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Abstract 

The results of a theory for verification of nuclear materials balance 

data are presented. The sampling theory is based on two diversion 

models where also a combination of models is taken into account. 

The theoretical considerations are illustrated with numerical examples 

using the data of a highly enriched uranium fabrication plant. 



Das Ziehen von Stichproben zur Verifikation von Materialbilanzen 

Zusammenfassung 

Eine Theorie zur Verifikation nuklearer Materialbilanzen wird in ihren 

Ergebnissen dargestellt. Die stichprobentheoretischen Untersuchungen 

werden anhand zweier Materialentwendungsmodelle durchgeführt, wobei 

die Entwendungsmodelle auch kombiniert werden. 

Die theoretischen 

illustriert, wobei 

Überlegungen werden mit einem numerischen Beispiel 

die Daten einer Fabrikationsanlage für hoch 

angereichertes Uran verwendet werden. 
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1. Introduction 

In a previous paper /1/ the state of the theory of the verification of 

nuclear materials accountancy data was presented. Data verification 

procedures for Model A (falsification of all batch data in case of 

falsification) and for Model B (falsification of only a part of the 

batch data) both for attribute and for variable sampling, and combined 

materials balance and data verification test procedures were applied 

to the data of a highly enriched uranium fabrication plant in order to 

determine the efficiency of the safeguards system, namely the 

probability of detecting a diversion of a given quantitiy of nuclear 

material for fixed false alarm probability and verification effort. 

Due to 

sampling 

First, 

of the 

the lack of analytical formulae for Model B and the variable 

case, the previous paper suffered from two deficiencies. 

the optimal sample sizes needed for the distribution function 

D-statistic for the data verification could not be determined 

for Model B, thus, the attribute formulae were used. Second, it was 

not possible to analyze the use of the two different measurement 

methods available, namely destructive and nondestructive analysis. In 

the meantime, the optimization problern of ~1odel B and the variable 

sampling case has been solved /2/, therefore, it was considered 

reasonable to analyze the available data once more with the better 

tools. 

In this paper, only the data verification aspects are discussed as the 

MUF-test as well as the combined (D,MUF)-test have not been improved 

from the theoretical point of view. Furthermore, only the variable 

sampling case is considered, as all seals are controlled, and as all 

measurement methods contain random measurement errors which cannot be 

neglected. In the second chapter those plant data are presented in 

short which are relevant to the data verification procedures. In the 

third chapter the new theoretical results and, tagether with them, 

their application to the plant data are given in order to avoid 

repetitions. 

The numerical calculations contained in this paper are performed with 

the help of computer codes which have been developed in the framework 
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of a diploma work at the Hochschule der Bundeswehr Hüneheu /3/. Fig. 

1-1 gives an overview of the structure of the study. Because of their 

size these codes have not been reproduced here, they can, however, be 

obtained upon request from the authors of this study. In this diploma 

work, also the combined (D,MUF)-test, in other words, the efficiency 

of the whole materials accountancy data verification system has been 

determined numerically for the inventory period data given in /1/. 
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2. Plant Data Used for the Numerical Calculations 

The theory that will be outlined in the subsequent chapter is applied 

to inventory data of a nuclear material fabrication plant. The plant 

under consideration is the NUKEM fabrication plant in Hanau, Federal 

Republic of Germany. As this plant has been described in major detail 

in earlier papers (/1/,/4/), here we only give a condensed description 

of the facility. 

The main production activity of the NUKEM plant in terms of the flow 

of highly enriched uranium is the fabrication of fuel elements for 

material testing reactors and for pebble bed high temperature 

reactors. There exists an accounting system that has been run since 

1975 on the basis of an electronic data banking system. This system 

enables the plant operator to produce at any time physical inventory 

listings for all material on storage. As there does not exist a 

stationary production state in the NUKEM plant, it is not possible to 

give representative figures for throughput and inventory. Instead, in 

/1/ a concrete inventory period, lasting from October 1977 to April 

1978, had been selected. In this paper, again these data will provide 

the basis for the numerical calculations. We will consider only the 

verification of the inventory data because it represents an especially 

important part of safeguards: Flow measurement data sometimes can be 

verified by comparing skipper and receiver data, but there is no 

alternative that can replace inventory data verification with the help 

of independent measurements. 

The physical 

physical and 

considered. In 

inventories are stratified according to chemical, 

geometrical viewpoints; only the U-235 data are 

Table 2-1 the slightly adjusted data of the initial 

physical inventory of the inventory period mentioned above are listed. 

In Table 2-2 the relative standard deviations of the rough, i.e., 

nondestrucive measurement methodes are shown, including the time 

necessary to verify the data of a single batch. We assume that the 

plant operator and the inspector use the same instruments, or at least 

the same type of instruments which means that both their measurements 

have the same uncertainties. 
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In Table 2-3 the relative standard deviations for the fine, i.e., 

destructive measurement methods are listed. We assume that these 

methods can be applied in classes 4,5 and 6 of the initial physical 

inventory, as classes 1 and 7 represent initial products. In class 8 

there are different kinds of material and not a single measurement 

method to verify these data. In classes 2 and 3 we have seal checks 

and we do not break the seals if they are all right. 

Table 2-1: Physical Inventory Data from Beginning Inventory. 

Class Material Total 

Isotopic 

Weight 

[kg U-235] 

Number 

of 

Average Isot;p~ 
Weight per Item ! 

1 UF6 
2. MTR, RHF Elements 

3 HTR Elements 

4 Fuel Plates 

5 Fuel Rods 

6 Pure Metals 

7 Intermediate 

Products 

8 Waste, 

Heterogeneaus Scrap, 

Liquids 

384.8 

28.9 
I ~\") 

379.9 

79.5 

10.3 

108.8 

334.1 

8.2 

Items 

53 

53 

3.8~'~-10 5 

4498 

147 

30 

2539 

76 

~kg-~-235~ 

7.26 

0.55 

.001 

.016 

.07 

3.63 

.132 

.132 

I 
I 
I 

~-----~---------------------- ------------ ------------- --------------------
Total 1334.5 

~'f) 
380 batches with 1000 items per batch. 
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Table 2-2: Relative Standard Deviations (SD) for rough (nondestructive) 

measurement methods. 

-· --------"----,.-·---·· 
Class Measurement Random error Systematic error Time needed to verify 

method SD ( % ) SD ( % ) one item (min) 

1 Seal check - -

2 Seal check - -

3 Seal check - -
41) ~-scanner 0.2 0.1 
51) ~-scanner 0.3 0.2 

6 Sb-Be 5 2 

7 Sb-Be 5 2 

8 Sb-Be 20 20 

l) The standard deviations in classes 4 and 5 seem to be a little 

optimistic, but because the quantities are small compared to the 

total amount of material our results should be still valid. 

Table 2-3: Relative Standard Deviations (SD) for fine 

(destructive) measurement methods. 

