstehen, wurde versucht, das PuO_2 möglichst eindeutig auch hinsichtlich seiner Entstehungsbedingungen zu charakterisieren. Dazu wurde aus technischem PuO_2 ausgehend, über eine $Pu(SO_4)$ -Lösung $Pu(C_2O_4)_2$ · $6H_2O$ als Ausgangssubstanz hergestellt. Die PuO_2 -Versuchsproben entstanden daraus durch thermische Oxalatszersetzung bei verschiedenen Temperaturen. Darüberhinaus sind die Proben noch durch andere Parameter wie Gitterkonstante und mittlere Kristallitgröße charakterisiert worden.

Bjorklund und Starliaky ⁴⁾ untersuchten die Reaktivität von PuO₂ in Abhängigkeit vom Brechungsindex des PuO₂, das durch thermische Zersetzung von Pu(C₂O₄) · 6H₂O bei verschiedenen Temperaturen hergestellt worden war. Dabei prüften die Autoren die Löslichkeit des PuO₂ in 18 M Salzsäure in Anwesenheit von KI. PuO₂, das durch Zersetzung des Pu(IV)-Oxalats bei 450-500° C erhalten worden war, blieb nach 18-stündiger Behandlung mit 10 N HCl noch zu 80% unlöslich.

AUSGANGSMATERIAL

Als Ausgangsmaterial wurde $Pu(C_2O_{\downarrow\downarrow}) \cdot 6H_2O$ verwendet, das durch Fällung von $Pu(SO_{\downarrow\downarrow})$ bzw. $Pu(NO_3)_{\downarrow\downarrow}$ mit Oxalsäure erhalten worden war. Die isotopische Zusammensetzung des verwendeten Plutoniums faßt Tabelle 1 zusammen.

Tabelle 1 Isotopische Zusammensetzung des verwendeten Plutoniums

Pu-Isotop	% Gewicht Massenspektrometrisch 5)	α - und γ -spektrometrisch 6
000	o obb	0.029
238	0.044	0.038
239	90.405	91.012
240	8.871	8.902
241	0.568	0.570
242	0.112	-
		
	100.000	100.522

Herstellung der Pu(IV)-Ausgangslösung aus technischem PuO₂

Plutoniumdioxid reagiert mit konzentrierter Schwefelsäure am Siedepunkt (330-335°C) innerhalb 3 bis 4 Stunden (ca. 10 - 15 g-Chargen) zum $Pu(SO_4)_2$. Das rosafarbene Pu(IV)-Sulfat ist in konz. H_2SO_4 unlöslich, so daß man den Säureüberschuß leicht abdekantieren kann. Nach Verdünnung mit H_2O löst sich das $Pu(SO_4)_2$ quantitativ auf. Eventuell nicht gelöstes PuO_2 (wegen Bildung von PuO_2 -Einschlüssen in $Pu(SO_4)_2$) kann leicht abfiltriert bzw. abzentrifugiert werden. Auch hochgeglühtes ThO_2 ,

das ebenfalls zu den schwerlöslichen Oxiden gehört läßt sich mit ${\rm H}_2{\rm SO}_4$ quantitativ in Lösung bringen.

Pu(IV) kann aus 1.5 bis 4.5 molaren HNO_3 -Lösungen durch Zugabe von Oxalsäure in der Wärme quantitativ als $Pu(C_2O_4)_2 \cdot 6H_2O$ gefällt werden 7).

