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Abstract 

The computer code GORGON, which calculates the energy 

deposition and slowing down of ions in cold materials and hot 

plasmas is described, and analyzed in this report. This code 

is in a state of continuous development but an intermediate 

stage has been reached where it is considered useful to do­

cument the "state of the art" at the present time. TheGORGON 

code is an improved version of a code developed by Zinamon et 
al. as part of. a more complex prog-ram system for studying the 

hydrodynamic motion of plane metal targets irradiated by intense 

beams of protons. The improvements made in the code were necessary 

to improve its usefulness for problems related to the design 

and burn of heavy ion beam driven inertial confinement·fusion 
targets. 

The report provides a description of what problems 

the code can solve and discusses the importance of the problern 

of energy loss öf ions to various aspects of ion beam fusion. 

A review is given of the theory used in the code, relevant to 

the problern at: hand, in particular discussing the Thomas 

Fermi theory of the state of high density plasmas and the 

slowing down öf ions due to free and bound electrons using the 

dielectric function theory and the Bethe theory. The improvements 

made in the code and their importance are discussed in detail 

and the limitations and future improvements are also briefly 

discussed. The method of solution of the problern within the 

code is treated. Detailed descriptions of input data and out­

put of the code are provided as well as a description of the 

subroutines and variables used in the: code • An executed 

test problern is provided and described. 



GORGON - ein Rechenprogramm zur Berechnung der Energiedeposition 
und der Ionenverlangsamung in kalten Werkstoffen und heißen, dichten 
Plasmen 

Kurzfassung 

Im vorliegenden Bericht wird das Rechenprogramm GORGON beschrieben 
und analysiert, mit dem die Energiedeposition und Ionenverlang­
samung in kalten Werkstoffen und heißen Plasmen berechnet werden 
können. Das Programm befindet sich im Zustand forschreitender 
Entwicklung, jedoch ist nun eine Zwischenstufe erreicht, auf der 
es als nützlich erachtet wird, den derzeitigen Stand zu doku­
mentieren. Das Programm GORGON stellt eine verbesserte Version 
eines Rechenprogramms dar, das Zinamon et al. als Teil e-ines 
komplexeren Programmsystems entwickelt haben, um die hydro­
dynamische Bewegung ebener, mit starken Protonenstrahlen be­
strahlter Metalltargets zu untersuchen. Die Programmverbesserungen 
waren erforderlich, um die Eignung des Programms bei der Lösung 
von Problemen in Zusammenhang mit der Auslegung und dem Abbrennen 
von Targets in Fusionsanlagen mit Trägheitseinschluß und Schwer­
ionenstrahltreiber zu verbessern. 

Der Bericht beschreibt, welche Probleme das Rechenprogramm lösen 
kann. Auch wird die Bedeutung des Problems des Ionenenergiever­
lusts in Bezug auf verschiedene Aspekte der Ionenstrahlfusion 
diskutiert. Der Bericht enthält einen Uberblick über die im 
Rechenprogramm benutzte und auf das anstehende Problern bezogene 
Theorie und insbesondere eine Diskussion der Thomas-Fermi-Theorie 
des Zustands von Plasmen hoher Dichte und der Verlangsamung von 
Ionen infolge freier und gebundener Elektronen unter Verwendung 
der Theorie der dielektrischen Funktion und der Bethe-Theorie. 
Die Programmverbesserungen und ihre Bedeutung werden ausführlich 
diskutiert, und die Grenzen und künftige Verbesserungen werden 
ebenfalls kurz angesprochen. Die Lösungsmethode für das Problem 
im Rahmen des Rechenprogramms wird behandelt. Der Bericht ent­
hält eine ausführliche Beschreibung der Eingabedaten und der 
Programmausgabe sowie eine Beschreibung der im Rechenprogramm be­
nutzten Unterprogramme und Variablen. Der Bericht wird ergänzt 
durch eine ausgeführte Testaufgabe mit Beschreibung. 
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1. Introduction 

The GORGON code is designed to calculate the energy loss of 

any ion, heavy or light in a cold material or plasma of arbitrary 

density and temperature. The code solves the problern by calcu­

lating the basic plasma parameters within the Thomas-Fermi model 

and then using this solution to divide the electrons into bound 

and free electrons. The stopping power of the free electrons 

is then calculated using the dielectric function theory approach, 

while that due to the bound electrons is calculated using the 

Bethe theory including a novel approach to the inclusion of 

shell corrections. The Bethe I parameter whLch describes all 

the excitation and ionization processes of the baundelectrons 

and averages their energy over the probability of their occurence 

is calculated using the Thomas Fermi model. The scattering due 

to the charged nuclei is also calculated. The code includes a 

simple treatment for degenerate electrons,and a simple theory 

of the effective charge 6f the ion which is passing through 

the plasma. The code calculates the stopping power p- 1 d.Eidx 

as a function of the energy of the ion, and by an iterative 

procedure can calculate ranges. The main limitation of the code 

is probably its simple t!Ee.atment of the effective charge. A 

more detailed calculation has been given recently I 3,4 I which 

shows that for light ions this can very drastically reduce the 

range in hot plasmas, in addition to the range shortenirtg that 

is obtained using the GORGON code as it is described here. It 

is also necessary to give an improved treacrnent of the degeneracy 

of electrons and its effect on the stopping power especially 

for a-particles in DT plasmas found in ICF pellets .. 

There are also much more fundamental questions about the best 

theoretical treatment of dense plasmas and the way to treat 

the stopping power in such systems. For instance the inclusion 

of collisions in the dielectric function used for the stopping 

power of free electrons may be too simple. However this is a 

complicated problern on which research is still in progress. 
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Historically this problern was first treated by Chandrasekhar 

who used the methods of classical plasma physics to treat the 

problern of binary Coulomb collisions in the plasma I 5 I. 
Bohm and Pines I 6 I pointed out the importance of including 

plasmons in the calculation of the stopping power. This type 

of theory was ' used by Bangerter I 7 I, to first describe 

stopping power problems in ion: beam driven inertial fusion. 

The work by Nardi, Peleg and Zinamon gave the ftrst thoroughl11 

discussion of the problern including a detailed treatment of 

ionization effects, a sophisticated first principles calculation 

of the Bethe pararneter I, and a dielectric function theory 

treatment of the free electröns. IJater Mehlhorn also ,treated 18,91 
the same problem. He included some new features such as using 

the LSS theory (Lindhard et al I 10 I) at low energies, in­

cluding ion-ion scattering both in the cold material and in the 

fully ionized plasma. However a simple scaling relation was 

used for the calculation of I. The Zinamon theory was devel0ped 

only for protons, and Mehlhorn included a "cold" effective 

charge in order to treat heavy and light ions. The improvements 

made to the GORGON code at KfK have included such effects and 

since the code is based ön a firmer theoretical foundation, 

the GORGON code is as good as, if not better than any other presently 

existing code. Other calculations have been done by More I 11 I 

He discusses the application of two methods. In the first the dielec­
tric function theory is used for both bound and free electrons 

in the whole Thomas-Fermi pseudoatom, by a~eraging the finite 

temperature R.P.A. approximation to the dielectric function over 

the electron density. In this case the Thomas-Fermi-Dirac theory 

is used. It is however doubtful if there is much difference 

between this approach and the approach made in the GORGON code. 

The approach for the free electrons is the same, and since for 

high ion velocities the dielectric theory can be shown to be 

identical I 12 lto the Bethe theory, and since I is calculated 

by the Thomas Fermi theory in the GORGON code, the only difference 

seems to lie in the way öne averages over the electron density. 

The second approach uses the hydrogenic ionization equilibrium 

model to provide detailed populations and energy levels for the 

target plasma; 1 11 1. The Bethe I is then calculated from this 

data using the definition of I, and the rest of the calculation 
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(presumably) proceeds as in the GORGON code. 

The organization of the rest of this report is as follows. 

In section 2-6 the theory of stopping power relevant directly 

to the code is discussed. Section 2 gives a more extensive 

discussion of the problem, applications, and the importance 

of the problern for ion beam inertial fusion. In Section 3 a 

description of the Themas-Fermi theory is given, which is 

used in the code to calculate the basic plasma parameters. 

In Section 4, a discussion of the dielectric function theory 

of the stopping power is given, and the theory used in the 

code is discussed. 

In 5 the stopping power of bound electrons is reviewed and 

the method of calculation of the Be't1he I parameter is described. 

In Section 6 the treatment of the stopping power of ions used 

in the code is briefly described. 

In Section 7 the improvements made to the original version 

of the code I 2 I made at KfK are described. 

Section 8 gives the User's and Programmer's Information. 

Section 9 gives an executed test problern and discusses a few 

typical results obtained with the code. Section 10 discusses 

the desirable future improvements which are intended to be 

made to the GORGON code and describes the conclusions drawn 

from this work. 



-8-

2. Problern Definition, Irnportance of the problern in Ion Bearn 

Inertial Fusion and general theoretical considerations 

The problern of the energy loss of fast particles in matter 

has occupied the rninds of sorne of this century's best physicists, 

Thornpson I 13 1, Rutherford I 14 1, Bohr I15,16I,Bethe I 17,181, 

Mott I 19 1, Bloch I 201, Fermi I 21 I and Landau I 221. 
In fact the theoretical and experimental investigation of this 

problern has played a very irnportant part in the developrnent of 

modern physics. The distinction between large and srnall angle 

Coulomb scattering led to the discovery of the nuclear atorn. The 

way in which a and ß rays slowed down in matter allowed their 

identification as fully ionized Helium and energetic electrons. 

Particle track detectors have been responsible for the discovery 

of rnost known elernentary particles. Many different fields such 

as astrophysics, nuclear physics, atornic physics, rnolecular 

physics, biophysics and rnany othemrely on a good theoretical 

and experimental knowledge of the slowing down of charged particles 

in matter. 

The problern of the stopping power of ions in matter is also 

very irnportant in a nurober of research and developrnent prograrnrnes. 

For instance it plays a significant role in the developrnent and 

application of heavy ion bearn accelerators I 14 1, the interpre­

tation of cosrnicray results I 141, and as a rneans of treating cancer 

I 14 1. Recently another very exciting application has been dis­

covered in heavy and lightion bearn inertial confinernent fusion120, 

2~ 24, 25, 26, 281 ·Which is dis~ussed in more detail below. 

The cornputer program GORGON described here,calculates the 

stopping power of any given ion with any charge state in a cold 

material or hot plasrna over :t.he very considerable ranges of 

ternperature and density, which are of irnportance for ion bearn 

driven inertial confinernent fusion. The problern of the stopping 

power in cold rnaterials has been studied very extensively since 

1903, but the problern of the slowing down in hot plasrnas has not been 
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stud:'ied until recently. A similar problern was treated by Chandra­

sekhar in connection with problems in astrophysics /5/, by the con­

ventional theory of gravitational scattering. However the problern 

of the slowing down df ions in very dense hot plasmas is relatively 

new and has only assumed importance since the advent of ion beam 

driven Inertial fusion. These effects were first discussed by 

Bangerter /7/~ Zinamon et al. gave the first thorough discussion 

of the problern for protons /1/. 

The GORGON code was written in its original form by Nardi, Peleg 

and Zinamon,and is based on the work done for protons. Some ex­

tensions and improvements have been made at the Institute for 

Neutron Physics and Reactor Technology at the Nuclear Research 

Centre, Karlsruhe, in order to facilitate the codes use in pellet 

design for heavy and light ion beam fusion. Since the theory in 

the code is thoroughly discussed in this report we very briefly 

describe the model. The theory used by Nardi, Peleg and Zinamon 

divides the electrons in the plasma intro free and bound electrons 

as calculated using the Themas Fermi model. The contribution 

of the free electrons is then calcul!ated using the dielectric 

function theory and that of the bound electrons using the Bethe 

theory. The basic plasma parameters are calculated using the 

Themas Fermi model. 

More recently Mehlhorn has also treated this problern /8,9/. His 

approach is to use the Bethe theory including shell corrections 

for the stopping power of the bound electrons. At lower energies 

where this version of the Bethe theory breaks down it is replaced 

by the LSS theory developed by Linhard and his group /10/. This 

makes use'. of a Themas-Fermi description of the electron cloud 

areund each ion and gives contributions to the stopping power due 

not only the excitation and ionization, but also due to elastic 

Coulomb collisions of the ion and the nucleus of the target atom. 

A suitable empirical formula for the effective charge on the ion 

is used. At finite temperature the Saha equation is used to find 

the equilibrium charge ZB of the target material as a function of 

temperature and density. A scaling relation depending on z~.· is used 

to calculate the value of I. This model is clearly rather crude. 
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An empirical formula derived for cold materials is used 

for the effective charge Zeff on the ion as it passes through 

the plasma 1 2 9 1. The veloci ty is taken as the square root 

of the sum of the ion velocity squared plus the thermal electron 

velocity squared. This raises the value of Zeff especially at 

lower energies in hot plasmas. It simulates the greater degree 

of collisional ionization. The modification occurs mostly at 

lower energies. A dielectric function theory was used for the 

free electrons as described in secti.on I 4 • 3 I' and was compared to 

a theory in which binary collisions and collective plasma wave 

excitation outside the Debye radiuswas applied. The latter 

theory is actually used in the code for toth the electron and ion 

plasma contribution to the stopping power. The possibility of 

Debye shielding of the remaining bound electrons by the plasma 

electrons is also considered in Mehlhorn's code~ The theory used 

by Moore 1111 is described elsewh~re in this report so·will not 

be considered again here (4.5). 

We will now consider in detail the problern of the 

importance of ion beam energy deposition for ion beam driven 

inertial confinement fusion . From cold stopping power 

data i t was recognized that I 7 I MeV protons or GEV heavy 

ions would have the "correct" range needed to drive typical size 

ICF targets. The ranges of such ions is of the order of 3·10-
2 

cms, i.e. less than 1 mm in normal 4.mcompressed matter, ·e.·g.lead. 

It was also realized that one can tailor ionic species, accele­

rator voltage, mass etc. to the problern at hand. Hevy ions can 

natural.ly carry much more energylion than light ions, because the 

stopping power of heavy ions is much greater since the effective 

charge is much larger and the energy deposition ps proportional 

to z;ffM (where M is the mass of the ion) , when the veloci ty of the 

ion is greater than the thermal electron vel.ocity. Further the 

energy loss of both heavy and light ions is expected to the 

classical and not to involve that because of the1.~highly collisional 

nature of the plasma, for instance, to two stream instability is 

not likely to occur. 
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This is because a plasma wave is damped out by collisions 

before another ion passes the point where the plasma waYe was 

generated. A good and accurate knowledge of energy deposition 

of ions in hot plasmas and cold materials is necessary in order 

to optimize beam generation, calculate target beam coupling 

efficiencies and to design targets in general. It is also very 

important in the interpretation of experiments. For coupling 

into a hydrodynamic code, the energy deposition routine must 

naturally be not too time consuming. 

The type of ion beam target used in the HIBALL reactor 

/26,2,33,34/ study is shown in Fig.1. This target works in the 

foll0wing way Fig. 2,3. 10 GeV Bi+ ions impinge on the outside 

surface of the lead shell, and because of their high energy 

they pass through the lead shell, heating it up as they go b~ 

binary collisions, and excitation of plasma waves, and go deep 

into the lithium shell Fig.3. The energy deposition per gm 

of material by the beam is roughly the same in the lead as in 

the lithium region but the specific heat/gm of the lithium 

region is about 5x smaller than the lead region because ioni~ 

zation effects are much more dominant in the· lead. The tempera­

ture in the lead rises to about 100 eV and that in the lithium 

to about 500 eV. It should be noted as the lead and 

lithium plasmas heat up the range of the ions shortens Figs.3 

4 and 5. This effect is about 30% of the cold range or about 

50% 6f the hot range (Figs. 4+5). 

An increase of the ion energy during the course of the implosion or 

the effect of radiation transport could compensate for this effect. 

If this is not done then the beam fuel target efficiency may drop 

to tooJ low a level and ignition will not be achieved /30/. 

It is therefore very important to be able to accurately cal­

culate this range shortening effect /3/. If the ionization of the 

ion by electron collisions in the hot plasma is included range 

shortening is likely to be an even more drastic phenomena , 

especially for light ions, than that calculated using this code 

I 3, 4/ -At the end of the ion beam range the li thium for R < R 
0 

(where R is the range) is very 
0 

hot and the lithium-lead beyond 

the end of the range R > R , is very cold. Hence the thermal 
0 

pressure of the electrons and ions plus the radiation pressure 

pushes the shell of cold lithium-lead plus DT (payload) 
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inwards while the lead shell moves outwards. The payload part 

of the shell is the part imploded to ignition. The lead-lithium 

layer needs to be thick enough to reduce radiation preheat 

to a minimum (i.e. at least to prevent the Marshak wave 

reaching the fuel) and to prevent the break up of the shell 

by Rayleigh-Taylor instabilities . Here another problern arises 

for which energy deposition calculations are needed. Elastic 

collisions will occur between the heavy Bismuth ions and /32/ 

the light lithium ions. This will cause"knock on"Lithium ions 

with a spectrum of energies less than the remaining energy 

of the incoming ion. Since dE/dX is proportional to Z~ffM 
the stopping power of the lithium ions is considerably less 

than the Bi ions of equivalent-energy. Therefore these knock­

on lithium ions may have enough energy to penetrate into the 

fuel pre-heating it and thus degrading the compression and 

possibly hindering ignition. It should be noted that in the 

outer layers densities from p
0 

(solid density) to p
0

/100 

and temperatures from zero to 1 KeV are achieved and the 

code must ht least work in these ranges. Energy deposition 

calculations are also of great importance during the burn of 

ICF targets, Figs .. 6, 7 and 8. The a-particles play a crucial 

role during the ignition phase and dominate the phenomenon of 

burn propagation. In central ignition only a small central 

region of the fuel is' shock heated to ignition while the rest 

of the fuel is kept cold on a low adiabat/2,33,34/. In order for 

the burn to propagate more energy must be redeposited in the 

hot spot then is lost by Bremsstrahlungradiation /34,35,33,30,60/ 

When the range of the a-particles is equal to .the radius of the 

sphere about-40% of the energy escapes the burning region. 

It is this escaping energy which sets the burn propagation on 

its way. In fact the burn propagation is a self-regulating 

phenornenon in which if the DT gets too höt, too much ,a-particle 

energy escapes so it cools,whereas of it gets too cool, the 

range becomes so short that little a-particle energy escapes 

so that it heats up again . Therefore both the temperature of 

the burn and the rate of burn propagation is strOB'JlY .influenced by 

a-particle energy deposition in the DT plasma. The rate of burn 
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propagation is of course given by the flux of a-particles 

coming out of the burning region, ~heir residual energy and 

therange over which this is deposited. The a-particle dEidX 

and range are strongly dependent on the temperature. Deposition 

is to both ions and elecrons with a cross over temperature of 

about 20 KeV. Above this temperature energy loss to ions is 

dominant, below this energy loss to electrons is dominant. 

Another in~eresting place where energy deposition calculations 

become very important is in the calculation of energy deposition 

of "knock-on"neutron induced, fast ions,during the burn 

Neutrons are born during the nuclear reactions and these 

have a m.f.p. till the first collision of pR = 4.75 glcm2 , 

i. e Jl, = _!.=1.5 cms I 36 I. These neutrons collide wi th D + and p 
T+ ions and because of the spin part of the interaction, the 

"elastic" scattering is anisotropic 1361 .The~e D+ a~d T+ ions ·then 

lose energy in the DT plasma. B~cause their velocity is less 

than the thermal electron velocity dEidX a ~~.z;ffwhere M is 

the mass of the D+,T+ ion and E their energy. Scattering to the 

ions gbes as dEidX a(MIE) .z~f~on scattering is hence much Fig.7,8 

rnore reduced from the a-particle case than lass of energy to 

electrons. Therefore the cross over temperature is much greater. 

Therefore these ion~ also have much longer ranges than the a-par­

ticles. Therefore besides ~-particle energy.deposition and· 

neutron transport, the transport and energy dep6sition of 

neutron induced knock-on D+ and T+ ions should be considered. 

Finally it should be noted in this section that first experiments 

indicate a confirmation of range shortening of deuterons in 

hat plasrnas 1381. 
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3. Calculation of the Plasma Parameters 

The Thomas-Fermi theory 

3~1 The high density plasma and its characteristic properties. 

When a plasma is in a highly compressed state due to say a 

very high pressure, such that the avera~e Separation between 

the ions is of the same order or less than the atomic radii, 

then one has a high density plasma. This kind o~ plasma can not 

be treated by the methods used in classical plasma theory which 

often assumes point particles and that one can neglect the 

Coulomb interaction energy. In these high density plasmas the 

Saha equation is not applicable and the equation of state is very 

different from that of a classical plasma. 

It is known experimentally that as the pressure rises the 

ionization potential is lowered and the lines of the atbmic 

spectra are broadened. In general the line spectrum of a plasma 

becomes very similar to a continuum spectrum as for energy bands 

in metals. This means that the outer bound electrons and even 

deep core levels become very similar to free electrons as 

the pressure rises. In effect one has a cascade of insulator­

metal transitions for all the shells in the atoms /39/. 

In a high density plasma it is thus somewhat questionab~e as 

to whether one should distinguish between free and bound electrons. 

The actual distinction used in the code within the Thomas Fermi 

model is of a somewhat technical nature. An exact calculation of 

the electron distribution as a solution of the quantum mechanical 

many body problern is from a practical point of view not possible. 

Therefore it is unfortunately necessary to use simpler models. 

Since one has already noticed that the distinction between free 

electrons, valence electrons, and bound elecetrons is in the 

case of high pressure somewhat hazy, one usually only distin­

guishes between ions and electrons. The totality of the electrons 
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is then treated as a statistical Fermi gas system moving 

in the field of the nucleus, including the Coulomb interaction 

energy, the exchange energy,and the correlation energy between 

the electrons. The Thomas Fermi model of the atom is such a 

model and .in spite of it neglecting the details of the atomic shell 

structure is a suitable approximation for material under high 

pressure I 40 I. 
The electron density of the electrons is very large in the 

region of the nuclei. Therefore here the electrons are strongly 

degenerate. Further away from the nucleus the degree of degene­

racy is reduced. Each ion or nucleus ts surrounded by an electron 

cloud and is therefore strongly screened from its neighbouring 

ions. The ions on the other hand are considered to be non-dege­

nerate and to be treatable as an ideal gas. 

The electron distribution is the same araund each nucleus 

apart from statistical fluctuations. One can therefore define 

a quasiatom which consists of a nucleus plus a surrounding 

cloud of Z electrons. On average such a quasi-atom has a 

volume given by, 

V = 1 ( 3. 1 
n 

where n is the nuclei density. Regarding this volume as being 

a sphere one defines, 

( 
3 r -

0 - 41T 

113 

~) ( 3.2 

More. exact calculations using an extended Debye-Hückel 

theory which includes the effect of the thermal transport of 

ions and electrons on the charge distribution have confirmed 

the validity of this model. In particular it has been 

shown that at the radius r , the electrical potential is more or 
0 

less zero. This means that within a sphere of radius r
0 

one 

really does find Z electrons. 

The material of a high density plasma can be considered to 

consist.·. ·of such quasiatoms wi th a continuous alectron densi ty 

within them. The quasiatoms are always in contact with eaeh other, 

whereas the ions move within the plasma. This type df model has 

many similarities to a fluid , in that the motion of the 



-24-

individual quasiatoms are highly correlated, i. e. the structure 

factor for the ions contains oscillations . 