Class 

4 

5 

6 

0.2 

0.1 

0.1 

0.1 

0.05 

0.05 
L---------~----------~----~----------·---------~0 

1 

1 

1 

l) This colurnn indicates only that we assumed the same inspection 

effort for each of the destructive measurement methods. 

3 

0.5 

0.5 

4 

4 

6 

6 

6 
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3. Verification Effort Optirnization 

According to the rnodel agreernent /5/ an inspector, sent by the 

safeguards authority to the plant under consideration, verifies on a 

randorn sarnpling basis the rnaterials balance data reported by the plant 

operator. Forrnally, he perforrns a statistical test in such a way that 

he tests the null hypothesis H
0 

- no data falsification - against the 

alternative hypothesis H
1 

- falsification of the data - corresponding 

to a certain arnount of nuclear material. 

In the following, we first consider the case that the operator uses 

- if at all - only one class specific data falsification procedure and 

that the inspector uses correspondingly only one rneasurernent rnethod 

for the verification. Thereafter, we extend these considerations to 

the case that both, operator and inspector, use two different 

falsification and rneasurernent rnethods. 

3.1 Tests with one Class Specific Measurernent Method 

As already rnentioned, we have to consider fine and rough verification 

rnethods with the help of which fine and rough falsifications of data 

shall be detected. Fine rnethods are provided by chernical or so-called 

destructive assays (DA); rough rnethods are so-called nondestructive 

assays (NDA) which rnake use of the radiation of nuclear material. 

In this section we assurne that the operator perforrns - if at all -

either a fine or a rough falsification of the rnaterials accountancy 

data, and furtherrnore, that the inspector knows this which rneans that 

he uses either the fine or the rough rneasurernent rnethod for the 

verification of the data reported to hirn. 

Let us introduce now the following class specific entlties which 

describe the problern to be analyzed in the following: 

(3.1) K={l ... k} 

A. 
1 

E. 
1 

set of material classes 

set of batches in the i-th class CIA. I=N.), 
1 1 ' 

effort (time or rnoney) for the inspector's rneasure-

rnent of the material content of one batch in the 

i-th class, 



A~ 
1 

A~ 
1 

-8-

set of batches in the i-th class the data of which 

are verified by the inspector (A~ c A., lA. i=n.), 
1 - 1 1 1 

class specific falsification of one batch datum in 

the i-th class 

set of batches in the i-th class the data of which 

are falsified. 

Furthermore, let Y .. be the random variable describing the measurement 
1J 

result of the operator for the material content of the j-th batch of 

the i-th class, i=l ... k, j=l ... ~ .. It is written as 
1 

(3.2) Y .. = T .. + e0 .. + d0 . for i=l. .. k, j=l. .. N., 
1J 1J 1J 1 1 

where T .. 
1J 

the random 

measurement 

ist the true U-235 content before any falsification, eOij 

measurement error, and d
0

i the class specific systematic 

error. We assume that the measurement errors are 

independent and normally distributed random variables with zero mean 

values and known variances: 

(3.3) E(e0 .. )=E(d0 .)=0, i=l ... k, j=l ... N.; 
1J 1 1 

2 var(e0 . . )=o
0 

., i=l ... k; j=l ... N.; 
1J r1 1 

cov ( eo .. 'eo. I • I )=0' i' i I =1. .. k; j ~ j I ; j 'j I =1. .. N.; 
1J 1 J 1 

2 var(d0 .)=o0 ., i=l ... k; 
1 S1 

cov(e0 .. ,d0 .~)=0, i~i 1 ; i,i 1 =l ... k, j=l ... N .. 
1J 1 1 

Let us assume now that the inspector verifies n. of the N. batch data 
1 1 

with the help of independent measurements. Let X .. , i=l .. k, j=l ... n. 
1J 1 

be the random variable describing the measurement result of the 

inspector for the material content of the j-th batch of the i-th class 

(for simplicity we assume that after a random selection procedure the 

batches are rearranged in such a way that the first n. batch data are 
1 

verified). If no data are falsified, we get for the null hypothesis H0 
(no data falsification) 
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(3.4) X .. = T .. + e 1 .. + d1 ., i=l. .. k, j=l. .. n., 
1J 1J 1J 1 1 

where 

measurement 

is the random measurement error, 

error of the inspector. Aga in 

and dii the systematic 

we assume that the 

measurement errors are independent and normally distributed random 

variables with zero mean values and known variances (which may be 

different from those of the operator): 

(3.5) E(e1 .. )=E(d
1

. )=0, i=l. .. k, j=l. .. n. 
1J 1 1 

2 
var(e

1 
.. )=o

1 
.• i=l. .. k; j=l. .. n.; 1J r1 · 1 

cov(e
1 

.. ,e
1

,,,,)=0, i,i'=1 ... k; j-#j'; j,j'=1 ... n.; 
1J 1 J 1 

2 var(d
1

.)=o
1 

., i=1 ... k; 
1 S1 

cov(dii'dii')=O, ifi'; i,i'=1 ... k; 

( d ) -o · '"" · ' · · '-1 k cov e
1 

.. , I . , - , 1 ,.. 1 ; 1, 1 - . . . , 
1J 1 

j=1 ... n .. 
1 

Under the alternative hypothesis H
1

, that the batch data of the set Ar 

are falsified by the amount ~., we have 
1 

dli 
. Ax A~ (3. 6) T •. - J..l. + elij + JE . n 

1J 1 ' J J 

X •• = for 
1J 

T .. + eiij + d . j '*' A~ n A~ 
1J I1 J J 

In the following we specify the falsification strategies. We consider 

two models which we call Models A and B. It should be noted, however, 

that these two models do by no means exhaust all falsification 

possibilities. 

3.1.1 Model A 

We call Model A that set of falsification strategies where all N. 
1 

batch data of the i-th class are falsified by the class specific 

amount ~i' This means 

(3.7) 
y 

IA.I=N. or r.=N. for i=1 ... k. 1 1 1 1 
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Let us assume that the operator intends to divert the total amount M 

of nuclear material by means of data falsification. This means that he 

has to observe for the single falsifications ~. the boundary condition 
1 

(3.8) 

Let us assume furthermore, that the inspector has the total effort C 

at his disposal. This means that he has to observe for the sample 

series n. the boundary condition 
1 

(3.9) c = 
iEK 

n. E. 
1 1 

The problern of the inspector consists in optimizing the probability of 

detection 1-ß(n,~), where g'=(n1 ... nk)' ~'=(~ 1 ... ~k)' for a given 

false alarm probability a, with respect to n under the boundary 

condition (3.9) for any set ~ subject to the boundary condition (3.8). 

In other words, he has to solve the following minimax-problem 

(3.10) max min (1-ß(n,y.)), 
n Y. 

with the boundary conditions (3.8) and (3.9). 