Figenschaften und Charakterisierung des $Pu(C_2O_4)_2 \cdot 6H_2O$

Frisch präpariertes $Pu(C_2O_4)_2 \cdot 6H_2O$ zeigt dasselbe Spektrum im Infrarot-Bereich wie das homologe U(IV)-Oxalat (Abb.1). Das Pu(IV)-Oxalat-Hexahydrat zersetzt sich durch den α -radiolytischen Einfluß beim Lagern unter Freisetzung von CO_2 und CO. Die Zersetzung erfolgt mit derselben Geschwindigkeit bei Raumtemperatur und bei -80° C, wobei das Endprodukt ein Oxalato-Carbonato-Hydrat des dreiwertigen Plutoniums sein soll 8). Eigene spektroskopische Untersuchungen bestätigen jedoch die Ergebnisse von Sokhina und Gelman 9), daß das Endprodukt der radiolytischen Zersetzung des $Pu(C_2O_4)_2 \cdot 6H_2O$ ein Oxo-Carbonat-Hydrat, $PuOCO_3 \cdot xH_2O$, des vierwertigen Plutoniums ist. Das Absorptionsspektrum eines 10 Jahre alten Pu(IV)-Oxalats zeigte die charakteristischen Absorptionsbanden des vierwertigen Plutoniums.

Die ir-spektroskopischen Untersuchungen deuten daraufhin, daß das Pu(C₂O₄) · 6H₂O beim Lagern erst Kristallwasser verliert, bevor eine merkliche Zersetzung des Oxalats auftritt. Die bei 1388 cm⁻¹ für die Carbonatgruppe charakteristische Absorptionsbande fängt erst nach ca. 50 Tagen Lagerung an zu wachsen (vergl. Spektren 3 und 4 in Abb.1). Nach ca. 10 Monaten sind die für die Oxalat-Gruppe charakteristischen Absorptionsbanden fast verschwunden, was auf eine quantitative Zersetzung des Pu(IV)-Oxalats hindeutet. Gleichzeitig tritt die für PuO₂ charakteristische starke Absorption unterhalb 600 cm⁻¹ (vergl. Spektrum 5 und 6 in Abb.1).

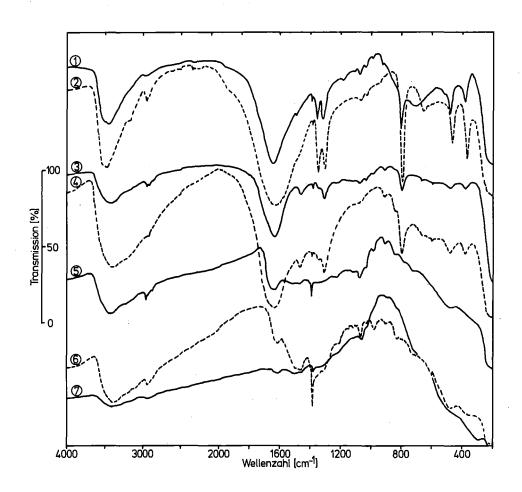


Abb.1 Infrarot-Spektren von: (1): $U(C_2O_4)_2 \cdot 6H_2O$; (2): (2) $U(C_2O_4)_2 \cdot 1H_2O$; (3): $Pu(C_2O_4)_2 \cdot 6H_2O$ (4): $Pu(C_2O_4)_2 \cdot xH_2O$ nach 30 Tagen; (5): wie (4) nach 1.1 Jahren; (6): wie (4) nach 10 Jahren; (7): PuO_2 aus Oxalat durch Zersetzung bei 250° C (Probe 1, siehe Text)

Die radiolytische Zersetzung des $Pu(C_2O_4) \cdot 6H_2O$ als Funktion der Zeit wurde durch die Gewichtsabnahme einer gelagerten Probe des Ausgangsmaterials sowie durch Infrarot-Spektroskopie verfolgt. In Abb.2 ist die prozentuale Gewichtsabnahme des $Pu(C_2O_4)_2 \cdot 6H_2O$ als Funktion der Zeit aufgetragen.

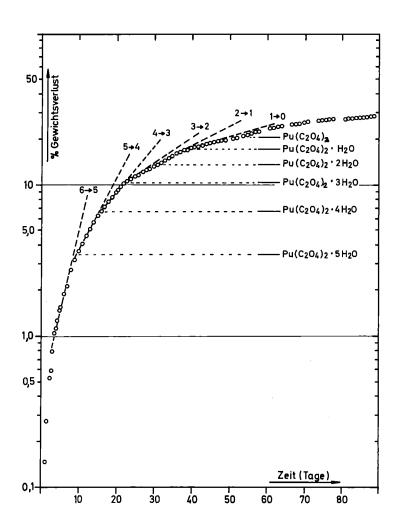


Abb.2 Prozentuale Gewichtsabnahme von Pu(IV)-Oxalat-Hexahydrat in Abhängigkeit der Lagerzeit.

