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Abstract

The computer code GORGON, which calculates the energy
deposition and slowing down of ions in cold materials and hot
plasmas is described, and analyzed in this report. This code
is in a state of continuous development but an intermediate
stage has been reached where it is considered useful to do-
cument the "state of the art" at the present time. The GORGON

code is an improved version of a code developed by Zinamon et
al. as part of a more complex program system for studying the

hydrodynamic motion of plane metal targets irradiated by intense
beams of protons. The improvements made in the code were necessary
to improve its usefulneés for problems related to the design
and burn of heavy ion beam driven inertial confinement fusion
targeps.

The report prowides a description of what problems
the code can solve and discusses the importance of the problem
of energy loss of ions to various aspects of ion beam fusion.
A review is given of the theory used in the code, relevant to
the problem at' hand, in particular discussing the Thomas
Fermi theory of the state of high density plasmas and the
slowing down ©f ions due to free and bound electrons using the
dielectric function theory and the Bethe theory. The improvements
made in the code and their importance are discussed in detail
and the limitations and future improvements are also briefly
discussed. The method of solution of the problem within the
code is treated. Detailed descriptions of input data and out-
put of the code are provided as well as a description of the
subroutines and variables used in the code . An executed

test problem is provided and described.




GORGON - ein Rechenprogramm zur Berechnung der Energiedeposition

und der Ionenverlangsamung in kalten Werkstoffen und heifen, dichten

Plasmen

Kurzfassung

Im vorliegenden Bericht wird das Rechenprogramm GORGON beschrieben
und analysiert, mit dem die Energiedeposition und Ionenverlang-
samung in kalten Werkstoffen und heiBen Plasmen berechnet werden
kénnen. Das Programm befindet sich im Zustand forschreitender
Entwicklung, jedoch ist nun eine Zwischenstufe erreicht, auf der
es als niitzlich erachtet wird, den derzeitigen Stand zu doku-
mentieren. Das Programm GORGON stellt eine verbesserte Version
eines Rechenprogramms dar, das Zinamon et al. als Teil eines
komplexeren Programmsystems entwickelt haben, um die hydro-
dynamische Bewegung ebener, mit starken Protonenstrahlen be-
strahlter Metalltargets zu untersuchen. Die Programmverbesserungen
waren erforderlich, um die Eignung des Programms bei der Ldsung
von Problemen in Zusammenhang mit der Auslegung und dem Abbrennen
von Targets in Fusionsanlagen mit TrdgheitseinschluB und Schwer-
ionenstrahltreiber zu verbessern.

Der Bericht beschreibt, welche Probleme das Rechenprogramm ldsen
kann. Auch wird die Bedeutung des Problems des Ionenenergiever-
lusts in Bezug auf verschiedene Aspekte der Ionenstrahlfusion
diskutiert. Der Bericht enthilt einen Uberblick iliber die im
Rechenprogramm benutzte und auf das anstehende Problem bezogene
Theorie und insbesondere eine Diskussion der Thomas-Fermi-Theorie
des Zustands von Plasmen hoher Dichte und der Verlangsamung von
Ionen infolge freier und gebundener Elektronen unter Verwendung
der Theorie der dielektrischen Funktion und der Bethe-Theorie.
Die Programmverbesserungen und ihre Bedeutung werden ausfithrlich
diskutiert, und die Grenzen und kiinftige Verbesserungen werden
ebenfalls kurz angesprochen. Die L8sungsmethode fiir das Problem
im Rahmen des Rechenprogramms wird behandelt. Der Bericht ent-
h&lt eine ausfiihrliche Beschreibung der Eingabedaten und der
Programmausgabe sowie eine Beschreibung der im Rechenprogramm be-
nutzten Unterprogramme und Variablen. Der Bericht wird ergédnzt
durch eine ausgefilhrte Testaufgabe mit Beschreibung.
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1. Introduction

The GORGON code is designed to calculate the energy loss of
any ion, heavy or light in a cold material or plasma of arbitrary
density and temperature. The code solves the problem by calcu-
lating the basic plasma parameters within the Thomas-Fermi model
and then using this solution to divide the electrons into bound
and free electrons. The stopping power of the free electrons
is then calculated using the dielectric function theory approach,
while that due to the bound electrons is calculated using the
Bethe theory including a novel approach to the inclusion of
shell corrections. The Bethe I parameter which describes all
the excitation and ionization processes of the bound electrons
and averages their energy over the probability of their occurence
is calculated using the Thomas Fermi model. The scattering due
to the charged nuclei is also calculated. The code includes a
simple treatment for degenerate electrons,and a simple theory
of the effective charge of the ion which is passing through
the plasma. The code calculates the stopping power p—1 dE/dx
as a function of the energy of the ion, and by an iterative
procedure can calculate ranges. The main limitation of the code
is probably its simple treatment of the effective charge. A
more detailed calculation has been given recently / 3,4 / which
shows that for light ions this can very drastically reduce the
range in hot plasmas, in addition to the range shortening that
is obtained using the GORGON code as it is described here. It
is also necessary to give an improved treatment of the degeneracy
of electrons and its effect on the stopping power especially
for a-particles in DT plasmas found in ICF pellets.

There are also much more fundamental questions about the best
theoretical treatment of dense plasmas and the way to treat
the stopping power in such systems. For instance the inclusion
of collisions in the dielectric function used for the stopping
power of free electrons may be too simple. However this is a

complicated problem on which research is still in progress.




Historically this problem was first treated by Chandrasekhar
who used the methods of classical plasma physics to treat the

problem of binary Coulomb collisions in the plasma /5 /.

Bohm and Pines / 6 / pointed out the importance of including
plasmons in the calculation of the stopping power. This type

of theory was : used by Bangerter / 7 /, to first describe
stopping power problems in ion: beam driven inertial fusion.

The work by Nardi, Peleg and Zinamon gave the first thorough /1/
discussion of the problem including a detailed treatment of
ionization effects, a sophisticated first principles calculation
of the Bethe parameter I, and a dielectric function theory
treatment of the free electrons. Later Mehlhorn also treated /8,9/
the same problem. He included some new features such as using

the LSS theory (Lindhard et al /10 /) at low energies, in-
cluding ion-ion scattering both in the cold material and in the
fully ionized plasma. However a simple scaling relation was

used for the calculation of I. The Zinamon theory was developed
only for protons, and Mehlhorn included a "cold" effective

charge in order to treat heavy and light ions. The improvements
made to the GORGON code at KfK have included such effects and
since the code is based on a firmer theoretical foundation,

the GORGON code is as good as, if not better than any other presently
existing code. Other calculations have been done by More / 11 /
He discusses the application of two methods. In the first the dielec-
tric function theory is used for both bound and free electrons

in the whole Thomas-Fermi pseudoatom, by aWeraging the finite
temperature R.P.A. approximation to the dielectric function over
the electron density. In this case the Thomas-Fermi-Dirac theory
is used. It is however doubtful if there is much difference
between this approach and the approach made in the GORGON code.
The approach for the free electrons is the same, and since for
high ion velocities the dielectric theory can be shown to be
identical / 12 /to the Bethe theory, and since I is calculated
by the Thomas Fermi theory in the GORGON code, the only difference
seems to lie in the way one averages over the electron density.
The second approach uses the hydrogenic ionization equilibrium
model to provide detailed populations and energy levels for the
target plasma: / 11 /. The Bethe I is then calculated from this

data using the definition of I, and the rest of the calculation




(presumably) proceeds as in the GORGON code.

The organization of the rest of this report is as follows.
In section 2-6 the theory of stopping power relevant directly
to the code is discussed. Section 2 gives a more extensive
discussion of the problem, applications, and the importance
of the problem for ion beam inertial fusion. In Section 3 a
description of the Thomas-Fermi theory is given, which is
used in the code to calculate the basic plasma parameters.
In Section 4, a discussion of the dielectric function theory
of the stopping power is given, and the theory used in the
code is discussed.
In 5 the stopping power of bound electrons is reviewed and
the method of calculation of the Bethe I parameter is described.
In Section 6 the treatment of the stopping power of ions used
in the code is briefly described.

In Section 7 the improvements made to the original version
of the code / 2 / made at KfK are described.
Section 8 gives the User's and Programmer's Information.
Section 9 gives an executed test problem and discusses a few
typical results obtained with the code. Section 10 discusses
the desirable future improvements which are intended to be
made to the GORGON code and describes the conclusions drawn

from this work.




2. Problem Definition, Importance of the problem in Ion Beam

Inertial Fusion and general theoretical considerations

The problem of the energy loss of fast particles in matter
has occupied the minds of some of this century's best physicists,
Thompson / 13 /, Rutherford / 14 /, Bohr /15,16/,Bethe / 17,18/,
Mott / 19 /, Bloch / 20/, Fermi / 21 / and Landau / 22/.

In fact the theoretical and experimental investigation of this
problem has played a very important part in the development of
modern physics. The distinction between large and small angle
Coulomb scattering led to the discovery of the nuclear atom. The
way in which o and B rays slowed down in matter allowed their
identification as fully ionized Helium and energetic electrons.
Particle track detectors have been responsible for the discovery
of most known elementary particles. Many different fields such
as astrophysics, nuclear physics, atomic physics, molecular
physics, biophysics and'many others rely on a good theoretical
and experimental knowledge of the slowing down of charged particles
in matter.

The problem of the stopping power of ions in matter is also
very important in a number of research and development programmes.
For instance it plays a significant role in the development and
application of heavy ion beam accelerators / 14 /, the interpre-
tation of cosmicray results / 14/, and as a means of treating cancer
/ 14 /. Recently another very exciting application has been dis-
covered in heavy and lightion beam inertial confinement fusion /20,
23, 24, 25, 26, 28/ which is discussed in more detail below.

The computer program GORGON described here,calculates the
stopping power of any given ion with any charge state in a cold
material or hot plasma over the very considerable ranges of
temperature and density, which are of importance for ion beam
driven inertial confinement fusion. The problem of the stopping
power in cold materials has been studied very extensively since
1903, but the problem of the slowing down in hot plasmas has not been




studied until recently. A similar problem was treated by Chandra-
sekhar in connection with problems in astrophysics /5/, by the con-
ventional theory of gravitational scattering. However the problem
of the slowing down of ions in very dense hot plasmas is relatively
new and has only assumed importance since the advent of ion beam
driven Inertial fusion. These effects were first discussed by
Bangerter /7/. Zinamon et al. gave the first thorough discussion
of the problem for protons /1/.

The GORGON code was written in its original form by Nardi, Peleg
and Zinamon,and is based on the work done for protons. Some ex-
tensions and improvements have been made at the Institute for
Neutron Physics and Reactor Technology at the Nuclear Research
Centre, Karlsruhe, in order to facilitate the codes use in pellet
design for heavy and light ion beam fusion. Since the theory in
the code is thoroughly discussed in this report we very briefly
describe the model. The theory used by Nardi, Peleg and Zinamon
divides the electrons in the plasma intro free and bound electrons
as calculated using the Thomas Fermi model. The contribution

of the free electrons is then calculated using the dielectric
function theory and that of the bound electrons using the Bethe
theory. The basic plasma parameters are calculated using the

Thomas Fermi model.

More recently Mehlhorn has also treated this problem /8,9/. His
approach is to use the Bethe theory including shell corrections
for the stopping power of the bound electrons. At lower energies
where this version of the Bethe theory breaks down it is replaced
by the LSS theory developed by Linhard and his group /10/. This
makes use.of a Thomas-Fermi description of the electron cloud
around each ion and gives contributions to the stopping power due
not only the excitation and ionization, but also due to elastic
Coulomb collisions of the ion and the nucleus of the target atom.
A suitable empirical formula for the effective charge on the ion
is used. At finite temperature the Saha equation is used to find
the equilibrium chargezflof the target material as a func%}on of
temperature and density. A scaling relation depending onZBz is used
to calculate the value of I. This model is clearly rather crude.
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Fig.1 :Target in its imploding configuration.
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An empirical formula derived for cold materials is used
for the effective charge Zeff on the ion as it passes through
the plasma /29 /. The velocity is taken as the square root
of the sum of the ion velocity squared plus the thermal electron
velocity squared. This raises the value of Z £ especially at
lower energies in hot plasmas. It simulates the greater degree
of collisional ionization. The modification occurs mostly at
lower energies. A dielectric function theory was used for the
free electrons as described in section /4.3 /, and was compared to
a theory in which binary collisions and collective plasma wave
excitation outside the Debye radius was applied.. The latter
theory is actually used in the code for Loth the electron and ion
plasma contribution to the stopping power. The possibility of
Debye shielding of the remaining bound electrons by the plasma
electrons is also considered in Mehlhorn's code. The theory used
by Moore /11/ is described elsewhere in this report so will not
be considered again here (4.5).

We will now consider in detail the problem of the
importance of ion beam energy deposition for ion beam driven
inertial confinement fusion . From cold stopping power
data it was recognized that / 7 / MeV protons or GEV heavy
ions would have the "correct" range needed to drive typical size
ICF targets. The ranges Of such ions is of the order of 3-10"
cms, i.e. less than 1 mm in normal uncompressed matter, e.g.lead.
It was also realized that one can tailor ionic species, accele-
rator voltage, mass etc. to the problem at hand. Hevy ions can
naturally carry much more energy/ion than light ions, because the
stopping power of heavy ions is much greater since the effective
charge is much larger and the energy deposition ps proportional
tOZSEgM(Where M is the mass of the ion), when the velocity of the
ion is greater than the thermal electron velocity. Further the
energy loss of both heavy and light ions is expected to the
Classical and not to involve that because of theihighly collisional
nhature of the plasma, for instance, to two stream instability is

not likely to occur.
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This is because a plasma wave is damped out by collisions
before another ion passes the point where the plasma wave was
generated. A good and accurate knowledge of energy deposition
of ions in hot plasmas and cold materials is necessary in order
to optimize beam generation, calculate target beam coupling
efficiencies and to design targets in general. It is also very
important in the interpretation of experiments. For coupling
into a hydrodynamic code, the energy deposition routine must
naturally be not too time consuming.

The type of ion beam target used in the HIBALL reactor
/26,2,33,34/ study is shown in Fig.1. This target works in the
following way Fig. 2,3. 10 GeV Bi+ ions impinge on the outside
surface of the lead shell, and because of their high energy
they pass through the lead shell, heating it up as they go by
binary collisions, and excitation of plasma waves, and go deep
into the lithium shell Fig.3. The energy deposition per gm
of material by the beam is roughly the same in the lead as in
the lithium region but the specific heat/gm of the lithium
region is about 5x smaller than the lead region because ioni-
zation effects are much more dominant in the: lead. The tempera-
ture in the lead rises to about 100 eV and that in the lithium
to about 500 eV. It should be noted as the lead and
lithium plasmas heat up the range of the ions shortens Figs.3
4 and 5. This effect is about 30% of the cold range or about
50% of the hot range (Figs. 4+5).

An increase of the ion energy during the course of the implosion or
the effect of radiation transport could compensate for this effect.
If this is not done then the beam fuel target efficiency may drop
to  too. low a level and ignition will not be achieved /30/.

It is therefore very important to be able to accurately cal-
Culate this range shortening effect /3/. If the ionization of the
ion by electron collisions in the hot plasma is included range
shortening is likely to be an even more drastic phenomena ,
€specially for light ions, than that calculated using this code
/3+4/.At the end of the ion beam range the lithium for R < R,
(where R, is the range) is very hot and the lithium-lead beyond
the end of the range R > Ro’ is very cold. Hence the thermal
pPressure of the electrons and ions plus the radiation pressure
bPushes the shell of cold lithium-lead plus DT (payload)
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inwards while the lead shell moves outwards. The payload part
of the shell is the part imploded to ignition. The lead-lithium
layer needs to be thick enough to reduce radiation preheat

to a minimum (i.e. at least to prevent the Marshak wave
reaching the fuel) and to prevent the break up of the shell

by Rayleigh-Taylor instabilities . Here another problem arises
for which energy deposition calculations are needed. Elastic
collisions will occur between the heavy Bismuth ions and /32/
the light lithium ions. This will cause"knock on"Lithium ions
with a spectrum of energies less than the remaining energy

of the incoming ion. Since dE/dX is proportional to ZsffM'

the stopping power of the lithium ions is considerably less
than the Bi ions of equivalent-energy. Therefore these knock-
on lithium ions may have enough energy to penetrate into the
fuel pre-heating it and thus degrading the compression and
possibly hindering ignition. It should be noted that in the
outer layers densities from fg (solid density) to po/1OO

and temperatures from zero to 1 KeV are achieved and the

code must At least work in these ranges. Energy deposition
calculations are also of great importance during the burn of
ICF targets, Figs.6, 7 and 8. The o-particles play a crucial
role during the ignition phase and dominate the phenomenon of
burn propagation. In central ignition only a small central
region of the fuel is shock heated to ignition while the rest
of the fuel is kept cold on a low adiabat/2,33,34/. In order for
the burn to propagate more energy must be redeposited in the
hot spot then is lost by Bremsstrahlung radiation /34,35,33,30,60/
When the range of the a-particles is equal to the radius of the
sphere about~40% of the energy escapes the burning region.

It is this escaping energy which sets the burn propagation on
its way. In fact the burn propagation is a self-regulating
Phenomenon in which if the DT gets too hot, too much.o~particle
energy escapes so it cools,whereas of it gets too cool, the
range becomes so short that little o-particle energy escapes

SO that it heats up again . Therefore both the temperature of
the burn and the rate of burn propagationis strongly .influenced by

a-particle energy deposition in the DT plasma. The rate of burn




— 18 —

Nuclear

reactions
Coulomb .
jon-ion
a-particles| scattering lons Neutrans
‘.- - am  as ame
35 MeV T 141 MeV
a
Coulomb
.C°”:°'“fb lon-electron on-ion  [Elastic
lon-elec FON N\ relaxation JLartering 1eoltisions
scattering ‘
Electrons Y Ifusf
T, Coulomb lons
ion-electron
scattering

Bremsstrahlung
and

Electron-photon

inverse compton scattering| relaxation

Photons

Tq

Fig.6:

The important physical processes in the burn of
an [CF pellet.




propagation is of course given by the flux of o-particles

coming out of the burning region, their residual energy and
therange over which this is deposited. The o-particle dE/dX

and range are strongly dependent on the temperature. Deposition
is to both ions and elecrons with a cross over temperature of
about 20 KeV. Above this temperature energy loss to ions is
dominant, below this energy loss to electrons is dominant.
Another interesting place where energy deposition calculations
become very important is in the calculation of energy deposition
of "knock-on"neutron induced, fast ions,during the burn

Neutrons are born during the nuclear reactions and these

have a m.f.p. till the first collision of pR = 4.75 g/cmz,

i.e 2 = —ééls cms / 36 /. These neutrons collide with D' and

T ions and because of the spin part of the interaction, the
"elastic" scattering is anisotropic /36/.The§e p* aﬁd " ions ‘then
lose energy in the DT plasma. Because their velocity is less

than the thermal electron velocity dE/dX q éﬁ-22ffwhere M is

the mass of the D+,T+ ion and E their energy. Scattering to the
ions goes: as AE/dX u(M/E)»Zéﬂflon scattering is hence much Fig.7,8
more reduced from the o-particle case than loss of energy to
electrons. Therefore the cross over temperature is much greater.
Therefore these ions also have much longer ranges than the a-par-
ticles. Therefore besides e-particle energy . deposition and’
neutron transport, the transport and energy deposition of
neutron’ induced knock-on D+ and T+ iong should be considered.
Finally it should be noted in this section that first experiments
indicate a confirmation of range shortening of deuterons in

hot plasmas /38/.
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3. Calculation of the Plasma Parameters

The Thomas-Fermi theory

3.1 The high density plasma and its characteristic properties.

When a plasma is in a highly compressed state due to say a
very high pressure, such that the averabge separation between
the ions is of the same order or less than the atomic radii,
then one has a high density plasma. This kind of plasma can not
be treated by the methods used in classical plasma theory which
often assumes point particles and that one can neglect the
Coulomb interaction energy. In these high density plasmas the
Saha equation is not applicable and the equation of state is very
different from that of a classical plasma.

It is known experimentally that as the pressure rises the
ionization potential is lowered and the lines of the atbomic
spectra are broadened. In general the line spectrum of a plasma
becomes very similar to a continuum spectrum as for energy bands
in metals. This means that the outer bound electrons and even
deep core levels become very similar to free electrons as
the pressure rises. In effect one has a cascade of insulator-
metal transitions for all the shells in the atoms /39/.

In a high density plasma it is thus somewhat questionabde as

to whether one should distinguish between free and bound electrons.
The actual distinction used in the code within the Thomas Fermi
model is of a somewhat technical nature. An exact calculation of
the electron distribution as a solution of the quantum mechanical
many body problem is from a practical point of view not possible.
Therefore it is unfortunately necessary to use simpler models.
Since one has already noticed that the distinction between free
electrons, valence electrons, and bound elecetrons is in the

case of high pressure somewhat hazy, one usually only distin-
guishes between ions and electrons. The totality of the electrons




is then treated as a statistical Fermi gas system moving

in the field of the nucleus, including the Coulomb interaction
energy, the exchange energy, and the correlation energy between

the electrons. The Thomas Fermi model of the atom is such a

model and in spite of it neglecting the details of the atomic shell
structure is a suitable approximation for material under high
pressure / 40 /.