As all measured results entering the decision procedure of the 

inspector are disturbed by measurement errors, the data may be 

evaluated with a test procedure. The inspector is not interested in 

estimating the true values T .. , but only in the true differences 
1J 

between the operator's and his data. Therefore he will construct the 

test with the help of the differences 

(3. 11) Z .. = Y .. 
lJ 1J 

X .. , i=l. .. k, j=l. .. n. 
1J 1 

which are according to our assumptions independent and normally 

distributed with known variances 

( 3. 12) var(Z .. ) 
lJ 

1 

J 

1,2, .• ,k 

1,2, •. ,n; 

If one treats the sample series ni' i=1 .. k, as continuous variables, 
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then the solution of the problern (3.10), and also the solution of the 

optimization problern 

min max (1-ß(g,g)), 
.l! !!. 

is givAn by the following set of formulae /2/: 

(3.13a) 

(3. 13b) 

(3. 13c) 

where 

(3.13d) 

(3.13e) 

n.* 
1 

)J • 1< 
1 

* 1-ß 
A 

0 2 (C) 

02. 
r1 

c 
6 N 0 IE e re e 
e 

M 

0 2(C) 
c ( ( 6 

e 

M 
<I>(0(C) - u ) 

1-a 

N. 0 . 
1 r1 

c 
1 

N 0 
e re 

/E) 0 ri e 

c (6 N 0 • /E)2 + 6 N2 02 
e re se' e e e e 

02 . + 2 02. 2 + 02 . 
Or1 ~Iri' 81 0

0si Is1 

/E: + 02.) . CN. 1 1 S1 

1 

and where t(.) is the normal distribution function and U. its inverse. 

The optimal test procedure is the so-called D statistic 

(3. 14) D E 
iEK 

* N. (E Z .. )/n. 
1 . lJ 1 

J 

which has been proposed earlier by Stuart /6/ who gave heuristic 

arguments for its use. 

It should be noted that the solution (3.13) of the optimization 

problern (3.10) includes the solution of one further optimization 

problern which has not been mentioned explicitly, namely the 

1,2, ... ,k 
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determination of the best test procedure in the sense of the Lemma of 

Neyman and Pearson /7/. 

~ .. 
From (3.13c) and (3.13d) we get the effort CA which is necessary for 

* achieving the guaranteed probability of detection 1-ßA which we call 

here simply 1-ß: 

(3.15) C* 

2 r-- 2 
(u

1
_,.. + U *) •0: N. 0 • •vE:.) "' 1-ß ~ ~ r~ ~ 

In case of destructive analysis we have e.=e for i=l ... k, therefore we 
~ 

get with n=C/E from (3.12) 

(3. 16) 

n.* 
~ 

-::--o-:-n__ N. 0 • 
L: N 0 ~ r~ 
e e re 

M 
((L: N 0 ) 0 . + N. 0 2 .) 

e e re r~ ~ s~ 

1 2 
0(n) =- (L: N. 0 .) + 

n i ~ r~ 
L: N. 2 
i ~ 

n* 

2 2 (u1 -u 1 ß) Ü N. 0 .) -a - ~ ~ r~ 

0 • 
s~ 

2 

3. 1. 2 ~fodel B 

We call Model B that set of falsification strategies, where only 

r. (~N.) 
~ 1 batch data of the i-th class are falsified by the class 

specific amount ~.: 
1 

(3.17) IA~I=r. for i=1 ... k. 
~ 1 

If the operator intends to divert the total amount M of nuclear 

material by means of data falsification, then he has to observe for 

the single falsifications ~. and for the sample series r. the boundary 
1 1 

condition 

(3.18) M= E 
iEK 

~.r. 
1 1 
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In this case the optimization problern of the inspector is 

(3.19) max min (1-ß(g,,r,}D) 

and where ~'~ and ~ are subject to the boundary 

conditions (3.9) and (3.18). 

Contrary to the case of Model A it is not possible to give a complete 

analytical solution for this problem. If one takes the test statistic 

(3.20) D l: N.(l: Z .. )/n. 
~ ~J ~ 

~ J 

which was proven to be optimal in case of Model A, also as test 

statistic for Model B, then one can solve the limited problern (3.19). 

If one treats the sample series n. and r,, i=1 ... k, as continuous 
~ 1 

variables, then the solution, which is also solution of the problern 

max min (1-ß(u,r,~)) 

l! ll,J:. 

is under the assumption 

(3.21) 

given by the following set of formulae /2/: 



(3. 22a) 

(3.22b) 

(3. 22c) 

(3. 22d) 

Where 

(3.22e) 

(3. 22f) 
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n.* 1 

r.* 1 

)J.* 
1 

1-ß* 

c 
E N 0 e e re 

N./2 1 

2M 
E N 0 e re 
e 

[;" 
e 

0 . r1 

*2 *2 
0DO and 0D 1 are given by 

( r. 
iEK 

( b 

iEK 

N. 0 . 1 r1 

N. 0 . 1 r1 

+ 
iEK 

2 2 
l:" N. a . 1 81 

N. 0 ri 1 

;;:: 
1 

i 1,2, ... ,k 

N.2 02. 
1 81 

2 2 and where 0 . and 0 . are again given by (3.13e). 
r1 81 

From (3.22d) we get the effort C~ which i8 nece88ary for achieving the 

guaranteed probability of detection 1-ß; which we call here simply 
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1-ß: For a<0.5 and ß<0.5 we get 

= 

(3.23a) 

A2 2M K L /M 2 H+B (K 2H-L2)(H-1) 
+ ---------------------------------

B2(K2-L2)2-2 M2 B(K2+L2 )+M4 

where the quantities A,B,D,H,K and L are defined by 

(3.23b) 

(3.23c) 

(3.23d) 

(3.23e) 

(3.23f) 

and 

(3.23f) 

A= L 
iEK 

B = 2: 
iEK 

'D ~ L: 
iEK 

K = 

1 = u
1 

. -a 

N. 0 . VE.' 
1 r1 1 

N. o . , 
1 r1 

+ 

(The capital letters A,B,D,H and K have already been used in a 

different meaning, but there should be no confusion, as they are used 

in the meaning given here only as arguments of ß and in connection 

with C.) 

In case of destructive analyses we have E .=E for i=l ... k, therefore we 
1 



get with n=C/E from (3.22): 

n 
(3. 24) n.* 

~ l: N CJ 
e re 

e 

* * * 
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N. a . 
~ r~ 

~ 1,2, .. ,k 

ri, ~i' i=1, .. ,k, and 1-ßB are the same as (3.22b,c and d), 

*2 <I: 2 L: N.2 02. 0
DO 

N. CJ .) /n + 
iEK 

~ r~ 
iEK 

~ s~ 

*2 *2 2 
0

D1 
0

DO 
+ M /n 

~~ 

and furthermore, for n we get the same expression as that given by 

(3.23a), where Ais replaced by D. 