Charakterisierung des Plutoniumdioxids

Konkretes Ausgangsmaterial für die röntgenographischen Untersuchungen war sowohl frisch präpariertes als auch gelagertes Plutonium(IV)-Oxalat-Hexa-hydrat, das hinsichtlich seines Pu-Gehaltes in der Zusammensetzung bekannt war (Abb.2).

Die PuO_2 -Chargen für die Löslichkeitsuntersuchungen wurden durch thermische Zersetzung von $Pu(C_2O_{\frac{1}{4}})_2 \cdot 6H_2O$ bei verschiedenen Temperaturen erhalten. Die Oxidation erfolgte in einem Rohrofen mittels Luft, der bei Raumtemperatur mit H_2O gesättigt wurde, um eine leichtere thermische Zersetzung des Oxalats zu erzielen. Nach zweistündiger Zersetzung mit Luft wurde das Material für weitere zwei Stunden mit reinem Sauerstoff bei derselben Temperatur behandelt.

Von zwei Ausgangsproben, nämlich einem frisch hergestellten Pu(IV)-Oxalat und einem PuOCO₃ · xH₂O, das durch Lagern des Oxalats über einen Zeitraum von 10 Jahren erhalten worden war, wurden zwei Serien von PuO₂ hergestellt und röntgenographisch untersucht. Die mittlere Gewichtsabnahme nach der thermischen Zersetzung des frischen Oxalats beträgt 48.23 ± 0.05%, diejenige des 10 Jahre alten Präparates 31.25 ± 0.06%, was einer formalen Zusammensetzung PuOCO₃ · 2.5 H₂O entspricht.

Das durch Zersetzung des Pu(IV)-Oxalat-Hexahxdrats hergestellte PuO₂ wurde neben der Oxidationstemperatur zusätzlich durch kristallographische Untersuchungen charakterisiert. Dazu wurden außer der Gitterkonstante a_O des Fluoritgitters des PuO₂ auch die mittlere Kristallitgröße der verschiedenen PuO₂-Proben bestimmt. Dies geschah nach der Formel von Warren und Biscoe ¹⁰⁾. Wie sich zeigte, stellt die mittlere Kristallitgröße einen besseren Bezugsparameter dar, als die Oxidationstemperatur der Ausgangssubstanz.

Die Tabellen 2 und 3 fassen die Daten der röntgenographischen Untersuchungen für die beiden Serien zusammen.

Tabelle 2 PuO₂-Daten der Serie 1
Ausgangsmaterial: Pu(C₂O₄)₂ · 6H₂O

Probe-Nr	Gesamte% Gewichtsverlust	Zersetzungs- temperatur	Gitter- konstant	t.e	Mittl Krista	ere 11itgröße
	des PuOx ₂ · 6H ₂ O	oC .	nons can		111 115 00	211 081 010
					 	
1	48.22	250	5.407±0	.005	48	
2	48.34	300	5.406	3	66	
3	48.22	350	5.405	2	68	
4	48.20	400	5.398	3	83	
5	48.25	500	5.398	2	107	
6	48.23	650	5.399	3	225	
7	48.17	800	5 • 399	3	632	
8	48.26	960	5.398	2.	> 1000	

<u>Tabelle 3</u> PuO₂-Daten für die Serie 2 Ausgangsmaterial: PuOCO₃ · xH₂O

Probe-Nr.	% Gewichts- verlust	Zersetzungs- temperatur °C	Gitter- konstant	;e	Mittlere Kristallitgröße
15	31.32	200	_		fast amorph
16	31.23	300	nur 2 Lin	ien	50
9	31.15	450	5.3 90 ±0.0	030	103
10	31.23	550	5.3962	30	204
11	31.27	650	5.3960	10	321
13	31.34	750	5.3968	12	452
14	31.23	850	5.3970	20	680

Die Gitterkonstanten der untersuchten PuO_2 -Proben sind in Abb.3 graphisch dargestellt. Das Kristallgitter des PuO_2 aus frisch gefälltem Pu(IV)-Oxalat bildet sich bei niederen Zersetzungstemperaturen (300° C) offensichtlich noch nicht richtig aus, wie wir aus den relativ großen Gitterparametern a_0 schließen (Abb.3).