The electron density of the electrons is very large in the
region of the nuclei. Therefore here the electrons are strongly
degenerate. Further away from the nucleus the degree of degene-
racy is reduced. Each ion or nucleus ig surrounded by an electron
cloud and is therefore strongly screened from its neighbouring
ions. The ions on the other hand are considered to be non-dege-
nerate and to be treatable as an ideal gas.

The electron distribution is the same around each nucleus
apart from statistical fluctuations. One can therefore define
a quasiatom which consists of a nucleus plus a surrounding
cloud of 7 electrons. On average such a quasi-atom has a

volume given by,

vV = (3-1 )

:3!,-—\

where n is the nuclei density. Regarding this volume as being

a sphere one defines,
1/3

_ 3 1
r = <4n 5> (3.2)

More exact calculations using an extended Debye-Hlickel
theory which includes the effect of the thermal transport of
ions and electrons on the charge distribution have confirmed
the validity of this model . In particular it has been
shown that at the radius Xy the electrical potential is more or
less zero. This means that within a sphere of radius r, one
really does find Z electrons.

The material of a high density plasma can be considered to
consist.of such quasiatoms with a continuous electron density
within them. The quasiatoms are always in contact with eaeh other,
whereas the ions move within the plasma. This type of model has

many similarities to a fluid , in that the motion of the
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individual quasiatoms are highly correlated, i.e. the structure

factor for the ions contains oscillations .

3.2 The free electron Fermi-Dirac gas

In very dense material, the contribution of the electrons
to the total pressure and energy is much greater than that of
the nuclei. There are two reasons for this namely firstly that
the electrons are degenerate with energy/electron - g EF' and
secondly in the case of high Z materials that the number of
electrons is much greater than that of the nuclei. To fix
notation we give briefly here the solution to the Fermi-Dirac
electron gas, for N electrons on a volume V. The Fermi-Dirac

distribution function is given by,

1
f(e) = (3.3 )
i (exp((e— u)/kT)+ 1)

where € is the electron energy, u is the chemical potential

and T is the temperature.

ol

T U_ = f ef(e) -2 d%/h3 ( 3.4 )

N = [ f(e)-2 .

g

where UE is the total electron energy and where the integral is
taken over phase space (momentum).

Each electron of one spin occupies a volume of h3 in momentum space.
Two electrons of opposite spin can occupy this volume.

In a large volume with no interactions, & = P2/2m.

cngm 13/2 X' (o) (3.5 )

= 3/2
v/, T3, & (%U%%¥5> X (@) (3.6)

= nE_—_.

<=2
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where o = u/kT, and

® -t+o

x(a) = — [ 1log (1+e ) /t-dt (3.7)
Var o
d 4 /t

x'(a)= <X = = - dt (3.8)
da i fo (et “ % 1)

3.3 Electron gas in.the Coulomb fie€ld of the nucleus.

The Thomas-Fermi model

For a much better calculation of the state of a high
density plasma, one must (at least) include the electric field
of the nucleus and the electrons. For high Z materials one should
also include relativistic effects, and one should include exchange
and guantum corrections / 41 /. This is not done here however
where we consider the basic Thomas-Fermi theory. Under the action
of the electrostatic field the electrons and nuclei order them-
selves in the form as guasiatoms as discussed above.

These are the building bricks so to say of the very high
density plasma. The problem of the state of the plasma is thereby
reduced to the calculation of the thermodynamic properties of
one guasiatom.

Let the origin of the co-ordinate system lie at the centre

of the quasiatom, i.e. where the nucleus is. Then,
To
z = 4r [ ng(r)-r’.ar ( 3.9 )
0
where r, is the radius of the quasiatom.

The potential ¢ inside the quasiatom consists of two parts

namely the electron and nuclear contributions.

Y(r) = Yp(r) + P (r) (3.10 )
by (x) = Ze/ (3.11)




The Poisson equation then reads,

V'Y (r) = 4men, (xr) (3.12)
For r » O the nuclear potential dominates,

Lim ( r'w(r[) = Z-e (3.13)
r-~0

This gives one boundary condition.
At r = ro on the boundary of the quasiatom, the electric

field and potential must vanish ,

V' (x) =0, V(r) =0 ( 3.14)

In the electron distribution function f(e), one must now

include in € a potential energy part,

e = pZ/Zm - ey (r) (3.15)
Since, 3/2
nE(r) =_LEEE%ELL_ x' (o) , {3.16)
h

where one applies the Fermi-Dirac theory to a shell of volume AV

containing AN electrons at radius r, where

= 3.
o(r) o + e/kT Y (r) (3.17)
Combining this with Poisson's equation (3.12 ), one obtains,
3/2
d 2 dy _ (2mmkT ) '
1/r2 ar (T g = Ame e x' (o) (3.18)

This is the generalized Thomas-Fermi differential equation for
the potential Y(r). Once Y (r) is determined one can find nE(r)
from Poisson's equation. Note that the chemical potential

= akT is found from the value of o(r) at r = ro where w(ro) = 0.




The solution is found from the differential equation after

subjecting it to several transformations by integrating out-

wards from r = O, using the boundary condition at r = O, and using

trial and error until the boundary condition at r = r is
satisfied / 40 /. In the code the method of Latter is used
/42 / which first converts the differential equation to an

integral equation and solves this by an iterative procedure.

3.4 A method suitable for numerical solution.

Starting from eqn.( 3.18 ) we change variables,
1/4
= A A= A(T) = =~ _n® /
r= e ' - 2me 8mm3kT
and use o(r) instead of Y(z).
Then we get,
! %‘ © (g2 99ar ) = ' (o)
r? C
The boundary conditions now read
Lim { ¢ 0 (g) } =K
C>o
2
_ Ze
K(T) = 37
At the pesition ¢=¢ = r_/A, one obtains from ( 3.14) and
(3.17)
o'(g,)) =0 o{g,) = a
Note that _ -1/4
A= 1.4-10 T (cm)

K = 1.19.10%. 2
T3/t

( 3.20

( 3.21

( 3.22

(3.23

(3.24

( 3.25

)




where T is measured in Kelvin.

The function o(f) is singular at =0, so one puts,

y(g) = ¢.o (g) (3.26 )
Then,
Y
Y= e () (3.27)
Y(0) =K, y'(g,) = ¥(c, )/t (3.28)
Y(g,) = ot (3.29)
Y'(z,) =a (3.30)

The boundary value problem posed by egns.(3.27) and (3.30) can,
for fixed 72 and given values of co(ro) and K(T) be solved
uniquely. Physically this means that the potential in the inner
atom of high density material can be uniquely determined from Jjust
the temperature and the density.

A thorough discussion of the differential equation(3.18) would
show that each solution o(g) starting from =0, decreases mono-

tonically at first and at a point Co reaches a minimum such that

0'(CO) = 0, and then monotonically increases. It is therefore
certain that for a region O < ¢ £ g, . the formulated boundary
value problem ( 3.20) to ( 3.22 ) or ( 3.27 ) to ( 3.30)

always possesses a solution.
In Fig. 9 a schematic diagram is presented of typical

solution curves for o(z) and Y(z) /40 /. The boundary value Y(O)
= K is then chosen to be the same for all the curves. For a given
value of Z, the temperatures for all the curves are the same, soO
that the atomic radius r, or equivalently the particle density n
is the parameter which labels the curves. The solutions have
a physical meaning only in the region O <t X Co , i.e. left of
the minimum of the function o(z). The solutions lie above the
axis for small go, and below for large Co' Since o(z)is a measure
of the local degree of degeneracy of the electrons, this shows
that at large densities strong degeneracy is present, and that at

low densities there is weak degeneracy.
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Types of solutions of the functions o (€)
and y (£) for the initial value y (0)=K.
Curves 1 and 2 show strong degeneracy,
whereas curves 3 and 4 show weak
degeneracy.




The boundary value problem defined by equations (3.27) and
(3.28) for the function Y(rz) can be solved as an initial value
problem, which significantly reduces the amount of computation
/ 40 /. In order to integrate (3.27 ) one starts from z=0
with the boundary value Y(0) = K, whereas the gradient Y' (0)
is chosen arbitrarily at first. Since Y'' can be seen to be
infinite at =0, by eqns.( 3.27), ( 3.28 ), and x'(a)~a3/2 as
o+% (3.31) the numerical integration can only be started at a point
t¥ » 0. In the interval O <t < t*,¥Y(z) can be expressel for suffi-

ciently small ¢¥*, as,

| 3/2 3,
Y(£) = Y(O) + Y'(0)-g + 22 [Y'(O)j ‘; (3.32)
9/ﬂ

which can be derived using ( 3.27), (3.28 ) and ( 3.31 ) by power
expansion in §1/2about £=0.

The numerical integration proceeds from ¢* to that point
L= o at which the condition in (3.28 ) is fulfilled. The function
Y(z) obtained in this way is the solution one is seeking.
Because co (Fig. 9 ) various monotonically with Y'(O), by
varying Y'(0), and repeating the integration, one can get to
any desired value of Co’ The Runga-Kutta-Nystrm method is a
suithble numerical integration method if used with variable

integration steps.

3.5 Thermodynamic Properties of the High Density Plasma

The energy for the nuclei is,

_ 3
Ug = 5 kT (3.33 )

The contribution of the electrons, is

= .34
Us = Ug,xin ¥ Yrk * YEE (3 )
where the first term is the kinetic energy, the second term
is the interaction with the nucleus and the third term is the

electron~electron interaction energy




Y ,por = Ygk T Vg (3.35 )

is the potential energy.

From ( 3.6 ), we have (3.36)
‘ 3/2
AUy ry = SKT . L—gﬁ%ﬁgl ¥ (g) »av ( 3.36 )
and it is clear that,
dU.gpg = -eng Y. -dv ( 3.37 )
#*
dUEE = -eng wE.dv ( 3.38 )

where wg excludes the self energy. Using egns. (3.10),

(3.11 ), (3.16 ), (3.17 ), (3.19 ), and (3.22 ), one

gets,
u = 37xr - | ICO 2 y(0)-dg ( )
E,KIN ~ 2 R c" X 3.39

Co

Ugk = -7kT focex'(o) dg (3.40 )
U = l'7kT 1 fcocz V(o) e ( I-<--o+oa)dc ( 3.41 )
EE -2 K . X z ’

The pressure in the high density plasma can be calculated by eva-
luating the momentum /second due to the electrons and ions which
hit a unit area of a wall. Considering any boundary to be covered
by quasiatoms, one can assume that the pressure is the same as
that at the boundary of a quasiatom. The distribution function

is given by,

p2 -1
£(P)., ., = [;%p {goe = 0} —.z] ( 3.42 )
o




The number of electrons whose momemtum lies between P and P+dP
is,
3 2 87 PzdP
£(P)|__ -<E/h‘)4ﬂP AP = =— 5
r=r, h (eXP(Eﬁfﬁ - a) + 1

( 3.43)

Per second only 1/6 of electrons hit the wall, which are in a
pipe of length P/m perpendicular to the wall, each giving
an impulse of 2P.

Therefore,

o 2
P, = 1. 8 g P 'gp (3.44 )
3m h OGWQ%T—Q'FO
3/2
= kT- 2“§kT . x(a) (3.45)
h
Using eans. (3.1), (3.2), (3.19) and (3.22), we obtain,
C3
- _o _2 e
PE = 3 R X (0) «nkT (3.46)
PK = nkT : ‘ (3.47)
Pk is the partial pressure of the nuclei. The total pressure
P = PE +‘PK is then given by,
3
P=‘(£9 2 (a) + 1 ) nkT (3.48)
3 R X (o . .
One can show that despite the non-linearity of the eqn.(3.18)
for the potential,that a virial theorem for the Thomas-Fermi
model exists /40/
3.P_V = 2-U + U (3.49)

E E,KIN E.-POT
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Also one has,

= 3
Ug = 5 PV (3.50 )
Ukin = Ym,xkzv ¥ Y% ¢ Upor = U, por (3.51a+b)
Therefore,

2:Uprn + Upgr = 3°PV ( 3.52 )
The free energy/atom, F = F, + Fy ( 3.53 )

can be calculated from the thermodynamic relations,
p =—( 2E ,u=F -1 (&) (3.54a+b)

oV m 9T v

One naturally only needs to do this for the electron part.

F
= -mp2 3 ( E
Ug =~ Thyg (7 ) (13.55)
\
g
F,=-T. [ —<dT + T &(V) ( 3.56 )
E 2

where ¢ (V) is undetermined. It can be shown that /40/,

U U U
[ £ . ar=2/3 ELLRIN EE _ _ gxa (3.57 )
T2 T T
Setting this in (3.56 ), and differentiating by V,
and comparing to ( 3.45 ) for Pps one can determine ¢ (V) to

be a constant C. Using Nernst's Theorem one can show that
C = 0. Then,

U__ + ZKT-o (3.58 )

Fp = - 2/3 - Ug,xin~ VEE

E
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Since FE = UE - T-SE,

= 2 -
Sy =g (5/3 Uy ypy + Ugg + 2Ugg) - zko ( 3.59)
Sy = k (3/2 1nT - 1In n to, + 3/2) ( 3.60)
C, = 47.693 + 3/2 1n A (3.61)

A is the atomic weight.
One can show that, the Gibbs energy is,

= 1 - .
GE = 3(UEK 2 UEE) + Z2kT-q (3.62)

and the chemical potential is

v = kTa. ( 3.63)

There Mg is positive or negative when o >or< O, i.e. when it

is degenerate or non-degenerate.




4. The stopping power of Free Electrons

4.1 'Derivation of general formula for the stopping power of
free electrons

A fast charged particle, in passing through matter, ionizes
the atoms and thereby loses energy. In gases,the ionization
losses can be regarded as being due to collisions between the
fast particle and the individual atoms. In a solid or ligquid
medium, however, several atoms interact simultaneously with the
particle. The effect of this on the energy loss by the particle
can be macroscopically regarded as resulting from the dielectric
polarization of the medium by the charge. The derivation of this
result is of interest because the method can be extended to

other cases.

The dielectric formulation of the energy loss of charged
particles in matter can in principle be used for both bound
and free electrons. However its use here is confined to use
in the free electron case. In this section a general formula
is derived relating the stopping power to the generalized
dielectric functuon. This type of macroscopic formulation

is valid when,
v >> awO and v >vo (4.1)

where v is the ion velocity, W is a mean frequency corresponding
to the motion of the majority of the electrons,

a -~ 10—8 cms, and VO is an average electron velocity.

et us now determine the field produced by a charged particle
(charge Ze) moving through matter. In the non-relativistic /43/
case it ié éufficient to congider only the electric field,
@efinéd,by-the'Scalar potentiél P, This‘pOtential satisfies

Poissons's equation.




eV = =Z4me§(r - yt), (4.2)

in which the dielectric constant is written as an
operator, and the expression on the right-hand side is the
charge density due to a point charge moving with constant velocity

v. Take the Fourier transform in thme and space

+oo +o0 iker =-iwt

p(r,t) = [ @’k { awp(k,we e (4.3)

e(w) ¢ (k,mk? = =22, §(w - v-k) (4.4)
2m?

¢ (k,t)= e2 1 . exp(-it v-k) (4.5)

2m? kzs(g-y)

From the electric field, E = -Y¢ we have,
By - —iZek exp(-it v-k) (4.6a)
= 2m2k2e (k- v)

The total field strength is obtained by inverting the Fourier
transform.
+zo 3 .
E(r,t) = [ E(k,t) exp(ik-r)d’k (4.7 )

The energy loss by the moving particle® is just the work done

by the force ZeE exerted on the particle by the field which is
produced. Takiﬁg the value of the field at the point occupied

by the particle, namely r = vt, the force F is given by,

22 * x

- iZ”%e 3
p= =34 [ a3k (4.8 )
212 Zeo kZe(k-v)

* We assume that the particle moves in a straight line, and there-
by neglect scattering, as is usually permissible in problems of
this type, when loss to electrons is dominant.
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Note that |F |dx = dE, and therefore

dE/dX= 'El (4.9 )

dE/dx or ]Fl is called the stopping power of the medium.

In order to arrive at the form used in the code /1,2 / we proceed

as follows

k'v = |k| |v]|cos 8 = |k| |v|¥ (4.10)

Further it is evident that the direction of the force F is

Opposite to that of v. Let this direction be f where T is a

unit vector, along the 6 = O axis in spherical co-ordinates
—iely? kv 3
V-F = ie” 72 f d’k (4.11)
2m? - k2e(k-v)
(olp2 te 41 k| |v|idpdk-2m
|V|dE/dX = i;iﬁ%;Lm i | (4.12)
2T °© e (k,w=kilv)
- 2 2 4o
1 du i -
5 Flax = A2l [ Ix|ax [t nag — (4,13)
P -1 e (k,w=kilv)

Since the Ree (k,w) is even‘in w, the real part of the integrand

is an odd function of [ and gives zero.

-2 122e2 Im f1 1
1 am = —==—2—= [ kdk fdfiIm ‘ (4.14)
b /X e o © <€(15,kﬁV))

If the classical form of the dielectric function is used, an
upper cutbff wavenumber}&: has to be introduced into @.14 ), approxi-
mately at the de Broglie wavelength. Bethefs suggestion is us€d
where -1 -y /R

ke o s.mv (4.15)
t




sxr 2
where v = 0.5772 and vt = ( —E% ) is the thermal
electron velocity. The use ot this upper cut-off can be
avoided by using the quantum form of the dielectric function
(see section 4.2 ). Quantum corrections are only important
for large wavenumbers, where |e|= 1 and shielding is of
little importance. In the code a simplified quantum form,

for non-collisional plasmas is used,

=1

Im ¢ = Im ¢
Y, 1
_ _471_ ne? - (mg_+ (5)Hk Y
B 3 exp 2 .2
4k Ve m? v

X [E;p i%g%_..le (4.16)

where q = fiv - th/Zme)/1 /.This function is matched to Im 8_1
obtained from ( 4.119 ) , withy = \)/kvt = 0, where v is

the collision frequency, at an intermediate value of k where
|€l = 1 and both classical and quantum forms of the dielectric
function are valid. Values of 1/p dE/dx obtained by this
procedure and by the use of the non-collisional version

(v = 0) of (4.119 for a 19.0 g/cm3 gold target are practically
equal (to within 0.2%) /. 1 /, which supports the cut-off
approximation. In view of this good agreement between the
quantum and classical cut~off versions, the effect of plasma
collisions is calculated only in the classical version of
using Bethe's cut-off at kc-

The dielectric function in ( 4.14 ) is evaluated regarding
the plasma ions just as positive charges with no polarizability.
In calculating the free electron contribution to the stopping
power it should be borne in mind that the electron density is
such that in the high density case the plasma is quite collisional
/1 /. The electron collision time is given by /1 /

-1
12 3/2 1/2
v =3m,  (km)  [aem) " e'zninaT] (4.17 )

where me and n are the electron mass and number density, Z is
the ion charge, and lnA is the Coulomb logarithm. For a 19.0 gm/cm

2
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gold plasma at 1 KeV, this yields a collision time of
1.8'10—17 secs which is not long compared with the inverse
plasma freguency w;£ = 10717 sec.

In the code a simple relaxation model to describe the effect
of collisions is used (see section for derivation) for the

dielectric function in the classical form /4.4 /.




4-2

4.2

The calculation and properties of the dielectric function for

an interacting electron gas. -

.1 The Hartree-Fock method and the Random Phase approximation.

The derivation is probably best carried out using Green's
function techniques /44/.However in the case of many-body
problems of this type one can not hope to obtain exact
solutions of the dynamical equations (because there are of
the order of . 1023
to develop suitable methods of approximation. This can not
be done purely mathematically but has to be guided by the

judicious use of physical intuition, by extracting the

degrees of freedom) and it is necessary

important physical behaviour of the system. These can be
formulated in terms of the equation of motion approach /45/,
in which one devises .approximations for breaking off the
hierarchy of equations, or one can use the perturbation theory
for the Green's function in the many-body system and obtain
approximate solutions by summing appropriate (dominant)
subsets of diagrams / 46 /.

In two special limiting cases it turns out that one can
obtain asymptotically exact solutions of many body problems
by the use of approximation methods of the above type. These
are: the problem of a system of fermions interacting through
long range Goulomb forces in the limit of high density of the
particles, and the solution of the superconducting state of
a system of fermions interacting through weakly attractive
forces, the so called "pairing Hamiltonian" model. In the

Coulomb case a particular type of approximation, the "random

phase approximation" does the trick, while in the superconducting

case a particular version of the Hartree-Fock approximation, the
so called B.C.S. approximation /47 / provides a solution.