3.2 The free electron Fermi-Dirac gas 

In very dense material, the contribution of the electrons 

to the total pressure and energy is much greater than that of 

the nuclei. There are two reasons for this namely firstly that 
3 the electrons are degenerate with energy/electron ~ S EF, and 

secondly in the case of high Z materials that the nurober of 

electrons is much greater than that of the nuclei. To fix 

notation we give briefly here the solution to the Fermi-Dirac 

electron gas, for N electrons on a volumev. The Fermi-Dirac 

distribution function is given by, 

f(s) = 1 ( 3. 3 
( exp {: s- lJ) /kT) + 1) 

where s is the electron energy, lJ is the chemical potential 

and T is the temperature. 

d'f N = f f(s) ·2 h_"T ( 3. 4 

where UE is the total electron energy and where the integral is 

taken over phase space (momentum) . 

Each electron of one spin occupies a volume of h3 in momentum space. 

Two electrons of opposite spin can occupy this volume. 
2 In a large volume with no interactions, s = P /2m. 

N [ 2TimkT J 3/2 
(a) = n = X' V E h3 

( 3. 5 

UE/ = 3; kT <2'1T:~T7 
3/2 

X ( a) V 2 ( 3. 6 ) 
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where a = l.l/kT , and 

00 -t+a 
x(a) 

4 
J log ( 1 +e ) lt. dt ( 3 . 7) = 

l1r 0 

2:x 4 
00 

lt X'(a)= = J dt (3.8) da (et-a + hr 0 1 ) 

3 · 3 Electron gas in ,.·the Coulomb fieHd of the nucleus. 

The Thomas-Fermi model 

For a much better calculation of the state of a high 

density plasma, one must (at least) include the electric field 

of the nucleus and the electrons. For high Z materials one should 

also include relativistic effects, and one ~hould include exchange 

and quantum corrections I 41 /. This is not done here however 

where we consider the basic Thomas-Fermi theory. Under the action 

of the electrostatic field the electrons and nuclei order them­

selves in the form as quasiatoms as discussed above. 

Theseare the building bricks so to say of the very high 

density plasma. The problern of the state of the plasma is thereby 

reduced to the calculation of the thermodynamic properties of 

one quasiatom. 

Let the origin of the co-ordinate system lie at the centre 

of the quasiatom, i.e. where the nucleus is. Then, 

where r is the radius of the quasiatom. 
0 

3.9 

The potential ~ inside the quasiatom consists of two parts 

namely the electron and nuclear contributions. 

~(r) = ~E(r) + ~N(r) 

~N(r) = Ze/r 

( 3. 10 

( 3 . 11 
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The Poisson equation then reads, 

For r + 0 the nuclear potential dominates, 

r+O 

This gives one boundary condition. 

At r = r on the boundary of the quasiat0m, the electric 
0 

field and potential must vanish , 

1}.1' (r ) = 0 , 
0 

1}.1 (r ) = 0 
0 

In the electron distribution function f(s), 0ne must now 

include in s a potential energy part, 

Since, 

( ) 
_ ( 2 nmkT ) 

nE r - . 
h3 

3/2 

X' ( a) 

(3 • 1 2 ) 

(3 • 1 3 ) 

( 3. 14) 

( 3.15) 

(3.16) 

where one applies the Fermi-Dirac theory to a shell of volume 6V 

containing 6N electrons at radius r, where 

a ( r) = a + e I kT 1}.1 ( r) ( 3 • 1 7 ) 

Combining this with Poisson's equation ( 3.12 ), one obtains, 

1/ 2 r 
d 
dr 

2 r . .9j_) = 4ne 
dr 

3/2 
( 2 nmkT ) X, ( 0 ) 
.. h 3 (3.18) 

This is the generalized Themas-Fermi differential equation for 

the potential l}.l(r). Once l}.l(r) is determined one can find nE(r) 

from Poisson's equation. Note that the chemical potential ~ 

= akT is found from the value of o(r) at r = r
0 

where l}.l(r
0

) = 0. 
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The solution is found from the differential equation after 

subjecting it to several transformations by integrating out­

wards from r = 0, using the boundary condition at r = 0, and using 

trial and error until the boundary condition at r = r is 
0 

satisfied I 40 I. In the code the met.hod of Latter is used 

142 I which first converts the differential equation to an 

integral equation and solves this by an iterative procedure. 

3.4 A method suitable for numerical solution. 

Starting from eqn. ( 3.18) we change variables, 

and use er ( r;) instead of l/J ( ~) • 

Then we get, 

1 d . ( ~2 derld~ ) 
d~ ~2 

The boundary conditions now read 

Lim { ~ ·er ( ~) } = K 
~-+o 

-- X' (er) 

( 3. 19 

( 3. 20 

( 3. 21 

) 

K (T) = ( 3.22 ) 

At the position 

( 3 • 1 7) 

Note that 

~ = ~ 0 
= r lA, one obtains from ( 3.14) and 

0 

-114 
A = 1.4·10-7 T (cm) 

4 z 
K = 1.19·10 ·-

T314 

( 3. 2 3 

3.24 

3.25 
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where T is measured in Kelvin. 

The function a(s) is singular at s=O, so one puts, 

Then, 

y(s) = s·a (s) 

Y' I = s·x' < _!_) s 
Y(O) = K, y' (1;;

0
) = Y(s

0
)/s

0 

Y(s
0

) = as
0 

Y'(s) = a 
0 

( 3. 2 6 

(3.27) 

(3.28) 

(3.29) 

( 3. 30) 

The boundary value problern posed by eqns. (3.27) and (3.30) can, 

for fixed Z and given values of s (r ) and K(T) be solved 
0 0 

uniquely. Physically this means that the potential in the inner 

atom of high density material can be uniquely determined from just 

the temperature and the density. 

A thorou~h discussion of the differential equation(3.18) would 

show that each solution a(s) starting from s=O, decreases mono­

tonically at first and at a point s reaches a minimum such that 
0 

a' (I;; ) = 0, and then monotonically increases. It is therefore 
0 

certain that for a region 0 ~ s ~ sG . the formulated boundary 

value problern ( 3.20) to ( 3.22 ) or ( 3.27 ) to ( 3.30) 

always possesses a solution. 

In Fig. 9 a schematic diagram is presented of typical 

solution curves for a(s) and Y(s) /40 /. The boundary value Y(O) 

= K is then chosen to be the same for all the curves. For a given 

value of Z, the temperatures for all the curves are the same, so 

that the atomic radius r or equivalently the particle density n 
0 

is the parameter which labels the curves. The solutions have 

a physical meaning only in the region 0 ~ s ~ s
0 

, i. e. left of 

the minimum of the function a(s). The solutions lie above the 

axis for small s
0

, and below for large s
0

• Since a(s)is a measure 

of the local degree of degeneracy of the electrons, this shows 

that at large densities streng degeneracy is present, and that at 

low densities there is weak degeneracy. 
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a 

y 

y(O):K 

Fig. 9 = Types of solutions of the functions o ( ') 
and y ( ~) for the initial value y ( 0) = K. 
Curves 1 and 2 show strong degeneracy, 
whereas curves 3 and 4 show weak 
degeneracy. 
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The bounaary value problern defined by equations (3.27) and 

(3.28) for the function Y(s) can be solved as an initial value 

problem, which significantly reduces the amount of computation 

I 40 I. In order to integrate (3. 27 ) one starts from s=O 
with the boundary value Y(O) = K, whereas the gradient Y' (0) 

is chosen arbitrarily at first. Since Y'' can be seen to be 

infinite at s=O, by eqns.( 3.27), ( 3.28 ), and X'(a)~a 3 / 2 as 

a~oo (3.31) the numerical integration can·only be started at a point 

s* > 0. In the interval 0 ~ s ~ s*,Y(s) can be expresse~ for suffi­

ciently small s*, as, 

312 

y ( s ) = y ( o) + y • , o) • s + ~ ry , ( o) J 
911T L~ 

312 
s (3.32) 

which can be derived using ( 3.27), (3.28) and ( 3.31 ) by power 

expansion in ~ 1 12about s=O. 
The numerical integration proceeds from s* to that point 

s= s at which the condition in (3.28 ) is fulfilled. The function 
0 

Y(s) obtained in this way is the solution one is seeking. 

Because s
0 

(Fig. 9 ) various monotonically with Y' (0), by 

varying Y' (0), and repeating the integration, one can get to 

any desired value of s . The Runga-Kutta-Nyström met.hod is a 
0 

suitable numerical integration method if used with variable 

integration steps. 

3.5 Thermodynamic Properties of the High Density Plasma 

The energy for the nuclei is, 

U = 3 kT K 2 
(3.33 

The contribution of the electrons, is 

(3.34 ) 

where the first tarm is the kinetic energy, the second term 

is the interaction with the nucleus and the third term is the 

electron-electron interaction energy 
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is the potential energy. 

From ( 3. 6 ) 1 we have ( 3. 3 6) 

dUE 1KIN = ~kT 
3/2 

2rrmkT) 
h3 

and it is clear that 1 

= -enE 1/JK·dV 

= 

x(cr) ·dV 

where 1/J: excludes the self energy. Using eqns. (3.10), 

( 3 . 11 ) , ( 3 . 1 6 ) 1 ( 3 . 1 7 ) , ( 3. 1 9 ) , and ( 3 . 2 2 ) , one 

gets, 

~ZkT 1 s 
UE1KIN = . I os2 x (cr) ·ds 2 R 

0 

so 
UEK = -ZkT Is·x'(cr) dl,; 

0 

~ZkT 1 s K 
UEE = J or;2 X'(cr)·( --cr+a)dr; K 

0 s 

( 3. 35 

( 3.36 

3.37 

( 3.38 

( 3.39 

(3.40 ) 

( 3.41 

The pressure in the high density plasma can be calculated by eva­

luating the momentum / secend due to the electrons and ions which 

hit a unit area of a wall. Considering any boundary to be covered 

by quasiatoms, one can assume that the pressure is the same as 

that at the boundary of a quasiatom. The distribution function 

is given by, 

f(P).Ir=r = 
0 

-:1 -1 
- a } - ~ ( 3.42 
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The nurober of electrons whose momemtum lies between P and P+dP 

is 1 

(exp ( 2~~T - a) + 1 
( 3.43) 

Per second only 1/6 of electrons hit the wall 1 which are in a 

pipe of length P/m perpendicular to the wall, each giving 

an impulse of 2P. 

Therefore, 

1 
00 p2 .dp 

PE . 81T 
J = ~3 3m 0 ~xp(2~T -0 + v 

3/2 

= kT· (21TmkT) x(a) 
h3 

Using eons. (3.1) 1 (3.2) 1 (3.19) and (3.22), we obtain 1 

3 

PE 
so z x(a) .ilkT = 3 K 

PK = nkT 

Pk is the partial pressure of the nuclei. The total pressure 

P = PE + PK is then given by, 

p ={ 
?;; 3 

0 

3 : • X(a) + 1 ) nkT. 

One can show that despite the non-linearity of the eqn. (3.18) 

for the potential)that a virial theorem for the Thomas-Fermi 

model exists /40/ 

(3. 44 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

(3.49) 
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Also one has, 

( 3. 50 

(3.51a+b) 

Therefore, 

2·UKIN + UPOT = 3·pV 3.52 

The free energy/atom, F = FE + FK 3.53 

can be calculated from the thermodynamic relations, 

ClF p =-( - ) 
av T 

I u = F - T ( ()F ) 
ClT V 

(3.54a+b) 

One naturally only needs to do this for the electron part. 

UE = - T2 l 
ClT 

where tfl(V) is undetermined. It can be shown that /40/, 

J UE,KIN = 2/3 T + - Zka 

Setting this in (3.56 ), and differentiating by V, 

( 3.55 ) 

( 3.56 ) 

( 3. 57 

and ceroparing to ( 3.45) for pE, one can determine tfl(V) to 

be a constant C. Using Nernst's Theorem one can show that 
c = o. Then, 

FE=- 2/3 · UE,KIN- UEE + ZkT·a ( 3. 58 
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( 3. 59) 

SK = k (3/2 lnT - ln n +ck + 3/2) ( 3. 60) 

ck = 47.693 + 3/2 ln A (3.61) 

A is the atomic weight. 

One can show that, the Gibbs energy is, 

( 3.62) 

and the chemi.cal potential is 

llE = kTa. ( 3.63) 

There llE is positive or negative when a > or < 0, i.e. when it 

is de~enerate or non-degenerate. 
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4. ~he stopping power of Free Electrons 

4.1 Derivation of general formula for the stopping power of 
free electrons 

A fast charged particle, in passing through matter, ionizes 

the atoms and thereby loses energy. In gases,the ionization 

lasses can be regarded as being due to collisions between the 

fast particle and the individual atoms. In a solid or liquid 

medium, however, several atoms interact simultaneously with the 

particle. The effect of this on the energy loss by the particle 

can be macroscopically regarded as resulting from the dielectric 

polarization of the medium by the charge. The derivation of this 

result is of interest because the method can be extended to 

other cases. 

The dielectric formulation of the energy loss of charged 

particles in matter can in principle be used for both bound 

and free electrons. However its use here is confined to use 

in the free electron case. In this section a general formula 

is derived relating the stopping power to the generalized 

dielectric functuon. This type of macroscopic formulation 

is valid when, 

v >> aw 
0 

and V > V 
0 

( 4. 1 ) 

where v is the ion velocity, w is a mean frequency corresponding 
0 

to the motion of the majority of the electrons, 
-8 

a - 10 cms, and v is an average electron velocity. 
0 

Let us now dotermine tho field produced by a chargod particle 

(charge Ze) moving through matter. In the non-relativistic /43/ 

case it is sufficient to consider only the electric field, 

~efine~ by the scalar potential ~. This potential satisfies 

Poissons's equation. 
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= -Z4ne6(~- ~t), 

in which the dielectric constant is wtitten as an 

operator, and the expression on the right-hand side is the 

( 4. 2 ) 

charge density due to a point charge moving with constant velocity 

v. Take the Fourier transform in tllime and space 

+oo +oo ik·r -iwt 
~(r,t) = J d 3~ f dw~(~,w)e e 

-oo -oo 

2 
E(W)~(~ 1 W)k = -ez . .t'(w- k) u y·_ 

( 4 .3 ) 

( 4 .4 ) 

<P(~,t)= 
eZ 1 

2TI 2 k 2 E(~·y) 
. exp(-it y·!;) ( 4 .5 > 

From the electric field, E = -2~ we have, 

];k ( t) = -i~~k(t) ( 4 .6 ) 

~k = -iZe.k. exp(-it y·~) ( 4. 6_a) 

2TI 2 k 2 E(~·y) 

The total field strength is obtained by inverting the Fourier 

transform. 

+-oo 
~(~,t) = f E(~,t) exp(i~·~)d 3~ ( 4 •. 7 ) 

-oo 

The energy loss by the moving particle* is just the work done 

by the force Ze§ exerted on the particle by the field which is 
-· 

produced. Taking the value of the field at the point occupied 

by the particle, narnely r = yt, the force F is given by, 

k 
F = f ( 4. 8 ) 

-oo 

* We assume that the particle moves in a straight line, and there­
by neglect scattering, as is usually permissible in problems of 
this type, when loss to electrons is dominant. 
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Note that I~ ldx = dE, and therefore 

dE /dX = I ~I ( 4. 9 ) 

d.E/ dx or .1 F I is called the stopping power of the medium. 

In order to arrive at the form used in the code /1,2 I we proceed 

as follows 

~·y = lkl lvlcos 8 = lkl lvl~ (4.10) 

Further it is evident that the direction of the force F is 

opposite to that of y. Let this direction be g where ~ is a 

unit vector, along the 8 = 0 axis in spherical co-ordinates 

V•F = (4.11) 

+ ie 2z2 +oo +1 lkllvl~dOdk·2TI 
lvld.E/dx = { (_1 

2TI 2 
E(~,w=ki:fv) 

(4.12) 

1 dE/dx ie2z2 +oo 
!+1 1 = b lkldk i=i d)l p p 1T -1 E q~,w=ki}v) 

(4,13) 

Since the ReE(k,w) is even in w, the real part of the integrand 

is an odd function of ~ and gives zero. 

1 
p d:C/dX = (4.14) 

If the classical form of the dielectric function is used, an 

upper cu.tbff wavenumber k 
c 

has to be introduced into (4. 14 ) , approxi-

mately at the de Broglie wavelehgth. Bether' s suggestion is use.d 

where -1 -y'/11 
k e 

c = ---
mvt 

(4.15) 
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112 
where y = 0.5772 and vt = ( 2kT ) is the thermal 

me 
r electron velocity. The use ot this upper cut-off can be 

avoided by using the quantum form of the dielectric function 

(see section 4.2 ). Quantum corrections are only important 

for large wavenumbers, where Iei= 1 and shielding is of 

little importance. In the code a simplified quantum form, 

for nön-collisional plasmas is used, 

Im -1 Im s E = 
:y; 

( + (il11k9 4TI ne 2 -(mg = exp 
1l.k 3 v m2 v2 

t t 

X ~p ilkg -j (4.16) 
ktt' 

where q = jjv - (-tlkl2me) I 1 I.This function is matched to Im E 
-1 

obtained from ( 4. 11 9 ) , with y = vlkv = t 
o, where v is 

the collision frequency, at an intermediate value of k where 

lsl = 1 and both classical and quantum forms of the dielectric 

function are valid. Values of 1lp dEidx obtained by this 

procedure and by the use of the non-collisional version 

(v = 0) of ( 4. 119) for a 19.0 glcm3 gold target are practically 

equal (to within 0.2%) I. 1 1, which supports the cut-off 

approximation. In view of this good agreement between the 

quantum and classical cut~o~f versions, the effect of plasma 

collisions is calculated only in the classical version of 

using Bethe's cut-off at kc· 

The dielectric function in ( 4.14) is evaluated regarding 

the plasma ions just as positive charges with no polarizability. 

In calculating the free electron contribution to the stopping 

power it should be borne in mind that the electron density is 

such that in the high density case the plasma is quite collisional 

I 1 I. The electron collision time is given by I 1 /, 

T = 3m e 

112 312 112 - 1 

(kT) [4(2TI) e
4
Zn1nAJ ( 4. 1 7 

where m and n are the electron mass and nurober density, Z is 
e 2 

the ion charge, and lnA is the Coulomb logarithm. For a 19.0 gmlcm 
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gold plasma at 1 KeV, this yields a collision time of 

1.8•10-17 secs which is not long compared with the inverse 
-1 - -17 plasma frequency w = 10 sec. 
Pi 

In the code a simple relaxation model to describe the effect 

of collisions is used (see section for derivation) for the 

dielectric function in the classical form /4.4 /. 
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4.2 The calculation and properties of the dielectric tunction for 

an interacting electron gas. · 

4.2.1 The Hartree-Fock rnethod and the Randern Phase approxirnation. 

The derivation is probably best carried out using Green's 

function techniques 1441-However in the case of rnany-body 

problerns of this type one can not hope to obtain exact 

solutions of the dynamiaal equations (because there are of 

the order of - 1o23 degree.s of freedorn) and it is necessary 

to develop suitable rnethods of approximation. This can not 

be done purely rnathernatically but has to be guided by the 

judicious use of physical intuition, by extracting the 

irnportant physical behaviour of the. systern. These can be 

forrnulated in terrns of the equation of rnotion approach 1451, 
in which one devises,approxirnations for breaking off the 

hierarchy of equations, or one can use the perturbation theory 

for the Green's function in the rnany-body systern and obtain 

approxirnate solutions by surnrning appropriate (dominant) 

subsets of diagrarns I 46 1. 
In two special lirniting cases it turns out that one can 

obtain asyrnptotically exact solutions of rnany body problerns 

by the use of approxirnation rnethods of the above type. These 

are: the problern of a systern of fermians interacting through 

long range Coulomb forces in the lirnit of high density of the 

partiales, and the solution of the superconducting state of 

a systern of fermians interacting through weakly attracti-i.re 

forces, the so called "pairing Harniltonian" rnodel. In the 

Coulomb case a particular type of approxirnation, the "randorn 

phase approxirnation" does the ttick, while in the superconducting 

case a particular Version of the Hartree-Fock approxirnation, the 

so called B.C.S. approxirnation I 47 I provides a solution. 

In the Hartree-Fock approxirnation to the problern of the 

interacting electron gas 144 I one does not obtain an adequate 

account of the properties of the electron gas because it 

neglects screening. The next level of approxirnation is the 

randorn phase approxirnation which provides a rnore satisfactory 
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description in some cases./48/. 

It turns out that for an electron gas of high density 

(measured in units of the ratio of the interparticle spacing 

to the Bohr radius), the effects of the potential energy 

become relatively weak, ceropared to the kinetic energy, as 

the density is increased. 

If the gas has N particles in a volume V , and let 
V r

8 
be the radius of a sphere of volume :N , r

8 
measured in 

units of the Bohr radius 

a = 
0 

Put 1i. = 1 , 

4 ( - ) 3 --TI r a 
3 s 0 

= 

= 

The Fermi momentum pf is 

me 2 

V 
N 

The uni t of energy is the Rydberg E = e 2 /2a 
0 0 

x'::: x /-- - a r 
0 s 

p 1 = ä r p 
- 0 s 

and the Hamiltonian in configuration space is, 

2 
1 

2 
H = I P·; + I e/" -1· 2 .t),.. ' 

i 2m 
iij -lJ 

E .. 2 1 0 { I + I } = Pi r ; 

r2 i s ifj x .. 
s -lJ 

(4.18) 

(4.19) 

( 4 • 20) 

(4.21) 

(4.22) 

and i t is seen that the secend term.: is of higher order in r 
s 

than the first. Thus as the density is increased (r + 0) the 
s 
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effects of the potential energy become relatively weak. 

In the nön-interacting case (except for inclusion of 

the Pauli principle) the energy per particle is 3/5 EF 

(where EF is the Fermi energy. In the Hartree-Fock approxi­

mation the energy of the individual particle levels 

(E = p 2/2m originally) becomes, p 

HF 
= E P + V ( 'l =0) l: fg 1 cr 1 

p I cr I 

- L V (p I -r) fr I cr 
pl 

where fp~ is the Fermi-Dirac function of spin state cr,, and 

V(q) is-the Fourier transform of the Coulomb potential. 

The first correction term is then, 

(4.24) 

and represents the infinite self energy of an electron charge 

distribution of uniform density N/V. This term can be cancelled 

out by the introduction of a uniform positive background charge, 

of the same density; this may be regarded as simulating the static 

ionic lattice in real met:als. 
ex The last term in ( 4.23) is the exchange term E • It is 
p 

easily evaluated for the case of an unscreened Coulomb potential 

V (x) = e 2 I 1 x 1 , where the Fourier transform is, 

1 4ne 2 
V(q) = (4.25) 

V 
1~1 2 

and replacing the sum over pl by an integral over the Fermi 

sphere, we obtain the well known result, 
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-4Tie 2 

(2TI) 3 
J ~~· 

IP l<pp I.R-E I I 2 

2 2 2 
-e P p - P Pp + P 

· ·· F { 1 + ~F __ log I p I } 
TI 2ppF Pp -

where p is the Fermi momentum. 
F 

Then the total exchange contribution is 

(4.26) 

(4.27) 

On performing the integral over p this reduces to an energy 

per particle of, (in the same dimensionless units, ~ = 1), 

= 

Since 
3/5EF = 

= 

the total energy 

ETOT/ = N 

2 
-3e PF 

4TI 
= 

2/3 
1 

3/5.\ 
9;) 

r2a 2 
s 0 

3/5 
)2/3 (2.2!_ 

4 Eo 

per particle is, 

2/3-
3 (9TI) Eo 

4 ? 5 s 

1 
2m 

1 
r2 

s 

E 
0 

r s 

~( 2;) 

(4.28) 

(4.29) 

(4.30) 

2/3-
E 

0 (4.31) 
r s 
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In the lirnit as r + 0 (high density lirnit) it is clear s 
that the kinetic energy (1st terrn) dorninates the second 

terrn, the potential energy. The secönd terrn is negative 

because the exclusion principle tends to keep apart particles 

of parallel spin and thus reduces the effect of the Coulomb 

potential. However /4.31/ still overestirnates the repulsive 

energy between particles of opposite spin. This is because 

screening has not been included, so that the effect on the bare 

Coul:Ornb potential has too long a range /44/. 