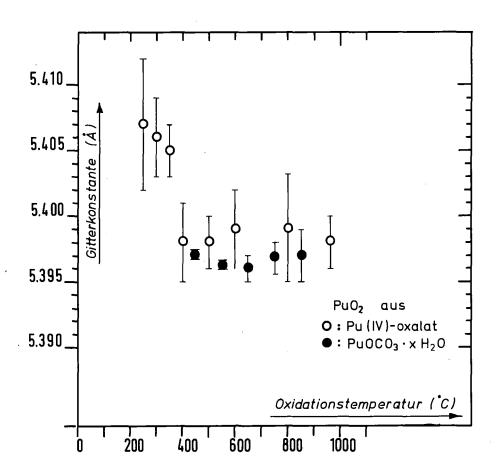


Abb.3 Gitterkonstanten ao der untersuchten PuO2-Proben als Funktion der Zersetzungstemperatur.

Mit zunehmender Alterung des Oxalats erhöht sich der Plutoniumgehalt des Präparates und die Pu-Pu-Abstände nehmen dabei ab, so daß aus dem PuOCO₃ schon bei niedrigeren Zersetzungstemperaturen dichteres PuO₂-Kristallgitter erhalten wird. Aus der Abb.3 ist zu entnehmen, daß beim Pu(IV)-Oxalat erst bei einer Zersetzungstemperatur von 400° C ein dichtes PuO₂-Gitter gebildet wird.

In Abb.4 sind die mittleren Kristallitgrößen der verschiedenen PuO2-Proben in Abhängigkeit ihrer Herstellungstemperatur aufgetragen.

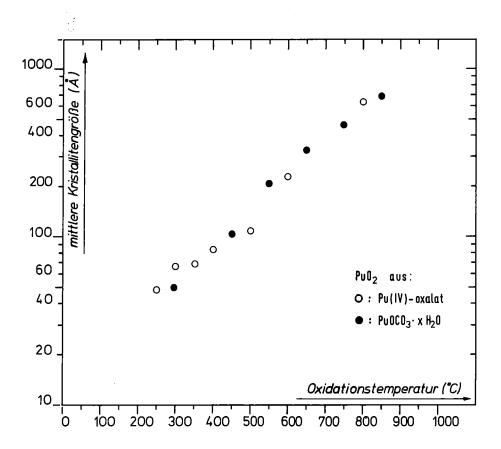


Abb.4 Mittlere Kristallitgrößen der PuO₂-Proben als Funktion ihrer Herstellungstemperatur.

Die Daten der Abb.4 sind mit denjenigen aus früheren Messungen an PuO_2 , hergestellt aus Pu(IV)-Oxalat, 11) konsistent.

In Abb.5 sind die Daten von Richter ung Benedict ¹¹⁾ der Kristallitgrößen und die Messungen der spezifischen Oberfläche nach Zamorani und Louwrier ¹²⁾ an PuO₂-Proben wiedergegeben, die durch Zersetzung von Pu(IV)-Oxalat bei verschiedenen Temperaturen hergestellt worden sind.