3.1.3 Camparisan 

The guaranteed probability of detection for Models A and B can 

according to formulae (3.13c) and (3.22d) be written as 

(3.2Sa) * 1-ßA/B 

where H is given by 

M- ;;,2~~~-~-;_-;, U 1-a 

<P (____,,".".,_2=--=-==,_..----) 
JA H/C + B 
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A 

(3.25b) H for Model 

B 

and where A,B and D are given by (3.23b,c and d). Both probabilities 

(3.25a) are monotonically increasing functions of the effort C with 

the limiting probability 

(3 0 26) 

For given values of the amount M of material to be diverted and 

inspection effort C the operator can influence the guaranteed 

probability of detection only via the choice of the Models. As the 

t-function is a monotonely increasing function of its argument, we 

have 

It should be noted, however, that Model A is taken only if the 

argument of the t-function in (3.24a) is negative, i.e., if the 

probability of detection is smaller than 0.5. If we assume this to be 

an irrelevant case, then always Model B will be taken by the operator. 

On the other hand it should be kept in mind, that the solution for 

Model B holds only under the assumption (3.21), i.e., under the 

assumption 

This means, that if this solution holds, then Model B is better for 

the operator than Model A. In general terms, we can interpret these 

results as follows: 

amount of material, 

If the operator intends to divert only a small 

then he will use Model A because such a small 
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falsification might be covered by the measurement errors. If he 

intends to divert large amounts, he "plays vabangue", he falsifies 

only a few data by relatively large amounts and hopes that they will 

not be chosen for verification by the inspector. 

In Figures 3-1 through 3-6 and 3-7 through 3-12 examples for the 

probabilities of detection 1-ßA and 1-ßB as functions of the amount M 

to be diverted and fixed verification effort C for the initial .. 
inventory (data given in Table 2) with fine and rough measurements are 

given. One observes that the change of the Model, which is better from 

the operator's point of view, occurs at 1-ß=O.S; the corresponding 

value of M depends on the value of C. If one compares the figures 

which belang to different C values, one gets a qualitative idea for 

those regions of values of C, where the probability of detection 

changes significantly, in other words, where an increase of the 

verification effort still is justified. 

Let us still consider the question of the choice of the best Model 

from the point of view of the operator, if the amount M of material to 

be diverted and the probability of detection, defining H according to 

(3.25b). One can show that for given values of 

* * the value of CB is always larger than that of CA which means that also 

under the boundary condition of a given probability of detection 1-6 

the operator will chose Model B. 

In Figures 3-13 through 3-15 and 3-16 through 3-18 for the initial 

inventory data given by Table 2-1 examples for the inspection efforts 

CA and CB as functions of the amount6 M to be diverted with fixed 

probability of detection are given. If one compares the figures which 

belang to different C values, one gets a qualitative idea for those 

regions of values of the probability of detection, where the effort 

changes significantly. 

In Tables 3-1 and 3-2 for the initial inventory data given by Table 

2-1 sample series, amounts tobe diverted and standard derivations for 

Models A and B for fine and for rough measurements are given for fixed 

values of M,CA,CB and 1-ß. 



Table 3-1: 

Class 

(J 
r 

(J 
s 

* (Mod. A) n 

* (Mod. B) n 

* (Mod. A) ~ 

* (Mod. B) ~ 

Model A: 

Model B: 

Table 3-2: 

Class 

(J 
r 

(J 
s 

* n (Mod. A) 

* n (Mod. B) 

* (Mod. A) ~ 

* ~ (Mod. B) 

Model A: 

Model B: ono 
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* * Salutions for ni' ~i and the corresponding standard 

deviations using Tab. 2. I, Hodel A and B and destructive 

analysis 

M=35, ß=0.05, CA=0.293, CB=4.06 

4 5 6 

3. 2 E-5 i. I E-4 I .815 E-1 

I .6 E-5 I .4 E-4 7.26 E-2 

8.312 E-3 I. 604 E-3 2.83 E-1 

1.152E-I 2.223 E-2 3.921 

I. 908 E-4 I. 25 E-3 I .429 

3.975 E-4 2.608 E-3 2.254 

10.63 

3.546, oDI 17.73 

Salutions for n.*, ~.* and corresponding standard deviations 
1. 1. 

using Tab. 2. I, Model A and Band nondestructive analysis 

M=35, ß=0.05, CA=I230, CB=I860 

4 

4.525 E-5 

2.263 E-5 

I. 65 I 

2.496 

2.708 E-6 

9. I 80 E-5 

10.63 
10.54, oDI 

5 

2.97 E-4 

I .98 E-4 

3. 186 E-1 

4.818 E-1 

I .436 E-1 

6.025 E-4 

10.73 

6 

2.567 E-1 

I .027 E-1 

30. 

30. 

I. I I I E-1 

5.207 E-1 

7 

9.334 E-3 

3.734 E-3 

14. 12 

2 I. 36 

I. I 43 E-2 

I. 893 E-2 

8 

3.734 

3.734 

15.9 I 

25.57 

3.469 

7.574 

E-2 

E-2 

E-2 

E-2 
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Figures 3-1 to 3-12: 

Detection probability 1-ß as a function of amount of 

falisification M for fixed inspection effort. 
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Figures 3-13 to 3-18: 

Inspection efforts CA and CB as functions of the amount 

of falsification M with constant detection probabilities. 
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3.2 Tests with two Class Specific Measurement Methods 

In this section we assume that the operator will - if at all - falsify 

the material accountancy data by a total amount M of material, which 

is composed of two amounts N
1 

and M
2 

which correspond to rough and to 

fine falsifications. We assume, furthermore, that the data are 

falsified by class specific amounts in a rough resp. fine way, and 

that the composition of the total falsification is chosen by the 

operator in a way which is optimal for him. 

Let us introduce again the following class specific entities which 

describe this problem: 

(3.27) 

K = {1 ... k} 

K1 

A. 
1 

(1) 
E. 

1 

(2) 
E, 

1 

A~(l) 
1 

(1) 
~i 

(2) 
~i 

A~(1) 
1 

A~(2) 
1 

set of material classes, 

subset of K in which fine falsification and 

verification takes place, 

subset of K in which rough falsification and 

verification takes place, 

set of batches in i-th class CIA.I=N.), 
1 1 

effort for fine measurement for one batch in i-th class 

effort for rough measurement for one batch in i-th class 

set of batches in i-th class the data of which are verified 

set of batches in i-th class the data of which are verified 

with rough method (A~( 2 ) c A., IA~( 2 )1=n~ 2 )), 
1 - 1 1 1 

class specific fine falsification of one batch in i-th class, 

class specific rough falsification of one batch in i-th class, 

set of batches in i-th class which are falsified finely, 

set of batches in i-th class which are falsified roughly. 