In the Hartree-Fock approximation to the problem of the
interacting electron gas /44 / one does not obtain an adequate
account of the properties of the electron gas because it
neglects screening. The next level of approximation is the

random phase approximation which provides a more satisfactory




— 41 —

description in some cases./48/.

It turns out that for an electron gas of high density
(measured in units of the ratio of the interparticle spacing
to the Bohr radius), the effects of the potential energy
become relatively weak, compared to the kinetic energy, as
the density is increased.

If the gas has N particles in a volume V , and let
ry be the radius of a sphere of volume Y r Ty measured in

N
units of the Bohr radius

2
~ _ _h _ H? (4.18)
© 4m%me? me?
Put # = 1,
4 =,3 _ Vv (4.19)
3ﬂ(rsao) TN

1 1
S (oo ()3l (4.20)
Pg = DA ( E
The unit of energy is theEdeem}ﬁo = e2/25

- "= = : 4.21)
}.‘5'-—5/5]: ar p (

O s

o

and the Hamiltonian in configuration space is,

2 p2 1 Z e2
H = =i/ + = /X, .
E .2
- 0 1
T i iy Zij

and it is seen that the second termiis of higher order in ry

than the first. Thus as the density is increased (rS + 0) the
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effects of the potential energy become relatively weak.
In the non-interacting case (except for inclusion of

the Pauli principle) the energy per particle is 3/5 EF

(where EF is the Fermi energy. In the Hartree-Fock approxi-

mation the energy of the individual particle levels

(Ep = p2/2m originally) becomes,
HF
£ =g 4+ V =0 fp'ao!
o o (g =0) )} fp
e p'O'

- Z V(P'-E) fE'U
gl

where fp@ is the Fermi-Dirac function of spin state g, and
V(q) is the Fourier transform of the Coulomb potential.

The first correction term is then,

Ny [V(xaix | (4.24)

and represents the infinite self energy of an electron charge
distribution of uniform density N/V. This term can be cancelled
out by the introduction of a uniform positive background charge,
of the same density; this may be regarded as simulating the static
ionic lattice in real metals.

The last term in (4.23 ) is the exchange term E;X. It is

easily evaluated for the case of an unscreened CoulBmb potential

V{§) = e2/1x1’ where the Fourier transform is,
1 4Tre2
V(g) = T (4.25)
B al?

and replacing the sum over p' by an integral over the Fermi

sphere, we obtain the well known result,
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2 2
'QZPF ‘ Pp - P 1 l Pp + P‘}
- F i s———— O T — .
T 1 ZPPF g pF = P (4 26)
where pF is the PFermi momentum.
Then the total exchange contribution ig
E* = 1/, | fpo ¥ (4.27)
po ~ %

On performing the integral over p this reduces to an energy

per particle of, (in the same dimensionless units, = 1),

a2 2/3 =
geX _ 3e"pp _ :3<_§) ?_O (4.28)
N am 2 \ 27 ry
Since 9 - 2/3 1 1
3/5EF = 3/5.<—4 2=2 2m (4.29)
r-a
s O
2/3
om = 1
3/5 <T E, 32 (4.30)
S
the total energy per particle is,
2/3E 2/3 _
TOT _ 3 _9'_71) o _37.3 E
R (4 34 2<2w> —2 (4.31)
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In the limit as ry > O (high density limit) it is clear

that the kinetic energy (1st term) dominates the second

term, the potential energy. The second term is negative

because the exclusion principle tends to keep apart particles
of parallel spin and thus reduces the effect of the Coulomb
potential. However /4.31/ still overestimates the repulsive
energy between particles of opposite spin. This is because
screening has not been included, so that the effect on the bare
Coulomb potential has too long a range /44/.

The next level of apprcximation is the random phase
approximation which provides a more satisfactory description
of the interacting electron gas. In the high density limit
this may be shown to lead to the next significant correction
to the ground state energy after the exchange term /49/.

The R.P.A. was first introduced by Bohm & Pines /48/.
in a heuristi¢ manner. They analyzed the possible dynamical
degrees of freedom of an interacting electron gas and argued
that most of the Coulomb correlation will be absorbed in a
plasma mode of collective oscillation which, because of its
high zero point energy, will not be excited at low temperatures.
The remaining modes can be regarded as electrons, moving in a
weak screened potential, which may be described to a good
approximation by an independent particle model.

One can obtain the dielectric function by studying the
response of the electron gas to an applied external charge
density pext(g,t). The interaction between the external charge

and the electron gas is given by Hamiltonian,

= (g3 3.0 ! '
Howe = Ja78 [@78 0 (2)V(x-8")p_ (') (4.32)
where p(x) is the charge density operator for the electrons.

As a result of the perturbation one obtains a non-zero induced

charge density pj,g(%,t). This is calculated using linear res-
ponse theory /50/. The dielectric function is then introduced
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by the definition,

Prot (LrW)> = o (DW) + <Py q(arw)> (4.33)
P (q,w)

= (4.34)
e(q,w)

where p(gjw) is the Fourier transform with respect to

space and time of p(x,t). This assumes that Pext is a weak
perturbation, so that only the linear term in pext needs

to be retained. We thus obtain an expression for e(g!w) in
which the Coulomb interactions are still formally included

to all orders. The assumption that the linear expansion is
possible implies a stability in the system, so that the true
ground state of the interacting system evolves continuously
from the ground state 6f the non-interacting gas as the Coulomb
interaction increases from zero to its full value. Although
the complete evaluation of the expression for e(q,w) of
course requires the exact solution of the many-body problem,
the formulation in terms of the dielectric response function
is useful in that it leads in a natural way to approximations
suggested by physical considerations. This formulation also

focusses attention on the roots of the equation,

e(q,w) = O. (4.35)

When this condition is satisfied, we see from (4.34) that
Ppop Can be non=-zero when Paxt = 0. The free modes (for instance
plasmong) of oscillation of the electron gas thus correspond to

the frequencies and wave numbers satisfying(4.35 ).

4.2.2 Linear response calculation of the dielectric function

HTOT = H + HeXt (4.36)

where H is the exact Hamiltonian of the interacting gas.




One has to evaluate the expectation value

< ppyp (Bst) > = < E(t)|o(x)|E(t) > (4.37)

where |E(t)> is the state of the system at time t.

|E(t)> has evolved in time according to both H and H ¢ from
the initial energy state |E>, which is taken to be the ground
state of H.

To first order in He one obtains,

Xt

prp (XeE) > =i gt at'<[H_ . (£ ,00,tY] > (4.38)

where in the time development of Hext(t)’p(x’t) refers only to
the development according to H. The value of He is given in

( 4.32 ), and thus,

xt

400
3 3 01e
Py (Xrt) > =£§n dt' [a'x [d7x''Rix-x',t-t')
V(z'fgj')pext(g",t) (4.39)
where,
Rx-x', t-t') = -i6(t-t") <[ p(x,t),0(x',t")] > (4.40)

This result is an example of a Kubo formula.

Introducing a Fourier transform in space,

400
< pryplgrt)> = {mdt'K(g_,t—t')V(q_)pext(g_,t) (4.41)
where
R(g,t-t') =-i8(t-t')< [p(q,t), pl-q,t"')] > (4.42)
and +
plg) =) a'ptq a, (4.43)

P £
is the Fourier transform of the charge density operator, and

where ap is a second quantized destruction operator.

4
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for momentum state p /46/. Next taking the Fourier

Transform in time, we get

< pIND(gJW) = V(g)K(g,w) pext(g’w) (4.44)

in which K(g,w) is the time Fourier transform of (4.42 ).
Finally from (4.44 ) and (4.34 ) we obtain the dielectric

response function as,

e quw) = 1+ V(QK(q,w) (4.45)
The next step is to evaluate,
K(g,t-t') = -i8(t-t")<[ p(q,t),p(-g,t")] > (4.46)

This is a so called two particle Green's function.
In order to calculate this function, Feynman-Dyson perturbation

theory /46,44/ as generalized by Matsubara to treat finite
temperature problems can be used. In this method the classes
of diagrams which are of leading order for small ry (high
density) are picked out and summed. One considers instead of

the retarded function, the time ordered form,

K¥ (q t-t') = -i< T o(q,t)o(-q,t") ] > (4.47)

The diagrammatic expansion of KT(q,w) can be obtained by applying

rules /46/ derived by perturbation expansion. In the interaction

representation one has,

KT(E,t—t') = -i< ¢Ol@[:p(q,t) p(-a,t)E] ¢ > (4.48)

<o 08| e, >

+4-00
where § = U(», -») =T exp -i [ dt,H,(t,) (4.49)

= OO0

A , .
and T is a’'time crdering operator. S is. to be expanded in
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powers of V(q). It follows from the rules for calculating

diagrams in momentum space that the zero-order term in the
expansion of KT(q,w) is,

B+ 5

P (qu) (4.50)
o =

P

evaluated for fixed g = (q,w). The complete perturbation

series includes all the higher-order diagrams associated

with the diagrams shown above and may be represented as,

KT((_I_rW) = O -+ O“““Q + @EC\

(4.51)

where each bubble carries a net 4-momentum q.

The series can be summed formally by introducing the
ireducible polarization propagator P(g,w), defined as the sum
of all the diagrams in (4.51 ) which can not be divided into

two diagrams connected only by a single interaction line carrying
a momentum ¢¢. In terms of P the series can be arranged

aS,
K'(q,w) = P + DVB + PVPVP + —-——o
=P + PVKT (4.52)
so that,
KT(qIW) = P‘(.g.."W)

— (4.53)
1-P (g_,w)v(g) ,
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If we consider this equation as a power series in e2, it may
be seen that for small g the leading terms in each order will
be those in which!.V(g) occurs to a maximum power. This is
because the singularity -12 will be strongest in such terms.
Diagrams in which the Coulomb interaction occurs with a
momentum different from g, the input momentum for the response,
will be less singular as g > 0. This suggests that the leading
corrections in the g+ O izmit will be obtained by including
only the ring diagré&s of the form of (4.50). These are

summed exactly by,

{::::) + <:::> + t:::% e s

These diagrams give the leading contribution on the g + O limit if

P(gJW) is replaced by the unperturbed electron hole pro-

pagator P _(q,w) . This sum is usually referred to as
the R.P.A. (random phase approximation)

4
P_(q,w) = 2(-1)i f% - 6% (p+q) 6° (p) (4.55)
2

where GO(E,W) is the free electron hole propagator, .

4 ' -1 -1
= -mi [ &P - , . ;
- f(zw)u o twW=epg + inpegl  ~lpgme, + ing)

(4.56)
Here Pyr W are the 4-components of the 4-vector momenta, p,
b is an infinitessimalwhich is positive for Ep|>pF and

negative for |p|<pF.
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Integration over Ps yields,

=1

3 .
_ d’p =+ _ N _ L
P_(gq,w) = 2 f(2n)3f_12f!5_+3{(w W, (p)+in) {w wg(g) in} '} (4.57)

where w = -
g(Q) > €

By using the relation between K(q,w) and KT(q,w) it can
be shown 745,46/ that,

Pi(g,W)
K(g,w) = = (4.58)
1-P (g, w)V(g)
(£ - £ ) '
PE@w) =3 P p+a. (4.59)
p (w-w_(p) + in)
q
where fE is the Fermi-Dirac Function.
_ -1
£ = f£le) = Eexp B(eE- n) o+ 1] (4.60)

1, k is Boltzmann's constant, T is the temperature,

where B = (kT)
and u is the chemical potential.

From equations (4.45 ) and (4.58 )

-1
e @ = {1 -2 fv)

where e(q,w) is the dielectric function.




4.2.3 The evaluation of the dielectric function at zero and

finite temperatures. Properties of the plasma, screening

and plasmons in the dielectric function formalism.

The dielectric function contains in it all the properties
0f the medium through which the ion moves and with which it
interacts. In order to understand the physics of the slowing
down formula used in the code for free electrons one has to
understand the physics contained in the dielectric function.
The simple theory of energy loss from ions treats the problem

via Rutherford scattering ard uses a maximum impact parameter

to avoid a divergence due to the long range nature ot the
force. However in reality all ions are screened by electrons
and all electrons are screened (surrounded to a greater

Or lesser extent) by ions. Ions and electrons move such that

this screening is maintained. This kind of correlated motion

is described by the dielectric function. The function POR(q,w)
can be determined analytically by doing the necessary
integrals.
If one introduces the variables for T = 0,
Z = lal u=" X2 = _93 (4.62)
14 - 14 - °
op IVp ﬂﬁVF
F
where S22
h Py 2
€p = = 1/2 mAVF (4.63)
2m

is the Fermi energy, m is the electron mass, and VF is the
Fermi velocity then,/12/

2
Po(u,z) =1 + %ziz- [ £,(w2) + if,(u,2)) (4.64)
Bplwz) =5 + 55 <1 (Z-u)" log | 3= D

1 - 2 Z+ut1
+ §.Z-<1 = (2z+u) log | :Z:_T_Tlt,]—'—"— |> (4.65 )




The imaginary part is given by,

_m | Z+u| < 1
24 |
- . - 2 - -
fo(u,z) = 1/ge( 1 = (2-u)7) |Z-u] < 1 < |Z+u]
0 |z-u| > 1

(4:.66)
At finite temperatures the integrals are much harder to carry
out. The exact value of the imaginary part was evaluated around
1963 and is also given by Long / 5 /. Long (1974) developed
a series expansion method for the real part using Laplace
transform techniques using a series expansion for the Fermi
function.
Deutsch et al. / 52 /, 1378 also developed series methods and
succeeded in collecting all the terms of the real part together
in a closed series expansion. The results are given below. Putting,

POR (q,w) = xo(gjw,ﬁ) (4.67)

where B = (kT)_1, T is the temperature, we make w complex, i.e.
w = %. Physical values are then obtained by letting Z > w + in
where n is arbitrarily small. Long's method of evaluation is
then based on the formula for the expansion of the Fermi-

Dirac function,

1

£(E,B) (exp (B(E-p))+1)

i

C+iw

1 i sB(E-u)
= ’z‘ﬂi é_iwdsms e ( 4.68)

where s is a complex variable and O <C < 1.
This can be seen to be true by closing the contour to the left
or right depending on whether u is> O or < O, and picking up
the poles of w/sinms within the closed contour, using Chauchy'sg
theorem, and summing the resulting terms.

The imaginary part can also be evaluated by simpler means

namely by integration by parts and can be expressed as,




— 53 —

“H T 1+ expB1x2

Imy (q,w,B) = —— log ( = ) ( 4.69 )
- B 1 + expB,.x
11
where Xy = g + Yqr X, Y + yz,p1 = 2my (B), B1 = R/2m,
5
2mw+g2
Y1 == y2 = - [ed (4.70)
29
m2 1

and My =5~ gpzed being the electron density.

The next term in the expansion of the real part, which is a

term of order T2 is,given by, /5/

we 1" (X2 X4
2

8% ppt  (1-x,)  (1-x,)

) (4.71)

where B1 is the first Bernoulli number . Further terms can
be obtained in a straight forward way.

Gouedard and Deutsch /52 / have evaluated the real part
also using contour integral techniques. This treatment leads to
a convergent real part series.

The result is

~-ar pF

Rex°(q,w,B) = — f dpf(a )
+a
1 (—2- 1 [ n>
+ mwz’ 57, i
n=o r 2¢ n
- p,—a - p_+ a - p_ - a
+Tm11(—%—p> —Tm11<;q;J%-—Tm11< 5 n> (4.72)
‘n n n
where %‘= kT/eF, ¢ = q/pF and v’ = hw ).
£
F

¥ = u/e P, =2+ 72 = Y- 42
F I + 2¢f 14 p___ 2¢, °




The poles of f(ep) are located at,

k" =y + 1 @2nth)7, n o= —o.. ...t (4.73)
k = a <+ ib
n n n
1/2  1/2
1 2 2 5 ,2 (4.74)
a = — { v+ (y? + (2n+1)“n? g2 = }
non
1/2 1/2
1 2 2 :
b = =— {~y + (y2 + (2n+1)“7m22%) }
n /> (4.75)
-1/3
2 _ 2 2 - _ 9m

and ry is the usual dimensionless .interelectronic distance.
Let us consider the physical interpretation of the dielectric
function as this proves important in understanding the physics
of the slowing down of ions in matter, especially the difference
between the dielectric approach and the classical Chandrasekhar
theory / 5 / as for instance given in Spitzer / 53 /.

In the static w = O limit, ep(q,O) is purely real, with
Vig) = 41re2/q2 and g: = p2/2m we have on replacing the sum by
an integration, P

-1 Ame al o
e (q,0) = { 1+ 1% (4.76)

'R 2
m2q? 2p-g+g

where the region of integration R is the volume inside the sphere

lp| = Pps which is exterior to the sphere lp+al= Pp- Then

-1
2
4me ' (4,77)
l T+ g Pp u(q/2pF)‘

1/3
[1 ¥ g x B—QQ:[ (4.78)

e™ 1 (q,0)
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where q =|q|, ¥ = q/2pp » r  was defined above, and

u(x) = {1+

(1-%%)1og | 152 |3 ( 4.79 )

xl‘ »

X

N [—

The function u(X) decreases from 1 to O as X goes from zero to
infinity. Thus in the long wavelength limit as g + O, we have
u =1, and

1/2

i

T2 .2 - 4me2p
1 + A°/q ’ A= F—-—-F

16 1/3 1/2
(;2) rS PF ( 4.80)

This is Just the result obtained in the semiclassical Thomas-Fermi

e(q,0)

approximation. The function €—1(X) is shown in Fig.,10 for i/zpF =

= 1 (rs = 6) and compared with the Thomas-Fermi result.

A more correct ftreatment of this problem has been given by

Gouedard & Deutsch / 52 /. They show that the screening charge

has at all temperatures a Thomas-Fermi like contribution and

a Friedel type oscillatory behaviour. At any temperature the dominant
term will be Friedel-like when bo < P, oOr Thomas-Fermi like for

bo > Py where

2 _ S _ 32 2 -1
Po = = 9 - <4x pp2) (4.81)
A= | ;T"me pF ) v gO = WE_T ( 4.82)
16me Pp
In the T » 0 limit,
Tép3 p2
T.F _=""FF Yo _ .
§ p(r) = p T exp ( 2por)g(1po) (4.83)
as T »~ O 5
a T+p 2a p
. ~ _© o -1 (oalle)
g(lpo) = — + D tan 5 (4.84)
o L

: ~
g(lpo) =1+ Pq /2 when a_~ 1, bo<< Py << agr where a and

bo are defined above.
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Fig. 10: Static dielectric constant in the rp.a.
[ The broken curve is the Thomas-Fermi formula]




. 3 2
. Zep 19) -1 cos2a,r
Friedel _ " °F ‘o (1+p2) exp (-2b,r) ——5— ( 4.85 )

8p (x) m 4g © x

The relative importance of both contributions is measured by,

Friedel

5p (x) exp [-2r (b_-p,)
° ~ - 2°] (4.86)
TF 4 (14p Hr
§p (r)
which is an increasing function ofrs(pg). . When ry> 0, the

high density limit)it is clear that the Thomas-~Fermi screening
dominates. As ry increases the Friedel screening becomes more

and more important and a Fermi-liquid type behaviour with long
range order becomes dominant.

One can use the static dielectric function e{g,0) to define
an effective potential V(q)/e(q,0). If the above form of e (4,80)is
assumed to be valid, then_bne 6btains an effective potential
4Tre2/(q2+7\2) which is the Fourier transform of the exponentially
screened Coulomb potential e—xx/x in real space, with a constant
screening length A. The more exact formula (4.78 ) shows that
the screening length in fact increases with . Thus the electrons
are less effective in screening the potential components at

shorter wavelengths. Note however that the g = 0 divergence is

1 long

screened out, which means than any divergence due to the r
range part of the Coulomb potential vanishes.
The physical excitation energies of the system are determined

by the condition,

g(%lw) = 0 (4.87 )
which implies, V(q)Po(ng) = 1, (4.88)
At T = 0, y y
Po(g,w) = Zp {(w—wg(g)+in) - (w+wg(g)+inv }
PPp
lp+al>pg

( 4.89)
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This is the dispersion relation for the eigenfrequencies w(g)
of the system. The function Po(g.w) has poles at the unpertur-
bed frequencies + wq(g), and if one plots V(g}Po(g!w) against
w (for fixed q) one obtains curves as shown in Fig. 11.

The roots of ?~4.87 ) are given by the intersections of khese
curves with unity. There is only a small shift from the un-
perturbed frequencies of the particle-hole states. The fiygure
shows however that an additional root w = wp% has split off
from the top of the continuum. This is the collective plasmon

mode. If one expands Po(q,w)in powers of g,

Pola,w) = qz/mwz + 0 (qh (4.90)
p<|pp|
. 4
=45+ 0 (a9 (4.91)
mw

where n is the electron density.