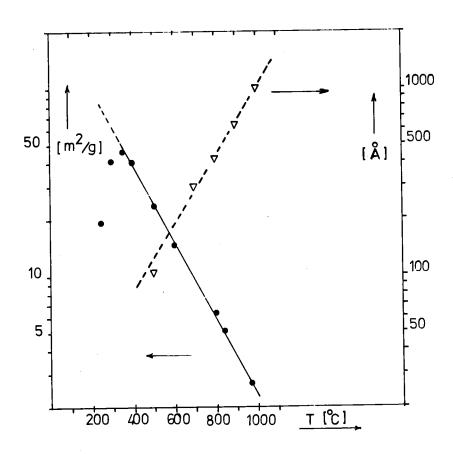


Abb.5 Mittlere Kristallitgröße (rechte Ordinate) und spezifische Oberfläche in m²/g (linke Ordinate) von PuO2-Proben als Funktion ihrer Herstellungstemperatur 11,12).

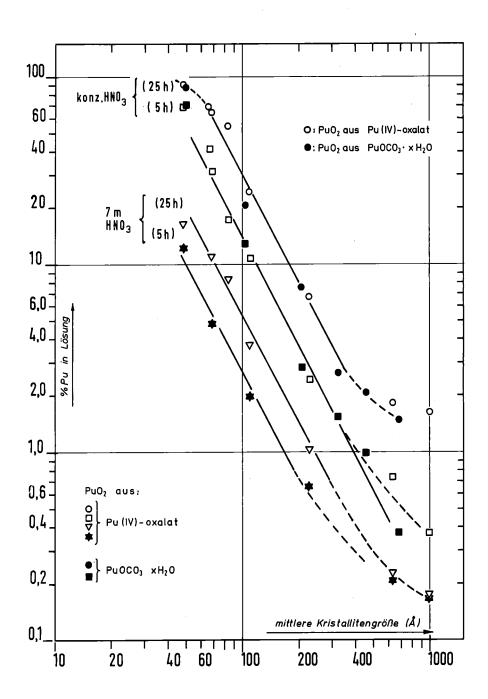
Die reproduzierbare Einstellung der mittleren Kristallitgröße bei einer gegebenen Zersetzungstemperatur desselben Ausgangsmaterials legt die Verwendung der mittleren Kristallitgröße als ein Charakterisierungskriterium bzw. als Bezugsparameter für die Löslichkeitsversuche mit Plutoniumdioxid nahe.

Löslichkeitsexperimente

Die PuO2-Proben wurden eingewogen und in einem 25 ml-Meßkolben mit 5 ml Salpetersäure bekannter Molarität am Rückfluß bei der Siedetemperatur der Säure behandelt. Nach Beenden der Reaktionsdauer (5 h bzw. 25 h) wurde der Meßkolben mit 2 molaren HNO3 bis zur Markierung aufgefüllt und nach Mischen der Lösung 24 Stunden sich selbst überlassen, um das nicht gelöste PuO2 zu sedimentieren. Anschließend wurden Lösungsproben entnommen und die Pu-Konzentration - spektrometrisch bestimmt 12). Die Daten für filtrierte, zentrifugierte und ohne Behandlung abpipettierte überstehende Lösung aus dem Meßkolben waren identisch. Die Löslichkeitsergebnisse für die beiden Serien sind in den Tabellen 4 bis 6 zusammengefaßt.

Tabelle 4 Löslichkeit von PuO2 in 7 M. HNO3; Serie 1. (PuO2 aus Pu(IV)-Oxalat)

Probe-Nr.	Zersetzungs- temperatur [oc]	eingesetztes PuO ₂ [mg]	% Plutoniu nach 5 Stunden	m in Lösung nach 25 Stunden
1	250	96.52	12.18	17.20
2	300	95.82	21.68	72.81
3	350	124.78	4.80	11.07
14	400	114.53	4.00	8.31
5	500	100.74	1.99	3.67
6	650	126.09	0.654	1.026
7	800	124.84	0.206	0.226
8	960	108.66	0.165	0.169


Tabelle 5 Löslichkeit von PuO₂ in konzentr. HNO₃ (14.3 M); Serie 1 (PuO₂ aus Pu(IV)-Oxalat)