As again the inspector is not interested in estimating the true values 

T .. , the testwill be based on the differences 
1J 
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(3. 28) Y •• - X •• (1) 
lJ lJ 

'EAx(l) 
• J i i = 1,2, •.• ,k, 1 = 1,2 

where Y .. is given by (3.2). Let X~~) resp. x~:) be the result of the 
1] 1] 1] 

destructive (fine) respec~ively nondestructive (rough) measurement of 

the inspector of the material content of the j-th batch of the i-th 

class. Under the assumption that the operator does not falsify data we 

have 

(3.29) T (1) + dll(.l) 
ij + eiij 

. Ax(1) 
JE • 

1. 
i 1,2, .•. ,k, j 

where T .. is the true material content e0(~~ the random measurement 
l.J 1J 

error and d (1) the 
Oi class specific systematic measurement error. We 

assume that the measurement errors are independent and normally 

distributed random variables with zero mean values and known 

variances: 

(3.30) F( (1)) 
' eiij 

E(d~l)) 0 
1 • i 1,2, ..•. ,k, j 1,2, ... , ni' 

2 
(1) (1) 

1,2, .... ,k, j A~(1) 1 var(e
1 
.. ) 0

Iri 
1 E ' l.J 1. 

(1) ( 1') 
0 i: • I ~ 1 1' cov(e

1 
.. el • I • I) • 1 1 ' J J or 
1J _l J 

(1) 
var(dli ) 

(1) 2 
0
Isi 

i 1,2, •• ,k 

(1) d(~')) 0 i ~ i I 1 i: 1 1 cov(dli I1 1 or 

1 

1 • 2 

(d (l) ( 1') o, i 1,2, .... ,k j 1,2, .• ,n., 1,1 I cov Ii er. . ) 
1J 1 

1 '2 

1 '2 

1 • 2 
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Under the alternative hypothesis H1 , that the batch 

are falsified by the amount ~im), m=l,2 we have 

data of the set A~ 
1 

(3.31) 

-I 
T .. - ~· ~m)+ er .. (1)+ dr~l) jEA~(l)n A~(m) 

1J 1J 1J 1 1 1 

x:. ~1) for 
1J 

T •• + c/~) + dril) jEA~(l)n (A~(1)n 
1J 1J 1 1 

1 1 '2; m 

Again, we consider Models A and B. 

3.2.1 Model A 

We consider the case that the operator falsifies - if at all - all N. 
1 

batch data in the i-th class by a class specific amount M~l), 1=1,2; 
1 

i=1,2 ... k, i.e., we consider Model A. As we assume that fine and rough 

falsifications of one batch datum cannot occur at the same time, 

A~( 2 ) = ~ for i=1 ... k. 
1 

The operator can falsify the batch data of a given class either finely 

of roughly. Table 3-3 shows all possibilities which result from this 

assumption. 

1 '2. 

A~(2)) 
1 
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Table 3-3: Falsification possibilities of the operator with respect to 

the initial inventory data given by Table 2-1. G means rough, 

F fine falsification. 

+----------------------------------+ 
+---------------1 Class 

I I 
Possibility 1 2 3 4 5 6 7 8 

+---------------+----------------------------------+ 
Al G G G G G G G G 

A2 G G G F G G G G 

A3 G G G G F G G G 

A4 G G G G G F G G 

AS G G G F F G G G 

A6 G G G G F F G G 

A7 G G G F G F G G 

AB G G G F F F G G 

+---------------+----------------------------------+ 

Let us assume that the operator intends to divert the total amount M 

of nuclear material by means of data falsification. This means that he 

has to observe for the single falsifications ~~l), 1=1,2 the boundary 

condition 



(3. 32) M= L 
'EK 
1. 1 
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N.J..1.(1)+ 
1. 1. 

(2) 
N. I.J. 

1. 1. 

where M
1 

resp. M
2 

is the total fine resp. rough falsification. The 

verification effort of the inspector is composed of the effort c
1 

for 

fine measurements, and the effort c2 for rough measurements, 

(3. 33) c = 
1 

(1) 
E:. 

1. 

(1) 
• n. 

1. 
1 1 '2. 

As the effort c
1 

is given in monetary, the effort c
2 

in i~spection 

time units, c
1 

and c
2 

cannot be combined to one single effort. 

In order to solve the problern of optimizing the overall probability of 

detection 1-ß(n(l) ,nC 2) ,~Cl) .~( 2 )) with respect to n(l) and n( 2 ) under 

the boundary condition (3.33) for any sets ~(l) and ~( 2 ), subject to 

the boundary condition (3.32), i.e. in order to solve the problern 

(3.34) max 
( 1) (2) 

n '~ 

m1.n 
(1) (2) 

.!:!.. ,1:!_ 

( 1 - ß (~ ( 1) ' 
(2) ( 1) 

n ' .!:!.. 

with the boundary conditions (3.32) and (3.33), one could in principle 

proceed as outlined in section 3.1.1, namely to determine first the 

best test in the sense of the Lemma of Neyman and Pearson. As this 

would lead us to one single test and as the fine and the rough 

measurement data of the inspector are available at different times, we 

proceed here in a different way. We construct two best tests for the 

comparison of the operator's fine and rough measurement data with the 

boundaries of given values of Ml' and Cl 1==1,2. Because of the 

independence of the two test statistics the total guaranteed 

* probability of no detection, ßtA' is given by 

~'< * ß~A (3.35a) ßtA = ßFA 

#~ 

ß~A where ßFA and are the single guaranteed probabilities of no 

detection. The total no false alarm probability is 

(3.35b) 
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where a 1 , 1=1,2 are the single false alarm probabilities which we will 

choose a 1=a
2
=0.05 in the numerical examples. 

The 
1 ~ ... 

optimal sample series n. of the inspector and the optimal single 
1 

. . . 1 ~ ... 
fals1f1cat1ons v. of the operator i=1 ... k, 1=1,2 are then agairr given 

1 

by the set (3.13) of formulae where allrelevant quantities get the 

index 1=1,2. The same holds for the efforts c
1 

necessary for achieving 

a guaranteed probability of detection; they are given by formula 

(3.15) for 1=1,2. 

It should be noted that there exist further reasonable possibilities 

for constructing test procedures for the two sets of data z~~)' 1=1,2, 
1J 

which have been discussed in /8/, which will, however, not be used 

here. 

3.2.2 Model B 

Let us now consider Model B i.e., that case where r~ 1 ) batch data of 
1 

the i-th class are falsified by the amount v~ 1 ), 
1 

and where r~ 2 ) batch 
1 

data of the i-th class are falsified by the amount of v~ 2 ), i=1 ... k. 
1 

Also in this case one batch datum cannot be falsified finely and 

roughly at the same time, 

We know however, from formula (3.22b) that - in case of the twofold 

test procedure which we discussed before and which we will use again -

the optimal 

i=1 ... k which 

values of the sample series r. are given by N./2 for 
1 1 

means that contrary to Model A here also both fine and 

rough falsifications are possible within one class. 

If the operator intends to divert the total amount M of nuclear 

material by means of data falsification, then he has to observe for 

the single falsifications v~l) and r~l)' i=1 ... k, 1=1,2, the boundary 
1 1 

condition 

(3.36) M E 
iEK 

(r. (1) (1) + r. (2) "· (2)) = M + 
1 )Ji 1 ~1 1 M2 

For the sample sizes i=l. .. k, 1=1,2, we have agairr the two 
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boundary conditions (3.33). 