The next ,level of apprcxirnation is the randorn phase 

approxirnation which provides a rnore satisfactory description 

of the interacting electron gas. In the high density lirnit 

this rnay be shown to lead to the next significant correction 

to the ground state energy after the exchange terrn /49/. 

The R.P.A. was first introduced by Bohrn & Pines /48/~ 

in a heuristib rnanner. They analyzed uhe possible dynarnical 

(legrees of freedorn of an interacting electron gas and argued 

that rnost of the Coulornb correlation will be absorbed in a 

plasrna rnode of collective oscillation which, because of its 

high zero point energy, will not be excited at low ternperatures. 

The rernaining rnodes can be regarded as electrons, rnoving in a 

weak screened potential, which rnay be described to a good 

approxirnation by an independent particle rnodel. 

One can obtain the dielectric function by studying the 

response of the electron gas to an applied external charge 

density p t(x,t). The interaction between the external charge ex -
and the electron gas is given by Harniltonian, 

(4.32) 

where p(~) is the charge density operator for the electrons. 

As a result of the perturbation one obtains a non-zero induced 

charge density Pind(x,t). This is calculated using linear res­

ponse theory /50/. The dielectric function is then introduced 
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by the definition, 

<ptot (q,w)> = P t(q,w) + <p. d(q,w)> (4.33) 

= 

ex - 1.n _ 

Pext(~,w) 
s (q,w) 

where p(q,w) is th~ Fourier transform with respect to 

space and time of p (~, t) . Thi s assumes that p ext is a weak 

perturbation, so that only the linear term in p t needs ex 
tobe a:-etained. We thus obtain an expression for s(q,w) in 

which the Coulomb interactions are still formally included 

(4.34) 

to all orders. The assumption that the linear expansion is 

possible implies a stability in the system, so that the true 

ground state of the interacting system evolves continuously 

from the ground state bf the non-interacting gas as the Coulomb 

interaction increases from zero to its full value. Although 

the complete evaluation of the expression for s(~,w) of 

course requires the exact solution of the many-body problem, 

the formulation in terms of the dielectric response function 

is useful in that it leads in a natural way to approximations 

suggested by physical considerations. This formulation also 

focusses attention on the roots of the equation, 

s (q,w) = o. (4.35) 

When this condition is satisfied, we see from (4.34) that 

PTOT can be non-zero when pext = 0. The free modes (for instance 

plasmons)of oscillation of the.electron gas thus correspond to 

the frequencies and wave numbers satisfying(4.35 ) • 

4.2.2 Linearresponse calculation of the dielectric function 

(4.36) 

where H is the exact Hamiltonian of the interacting gas. 
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One has to evaluate the expectation value 

< p IND (~I t) > = < E ( t) I p ( ~) I E ( t) > (4.37) 

where jE(t)> is the state of the system at timet. 

jE(t)> has evolved in time according to both H and H t from ex 
the initial energy state jE>, which is taken to be the ground 

state of H. 

To first order in H t one obtains, ex 

(4.38) 

where in the time development of H t(t),p(x,t) refers only to ex 
the development according to H. The value of H t is given in · ·ex 
( 4.32 ), and thus, 

+oo 

< PIND(x,t) > =f dt' fd
3

1f, fd 3~"!C(~-~,t-t') 
-rJ 

V(x'-x 1 1
) p (x' 1 ,t) 

- - ext-

whe-re, 

K(x-~', t-t') = -ie(t-t')<[p(~,t),p(lf',t')] > 

This result is an example of a Kubo formula. 

Introducing a Fourier transform in space, 

+oo 
< piND(~,t)> = f dt'K(~,t-t')V(~)pext(~,t) 

-oo 

where 

K(q,t-t') =-ie(t-t')< [P(1,t), p(-g_,t')J > 

and 
P ( q) = l'. a + p+q a 

p - - p 

(4.39) 

( 4. 40) 

(4.41) 

(4.42) 

(4.43) 

is the Fourier transform of the charge density operator, and 

where a is a second quantized destruction operator. 
p -
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for momentum state p /46/. Next taking the Fou~ier 

Transform in time, we get 

(4.44) 

in which K (<;i1 W) is the time Fourier transform of ( 4. 42 ) . 

Finally from ( 4. 44 ) and ( 4. 34 ) we obtain the dielectric 

response function as, 

-1 
E (q,w) = 1+ V(q)K('l,,W) (4.45) 

The next step is to evaluate, 

(4.46) 

This is a so called two particle Green's function. 

In order to calculate this function, Feynman-Dyson perturbation 

theory /46,44/ as generalized byMatsubarato treat finite 

temperature problems can be used. In this method the classes 

of diagrams which are of leading order for small r (high 
s 

density) are picked out and summed. One consiaP.rs instead of 

the retarded function, the time erdered form, 

(4.47) 

The diagrammatic expansion of KT(q,w) can be obtained by applying 

rules /46/ derived by perturbation expansion. In the interaction 

representation one has, 

KT(q,t-t') = -i< <P 0 I~[p(q,t) p(-q,t')SJ 

< <PolS I <Po > 

+oo 
.... I" 

where S = U(oo, -oo) = T exp -i f dt,H, (t,) 
-oo 

A 

<P > 
0 

and T is a: time erdering operator. S is. ':o be expanded in 

(4.48) 

(4.49) 
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powers of V(q). It follows from the rules for calculating 

diagrams in momentum space that the zero-order term in the 

expansion of KT(q,w) is, 

P (q,w) = ( 4 . 50) 
0 -

evaluated for fixed q = (q,w). The complete perturbation 

series includes all the higher-arder diagrams associated 

with the diagrams shown above and may be rapresented as, 

+ 0 + ek. (4.51) 

where each bubble carries a net 4-momentum q. 

The series can be summed formally by introducing the 

ireducible polarization propagator P(~,w), defined as the sum 

of all the diagrams in (4.51 ) which can not be divided into 

two diagrams connected only by a single interaction line carrying 

a momentum q. In terms of P the series can be arranged as, 

KT(q,w) = P + PvP + PvPvP + ----­
= p + PVKT 

so that, 

P(<;I!W) T 
K (q,w) = 

1-P(q,w)V(q) 

(4.52) 

(4.53) 
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If we consider this equation as apower series in e 2 , it may 

be seen that for small q the leading terms in each order will 

be thcbse in which··V(q) occurs to a maximum power. This is 

because the singularity 12 will be strengest in such terms. 
q . 

Diagrams in which the Coulumb interaction occurs with a 

momentum different from q, the input momentum for the response, 

will be less singular as q + 0. This suggests that the leading 

corrections in the q + 0 limit will be obtained by including 

only the ring diagrams of the form of (4.50). Theseare 

summed exactly by, 

0 + + ..... + 
(4.54) 

These diagrams give the leading contribution on the q + 0 limit if 

P(q,w) is replaced by hhe unperturbed electron hole pro-

pagator P 
0 

(:ifw) . This sum is usually referred to as 

the R.P.A. (random phase approximation) 

(4.55)' 

0 
where G (~,w) is the free electron hole propagator .. 

4 
= -2i J ~p 

( 2 TI )
4 

-1 -1 
{p0 + w-E:p+q + inp+q} · {p 0 -ep + inp} 

(4.56) 

Here p , w are the 4-components of the 4-vector momenta, p, -o. 
np is an infinitessimalwhich is positive for !PJ>pF and 

negative for JpJ<pF. 
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0 
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d3 + 1 i -1 
P (SI,w) = 2 f _P f-f {(w-w (p)+in)- - {w-w (p)-in} } (4.57) 

0 ( 2 '1T ) 3 p :g+~ <I - 9 -

where w (E) = E + - E . 
SI 12 SI 12 

By using the relation between K(~,w) and KT(q,w) it can 

be shown r; 45, 46/ 

K (q,w) = 

that, 

PR(q,w) 
0 -

1-PR(q,w)V(q) 
0- -

where fE is the Fermi-Dirac Function. 

(4.58) 

(4.59) 

(4.60) 

where ß = (kT)- 1 , k is Boltzmann's constant, T is the temperature, 

and ~ is the chemical potential. 

From equations (4.45 ) and (4.58 

-1 
E -

1 ( q, w) = { 1 - P ~ ( q) } 
0 -

where E(~,w) is the dielectric function. 
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4.2.3 The evaluation of the dielectric function at zero and 

finite temperatures. Properties of the plasma, screening 

and plasmons in the dielectric function formalism. 

The dielectric function contains in it all the properties 

of the medium through which the ion moves and with which it 

interacts. In order to understand the physics of the slowing 

down formula used in the code for free electrons one has to 

understand the physics contained in the dielectric function. 

·rhe simple theory of energy loss from ions treats the problern 

via Rutherford scatterinq a~o uses a maximum impact parameter 

to avoid a divergence due to the long range nature ot the 

force. However in reality all ions are screened by electrons 

and all electrons are screened (surrounded to a greater 

or lesser extent) by ions. Ions and electrons move such that 

this screening is maintained. This kind of correlated motion 

is described by the dielectric function. The function p R(q,w) 
0 -

can be determined analytically by doing the necessary 

integrals. 

If one introduces the variables for T = o, 

= l_gl 2 2 
z w e 

' u = X = ni'l.VF qVF 
, 

2P 
F 

( 4.6 2) 

where h2 2 
PF 

1/2 v2 EF = = m 
2m .F (4.63) 

is the Fermi energy, m is the electron mass, and VF is the 

Fermi vel0city then,/12/ 

2 
P

0
(u,z) = 1 +~2 { f

1
(u,z) + if 2 (u,"z)} 

z 

f
1 

(u,z) 1 1 ( = 2 + sz 1- (z-u)2 log I z-u+1 
z-u-1 

1 ( - 2 I + äz 1 - (z+u) log 
z+u+1 
z+u-1 

(4.64) 

(4.65 ) 
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The imaginary part is given by, 

__ '[u lz+ul < 1 
2 

f 2 (u,z) = n/8z( 1 - (z-u) 2 ) lz-ul < 1 < lz+ul 

0 lz-ul > 1 
(4·.66) 

At finite temperatures the integrals are much harder to carry 

out. The exact value of the imaginary part was evaluated areund 

1963 and is also given by Leng I 5 /. Leng (1974) developed 

a series expansion method for the real part using Laplace 

transform techniques u~ing a se~ies expansion for the Fermi 

function. 

Deutsch et al. 1 52 /, 1978 also developed series methods and 

succeeded in collecting all the terms of the real part together 

in a closed series expansion. The results are given below. Putting, 

P R (q,w) -
0 

0 
X ( <J..t w, ß) (4.67) 

where ß = (kT)- 1 , T is the temperature, we make w complex, i.e. -
w = Z. Physical values are then obtained by letting ~ + w + in 

where n is arbi trarily smaJJl. Leng' s method of evaluation is 

then based on the formula for the expansion of the Fermi­

Dirac function, 

f(E,ß) = (exp (ß(E-l-1))+1)- 1 

1 c+ioo 
= 2ni f ds 

c-ioo 

where s is a complex variable and 0 <c < 1. 

( 4.68) 

This can be seen to be true by closing the contour to the left 

or right depending on whether l1 is> 0 or < 0, and picking up 

the poles of n/sinns within the closed contour, using Chauchy•s 

theorem, and summing the resulting terms. 

The imaginary part can also be evaluated by simpler means 

namely by int~gration by parts and can be expressed as, 
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1 + expß
1

x 2 

1 + expß
1

x
1 

( 4.69 

where x 1 = ~ 1 + y 1 , x 2 = ~1 + y 2 ,~1 =2m~ (ß), ß
1 

= ß/2m, 

y == _ ( 2mw+q 
2
)

2 

1 2q 
2 

and ~ == 2!!.... ~, n being the electron densi ty. o n qTI-

(4.70) 

The next term 1n the expansion of the real part, which is a 

term of order T 2 is,given by, /5/ 

(4.71) 

where B1 is the first Bernoulli nurober . Further terms can 

be obtained in a straight forward way. 

Gouedard and Deutsch /52 I have evaluated the real part 

also using contour integral techniques. This treatment leads to 

a convergent real part series. 

The result is 

-ar p oo o s F ... 2( 
Re X ( q , w, ß) = --- f d p f { e: ) 

Tize2 o p 

(X) b 
+ TIZ' I { n 

n=O r 2 
n· 

where Z'= kT/s , 
F 

_1_ T an - 1 ( + , l n 
[ 

P +a) 

2<jl' bn · 

V' J 'J' , 
I P + = 2 ~, + <P 2 1 P- = 2 ~~ - <P '/ 2 o 

(4.72) 

EF 
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The poles of f(E ) are located at, 
p 

k = a + ib n n n 
1/2 

a = 1- { y + (y 2 + (2n+1) 2 rr 7 z~2, 
n /2 

n = -oo •••••• +oo 

1/2 

} 

ä = (9~ )-1/3 

and r is the usual dimensionless-interelectronic distance. 
s 

(4.73) 

(4.74) 

(4.75) 

Let us con~ider the physical interpretation of the dielectric 

function as this proves important in understanding the physics 

of the slowing down of ions in matter, especially the difference 

between the dielectric approach and the classical Chandrasekhar 

theory I 5 I as for instance given in Spitzer I 53 /. 

In the static w = 0 limit, E (q,O) is purely real, with 
2 2 2 p 

V(q) = 4rre /q and E: = p /2m we have on replacing the sum by 
p 

an integration, 

-1 

(4~76) 

where the region of integration R is the volurne inside the sphere 

!PI = Pp' which is exterior to the sphere jp+gj= Pp· Then 

G+ 4me 2 u(q/2pF~ 
-1 

-1 (4.77) E (q,O) = -p 
rrq2 F 

-1 

[1 + 4 
113 u(X~ (4.78) = (9rr 2 ) rs x2 
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r was defined above 1 and s 

_ 1 { 1 -2 I 1 +x I } u(x) =- 1 + --(1-x )log -~ 2 2x 1-x 4.79 ) 

The function u (X) decreases from 1 to 0 as x goes from zero to 

infinity. Thus in the long wavelength limit as q + 0 1 we have 

u = 1, and 

E(q,O) = 1 + 1: 2 jq2 

= (li )1/3 r 1/2 
3TI2 s PF 4.80) 

This is :just the result obtained in the semiclassical Thomas-Fermi 

approximation. The function E- 1 (x) is shown in Fig.1o·for ~/2p = 
F 

= 1 (rs = 6) and ceropared with the Thomas-Fermi result. 

A more correct t.reatment of this problern has been given by 

Gouedard & Deutsch I 52 /. They sh~w that the screening charge 

has at all temperatures a Thomas-Fermi like contribution and 

a Friedel type oscillatory behaviour. At any temperature the dominant 

term will be Friedel-like when b < p or Thomas-Fermi like for 
0 0 

b
0 

> p
0 

where 

är 
s 

TI 

with 2-
TI a

0 4 2 1/2 
TI" me Pp ) A,. 

1 
:=; 

In the T + 0 limi t, 

, 3 

op(r)T.F 
Z epF 

= 
TI 

as T + 0 
1+ 2 a 

g (ipo) 
......- 0 Po 

2 +--
4po 

b are defined above. 
0 

1 go = 2 2 
16me Pp 

2 
Po 

exp(-2p
0
r)g(ip

0
) rg 

0 

2a p 
tan -1 0 0 

r2 2 - Po 0 

a ' 0 

(4.81) 

( 4.82) 

(4.83) 

(4.84) 

where a and 
0 
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Fig. 10: Static dielectric constant in the r. p. a. 

[ The broken curve is the Thomas- Fermi formula 1 
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Friedel 
op(r) 

= 
, 3 

Z.epF 
4.85 

1T 

The relative importance of both contributions is measured by, 

Friedel 
of9(r) 

. TF 

8 p (r) 

(4.86) 

which is an increasing function of r (p 2 ) . . When r + 0, the s 0 s 
high density limit,it is clear that the Thomas-Fermi screening 

dominates. As r increases the Friedel screening becomes more s 
and more important and a Fermi-liquid type behaviour with long 

range order becomes dominant. 

One can use the static dielectric function E(q,o) to define 

an effective potential V(q)/E(q,o). If the above form of E(4.80)is 

assumed to be valid, then one obtains an effective potential 

4Tie 2/(q
2

+1 2 ) which is the Fourier transform of the exponentially 

screened Coulomb potential e-Ax/x in real space, with a constant 

screening length A. The more exact formula (4.78 shows that 

the screening length in fact increases with q. Thus the electrons 

are less effective in screening the potential components at 

shorter wavelengths. Note however that the q = 0 divergence is 
-1 screened out, which means than any divergence due to the r long 

range part of the Coulomb potential vanishes. 

The physical excitation energies of the system are determined 

by the condition, 

which implies, 

At T = O, 

E(q,w) = 0 

-1 
P (q,w) =I {(w-w (p)+in) 

0 - q -p<p -- -F 
I E+g I >EF 

( 4.87 ) 

(4.88) 

-1 
- (w+w (p)+inF } 

Si -

( 4. 89 ) 
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This is the dispersion relation for the eigenfrequencies w(q) 

of the systern. The function P (q w) has poles at the unpertur­
o -

bed frequencies + w (p), and if one plots V(q)P (q,w) against 
- q - - 0 -

w (for fixed q) one-obtains curves as shown in Fig. 11. 

The roots of ( 4.87 ) are given by the intersections of these 

curv~s with unity. There is only a srnall shift frorn the un­

perturbed frequencies of the particle-hole states. The fi~ure 

shows however that an additional root w = wp~ has split off 

frorn the top of the continuurn. This is the collective plasrnon 

rnode. If one expands P
0

(q,w)in powers of q, 

P
0

(q,w) = 2/ 2 q rnw 

2. 4 
= ____,.9._n~2- + 0 ( q ) 

rnw 

whe-re n is the electron densi ty. 
2 2 Putting V(q) = 4Tie /q , for srnall q, 

Therefore 

-1 

E -1 (qw) = t;- _1Tin~2) 
\' .rnw 

1 

wp~ =( 4~~e2J 2 

( 4. 90) 

(4.91} 

(4.92) 

(4.93) 

which is the classical plasrna frequency. One can now rnap out 

the spectrurn of poles Fig. 12 of s- 1 (q,w) in the w-q plane. For 

each value of q there will be a continuurn of poles frorn w=O 

up to qVF, followed by a discrete pole at w = wPl" The various 

rnodes all contribute a 8 function or with darnping a Lorentzian 

to Irns- 1 (q w). It is this function that appears on the energy loss 

forrnula. This forrnula is then an average ower the various ways 

in which the systern can take up energy ~w. 
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I 

w-

Fig. 11: Eigenfrequencies of electron gas 1n r. p. a. 

q---

Fig. 12: The spectrum of pol es of e:-1 ( q, w) for the 
Coulomb gas 
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4.3 Dielectric function theory in the computer code GORGON 

4.3.1 The Dielectric function method for non-degenerate 

electrons. 

The basic formula for the stopping power of free electrons 

used in the code is, 

1 dE 
- · ldx = p 

( 4.94) 

The original version of the code I 1,2 I assumes that kT > sF, 

ie that the free electrons are non-degenerate, or in other words 

that the de Broglie wavelength is less than the interparticle 

spacing. Now from ( 4.61), 

-1 0 - V(q)P
0

(q,w)) 
-1 

t.: (q,w) = (4.95 

f(t.:p+g:) - f(t.: ) 
P

0
(q,w) = I p (4.96 

p € .· - € - w +in p+q p 

The expression is valid for both degenerate and non-degenerate 

systems. If one takes the classical limit of (4.~7 ) one can 

assume that ~ + O, ie that t.:p+q + t.:p. or that q + 0. 
E d' ' f -, - ' - ' ~ xpan 1ng 1n powers o q., neg_ectlng terms 1n q , 

of g. 

) 

6E 
P

0
(q,w) = l: ( 4.97 ) 

p ( 2m + g:·p - w + in m 

d3 E 0 g oflot.: 
(27T}3. = J E 

(~·I:Im - w + in ) 
(4.98 
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s(q,w) = 1 + 1 
(w-g .. y+in) SI· --ov (4.99) 

where f(y) is now the Maxwell-Boltzmann distribution. 

4.3.2 The linearized Boltzmann-Vlasov equation 

This formula can also be derived using the linearized 

Boltzmann-Vlasov equation 

V • + 
of 

e E • __ o_= 
m - ov 

oF ) 
ot 

COLL 
( 4. 100 

where f {v) is :the time independent equilibrium distribution 

and f 1 (E,y,t) represents a small perturbation. If the Coulomb 

interaction is weak compared to the Kinetic energy collisions 

may be i.gnored. If one further assumes that 

3/2 2 
.f (;v)::::( ~) exp(-mv /2kT) 

0 2nkT 
(4.101) 

at the temperature T, then 

s. (q, w) (4.102) 

w .; 2kT 
X = vt = qvt m (4.103) 

2 
t2 

2 
2 -x -x 

<jl(x) = -2x (1-2xe Jx e dt - i ./nxe 
0 

( 4.104) 

It is often more useful to express the value of the dielectric 

coefficient given above in terms of the plasma dispersion function 

Z{~). The values of this function are calculated in the code and 

are tabulated elsewhere I 54/. 
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It is defined as f6llows where ~ is complex, 

+ro -t2 

= f _e __ dt 
Im~ < 0 

(X) (t-0 

+oo -t2 -~2 
P.P.f e = - ine Iml; = 0 

-ro (t-~) 

+ro -t2 2 
J e i2ne-~ Im/; > 0. = -- -
-ro (t-1;:) 

and Z ' ( ~) = dZ = -2 { 1 + r; z ( r;) } 

' 

Then E(q,w) = 1 -(w 2
1
1 2)x2z•(x), <fl{x) = x

2
z•(x) 

p w 
where x is ~Pftned above. 

(4.105) 

(4.106) 

(4.107) 

( •L 108) 

(4.109) 

4.4 ~he calculation of the dielectric function when collisions 

are· :tncludetr.""~Theory witt1- cerilisiens- in -the code. 

One·way to allow fbr collsions is th~ough the full Böiztmann 

collision integral (0r its equivalent for Coulomb encounters). 

To carry this through succesfullyis however very difficult. 

Also such a perturbation expansion is not necessarily possible 

because if the j nteractions become 'very str0ng and the pc.tential 

energy of the plasma is greater or of the order of the kinetic 

energy,then there does not exist a small parameter in whibh to 

expand, and .the perturbation series will diverge. This situation is 

well known for instance in the theory of fluids I 55 I and requires 

a new approach not based on the non-interacting gas. 

A simple approach to treating collisions is the relaxation 

model. 

oF ) 
ot COLL 

= - \! (v) (F-f0 } 

(4.110) 

with ~ = f + f and where v(v) is a phenomenalogical collision 
0 1 

frequency which may or may not be a function of the particle speed. 
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A collision term of this type forces the dd.stribution function 

to relax upon each collision to the average distribution. 