Probe-Nr.	Zersetzungs- temperatur [°C]	eingesetztes PuO ₂ [mg]	Löslich- keit % in 5 h	eingesetztes PuO ₂ [mg]	Löslichkeit % in 25 h
1 .	250	20.67	68.84	22.09	90.98
2	300	24.88	42.24	18.95	69.40
3	350	25.93	31.29	29.45	64.39
4	400	21.69	17.12	28.09	54.69
5	500	30.50	10.63	35.38	24.11
6	650	19.02	2.414	28.49	6 .7 65
7	800	25.67	0.744	26.58	1.812
8	960	24.68	0.377	16.17	0.570

Tabelle 6 Löslichkeit von PuO_2 in konzentrierter HNO_3 (14.3 M); Serie 2. (PuO_2 aus $PuOCO_3$ · xH_2O)

Probe-Nr.	Zersetzungs- temperatur	eingesetztes PuO ₂ [mg]	Löslich- keit % in 5 h	eingesetztes PuO2[mg]	Löslichkeit % in 25 h
15	200	38.91	87.35	21.04	87.02
16	300	23.65	71.40	28.55	87.10
9	450	26.92	14.84	22.22	20.54
10	550	29.34	2.80	34.41	7.54
11	650	32.91	1.54	39.57	2.61
13	750	36.56	0.98	26.49	2.06
14	850	34.73	0.37	32.78	1.42

Während eine Auftragung der gelösten Pu-Menge (%) als Funktion der Herstellungstemperatur des Plutoniumdioxids keinen eindeutigen Zusammenhang zwischen Löslichkeit und Herstellungstemperatur erkennen läßt, ist ein Diagramm % gelöstes Pu - vs - mittlere Kristalitgröße des PuO₂ sehr informationsreich, wie Abb.6 demonstriert.

 $\underline{\text{Abb.}6}$ % gelöstes PuO_2 als Funktion der Mikrokristallitgröße

Aus der Abb.6 ziehen wir folgende Schlüße:

- a) Die mittlere Kristallitgröße kann als ein Maß der PuO_2 -Löslichkeit in HNO_3 angesehen werden.
- b) Die annähernd gleiche Neigung der Löslichkeitsgeraden deutet darauf hin, daß die Löslichkeit und damit die Lösegeschwindigkeit des eingesetzten Plutoniumdioxids ein Oberflächenproblem ist.

Rechnet man nämlich die gesamte Oberfläche des eingesetzten Plutoniumdioxids (siehe Abb.5) und korreliert sie mit den Ergebnissen der Löseversuche, so entsteht Abb.7.

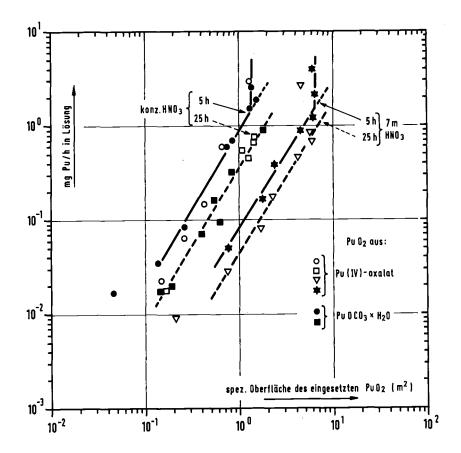


Abb.7 Mittlere Lösegeschwindigkeit von PuO₂ als Funktion der Oberfläche des eingesetzten PuO₂

Die erfolgten Schlüße finden ihre Bestätigung in der röntgenographischen Untersuchung einiger Proben nach den Löseversuchen. Es zeigte sich eine kleine, jedoch eindeutige und außerhalb des statistischen Meßfehlers liegende Verschiebung der mittleren Kristallitgröße, des ungelösten Anteiles zu größeren Werten, wie aus den Daten der Tabelle 7 zu ersehen ist.