In order to solve the problern of optimizing the overall probability of 

detection 1-ß(n( 1),n( 2 ) ,~( 1 ),~( 2 ) ,r( 1) ,rC 2)) with respect to n( 1) and 

n(2 ) under the boundary Londitions (3.33) for any sets 

( 1) ( 1) (2) (2) subJ'ect ~ ,r ,~ ,r , to the boundary condition (3.36), i. e., 

in order to solve the problern 

(3.37) 

with the boundary conditions (3.33) and (3.36), we proceed as in the 

foregoing section. We construct two best tests for the comparison of 

the operator's data with the inspector's fine and rough measurement 

data with the boundaries of given values of M
1 

and c
1

, 1=1,2, 

according to (3.33) and (3.36). 

Contrary to Model A here the two test statistics are in general not 

independent as one operator's da turn may be verified both by the 

inspector's fine and rough measurement. Therefore, a factorization of 

the total probability of no detection and of the total no false alarm 

probability in the sense of formulae (3.35) does not hold in general. 

In the following, we derive the exact expressions for the total 

detection and false alarm probabilities based on the D-statistics, and 

show at the hand of numerical examples that the dependence of the two 

statistics can be neglected in some cases. 

The D-statistics for the two tests are 

(3.38) Dl I: N. 2:: Cv· · - X. ~l))/n~l) 
iEK 

1 . ··1J 1J 1 
J 

,1=1,2. 

where Y .. is given by (3.2) and x(l) by (3.31). Let 
1J 1J 

n. be the nurober 
1 

of bat eh data in the i-th class which are verified both by fine and 

rough measurements. If we assume that within one class no batch datum 

is verified twice as long as there are still data, which have not yet 

been verified, then we have 

(3.39) n. 
1 

. n~ 1 ) + n~Z) - N. l 1 0 1 1 
if N. > n~ 1 ) + n~ 2 ) 

1 1 1 
otherwise 

i = 1,2, •.. ,k. 
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With this definition we get for the covariance of D
1 

and D
2 

after some 

elementary calculations . 

(3.40a) 

n. 
I: ( N~ • --,-,...----1.----r::-o­
iEK 1. n~l) + n. ( 2 ) 

1. 1. 

002 . + N~ 002 . ) 
r1. 1. s1 

If 
(1)2 (1)2 

we call oDO and oDl the variances of n1 , 1=1,2 under the null 

and under the alternative hypothesis H
0 

and H
1

, then the correlations 

of D
1 

and D
2 

under H
0 

and H
1 

are 

( 1) (2)) cov(D 1,n2)/(0DO • 0DO Po 

(3.40b) cor(D
1

,D2) und er 

(1) 
cov(D 1,n2)/(0D1 • (2)) 0D1 ""' p1 

With these definitions the common probability density function of D
1 

and D
2 

is under the null hypothesis H
0 

(3.41a) 1 
2rr 

and under the alternative 

(3.41b) f1(x1,x2) 
1 
211 

hypothesis 

1 
(1) (2). 

0
D1 °D1 

---- exp (---
/1-p2 2(1-p 2) 

0 0 

Hl 

1 

A-p 2 
1 

2 

H 
0 

H1 

2pox1x2 

(1) (2) 
0DO 0DO 

2 
( 1 (x1-M1) 2p1(x1-M1)(x2-M2) (x2-M2) exp ( + )) 2 0(1) (2) 2 ( 1-p 1 ) (1)2 (2)2 0

D1 D1 • 0D1 0D1 



-48-

Therefore, the total no fal8e alarm probability 1-a, which i8 defined 

a8 

81 82 

(3. 42a) 1-a 
t 

f dx
1 

f dx2 f
0

(x 1,x2) 
-00 -00 

where s
1 

and s 2 are given by 

(3.42b) s 
e 

u 
1-a 

e 

(e) 
0 DO 

e = 1 '2 

i8 explicitly given by the formula 

u 
1-al 

(3. 43) 1-a 1 
f t - 2IT dx

1 11-p 2 
-00 

0 

u 
1-a2 

f dx2 
-00 

2 2 
x1-2pox1x2+x2 

exp (-
2 ( 1-p 2) ) 

0 

Furthermore, 

defined as 

the total probability of no detection ßt' which is 

(3. 44) 
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where s
1 

and s
2 

are again given by (3.42b), is explicitly given by the 

formula 

(3.45) 
(1) 

0
DO• U -M 

1-a.l 1 

1 1 
211. /1-d 

-00 -00 

In Figures 3.19 through 3.21 the probability of detection with and 

without (i.e vanishing) correlations are given. In addition, in 

Figures 3.22 through 3.24 the correlations p
0 

and p
1 

are shown. We see 

that for values of the total fine falsification H1 , which are not too 

small, we can neglect the dependence between the two test statistics 

D
1 

and D2 , which, as already mentioned, exists only for 

n (l. )+ n( 2. )> N. f 1 . 1 k or at east one 1= , ... , . 
1 1 1 

As a consequence, we proceed as outlined in the foregoing section. We 

write the total probability of no detection, ß:B' in the form 

~'( ~~ ~'r 

(3.46a) ßtB = ßFB ßGB 

~~ 
and ßGB are the single guaranteed probabilities of no 

detection, and accordingly the total no false alarm probabilities 1-a1 
in the form 

(3.46b) 

where a
1

, 1=1,2 are the single false alarm probabilities which we will 

choose a
1
=a

2
=0.05 in the numerical examples. 
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Figures 3-19 to 3-21: 

Influence of the correlation of D
1 

and D
2 

on 

the detection probability 1-ß. 
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Figures 3-22 to 3-24: 

Gorrelation p
1 

of n
1 

and n
2 

under H1 as 

a function of the amount of fine falsification M1 . 
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The optimal sample sizes 
c~.,.) 

of the inspector and n. 
1 

the optimal sample sizes 
1 ~ ... 

and single falsifications r, 
1 

1 ;'" 
l.l. 'i=1, ... k, 

1 

1=1,2 are then again given by the set 

(3.22) of formulae, where all relevant quantities get the index 

1=1,2. The same holds for the effort C necessary for achieving 

a guaranteed probability of detection, they are given by formula 

(3.23) for 1=1,2. 

3.2.3 Camparisan 

If one neglects the correlation between the two test statistics 

in Model B, then the total probability of no detection can 

both for Model A and B be written as 

(3. 47 a) 

where H
1

, 

(3.47b) 

and where 

(3.47c) 

(3.47d) 

(3.47e) 

* ß tA,B 

1=1,2 is 

Hl 

Al 

Bi 

given 

1 + 

L: 
'EK 
1 1 

L: 
iEK 

1 

by 

A 

for Model 
M2/D2 

1 1 B 

N. 
(1) fs~i-) 

(J 
1 r1 1 

N~ 
(1) 2 

(J ' 
1 S1 

(1) 
N. • a . 