As a resu~t this method does not conserve particles at every 

position and each instant of time, but it conserves particles 

only in an averaged sense. A better method is one in which the 

collision term is artificially chosen so as to give precise 

particle conservation I 56 /. 

oF' ) = -v (v) { F - (4.111) 
ot COLL 

When v. is independent of veloci ty, this becomes, 

oF 
ot} =- v{f1- f 

COLL 
( 4.112) 

Inserting this expression in the R.H.S. of the Boltzmann-Vlasov 

equation and sol~ing as before using Fourier transform techniques, 

one obtains for E(q,w), 

21r 
c (q,w) = 1 + :~l ~~ 

q·of(y)/ 0:1 
~-~ ·y) ~i\>-J 

X ~ + iv 
f __,.;.· .... f...;;~ (:.~ ...... ) d ..... ~ 3....;;:Y:;;;;.__·J - 1 

(w-q.y)-iv 

E (q,w) 2 = 1- w 1 ; 2 8(x, iy) 
p w 

y == 

8 = -2x
2 

[1 + xZ(lJ) J 
1+iyZ(0 

s = x+iy. 

(4.113) 

(4. 11 4 ) 

(4.115) 

(4.116) 

(4. 117 
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If one uses the relaxation model then 

(4.118 

and 
E(q,w) =~+2x2 (1+xZ(~)lw2 2 ~ ~ pl/w 

(4 • 11 9 

This is the dielectric function used in the code, with the 

option that the collisions can be ignored alltogether if so 

desired. 

4.5 Energy loss using the Thomas-Fermi model and the R.P.A. 

dielectric function method. 

In the present version of the code the energy loss for 

bound and free electrons are calculated separately. The dielectric 

function theory is used to calculate the contribution from the free 

electrons and the Bethe theory is used to calculate the c6ntribution 

from thöse electrons which are not ionized. By use of the Thomas­

Fermi theory of the atom it is possible to calculate dE/dx totally 

wi'thin the dielectric treatment I 11 /. That this can be done is 

easily realised if one sees that in the T-F-model the electrons are 

distributed within the atomic potential according to Fermi statistics. 

Therefore one can use the dielectric function (4.61) for such a system 

for each set of elec~rons at a given radiu~ and average over the 

electron density. 

dE 
dx = 

N.L 
( 4. 1 20 ) 

wherezeff- is thecurrent charge on the ions, v is its velocity, 

m is the electron mass and N is the ion nurober density in the 

target plasma. L is the stopping nurober per target atom. The 

important unknown quantities are Z and L. 

In order to calculate the stopping nurober per atom, L t a om 
from the Thomas Fermi model one can use the local-density 

approximation. 

L = (4.121) 
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In this equation L
0

(n,T,v
0

) is the stopping power per electron 

in a uniform electron gas having density n, temperature T, where 

the velocity of the ion is v • The value of L can be calculated 
0 0 

frrom the dielectric function for a degenerate electron gas as 

given in ( 4.61 ). The electron density n(r) is calculated within 

the Thomas Fermi model or the Thomas Fermi Dirac model. The 

factor in brackets in (4.121 ) is a correction for curved orbits 

followed by heavy i6ns traversing the volume of the target, where 

v 1 (R) is the pair potential and E is the energy of relative motion 

of projectile and target ions. It is suggested to use the Bohr 

minimum impact parameter where appropriate i.e. for heavy ions. 

However this is only a göod idea if one has a good theory of the 

effective charge which together with the above theory fits the 

cold experimental data. The empirical effective charge formulae 

are usually calculated using the Bethe theory so here it would 

yield wrong results if the Bohr minimum impact parameter is used 
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5 · The stopping power of· bo:unu electrons :· 

The Bethe theory· 

5.1 Calculation of scattering cross sections of electrons 

and ions by atoms. 

The theory is here developed for fast electrons scattering 

off atoms I 171, and was first given by Bethe 117,181. The 

necessary modifications needed to apply the theory to ions is 

then given and the much used Bethe formula is finally derived. 

The Bethe treatment is the first quantum mechanical derivation 

of the stopping power of charged partiales in matter. It differs 

in significant ways from the c·lassical Bohr· theory 115, 161, and 

this difference was clarified by Bloch who gave a modified 1201 
quantum treatment which agrees with both formulae in their 

respective domains of application. 

Inelastic collisions between fast electrons (ions) and atoms 

(nucleus plus atomic electrons) can be considered by means of 

the Born approximation. The condition for the Born approximation 

to apply is that the velocity of the incident electron should 

be large comparec'. to that of the atomic electrons-

The electron may suffer an elastic or inelastic collision 

with the electrons in the atom. An inelastic collision is 

accompanied by a change in the internal state of the atom. 

The atom may go from its normal state into an excited state 

of the discrete or continuous spectrum, in the latter case 

the atom becomes ionized. The centre of mass system in this case 

is one in which the atom is at rest. 

Let Q and 2' be the momenta of the incident electron 

before and after the colli"Sion, and E· and E the corres-o n 
ponding energies of the atom. 

The transition probability is then given by, where Dirac 

notation is used, 

2n 
dw(n) = 11. 

2 I <E 'p i I u I E , p> I n- o-

,2 2 
x o( p -p + E - E ) dp'dp'dp' 

2m n o x y z 
e 

( 5 • 1 ) 
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where, 2 
U(r)= Ze I 

r 

:.b 
- I ( 5. 2) 

a=1 

is the interaction potential, ~is the nunilier of bound 

electrons (we are also considertng the case where the atbm 

is partially ionized), r is the radius vector of the incident 

electron and r those of the bound electrons, m is the mass -a e 
of the electron, and the origin is at the nucleus. The wave 

functions of the electrons are, 

where ~ (r) is normalized to unit current density. 
p 

( 5 • 3) 

( 5 • 4) 

Then dw\n) is the effective cross section do for the collision 

i.e. the probability of an electron with momentum p scattering 

into 
3 -

d p' areund p' whi le the atom goes from state 0 to s tate n. -
Integration of ( 5.1) over the absolute magnitudelp' I 

gives 

da(n) = 2 n~p' I < p' ,n lulr,o >1 2 da' ( 5. 5) 

da' = 2nSin8'd8'. 

where IE' I is determined from the law of conservation of energy: 

= E - E n o 

Using the wave functions in ( 5.3 ) , and ( 5.4 ) , one 

obtains, 

2 m 
dcr(n) = 

-1lq = E. - p I 

( 5. 6) 

( 5. 7) 

where dcr = da',~o and ~n are the atomic wave functions, dT is an 

element of configuration space of the z electrons in the atom 
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= dV 
1 

, dV 
2 
•••• dV- • 

The functio&s ~ and ~ are orthogonal, so the term in U o n 
involving the nuclear potential vanishes identically on 

integratiop over T, and one obtains, 

2 m. 
da(n) = -

Carrying out the integration over V by noting that 1/r is 

a solution of Poisson's equation, one obtains, 

IJI -iq·r e -a 
a 

( 5 • 8) 

( 5. 9) 

where ~~ = p'/~ and ~ = pj~. This formula gives the probability 

of a collision in which an electron is scattered into a element 

of solid angle da and the atom enters the nth excited state. 

The vector -hq is the momentum given to the atom in the collision. 

Since 

where e is the scattering angle, 

for given k and k', 

and, 

da(n) 

qdq = kk'sinede = ( kk') da 
27T 

( 

2 2 

= Sn Rv) ~ I JI 
q3 a 

-iq·r e - -a 

(5.10) 

(5.11) 

* ,,, ,,, dT I 2 
'~'n'~'o 

The most important collisionsare thöse which cause scattering 

through small angles (8 <<1), with a transfer of energy which 

is small in comparison with the energy E = t mv2 of the incident 

electron (ion) E - E << E. The difference k - k' is in n o 
this case also small (k - k' << k) and 
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= flv(k- k') (5.13) 

Since e is small, from (6.10) we hav~, 

( 5.14) 

( 5.15) 

The minimum value of q is, 

q = (E - E )/~v min n o 
( 5.16) 

In the region of small angles we can further distinguish 

between different regions depending on the relation between 

the small quantities B and v 0 jv where v
0 

is of the order of 

the velocity of an atomic electron, (note in code v > v
0 

always). 

If one considers energy transfers of the order of the energy 

E
0 

of ~he atomic electrons (En - E
0 

~ E 0 ~ mv
0

2
) then for 

(v0 /v) <<0<<1, 

q ';f k8 = (mv /Jft ) e (5.17) 

In this range of angles therefore, q is independent of the 

energy transfer. Fore<< 1Jq may be either lnrge or small in 

comparison to a- 1 (where a is say the Bohr radius). On the 
0 0 

same assumption regarding the energy transfer we have, 

q a ~ 1 . 0 
(5.18) 
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Let us now apply the general formula for dcr(n) (5.12 ) to the 

case of small q (qa
0 

<< 1, i.e. e << v
0
/v). In this case 

one can expand the exponential factors as series of powers 

of q: 

-iq·r 
e --a =1-iq·r + .•.•.. =1-iqxa - -a (5.19) 

where we have chosen a co-ordinate system with the x-axis lies 

along the vector ~· In (5.19) the terms containing I then give 

zero (by orthogonality) and one obtains, 

( 5. 20) 

where d = eix is the x-component of the dipole moment of the x a 
atom. a 

Let us now consider the opposite limiting case of large q 

(qa >> 1). If q is large this means that the atom receives 
0 

a mömentum which is large compared with the original intrinsic 

momentum of the atomic electrons. It is then clear that we 

can consider the atomic electrons to be effectively free, 

and one can consider the collision between the incoming electron 

and the atomic electron as an elastic collison, the latter being 

originally at rest.For large q the integrand contains rapidly 

oscillating factors e-ig·~a and the integral is practically zero 

unless ~ contains similar factors. Such a function ~ corres-n n 
ponds to an ionized atom, with the electron momentum emitt.ed given 

by -hg = E- E'· In this case the incident and final electrons 

may have final velocities which are very similar and so they 

become indistiguishable, Thus in this case the exchange effect 

must be taken into account /19 /. Since we are mainly interested 

in ion scattering we treat this case later when exchange effects 

are not included. 



-71-

5.2 Energy loss of charged particles, scattered by atoms, 

and the Bethe formula. 

The energy loss of a charged particle (into a given 

solid angle), due to collisions aan be expressed as, 

dE (n) = I (E - E ) da n o n ( 5.21 ) 
n 

If the scattering at the various atoms is independent and 

the number of atoms I unit volume is N, then the energy lost 

per unit path length is NdE(~) which is equal to dE/dX 

when integrated over all solid angles. The summation is taken 

over states of both the discrete and continuous spectrum. 

Therefore the general formula for the energy loss of fast 

electrons is, 

(5.22) 

as taken from (5.12). We now exclude from consideration the 
2 region of very small angles and assume that 1 >> 8 >>(v0 /v) . 

Then q is independent of the amount of energy transferred, and 

the sum over n can be calculated without further approximation. 

It can be shown that if f is some operator '(in a .suitable Hilbert . 
space), and f is its time derivative, that /17/, 

1 . + +" = - iK(ff - f f) 2 00 
(5.23) 

where f = (0, f n) and f+ is the adjoint operator to f. 
on 

This theorem can now be applied to the operator, 

Then, 

f = I 
a 

-iq·r e - -a 

f ~ ;~ r (e-i~·EF(~·ya) + (q·~a> e-i~·Ea) 

and the value of ~f,fJ can be calculated as, 

ff+ - f+f = ( -;fl) q 2z 

where Z is the number of electrons in .the atom. 

(5.24) 

(5.25) 

(5.26) 
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and 

dE(r2) = 

where da = 2nSin8d8. 

~;::: 
q 
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(5.27) 

da 

~ 
(5.28) 

The range of applicability of this formula is given by the 

inequality 

2 
(v0 /v) << 8 << 1 or 

We now determine dE(r2), the energy loss for all collisions in 

which the transfer of momentum does not exceed some value q
1 

suchthat v 0 /v << a
0

q
1

,<< v/v
0

• 

E 
n 

(5.30 

where q . = (E - E0)/~v. The integration and summation signs m1n n 
cannot be transposed since q . depends on n. m1n 

Now divide the integration range into two parts, from 

qmin 
v /v 

0 

to q and from q to q 1 where q is some value such that 
0 0 0 

<< q
0

a
0 

<< 1. Then over the whole range of integration from 
q to ("f min '2-1 can use for dan( 5.20). 

( 5.31) 

so that 

( 5.3~) 
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In the range from q
0 

to q
1 

on the other hand, one can first 

sumover ~(since q does not depend on n) which yields (5.28) 

for dE(q) and then on integrating over q we have, 

In order to transform the above expressions one uses the 

summation theoet7em discussed above, using 

f = 1/m I Px 
a a 

Then in this case, 

ff - ff = - itfZ 
m 

where f and f are naturally operators, so that 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

The quantities N are called oscillator strengths for the on 
corresponding transitions. 

Now one definesi the Bethe parameter, by 

log I = I N
0
nlog (E - Eo)/L Non n n n 

(5.37) 

1 I N log (E - E ) := 
z on n o 

(5.38) 
n 

Then 

dE(q ) ( 4nze
4

) 1og(q
0

i:'fv/I) = 0 
mv 2 

. (5.39) 
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Adding this to ( 5.33 ), one has 

4 
dE (q

1
) == ( 4TIZe ( 5. 40 ) 

mv 2 

Only one constant characterising the atom concerned appears 

in this formula. 

Since q~ = mve 1;h, the effective energy lass in scattering 

through all angles G < e
1

, is given by 

2 4 TI z e 4 ( mv e 1) ) log -- ( 5.41) 
mv2 I 

5.3 Energy loss of heavy particles to .atoms. 

The condition for the applicahility of the Born approximation 

to collision between heavy particles and atoms, expressed in 

terms of the velocity of a particle remains the same as for 

electrons, namely 

V >> V 
0 

( 5. 42 ) 

In a system of co-ordinates in which the centDe of mass 

of the atom and the particle is at rest the effective cross 

section is given by, 

da 
n = 12.'1Jfue-i<.I·E * 12 1jJ 1jJ dTdV da 

p n o (5.43.) 

where m is now the reduced mass of the particle and the atom 

and not the electron mass. It is however more convenient to 

consider the collision in a system'of co-ordinates ih which 

the atom is at rest before the collision. The general formula 

for the transition probability for the transition p + p', 

and E
0 

+ En was given as, 

dwn = 2n I u Eop I 2 o (PI 2 - P2) + E - E ) dp I dp I dp' 
~ E p' ~ 2m · n o x y z (5.44) 

n 

for the case bf an electron. In a system of co-ordinates in 

which the atom is at rest before the collision, the argument 



-75-

of the o function which expresses the law of conseTivation 

of energy is of the form, 

= 0 ( 5. 45 ) 

where M is the mass of the incident particle and M that of a 
the atom. The third term is t.he kinetic "recoil" energy of the 

atom. 

In a collision between a fast heavy particle and an atom, 

the change in the momentum of the particle is almost always 

small in comparison with its original momentum. If this 

condition holds, one can neglect the recoil term. Then bearing 

in mind that the transfer of momentum is supposed small in 

comparison with the original momentum, i.e p ~ p', then 

the effective cross section in a system of coordinates in which 

the atom is at rest before the collision is the same as that 

for electrons except that p and p' cancels and m has to be e 
replaced by M., namely 

dcr = n (5.46) 

and taking into account a possible z
1

e charge on the ion the 

general formula for inelastic scattering is, compared to (5.43) 

dcr n = 
-iq·;: ) 

e - a ~5.47) 
on 

This formula dbes not contain the mass of the particle and 

hence it follows that all formulae that derive from it rema.in 

applicable to collisions with heavy particles, provided that 

these formulae are expressed in terms of v and q. 

The scattering angle e is always small in an inelastic 

collision with a heavy particle. For when the momentum transfer 

is large ( compa1red wi th t.he momenta of the ator.üc electrons) bne 

can regard the inelastic collision with the atbm as an elastic 
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collision with free electons in which case the heavy particle 

hardly changes its direction. An exception is elastic scattering 

through large angles but this has a very small probability. 

Thus over the whole range of angles one can put 

2 

q = I [ (E 0 - E
0

) /V J + (M.:ve) ~ ;'fl (5.48) 

which in practice reduces to, 

qh _ Mve 

everywhere except for very small angles. When considering 

electrons we had, 

q = .; [ /h ( 5. 50 ) 

So bne can deduce that the formulae that one had for collisions 

between electrons and atoms, if expressed in terms of velocity 

and angle of deviation,remain valid on using the substitution, 

8 -+ Me 
m 

including the solid element dcr = 2nsin8d8, 

the velocity of the incident particle remaining the same. 

(5.51) 

The total effective energy loss is obtained by substituting 

the maximum possible momentum transfer qmax in place of q 1 in 

(5.40). The value of q is easily expressed in terms of the max 
velocity of the heavy particle (ion) as follows. Since even 

~max is small compared to Mv, the momentum of the particle, and 

the change in its energy is related to the change in momentum 

by 

L'IE = y .-tiq (5. 52 

On the other hand, for a large momentum transfer nearly all this 

energy is given to one atoüic electron, so, 

= tl. v . q < < ii. vq - - (5.53) 
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Hence we have, ~q < 2mv 

tl'qmax 2mv 2mv 
2 = E:max = 

e 
Mqmax 2m < 10- 3 = = max 

Mv M 

Substituting this in 5.41 , we obtain 

where N is the number of atoms/unit volume in the material. 

If Ma is the mass of an atom in the material, 

2 4 

( 
41TZ

1
Ze ) 2 

log ( 2~v ) 
mv 

which is the usual form of the Bethe equation. 

(5.54) 

(5.55) 

(5.56) 

(5.57) 

(5.58) 
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5.3 The Bethe Theory as used in the code. Calculation of the 

Bethe parameter I. 

The Bethe formula (5.50 ) contains the parameter I which 

has to be evaluated for each type of atom, each state of 

ioniza·tion and ideally for each state of atomic exci tation 

In the code the contribution of the bound electrons to the 

stopping power is calculated by Bethe's theory, including 

corrections due to the differences between a plasma ion and a 

neutral atom, and including shell corrections. The basic physical 

parameter is the average excitation energy I, defined by 

NB 

log I = ~ I 
B i=1 

log (hw.) 
1 

5.59 

where NB is the nurober of bound electrons participating in the 

slowing down process and hw. are the characteristic excitation 
1 

energies. In the code these are interpreted as the frequencies 

of revolution following the Bohrmodel I 15 /. 

In order to calculate I within the framewerk of the Themas Fermi 

model we note that at each radius r a spectrum of revolution 

frequencies is determined by the Fermi statistics energy distri­

bution at this radius. 

w(r) = E 2/m) 
~ 1/2 

E + eV(r) ~ /r 5.60 

Here E is the total electron energy, i.e potential plus kinetic 

energy.The nurober of electrons per unit frequency having a revo­

lution frequency w is, 

-1 
eV(r) -~/kT) + Q dr 

Here r (w) is the radius beyond, which the energy max 
follows from w yields a free electron i.e. 

eV (rmax(w)) = -E 

( 50 61 
which 

(5.62) 
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The effective excitation energy is then given, within the 

framewerk of our model, by 

1 Joo log I = N n(w) log(~w)dw ( 5.63 ) 
0 

A shell correction is included in the calculation by eliminating 

from the integration in equati6n ( 5.61) those electrons which 

are moving faster than the ion i.e. for 

2mv 2 < 1iw ( 5.64) 

where v is the projectile velocity. 

The solution of the Themas-Fermi described in section 3 

provides the values of V(r), a the chemical potential and n(r) 

for the integrations which need to be performed. 

An alternative method for calculating I, which is useful 

especially when the Themas-Fermi model is not used, is also 
' 

provided. According to this method (5.59 ) is directly used 

for the determination of I. The average degree of ionization 

d..n the plasma has to be calculated by solving the Saha equation. 

An atomic model has to be used in order to provide the binding 

energies of the electrons as external data. The excitation 

energies are then calculated as 

i'lw. = 
l 

2Ebi 
n 5.65 

where Ebi is the binding energy of the i-th electron and n is 

its principal quantum number. The above equation follows from the 

definition of the revolution frequency in Bohr's model. Also in 

this procedure electrons which satisfy condition (5.64 ) are 

excluded from the summation in (5.59 ) . Two alternatives for the 

use of the Saha equation are provided. 

In the first alternative, applicable to single elel11Bnt targets, 

the~aha equation is solved numerically, using ionization poten~ 

tials given as input data. 
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The set of equations, 

= p 0.515 ( kT 
n n e 

3/2 
) exp( En/kT ) (5.66 

is solved by iterations. Here p is the concentration of ions 
n 

with degree öf ionization n, kT is in eV, n is the free electr-on 
e 

density in units of 1o2 2 cm- 3 , and E is the nth ionization 
n 

energy in eV. From t.he final value of n the average nurober of 

free electrons per atom Zf and the average nurober of bound ree 
electrons (Z - Zf ) are determined. ree 

In the second alternative, applicable both for single 

element targets and compounds such as CH
2

, previously prepared 

solutions of the S~ha equation are used in analytical fits which 

give values of the degree of ionization as a function of the 

target density and temperature. In the case of CH 2 the degree 

of ionization of C and H are given separately as functions of 

the density and temperature. In the Z,T plane (Z is the degree 

of ionization, T the temperature) the fit is to linear segments 

for a givem density, the density scaling being logarithmic, 

z = Z. + (a. + b.log 2 ) 
1 1 1 Pa 

( T - T. ) 
l 

( 5. 67 

Here i indicates the segment nurnber, Pa is the reference 

density for each material. The Z segments are chosen according 

to the target atoms shell structure. The constants z.,a. ,b. 
l l l 

for Al, Cu,Au, C and C in CH
2 

are provided (up to certain 

degrees of ionization, see description of suhroutine IONIZ 

below) . 
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6. 'I'he stopping power due to Ions. 

6.1 Ion-Ion scattering in plasmas. 

The first theory to be developed in order to calculate 

non-equilibrium properties of plasmas was developed by 

Chandrasekhar I 5 I for gravitational forces and transcribed 

to the case of electrostatic forces by Spitzer I 53 1. 
The theory can be used to study relaxation phenomena, for 

instance when electrons and llions have different temperatues, 

andlor steady state processess such as the transport of electric 

current or heat. In order to develop the theory one must study 

the effect of collisions in the plasma. Electrostatic forces 

have a large range however and so one must consider not Sö 

much the effect of close collisions, but more the effect of 

distant collisions, in which the scattering angle is very 

small. 
If the impact parameter is denoted by p, and u is the relative 

Velocity , andx is the deflection angle, 

tan x = 
2 z1z2e 

where M is the reduced mass, 

= m1 m2 

m1 + m2 

and z1 ,z 2 are the charges on the particles. 

( 6 • 1 ) 

( 6. 2) 

If one defines a close collision as one in which the deflection 
is less than rrl2, then the impact parameter for this case is 

z1z2e 2 

Po ( 6 • 3) = 2 
m1w1 

m1 << m2, and the section is -2 cross Tip
0

• 
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The collision time for such collisions is then, 

1 

nnw1 p
2 

' 0 

where n is the density of particles in the plasma. 

In a gas of charged particles this gives too long a m.f.p. 

The reason is that since the electrostatic forces decrease 

weakly with distance, this does not compensate for the in­

creasing cross section due to the increasing impact parameter, 

and so distant collisions have a large effect. 