Putting V(qg) = 4we2/q2, for small g,
-1 smpe?\
e (qw) = 6- =20s—
mw
(4.92)
-1
Therefore
1
4Trne2 2
Yo =<“ﬁ{.— (4.93)

which is the classical plasma frequency. One can now map out

the spectrum of poles Fig. 12 of 5—1(q,w) in the w-gqg plane. For
each value of g there will be a continuum of poles from w=0

up to qVF, followed by a discrete pole at w = Wpq- The various
modes all contribute a § function or with damping a Lorentzian

to Im€_1(q w). It is this function that appears on the energy loss
formula. This formula is then an average ower the various ways

in which the system can take up energy Hw.
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Fig.12: The spectrum of poles of €' (q,w) for the
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4.3 Dielectric function theory in the computer code GORGON

4.3.1 The Dielectric function method for non-degenerate

electrons.

The basic formula for the stopping power of free electrons

used in the code is,

2 [
1 de _ —2e ; 1
S /dx = o fo kdk foudu Im =) ( 4.94)

The original version of the code / 1,2 / assumes that kT > Eqr
ie that the free electrons are non-degenerate, or in other words
that the de Broglie wavelength is less than the interparticle

spacing. Now from ( 4.61),

-1 -1
e (q,w) = 6 - V(ci)Po(q'W)> (4.95 )
f(e ) = £(e_)
P (g,w) =] ‘p+q 15 ' (4.96 )
| & 8243__ ?E - w +in
2.2
ig = hp /2m

The expression is valid for both degenerate and non-degenerate

systems. If one takes the classical limit of (4.97 ) one can

assume that A - 0, ie that €p+q > ep. or that g » 0.
Expanding in powers of g., neglecting terms in éz,
SE
4 e ( 4.97 )
P (g,w) = z . B ‘ ‘
0 = P ( 2m +-QEE— - w + in )
d3
—P_ . g ¢f
3 /8¢€
= [an- P (4.98 )




w_2 ] S (v)

elgrw) =1+ 'ii v iggein) & TR (4.99)

where f(v) is now the Maxwell-Boltzmann distribution.

4.3.2 The linearized Boltzmann-Vlasov equation

This formula can also be derived using the linearized

Boltzmann-Vlasov equation

§£ §E =,
1 e o] SF
SE +v-°®s— + =E°* = ( =) ( 4.100 )
1/6t 51 m sv St COLL

where f(v) is the time independent equilibrium distribution
and £,(r,v,t) represents a small perturbation. If the Coulomb
interaction is weak compared to the Kinetic energy collisions

may be ignored. If one further assumes that

3/2

.fo(y)ﬁ( ME;-) exp(—mv2/2kT) {4.101)
2mkT
at the temperature T, then
_ _ 2
e (q,w) =1 wpl/wz o (%) (4.102)
= v _ 2kT
x = & v, = v 2L (4.103)
t
5 -x2 % t2 —x2 ,
bp(x) = -2x“(1-2xe fo e  dt - i/mxe ) ( 4.104)

It is often more useful to express the value of the dielectric
coefficient given above in terms of the plasma dispersion function
Z(Z). The values of this function are calculated in the code and

are tabulated elsewhere / 54 /.



It is defined as follows where { is complex,

foo  —t2
/mez(g) = [ == at ImZ < O (4.105)
Ze (t=E)
I —g2
= P.P.f = - iTe - ImE = O (4.106)
—o (t=E)
oo e_tz 2
= f - i27me Im& > O. (4.107)
= (t=§)
and 2' () = 9% = 2(1 + £3(8)} (4.108)
dg
Then e(q,w) = 1 —(Wpi/WZ)xzz'(x), o (x) = x°7' (%) (4.109)

where x is defined above.

4.4 mhe calculation of the dielectric function when collisions

‘dre included.~Theory with- collisions-in-the code.

Onerway to allow for collsions is through the full Bolztmann
collision integral (6r its equivalent for Coulomb encounters).
To carry this through succesfullyis however very difficult.
Also such a perturbation expansion is not necessarily possible
because if the interactions become very strong and the pctential
energy of the plasma is greater or of the order of the kinetic
energy ,then there does not exist a small parameter in whic¢h to
expand, and the perturbation series will diverge. This situation is
well known for instance in the theory of fluids / 55 / and requires
a new approach not based on the non-interacting gas.

A simple approach to treating collisions is the relaxation

model.

- v(v) {F-£}

et
Il

COLL

]

-v (v) £ (4.110)

with F = f + f
o) 1

frequency which may or may not be a function of the particle speed.

and where v(v) is a phenomenological collision




A ccllision term of this type forces the distribution function
to relax upon each collision to the average distribution.

As a result this method does not conserve particles at every
position and each instant of time, but it conserves particles
only in an averaged sense. A better method is one in which the
collision term is artificially chosen so das to give precise

particle conservation / 56 /.

SF - v (VFay
( —) = v (V){F - £ 3} (4.111)
St COLL - fv(v)fod v

When v is independent of velocity, this becomes,

SF f£,8%
(“—E) =—\){f1 —f—-—-‘u—:,)—-“} (4.112)
COLL [£,a7v

Inserting this expression in the R.H.S. of the Boltzmann-Vlasov
equation and solving as before using Fourier transform techniques,

one obtains for e(gq,w),

W a-8£(v)/
1 = 8y (4.113)

(W‘]_( *V)~iv

3 ,
X [E riv [ —LiAY (4.114 )
(w=q.v)-iv
_ 2 . ,
s(gjw) = 1 - Wpl/wz 0(x, iy) (4.115 )
- W = - (4.116)
T Qv ' Y7 qv,

T = -2x? [:1 4+ X2(8) (4.117 )
1+iyZ (&)

£ = x+iy.
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If one uses the relaxation model then

T = -2x? D +xZ(£)J (4.118 )

and 5 2
e((_;_[_,w) =E] + 2x7 (1 + xZ(E):]wpl/wz @.119 )

This is the dielectric function used in the code, with the
option that the collisions can be ignored alltogether if so

desired.

4,5 Energy loss using the Thomas-Fermi model and the R.P.A.

dielectric function method.

In the present version of the code the energy loss for
bound and free electrons are calculated separately. The dielectric
function theory is used to calculate the contribution from the free
electrons and the Bethe theory is used to calculate the céontribution
from those electrons which are not ionized. By use of the Thomas-
Fermi theory of the atom it is possible to calculate dE/dx totally
within the dielectric treatment / 11 /. That this can be done is
easily realised if one sees that in the T-F-model the electrons are
distributed within the atomic potential according to Fermi statistics.
Therefore one can use the dielectric function (4.61) for such a system
for each set of eleckrons at a given radius and average over the

electron density.

4TrZ2 e4
dE eff N.L
mv
whereZéffjs thecurrent charge on the ions, v is its velocity,
m is the electron mass and N is the ion number density in the
target plasma. L is the stopping number per target atom. The
important unknown quantities are Z and L.

In order to calculate the stopping number per atom, Latom
from the Thomas Fermi model one can use the local-density
approximation.

Z vV, (r)
eff 1 3
L = [ n(r) Lo(n(x),T,v,) E -5 d'r (4.121)

v




In this equation Lo(n,T,Vo) is the stopping power per electron
in a uniform electron gas having density n, temperature T, where
the velocity of the ion ig A\ The value of LO can be calculated
from the dielectric function for a degenerate electron gas as
given in ( 4.61 ). The electron density n(r) is calculated within
the Thomas Fermi model or the Thomas Fermi Dirac model. The
factor in brackets in (4.121 ) is a correction for curved orbits
followed by heavy i6ns traversing the volume of the target, where
V1(R) is the pair potential and E is the energy of relative motion
of projectile and target ions. It is suggested to use the Bohr
minimum impaﬁt parameter where appropriate i.e. for heavy ions.
However this is only a good idea if one has a good theory of the
effective charge which together with the above theory fits the
cold experimental data. The empirical effective charge formulae
are usually calculated using the Bethe theory so here it would

Yield wrong results if the Bohr minimum impact parameter is used




5. The stopping power of boun#& electrons:-
The Bethe theory .

5.1 Calculation of scattering cross sections of electrons

and ions by atoms.

The theory is here developed for fast electrons scattering
off atoms / 17/, and was first given by Bethe /17,18/. The
necessary modifications needed to apply the theory to ions is
then given and the much used Bethe formula is finally derived.
The Bethe treatment is the first quantum mechanical derivation
of the stopping power of charged particles in matter. It differs
in significant ways from the classical Bohr: theory /15,16/, and
this difference was clarified by Bloch who gave a modified /20/
gquantum treatment which agrees with both formulae in their
respective domains of application.

Inelastic collisions between fast electrons (ions) and atoms
(nucleus plus atomic electrons) can be considered by means of
the Born approximation. The condition for the Born approximation
to apply is that the velocity of the incident electron should
be large compared to that of the atomic electrons-

The electron may suffer an elastic or inelastic collision

with the electrons in the atom. An inelastic collision dis
accompanied by a change in the internal state of the atom.

The atom may go from its normal state into an excited state

of the discrete or continuous spectrum, in the latter case

the atom becomes ionized. The centre of mass system in this case
is one in which the atom is at rest.

Let p and p' be the momenta of the incident electron
before and after the collision, and Eé and En the corres-
ponding energies of the atom.

The transition probability is then given by, where Dirac

notation is used,

dw(n) = 2—% | <E ,Ev’U E./p> |2
) (5.1)
2
Rl -p” - dp'dp’'dp!
X 6§ (= 5=+ B EO) Py Py P,




where, 2 Eb 2

ur)= 2%/, - r - or|

is the interaction potential, Ebis the number of bound
electrons (we are also considering the case where the atom

is partially ionized), r is the radius vector of the incident
electron and r, thaose of the bound electrons, m, is the mass

of the electron, and the origin is at the nucleus. The wave

functions of the electrons are, 1/
2
_ . . 5.3
Wg(r) = <1‘;‘|p> = exp (i/f p-r) <-|§|) ( )
3/
wE'(E)E <£|E'>= exp (i/ﬁ_g'-;)/(?ﬂﬁ) 2 (5.4)

where wp(r) is normalized to unit current density.
Then dwin) is the effective cross section do for the collision

i.e. the probability of an electron with momentum p scattering

into d3p' around p' while the atomgoes from state O to state n.

Integration of ( 5.1) over the absolute magnitudelg'l

gives
1)
do(n) = 2@%9— | <p'wn |Ulp,0 >[? do (5.5)
do' = 27Sin6'de’.

where lp" is determined from the law of conservation of energy:
(P2 - p'2)/ 2m = E_ - E (5.6)

Using the wave functions in ( 5.3 ), and ( 5.4 ), one

obtains,
2 D!
do(n) = i /plj’jU(r)e'.l‘i'E V¥ () _(r)drdv|Be (5.7)
2 - n- - o]
4 Hh
—ﬁg_= B - E'
where do = dc',wo and wn are the atomic wave functions, dt is an

element of configuration space of the z electrons in the atom




= dV1, dvz,...dv— .

The functiogg wo and wn are orthogodonal, so the term in U
involving the nuclear potential vanishes identically on
integration over 1, and one obtains,

2 -

m° ; 2 ; #*
d = p § & ’1%'5 datavl! 24 5.8)
o (n) o /o ;1|H{£_£a|e Y ¥, drav|?do (

Carrying out the integration over V by noting that 1/r is

a solution of Poisson's equation, one obtains,

2
e
do (n) :<
5

where k' = p'/# and k = p/M. This formula gives the probability
of a collision in which an electron is scattered into a element
of solid angle do and the atom enters the nth excited state.

The vector -tiq is the momentum given to the atom in the collision.

2
m. V — ®
;) 4k |py 71T, Yy ar?ao (5.9)
2 kq” a n "o

Since

2 2 2

g = k" + k' - 2kk' Cosb (5.10)

where 6 is the scattering angle,

for given k and k',

. kk'
qdq = kk'sin8de = (— ) do (5.11)
and,
5\ 2
do(n) = 8 > 99 |ry 719 E, w*w dr|?2 (5:12)
v q° : = n'o )

The most important collisions are those which cause scattering

through small angles (0 <<1), with a transfer of energy which

is small in comparison with the energy E = % mv2 of the incident
electron (ion) : En - EO << E. The difference k - k' is in

this case also small (k - k' << k) and




E_ - B, =#(k% - k') /2m =4’k(k - k') /n

- vk - k') (5.13)

Since 0 is small, from (6.10) we have,

2

q® 2 (k - k)% + (k8)? (5.14)

q "—_3’-/[1(-En - EO)/KVJZ = (ke)zj (5.15)

The minimum value of q is,

Anin = (Bp ~ Eo)/KV (5.16)

In the region of small angles we can further distinguish

between different regions depending on the relation between

the small quantities 8 and vg/v where Vo is of the order of

the velocity of an atomic electron, (note in code v > Vs always) .
If one considers energy transfers of the order of the energy

€5 of the atomic electrons (En - EO ~ € _~ mvo2) then for

2 0
(vo/v)© <<0<<1,

g =ke = (M4 )e (5.17)

In this range of angles therefore, q is independent of the
energy transfer. For 0 << 1,q may be either large or small in
comparison to a;1 (where a, is say the Bohr radius). On the

same assumption regarding the energy transfer we have,

qa, ~ 1 6 ~ v /v (5.18)




Let us now apply the general formula for do(n) (5.12 ) to the
case of small g (qat)<< 1, i.e. 6 << VO/V). In this case
one can expand the exponential factors as series of powers

of qg:
=-ig-r _ . _ .
e "2=a =1 - igrr, + oeenen =1 - dgx (5.19)
where we have chosen a co-ordinate system with the x-axis lies

along the vector q. In (5.19) the terms containing I then give

zero (by oxthogonality) and one obtains,

d = ___e_z_dﬁ_ zzg_e_z 29,_'9w .
o (n) B <&ﬂl) q | (@x) g | <iﬁr> I(dx)onl 02 (5.20)
where dx = e}:xa is the x-component of the dipole moment of the
atom. a

Let us now consider the opposite limiting case of large q
(qaO >> 1). If g is large this means that the atom receives
a momentum which is large compared with the original intrinsic
momentum of the atomic electrons. It is then clear that we
can consider the atomic electrons to be effectively free,
and one can consider the collision between the incoming electron
and the atomic electron as an elastic collison, the latter being
originally at rest.For large g the integrand contains rapidly
oscillating factors e_ig']—:‘a and the integral is practically zero
unless wn contains similar factors. Such a function wn corres-
ponds to an ionized atom, with the electron momentum emitted given
by ~hg = P - p'. In this case the incident and final electrons
may have final velocities which are very similar and so they
become indistiguishable, Thus in this case the exchange effect
must be taken into account /19 /. Since we are mainly interested
in ion scattering we treat this case later when exchange effects

are not included.
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5.2 Energy loss of charged particles, scattered by atoms,
and the Bethe formula.

The energy loss of a charged particle (into a given

solid angle), due to collisions can be expressed as,
dE(Q) = g (B, - E )do_ ( 5.21 )

If the scattering at the various atoms is independent and

the number of atoms / unit volume is N, then the energy lost
per unit path length is NAE(Q) which is equal to dE/dX

when integrated over all solid angles. The summation is taken
over states of both the discrete and continuous spectrum.

Therefore the general formula for the energy loss of fast

electrons is,

2 .2 —dqe
dE(Q) = 8ﬂ('§_;> J(E. -E)|](e Ly o2 dq (5.22)
v n o] 3
n a on d
as taken from (5.12). We now exclude from consideration the

region of very small angles and assume that 1 >> 0 >>(vo/v)2.

Then g is independent of the amount of energy transferred, and

the sum over n can be calculated without further approximation.

It can be shown that if f is some operator (in a suitable Hilbert .

space), and f is its time derivative, that /17/,

J(E_ - E_)JE S iK(££T - £7F) (5.23)
sn o) on =2t 00 :
where £ = (0, £ n) and f+ is the adjoint operator to f.

on
This theorem can now be applied to the operator,

£ =7 e 19La (5.24)
a

Then,

= N

*)
3

. _ -ig-x -ig-r,
£f= =) (e - ?(E-Ya) + (q*la) e (5.25)

a

and the value of [%,f] can he calculated as,

P e TR (5.26)
A G-

where Z is the number of electrons in ithe atom.
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Then,
 2m (Je 2F
o (E, ~EJ)|(} e T A% =02z (5.27)
n‘,[/12612 n o a
and
4ﬂZe4 d 2Ze4 do
dE(Q) = SRS aq - = (5.28)
mv q mnv 6

where do = 278in68ds.

The range of applicability of this formula is given by the
inequality
2
(vo/Vv) << 0 << 1 or vo/V << a g << v/ v

o (5.29)

We now determine dE (), the energy loss for all collisions in
which the transfer of momentum does not exceed some value q1
such that vg/v << 8,0, << v/ .

'q1
dB(q,) =) [ (En - Eg)do, E_ (5.30 )
d nog .
min |
where Tpin = (B - EO)/ﬁv. The integration and summation signs

cannot be transposed since 9, depends on 1.

in
Now divide the integration range into two parts, from

Qnin t© 9, and from 9, to g, where g  is some value such that

VO/V << P << 1. Then over the whole range of integration from

qmin to q1 can use for don( 5.20) .
e \? 2 90 4q

dE (q ) = 87T(E) ) ](dx) | (E, - E ( 5.31)
n on q

so that

2
dE(q_) = 8ﬂ<—9) Y| (@) .. (B, - E)log, =—— ( 5.32)
o Av ° x| o (E,— E_)

on




In the range from q, to qy on the other hand, one can first
sum over n(since g does not depend on n) which yields (5.28)

for dE(g) and then on integrating over g we have,

4
GE(qy) - dElay) = 4r( 22, ) 1log T'/q, (5.33)

In order to transform the above expressions one uses the

summation theorem discussed above, using

f=d, /e=]x, £=1/m} p, (5.34)
a a a
Then in this case,
£f - f£f = - ih% (5.35)

m

where £ and f are naturally operators, so that

I N =1 <2_r2n 2>(En" E) | (a. )% =z, (5.36)
n n e™h

The quantities NOn are called oscillator strengths for the
corresponding transitions.
Now one defines I the Bethe parameter, by

log I Y N ,log (E, - EO)/z N, (5.37)
n n

= 71N, log (B -E) (5.38)
n

Then

4
dE(q ) = <;£E%?f> log(q Hv/I) ~ (5.39)
mv




Adding this to ( 5,33 ), one has

dE (q4) <4“Ze ) log (q hv) (5.40)

Only one constant characterising the atom concerned appears
in this formula.
Since qq = mv61/h, the effective energy lass in scattering
through all angles 0 < @1, is given by

2

4 mv~e
dE(e,]) = ( AnZe ) log —_— 1> ( 5.41)
mv I

5.3 Energy loss of heavy particles to atoms.

The condition for the applicability of the Born approximation
to collision between heavy particles and atoms, expressed in
terms of the velocity of a particle remains the same as for

electrons, namely
v >> v (5.42)
o

In a system of co-ordinates in which the centre of mass
of the atom and the particle is at rest the effective cross
section is given by,

2 v ~iq-r 3%

do = D1 P |foe N (VIR deV|2 do (5.43)

0 arent p n-o
where m is now the reduced mass of the particle and the atom
and not the electron mass. It is however more convenient to
consider the collision in a system of co-ordinates in which
the atom is at rest before the collision. The general formula
for the transition probability for the transition p - p',

and Eo *~ E, was given as,
2 2
do, = 2T 5BoP |2 p'” - p° -
n " g IUEOP.' . < om ) T Fn T Eoldp'dptodrt, (5.44)
n

for the case ¢©f an electron. In a system of co-ordinates in

which the atom is at rest before the collision, the argument




of the § function which expresses the law of conservation

of energy is of the form,

1 42

152 ~ p)2 - =
3P M =3P/t 3 By +E -E =0 (5.45)

- a

N—

where M is the mass of the incident particle and Ma that of
the atom. The third term is ‘the kinetic "recoil" energy of the
atom.

In a collision between a fast heavy particle and an atom,
the change in the momentum of the particle is almost always
small in comparison with its original momentum. If this
condition holds, one can neglect the recoil term. Then bearing
in mind that the transfer of momentum is supposed small in
comparison with the original momentum, i.e p ~ p', then
the effective cross section in a system of coordinates in which
the atom is at rest before the collision is the same as that
for electrons except that p and p' cancels and m, has to ‘be

replaced by M., namely

a2 =ig.r & )
do_ = —t | [ fUe wnwodeV| do (5.46)

4nt
and taking into account a possible Z1e charge on the ion the

general formula for inelastic scattering is, compared to (5.43)

dcn = 8ﬁ<

This formula dbes not contain the mass of the particle and
hence it follows that all formulae that derive from it remain

applicable to collisions with heavy particles, provided that

2 2 .
Z.e -iq-xr
: ) |<'2 e T a) |2 9 {5.47)
Hiv a on q3

these formulae are expressed in terms of v and g.