1 r1 
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Both probabilities of detection are monotonically increasing functions 

of the efforts c
1

, 1=1,2, with the limiting values 

(3. 48) * ß tB 

If the values of c
1 

and c
2 

are fixed, the operator can for given 

values of M
1 

and M
2 

influence the total probability of detection only 

by choosing Model A or B. With the abbreviations 

(3.49) 
1 '2' 

one sees immediately: For zl and z2 greater zero, the Operator will 

choose Model A, for z
1 

and z
2 

smaller zero, he will choose Model B. If 

zl and z2 have different signs, then the Operator chooses Model B, if 

the absolute value of the negative argument of the one t-function is 

larger than the absolute value of the positive argument of the other 

t-function, otherwise Model A. 

If the total guaranteed probability of detection is given, and if it 

is larger than the limiting value given by (3.48), then there does not 

exist any pair of efforts (C
1
,c

2
) which can fulfill this. Lower 

boundaries for c
1 

1=1,2 are given by (3.23a) with 

(3.50) ßt/~(U1-a- Mm/ ~), 1 
m 

1, 2, m 3-1. 

Under the assumption 1
1
>0.5, 1=1,2 we calculate in the same way as in 

section 3.1.3 that the minimal values for the efforts c
1

, 1=1,2 are 

always larger for Model B than for Model A 
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Figures 3.25 through 3.29 show optimal efforts c
1 

and c
2 

of the 

inspector for given total guaranteed probability of detection and 

given total amount M of material to be diverted via data 

falsification, both for Model A and ~· Comparing Figures 3.25 through 

3.27, one recognizes the influence of the diversion strategy (A4,A7,A8 

of Table 3-3). Comparing Figures 3.27 through 3.29, one recognizes the 

influence of the value of the total diversion. One clearly recognizes, 

in addition the higher verification effort in case of Hodel B. 

Tables 3-4 through 3.9 show for selected values of c
1

, c
2 

M and 1-ß 

the optimal distribution (M
1

,M
2

) of the total falsification M, and 

furthermore, sample sizes and single falsifications for Model A. The 

comparison of Tables 3-4 through 3-9 shows the influence of the total 

falsification M. 

Tables 3-10 through 3-12 show for selected pairs of values of c
1 

and 

c2 , M and 1-ß the optimal distribution (M
1

,M
2

) of the total 

falsification and furthermore, sample sizes and single falsifications 

for Model B. The comparison of these tables shows the influence of the 

total falsification M. 
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Figures 3-25 to 3-29: 

Optimal efforts c
1 

and c2 for given guaranteed 

detection probability and amount of falsification M. 
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Tables 3-4 to 3-9: 

Optimaldistribution (M1,M2) of the total falsification 

M, sample sizes and single falsification for Model A 

and selected values c1,c2 ,M and I-ßt. 



Tab. 3-4: Cl 

Class 

n 
(1 )* 

ll 
(I)* 

cr 
(1) 
r 

cr (1) 
s 

n 
(2)* 

ll 
(2)* 

~"2) 
cr' 

r 

cr(2) 
s 

( 1 1 cr , , 
DO 

cr(2) 
DO 

4 

1.030 E+O 

3.788 E-6 

4.525 E-5 

2.263 E-5 

2. 776 

10.25 

10.0 c2 =596.0 ßt = 0.05 

5 6 7 

l .000 E+O 

1. 045 E-1 

1. 815 E-1 

7.260 E-2 

1.988 E-I 8. 81 1 E+ 1 

2.152 E-5 1.149 E-2 

2.970 E-4 9.334 E-3 

1. 980 E-4 3. 734 E-3 

-·-- ~ L_____ ___ -
~--- - ----

M
1 

= 3. 14 

M2 = 31.8 

8 

1.055 E+l 

3.516 E-2 

3.734 E-2 

3. 734 E-2 

--

----

-~ 

8l 
I 



Tab. 3-5: c1 = 10.0 c2 = 608.0 

Class 

n 
( 1) * 

11 
(1 )* 

(1) 
crr 

CJ 
(1) 
s 

n 
(2)* 

11 
(2)* 

(2) 
crr 

CJ 
(2) 
s 

CJ ( 1) 
DO 

CJ(2) 
DO 

4 5 

2.854 E-1 

7. 871 E-6 

3.200 E-5 

1.600 E-5 

2.042 E-1 

2.098 E-5 

2.970 E-4 

1.980E-4 

2.809 M
1 

= 3.23 

= 10.24 ~ = 31.7 

ßt = 0.05 

6 7 

9.715 E+O 

1.064 E-1 

1.815 E-1 

7. 260 E-2 

9. 051 E+ 1 

1.146 E-2 

9.334 E-3 

3.734 E-3 

8 

I. 084 E+ 1 

3.505 E-2 

3.734 E-2 

3.734 E-2 

Ol 
CO 

I 



Tab. 3-6: Cl 

C.lass 

n (I)* 

ll 
( 1) * 

(1) 
crr 

(J 
(I) 
s 

n 
(2)* 

ll 
(2)* 

(2) 
crr 

(J 
(2) 
s 

0(1) -
DO -

(1) 
aDO = 

4 

2. 828 E-1 

7. 908 E-6 

3.200 E-5 

1. 600 E-5 

2.815 

10.23 

10.0 

Ml 

Mz 

c2 61 1. 0 ßt = 0.05 

5 6 

5.477 E-2 9.661 E+O 

4.964 E-5 1.066 E-1 

2. 100 E-4 1.815 E-1 

1. 400 E-4 7.260 E-2 

3.24 

31.7 

7 

9.101 E+l 

1. 146 E-2 

9.334 E-3 

3.734 E-3 

8 

1.090 E+l 

3.504 E-2 

3.734 E-2 

3.734 E-2 

-..! 
0 

I 



Tab. 3-7: 

Class 

n 

ll 

(J 

(J 

n 

ll 

(J 

(J 

(1 )* 

(I)* 

( 1) 
r 

( 1) 
s 

(2)* 

(2)* 

(2) 
r 

(2) 
s 

(1) 
crDO 

(2) 
crDO 

Cl 

4 

2.838 E-1 

7. 149 E-6 

3.200 E-5 

1. 600 E-5 

-

2.815 

11. 84 

10.0 c2 99.7 ßt 0.05 

5 6 7 8 

5.477 E-2 9.601 E+O 

4.487 E-5 9.638 E-2 

2. 100 E-4 1 . 815 E-1 

1. 400 E-4 7.260 E-2 
-.J 
~ 

I. 484 E+ 1 l. 777 E+O 

1. 329 E-;2 4.374 E-2 

9.334 E-3 3.734 E-2 

3.734 E-3 3.734 E-2 

- --~ ---------

MI 2.93 

M2 37.0 



Tab. 3-8: 