Because the deflections are small and of a random nature they 

have to be analyzed statistically. One defines statistical 

a::verages (over the Maxwell Boltzmann distribution for instance) 

of the various velocity components, namely < (!-:.w'//)>, 

<(t-:.w1 )2> and <(!-:.w//)2>, where // means parallel to a beam of 

test particles moving through the other set of charged particles 

which have a certain velocity distribution. Then one can show 

that, I 53 /, for instance, 

( 6. 5) 

4- ~2z~ ln II. 8ne n 
Ao = 2 

( 6 • 6) 
m 

1 
where 2 

~(X) 2 Jx e 
-y 

= dy 
TI l/2 0 

(6.7) 

( 6. 8) 

( 6 • 9) 
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n is the density of particles in the plasma, Tf the temperature, 

Zf the charge, and lnA is the Coulomb logarithm. 

= (6.10) 

where n is the electron density. 

<(6w/)> is connected to the rate of energy loss and from this 

the formulae given in section 7 ) can be derived for the 

rate of energy loss of an ion travelling through a plasma due 

to ions and electrons. These type of formulae are suitable 

for a fully ionized plasma, but can not of course be used for 

ion-ion acattering in cold materials. 
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7. Improvements made to the GORGON code at INR/KfK 

7.1 Ion-Ion-Scattering 

The original code was written for p~otons passing through hot 

plasmas, mainly metal plasmas, which would be produced if a 

plane target were irradiated by a powerfull ion beam /1/. 

In this type of plasma and in the. plasma formed on the outer 

layers of ICF pellets, ion-ion scattering is not very important. 

The reason for this is that in this case the initial ion velocity 

(of the projectile ion) is very large and usually much larger 

than the electron thermal velocity. Usually in this case dE/dX 

is often roughly constant or rises to a modest peak when 

the ion velocity is of the order of the electron velocity. 

On~ethe ion velocity is less than the thermal electron velocity, 

then dE/dX drops very sharply and the projectile ion has virtually 

lost all its energy. In pellet calculations this llis the point 

(at the end of the range) where the hot plasma pushes the cold 

part of the pusher. If a Bi+ ion starts with an energy of 10 GeV 

at this point it has an energy of 10's of keV which is insignificant 

so for the purposes considered here this can be considered negli­

gible. However when a-particles or neutron induced "knock-on" 

D+ and T+ ions pass through burning (very hot) DT a very different 

situation arisesMRere for instance the a-particle starts off 

with a velocity which is less than the thermal electron velocity 

but greater than the thermal ion velocity. The energy loss to ions 

or electrons in a hot plasma is always greatest when the velocity 

of the projectile ion is equal to the ion or electron (respectively) 

thermal velocity (average).Either side of this velocity the stopping 

power contribution drops off. Now as an a-particle (3.5 MeV) slows 

down, the energy loss to the electrons decreases, whereas the energy 

loss to the plasma ions increases. As the plasma temperature increases, 

so the loss to the ions becomes more and more important relative 

to the electrons. 
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The treatment of ion-ion scattering that we have put in the 

code follows that of Mehlhorn /8, 9/. For the electron 

stopping power on the other hand a dielectric function 

theory approach is used in the code which is more accurate 

than that used by Mehlhorn. The latter approach uses a 

simple binary collision model within a Debye radius coupled 

with interaction with plasma waves outside the Debye sphere. 

In this method the ion stopping power is given by, 

dE 
dX ion 

where, 

= 
2 2 

zeff z2e m 

ß 2c2A2 

G(yi) = erf(/Yi)- 2/(.yi/n)·(exp(-y_i).) 

where erf( ... ) is the error function. 

- 2 4npz 2e N0 

( 7 • 1 ) 

( 7 • 2) 

( 7 • 3) 

(7. 4) 

where p is the density, E the ion energy, A1 the ion atomic 

weight, A2 the atomic weight of a plasma ion, Ti is the ion 

temperature, Zeff is the effective charge (of the ion slowing 

down), ß = v /c, c is the velocity of light, v is the ion 

velocity, m is the electron mass, mp is the proton mass, wp 

is the plasma frequency. In A. is the ion Coulomb logarithm, 
l 

and e is the electronic charge. 

Ai = b /b . where, max m1n 

b ( kT e I 4 TIn e 2) 
1/2 

(7 • 5) = Debye Radius = max 

1Jß2 
2 

A1A2 m c 
b p 

( 7 • 6) min = ]J = 
z1z2 2 A1+A2 e 
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where T is the electron ternperature, and n is the electron e 
density. 

The corresponding expression used by Mehlhorn /8, 9/ for 

energy loss to plasma electrons is, 

2 2 2 
dE WEl zeff e 

dX = G(y )lni\f 
free c 2(3 2 e ree 

Ye= 
m c2(32 

2kT e 

1\ 0.764 (3c -= free b minwpl 

2 
( e Z h 

b = max _1 
2m12u) min 

m12u 

(7. 7) 

(7. 8) 

( 7. 9) 

(7.10) 

where m12 = m1m2/(m
1

+m 2), m1 is the mass of the incoming ion, 

m2 is the mass of the ion in the plasma, and No is the Avagadro's 

number. z2 is the average number of ionized electrons/atom, 

and u is the relative speed between the projectile ion and the 

plasma electrons. 

The above expression gives a larger value for dE/dX than the 

dielectric funtion theory /1/. 
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7.2 The stopping power of degenerate electrons 

When electrons become degenerate the stopping power stops 

increasing ... A full treatment of this problern would involve taking 

the exact expression for the dielectric function for a degenerate 

electron gas (at all temperatures, at high temperature it becomes 

the same as the c!assical expression without collisions, 

and putting it into the formula ( 4.14 ) for the stopping power 

of free electrons and carrying out the integration either numerically 

or analytically (if this is possible). There are two reasons to 

treat degenerate electrons. Firstly in a metal at low temperature 

a few electrons per atom are "free" as band electrons. The free 

electrons stopping power formula can be applied to this problern in 

a first approximation. The next approximaion would be to use the 

exabt band structure wave functions and energies to calculate 

the dielectric function. Secondly in ICF pellets the bulk 

of the DT is compressed on a low adiabat such .tb.hat the electrons 

are partially degenerate. So a-particles and neutron induced 

"knock-on" fast ions stream out of the expanding burning sphere 

which is semi-transparent to these ions into the cold degenerate 

DT. Hence one wants to know the stopping power here. As a first 

approach -in the code, the following scheme has been used (and 

will be improved upon), as in some respects it has been found not 

to be satisfactory. 

The code calculates this way, only if EF > kT. Then if VF 

is the Fermi velocity V is the particle velocity, and Vt is the 

electron thermal velocity,and EF is the Fermi energy 

For V > VF and VF > V t, I 57 I 
2 2 2 2mV2 

1 dE = -z e wpl 
P dX I e P v2 

ln e 

where w.Pl is the plasma frequency, 

(7.11 ) 
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If V < VF and VF > vt' 

1 dE 2 2 e4 2 cmv/) 
le 

m v· 2 ln = - - z (7.12) p dX 37r •3 11 p v'3tlw 
Pl 

2 47rne 2 
wpl = (this is for DT) (7.13) m 

VF = h/m (~'Tf n) 1/3 (7.14) 

vt = (2~T) 1/2 (7.15) 

For V < VF it is clear that not all the electrons·in the Fermi­

sphere can be excited and formulae ( 7.12 ) allows for this fact. 
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7.3 The effective charge 

When say a Bismuth ion Bi+ enters a lead target then 

collisims wi th the electrons in the cold material or plasma 

causes ionization which takes a finite time to occur, comparable 

to but less than the time the ion takes to reach the end of 

its range. After a certain time an equilibrium effective charge 

is attained. This equilibrium effective charge is a function of 

the ion and its atomic state spectrum and of the electronic 

properties of the medium through which the ion is moving. 

ITn particular the effective charge can be significantly different 

I 59 I in some cases in a cold material and a hot plasma. 

Electrons are captured more easily from bound states than from 

free electron states, so that as the number of free electrons 

increases so does the effective equilibrium charge. 

Also as there are more free electrons, there is more collisional· 
ionization. 

In the code at the present time an empirical formula is 

used since the original code-was written for protons. 

The formula was obtained 129 1 by compar«:son between proton data 

and heavy ion data,by dividing the two stopping powers. One uses, 

V' = V lc r r 

where Z is the nuclear charge on the ion, and V is the 
r 

(7.16) 

relative velocity of the ion to the thermal electrons in the 

plasma. 

vr = ( v~ + v2
) 

1 
2 (7.17} 

where Vt is the thermal electron velocity and v is the ion 

velocity. This means that in hot plasmas the effective charge 

stays higher than it would do in cold materials. This shortens 

the range and at high plasma temperatures the Bragg peak re­

appears. The various contributions to dEidX, namely free electrons, 
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bound electron, and ion scattering are all multiplied by 
2 

Zeff" The contributions are then summed in order to find the 

total dE/dX. The effective charge can not go below the value 

of the charge of an impurity of the particular type of ion 

in the material under consideration. If the material is a 

metal some of the outer electrons of the ion will naturally 

go into the conduction band. This nurnber may be one for light 

ions or a few for heavy ions. 

7.4 Calculation of the range 

The original code calculated one value of dE/dX. From 

this it is fairly easy to modify the program to calculate 

the range. Use of a DO Loop allows one to subtract 

( 1 dE /dX) · pdX from the ini tial energy. If pdX is. called 
p 2 

the range fact:or · (gms/cm ) , this can be set to a given value 

or is calculated in the code so that about 80 iterations are 

needed to reach the end of the range. This is done by calculating 

dE/dX once and then assuming dE/dX remains constant. and finding 

the range of an ion with initial energy E , and then dividing 
0 

this range by 80 to find the range factor. Another facili ty 

which is provided is to stop the calculation at a certain energy, 

i.e. a lower cut -off energy is allowed for. 

7.5 Bohrminimumimpact parameter 

It has been shown in 120/23/ th.at the Bethe theory is 

not always valid and that particularly for heavy ions the Bohr 

theory may well be better. A simple minded way of taking this 

into account is to use the maximum of the quantum or classical 

minimum impact parameter. · This ·facili ty can be used in 

the code where in both the free electron and bound electron 

calculations this condition is tested for and used if appropriate. 

However there exists the following problern of consistency with 

the effective charge formula. This is evaluated as if the Bethe 

theory is valid and so i~ not valid when used with the Bohr th~ory. 
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A fully consistent calculation is needed in which the Bohr 

th~ory is used with the same shell effect modifications as 

used in the Bethe theory, together with a first principles 

calculation of the effective charge in cold material and in 

the plasma state. 

As a first approximation of course one could evaluate the cold 

effective charge usinq experimental data and the Bohr theory. 

Use of the full Bloch formula would be even better because 

this interpolates between the Bethe and Bloch theories /20,23/. 
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7.6 Improvements made to the Fortran programming and 

structure of the program 

The whole GORGON code was investigated to see whether 

or nor the FORTRAN rules we~e kept to, and if not the 

corresponding changes were made. The following changes were 

made in general 

a) All multiplications were as far as possable replaced by 

additions. 

b) Divisions and exponentiation Operations were replaced by 

multiplications whenever possible. 

c) If in a given formula there were many constants then they 

were put together before evaluation 

d) Calculations within a löop which were independent of the 

index were taken out of the loop. 

e) Subroutines which are only called once were integrated into 

the program. 

f) In the LATMA program, the error handling facilities were 

improved and self-explanatory error messages are now 

printed out. 

g) The input data for the LATMA and DEDX programs were extended. 
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8. User's and Programmer's Information 

8.1 Description of the Code 

Regular version. 

The version which is ordinarily used employs the Thomas Fermi 

model for dealing with the bound electrons and for determining 

the plasma parameters. 

8. 1. 1 

Program LATMA solves the Thomas Fermi model for the given 

target temperature and density and calculates the chemical potential 

elec~ron density as function of radius and the degree of ioni­

zation. 

LATMA routines: 

~I~=E~9ß_~~~~ Performs the calculations of the Thomas Fermi model 

as described in Sec. 3 and controls the service subroutines. 

Subroutine INIT: Initializes the Thomas Fermi model integration, 

following Latter's/42/ procedure. This is required because fbr 

the integration the first two points of the mesh are needed. 

INIT calculates the parameters of the second point, the first 

(outermost) qiven by the boundary conditions. The subroutine 

parameters are: 

XMU The current value in the iteration scheme of the chemical 

potential. 

DU - The mesh 

distance 

lj2 
step UN-UN- 1 , U= X 
in the Thomas-Fermi 

, X the non dimensional 

atom. 

A - The dimensionlese atomic radius in the Thomas Fermi model. 

NN - Nurober of mesh points. 
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Subroutine ZZEFF: Calculates the effective charge Z required for 

calculations in a rne~h cell. 

Parameters: 

ZEFF - Vector specifying the effeetive charge up to each rnesh 

point. 

AR - Vector of radii of rnesh points. 

RAV - Average radius in a rnesh cell. 

ZE - Effective charge to be used in a given rnesh cell. 

M0N~1- Nurober of rnesh points + 1 

K - Nurober of rnesh points + 2 

?ub~outine FMA.X: Calculates rnaxirnuro radius for which a given energy 

irnplies a bound electron in the Thornas Fermi rnodel. 

Parameters: 

ZEFF, AR, M~N1, K 

Z - Atornic nurober of target material 

E - Electron energy 

RM - The required rnaxirnuro radius. 
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Iroportant variables: 

XKT - Teroperature (keV) 

Rrp - Density (g/cro3 ) 

XMU - Cheroical potential 

ZEFF - Effective Z as function of radius 

ARR - Radial points in atoroic cell 

-3 - Bound electron density (cro ) 

RXX -3 - Total electron density (cro ) 

ZAVR - Average total charge. 

Input description for LATMA 

The input for the LATMA~prograro looks as follows~ 

1. card 

N. card 

IUMASH 

IRECN~ 

IMESHP 

zo 

XKT 

AMU 

IUMASH 

zo 
IRECN{Z\ 

XKT 

IMESHP 

AMU (this card can be repea­
ted N-tiroes) 

UNIT-Number of the MASHA-profile (INTEGER) 

Nurober of records in the MASHA-profile (INTEGER) 
for each input-card with the data 'ZO-R{Z\-XKT-AMU' 

3 records are needed in the MASHA-profile, 

1 additional record is needed for the end-record; 
that roeans IRECN{Z\ ~ (N-1)*3+1 

Nurober of roeshpoints (INTEGER) 

Target atoroic nurober (double precision) 

Target density in g/cro3 (double precision) 

Target teroperature in keV (double precision) 

Target atoroic weight(double precision) 
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Output of Program LATMA 

On disk (MASHA profile) 

Atomic nurobe31 density, temperature (-keV), chemical potential (keV) 
(Number of mesh points; maximuro 400) 

Tables: 

(1) ARR, RXX, ZAVR for the whole cell. 

( 2 ) ARR I RC/JC/J for bound electrons only. 

Print: 

Total nurober of electrons 

Nurober of bound electrons 

Nurober of free electrons 

Tahle ( 2) 

Program INIT 

Before a LATMA-run can be started, a MASHA-Profile must be 

created. 

This can be done with the program INIT. This job allocates a 

new MASHA-profile, structures it by the meaning of a 'DEFINE FILE' 

- command and initializes the first record with the characters 

I PROFILE-END' .. 
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8 • 1 • 2 DEDX 

Program DEDX calculates the energy loss of a given ion 

(atomic mass, charge state and energy) in a given plasma (atomic 

number, density, temperature) using the Thomas Fermi model 

according to the procedures described in Sees. 3 .2, 3 .3, 3.4 

DEDX routines. 

Programm MAIN: reads LATMA-output from disk, calls sußrout-ine·DEDX 

and computes the range. 

Subroutine DEDX: control routine, calls routines for calculations 

required in the determination of dE/dX. 

Subroutine DETRO: Control routine for the calculation of dE/dX. 

Parameters: 

XKT Temperatuoc-e 

R~ Density 

EK Projectile energy 

DE Total energy loss 

Subroutine PLDE: calculates free electron contribution to the energy 

loss as described in Sec. 4.3. 

Parameters: 

EK - Projectile energy 

XKT - Temperature 

Rr/J - Density 

ZFP~E-Number of free electrons per atom 

DEFEL-Energy loss due to free electrons 

Subroutine ZFUNC:Calculates the real and imaginary parts öf the 

plasma dispersion function Z required fbr the 

calculation of the dielectric function, as des­

cribed in Sec. 4.3 and 4.4. 

This is now included in PLDE. 
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Parameters: 

u - Variable X = w/kVt (Sec. 4. 4 

V - Variable y = V/kVt (Sec. 4. 4 

XR - Real part of z 

XI - Imaginary part of z 

Subroutine ZPRIME~ calculates the plasma dispersion :f'unction in the 

case of non collisional plasma. 

Parameters: 

XMU Variable ~ = w/kV (Sec. 2.3) 

VDAL - Variable vjvt (Sec. 2.3) 

ZREAL - Real part of Z 

ZIM - Imaginary part of z 

IONP: Calculatesexcitation energies of bound electrons in Bethe's 

theory using the Thomas Fermi model as described in Sec.· 3. 2. 

Parameters: 

XKT, Rf/J 

FREEL - Nurnber of free electrons per atom. 

ELOSS: Calculates bound electron contribution to dE/dX as described 

in Sec. 5. 3 . 

Parameters: 

E Projectile energy 

DEDX - bound electrons contribution to dE/dX 
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Important variables in program DEDX 

XKT - Temperature (keV) 

Rr/J - Density (g/cm3 ) 

zo - Target atomic nurober 

ZFREE - Nurober df free electrons per atom 

EK - Projectile kinetic energy 

DEBND - dE/dX by bound electrons (keV/ cm2/gm) 

DEFEL - dE/dX by free electrons (keV;'cm2jgm) 

XN\v· - Atomic frequency spectrum in Thomas Fermi model. 

WTAB 

AR 

ZEFF 

- Atomic frequency points in Thomas Fermi model. 

Vector of radii in Thomas Fermi model 

- Effective value of charge 

SUMW - Nurober of bound electrons from oscillator integration 

XI - Bethe's I without shell correction 

AM - Projectile atomic weight 

ZPRJ - Projectile charge nurober 

Input for the program DEDX 

1 • card: IUMASH IRECN~ IURANG RFIND 

ECUTF} 
2. card: IDLEV IUTEST IDVERS MAXIT the input-cards 
3. card: ZPRJ AM EPRJ FREELI can be repeatai 

4. card: zo R~ XKT AMU 
several times 

This version of the DEDX-program can be started in 2 ways: 

a) with the data of a MASHA-profile, created by a LATMA-job 

b) without LATMA-data 

If you use the 1 . possibili ty, a MASHA-profile must be created 

by the LAT~ffi-prograrn, before a DEDX-job can be started. 

If the '·'DEDX-program is started wi thout LATMA-data, 'DE/DX by 

bound ed.ectrons' is set to zero in the subroutim~ DETR(jj. 
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IUMASH - IRECN<?) 

If a MASHA-profile is needed, the unit-number to which the 

profile is allocated, must be specified in 'IUMASH' and the 

nurober of rec0rds of the profile must be specified in 'IRECN<?)' 

(both are INTEGER-values) 

IURANG - RFIND 

Another feature in this version of the DEDX-program is the 

computation of the range. Therefore, in 'IURANG' you have to 

specify a unit-number of an output-dataset, which will contain 

the data of the range. 

To compute the range, a range-factor, which can be specified in 

'RFIND', is needed. 

If the value of 'RFIND' is positive, the range-factor is computed 

as 
range factor = projectile initial energy 

DE/DX by total electrons *'RFIND' 

If the value of 'RFIND' is negative, the amount of 'RFIND' is 

the range-factor. 

At the end of the computations the range is determined as 

range = (number of iterations - 1)* range-factor 

'IURANG' is INTEGER and 'RFIND' is DOUBLE PRECISION 

IDLEV - IUTEST 

In the case of wrong results, you have ·the possibility to run 

the program on a test.level,that means, some test-printont 

is produced. The testlevel is specified with 'IDLEV'. 

IDLEV = 0 ~ no testprintont 

= 1 + test-printout on unit 'IUTEST'. 

(both are INTEGER-variables) 
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With the variablle 'IDVERS' you can specify the'version, with 

which the calculations should be done. 

IDVERS = 1 + standard-version (with data of a masha profile) 

= 2 + version without LATMA-data 

('IDVERS' is INTEGER) 

MAXIT 

If you choose an unfavourable range-factor, you can get a lbt 

of iterations. This can be prevented with the variable 'MAXIT; 

which specifies the max-number of iterations to be executed. 

( 
1 MAXIT 1 is INTEGER) 

ZPRJ - AM - EPRJ - FREELI 

ZPRJ is the projectile eh arge state 

AM is the projectile atomic weight 

EPRJ is the projectile initial energy:.in 

FREELI is the number of free electrons/atom 

(all values are DOUBLE PRECISIONS) 

ECUTF 

keV 

(this value is only 
needed, if IDVERS=2 is 
choosen, otherwise you 
have to specify O.OD+O) 

To compute a cut-energy, a factor is needed, which is specified 

in 'ECUTF'. Then the cut-energy is computed as 

ECUT = EPRJ/ECUTF. 

After each iteration,6E is computed as 

6E = DE/DX by total electrons * range-factor 

Then ·t.he new projectile initial energy is determined as 

EPRJnew = EPRJold ~ 6E 

If the'new projectile initial energy' is greater than the 

'cut-energy', a new iteration is started with EPRJ 
new 

(ECUTF is DOUBLE PRECISION) 
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~0 - R0 - XKT - AMU 

30 is the target at.omic nurober 

R~ is the ·target densi ty in g/ cm3 

XKT is the target temperature in keV 

AMU is the target atomic weight 

(all variables are DOUBLE PRECISION) 

The whole program has been tested and changed, so that no FORTRAN­

rules are violated. 

_ou·tput of program DEION 

ZPRJ I AMU 

XKT, Rrf>, ZOr AMr XMU, FREEL 

Table :AR, ROD (bound electron density), RXX(total electron 

densi ty) , ZEFF 

N 

I 

Number of bound electrons from oscillator integration 

Bethe's I from TF model, no shell corrections 

XKT, R~, El< 

EK, I (Bethe's I with shell correction), N(number of effective 

electrons with shell correction). 

BOUND ELECTRONS DEDX USING THOMAS FERMI ~10DEL EK, XKSUM 

(dielectric function integral), FREE DEDX (free electron contri­

bution) 

ZO. ZFREE, ZB~UND 

DET~T, DEFEL, DEBND 

Range and data from range 
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8.2 Version of the code using atomic physics other than the 

Themas Fermi model - DECZI. 

This version is different from the regular one in the method 

of calculating the nurober of free electrons and in the method of 

calculating the bound electron contribution to dE/dx. This version 

has been specifically used only in the calculations of the&opping 

power of CH 2 , where the use of the TF model is not convenient. 

DECZI routines 

MAIN:Controls the calculations and calculates the energy loss 

in Cold targets. Data for Cold targets provided for: 

Aluminium (INDM = 1) 

Copper 

Gold 

Carbon 

(INDM = 2) 

(INDM = 3) 

(INDM = 4) 

(INDM = 5) 

DETR~:Controls the calculation of dE/dX. 

Parameters: 

XKT - Temperature 

Rr/J - Dens i ty 

EK - Projectile energy 

DE - Total energy loss 

IC~LD - Index used in choosing cold dE/dx calculations. 

IC~LDX- Index determining whether cold targetl is assumed. 