The scattering angle 6 is always small in an inelastic
collision with a heavy particle. For when the momentum transfer
is lafge (compared with the momenta of the atomic electrons) ©One

can regard the inelastic collision with the atom as an elastic




collision with free electons in which case the heavy particle
hardly changes its direction. An exception is elastic scattering
through large angles but this has a very small probability.

Thus over the whole range of angles one can put
2
_ a 2
q=7 [ (B, EO)/V] + (M,,_ve)J /B (5.48 )
which in practice reduces to,
gH = Mve (5.49)

everywhere except for very small angles. When considering

electrons we had,

1!

2
q v [ (En - EO)Z/Vj + (mve)ﬁ /1 (5.50 )
S50 tne can deduce that the formulae that one had for collisions
between electrons and atoms, if expressed in terms of velocity

and angle of deviation,remain valid on using the substitution,

0 ,\% (5.51)

including the solid element do = 2msin6de,
the velocity of the incident particle remaining the same.
The total effective energy loss is obtained by substituting

the maximum possible momentum transfer g in place of q4 in

(5.40). The value of dpax S easily exprzzged in terms of the
velocity of the heavy particle (ion) as follows. Since even
ﬁqmax is small compared to Mv, the momentum of the particle, and
the change in its energy is related to the change in momentum
by

AE = v-iq (5.52 )

On the other hand, for a large momentum transfer nearly all this

energy is given to one atonic electron, so,

e = fq®/,, = fy.q << tivg (5.53)




Hence we have, Hq < 2mv

ﬁqmax = 2mv €nax = 2MV (5.54)
Hq
max 2m -3
S = —= = == < 10 (5.55)
max My M
Substituting this in (5.41 ) , we obtain
4NZ?Ze4 2mv2
dE(qmax) = ———*—-—-2——"‘—) log < T ) (5.56)
mv
2_ 4 :
LN AAS 2
dE _ = . 1 2mv”
ax = N < 2-" log (‘—I———‘ ) (5.57)
mnv
where N is the number of atoms/unit volume in the material.
If Ma is the mass of an atom in the material,
2, 4
ATz Ze 2
1 e _ 1 1 2mv
P dX—Ma < mv2 ) log( I ) 559

which is the usual form of the Bethe equation.



The Bethe Theory as used in the code. Calculation of the

Bethe parameter I.

The Bethe formula (5.58 ) contains the parameter I which
has to be evaluated for each type of atom, each state of
ionization and ideally for each state of atomic excitation
In the code the contribution of the bound electrons to the
stopping power is calculated by Bethe's theory, including
corrections due to the differences between a plasma ion and a
neutral atom, and including shell corrections. The basic physical
parameter is the average excitation energy I, defined by
NB

) log (hw,) ( 5.59 )
B i=1

log I = %
where NB is the number of bound electrons participating in ?he
slowing down process and hwi are the characteristic excitation
energies. In the code these are interpreted as the frequencies
of revolution following the Bohr model / 15 /.

In order to calculate I within the framework of the Thomas Fermi
model we note that at each radius r a spectrum of revolution
frequencies is determined by the Fermi statistics energy distri-

bution at this radius.
9, 1/2
w(r) = E /my (E + eV(r)E:] /x ( 5.60 )

Here E is the total electron energy, i.e potential plus kinetic
enerdy.The number of electrons per unit frequency having a revo-

lution frequency w is,

s rmax(w) -1
n(w) = < 321w m > x [ r5<exp[[%mw2r2 - eV(r)“Oa/kT)+ 1:1 dr
3
h 0
(5.61 )
Here rmax(w) is the radius beyond, which the energy which

follows from w yields a free electron i.e.

ev (rmax(w)) = -B (5.62)
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The effective excitation energy is then given, within the

framework of our model, by

[“n(w) log(tiw)dw (5.63 )
0

=1
log I = N
A shell correction is included in the calculation by eliminating
from the integration in equation ( 5,61) those electrons which

are moving faster than the ion i.e. for
2mv? < Aw ( 5.64 )

where v is the projectile velocity.

The solution of the Thomas-Fermi described in section 3
provides the values of V(r), a the chemical potential and n(r)
for the integrations which need to be performed.

An alternative method for calculating I, which is useful
especially when the Thomas-Fermi model is not used, is also
provided.\According to this method (5.59 ) is directly used
for the determination of I. The average degree of ionization
in the plasma has to be calculated by solving the Saha equation.
An atomic model has to be used in order to provide the binding
energies of the electrons as external data. The excitation
energies are then calculated as

ﬁwi = E§9i~ ( 5.65 )
where Ebi is the binding energy of the i-th electron and n is
its principal gquantum number. The above equation follows from the
definition of the revolution frequency in Bohr's model. Also in
this procedure electrons which satisfy condition (5.64 ) are
excluded from the summation in (5.59 ). Two alternatives for the
use of the Saha equation are provided. _

In the first alternative, apblicable to single element targets,
theSaha equation is solved numerically, using ionization poten=-

tials given as input data.




The set of equations,

3/2
= p, 0.515 ( ﬁT ) exp ( En/kT ) (5.66 )
e

Pn+1

is solved by iterations. Here P, is the concentration of ions
with degree Of ionization n, kT is in eV, ng is the free electron
density in units of 1022 cm_3, and E  is the nth ionization
energy in eV. From the final value o? n the average number of
free electrons per atom Zfree and the average number of bound
electrons (2 - Zfree) are determined.

In the second alternative, applicable both for single
element targets and compounds such as CHZ’ previously prepared
solutions of the Saha equation are used in analytical fits which
give values of the degree of ionization as a function of the
target density and temperature. In the case of CH2 the degree
of ionization of C and H are given separately as functions of
the density and temperature. In the Z,T plane (Z is the degree
of ionization, T the temperature) the fit is to linear segments
for a givem density, the density scaling being logarithmic,

Z =2, + (a; + b,log go) (T - T;) (5.67 )
Here i indicetes the segment number, Py is the reference
density for each material. The 7 segments are chosen according
to the target atoms shell structure. The constants Zi’ai’bi
for Al, Cu,Au, C and C in CH2 are provided (up to certain
degrees of ionization, see description of subroutine IONIZ

below) .




6. The stopping power due to Ions.

6.1 Ion-Ion scattering in plasmas.

The first theory to be developed in order to calculate
non-equilibrium properties of plasmas was developed by
Chandrasekhar / 5 / for gravitational forces and transcribed
to the case of electrostatic forces by Spitzer / 53 /.

The theory can be used to study relaxation phenomena, for
instance when electrons and fions have different temperatues,
and/or steady state processess such as the transport of electric
Current or heat. In order to develop the theory one must study
the effect of collisions in the plasma. Electrostatic forces
have a large range however and so one must consider not so

much the effect of close collisions, but more the effect of
distant collisions, in which the scattering angle is very

small.
If the impact parameter is denoted by p, and u is the relative

vVelocity , andy is the deflection angle,

m, ,pu
12 (6.1 )

m,, = _1_2 (6.2)

and Z1 22 are the charges on the particles.
4
If one defines a close collision as one in which the deflection

is less than m/2, then the impact parameter for this case 1is

Z122e2

B, = 5 (6.3)
m,w
171

M, << m,, and the cross section.is Wﬁg.




The collision time for such collisions is then,

R B ‘
tc = ~ (6.4)

Wy Pg

where T is the density of particles in the plasma.

In a gas of charged particles this gives too long a m.f.p.

The reason is that since the electrostatic forces decrease
weakly with distance, this does not compensate for the in-
creasing cross section due to the increasing impact pérameter,
and so distant collisions have a large effect.
Because the deflections are small and of a random nature they
have to be analyzed statistically. One defines statistical
averages (over the Maxwell Boltzmann distribution for instance)
of the various velocity components, namely < (AWV/)>,

<(AW1)2> and <(AW7/)2>, where // means parallel to a beam of
test particles moving through the other set of charged particles
which have a certain velocity distribution. Then one can show

that, / 53 /. for instance,

- B 2 m, -
T )> = a1 (1 + @> ¢ (1) (6.5)
8ﬂe4ﬁ ZﬁZ% in A
A, = : 5 (6.6)
m
5
where -y
Tx) = 2 [¥e gy (6.7)
' m¥2 o
_ (3(x) - X8 (x)
G(X) = ( 2 > (6.8)
X
m
2
1. = (6.9)
£ 2KT
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T is the density of particles in the plasma, Tf the temperature,

Zf the charge, and 1lnA is the Coulomb logarithm.

3p3. 1

. K37
A= _5_._q2<~ £ 4)2 (6.10)
2Z1zze e

where n is the electron density.

<(Aﬁo)> is connected to the rate of energy loss and from this
the formulae given in section ( 7 ) can be derived for the
rate of energy loss of an ion travelling through a plasma due
to ions and electrons. These type of formulae are suitable
for a fully ionized plasma, but can not of course be used for

ion-ion scattering in cold materials.
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7. Improvements made to the GORGON code at INR/KfK

7.1 Ion-Ion-Scattering

The original code was written for protons passing through hot
plasmas, mainly metal plasmas, which would be produced if a

plane target were irradiated by a powerfull ion beam /1/.

In this type of plasma and in the plasma formed on the outer

layers of ICF pellets, ion-ion scattering is not very important.

The reason for this is that in this case the initial ion velocity
(of the projectile ion) is very large and usually much larger

than the electron thermal velocity. Usually in this case dE/dX

is often roughly constant or rises to a modest peak when

the ion velocity is of the order of the electron velocity.

Oncethe ion velocity is less than the thermal electron velocity,
then dE/dX drops very sharply and the projectile ion has virtually
lost all its energy. In pellet calculations this 4s the point

(at the end of the range) where the hot plasma pushes the cold

part of the pusher. If a Bi+ ion starts with an energy of 10 GeV

at this point it has an energy of 10's of keV which is insignificant
so for the purposes considered here this can be considered negli-
gible. However when a-particles or neutron induced "knock-on"

pt and T ions pass through burning (very hot) DT a very different
situation arises.Here for instance the a-particle starts off

with a velocity which is less than the thermal electron velocity

but greater than the thermal ion velocity. The energy loss to ions
or electrons in a hot plasma is always greatest when the velocity

of the projectile ion is equal to the ion or electron (respectively)
thermal velocity (average).Either side of this velocity the stopping
power contribution drops off. Now as an o-particle (3.5 MeV) slows
down, the energy loss to the electrons decreases, whereas the energy
loss to the plasma ions increases. As the plasma temperature increases,

so the loss to the ions becomes more and more important relative

to the electrons.




The treatment of ion-ion scattering that we have put in the
code follows that of Mehlhorn /8, 9/. For the electron
stopping power on the other hand a dielectric function
theory approach is used in the code which is more accurate
than that used by Mehlhorn. The latter approach uses a
simple binary collision model within a Debye radius coupled

with interaction with plasma waves outside the Debye sphere.

In this method the ion stopping power is given by,

2 2
Z Z e
dE eff "2 m 2
dE =-Lff 2 I 4% G(y,) lnA, (7.1)
dx ion 8202A2 mP pl i i
where,
A
2 E
y. = =2 (7.2)
i A1 kTi
G(y;) = erf(Vyy) - 2/(y,/m) (exp(-y;)) (7.3)
where erf (...) is the error function.
= 2
5 _ 4ﬂpZ2e NO 7.4)
Yol m_A, )

where p is the density, E the ion energy, A1 the ion atomic
weight, A2 the atomic weight of a plasma ion, Ti is the ion
temperature, Zeff is the effective charge (of the ion slowing
down), B = v /c, ¢ is the velocity of light, v is the ion
velocity, m is the electron mass, mp is the proton mass, wp
is the plasma frequency. In i is the ion Coulomb logarithm,

and e is the electronic charge.

As = b /b_._ where,

1 max’ "min
1/2
b .x = Debye Radius = (kTe/4ﬂne2) (7.5)
2
2 A,A
S Lonfi - N i -
min Z1Z2 e2 A1+A2




where Te is the electron temperature, and n is the electron
density.

The corresponding expression used by Mehlhorn /8, 9/ for

energy loss to plasma electrons is,

w2 Z2 e2
dE _ pl Teff
dx free - 0282 G(ye)ln/\free (7.7)
v - 0282
o= (7.8)
2k’I‘e
_ 0.764 Bc
Afree T b, w (7.9)
min pl
e.ZZ1 h
bmin = max ) H —————-2m u) (7.10)
m, ,u 12
12
where Mgy = m1m2/(m1+m2), m, is the mass of the incoming ion,

m., is the mass of the ion in the plasma, and Ng is the Avagadro's
number. 22 is the average number of ionized electrons/atom,
and u is the relative speed between the projectile ion and the

plasma electrons.

The above expression gives a larger value for dE/dX than the

dielectric funtion theory /1/.




7.2 The stopping power of degenerate electrons

When electrons become degenerate the stopping power stops
increasing. A full treatment of this problem would involve taking
the exact expression for the dielectric function for a degenerate
electron gas (at all temperatures, at high temperature it becomes
the same as the classical expression without collisions,
and putting it into the formula ( 4.14 ) for the stopping power
of free electrons and carrying out the integration either numerically
or analytically (if this is possible). There are two reasons to
treat degenerate electrons. Firstly in a metal at low temperature
a few electrons per atom are "free" as band electrons. The free
electrons stopping power formula can be applied to this problem in
a first approximation. The next approximaion would be to use the
exa¢t band structure wave functions and energies to calculate
the dielectric function. Secondly in ICF pellets the bulk
of the DT is compressed on a low adiabat such that the electrons
are partially degenerate. So o-particles and neutron induced
"knock-on" fast ions stream out of the expanding burning sphere
which is semi-transparent to these ions into the cold degenerate
DT. Hence one wants to know the stopping power here. As a first
approach in the code, the following scheme has been used (and
will be improved upon), as 1in some respects it has been found not
to be satigfactory.

The code calculates this way, only if €p > kT. Then if VF
is the Fermi velocity V is the particle velocity, and Vt is the
electron thermal velocity,and €p is the Fermi energy

For V. > V_ and VF > Vt, /57/

F
P& le = To7 e Ey 7.1

where wplis the plasma frequency,
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If
V. < VF and VF >V

tl
4 2 omv_2
1 de - -2 ,2 e mv . __F
o ax le =" 5.2 33 ln( A ) (7.12)
p v 3hw
Pl
2 47Tne2
wpl = (this is for DT) (7.13)
1/3
Ve = h/m B n) (7.14)

1/2

£ = <2_1?') (7.15)

For v < Vp it is clear that not all the electrons’in the Fermi-

<
{

sphere can be excited and formulae (7.12 ) allows for this fact.




7.3 The effective charge

When say a Bismuth ion Bi* enters a lead target then
collisims with the electrons in the cold material or plasma
causes ionization which takes a finite time to occur, comparable
to but less than the time the ion takes to reach the end of
its range. After a certain time an equilibrium effective charge
is attained. This equilibrium effective charge is a function of
the ion and its atomic state spectrum and of the electronic
properties of the medium through which the ion is moving.

In particular the effective charge can be significantly different
/ 59 / in some cases in a cold material and a hot plasma.
Electrons are captured more easily from bound states than from
free electron states, so that as the number of free electrons

increases so does the effective equilibrium charge.

Also as there are more free electrons, there is more collisional-
ionization. ‘ |

In the code at the present time an empirical formula is
used since the original code was written for protons.
The formula was obtained /29 / by compartson between proton data
and heavy ion data,by dividing the two stopping powers. One uses,

0.69
o

Zeff(V) =2 (1 - 1.034 x exp(-137 Vé/Z ))

o
(7.16)

L] —_
VL_— Vr/c

where 7 is the nuclear charge on the ion, and Vr is the

relative velocity of the ion to the thermal electrons in the

1
_ 2 2 2 .
v, = < Ve + v ) (7.17)

Plasma.

where Vt is the thermal electron velocity and V is the ion
velocity. This means that in hot plasmas the effective charge
stays higher than it would do in cold méterials. This shortens
the range and at high plasma temperatures the Bragg peak re-

appears. The various contributions to dE/dX, namely free electrons,




bound electron, and ion scattering are all multiplied by

2
Zeff’
total dE/dX. The effective charge can not go below the value

The contributions are then summed in order to find the

of the charge of an impurity of the particular type of ion

in the material under consideration. If the material is a
metal some of the outer electrons of the ion will naturally
go into the conduction band. This number may be one for light

ions or a few for heavy ions.

7.4 Calculation of the range

The original code calculated one value of dE/dX. From
this it is fairly easy to modify the program to calculate
the range. Use of a DO Loop allows one to subtract
( 1 dE/dx)- pdX from the initial energy.If pdXx 1is called
the range factor ‘(gms/cmz)
or is calculated in the code so that about 80 iterations are

needed to reach the end of the range. This is done by calculating

, this can be set to a given value

dE/dX once and then assuming dE/dX remains constant. and finding
the range of an ion with initial energy EO, and then dividing
this range by 80 to find. the range factor. Another facility
which is provided is to stop the calculation at a certain energy,

i.e. a lower cut —-off energy is allowed for.

7.5 Bohr minimum impact parameter

It has been shown in /20,23/ that the Bethe theory is
not always valid and that particularly for heavy ions the Bohr

theory may well be better. A simple minded way of taking this
into account is to use the maximum of the quantum or classical
minimum impact parameter, This facility can be used in

the code where in both the free electron and bound electron
calculations this condition is tested for and used if appropriate.
However there exists the following problem of consistency with
the effective charge formula. This is evaluated as if the Bethe

theory is valid and so is not valid when used with the Bohr theory.




A fully consistent calculation is needed in which the Bohr

theory is used with the same shell effect modifications as

used in the Bethe theory, together with a first principles
calculation of the effective charge in cold material and in
the plasma state.

As a first approximation of course one could evaluate the cold
effective charge using experimental data and the Bohr theory.
Use of the full Bloch formula would be even better because
this interpolates between the Bethe and Bloch theories /20,23/.



7.6 Improvements made to the Fortran programming and

structure of the program

The whole GORGON code was investigated to see whether
or nor the FORTRAN rules were kept to, and if not the
corresponding changes were made. The following changes were

made in general

a) All multiplications were as far as posslible replaced by
additions.
b) Divisions and exponentiation operations were replaced by

multiplications whenever possible.

c) If in a given formula there were many constants then they

were put together before evaluation

d) Calculations within a loop which were independent of the

index were taken out of the loop.

e) Subroutines which are only called once were integrated into

the program.

f) In the LATMA program, the error handling facilities were
improved and self-explanatory error messages are now

printed out.

g) The input data for the LATMA and DEDX programs were extended.




8. User's and Programmer's Information

8.1 Description of the Code

Regular version.

The version which is ordinarily used employs the Thomas Fermi
model for dealing with the bound electrons and for determining

the plasma parameters.

8.1.1 LATMA-INIT

Program LATMA solves the Thomas Fermi model for the given
target temperature and density and calculates the chemical potential
electron density as function of radius and the degree of ioni-

zation.

LATMA routines:
MAIN-program: Performs the calculations of the Thomas Fermi model

as described in Sec. 3 and controls the service subroutines.

Subroutine INIT: Initializes the Thomas Fermi model integration,
following Latter's/42/ procedure. This is required because for
the integration the first two points of the mesh are needed.
INIT calculates the parameters of the second point, the first

(outermost) given by the boundary conditions. The subroutine

pParameters are:

XMU - The current value in the iteration scheme of the chemical
potential.
7
DU = The mesh step Uy~-Uy_, U= X , X the non dimensional
¥

distance in the Thomas-Fermi atom.

A = The dimensionless atomic radius in the Thomas Fermi model.

NN = Number of mesh points.




Subroutine ZZEFF:

ZEFF

M@N+ 1

SubFoutine RMAX:

7EFF,

=
I
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Calculates the effective charge Z required for
calculations in a mesh cell.

Parameters:

Vector specifying the effeetive charge up to each mesh

point.

Vector of radii of mesh points.

Average radius in a mesh cell.

Effective charge to be used in a given mesh cell.

Number of mesh points + 1

Number of mesh points + 2

Calculates maximum radius for which a given energy
implies a bound electron in the Thomas Fermi model.

Parameters:
AR, M@N1, K

Atomic number of target material
Electron energy

The required maximum radius.
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Important variables:

XKT - Temperature (keV)
R@ - Density (g/cm3)
XMU = Chemical potential
ZEFF - Effective Z as function of radius
ARR - Radial points in atomic cell
— L3 _3
13010 Bound electron deneity (cm ~)
RXX - Total electron density (cm_3)
ZAVR - Average total charge.
Input description for LATMA
The input for the LATMA-program looks as follows:
1. card IUMASH IRECN@ IMESHP
N. card 70 RY XKT AMU (this card can be repea-
ted N-times)
IUMASH UNIT-Number of the MASHA-profile (INTEGER)
IRECN@ Number of records in the MASHA-profile (INTEGER)
for each input-card with the data 'ZO-R@P-XKT-AMU'
3 records are needed in the MASHA-profile,
1 additional record is needed for the end-record;
that means IRECN@ > (N-1) #3+1
IMESHP Number of meshpoints (INTEGER)
Z0 Target atomic number (double precision)
R Target density in g/cm3 (double precision)
XKT Target temperature in keV (double precision)
AMU Target atomic weight(double precision)




Output of Program LATMA

On disk (MASHA profile)

Atomic number, density, temperature (keV), chemical potential (keV)
(Number of mesh points; maximum 400) )

Tables:
(1) ARR, RXX, ZAVR for the whole cell.
(2) ARR, R@d for bound electrons only.
Print:

Total number of electrons
Number of bound electrons
Number of free electrons

Table (2)

Program INIT

Before a LATMA-run can be started, a MASHA-Profile must be
created.