Class 

n (I)* 

]..1 
(1 )* 

(J (1) 
r 

(J (2) 
s 

n (2) * 

]..1 
(2)* 

(J(2) 
r 

(J (2) 
s 

(J(l) 
DO 

(J(2) 
DO 

Cl 

4 

2.838 E-I 

6.420 E-6 

3.200 E-5 

1. 600 E-5 

2.815 

13.43 

10.0 c
2 

= SI. 1 ßt 

5 6 

5.477 E-2 9.661 E+O 

4.029 E-5 8.655 E-2 

2.100 E-4 1. 815 E-1 

1.400 E-4 7.260 E-2 

MI 2.63 

Mz = 42.3 

0.05 

7 

7.614 E+O 

1.513 E-2 

9.334 E-3 

3.734 E-3 

8 

9. 117 E-1 

5.214 E-2 

3.734 E-2 

3.734 E-2 

-.j 
1\) 

-~ 



Tab. 3-9: 

Class 

n (1 )* 

]l 
(1 )* 

(1) 
or 

0(1) 
s 

n (2)* 

]l 
(2)* 

(2) 
or 

0 
(2) 
s 

(1) 
0

DO 

0(1) 
DO 

= 

Cl 10.0 

4 

2.838 E-1 

5.799 E-6 

3.200 E-5 

1. 600 E-5 

4.9 

2.815 Ml 

15.01 ~ 

c
2 

= 33. 1 ßt = 0.05 

5 6 

5.477 E-2 9.661 E+O 

3.640 E-5 7.818 E-2 

2.100 E-4 I. 815 E-1 

1. 400 E-4 7.260 E-2 

2.37 

47.6 

7 

I 

4.930 E+O 

1.695 E-2 

9.334 E-3 

3.734 E-3 

8 

5. 902 E-1 

6.028 E-2 

3.734 E-2 

3.734 E-2 

I 

---1 
(o) 
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Tables 3-10 to 3-12: 

Optimaldistribution (M1,M
2

) of the total falsification M, 

sample sizes and single falsifications for Model B and 

selected values c1,c2 ,M and I-ßt. 



Tab. 3-10: Cl 

Class 

n 
(1 )* 

].1 
(I)* 

cr~ I) 

cr(l) 
s 

n 
(2)* 

].1 
(2)* 

(2) 
crr 

er (2) 
s 

L_ 

(1) 
crDO 

cr(l) 
Dl 

4 

6.244 E-I 

2.919 E-5 

3.200 E-5 

1. 600 E-5 

2.893 E+2 

8.506 E-5 

4.525 E-5 

2.263 E-5 

2.488 

2.548 

22.0 

5 

1.205 E-1 

1.915 E-4 

2. 100 E-4 

1. 400 E-4 

5.584 E+l 
. 

5.582 E-4 

2.970 E-4 

1.980 E-4 

-----

(2) 
crDO 

cr(2) 
Dl 

c2 215000.0 

6 

2. 126 E+l 

1.655 E-1 

1. 815 E-1 

7.260 E-2 

3.000 E+l 

4.825 E-1 

2.567 E-1 

1.027 E-1 

10.36 

10.36 

ßt 0.05 

7 

2.539 E+3 

1. 754 E-2 

9.334 E-3 

3.734 E-3 

MI 2.56 

M2 32.4 

8 

7. 600 E+l 

7.018 E-2 

3.734 E-2 

3.734 E-3 

-...! 
(11 



Tab. 3-11: 

Class 

n (I)* 

11 
(I)* 

(1(1) 
r 

(1 (I) 
s 

n (2)* 

11 
(2)* 

(1 (2) 
r 

(1 (2) 
s 

(I) 
0 no 

(1) 
0 DI 

c
1 

= 22.0 c2 

4 

6.244 E-1 

2.237 E-5 

3.200 E-5 

1. 600 E-2 

4.201 E-1 

9.975 E-5 

4.525 E-5 

2.263 E-5 

2.488 

2.523 

(2) 
0 DO 

(1(2) 
Dl 

5 

1.205 E-1 

1.468 E-4 

2.100 E-4 

I. 400 E-4 

8. 109 E-2 

6.546 E-4 

2.970 E-4 

1. 980 E-4 

11.4 

12.55 

313.0 ßt 

6 

2.126 E+l 

1.269 E-I 

L 815 E-I 

7.260 E-2 

1.168E+l 

5.658 E-1 

2.567 E-1 

1.027 E-1 

MI 1.96 

M2 38.0 

0.05 

7 

3.594 E+l 

2.057 E-2 

9.334 E-3 

3.734 E-3 

-
8 

4.304 E+O 

8.230 E-2 

3.734 E-2 

3.734 E-2 

I 

~ 
0> 

I 



Tab. 3-12: Cl 

Class 

n (l )* 

]J 
(l) * 

( 1) 
ar 

a 
(l) 
s 

n 
(2) * 

]J 
(2)* 

a 
(2) 
r 

a(2) 
s 

(l) 
aDO 

(1) 
aDJ 

4 

6.244 E-I 

1.678 E-5 

3.200 E-5 

1. 600 E-5 

2.173 E-1 

1.142 E-4 

4.525 E-5 

2.263 E-5 

2.488 

2.508 

22.0 c2 

5 

1.205 E-1 

1. 101 E-4 

2.100 E-4 

1.400 E-4 

4.193 E-2 

7.492 E-4 

2.970 E-4 

1. 980 E-4 

(2) 
aDO 

(2) 
aDl 

12.3 

14.87 

162.0 ßt 0.05 

6 7 8 

2. 126 E+l 

9.515 E-2 

I. 815 E-I 

7.260 E-2 

-..j 
-..j 

6.039 E+O 1. 859 E+ 1 2.225 E+O 

6.475 E-1 2.355 E-2 9.418 E-2 

2.567 E-I 9.334 E-3 3.734 E-2 

1. 027 E-1 3.734 E-3 3.734 E-2 

MI 1.47 

M
2 

= 43.5 



-78-

4. Conclusion 

It is shown in the foregoing part that game theoretic considerations 

lead to a reasonable analysis to determine sample sizes for the 

verification of materials balaces. It is feasible to use twol different 

measurement methods for the verification of operator's data. The 

formulae for inspector sample sizes can be easily implemented on a 

computer. Only two extreme diversion models have been used. 

Nevertheless, theoretical and numerical considerations give plausible 

about diversion strategies under certain parameter assumptions 

conditions. Especially the fact that the more general Model B can be 

treated leads to the conclusion that a distinction in attributed and 

variable sampling seems not necessary. The analysis enables several 

parameter studies. 

For single verification methods a dependence between amount of 

falsification and inspection effort for a given probability of 

detection is presented. That means for a certain verification effort 

i.e. a limitation that is given in terms of time or money we can find 

an amount of falsification that is detected with an acceptable 

detection probability. 

If we look at the situation where two measurement methods are used by 

the inspector to verify operator's data we can illustrate the 

relationship between the inspection efforts for both methods under a 

given detection probability. These areas can be isolated where 

reasonable combinations of inspection efforts should be. Furthermore, 

the dangeraus areas for the inspector are demonstrated. That is these 

areas where a reduction of inspection effort for one method leads to 

necessity of large addition of the other method to attain a certain 

detection probability. This is a point of view that is very important 

for a inspection authority. 
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