DECLD - Cold dE/dx 

INDM - Index defining the target material. 
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~SAHA 1: Solves the SAHA equation for single element targets 

(INDM 1 to 4) 

Parameters: 

XKT Temperature 

Rr/J Density 

ZFREE ~ Number of free electrons per atom 

INDM - Index defining target material 

PLDE: Calculates dE/dx due to free electrons (see DEION) 

ZFUNC, ZPRIME see DEION 

ELBND: Calculates dE/dx due to bound electrons, asing atomic 

shell model, not TF model, as explained in Sec.5.3. 

Specific data provided for Al, C, CH 2 . 

Parameters: 

E Projectile energy 

ZB~UND -Number of bound electrons per atom 

DESHL - Bound electrons dE/dx 

INDM - Index defining target ma~erial 

I~NIZ: Gives fits to approximate Saha calculations, providing 

the degree of ionization as function of density and 

temperature. 

Specific data provided for Al(up to Z = 13), Cu(up to 

Z = 20), Au(up to Z =52), C(up to Z = 6), CH 2 , 
(see Sec. 5.3) 
Parameters: 

RH~ - Density 

TEMP - Temperature 

Z Degree of ionization 

DZDT - ClZ/ClT 

DZDR - ClZ/Clp 
} for use in other equation of state applications 



-105-

Important parameters in progr~ DECZ 1 

XKT 

R~ 

EK 

zo 

ZFREE -

DEFEL -

DEBND -

DETI/JT -

INDM 

APRJ 

ZPRJ 

EPRJ 

ENP 

· Temperature (keV) 

Densi ty ( g/ cm3 ) 

Projectile energy (per nucleon) (keV) 

Atomic number 

Number of free electrons per atom 

dE/dx by free electrons (keV/g/cm2 ) 

dE/dx by bound electrons (keVyg/cm2 ) 

total dE/dx 

Target material index 

Projectile atomic weight 

Projectile charge number 

Projectile energy 

Projectile energy per nucleon 
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Input to DECZ 1 

ICc/JLDX - If 1 - cold target is assumed 

INDM 

APRJ 

ZPRJ 

NSP - Number of projectile data 

NR - Number of target data 

XKT 

Data for cold target stopping (vector AE) have to be provided 

in MAIN 

Ionization potentials have to be provided in SAHA (vector EE) 

Number of electrons in each sub-shell (vector NN), principal 

quantum nurober of each sub-shell (vector XN) and binding 

energies in keV (vector EB) have to be provided in ELBND. 
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Output 

IC~LDX, INDM, APRJ, ZPRJ 

Values of projectile energies ENP (1) 

Rrp, XKT 

For each value of ENP a table is provided giving: 

1 - number of atomic shell 

ZEFF Effective Z for calculating the binding energy in shell I 

HBAR - Excitation energy for shell (keV) 

XJ - Stopping number for shell 

XX - nurober of electrons in shell I 

DES - shell contribution to energy loss 

DE - cummulative energy loss 

This table is printed for the case of an unionized target and 

the case of the real target. In the case of CD2 the tabels are 

for the carbon component only. 

Also provided are: 

RA - density in units of 1024 atoms (molecules)cm- 3 

ZF - Number of electrons per atom (molecule) 

H - Debye leng~h in the plasma 

DeBroglie wave number for the electrons 

DXK1 -

DXK2 -

DXK3 -
steps in k-integration 

XKCRIT-1 (Debye length) 

XKR2 Intermediate k value in k-integratiön~~ 

XKMAX - maximum wave number in calculation 

XNI Ion contribution to screening 

for 
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ALPHA - Electron thermal velocity 

EK - Projectile energy per nucleon 

XKSUM - Stopping nurober due to free electrons 

DEDX - Free electrons dE/dX 

If there are no bound electrons in equilibrium, a message is 

printed. 

ZO - atomic nurober (6 for CD
2

) 

ZFREE Free electrons per atom (carbon for CD 2 ) 

ZB~UND - bound electrons per atorn (carbon for CD2 ) 

BDEUT - Bound electrons in D (for CD
2

) 

ZFRET - Total nurnber of free electrons (for CD2 ) 

DET~T - Total dE/dX 

DEFEL - total dE/dX due to free electrons 

DEBND - dE/dX due to bound electrons (in carbon for CD 2 ) 

DEDEUT - dE/dx due to bound elec·trons in D for co
2 
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8~ 3 Flow charts 

Fig.13: Connection between the 3 programs and the 
MASHA- profile 

Program 
INIT 

Program 
LATMA 

Program 
DEDX 

Program IN I T altoca tes a new MASHA ~ profile 

Program LATMA writes his results to this dataset 

Program DEDX reads the data produced by LA TMA 

MASHA- prof ile 



Fig.14 

read input-data 

compute cut-energy 

DEDX 

was this 
the 1. call of 

DEDX for this input­
data? 

compute and print 
the range- data 

compute the remaining 
projectile -energy 
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STOP 

compute the range- factor 
and print the headlines 
for the range-data 

compute the range 
and print the data 

GENERAL FLOW CHART OF GORGON CODE 



Fig.15 
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IONP : evaluate Bethe I factor 
using the Thomas Fermi model 

DETRO 

RETURN 

no 

FLOW CHART FOR DEDX 



no 

ELOSS: calculation of dE/dx 
due to bound electrons by 
using the Bethe formula 
calculation of shell corrections 

calculate effective charge 
as a function of velocity 

PLDE: 
contribution from free electrons 

calculate contribution 
from ions 

mul tiply each contribution 
(bound electrons- free 
electron- ions) by z~ff 

calculate the sum of 
alt 3 contributions 

RETURN 
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Contribution of bound 
electrons is set equal 
to zero 

ZFUNC 
calculates plasma 

dispersion fundion 

Fig. 16 FLOW CHART FOR DETRO 
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8.4 Description of Subroutines 

The LATMA code essentially integrates the Thomas Fermi 

equation (3.18) and has a very linear structure. On the other 

hand the code GORGON which calculates the energy loss using data 

from the LATMA code is more complicated in function and 

structure. It is useful therefore to regard the LATMA code as 

providing the inpqt.data for the mai~ .energy lo~s program. At· ~he 

present. time for each dE/dX run at a constant density and tem­

perature:, the Thomas-Fermi model· is solved and the data is stored on 

a tape. This information is then recalled when needed by the 

energy loss program. It would be clearly much more flexible 

if the codes were directly coupled .Tliem if the densi ty and 

temperature remained the same, only one LATMA calculation need 

to be done, but if the density and temperature changed then 

the LATMA program would be recalled. It is clear that the first 

method can save time if one continually calculates with one 

density and temperature or a set of densities and temperatures, 

but in general it is not possible to set up files for all the 

materials densities and temperatures that are needed. 

The eaergy loss program GORGON is controlled by the sub­

routine MAIN. This sets the cut-off energy below which the program 

does not calculate. Then it calls the dEdX subroutine which 

contro~ the calculation of the total DEDX. It then calculates 

the loss of energy in this step using the range factor which 

has either been given as input or is calculated from the first 

dEDX value. This is the repeated until the energy drops below 

the cut-off energy. At the same time the total range is computed. 

The subroutine DEDX controls the use of various options and 

then calls IONP which calculates the Bethe I factor and DETRO 

which controls in more detail the energy loss calculation 

This suhroutine calculates the effective charge as a function 

of the velocity of the projectile and the temperature of the 

plasma. It calls ELOSS which calculates th~ energy loss due to 

bound electrons, PLDE which calculates the free electron contri­

bution and the ion contribution. All of these contributions are 
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multiplied by the effective charge squared. The total value of 

DE/DX is then evaluated. 

In the subroutine PLDE the energy loss due to free electrons 

is calculated. It tests whether the plasma is degenerate or 

non-degenerate and calculate accordingly. It evaluates the 

dielectric function integral in the stopping power formula 

for free electrons (4.14), and also calculates the ion contri­

bution to the stopping power. The subroutine ZPRIME calculates 

the plasma dielectric function. 

IONP calculates the value of the Bethe I parameter using the 

solution of the Themas Fermi model obtained from LATMA. 

The subroutone ELOSS then uses this Value to calculate the 

energy loss due to bound electrons. 
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9. Results of a Sample Problem 

9.1 Description of Sample problem. 

The sample problern chosen was used in actual pellet calculations /30, 

33,34,60/.It is the case of a 10 GeV Bi++ ion slowing down in solid 

density lead at a temperature of 200 eV. In the first step of the 

calculation the LATMA program is run in order to calculate the 

Thomas-Fermi data (chemical potential, electron density etc.) of 

solid ü.ead at 200 ev. This data is then stored in a MASHA profile. 

The DEDX program reads this data and fr.om it,and calculates the 

Bethe Parameter. For this case the output of the DEDX program is 

given and the results obtained are discussed in 10.6. 
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9.2 Sample Problem Neth0d of operation and physics input 

A DEDX-run is done in 3 steps. 

1 .) Initialisation of a MASHA-profile dataset (Fig.1) 

2.) Execution of a LATMA-run to calculate the chemical 

potential and the electrons density 

(Fig. 18 1 Fig. 19 1 Fig. 20 1 Fig. 21) 

3.) Execution of a DEDX-run 

(Fig. 22 I Fig. '23 I Fig. 24, Fig. 25) 

In this sample problern we have Bi-projectiles and Pb-target­

material. 

Projectile atom~c number 

Projectile atom~·c weight 

Projectile initial energy 

Target atomic nurober 

Target density 

Target temperature 

Target atomic weight 

ZPRJ = 83 

AM = 209 

EPRJ = 10 GeV 

zo = 02 

R{ll = 11.2 gjcc 

XKT = 200 eV 

~.MU = 2o7 
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IIINR67020 JOß (0670tlOl,POD7NI,MORITZ 9 MSGLEVEL=(l,li,REGION=l024K, 000100 
II NOTIFY=INR670 J002~0 

11**********************************************************************001310 
II** 0004J8 
II** THIS JOB INITIALIZES A ~ASHß-PROFILE FOR A LATMA-RUN. 000500 
II** I UM A S H ISA FORTRAN-UNIT-NU~ßER, TO WHICH THE PROFILEIS 000600 
II** ALLOCATED. FOR THIS FORTRAN-UNIT-NUMAER THERE MUST ßE A DD-CARD000700 
II** IN THE G-STEP. 011800 
II** IN THE SPACE-PARAMETER ON THE 00-CARO, THE NUMBER OF BLOCKS 100900 
II** MUST BE ~JUAL TC TH~ VAR(AqLE I R E C N O, WHICH CONTAINS THE O~L)1J 
II** NUMßER OF RECORDS IN THE DATASET. OOLLOO 
II** THE INITIALIZIATlON IS OONE BY WRITING THE TEXT 'PROFILE-END' 001110 
II** INTO THE FIRST RECORD OF THE DATASET. 00LL20 
I* 001200 
II EXEC FHCLG 0Jl3·1J 
1/C.SYSIN 00 * 001400 

REAL*8 PENDPI 001500 
DATA PEND/ 1 PROFILE-','END 'I 001600 
IUMASH=lO 001700 
I REC"'U=62 ')')1810 
CALL DEFI IIUr~ASH, IRECN0,4HU ,3~00, IVARI 001900 
WRITE!IUMASH 9 liPENDili,PENOI2) 0020~0 
STQP 002l00 
END 002200 

I* 
IIG.FTlOFOOl DO DSN=lNR670.~ASYA20.PROFILE 9 0ISP=INEW 9 CATLG),UNIT=OISK, 
II VOL=SER=BATOOC,SPACE=!l2300~t21 

')')2300 
002400 
002500 
002600 II 

Fig. 17 

Job to initialize a MASHA-profile dataset. 

The name of the dataset is INR670.MASHA20J'.ROFILE 

and it contains 62 Blocks (see SPACE-parameter and variable 

IRECN~). This job produces no output-messages. 
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9.3 Sample Problem : Input for LATMA 

IIINR670lA JOB I0670vlOL,POD7NI,~CRITZ,MSGlEVEL=(l,L),REGIO~=l024K, OOOLOC 
II NOTIFY=INR670 000210 
II*MAIN liNES=lO 000300 
II EXEC FHG,NAME=lANEW2 00040C 
IISTEPLIB DD OSN=INR670.ZIDN.LOADvDISP=S~R 000500 
IIG.FT06F001 00 SYSOUT=R 00060C 
IIG.FTLOFOOl OD DISP=OLO,DSN=INR670.~ASHA20.PRCFILE ~00610 
11**********************************•***********************************00010C 
II•~ 000800 
lf** INPUT FOR PROGRAM LATMA 00090C 
II** ----------------------- OOlOOC 
"** oouoc 
II** l. CARO: IUPIASH IRECNC I~ESHP 0017.0C 
II** N. CARD: ZO RO XKT AMU 00l30C 
II** 00140C 
II** IUMASH UNIT-NU~AER OF THEMASHA-PROFILE IINTEGERJ OOL5~C 
II** IRECNO NU~AER OF RECORCS IN THE MASHA-PROFlLE IINTEGER) 00l60C 
II** FOR EACH INPUT-CARD WITH THE DATA 1 ZO-RO-XKT-AMU 1 , 00170C 
II*~ 3 RECOROS ARE NEEOED IN THE MASHA PROFILE. OOLBOC 
II** l ADDITIONAL RECORC IS NEEDEO FOR THE END-RECORD 00l90C 
II** EXAMPLE: IF YOU HAVE 1 INPUT-CAROS ===> N=5 0020')C 
II** l CARC WITH T~E OATA 8 IUMASH-IRECNO-IMESHP 0 00210( 
II** 6 CARDS WITH THE DATA 'ZO-RO-XKT-AMU• EACH 00220C 
II * * I RE C N 0 M U S T BE M l N • ( N- U * 3 + 1 0 0 2 3 0 C 
II** IMESHP NU~BER OF MESH-POJNTS (INTEGERI 00240( 
II** 00250C 
II** lO TARGET ATOMIC NUMßER (DOUBLE PRECISSION) 00260( 
II** RO TARGET DENSITY (DGUBLE PRECISSIONt 0027~( 
II** XKT TARGET TEMPERATURE (DOUBLE PRECISSIONJ 00280( 
II** A~U TARGET ATOMIC WEIGHT ICCUBLE PRECISSIONJ 00290( 
ll*•--------------------------------------------------------------------00300( 
II** 00310( 
II** BEFORE A LAT~A-RUN CAN eE STARTED, THE MASHA-PROFILE MUST BE 1032~~ 
II** CREATEOe THIS CAN BE ODNE WITH THE JCL IN THE MEMßER INIT. 00330( 
II** THE 'NUMBER OF RECOROS' (2. PARAMETER IN THE INPUT FOR THIS JOA00340~ 
II** - IRECNO), MUST OE THE SA~E AS IN THE MEMBER INIT.. 00350C 
II** ALSO THE UNlT-NUMBERS IUMASH MUST BE THE SAME. 00360( 
II** 00370( 
ll*********************•••••••••••••••••••••••••••••••••••••••••••••••••oo3soc 
IIG.S't'SIN 00 * 00390C 

10 62 115 00400( 
82.00+0 11.20+0 O.LD+O 2C7.0Ct0 00410( 
82.GDtO 11.20+0 0.20+0 207.00+0 00420( 
82.00+0 11.20+0 0.30+0 2C7.00+0 00430( 
82.00+0 11.20+0 0.4D+0 207.0D+O 00440( 
82.00+0 11.20+0 0.50+0 207.00+0 00450( 
82.00+0 11.20+0 0.60+0 2~7.00+0 00460( 

I* 00610( 
II 00620( 

Fig. 18 

JCL to start a LATMA-run. 

This job calculates the chemical potential and the electron 

density for 6 temperatu~es (100eV,200ev ..... 600eV). 

The material is Pb with a density of 11.2 g/cc. 
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9 • 4 Sample Pr0blem Output of LATMA 

INITIAL OATA: zo 0.820000+02 RO 0.112000+02 XKT 0.200000+00 AMU 0.207000+03 

ARO " 0.194250+01 PH!O 0.304160+01 A 0.652210+02 

XMU -0.410000+01 
PHil -0.406400+01 PH!2 -0.406400+01 
XIO 0.146020-0l XIl 0.146020-01 OXI - o. 609 970-04 
PINN-11 o. 126410-03 QINN-11 0.125310-03 

X "'U -o. 392710+01 
PHil -0.389260+01 PHI2 -0.389260+01 
XIO 0.173400-01 Xll Oo173400-0l OX I -0.859220-04 
PINN-11 0.150110-03 QINN-11 0.148800-03 
IX 2 I 114 
PHIO o. 304160+01 OEL 0.823930+00 
OLOXMU -0.392710+01 XMU "' -0.278600+01 OLOPHI 0.411590+00 PHI8 0.5'35520+00 
OELPHI o. 1 73690+01 OMU 0.172940+00 OPHI o. 263 2 3 0+00 OELl 0.656980+00 

XMU -0.278600+01 
PHil -0.276140+01 PHI2 -0.276140+01 
xro o. 535000-01 Xll 0.535070-01 OXI -0.806480-03 
PI NN-11 o. 463160-03 QINN-11 0.459130-03 
IX 3 I 114 
PHIO 0.304160+01 OEL -0.328310+01 
OLOX"1U -0.278600+01 XMU -0.330610+01 OLOPHI 0.535520+00 PHIB 0.130270+02 
OELPHI -0.145470+01 OMU 0.114110+01 OPHI 0.319160+01 OELl 0.357540+00 

XMU -0.330610+01 
PHil -o. 327700+01 PHI2 -0.327100+01 
xro o. 320760-01 Xll o. 320790-01 DXI -0.292340-03 
P INN-1 I 0.277690-03 QINN-11 0.275270-03 
IX 4 I 114 
PHIO o. 304160+01 OEL 0.356720+00 
OLDXMU -o. 330HO+Ol XMU -0.318500+01 DUJPHI 0.130270+02 PHI8 o. 1956601-01 
OELPHI 0.441170+00 OMU -0.5201001-00 OPHI -0.189580+01 OELl = 0.274340+00 

XMU -0.318500+01 
PHil -o. 315700+01 PH 12 -0.315700+01 
XTO 0.361450-01 XIl 0.361480-01 OXI -o. 370600-03 
PI NN-11 o. 312910-03 QINN-ll 0.310190-03 
IX 5 l 114 
PHIO 0.304160+01 OEL 0.856470-01 
OLDX"1U -o. 318500+01 XMU -0.315420+01 OLO PHI 0.195660+01 PHI8 0.278110+01· 
OELPHI o. 895390-01 OMU 0.121030+00 OPHI 0.351630+00 OEll 0.344190+00 

XMU -0.315420+01 
PHil -o. 312650+01 PHI2 -0.3126501-0l 
XIO 0.372590-01 XI1 0.372630-01 OXI -o. 393640-03 
PIN"J-11 o. 322 560-03 OINN-11 0.319750-03 
IX 6 I 114 
PHIO o. 304160+01 OEL -o. 719840-02 
DLDXMU -o. 315420+01 XMU -o. 315650+01 DLOPHI 0.278110+01 PHI8 0.306350+01 
OELDHI -o. 117260-02 OMU 0.308190-0l DPHI 0.967ll0-0l OELl 0.318670+00 

X "''U -o. :H5650+0l 
PHil -0.312870+01 PHI2 -0.312870+01 
XIO 0.371760-01 Xll 0.371790-01 DXI -o. 391880-03 

Fig. 19 



-120-

PfNN-11 = 0.321840-03 Q(NN-11 ~ 0.319030-03 

NUMBER OF ELEC TRONS "' 0.825680+02 

NUflißER OF BOUNO ELEt IRONS "' o.56975Dt-02 

CORRECTED NUMBER OF BOIJND ELECTRONS = 0.565830+02 

CORRECTEO NUMßER OF FREE ELEC TRONS "' Oe25417D+02 

FREERO "' o.827870t-24 

I o. 598510-32 0.284180t-33 
2 0.149470-03 0.252600+32 
3 0.597871)-03 0.595340+31 
4 0.13452[)-02 0.2194lDf-3l 
5 0.239150-02 o.t02180f-31 
6 0.373670-02 o .. '548200+30 
7 0.538080-02 0.323140+30 
8 0.132390-02 o. 203610+30 
9 0.956590-02 0.134810+30 

10 0.121070-0l o. 927120f-29 
11 0.149470-01 0.657050+29 
12 0.180860-01 0.477080+29 
13 0.215230-01 0.353').70+29 
14 0.252600-0l 0. 266130+29 
15 o. 292960-01 0.203260f-29 
16 0.336300-01 0.157120+29 
17 0.382640-01 0.122720+29 
lB 0.431960-01 o .. 96 7150+ 28 
19 0.484270-0l o. 768270+28 
20 o .. 539580-01 0.614540+28 
21 o. 59787 0-0 l 0.494610+28 
22 0.659150-01 0.400260+28 
23 0.723420-0l 0.325500+28 
24 0.790680-0l 0.265850+28 
25 o. 960930-01 0.217970+28 
26 0.934170-0l 0.179330+28 
27 0.101040+00 0.148000+28 
2R 0.1089601-00 0.122460+28 
29 0.117180+00 0.101570+28 
30 0.125700+00 0.844140+27 
31 0.13~5201-00 o. 702710+27 
32 0.143640+00 0.585740+27 
33 O.l53050t-00 0.488740+27 
.H 0.162770+00 Oo408060t-27 
35 0.172 780+00 0.340810+27 
36 Oolß3lOfJ+OO 0.284630+27 
37 0 • 1 9? 71 0 H)O o. 2376201-27 
38 0.204620+00 0.198230+27 
39 0 .. 215830+00 0.165210+27 
40 o. 227340+00 o. U7510t-27 
41 o. 23'H 50+00 0.114290+27 
42 0.251250+00 0.948460+26 
43 0.2636601-00 0.785950+26 
44 0.27636Dt-OO 0.650470t-26 
45 o. 289370+ 00 o. 537870+26 
46 0.302670+00 0.444610+26 
47 o. 316270+00 0.367630+26 
48 0.330170+00 o.304290t-26 
49 0.344370+00 0.2523101-26 
50 o. 358870+ 00 0.209740+26 

Fig. 20 
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51 0 .. .373670+00 0 .. 174900+26 
52 0.388760+00 0.146380+26 
53 0 .. 404160+00 0 .. 123010+26 
54 0 .. 419850+00 0.103810+26 
55 0.435850+00 0 .. 879940+25 
56 0 .. 452140+00 0 .. 749100+25 
57 0 .. 468730+00 0.640390+25 
58 0 .. 485620+00 0 .. 549640+25 
59 0 .. 502810+00 0 .. 473500t-25 
60 o .. 520300+00 0 .. 409300+25 
61 0.538080+00 0 .. 354870+25 
62 0.,556170+00 0 .. 308490+25 
63 o .. 574550+00 0 .. 268760+25 
64 0 .. 593240+00 0 .. 234560+25 
65 0 .. 6L222Dt-OO 0 .. 204960+25 
66 0 .. 631500f-00 0 .. 179240+25 
67 0.,6510flDtOO 0 .. 156770+25 
68 0 .. 670960+00 0.137090+25 
69 o .. 691140+00 0 .. 119750+25 
10 0" 71161 0..,_ 00 o .. l0443D+zs 
71 0.732390+00 0 .. 908340+24 
72 0 .. 753460+00 0 .. 787300+24 
73 0 .. 77484fHOO 0 .. 679130+24 
74 0 .. 796510+00 0 .. 582230+24 
75 0 .. 818480+00 0 .. 495100+24 
76 o .. 840750+00 0 .. 416600+24 
77 0 .. 863320+00 o .. 345630t-24 
78 0 .. 886190+00 0 .. 281380+24 