This can be done with the program INIT. This job allocates a

new MASHA-profile, structures it by the meaning of a 'DEFINE FILE'
- command and initializes the first record with the characters
'PROFILE~END'. |
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8.1'2 EEDX

Program DEDX calculates the energy loss of a given ion
(atomic mass, charge state and energy) in a given plasma (atomic
number, density, temperature) using the Thomas Fermi model

according to the procedures described in Secs. 3.2, 3.3, 3.4

DEDX routines.

Programm MAIN: reads LATMA- output from disk, calls subroutine DEDX

and computes the range.

Subroutine DEDX: control routine, calls routines for calculations

required in the determination of dE/dX.

Subroutine DETRO: Control routine for the calculation of dE/dX.

Parameters:
XKT - Temperature
R$p - Density
EK - Projectile energy
DE - Total energy loss

Subroutine PLDE: calculates free electron contribution to the energy

loss as described in Sec. 4.3.
Parameters:

EK - Projectile energy

XKT - Temperature

R - Density

ZFREE-Number of free electrons per atom

DEFEL-Energy loss due to free electrons

Subroutine %FUNC:Calculates the real and imaginary parts of the

plasma dispersion function % required for the
calculation of the dielectric function, as des-
cribed in Sec. 4.3 and 4.4.

This is now included in PLDE.




Parameters:

U - Variable x
V - Variable y

XR = Real part o

f

w/kV, (Sec.4.4)

t
\)/kVt (Sec. 4.4 )

Z

XTI = Imaginary part of 2

Subroutine ZPRIME:

XMU -

VDAL -

ZREAL -

ZIM

calculates the plasma dispersion function in the
case of non collisional plasma.

Parameters:

Variable u = w/kV (Sec. 2.3)

Variable v/vy (Sec. 2.3)

Real part of Z

Imaginary part of 2

IONP: Calculates excitation energies of bound electrons in Bethe's

theory using the Thomas Fermi model as described in Sec. 3.2.

Parameters

XKT, R@

o
°

FREEL - Number of free electrons per atom.

ELOSS: Calculates bound electron contribution to dE/dX as described

in Sec. 5.3.

Parameters:

E - Projectile energy

DEDX - bound electrons contribution to dE/dX
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Important variables in program DEDX

XKT - Temperature (keV)

R - Density (g/cm3)

7.0 - Target atomic number

ZFREE - Number of free electrons per atom

EK - Projecfile kinetic energy

DEBND - dE/4dX by bound electrons (keV/'cmz/gm)

DEFEL - dE/dX by free electrons (keV/cmz/gm)

XNW - Atomic frequency spectrum in Thomas Fermi model.
WTAB - Atomic frequency points in Thomas Fermi model.
AR - Vector of radii in Thomas Fermi model

ZEFF - Effective value of charge

SUMW - Number of bound electrons from oscillator integration
XTI - Bethe's I without shell correction

AM - Projectile atomic weiyght

ZPRJ ~ Projectile charge number

Input for the program DEDX

1. card: TUMASH IRECN® TURANG RFIND

2. card: IDLEV IUTEST IDVERS MAXIT the input-cards

3. card: ZPRJ AM EPRJ FREELI ECUTF can be repeated
al times

4. card: 70 RO XKT AMU sever *

This version of the DEDX-program can be started in 2 ways:

a) with the data of a MASHA-profile, created by a LATMA-job
b) without LATMA-data

If you use the 1. possibility, a MASHA-profile must be created
by the LATMA-program, before a DEDX-job can be started.
If the DEDX-program is started without LATMA-data, 'DE/DX by

bound edectrons' is set to zero in the subroutine DETR@.
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IUMASH - IRECN@®

If a MASHA-profile is needed, the unit-number to which the
profile is allocated, must be specified in 'IUMASH' and the
number of records of the profile must be specified in 'IRECN@'
(both are INTEGER-values)

IURANG — RFIND

Another feature in this version of the DEDX-program is the
computation of the range. Therefore, in 'IURANG' you have to
specify a unit-number of an output~dataset, which will contain
the data of the range.

To compute the range, a range-factor, which can be specified in
"RFPIND', is needed.

If the value of 'RFIND' is positive, the range-factor is computed

a . . s aas
s r = projectile initial enexgy

DE/DX by total electrons #*'RFIND'

range facto

If the value of 'RFIND' is negative, the amount of 'RFIND' is
the range~factor.
At the end of the computations the range is determined as

range = (number of iterations - 1)# range~-factor

'"IURANG' is INTEGER and 'RFIND' iy DOUBLE PRECISION

IDLEV - IUTEST

In the case of wrong results, you have the possibility to run
the program on a test.level,hat means, some test-printont
is produced. The testlevel is specified with 'IDLEV'.

IDLEV = O » no testprintout
= 1 » test-printout on unit 'IUTEST'.
(both are INTEGER-variables)




IDVERS —or
With the variablle 'IDVERS' you can specify the version, with

which the calculations should be done.

IDVERS = 1 » standard-version (with data of a masha profile)
= 2 -+ version without LATMA-data
('"IDVERS' is INTEGER)

MAXIT
If you choose an unfevourable range-factor, yéu can get a lot
of iterations. This can be prevented with the variable 'MAXIT)
which specifies the max-number of iterations to be executed.

('"MAXIT' is INTEGER)

ZPRJ - AM -~ EPRJ - FREELI

ZPRJ is the projectile charge state
AM is the projectile atomic weight
EPRJ is the projectile initial energy:in keVv

FREELI is the number of free electrons/atom (this value is only
needed, if IDVERS=2 is
choosen, otherwise you
have to specify 0.0D+0)

(all values are DOUBLE PRECISIONS)
ECUTF

To compute a cut-energy, a factor is needed, which is specified

in 'ECUTF'. Then the cut-energy is computed as

ECUT = EPRJ/ECUTF.

After each iterationyAE is computed as
AE = DE/DX by total electrons # range-factor
Then the new projectile initial energy is determined as
EPR'Jnew = EPRJOld = AE
If the'new projectile initial energy' is greater than the

'cut-energy', a new iteration is started with EPRJneW.
(ECUTF is DOUBLE PRECISION)
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%0 = RP - XKT -~ AMU

70 is the target atomic number

R¢ is the target density in g/cm3
XKT is the target temperature in keV
AMU is the target atomic weight

(all variables are DOUBLE PRECISION)

The whole program has been tested and changed, so that no FORTRAN-

rules are violated.

Output of program DEION

ZPRJ , AMU

XKT, R, Z0, AM, XMU, FREEL

Table : AR, ROD (bound electron density), RXX{(total electron
density), ZEFF

N - Number of bound electrons from oscillator integration
I - Bethe's I from TF model, no shell corrections

XKT, Rp, EX

EX;, I (Bethe's I with shell correction), N(number of effective
electrons with shell correction).

BOUND ELECTRONS DEDX USING THOMAS FERMI MODEL EK, XKSUM
(dielectric function integral), FREE DEDX (free electron contri-
bution)

Z2Q. ZFREE, ZB@UND

DET@®T, DEFEL, DEBND

Range and data from range
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8.2 Version of the code using atomic physics other than the

Thomas Fermi model - DECZI.

This version is different from the regular one in the method
of calculating the number of free electrons and in the method of
calculating the bound electron contribution to dE/dx. This version
has been specifically used only in the calculations of the stopping

power of CH2, where the use of the TF model is not convenient.

DECZI routines
MAIN:Controls the calculations and calculates the energy loss

in Cold targets. Data for Cold targets provided for:

Aluminium (INDM = 1)

Copper (INDM = 2)
Gold (INDM = 3)
Carbon (INDM = 4)
CH2 (INDM = 5)

DETR@:Controls the calculation of dE/dX.
Parameters:

XKT - Temperature

R - Density
EK =~ Projectile energy
DE - Total energy loss

ICPLD - Index used in choosing cold dE/dx calculations.
IC¢LDX— Index determining whether cold target: is assumed.
DECLD - Cold dE/dx

INDM - Index defining the target material.
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SAHA 1: Solves the SAHA equation for single element targets
(INDM 1 to 4)

Parameters:
XKT = Temperature
R - Density

ZFREE = Number of free electrons per atom

INDM - 1Index defining target material

PLDE: Calculates dE/dx due to free electrons (see DEION)
ZFUNC, ZPRIME - gsee DEION

ELBND: Calculates dE/dx due to bound electrons, using atomic
shell model, not TF model, as exprlained in Sec.5.3.
Specific data provided for Al, C, CH2°

Parameters:

E - Projectile energy
ZBOUND ~Number of bound electrons per atom
DESHL - Bound electrons dE/dx

INDM - TIndex defining target material

I@NIZ: Gives fits to approximate Saha calculations, providing
the degree of ionization as function of density and
temperature.

Specific data provided for Al(up to Z2 = 13), Cu(up to

Z = 20), Au(up to 2 = 52), C(up to 2 = b), CHZ‘
(see Sec. 5.3)
Parameters:

RHQ - Density

TEMP ~ Temperature

Z = Degree of ionization
DZDT - 3%/3T

} for use in other equation of state applications
DZDR - 3%/9p
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Important parameters in program DECZ 1

XKT
RP
EK

70
ZFREE
DEFEL
DEBND
DETQT
INDM
APRJ
ZPRJ
EPRJ

ENP

- Temperature (keV)

Density (g/cm3)

Projectile energy (per nucleon) (keV)
Atomic number

Number of free electrons per atom
dE/dx by free electrons (keV/g/cmz)
dE/dx by bound electrons (kevyg/cmz)
total dE/dx

Target material index

Projectile atomic weight

Projectile charge number

Projectile energy

Projectile energy per nucleon
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Input to DECZ 1

ICPLDX - If 1 - cold target is assumed
INDM

APRJ

ZPRJ

NSP = Number of projectile data

NR = Number of target data

R

XRT

Data for cold target stopping (vector AE) have to be provided
in MAIN

Ionization potentials have to be provided in SAHA (vector EE)
Number of electrons in each sub=-shell (vector NN), principal
quantum number of each sub-shell (vector XN) and binding

energies in keV (vector EB) have to be provided in ELBND.
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Output
IC¢LDX, INDM, APRJ, ZPRJ

Values of projectile energies ENP (1)
Rp, XKT

For each value of ENP a table is provided giving:

1 - number of atomic shell

"ZEFF - Effective Z for calculating the binding energy in shell T
HBAR - Excitation energy for shell (keV)

XJ - Stopping number for shell

XX - number of electrons in shell T

DES = shell contribution to energy loss

DE = cummulative energy loss

This table is printed for the case of an unionized target and for
the case of the real target. In the case of CD2 the tabels are
for the carbon component only.

Also provided are:

RA - density in units of 1024 atoms (molecules)cm_3
ZF = Number of electrons per atom (molecule)
H - Debye length in the plasma

DeBroglie wave number for the electrons

DXK1 -
DXK2 -
DXK3 =~

steps in k-integration

XKCRIT=1 (Debye length)
XKR2 - 1Intermediate k value in k-integration:
XKMAX = maximum wave number in calculation

XNT - Ion contribution to screening
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ALPHA - Electron thermal velocity
EXK - Projectile energy per nucleon

XKSUM

Stopping number due to free electrons
DEDX - Free electrons dE/dX

If there are no bound electrons in equilibrium, a message is

printed.

Z0 - atomic number (6 for CD2)

ZFREE - Free electrons per atom (carbon for CD2)

ZB@UND - bound electrons per atom (carbon for CD2)

BDEUT - Bound electrons in D (for CDZ)

ZFRET = Total number of free electrons (for CDZ)

DETPT - Total dE/dX

DEFEL - total dE/dX due to free electrons

DEBND - dE/dX due to bound electrons (in carbon for CD2)
DEDEUT - dE/dx due to bound electrons in D for CD

2
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8.3 Flow charts

rig.13: Connection between the 3 programs and the
MASHA - profile

Program
INIT N
N
N9,
\Z
\('4/\
\\(¢
N N
Program N
LATMA __WRITE N _ L— MASHA -profile
vg) \_}
&
Program
DEDX

Program INIT allocates a new MASHA -profile
Program LATMA writes his results to this dafaset
Program DEDX reads the data produced by LATMA




START
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read input-data -

!

compute cut-energy

DEDX

was fhis
the 1. call of
DEDX for this input-

' data ?

compute the range-factor
and print the headlines
for the range-data

compute and print
the range-dafa

!

compute the remaining
projectile -energy

remaining

projectile - energy
>

cut -energy

number

N
© of iterations

YES

compute the range
and print the data

Fig.14

>
x. iterations

GENERAL FLOW CHART

OF GORGON CODE
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calculations
no

with LATMA-
data ?

IONP : evaluate Bethe I factor
using the Thomas Fermi model

-

DETRO

RETURN

FLOW CHART FOR DEDX



DETRO

calculations
with LATMA-
data ?

ELOSS: calculation of dE/dx
due to bound electrons by
using the Bethe formula
calculation of shell corrections
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calculate effective charge
as a function of velocity

PLDE .
contribution from free electrons

Contribution of bound
electrons is set equal
to zero

y

calculate contribution
from ions

y

multiply each contribufion
(bound electrons - free
electron-ions) by 22

}

calculate the sum of
all 3 contributions

RETURN

ZFUNC
calculates plasma
dispersion function

rig.1¢  FLOW CHART FOR DETRO
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8.4 Description of Subroutines

The LATMA code egssentially integrates the Thomas Fermi
equation (3.18) and has a very linear structure. On the other
hand the code GORGON which calculates the . energy loss using data
from the LATMA code is more complicated in function and
structure. It is useful therefore to regard the LATMA code as
providing the input. data for the main energy loss program. At. the
present. time for each 4eE/dx run at a constant density and tem-
perature, the Thomas-Fermi model is solved and the data is stored on
a tape. This information is then recalled when needed by the
energy loss program. It would be clearly much more flexible
if the codes were directly coupled.THen if the density and
temperature remained the same, only one LATMA calculation need
to be done, but if the density and temperature changed then
the LATMA program would be recalled. It is clear that the first
method can save time if one continually calculates with one
density and temperature or a set of densities and temperatures,
but in general it is not possible to set up files for all the
materials densities and temperatures that are needed.

The energy loss program GORGON is controlled by the sub-
routine MAIN. This sets the cut-off energy below which the program
does not calculate. Then it calls the dEdX subroutine which
controls the calculation of the total DEDX. It then calculates
the loss of energy in this step using the range factor which
has either been given as input or is calculated from the first
dEDX value. This is the repeated until the energy drops below
the cut-off energy. At the same time the total range is computed.
The subroutine DEDX controls the use of various options and
then calls IONP which calculates the Bethe I factor and DETRO
which controls in more detail the energy loss calculation
This subroutine calculates the effective charge as a function
of the velocity of the projectile and the temperature of the
plasma. It calls ELOSS which calculates the energy loss due to
bound electrons, PLDE which calculates the free electron contri-

bution and the ion contribution. All of these contributions are
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multiplied by the effective charge squared. The total value of
DE/DX is then evaluated.

In the subroutine PLDE the energy loss due to free electrons
is calculated. It tests whether the plasma is degenerate or
non-degenerate and calculate accordingly. It evaluates the
dielectric function integral in the stopping power formula
for free electrons (4.14 ), and also calculates the ion contri-
bution to the stopping power. The subroutine ZPRIME calculates
the plasma dielectric function. _

IONP calculates the value of the Bethe I parameter using the
solution of the Thomas Fermi model obtained from LATMA.
The subroutone ELOSS then uses this value to calculate the

energy loss due to bound electrons.
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9. Results of a Sample Problem

9.1 Description of Sample problem.

The sample problem chosen was used in actual pellet calculations /30,
33,34,60/.It is the case of a 10 GeVv Bi++ ion slowing down in solid
density lead at a temperature of 200 eV. In the first step of the
calculation the LATMA program is run in order to calculate the
Thomas-Fermi data (chemical potential, electron density etc.) of
solid lead at 200 eV. This data is then stored in a MASHA profile.
The DEDX program reads this data and from it,and calculates the
Bethe Parameter. For this case the output of the DEDX program is

given and the results obtained are discussed in 10.6.
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Sample Problem : Method of operation and physics input

A DEDX-run is done in 3 steps.
1.) Initialisation of a MASHA-profile dataset (Fig.1)

2.) Execution of a LATMA-run to calculate the chemical
potential and the electrons density
(Fig. 18 , Fig. 19, Fig. 20, Fig. 21)

3.) Execution of a DEDX-run
(Fig. 22, Fig. 23, Fig. 24, Fig. 25)

In this sample problem we have Bi-projectiles and Pb-target-

material.

Projectile atomic number ZPRJ = 83
Projectile atomijc weight AM = 209
Projectile initial energy EPRJ = 10 GeV
Target atomic number Z0 = 82

Target density R = 11.2 g/cc
Target temperature XKT = 200 eV

Target atomic weight MU = 207
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//INR6TO20 JOB (D6T70+10L,POIDTN)yMORITZ ¢ MSGLEVEL=(1,1),REGION=1024K,
// NOTIFY=INRATO

000100
300220

J 7 Aot et e o o o ool ok ok okt o skl e oo Aok sk ok ook okl ok ok & i B R R R S R kR X% %))V 30

7 /%% 0004990
/%% THIS JOB INITIALIZES A MASHA-PROFILE FOR A LATMA-=RUN, 000500
[/ k% I UMASH IS A FORTRAN=UNIT-NUMBER, TO WHICH THE PROFILE IS 000600
/7 x% ALLDCATED. FOR THIS FORTRAN-UNIT-NUMBER THERE MUST RBE A DD-CARDNOQT7U0
/7% IN THE G-STEP, 011800
I/ %% IN THE SPACE-PARAMETER ON THE DD-CARD, THE NUMBER OF BLOCKS 700920
! /%% MUST BE EQUAL TOC THE VARIABLE I R E C N O, WHICH CONTAINS THE N217229)
/) ek NUMBER OF RECORDS IN THE DATASET. 0011900
[ /%% THE INITIALIZIATION IS DONE BY WRITING THE TEXT °*PROFILE~END® 001110
/7 %% INTO THE FIRSY RECORD OF THE DATASET. 001120
/% 001200
// EXEC FHCLG 271392
//C.SYSIN DD * 001400
REAL%8 PENDI(?) 001500
DATA PEND/*PROFILE=%4 *END v 001600
IUMASH=19 \ - 001700
IRECNU=62 . 101810
CALL DEFI(IUMASH, IRECNO,4HU $3200, IVAR) 0019900
WRITE(TUMASHY1)PENDI(L),PEND{2) nnz2nao
sTop 002100
END ‘ 002200
/% : 912300
//G.FTLOFOO1 DD DSN=INR6T0.MASHA20. PROFILZ,DISP=(NEW,CATLGY,UNIT=DISK, 002400
// VOL=SER=BATOOC,SPACE=(12800,£2) 002500
// 002600

Fig. 17

Job to initialize a MASHA-profile dataset.
The name of the dataset is INR670.MASHA20.PROFILE
and it contains 62 Blocks (see SPACE~-parameter and variable

IRECN@) . This job produces no output-messages.
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9.3 Sample Problem : Input for LATMA

//INRGTOLA J0OB (0670,101,PODTN) ¢MCRITZ,MSGLEVEL=(1,1)sREGION=1024K, 00010¢C
// NOTIFY=INR&70 ' nonzna
//*MAIN LINES=10 000300
// EXEC FHG,NMAME=LANEW? 00049¢C
//STEPLIB DD DSN=INR670.ZION.LOAD,DISP=SHR 000500
//G.FTO6FO00L DD SYSOUT=R 00060C
//G.FTLOFO0L DD DISP=0DLD,DSN=INR&T0.MASHA20,PRCFILE nNNo610
//*#***#****ttt*#t#####t#tt#tt#***ﬁ#’#tt#tt@tt*t**#t#t*tt*#tt##*#tt#*t*#OOOTOC
VAT 000800
/7R% INPUT FOR PROGRAM LATMA 00090C
[/%% e e e 00100¢C
/%4 00110C
/7 %% 1. CARD: IUMASH [RECNC [MESHP 00120C
[/ %% Ne CARD: 70 RO XKT AMU noLING
/7% : 00140C
/3% TUMASH UNIT-NUMBER OF THE MASHA~PROFILE (INTEGER} naLsne
/1% IRFCNO NUMBER OF RECORCS IN THE MASHA=PROFILE {(INTEGER} 00160¢C
/)% FOR EACH INPUT-CARD WITH THE DATA °Z0-RO=-XKT=AMU® , 00170¢C
AL 3 RECORDS ARE NEEDED IN THE MASHA PROFILE. 00180C
/7 k% I ADDITIONAL RECORC IS NEEDED FOR THE END-RECORD 00190¢
/ /%% EXAMPLE: {F YOU HAVE 7 INPUT-CARDS ==> N=5 0020NC
A 1 CARC WITH THE DATA ¢JUMASH-IRECND-IMESHP® 00210C
/%% 6 CARDS WITH THE DATA ®Z0-RO~XKT=AMU® EACH po0220¢C
/] x% [RECNO MUST BE MIN. (N=L)%3 ¢ | 00230¢
1/ %% IMESHP NUMBER OF MESH-PCINYS (INTEGER) 00240¢
el 00250C
/7 %% 10 TARGET ATOMIC NUMBER (DOUBLE PRECISSION) 00260¢
/] % RO TARGET DENSETY (DGUBLE PRECISSION) 00270¢
/)% XKT TARGET TEMPERATURE {DOUBLE PRECISSION)} 00280¢(
/] %% AMU TARGET ATOMIC WEIGHT (CCUBLE PRECISSIONI 00250¢
e e e e e e e e e e e e e e e e o e e e 00300¢
l /%% 00310¢
/ /% BEFORE A LATMA-RUN CAN BE STARTED, THE MASHA-PROFILE MUST BE 10329¢
! /% CREATED. THIS CAN BE DONE WITH THE JCL IN THE MEMBER INITV. 00330¢
/7 %% THE *NUMBER OF RECORDS® (2. PARAMETER IN THE INPUT FOR THIS JOBOO340C
AL - IRECNO), MUST DE THE SAME AS IN THE MEMBER INIT. 00350¢(
/7% ALSO THE UNIT-NUMBERS IUMASH MUST BE THE SAME. 00360¢
/7 %% 00370(
//***#*t***#*##*t**#*#t#*##**##*‘####*###tt##ttit######*####t#*#t#t*ttt*OO}BO(
//G.SYSIN DD #* 00390¢C
10 €2 118 00400C
82.0D+0 11.20+0 0.1D+0 207.0C+0 00410¢
82.70¢0 11.2D4¢0 0.2040 207.0D+0 00420¢
82.00+0 11.2D+0 0.3D¢0 2C7.00+0 00430¢
82.0D+0Q 11.2D40 0.4D40 207.0D¢0 00440(
82,0040 11.2D+0 0.5D¢0 207.0D+0 00450(
B2.00+0 11.2D+0 0.6D+0 207.00+40 00460¢
/* NO&10(
// 00620¢
Fig. 18

JCL to start a LATMA~-run.