Tabelle 7 Untersuchungsdaten des ungelösten PuO₂ nach 25-stündiger Behandlung mit konz. HNO₃

Probe-Nr.	Zersetzungstemperatur des Oxalats	Mittlere Kris in Å	Differenz %	
		Ausgangs-PuO2	Rückstand	
2	300	66	72	+ 9.1
6	650	225	234	+ 4.0
7	800	632	632	± 0.0
8	960	> 1000	≥ 1000	± 0.0

Der ungelöste PuO₂-Rückstand der bei tieferen Temperaturen hergestellten Proben ist grünlich gefärbt. Die grüne Farbe des Rückstandes ist um so intensiver je tiefer die Zersetzungstemperatur des Ausgangsmaterials ist. Während der Rückstand der Proben 1 bis 6 der Serie 1 (beachtliche bis geringe Löslichkeit) eindeutig grünlich gefärbt waren, blieb die Farbe der Rückstände der Proben 7 und 8 (praktisch unlöslich) bräunlich, wie das ursprüngliche PuO₂.

Die grüne Farbe der bei tiefen Temperaturen hergestellten PuO₂-Proben ist nicht absortiv gehaltenes Pu(NO₃)₄ zurückzuführen, sondern ist der Oberfläche fest anhaftend. Der Rückstand wurde mit H₂O gewaschen bis er nicht mehr sauer reagierte und dann am Rückfluß mit H₂O gekocht. Daraufhin wurde der Rückstand durch Waschen mit Diäthlyäther getrocknet und röntgenographisch (Tab.8) bzw.

infrarot-spektroskopisch untersucht. Die infrarot-Untersuchungen zeigten, daß die grün gefärbten Rückstände der PuO_2 -Proben NO_3^- Gruppen enthalten, die nicht auf absorptiv gehaltene Säure oder Plutoniumnitrat zurückzuführen sind. Mit zunehmender Herstellungstemperatur des PuO_2 nimmt die relative Intensität der γ_3 -Frequenz der NO_3^- Gruppe bei ca. 1380 cm $^{-1}$ ab.

In Abb.8 sind die ir-Spektren des Rückstands der Probe Nr.6 nach Behandlung mit konz. ${\rm HNO_3}$ neben den Spektren von reinen ${\rm Pu(NO_3)_4}$ und ${\rm Th(NO_3)_4}$ aufgetragen.

Abb.8 Infrarot-Spektren von: (1): $Th(NO_3)_4 \cdot 5H_2O$ (2): $Pu(NO_3)_4 \cdot ^xH_2O$; (3): Rückstand der Probe Nr.6 nach Behandlung mit konz. HNO_3

Diese Beobachtung könnte vielleicht dahingehend gedeutet werden, daß das PuO_2 -Kristallitgitter vor dem Übergang in den gelösten Zustand stufenweise NO_3^- oder Salpetersäure aufnimmt.

DANKSAGUNG

Die Autoren sind Herrn P. Dressler, IHCH-Analytik, für die umfangreichen Pu-Analysen dankbar.

LITERATUR

- 1) J.L. Ryan, L.A. Bray; Proc. 177th ACS Meeting, ACS symposium series 117, Chapt. 34 pp. 499-514, ACS W.DC. 1980
- 2) D.E. Horner, D.J. Crouse, J.C. Mailen, USERDA Rep. ORNL/TM-4716 (1977)
- 3) W.S. Gilman; Rep. MLM-1513, TID-4500 (1968)
- 4) C.W. Bjorklund, E. Staritzky, Rep. LA-1869 (1954) 19pp
- 5) Messungen von L. Koch, Europ. Inst. für Transurane, Karlsruhe
- 6) Messungen von P. Dressler, KfK, IHCH
- 7) P. Pascal (Ed.) Nouveau Traité de Chimie Minérale, Tome XV, Masson et Cie, Paris 1970
- 8) V.V. Fomin, R.E. Kartushova, I.T. Rudenko; Soviet. I. At. Energy 3 (1956) 409
- 9) L.P. Sokhina, A.D. Gelman, Zh. Neorgan. Khim. 5 (1960) 1013
- 10) B.E. Warren, J. Biscoe; I. Amer. chem. Soc. 21 (1938) 49
- 11) U. Benedict, K. Richter, unveröffentliche Ergebnisse, 1969
- 12) E. Zamorani, K. Louwrier, Europ. Institut für Transurane, Progress Report 1745, No.3 (1967) 37