\ 79 0.909360+(')0 o .. 223ooo•24 
80 0 .. 932830+00 0 .. 169910+24 
81 0.956590+00 Oel2149D+24 
82 0.980650+00 0 .. 772820+23 
83 O .. l0050Dt-Ol 0 .. 368150+23 

Xt-1U : -0 .. 631300+00 

WRITING OATA ON MASHA PROFILE WAS FINISHEO, NEXT RECORD lS 23 

SUP1 = - o .. 3945 740+03 
Wl:iUM = 0 .. 5711480+02 

Fig. 21 

Fig. 19 to Fig. 21 the output of a LATMA-run for 

Pb with a density of 11.2 g/cc and a temperature of 200eV. 
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9.5 Sample Problem: Input and Output for GORGON 

/IINA670DX JOB (0~70,LOl,P~D7~t,MCRTTZ,MSGlEVEL=(L,L1,REGIDN=l024K, n~1LJO 
II NCTIFY=INR670,TIME=l0 OC020C 
//*MAI~ LINES=S9 0~0211 

11**********************************************************************0003'l0 
II** OC0400 
II** INPUT FOR THE PROGRAM GORGON 000~00 

II** -------------------------- 000600 
II** J00700 
II** ==>T~E INPUT-CARDS CAN BE REPEATED SEVERAL TI~ES<== OC0800 
II** 0009~0 
1/H IU'-1ASH IRECNC IURliNG RFIND OOlO'JO 
1/*t. IDLEV IUTEST ICVERS IJAXIT OIJllJO 
II** ZPRJ AM EPRJ FREELI ECUTF ZBEFI 00l2'JO 
II** lO RC XKT AMU 001300 
II** O'Jl41~ 
II** IUMASH U~IT-NUMAER OF THE ~ASHA-PRCFILE (INTEGER» 0015'JQ 
II** IRECNO NUMBER OF PECCRCS IN THE ~AS~A-PRCriLE (INTEG~At 001600 
II** IURANG UNIT-NU~BER DF A CUTPUT-CATASET hHICH WILL CONTAIN THE 001700 
II** CATA CF THE RANGE (J~TEGERI 001800 
II** RFINO IF PCSITIVE ==> INDEX TD CO~PUTE THE RANGE-FACTOR OQlq~Q 
II** Rß~GE-FACTCR = EPRJI(CEIOX+RFINDI OOZOOC 
II** IF NEGATIVE ==> VALUE = RA~GE-FACTCR ~021~0 
II** ICOUBLE PRECISION) 00220C 
II** 0023JO 
II** IDLEV TESTLEVEl-IDENTIFIER (INT~GERI 002400 
II** = 0 ==> ~C TEST-PRlNTCUT 00250C 
II** = l ==> TEST-PRINTCL;T CN UNIT IUTEST 00260'1 
II** = 2 ==> MORE TEST-PRINTDUT C~ uNIT IUTEST 00261( 
II** IUTEST UNil-NUMBER OF A CUTPUT-CATASET W~ICH WILL CONTAIN THE 0,27~r. 
II** TEST-PRINTOUT IINTEGERJ 002800 
II** IC~LY NEEDED , IF ICLEV .EC. l , CTHERWISE 0) 00290C 
II** lOVERS ICENTIFIER FOR THE VERSICN, hiTH ~HICH T~E 00300G 
II** CALCULATIC~S SHOULC BE DC~E ((~TEGER) 003lOC 
II** = l ==> STANDARD-VERSICN ~0320C 
II** = 2 ==> VERSICN WIT~CUT LAT~A-CATA OOJ30C 
II** ~AXIT ~AX. NUMßER OF ITERATIC~S TO ßE EXECUTED {INTEGER) ~0340C 
II** OOJ50C 
II** ZPRJ PRCJECTILE CHARGE ST~TE (CCUßLE PRECISIONJ OC360C 
II** AM PROJECTILE ATC~IC WEJr.HT (OCUALE PRECISIONJ 0037~0 
II*~ EPRJ PPOJECTILE INITIAL E~EPGIE IN KEV ICOU~LE PRECISION) 00380C 
II** FREEll NUMBER OF FREE ELECTRC~SIATO~ (CCUBLE PRECI~IDNt 0039J~ 
II** (CNLY NEEDED , IF ICVERS .=c. 2 , CTHERWISE 0.00+01 00400( 
II** ECUTF FACTCR TC CC~PUTE THE CUT-ENERGY (COUßlE PRECISICNI 004l0C 
II** ECUT = EPRJIECUTF 004lLC 
II** lF THE PRCJECTILE ENERGY IS LESS T~AN THE CUT-ENERGY, 00412( 
II** THE JOB IS TERMINATED 00413C 
II** ZBEFI INPGT VALUE FCR EFF. C~ARGE (CCUBLE PRECISIONI OC414C 
II** = l.CD+O ==> THIS VALUE IS C~LY TAKE~, IF THE COMPUTED 00415( 
II** 'ZAEF 1 IN SLBRC~TINE CETRC IS LESS THAN OC416C 
II** l.OC+O 00417( 
II** > L.OD+J ==> THE VARIAßlE 'ZAEF' I~ SUBRCUTINE DETRC IS 004lßC 
II** SET TO THIS VALUE 00419( 
II** 00420C 
II** lO TARGET ATC~IC NU~BER (COUBLE PRECISIGN) 00430( 
11•• RO TARGET OENSITY IN GICC (COUBLE PRECISION) 00440( 
II** XKT TARGET TE~PER~TURF I~ KEV (CCUELE PRECISIDNI 00450( 
II** AMU . TARGET ATCMIC WEIGHT (CCUBLE PRECISICNI 00460( 
II**--------------------------------------------------------------------00470C 
II** 00480( 

Fig. 22 
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II** BEFDRE A DEOX-RUN CAN BE STnRTEC, A MAS~A-PRCFILE MUST RE C0\900 
II** CREATED BV THE PROGRAM LAT~A. 0~5~10 
II** THE INPUT-VARIABLES ZO RO XKT ß~U A~D IUMASH MUST HAVE THE SAME 005100 
II** VALUES AS IN THE LßT~A-RU~. 005200 
II** IN THE G-STEP FOR T~IS JOB THERE MCST BE ONE 00-CARO FOR THE 005300 
II** MASHA-PROFILE ON U~IT IUMASH (PARA~ETERS CN THE 00-CARO MUST BE 005400 
II** THE SAME AS IN T~E LAT~A-RUN' AND C~E 00-CARD FOR UNIT IURANG, 005500 
II** WHICH SPECIFIES THE CUTPUT-DATAS~T FOR THE RANGE-DATA AND ONE 005600 
II** 00-CARD FOR UNIT IUTEST, WHIC~ SPECIFIES THE OUTPUT-OATASET FCR 00570~ 
II** THE TEST-PRINTCUT. 005800 
II** THE PARAMETERS FCR THE LAST 2 CC-CARDS SHOULC ßE: 005900 
II** FT •• FOOl 00 SYSOUT~A,OCA=ILRECL=l33,BLKSIZE=3857,RECFM=FBA) 006000 
II** 006100 
11*•································································•••*006200 
II EXEC FHG,NAME:CENEW2 006400 
1/STEPLIA 00 OSN=INR670.710N.LOACvDISP=S~P. 0065nO 
/IG.FTlCFCOl 00 015P=CLO,OSN=INR67C.WASHA20.PRCFILE C0660C 
fiG.FT20FOOl DO SYSOUT=A,OCB=ILRECL=L33vBLKSIZE=3857,RECF~=FßAI 1067no 
1/G.SYSIN CO * 0069'JO 

10 62 ?0 80 007000 
0 0 l 150 007100 

83.00+0 209.00+0 t.CDt7 O.GC+O lOOO.OOtC l.OO+O 007200 
82.00+0 Ll.20tC 0.20+0 207.00+0 O'J7300 

I* 007480 
II 107500 

Fig. 23 

Fig. 22 .1.nd Fig. 23 i.s the JCL to start a GORGON-run 
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VERSIC~-I~~NT!Fl~R IS T~STL~VfL-IDE'JT!f I::R IS J 

PROJECTILE CHARSc STATF 
PQOJECTILE ATO~IC ~E!GYT 
PROJECTILE INITIAL EN~RGY 

::1.83)000+12 
::1.209]00+03 
'). l ') ') 1 (I c .. ::18 

PROFILE GIVEN 8Y: TARr.ET ATO~IC NU~B::R 

TARGET DENSITY 
TARSET TE~PERATURF 

TARGET ATC~IC WEIGHT 

"ASHA PROFILe FO'JND: CHE,.!CAL POTENTIAL 
FREE 'OLECTRCNS 

PROJFCTILE ENERGY 0.100000+08 

NC SHEll EFFECTS ASSU~EO: 

BGUNO ELECTPONS 
B ETH!:' S I 

SH~ll CORRECTIONS: 

EFFECTIVE ELECTRONS 
AETHE'S T 

0.561<;30 .. 02 
0.145740+01 

0.545900 .. )2 

0 .123920+01 

c.s2ooon+o2 
O.ll?OOO+'J2 
0.20000'1+00 
0.207000+(13 

-0.631300+00 
0.25417')+02 

OE/DX BY BOUNO ELECTRONS USING THE THO,.AS FER~l ~ODEL 

OIELECTRIC FUNCTION INTEGRAL = 0.376590+01 
FREE ELECTRON CONTRT~UTION = 0.275510+04 

NUMAER OF FREE ELECTRONS/ATOM = 0.254170+02 
NU~BER OF BOUNO ELECTRONS/ATO,. = 0.565830+02 

OE/OX BY TOTAL ElECTRONS 
DE/OX ~y FREE ELECTRCNS 
CF/OX RY ROU'JO ElECTRONS 
D~/OX BY ION SCATTERING 

o. 3294l0•09 
0.145510+08 
0.18 3901)+08 
'J.O 

CUT-ENE~GY IS 1.!0000n+J5 INPUT FOR EFF. CHARGE IS .L'JJJJ0+01 

0.352030+04 

1\J 

""" I 



PROJECTJLE CHARGE STATE 
PROJECTILE ATOMIC WEIGHT 
PAOJECTilE JNJTJA~ ENERGV • 
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0.1130000+02 
0.209000+03 
O.lOOOOC+OB 

PRCFllE GIVEN BYI TARGET ATOMIC NUMBER • 
TARGET OE"4SITY 
TARGET TEMPERATURE 
TARGET ATO~IC WEIGHT • 

RANGE-FACTOR • 0.379~70-02 

').820000+02 
0.112000+02 
0.2000')0+00 
0.207000+0) 

ENERGYIKEVI OELTAEIKEVI CE/CX BY TCfAL HECTIIONS 

----------- ----------- --------------------
I C.IOOOOO+OB 0.12'5000+04 o.H9~to•oa 

2 C.GA7500+07 0.125750+04 O.HUI!O+Otl 
) 0.974930+07 0.126510+06 O.HHOD+OII 
4 0.<;1:2270+07 0.121290+')6 O.H5~30t')O 

5 0,949550+07 O.IZB000+06 O. H7520+08 
6 C.936740+07 o.IZ89:lo+06 0,319690+011 
7 O.'iZ3B50+07 0.130090+06 o. 3112 B2D•oa 
8 0.910840+07 o. I )Z0}0+06 0.3<117920+011 
c; 0,89761t0+07 O.ll2900+06 0. 350 230+ Oll 

10 0.884350+07 0.133710+06 0.152!120+011 
II o.e7oc;7o+o7 o.llH80+06 0.35~920+011 

12 0.857500+07 0.135610+06 0.357370+08 
I J o. 843940+07 o. 116560+06 0. 3591HIO+Of! 
14 0.830280+07 0.137530+06 o. 362430+011 
I 5 0.81~530+07 0.138520+06 0.3650-40+08 
16 0,80Zb80+07 0,139550+06 o. 361760+08 
I 7 0.78!1720+07 c.L4Z070+06 0.37H90+08 
18 0. 774520+07 0,143150+06 o. 377250+08 
l'l C.HOZOO+C7 0,144260+06 0 • 3 80 16 0. 0 8 
20 c. 745770+07 0.145390+06 o. 381140+08 
21 o.7JIZ30+07 0.146550+06 0.)86200+08 
22 C,716580+C7 0.147710+06 o. 389320+08 
n 0.701810+07 0.148~50+06 0.3925)0+08 
74 O.tllt910+07 o. 150500+06 0.196610+08 
25 o.t:noeo+o7 o. 153C'l0+06 0.403200+08 
26 0.651:56C+07 0.154 340+06 0.401>720+08 
2 7 0.1:41130+07 C.l55600+06 0.4l025rl+(lll 
28 o.t255~0+07 o.I57C90+06 0.413960+0~ 

79 C.tOSB50+07 o. 150540+06 0.417190+')8 
)0 0.594000+07 0,161550+06 0.425HD+08 
31 0.577840+07 0.11>1110+06 O.H9830+08 
32 0.51:1530+07 0.164710+01: 0. 4 JI.040+ 08 
33 0.545060+07 0.166350+06 0.4)817(H0t! 
34 0.5211420+07 0.169570+06 0.446070+011 
35 o.5t1qo+o7 0,171340+06 0.451540+08 
H 0,494110+07 0.17Jlb0+06 0.456330+08 
37 0. 4 77020+0 7 0.175060+06 O.HIHO+OO 
)0 0.459510+07 0.178480+06 0,470150+06 
39 0.441660+07 C.I8J510+06 0,47569rl+O~ 

40 0. 421610+ 0 7 0.182100+06 0.481~50+08 
41 o. 405340+07 0.186300+06 1),49(1930+')8 
42 0. 386110+0 1 0.198550+06 0.496860+')8 
u c; 1678t:D+07 0,192180+06 ~. 5fJ~'l7'Jt09 

44 0. 348620+0 7 0,19~760+06 0.51\250+08 

45 0.329llo0+07 o.I987W+06 0,52H90+0fl 
46 0.309270+07 0.202830+06 0.5H520+CS 
41 0.288.980+07 0.205510+06 0.541570+0fl 
48 0.26A4J0+07 0,209t60+06 0.552500+08 
49 O.l';7470+07 0,213910+06 0.5~3710+08 

50 0.226070+07 0.21!1160+06 0,5H910+08 
51 0.204260+07 O,U0860+06 0.582030+01! 
52 0.182170+07 Q,2ZlHOt06 0.588820+08 
~l 0,159810+07 0. 2Z 5660 +06 0. 594680+08 
54 O.l372l:0+07 0.227380+06 0.599200+08 

55 o. 114520+07 O.ZZIIH0+06 0.601670+08 
56 0.91~930+06 O.ZZ7970+06 0. 600 770+08 
57 0.688950+06 0.225160+06 O,S'l\870+08 
58 0,4611>00+06 0,217650+06 0,573550+08 
59 0.245950+06 O.l9H00+06 0,504900+08 

60 0.543570+05 0.9214l0+05 0.2421120+08 

RANGE ~ 0.223890+00 

Fig.25 
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Fig. 24 and Fig. 25 is the output of a GORGON-job. 

Part I in Fig. 24 is printed only one time. 

Part II in Fig. 25 is printed for every energy, for which 

the GORGON-run was· started. 

If a GORGON-run has ftnished for one. energy, 6E ... is subtracted 

from the energy and new run is started with the remaining 

energy 

Fig. 25 shows the results of a calculation of the range. 
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'- 9. 6 Discussion of Results of test Problem: 

The test problern is chosen to be that of a Bismuth ion 

travelling ·through lead. Therefore, the projectile atomic nurober 

is 83, the atomic weight is 209 (more accuracy than this is not 

justified) and the initial energy is 10 GeV. In the target material 

the atomic nurober is 82, the target density is 11.2 g/cc (solid 

density) and the target temperature is 200 eV, and target atomic 

weight is 207. Diagram 24 shows the output that is typically 

produced for each energy during its step by step reduction due 

to the energy loss. This output is reasonably self-explanatory. 

In Fig. 25 column 3 gives dE/dX (Total) in KeV·cm2/gm and 

column 2 gives the energy lost as the particle travels a distance 

of one range factor. Column 1 then gives the next. energy. The 

total range is printed at the bottom and the calculated range 

factor is shown at the top. 

Fig; . 26. shows the calculated results for Bismuth ions ( 10 GeV). 

/30/ slowing down in lead· for 200 eV all at solid densi ty. 

Tooy show the typical effect of range shortening due to ionization 

of electrons. The stopping power of free electrons is greater than/58/ 

that due to bound electrons. The deposition profiles also become 

more peaked as the temperature rises. This is an effect of the 

effective charge which is greater in the hot plasma. The deposition 

profile for heavy ions in cold materials is often constant. 

This is because the increase due to E- 1 term in the Bethe formula 
2 is compensated by the decrease in Zeff{V) as the velocity of the 

ion decreases. However due to the ionizing effect of the free 

electrons the z;ff in a plasma remeins reasonably high even when 

V decreases towards zero. Therefore Bragg peak familiär frorn 

light ion (proton) deposi tion curves reappears. 

A full discussion of the results obtainable by the code and the 

scope of results obtainable will be given in another report. 
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10. Conclusions 

The GORGON code has been shown to be capable of calculating 

the stopping power of heavy and light ions in materials of any 

nuclear charge z. The code in its present state can also calculate 

the stopping power of a-particles, D+ and T+ ions in hot DT plasmas 

which are typically produced during the burn of ICF pellets. The 

code can thus be used to solve a large number of problems con­

cerning the interaction of charged particles with matter in ICF 

pellet simulations 

It has been already noted in various parts of this report 

that the physics in the code could be improved in various ways 

to make the calc~lation more accurate and to extend the codes range 

of validity. 

In particular in very dense strongly coupled plasmas which · 

one, ofte.n has in · laser or ion beam fusion it is likely that 

other theoretical approaches should be used. Further one needs a 

truly dynamic approach to the problern of calculating the effective 

charge on the ion which is loosing energy. Also the treatment of 

slowing down in degenerate elec·tron systems needs to be improved. 

The first two problems require a fairly large amount of work for 

their solution. In fact the first problern is still an unsolved 

problern as the theory of strongly coupled plasmas with partially 

ionized atoms is still far from being solved. Simple models such as 

the OCP (one component plasma model) are to an extent understood, 

but there has bl3en little work on the problern of the stopping power 

in such systems, and in any case this model may be too oversimplified 

even to do accurate calculations in DT. The secend problern has been 

treated, but involves the solution of time dependent rate equations. 

The third problern is easier to solve because there exists simple 

but reliable theories within the R.P.A. However if the electron 

plasma is a strongly coupled plasma there exists no well established 

model. 

Finally the code running time is too long for a direct coupling 

to a sophisticated ion bean fusion code such as MEDUSA-KA. 

However it can be used to calibrate a simpler but very much faster 
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code (to be developed) which can be coupled efficiently to 

MEDUSA-KA. This joint code can then be used to study the 

interaction of ion beams with plane targets and the irnplosion 

and burn of ion bearn driven targets. 
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11. List of symbols used in report 

(Code variables are discussed in sections dealing with 

each part of the code) 

Symbol 

ß 

o (x) 

I'::. V 

f'..N 

f'..w. 
l 

E (q,w) 

E max 

HF 
E 

p 

Description/dimens~ Page. 

a = ll/kT 25 

a = (9~/4)- 1 1 3 51 

ß = (kT)- 1 ergs- 1 53 

Dirac delta function 36 

Small volume element cm-3 26 

Small number of electrons 26 

Fluctuation in velocity of plasma 
particle perpendicular to ion beam, 82 
ern/sec 

Fluctuation in velocity of plasma 
particle parallel to ion beam ern/sec 82 

Energy of an electron state., ergs. 24 

Dielectric function operator 36 

Wave vector and frequency dependent 
dielectric function 36 

Fermi energy, ergs 51 

Energy of electron with momentum 
p·ergs 42 

Exchange contribution to single 
electron energy, ergs 43 

Maximum energy transfer to atomic 
electron,ergs. 77 

Energy of electron in the Hartree-Fock 
approximation,ergs. 76 



Symbol 

n 

8(; 

8 (x) 

8:max 

A free 

A. 
1 

]J 

]J 

'!.' 

v(v) 
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Description/Dimensions Page 

s = r/A. 27 

s
0
= r

0
/A. 27 

Value of s > o 27 

Infinitessimall~ small real nurober 
Positive for I ~j>pF' negative for 
I cr.l <pF 49 
Infinitessimally small positive real 
nurober 50 

Scattering angle-radians 68,76 

Heaviside function, =1,x>O, 
=0, x<O. 46 

Function. ( 4 · 117) • 6 3 

Scattering angle corresponding to 
momentum transfer g 

1
., radi'ans. 7 4 

Maximum angle of deflection of ion 
in collision with an atomic electron, 
radians . 77 

A. == A. ( T) , ( 3 • 1 9 ), cm . 

Scree!lrlng length in Thomas Fermi 
apprm .. imation, ( 4. 80), cm. 

27 

55 

lnAfr e is the Coulomb logarithm 
for electrons 86 

lnAi is the Coulomb logarithm for ions 85 

Chemical potential~ ergs. 

~ = Cos8. Angle between wave vector 
~ and velocity of ion v 

]J
1 

= 2mp 

Chemical potential of electrons in 
TF model , ergs. 

2/ 2 3 ]J 0 = m n4TI, gm.cm . 

Collision time 1 sec . 

Velocity dependent phenomenological 
collision frequency, sec-1 

Complex variable 

Solid density,gm/cc. 

24 

24 

53 

53 

38 

34 

62 

63 

17 

Density of mafuerial,gm/cc. 19 

Charge density (operator) as a function 
of space and time, esu/cm3 . 44 

External (to the system) charge den-
sity, esu/cm3. 44 



Symbol 

PIND (~, t) 

Ptot (~1' t) 

P ( q 'w) 

cjl (x) 

~(x) 
cjl" 

cp(E,t) 
x(a) 

x" (.a) 
0 

X (q,w, ß) 

X 

X 

-

t/J(r) 

t/JE(r) 

t/JN(r) 

t/J (r) 
p -

t/J ( r) 
0 -

t/Jn(~:) 

t/J~(r) 

a 

a 
n 

+ a 
p -
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Description/Dimensions 

Induced charge density, esu/cm3 . 

Total charge densi ty , esu~ 

Fourier transform of charge dens!fv
3 ( esu;r:din ) 

Error function (4.104) 

Function1 ( 6 • 7 ) .. 

cjl" = g /PF 

Scalar potential of electric field 

Function, ( 3. 7 ).., 

x"(a) =dx(a)/dae 

Fourier transform of susceptibility 

44 

44 

45 

61 

82 

53 

35 

25 

25 

function for free erlectron gas ~ 52 

X2 = e2/nhvF• 51 

deflection angle due to scatteringA 
radians. 81 

Total potential inside a quasiatorn 
in the Thomas Fermi rnodel, ergs. 25 

Electron contribution to t/J(r), ergs. 25 

Nuclear contribution to t/J(r), ergs. 25 

Plane wave function of a particle 
with rnornenturn p. 67 -
Ground state wave function of an atorn 67 

Excited state wave function of an atorn 67 

Electron part of Thornas Fermi potential 
excluding self energy,ergs. 31 

interatornic distance-1o- 8crn. 35 

n = -oo, •••• ,oo. Coefficients in series 
expansion, (4. 74).. 54 

2nd quantization creation-operator for 
mornenturn state p. 46 

2nd quantization destruction operator 
for rnornenturn state p. 46 

Bohr radius, crn.. 41 

Atornic weight. 34 

constant, ( 6. 6) 82 

Atornic weight of ion which is slowing 
down. 85 

Atornic weight of p~asrna ion in stopping 
rnedi um.. 8 5 



Symbol 

B 

c 
-c 

da(n) 

dE{&G) 

dE(q) 

dE/dX 

p - 1 (dE/dX) 

d3p -
dV 

d 
X 

dw(n) 
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Description/Dimensions 

Isothermal compressibility = 
= ( au.; 3p) T 1 2 

n = -oo, ••• 0, ••. +oo, Expansion coefficients 54 

First Bernoulli nurober 

Constant 

Velocity of light ern/sec. 