This job calculates the chemical potential and the electron
density for 6 temperatures (100eV,200eV..... 600eV) .

The material is Pb with a density of 11.2 g/cc.

1




INITIAL DATA:

ARQO =

XMU
PHI1
X10
PINN=1)

XMy
PHI1
X10
PINN-1)
1X

PHIO
DLDXMU
DELPHI

XMU
PHI1
X10
P(NN=-1)
IX

PHIO
OLOXMY
DELPHI

XMy
PHI }
XI0
PINN=1)
IX
PHIO
OLDXMU
DELPHI

XMu
PHI1
X110
P{NN=1)
IX
PHIO
0oL DXMU
DELPHI

XMU
PHI
X10
P{NN-1)
IX
PHIO
OLDXMY
DELOHIY

XMU
PHI1
X!o

9

Wowow oo o#ow N

#onou

Bouow s o onon o Hn

I ST T U I I

WowowonoNon o

[ ]

.4

10 =

0.194250401

=0.410000+01
=00 406400+01
0.14602D-01
0. 12641D-03

=0,392710+01
=0 389260401
0,17346400-01
0.15011D0-03
2
0.30416D+01
=0.39271D401
0. 17369D+01

=00 27860D401
-0.27614D+01
0. 53500D0-01
0.46316D-03
3
0.30416D+01
-0, 27860D+01
-0.14547D401

-0.33061D+01
~0.32770D+01
0.32076D-01

0.27769D-03

4

0. 30416D+01

~0.33061D4+01
0.44117D+00

=0,31850D+01
=0.31570D+01
0.36145D-01
0.31291D-03
5
0.30416D+01
=00 31850D401
0.89539D-01

=0.315420+01}
=0s31265D0+01
0.37259D-01
0.32256D-03

6
0.30416D¢0}
=0+ 31542D+01
=0,T17260-02

=0.31565D+01
=0.31287D+01
0.37176D-01

Sample Problem :
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Output of LATMA

00820000402 RO = 0,112000+02 XKT =
PHIO = 0.30416D+D1 A= 0.65221D+02

PHI2 = =0,40640D+01

X11 = 0,14602D-01  DXI = =0.60997D=-04
QINN=1) = 0.12531D-03

PHIZ = -0,38926D+01

XI1 = 0.17340D-01  DXI = =0,85922D=04
Q(NN-1) = 0.14880D-03

1 = 114

DEL = 0,82393D+00

XMU = -0,27860D+01 OLDPHI = 0,41159D+00
DMU = 0,17294D+00 DPHI = 0.26323D¢00
PHI2 = -0.27614D401

X11 = 0,53507D-01  DXI = =0.80648D=03
Q(NN-1) = 0,45913D=03

[ = 114

DEL = -0,32831D+01

XMU = =0.33061D+01 OLDPHI = 0,53552D+00
DMU = 0,11411D+01 DPHI = 0,31916D+01
PHI2 = =0.32770D+01

X11 = 0.32079D-01  DXI = =0,29234D=-03
O(NN=1) = 0,27527D-03

1 = 114

DEL = 0.35672D+00

XMU = -0,31850D+01 DLNPHI = 0,13027D402
DMU = -0.,520100+00 DPHI = =0.18958D+01
PHI2 = =0,31570D0+401

XI1 =  0.3614BD-01  DXI = =0.37060D-032
QINN=1) = 0,31019D=-03

1 = 114

DEL = 0.85647D-01

XMU = ~0,31542D+01 OLDPHI = 0.19566D+01
DMU = 0,12103D+400 DPHI = 0.351630+00
PHI 2 = -0.31265D+01

X1l = 0,37263D-01  DXI = ~0,39364D-03
O{NN-1) = 0.31975D-03

1 = 114

DEL = ~0,71984D-02

XMU = =0.31565D+01 OLDPHI = 0.,27811D+01
DMU = 0.30819D-01 DPHI = 0.96711D=01
PHIZ = =0,312870+01

X11 = 0.37179D-01  DXI = -0.,39188D-03

0.20000D¢00

PHIB
DEL1

PHIB
DEL1

PHIB
DEL1L

PHIB
DEL1

PHIB
DEL1

ANMU

non

=  0.207000D+03

0.53552D+¢00
0.65698D400

0.13027D¢02
00 35754D4+00

0 19566D+01
0.27434D+00

0,27811D+01 .
0 34419D¢00

0.30625D+01
0.31867D+00




P{NN-1)

= 0.32184D-03

NUMBER 0OF ELECTRONS

NUMBER OF BOUND ELECTRONS

CORRECTED NUMBER OF BDUND ELECTRONS

CORRECTED NUMBER OF FREE ELECTRONS

FREERO

= 0,82787D¢24%

VNS W

0.59857D-32
0.149470-03
0.59787ND-03
0.13452D-02
0.23915D0~02
0.37367D-02
0.53808D-02
0,73239D0-02
0,95659D-02
0.121070=-01
0,14947D-01
0.18086D~-01
0.21523D0-01
0,25260D-01
0.29296D-01
0+33630D-01
0.38264D~-01
0,43196D-01
0.484270-01
0.53958D0-01
0.59787D0-01
0.65915N~01
0.72342D-01
0. T9068D-01
0.86093D-01
0.93417D-01
0. 10104D¢00
0.10896D¢00
0.11718D+00
0.,12570D¢+00
0.13452D¢00
0.14364D+00
0.15305D#+00
0,16277D+00
0.,17278D+00
0.18310N¢00
0,19271D¢00
0.20462D%+00
0.21583D+00
0.22734D+00
0.237215D0+00
0.251250¢00
0.26366N+00
0.,27636D+00
0.28937D¢00
0.30267D+N0
0.31627D+00
0+33017D+00
0344370400
0.35887D¢00

Q{NN~-1) =
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0,28418D¢33
0,25260D¢32
0.59534D+31
0.219410+¢31
0.10218D¢31
0.54820D+¢30
0.323140430
0,20361D+30
0.13481D430
0,92712D¢29
0.65705D+29
0.47708D+29
0.35327D+29
0.26613D+29
0,20326D¢29
0e15712D¢29
0.122720+¢29
0.96715D0+28
0.T76827D+28
0e61454D+28
0.49461D+28
0. 40026D+28
0.325500¢28
0,26585D+¢28
0.21797D+¢28
0.17933D¢28
0, 14800D0+28
0.12246D+¢28
0.10157D¢28
0.84414D%27
0.70271D4¢27
0.58574D+27
0.48874D+27
0. 40806D¢+27
0.34081D+27
0.28463D+27
0.23762D¢27
0.19823D+¢27
0,16521D+27
0.13751D+27
0011429027
0.94846D+26
0. 78595D0+26
0.65047D¢26
0.53787D4%26
00444610426
0.36763D+26
0.320429D¢26
0.25231D¢26
0.20974D¢+26

0.31903D-03

0.82568D402
0.36975D¢02
0,56583D¢02

0.25417D402

Fig.20




XMU

WRITING DATA ON MASHA PROFILE WAS FINISHED,

SUM
WSUM

Fig.
Pb with a density of 11.2 g/cc. and a temperature of 200eV.

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
1L
75
76
77
78
79
80
81
82
83

0.37367D0+00
0.38876D+00
0.40416D¢+00
0.41985D+00
0.43585D+00
0.45214D¢00
0,46873D+00
0.48562D+00
0.50281D+¢+00
0.52030D+00
D« 53808D+00
0.55617D+00
0.57455D+00
D.59324D+00
0,61222D%#00
0.63150D¢00
0.65108D+00
0.67096D+00
0.69114D+00
0711610400
0.73239D¢+00
0. 753460+00
0.77484D400
0.79651D+00
0.81848D+00
0. 84075D+00
0.86332D+00
0.88619D+00
0.90936D+N0
0.93283D+00
0956590+ 00
0,98065D¢00
0.,10050D¢01

-0.63130D+¢00

19
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0.17490D¢26
0.14638D+26
0.12301D+26
0.10381D+26
0.87994D%+25
0. 74910D+25
0,64039D0+25
0o 54964D+25
0.47350D¢25
0.40930D+25
0. 35487D+¢25
0.,30849D+25
0.,26876D+25
0-,23456D¢25
0. 20496D¢25
0.17924D+25
0.15677D+25
0.,13708D+25
0.11975D+25
0.10443D+25
0.90834D4+24
0. 78730D+24
0.67913D¢24
0.58223D+24
Ne49510D+24
0.41660D¢+24
0.34563D+24
0.28138D+24
0.223000¢24
0,16591D+24
0.12149D4%24
0.,77282D+23
D0.36815D+23

~-0:394574D+03
0.571148D+02

Fig.

21

to Fig.

NEXT RECORD IS

23

21 ' the output of a LATMA-run for
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Sample Problem: Input and Output for GORGON

//INRG6TODX JOB (06705101 ,PODTN) 4MCRITZyMSGLEVEL=(Ly1),REGION=1024K,
// NCTIFY=INRETO,TIME=10

//¢MAIN LINES=G9

ON91290
0Co020¢
000211

I/ &R At e b o ekttt ARG s R 000NN RR RO RR AR R G URAROE G R DR RR ke EELAREEX0003N0

//7%%
/7%%
/ /%%
/7%
AL
//a%
/%%
YA S
/ /%%
/%%
]/ %%
J /&%
VAL
VAR,
/7 %%

/] &%k

/%%
ne
L
/1%%
SI%%
AL
YEAR
IZA R
IHA L
/%%
7/ %
/[ /%%
YAA L
VAL
/%%
/] %
J Rk
AL
/] %%
] /%%
/%%
/] /&%
AL
77 %%
YZA L
/[ %%
AL,
/[ %%
YA L
AL,
XA LS
77 k%
/ /%%
/%%
YA L
/] &%
/7 &k
[/ /%%
/] %%

INPUT FOR THE PROGRAM GORGON

==>THE

TUMASH
TRECNO
TURANG

RFINC

IDLEV

IUTEST

IDVERS

MAXIT
ZPRJ
AM
EPRJ
FREELY

ECUTF

IBEFI

e s s e e T vy D > > > D @

INPUT=CARDS CAN BE REPEATED SEVERAL TIMES<==

TUMASH IRECNC TURANG RFIND
IDLEV TUYEST ICVERS MAXIT

IPRJ AM EPRJ FREELI ECUTF ZBEFI
IG RC XKT AMU

UNIT=-NUMRER OF THE MASHA-PRCFILE (INTEGER}

NUMBER OF RECCRCS IN THE MASHA-PRCFILE (INTEGER)
UNIT-NUMBER OF A CUTPUT-~CATASET WHICH WILL CONTAIN THE
CATA CF THE RANGE (INTEGER)

IF PCSITIVE ==> [NDEX TO COMPUTE THE RANGE-FACTOR
RANGE-FACTCR = EPRJ/(CE/DX*RFIND)

IF NEGATIVE ==> VALUE = RANGE-FACTCR

{COUBLE PRECISICN]}

ESTLEVEL-IDENTIFIER (INTEGER])

0 ==> NC TEST-PRINTCUT

L ==> TEST-PRINTCUT CN UNIT ITUTEST

2 ==> MORE TEST-PRINTOUT CN UNIT ITUTEST
UNIT-NUMBER OF A CUTPUT-CATASET WHICH WILL CONTAIN THE
TEST=PRINTOUT (INTEGER)}

(CNLY NEEDED , IF ICLEV .EC. 1 » CTHERWISE 0)
ICENTIFIER FOR THE VERSICN, WITH WHICH THE
CALCULATICNS SHOULC BE CCNE (INTEGER)

= 1 ==> STANDARD-VERSICN
= 2 ==> VERSICN WITHCUT LATMA-CATA
MAX. NUMBER OF ITERATICNS TO BE EXECUTED (INTEGER}

I # 0 -

PRCJECTILE CHARGE STATE (CCUBLE PRECISION)

PROJECTILE ATCMIC WEIGHT (DCUBLE PRECISICNI

PROJECTILE INITIAL ENERGIE IN KEV (COUBLE PRECISION)

NUMBER OF FREE ELECTRCNS/ATOM (CCUBLE PRECISION)

(CNLY NEEDED , IF ILCVERS .5G. 2 y CTHERWISE 0.00¢0)

FACTCR TC CCMPUTE THE CUT-ENERGY (COUBLE PRECISICNI

ECUT = EPRJ/ECUTF

IF THE PRCJECTILE ENERGY IS LESS THAN THE CUT-ENERGY,

THE JOB IS TCERMINATED

INPUT VALUE FCR EFF. CHARGE (LCCUBLE PRECISION)

= 1,CD+0 ==> THIS VALUE IS CNLY TAKEN, IF THE COMPUTED
"ZBEF' IN SUBRCUTINE CETRC IS LESS THAN
1.0C+0 '

> 1.00#) ==> THE VARIABLE °ZREF' [N SUBRCUTINE DETRC IS

SET TC TYHIS VALUE

TARGET ATCMIC NUMBER (LCOUBLE PRECISIGN)
TARGEY DENSITY IN G/CC (CCUBLE PRECISICN)
TARGET TEMPERATURE IN KEV {(CCUEBLE PRECISION)
YARGET ATYCMIC WEIGHT (CCUBLE PRECISICN)

00400
000500
000600
390700
000800
000910
001020
001190
001290
001300
001479
001599
001600
001700
001800
001590
00200¢C
902119
00229¢
002320
002400
00250C
002601
00261¢
012700
002800
00290¢
00306
00310¢
90320¢
00330¢
20340C
00350C
0C360¢C
093790
003890¢
003907
00400¢
00410¢
00411¢
00412¢
00413¢
0C414¢C
N4 15¢
0C416(
00417¢
00418(
00415¢
00421¢
00430¢
00440¢
00450¢
00460¢

o e e e o e o e e e e o e e 1 e e e o 00470¢C

00480¢(
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/7%% BEFORE A DECX-RUN CAN BE STARTEC, A MASKA-PRCFILE MUST BE

//%% CREATED BY THE PROGRAM LATMA.

//%% THE INPUT-VARIABLES 20 RO XKT AMU AND TUMASH MUST HAVE THE SAME
/7¢% VALUES AS IN THE LATMA-RUN.

//#% IN THE G-STEP FCR THIS JOB THERE MUST BE ONE DD-CARD FOR THE
//%%  MASHA-PROFILE ON UNIT IUMASH (PARAMETERS CN THE DD-CARD MUST BE
//%% THE SAME AS IN THE LATMA-RUN) AND CNE DD-CARD FOR UNIT IURANG,
//%% WHICH SPECIFIES THE GCUTPUT-DATASET FOR THE RANGE-DATA AND ONE
//%% DD-CARD FOR UNIT TUTEST, WHICH SPECIFIES THE OUTPUT-DATASET FCR
/7%%  THE TEST-PRINTCUT,

//%% THE PARAMETERS FCR THE LAST 2 CC-CARDS SHOULC BE:

//%% FT..FOO1 DD SYSCUT=A,DCR=(LRECL=133,BLKSIZE=3857,RECFM=FBA)

/ /%%

€04500
315010
§05100
005200
005300
005400
005500
005600
005700
005800
205990
00€e000
206100

[/ REX R R AR ARG E AR A AR GO AR NS LSO AR e 2R R RSk heRRA AN R e R R A RR I REHREEX00£€200

// EXEC FHG,NAME=CENEW2

//STEPLIB DD DSN=INR670.710N.LOAC,DISP=SHR

//G.FYICFCOL 0D DISP=CLD,DSN=INRETC.¥ASHA20,PRCFILE
//G.FT20F001 DD SYSOUT=A,0CB=(LRECL=133,BLKSIZE=3857,RECFM=FDA}
//G.SYSIN CD #

10 62 20 80
0 0 1 1€0
83.00+0 209.00+C 1.CD¢7 0.GC+0 1000.0D¢C 1.0D+0
82.00+0 11.20¢C 0.20¢0 237.0C+0
/ %
//

Fig. 23

Fig. 22 and FPig. 23 is the JCL to start a GORGON-run

006400
00es5n0
CC06€6CC
26700
006990
067000
007100
NoT200
007309
00748¢C
207500




vz bTa

VERSICON-INENTIFICZR IS 1

PROJECTILE CHARGES STATF
PROJECTILE ATOMIC WEIGHT
PROJECTILE IMITIAL ENSRGY

i

PROFILE GIVEN By: TARGEY ATONMIC NUMBER
TARGET DENSITY
TARGET TEMPERATURE
TARGET ATCMIC WEIGHT

MASHA PROFILS FOUND: CHEMICAL POTENTIAL
FREE ELECTRCNS

T

PROJECTILE ENERGY = 0,100000+08

NC SHELL EFFECTS ASSUMEN:

BCUND ELECTRONS = 0.56163D¢02
BETHE®'S [ = 0.14574D+01
SHELL CORRECTIONS:

ISTLEVEL-IDENTIFICSR [S

3.83300N¢92
0.20930D+03
7. 13270C+08

C.32000D+¢02
0.112300+92
C.20000Nn+00
0.207C0D0+03

n i hn

~0.63130D+00
0.,254170+02

nwoH

EFFECTIVE ELECTRONS = 0.545900+22

RETHE®S T
DE/DX BY BOUND ELECTRONS USING

DIELECTRIC FUNCTION INTEGRAL =
FREE ELECTRON CONTRIBUTION =

NUMBER OF FRZE ELECTRONS/ATOM
NUMBER OF BOUND ELECTRONS/ATOM

DEs/7DX BY TOTAL ELECTRONS
DE/DX RY FREE ELECTRCNS
CE/Dx RY BOUMD ELECTRONS

T

0.12392D+01

HE THOMAS FERMI v0ODEL =

0.37659D+01
0.27653D¢04

0.25417D+32
0.56583D¢C2

0.325410¢C8
0.145510+0%
0.183900+08

Q CUT-ENERGY IS

0.35203D0+¢04

7.100000+05

INPUT FOR EFF. CHARGE IS .173J3D+01

—vel —

[ |

DE/DX BY ION SCATTERING 0.0




PRCJECTILE CHARGE STATE
PROJECTILE ATORIC MEIGHT =
PROJECTILE INITIAL ENERGY =

PRCFILE GIVEN BY!