Real number,o <c < 1 

Constant,(3.61). 

Symbol denoting increment in variable. 

Deuterium ion .. 

da = 2nsin8d8, element of solid angle 
radians. 

Probability of a collision in which an 
electron is scattered into a solifi angle 
da and the atom enters the nth excited 
state. 

dl = dV 1 •••• dVz . Ele~ent of configura­
tion space of

3
-b the zb bound electrons 

in an a tom
1 

cm zb.., 

dT is an element of momentum space, 
erg. sec-1. 

Mean energy loss of particle scattering 
into da about &G,erg. 

Mean energy loss for all collisions in 
which momentum ·transfer does not exceed 
c;!1 erg. 

Energy loss per unit path length)erg/cm 

Energy deposition per gm for cross 
section of 1 cm2 1 ergs.cm2/gm. 

Volume element in momentum space, 
erg.sec-1. 

Volume e~ement in energy-momentum space, 
erg2.sec-1 

Element of 

d = el:x x a 
electrSns, 

3 Volume,cm. 

Dipole moment of atomic 

esu.cm. 

Matrix element of d between energy 
states of atom. x 

Transition probability for scattering 
of particle from momentum .121 to.2." when 
the atom undergoes a transition from the 
groundstate to the nth excited state 

53 

33 

85 

54 

34 

19 

67 

68 

67 

24 

67 

72 

5 

5 

50 

49 

67 

73 

72 

66 



Symbol 

E 

~H!:>t) 

Eo 

Ebi 

EEX 

EF 

~k 

E 
0 

E 
n 

IE(t)> 
ETOT 

e 

F 

F 

f 

f+ 

l 
f 
on 

f ::f 
E t: 

f+ 
p 

f(E),f(E:) 
p .... 
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Description/Dimensions 

Energy of ion 1 erg. 

Electric field vector, Volts/ern$ 
- 2 -
E = e /2a ,erg. 

0 0 
Binding ene~gy of ith electron,erg. 

Exchange energy1 erg. 

Fermi energy, erg. 

kth Fourier component of electric 
field,Volt.cm-1. 

Energy of ground state of atom.erg 

Energy of nth excited state of 
atom,erg 

State with energy E at time t 

Total energy per particle (electron~ 
erg. 

charge on electr.on,esu, 

Free energy /atom,ergs. 

Electron contribution to Free energy 
ergs. 

Nuclear contribution to Free ener.gy 
ergs. 

Distribution function in Boltzmann 
equation (non equilibrium)E(E,y,~) 

19 

36 

41 

79 

43 

43 

36 

66 

66 

46 

43 

25 

33 

33 

33 

62 

Force Vector,dynes. 37 

Arbitrary quantum mechanical operator 71 

Operator adjoint to f. 71 

Time derivative of f. 

Matrixelement <crlfln> of f between 
atomic states. 

Occupation probability of a state with 
momentum p and spin 0 for the Fermi 
Dirac mod~l of an electron gas. 

Same as above, 
independent of 

f+ = (1-f-) 
1? E 

when probability is 
spin 

but for state with Same as for f:§:> 
energy E or · E • 

p 

71 

71 

43 

50 

50 

53 



Symbol 

f
1 

(u,z) 

f
2

(u,z) 

f (v) 
0 -

f1 (;,~:,y,t) 

H ext 

i 

k 

k 

k 

K. 
1 

kc 
K(T) 

1 

L 

L 
0 

m 

-137-

Description/O.imensions 

Function (r4.65) 

Funct:hon ( 4. 6 6) 

Maxwell-Boltzmann distribution function. 

Non-equilibrium perturbation part of 
distribution function. 

2- 2 2 g = TI a I 16me Pp· , ( 4. 82) • 
0 0 

Function (6.8) 

Gibb~s Free energy,erg. 

Planckps constant,erg.sec. 

~ = h/2TI,erg.sec. 

Hamiltonian operator for interacting 
electron gas,ergs. 

Part of Hamiltonian describing the 
interaction between the external charge 
and the electron gas (4.32),ergs. 

Total Hamiltonian, (4.36),ergs. 

Bethe parameter,ergs. 

i = 1="1 
Boltzmann~s constant ergs/K 

Wavevector,cm- 1 . 
-1 

k = 1~1 Magnitude of wavevector,cm . 

Electron thermal conductivity , 
erg.cm-1.sec-·1 .K-1. 

Ion thermal cönductivity;t 
erg.cm-1.sec-1.K-1. 

Radiation thermal conductivity , 
erg.cm-1.sec-1.K-1; 

Cut-off wave vector (4.15), 

Function (3.22) 

-1 cm 

Neutron mean free path in DT.cm. 

Stopping nurober per target atom (4.121). 

Stopping number/electron in a uniform, 
electron gas. 

Defined in (6.9), cm. 

Mas.s of ion, gm. 

Mass of electron1 gm. 

Mass <b.f ion which is slowing down, gm • 

Mass of ion in plasma, gm • 

51 

52 

61 

62 

55 

82 

34 

24 

37 

41 

44 

45 

73 

24 

36 

12 

12 

12 

37 

27 

19 

64 

65 

82 

1 1 

24 

86 

86 



Symbol 

m 
p 

m12 
M a 
No 
N 

N 
on 

N 

n 

n 

p 
F 

F. 
F p-

p"' 

p, 
.;;;.;J.. 

p,o (q,w) 

P (q,w) =.i? 
P~(.q,w) 
Po 
p 

Po 

:lPx 
a 
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Description/Dimensions 

Proton mass, gm. 

Reduced mass ( 6. 2 ). 

Mass of atom, gm. 

Avagadro's number. 
-3 Nurober of atoms/unit vol. cm 

Oscillator strength ( 5. 36 )~ 

Total nurober of electrons in 
voluroe V. 

Density of nulclei in a plasma~cm~ 3 

-3 Density of electrons,cm . 

Density of electrons as a function 

85 

81 

75 

85 

77 

73 

24 

23 

24 

of radius in a quasiatom1 cm-3. 25 

Nurober of bound electrons in an .atom. 78 

Nurober of bound electrons per unit 
frequency around frequency Wu 

-2 Total pressure. Dynes. cm .. 
-2 

E lectron pressure, Dynes. cm • 
-2 Dynes. cm • 

of momenturo 

78 

12 

32 

32 Pressure of nuclei, 

p = IP I , magni tude 
erg. sec-1,. 32 

Magnitude of Fermi momenturo, erg.sec-} 41 
-1 

Fermi momenturo vector,erg.sec . 
-1 

Moment um vector, erg. sec .. 
-1 

Momentum vector,erg.sec . 

Momentum of particle i'l erg.sec-~ 
Defined by (4.55). 

Polarization propagator. 

Defined in ( 4. 59), 

Def ined in ( 4 • 81 ) .. 

Impact parameter., cm. 

Impact parameter for 
angle of n/2, cm. 

a deflection 

Concentration of ions with n electrons 

41 

41 

41 

41 

49 

48 

50 

55 

81 

81 

ionized. 80 

x component of momenturo of electron 
in an atom,erg.sec-1. 73 

Momentum vector. Momenturo transfer 42 
in scattering process,cm-1, 67 



Symbol 

gmin 

q1 

~ax. 
go 

r 

r 

r 
·o 
r s 

r 
n 

r 
a 

r 
max 

s 
~ s 
s 
SE 

sk 
R 

R 
0 

t 

TH 

T e 
T. 

1. 

T 

Tf 

TR 
T+ 
A 
T 

Tf 

UE 

UK 

UE,KIN 

UEK 
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Description/Dimensions 

q = I q I, cm-1 

Minimum value of q ( 5. 16) , 

Value of momentum, cm- 1 

-1 
cm 

Minimum transf'er of momentum, cm- 1 

-1 
Intermediate value of momentum, cm . 

Position vector, cm. 

r = 1~1, magnitude of ~,cm. 

radius of quasiatom, cm. 

radius öf sphere of volume V/N measured 
in units of ä (Bohr radius),cm. 

2 2 2 ° r = a + b , n an integer. 
n n n 

69 

72 

72 

72 

36 

25 

25 

41 

54 

Position vector of electron in an atom,cm 68 

Radius at which electrons are free 
electrons, if they have enough energy t0 
move beyond this radius, cm. 78 

Complex variable 52 

""' S Matrix in scattering theory.., ( 4. 49) • 4 7 

Total entropy,erg/K. 12 

Entropy of electrons, erg/K· 34 

Entropy of nuclei, erg/K. 34 

Distance ion has travelled, cm. 13 

Range of ion in a material, cm. 13 

time 1 sec 46 

Temperature of hot electrons, K. 

Electron temperature,K. 

Ion temperature ,K. 
Temperature ,K. 

Temperature in plasma,K. 

Radiation temperabure ,K. 

Tritium ion ... 

Time erdering operator 

Plasma temperature , K. 

Total electron energy, ergs. 

Kinetic energy of nucleus, ergs. 

Electron kinetic energy, ergs. 

Interaction energy of nuclei and 
electronsl' ergs . 

Electron-electron interaction energy, 
ergs 

12 

12 

12 

1 4 

83 

12 

19 

47 

83 

24 

30 

30 

30 

30 



Symbol 

UE,POT 

UKIN 

UPOT 
u 

u 

V~ 
V 

V 

V 
0 

V 

V(~) 

V(q) 

V. (r) 
1 -

V (r) 

VF 
V 

r 
w 

w (p) 
q -

w-pl 
w(r) 

X 

X 
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Description/Dimensions 

Electron potential energy, erg. 

Total kinetic energy, er~ 

Total potential energy, erg. 

u = w jqv F, ( 4 • 6 2 ) • 

Relative speed between a projectile 
ion and plasma electrons, cm.sec-1. 

Internal energy, erg. 

Atomic potential , erg• 
~ -1 v = v /c , cm.sec . r r _

3 Volume"cm . 
-1 

Particle velocity, cm·sec 

Average velocity of an atomic electron~ 
cm.sec-1. 

Velocity vector, velocity of ion 
cm. sec-1. 

Average electron thermal velocity 
cm.sec-1 

Coulomb potential, e-rg. 

Fourier transform function of Coulomb 
potential, erg. 

Pair potential of an ion and an atom, 
erg. 

Page 

31 

33 

33 

51 

86 

12 

67 

89 

24 

35 

36 

36 

38 

42 

42 

65 

Thomas Fermi potential of an atom, erg. 79 
-1 Fermi ve loci ty, cm. sec • 51 

Relative veloci ty." cm. sec - 1• 89 
-1 Frequency, sec 36 

Average revolution frequency of 
electrons, sec-1. 35 

w (p) = s + - s , erg. 50 
q - p q p -1 

Pfasma freqÜency .. , sec . 58 

Revolution frequency of an atomic 
electron at radius r in the Themas-Fermi 
model, sec-1. 78 

Velocity of light particle,cm.sec-1, 81 

Revolution frequencies (classical) of 
ele~~rons in the Bohr model of the atom, 
sec • 78 

Position, x = 1~1, cm. 

Position vector, cm . 

42 

42 



Symbol 

-
X 

X a 
y' ( s) 

y 1 ,y 2 

Yi 

Y1 
z 

zeff 

z 
-z 

" z 

z 
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Description/Dimensions 

Distance between two electrons, cm. 

x1 = ~1 + y1 

x2 = ~1 + y2 
-
X = q/2pF 

X c!bordinate of electron a in 

Function defined by (3.26). 

See eqn. (4.30) for definition. 

Defined in ( 7. 2 )· 

Defined by (7.8), 

an atom, cm. 

Charge on nucleus of an atom, esu. 

Effective charge of an ion moving through 
a plasma, esu . 

z = q/2pF (4.62). 

Complex variable . 

z .. = kT/sF 

Function defined by (4.105) to (4.107). 

Charge on moving ion, esu. 

Charge on ion in plasma, esu. 

Average number of free electrons per atom, 
esu. 

Degree of ionization,(Number of free 
electrons/ atom). 

Equilibrium charge on ion in target 
material, esu .. 

Number of bound electrons in an atom 

41 

53 

53 

55 

70 

28 

53 

85 

86 

25 

11 

51 

52 

53 

62 

77 

81 

80 

80 

9 

67 



-142-

References 

1. E.Nandi, E.Peleg, and z.zinamon, 

"Energy deposition by fast protons in pellet fusion 

targets". Phys. Fluids~~ 574, (1978). 

2. K.A.Long, N.A.Tahir, 

"Energy deposi tion of ions in materials and numerical 

simulations of compression, ignition, and burn of ion 

beam driven inertial confinement fusion pellets. 

KfK-3232, Kernforschungszentrum Karlsruhe (1981). 

3. E.Nardi and Z.Zinamon, 

"Charge state and slowing down of fast ions in plasmas", 

Phys. Rev. Lett. !2_, 1251 (1982) 

4. D.Bailey, Y.T.Lee and R.M.More, 

"Ab initio calculations of the charge state of a fast heavy 

ion stopping in a finite temperature target", 

Proceedings of the Symposium on Accelerator Aspects of 

heavy ion fusion", Gesellschaft für Schwerionenforschung, 

Darmstadt Report, GSI-82-8, p571, (1982). 

5. S. Chandrasekhar, 

"Pr inciples of stellar dynamics ~~ 

Dover, p251 ( 1960) 

6. D.Pines 

"Elementary excitations", Benjamin, New York (1965) 

7. R. Bangerter, 

"The beam-target interaction in heavy ion fusion", 

Proceedings of the heavy ion Workshop, Argonne, Sept. 1978, 

ANL-7 9-41 , p41 5, ( 1 9 7 9) 

8. T.A.Mehlhorn, 

A finite temperature model for ion energy deposition in ion 

driven ICF targets", 

SAND80-0038, (1981) 



-143-

9. T.A.Mehlhorn, 

"A finite material temperature model for ion energy 

deposi tion in ion driven inertial confinement fusion 

targets". 

J. Appl. Phys • .?l_, 6522, (1981) 

10. J.Lindhard, M.Scharff, H.E. Schi~tt 

Notes on atomic collisions II: The ranges of heavy ions 

of low velocity 

Kgl. Danske, Videnskab. Selskab, Mat. 

Fys. Medd. 33, No.14, (1963). 

11. R.M.More, 

"Materials at extreme conditions and ICF targets", 

UCRL-84115, Rev.1 (1980). 

12. J.Lindhard, 

"On the properties of a gas of charged particles", 

Kgl. Danske., Videnskab. Selskab., Mat. Fys. Medd. ~, 

No.8, (1954). 

13. J.J.Thompson, 

Conduction of electricity through gases, Cambridge 

University Press, Cambridge, England (1903) 

14. See S.P.Ahlen, 

"Theoretical and experimental aspects of the energy 

loss of relativistic heavily ionizing particles", 

Rev. Mod. Phys. g, 121 ( 1 9 80) 

15. N.Bohr, 

"The penetration of atomic particles through matter" 

Kgl. Danske, Videnskab. Selskab Mat. Fys. Medd. ~' No.S, 

(1948). 

16. N.Bohr, 

"On the decrease of swiftly moving electrifiec,i particles 

in passing through matter", 

Phil. Mag. 30, 581, (1915) 



-144-

17. H.A.Bethe, 

"Zur Theorie des Durchgangs schneller Korpuskularstrahlen 

durch Materie", 

Ann. der Physik (Leipzig) ~' 325, (1936). 

18. H.A.Bethe, 

"Quantenmechanik der Ein- und Zwei-Elektronenprobleme", 

in Handbuch der Physik, Springer-Verlag, Vol 24, 273 (1933) 

1 9. N. E. Mott, 

"On the theory of excitation by collision with heavy 

particles 

Proc.Cambridge Phil. Soc. ~~ 553, (1931) 

20. F. Bloch, 

"Zur Bremsung rasch bewegter Teilchen beim Durchgang 

durch Materie", Ann. der Physik, 1§_,285, (1933). 

21 . E. Fermi, 

"The ionization loss of energy in gases and in condensed 

materials, Phys. Rev. :i]_, 485, (1940). 

22. L.M.Landau and E.M.Lifshitz, 

"Quantum mechanics", Addison Wesley, Reading, Mass. U.S.A. 

(1960). 

23. N.A.Tahir and K.A.Long, 

"Target design studies for a heavy ion-beam driven inertial 

confinement fusion reactor, Atomkernenergie-Kerntechnik 40, 

157, (1982) 

24. R.Fröhlich, B.Goel, D.L.Henderson, W.Höbel, K.A.Long, NPA.Tahir, 

"Heavy ion beam driven inertial confinement fusion target 

studies and reactor chamber neutranie analysis", 

Nucl. Eng. and Design ll' 201, (1982) 

25. B.Badger et al, 

"HIBALL- a conceptual ion beamdriven fusion reactor study, 

Vols. 1+2 KfK-3202, and UWFDM-450 (1981). 



-145-

26. Proceedings of the Symposium on Accelerator Aspects 

of Heavy Ion Fusion, held at Gesellschaft für Schwer­

ionenforschung, Darmstadt, March/April 1982, 

Edited by D.Böhme, GSI-82-2, (1982). 

27. N.A.Tahir and K.A.Long, 

"MEDUSA-KA, II 

K fK- 3 4 5 4 ( 1 9 8 3 ) 

28. M.J.Clauser, 

"Ion-Beam implosion of fusion targets~' Phys. Rev. Lett. 35 

848 (1975) 

29. M.D.Brown and C.D. Moak, 

"Stopping powers of some solids for 30-90 MeV 
238u ions", 

Phys. Rev. B6, 90 (1972) 

30. N.A.Tahir and K.A.Long, 

"The numerical simulation and theoretical analysis of the 

implosion, ignition and burn of heavy ion beam reactor-size 

ICF-targets", 

Nuclear Fusion ~' 1\lo. 7, 887, ( 1983) 

31. K.A.Long, N.Moritz and N.A.Tahir, 

"The dependence of energy deposition profiles and ranges 

of heavy ions on temperature in hot plasmas produced in 

ICF pellets", 

GSI annual report 1981, Studies on the feasibility of 

heavy ion beams for inertial fusion, GSI-82-6 p54, 

( 1 9~2) 

32. R.A.Long, N.A.Tahir and N.Moritz, 

"The Energy loss of neutron induced knO'ok-on D+ and T+ 

Ions in DT plasmas and its effect on the burn of ICF 

pellets, GSI annual Report, 1982, GSI-83-2, p.54-56, (1983) 

33. N.A.Tahir and K.A.Long, 

"Fusion Power fro:m heavy ion beam imploded targets", 

Phys. Lett. 90A, 242, (1982). 



-146-

34. K.A.Long, N.A.Tahir, 

"Heavy ion beam Fusion: The thermodynamics of ignition 

and the achievement of high gain in ICF targets 

P hy s . Let t 91 A, 4 51 , ( 1 9 8 2 ) . 

35. K.Breuckner and S. Jorna, 

"Laser Driven Fusion" 

Rev. Mod. Phys. ~~ 325 (1974) 

36. B.Goel and D.Henderson, 
11 Neu·tron Fuel Interaction in a HIBALL target", 

GSI Report, GSI-82-8 (see Ref. 26) p626, (1982) 

and private communication. 

37. K.M.Case, F. De Hoffmann, and G. Placzek, 

"Introduction to the theory of neutron diffusion, 

Vol 1., Los Alamos Report, (1953) 

38. F.C.Young, D. Mosher, S.J. Stephanakis, and S.A. Goldstein, 

T.A.Mehlhorn, 

"Measurement of enhanced stopping of 1 MeV deuterons in 

target ablation plasmas~ 

Phys. Rev. Lett. 49 1 549, (1982) 

39. N.F.Mott, 
11 Metal insulator transi tions" 

Taylor and Francis, London 1974 

40. W.Geiger, H.Hornberg, and K.H.Schramm, 
11 Zustand der Materie unter sehr hohen Drücken und 

Temperaturen~ Springer Tracts in Modern Physics Vol. ~~ 

Springer Verlag Berlin, Ed. G. Höhler (1968). 

41. D.A.Kirznits, 

"The limits of applicability of the quasi-classical equation 

of state of matter 11
, 

Soviet Physics J.E.T.P. 35, 1081 (1959) 



-147-

42. R. Latter, 

"Temperature behaviour of the Thomas-Fermi statistical 

model for atoms", 

Phys. Rev. 22_, 1854, (1955) 

43. L.M. Landau and E.M. Lifshitz, 

"Electrodynamics of continuous media", 

Addison Wesley, Reading, Mass. U.S.A. (1960) 

44. S. Doniach and E.H. Sondheimer, 

"Green's functions for solid state physicists", 

Benjamin, New York, 1972 

45. L.P. Kadanoff and G. Baym, 

"Quantum statistical mechanics", 

Benjamin, New York, (1962) 

46. A.A. Abrikosov, L.P. Gorkov and L.E. Dzyaloshinskii, 

"Methods of quantum field theory in statistical physics", 

Prentice Hall, Englewood Cliffs. New Jersey, U.S.A., (1963) 

47. J.R. Schrieffer, 

"Theory of superconductivity", 

Interscience, New York, 1965 

48. D. Bohm and D. Pines, 

"A collective description of electron interactions III, 

Coulomb interactions in a degenerate electron gas" 

Phys. Rev. 21, 609, (1953) 

49. M. Gell-Mann and K. Breuckner, 

"Correlation energy of an electron gas at high energy 11
, 

Phys. Rev. 106, 364, (1957) 



-148-

50. K.A.Long, 

"The many body theory of ferromagnetic resonance in 

metals and alloys", 

Thesis, Imperial College, Uni~ersity of London, (1971) 

51. K.A.Long, 

"The evaluation of the wave nurnber and frequency dependenJc 

susceptibility function at finite temperature", 

Harwell Report (U.K.A.E.A.) AERE/EMR/PR 2277 (2), (1974) 

52. C.Goudard and C.Deutsch, 

"Dense electron gas resE~onse at any degeneracy", 

Journ. Math. Phys. 12, 32, (1978) 

53. L.Spitzer, 

"Physics of fully ionized gases", 

Wiley, New York, 2nd Ed. (1962) 

54. B.D.Fried-and S.D.Conte, 

"The plasma dispersion function", 

Academic Press 1961. 

55. J.A.Barker and D.Henderson, 

"What is Liquid? Understanding the states of matter", 

Rev. Mod. Phy. 43, 587, (1976) 

56. G.Befeki, 

"Collective emission processes in unmagnetized plasmas", 

in Plasma phys~cs, eds: C.DeWitt and J.Peyraud, Gordon 

and Breach, New York, p1, 1972 

57. R.H.Ritchie, 

"I:ttteractiol:\ -of charged partiales w.ith. a c~genera±e Fermi:-Dirac 

electron gas", 

Phys. Rev . .1._1i, 644, ( 1959) . 

58. K.A.Long, N.A.Tahir, 

"The importance of energy loss of ions in cold materials 

and hot dense plasmas for ICF pellet dynamics", 

GSI annual Report, 1982, GSI-83-2 p.57, (1983) 