RANGE=FACTOR =

D~ S W N e

TARGET
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= 0.630000¢02
0,209000¢03
0.10000Ce¢08

TARGET DENSITY

TARGEY
TARGET

ENERGY (KEV)

€.100000¢08
€.587500¢07
0.974930¢07
0.562270+07
0.949550¢07
C.93674D¢07
0.$23850+07
0.91084D¢07
0.89764D¢07
0.884350607
0.870670407
0.857530007
0.843940¢07
0.630280607
0.81€530607
0.802680¢07
0.788720+07
0.774520407
C.760200+07
C.745770607
0.731230+07
C.716580¢C7
0.701810¢07
0.£8E91D+DT
0.67186D¢07
0.65656C+07
0.641130+07
0.625560407
C.£05850+07
0.594000407
0.577840+07
0.561530+37
0.54506D¢07
0.528420407
0.51147D¢07
0.494330+07
0.477020+07
0.459510+07
0.441660¢07
0.423610¢07
0.405340+07
0.386710¢0C7
C.16786D+07
0.348620¢07
0.32914D+07
0.30927D+07
0.288980¢07
0.26843007
0.247470+07
0.226070+07
0.206260¢07
0.182170¢07
0.159830+C7
0.137260607
0.114520¢07
0.91£330406
0,68895D+06
0.461600¢06
0.24595D+06
0.54357D+05

0.223890400

0.379470~02

DELTAE(KEV)

0.125000¢06
0.125750D¢06
0,1265104C6
0.127290¢06
0.128080¢06
0.128930006
0.13009D¢06
0.13203p¢06
0.132500¢06
0,133770¢06
0. 13468006
0.,135610¢06
0.13656D¢06
0.13753D¢06
0.13852D¢06
0.,139550¢06
C.142070+06
0,143150+06
0.1442604¢06
0.145390¢06
0.146%55D¢06
0.14773D+06
0.14865D¢06
0.15050C+06
0.153020¢06
0.15434D¢06
C.155680¢06
0.157C90¢06
0.158540+06
0.16155D+06
0.16311D¢06
0,164710¢0¢
0.166350+06
0.16957D¢06
0.,17134D0+¢06
0.173160¢06
0.175060+06
0.178480+06
C.183510006
0.182700+06
0.18630De¢06
0.188550¢06
0.,192380¢06
Col94760¢06
0.1987£0¢06
0.202830¢06
0.20551D¢C6
0.209660¢06
0,21391D¢06
0.218160¢086
0,220860006
0,223440006
0.225¢660406
2.,2273080¢06
0.228310¢06
0.227970¢06
0.225360¢06
0.217650¢06
0.191¢00¢06
0.92141D+405

Fig.25

ATOHIC NUKBER

TEMPERATURE
ATOMIC WEIGHY

CE/CX BY TCVTAL ELECTRONS

3.820000602
0.112000002
0.200030000
0.,207000¢03

0.32941De08
0.331380¢08
0.333368D¢08
0.33543D098
0.33752D¢08
0.339690¢086
0.,342020¢08
0.34792D¢08
0.350230¢08
0.352920008
0.354920408
0.35737D¢08
0.359880¢08
0.36243D¢08
0.365040¢08
0.38776D¢086
0.37439D¢08
0.37725D0608
0.3680160+08
0,363140¢08
0.386200¢08
0,38932D¢08
0.39253De¢CB
0.396610+08
0.403200¢08
0.406720¢08
0.41025N+08
0.413960¢08
0.447790¢08
0.42573D¢08
0.42983D0+08
0.43604D¢08
0.4383710+08
0.446870¢08
0.45154D¢08
0.456330¢08
0.4€1330008
0.,47035D¢08
0.475690¢08
0.481450¢08
N:49093D¢0NG
0,496860¢98
N.50591N09
0.51325D0¢08
0,523719D¢08
0.534520¢C8
0.54157De08
0,552500¢08
0.,5¢3710e08
0,57491D¢08
0,5682030+08
0.,5868820¢08
0.%594680¢08
0.569200+08
0,601670¢08
0.600770¢08
0,5%5387D¢08
0.,57355D0¢08
0,504900¢08
0.24282D¢08




— 126 —

Fig. 24 and Fig. 25 is the output of a GORGON-job.
Part I in Fig. 24 is printed only one time.

Part II in Fig. 25 is printed for every energy, for which
the GORGON-run was' started.

If a GORGON-run has finished for one energy, AE. is subtracted
from the energy and new run is started with the remaining

energy

Fig. 25 shows the results of a calculation of the range.
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~9.6 Discussion of Results of test Problem:

The test problem is chosen to be that of a Bismuth ion
travelling through lead. Therefore, the projectile atomic number
is 83, the atomic weight is 2092 (more accuracy than this is not
justified) and the initial energy is 10 GeV. In the target material
the atomic number is 82, the target density is 11.2 g/cc (solid
density) and the target temperature is 200 eV, and target atomic
weight is 207. Diagram 24 shows the output that is typically
produced for each energy during its step by step reduction due
to the energy loss. This output is reasonably self-explanatory.
In Fig. 25 column 3 gives dE/dX (Total) in KeV-cmz/gm and
column 2 gives the energy lost as the particle travels a distance
of one range factor. Column 1 then gives the next energy. The
total range is printed at the bottom and the calculated range
factor is shown at the top.
Fig . 26 - shows the calculated results for Bismuth ions (10 GeV),
/30/ slowing down in lead for 200 eV all at solid density.
They showthe typical effect of range shortening due to ionization
of electrons. The stopping power of free electrons is greater than/58/
that due to bound electrons. The deposition profiles also become
more peaked as the temperature rises. This is an effect of the
effective charge which is greater in the hot plasma. The deposition
profile for heavy ions in cold materials is often constant.
This is because the increase due to E_’1 term in the Bethe formula
is compensated by the decrease in ngf(v) as the velocity of the
ion decreases. However due to the ionizin¢g effect of the free
electrons the Ziff in a plasma remains reasonably high even when
V decreases towards zero. Therefpre Bragg peak familiar from
light ion (proton) deposition curves &eappears.
A full discussion of the results obtainable by the code and the

scope of results obtainable will be given in another report.
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Fig-26:  Stopping power of bismuth ions on lead
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10. Conclusions

The GORGON code has been shown to be capable of calculating
the stopping power of heavy and light ions in materials of any
nuclear charge %. The code in its present state can also calculate
the stopping power of o-particles, D+ and T+ ions in hot DT plasmas
which are typically produced during the burn of ICF pellets. The
code can thus be used to solve a large number of problems con-
cerning the interaction of charged particles with matter in ICF
pellet simulations

It has been already noted in various parts of this report
that the physics in the code could be improved in various ways
to make the calculation more accurate and to extend the codes range
of validity. h
In particular in very dense strongly coupled plasmas which
one: often has in - -.laser or ion beam fusion it is likely that
other theoretical approaches should be used. Further one needg a
truly dynamic approach to the problem of calculating the effective
charge on the ion which is loosing energy. Also the treatment of
slowing down in degenerate electron systems needs to be improved.
The first two problems require a fairly large amount of work for
their solution. In fact the first problem is still an unsolved
Problem as the theory of strongly coupled plasmas with partially
ionized atoms is still far from being solved. Simple models such as
the OCP (one component plasma model) are to an extent understood,
but there has been little work on the problem of the stopping power
in such systems, and in any case this model may be too oversimplified
even to do accurate calculations in DT. The second problem has been
treated, but involves the solution of time dependent rate equations.
The third problem is easier to solve because there exists simple
but reliable theories within the R.P.A. However if the electron
plasma is a strongly coupled plasma there exists no well established
model,

Finally the code running time is too long for a direct coupling

to a sophisticated ion bean fusion code such as MEDUSA-KA.

However it can be used to calibrate a simpler but very much faster
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code (to be developed) which can be coupled efficiently to
MEDUSA-KA. This joint code can then be used to study the
interaction of ion beams with plane targets and the implosion
and burn of ion beam driven targets.
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11. List of symbols used in report

(Code variables are discussed in sections dealing with

each part of the code)

Symbol

(x)

max

Description/dimensions

o =ufkT
5 = (on/4)"1/3
B = (kT) " ergs™’

Dirac delta function
small volume element cm >
Small number of electrons

Fluctuation in velocity of plasma
particle perpendicular to ion beam,
cm/sec

Fluctuation in velocity of plasma
particle parallel to ion beam cm/sec

Energy of an electron state:r ergs.
Dielectric function operator

Wave vector and frequency dependent
dielectric function

Fermi energy, ergs

Energy of electron with momentum
prergs

Exchange contribution to single
electron energy, ergs

Maximum energy transfer to atomic
electron,ergs.

Page

25
51
53
36
26
26

82
82

24
36

36
51

42
43

77

Energy of electron in the Hartree-Fock

approximation,ergs.

76




Symbol

Y

oY WY
%O

=3
g
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Description/Dimensions

r =1r/A\
L= ro/A
Value of ¢ > O

Infinitessimally small real number
Positive for |P >Pr negative for
lq| <pp

Infinitessimally small positive real
nunber

Scattering angle~-radians

Heaviside function, =1,x>0,
=0, x<0.

Function, (4.117).

Scattering angle corresponding to
momentum transfer g1,radians.

Maximum angle of deflection of ion

in collision with an atomic electron,

radians .
=A(T), (3.19), cm.

Screeming length in Thomas Fermi
approximation, (4.80), cm.

lnAf is the Coulomb logarithm
for 676
or electrons

lnAi is the Coulomb logarithm for ions

Chemical potential., ergs.

ﬁ = Cosf. Angle between wave vector
k and velocity of ion v

My = 2my

Chemical potential of electrons in
TF model , ergs.

2
UO = I /n41T2, gIn.CInB_
Collision time 3 Sec -

Velocity dependent phenomenological
collision frequency, sec”™

Complex variable
Solid density,gm/cc,
Density of maberial,gm/cc,

27
27
27

49

50
68,76

46
63

74

77
27

55

86
85
24

24
53

53
38
34

62
63
17
19

Charge density (operator)_as a function

of space and time, esu/cm”.

External (to_the system) charge den-

sity, esu/cm”.

44

44




Symbol

Pryp (2 %)
ptot(z”t)
p(g,w)

¢ (x)

¢ (x)

o’

¢ (xr,t)

X (o)

X~ (o)

XO (%FWF B)

o al
o} g g + O

R 1

b
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Description/Dimensions

Induced charge density , esu/gmBQ
Total charge density , esu.

Fourier transform of charge %%%i&%%S)
Error function (4.104)

Functions (6.7)-

¢" =g /Py

Scalar potential of electric field
Function, (3.7)e

X" (@) = dx(a)/do -

Fourier transform of susceptibility

function for free electron gas.
2

x2 = ez/ﬁhVFn

deflection angle due to scattering.
radians.

Total potential inside a quasiatom
in the Thomas Fermi model, ergs.

Electron contribution to y(r), ergs.
Nuclear contribution to P(r)., ergs.

Plane wave function of a particle
with momentum p.

Ground state wave function of an atom

Excited state wave function of an atom

44
44
45
61
82
53
35
25
25

52
51

81

25
25
25

67
67
67

Electron part of Thomas Fermi potential

excluding self energy,ergs.
interatomic distanceaﬂo_ch.

n ==0,,,,,,, Coefficients in series
expansion, (4.74).

2nd quantization creation-operator for
momentum state p.

2nd quantization destruction operator
for momentum state p..

Bohr radius, cm.,
Atomic weight.
constant, (6.6)

Atomic weight of ion which is slowing
down .

31
35

54

46

46
41
34
82

85

Atomic weight of plasma ion in stopping

medium.

85




aT

aE ()

dE (q)
dE/dx

o~ (aE/ax)
%

4

dp

av

d
X

(4Yon

dw(n)
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Description/Dimensions

Isothermal compressibility =

=(90./93p)

n=-o,,,,0,...+% Bxpansion coefficients
First Bernoulli number

Constant

velocity of light cm/sec.

Real number,O <c < 1

Constant, (3.61).

Symbol denoting increment in variable.
Deuterium ion.

do = 271sin6d6, element of solid angle
radians.

Probability of a collision in which an
electron is scattered into a solid angle
do and the atom enters the nth excited
state.

dt = 4dv ""dVE . Element of configura-
tion sp;ce of ..b the 2y bound electrons

in an atom,cm3zbw

dt is an element of momentum space,
erg.sec~ 1.

Mean energy loss of particle scattering
into do about ,erg.

Mean energy loss for all collisions in
which momentum transfer does not exceed
q,erg.

Energy loss per unit path length,erg/cm

Energy deposition per gm for cross
section of 1 cm“,ergs.cm2/gm,

Volume element in momentum space,
erg.sec-1.

Volume element in energy-momentum space,
erg?.sec-1

Element of Volume,cm?
d, = elx_ Dipole moment of atomic
electrgns, esu.cm,

Matrix element of d_ between enexrgy
states of atom.

Transition probability for scattering
of particle from momentum p; top” when

12
54
53
33
85
54

34
19

67

68

67
24

67

72

50

49
67

73

72

the atom undergoes a transition from the

‘groundstate to the nth excited state
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Symbol Description/Dimensions Page
E Energy of ion,erg. 19
E(r,t) Electric field vector, Volts/cm . 36
— - _ 2 -
E E, =e /2ao,erg. 41
Ebi Binding enetgy of ith electron,erg. 79
EEX Exchange energy, erg. 43
EF Fermi energy, erg. 43
Ek Eth Fourier component of electric
= field,Volt.cm~1. 36
EQ Energy of ground state of atom.erg 66
El Energy of nth excited state of
atom,erg 66
|E(t)> State with energy E at time t 46
gTOT Total energy per particle (electron),
erqg. 43
e charge on electron,esu, 25
F Free energy /atom,ergs. 33
FE Electron contribution to Free energy
ergs. 33
Fk Nuclear contribution to Free energy
ergs. 33
F Distribution function in Boltzmann 62
equation (non equilibrium)ﬁ(g,y,g)
F Force Vector,dynes, 37
£ Arbitrary quantum mechanical operator 71
£F Operator adjoint to f. 71
]
£ Time derivative of f. 71
fon Matrix element <o|f|n> of f between 71
atomic states.
fpo Occupation probability of a state with
= - momentum p and spin ¢ for the Fermi
Dirac modél of an electron gas. 43
£ =f Same as above, when probability is
. P E independent of spin 50
+ + -
£ £ = (1-f 50
P P E)
f(e),f(ep) Same as for f,, but for state with

- energy ep or'g €, 53

e




ext

TOT

R AR X B H m

0]
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Description/Dimensions

Function (4.65)
Function (4.66)

Maxwell-Boltzmann distribution function,

Non-equilibrium perturbation part of
distribution function,

9, = ﬂ250/16me2p; , (4.82).

Function (6.8)

Gibb’ s Free energy,erg.

Planck”s constant,erg.sec.

A = h/27,exrg.sec.

Hamiltonian operator for interacting
electron gas,ergs.

Part of Hamiltonian describing the
interaction between the external charge
and the electron gas (4.32),ergs.

Total Hamiltonian, (4.36),.ergs.
Bethe parameter, ergs.

= /=1
Boltzmann’s constant ergs/K
Wavevector, cm .
k = |k| Magnitude of wavevector,cm

Electron therTal conduct1v1ty ’
erg.cm~1.sec

Ion thermal coéonductivitys
erg.cm™1.sec-1.x-1.

Radiation thermal conductivity -«
erg.cm~1,sec—1.K~1¢
Cut-off wave vector (4.15), cm-1.

Function (3.22)

Neutron mean free path in DT.cm,

Stopping number per target atom (4.121),

Stopping number/electron in a uniform,
electron gas,

Defined in (6.9), cm,

Mass of ion, gm.

Mass of electron,gm.

Mass ©f ion which is slowing down, gm .,

Mass of ion in plasma, gm,

51
52
61

62
55
82
34
24
37

41

44
45
73

24

36

12

12

12
37
27
19
64

65
82
11
24
86
86




:

@E

= B
o -
[\

ZOZ z1 =z
g o]

S 3 Ol
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Description/Dimensions

Proton mass, gm.

Reduced mass (6.2).

Mass of atom, gm.

Avagadro” s number,

Number of atoms/unit vol, cm'-3
Oscillator strength (5.36).

Total number of electrons in
volume V.

Density of nulclei in a plasma,cm_.3
Density of electrons,cm >

Density of electrons as a function
of radius in a quasiatom,cm~3.

Number of bound electrons in an atom,

Number of bound electrons per unit
frequency around frequency w.

Total pressure. Dynes.cm_%
Electron pressure, Dynes.cm—%
Pressure of nuclei, Dynes.cm_%

p = |p|, magnitude of momentum
erg.dec™ !,

Magnitude of Fermi momentum, erg.sec—

Fermi momentum vector,erg.sec_?
Momentum vectox;erg.sec_o
Momentum vector,erg.sec—t
Momentum of particle i, erg.sec_l
Defined by (4.55).

Polarization propagator.

Defined in (4.59).

Defined in (4.81).

Impact parameter, cm.

Impact parameter for a deflection
angle of w/2, cm.

85
81
75
85
77
73

24
23
24

25
78

78
12
32
32

32
41
41
41
41
41
49
48
50
55
81

81

Concentration of ions with n electrons

jionized-

x component of momentum of electron
in an atom,erg.sec~1.

Momentum vector. Momentum transfer
in scattering process, cm~1,

80

73

42
67
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Description/Dimensions

a = |q|, o™

Minimum value of g (5.16), cm—1

Value of momentum, —

.. . . -1
Minimum transfexr of momentum, cm .

Intermediate value of momentum, cm

Position vector, cm.
r = |r|, magnitude of r,cm.

radius of quasiatom, om.

radius of sphere of volume V/N measured

in units of a_ (Bohr radius),cm,.
2 2 2 © .
rn = an + bn  n an integer,

1

69
72
72
72
36
25
25

41
54

Position vector of electron in an atom,cm 68

Radius at which electrons are free
electrons, if they have enough energy to

move beyond this radius, cm.

Complex variable

A
S Matrix in scattering theory, (4.49)-

Total entropyrerg/K.

Entropy of electrons, erg/K.
Entropy of nuclei, erg/K.
Distahce ion has travelled, cm.
Range of ion in a material, cm.
time, sec

Temperature of hot electrons, K.
Electron temperature,K,

Ion temperature ,K.

Temperature ,K.

Temperature in plasma,K.
Radiation temperature ,K.
Tritium ion-

Time ordering operator

Plasma temperature , K.

Total electron energy, ergs.
Kinetic energy of nucleus, ergs.
Electron kinetic energy, ergs.

Interaction energy of nuclei and
electrons, ergs.

Electron-electron interaction energy,

ergs

78
52
47
12
34
34
13
13
46
12
12
12
14
83
12
19
47
83
24
30
30

30

30




I
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Description/Dimensions

Electron potential energy, erg.
Total kinetic energy, era.
Total potential energy, erg.

u = w/QVF,(4.62L

Relative speed between a projectile
ion and plasma electrons, cm.sec~1.

Internal energy, erg.

Atomic potential , erg:
P "'1
v, = vr/c ¢ Cm.sec .

Volume,cm“%

Particle velocity, om.sec .

Average velocity of an atomic electron,

cm.sec-1,

Velocity vector, velocity of ion
cm.sec—1.

Average electron thermal velocity
cm.sec™ |,

Coulomb potential, erg.

Fourier transform function of Coulomb
potential, exg.

Pair potential of an ion and an atom,
erqg.
Thomas Fermi potential of an atom, erg.

Fermi velocity, cm.sec

Relative velocity,cm.sec_l

Frequency, sec” .

Average revolution frequency of
electrons,sec™ ',

w =€ - erg.
g = fpig ~ pr Ty
Plasma frequency , sec

Revolution frequency of an atomic

Page

31
33
33
51

86
12
67
89
24
35

36

36

38
42

42

65
79
51
89
36

35
50
58

electron at radius r in the Thomas-Fermi

model, sec—1,
Velocity of light particle,cm.sec—t

Revolution frequencies (classical) of

eleg?rons in the Bohr model of the atom,

sec
Position, x = |x|, cm.

Position vector, cm ,

78
81

78
42
42




[

eff
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Description/Dimensions

Distance between two electrons, cm,

X1 =W vy
X =W Py
x = Q/ZPF

X cHoordinate of electron a in an atom, cm.
Function defined by (3.26).

See egn. (4.30) for definition.

Defined in (7.2).

Defined by (7.8),

Charge on nucleus of an atom, esu.

Effective charge of an ion moving through
a plasma, esu .

z = q/2p, (4.62).

Complex variable .

2" = kT/eF

Function defined by (4.105) to (4.107).
Charge on moving ion, esu.

Charge on ion in plasma, esu.

Average number of free electrons per atom,
esu .

Degree of ionization, (Number of free
electrons/atom),

Equilibrium charge on ion in target
material, esu.

Number of bound electrons in an atom ,

11
51
52
53
62
77
81

80

80
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