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Summary 

Chernica1 interactions between uo
2 

fue1 and Zirca1oy-4 c1adding up to the 

rne1ting point of zirca1oy (Zry) are described in this report. out-of-pi1e 

U0 2/zirca1oy reaction experirnents have been perforrned to investigate the 

chernica1 interaction behavior under possib1e severe fue1 darnage conditions 

(very high ternperatures and externa1 overpressure) . The tests were con­

ducted in inert gas (1 to 80 bar) with 10-crn 1ong zirca1oy c1adding spe-

cirnens fi11ed with uo
2 

pe11ets. The annea1ing ternperature varied between 

1000 and 1700°C and the annealing period between 1 and 150 rninutes. 

The extent of the chernical reaction depends decisively on whether or not 

good contact between uo
2 

and zircaloy has been established. If solid con­

tact exists, zircaloy reduces the uo
2 

to form oxygen-stabilized a-Zr(O) 

and uraniurn rnetal. The uraniurn reacts with zircaloy low in oxygen to form 

a (U,Zr) alloy rich in uraniurn. The (U,Zr) alloy, which is liquid above 

about ll50°C, lies between two a-Zr(O) layers. The affinity of zirconiurn 

for oxygen, which results in an oxygen gradient across the cladding, is 

the driving force for the reaction. The uo
2
/zircaloy reaction obeys a 

parabolic rate law. The degree of chernical interaction is deterrnined by 

the extent of oxygen diffusion into the c1adding, and hence by the tern­

perature and time. 

The growth of the reaction 1ayers can be represented in an Arrhenius 

diagrarn. The uo
2
/Zry-4 reaction occurs as rapidly as the stearn/Zry-4 

reaction above about 1l00°C. The extent of the interaction is indepen­

dent of the externa1 pressure above about 10 bar at l400°C and 5 bar at 

1700°C. The rnaxirnurn rneasured oxygen content of the cladding is about 

6 wt.%, which corresponds approxirnately to saturated a-Zr(O). Up to about 

9 vol.% of the uo
2 

can be chernical1y dissolved by the zircaloy •. In an 

actua1 fuel rod, cornp1ete re1ease of the volatile fission products in 

this region of the fue1 rnust therefore be assurned. 
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Chemische Wechselwirkungen und Reaktionskinetik zwischen uo
2 

und 

Zircaloy-4 von 1000 bis 1700°C 

Zusammenfassung 

In diesem Bericht werden die chemischen Wechselwirkung~n zwischen uo
2

-

Brennstoff und Zircaloy-4-Hüllmaterial bis zum Schmelzpunkt von Zirca­

loy (Zry) beschrieben. Es wurden out-of-pile uo
2
;zry-Reaktionsexperi­

mente unter möglichen SFD (Severe Fuel Damage)-Bedingungen, d.h. bei 

hohen Temperaturen und großen äußeren Überdrucken, durchgeführt, um 

das Reaktionsverhalten zu studieren. Die Experimente erfolgten mit ca. 

10 cm langen Hüllrohrproben, die mit uo
2
-Pellets gefüllt waren, unter 

inerten Bedingungen (1 bis 80 bar). Die Temperaturen variierten zwischen 

1000 und 1700°C und die Glühzeiten zwischen 1 und 150 min. 

Das Ausmaß der chemischen Wechselwirkungen hängt entscheidend davon 

ab, ob ein guter Festkörperkontakt zwischen uo
2 

und Zry besteht oder 

nicht. Falls direkter Kontakt besteht, wird das uo
2 

durch das Zry unter 

Bildung von sauerstoffstabilisiertem a-Zr(O) und Uranmetall reduziert. 

Das Uran reagiert mit sauerstoffarmem Zr unter Bildung einer (U,Zr)-Le­

gierung. Die (U,Zr)-Legierung ist oberhalb etwa ll50°C flüssig und liegt 

zwischen zwei a-Zr(O)-Reaktionsschichten. Die Affinität des Zirkoniums 

zum Sauerstoff ist die Triebkraft für die chemischen Wechselwirkungen 

und führt zu einem Sauerstoffgradienten im Hüllrohrquerschnitt. Die Re­

aktionen zwischen dem uo
2 

und Zry verlaufen nach einem parabolischen 

Zeitgesetz. Der Reaktionsumfang wird durch das Ausmaß der Sauerstoffdif­

fusion in das Hüllmaterial bestimmt und hängt von der Temperatur und 

Zeit ab. 

Das Wachstum der Reaktionsschichten kann in einem Arrheniusdiagramm dar­

gestellt werden. Die uo
2
/Zry-Reaktionen verlaufen oberhalb etwa ll00°C 

genau so schnell wie die Zry/Wasserdampf-Reaktion. Das Ausmaß der Wech­

selwirkungen ist bei 1400°C oberhalb etwa 10 bar und bei 1700°C oberhalb 

etwa 5 bar unabhängig vom äußeren Druck. Der maximal gemessene Sauerstoff­

gehalt in der Hülle beträgt ungefähr 6 Gew.%, was einem nahezu gesättigten 

a-Zr(O) entspricht. Bis etwa 9 Vol.% des uo
2 

werden durch das Zry chemisch 

aufgelöst. In einem Brennstab muß daher mit einer vollständigen Freiset­

zung der flüchtigen Spaltprodukte aus diesem Brennstoffbereich gerechnet 

werden. 
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1. Introduction 

In hypothetical light water reactor (LWR) accidents, nuclear fuel rods 

may be subjected to very high temperatures for periods sufficient to 

cause severe fuel damage. A wide variety of seenarios can be postulated 

in which severe fuel darnage may occur. Power-cooling imbalance condi­

tions, for example, in which the heat generated in the fuel rod exceeds 

the heat removal capability of the coolant, can result in an increase 

in cladding temperatures at an essentially unchanged high coolant pres­

sure. Since zircaloy (Zry) is thermodynamically unstable wi th respect to 

uo2, chemical interactions take place between the cladding and 

fuel. A quantitative description of the uo
2
;zry chemical interaction 

as a function of temperature and time is needed to predict fuel rod 

behavior in severe fuel darnage accidents. 

Extensive out-of-pile and in-pile experiments have been performed under 

a variety of postulated conditions as part of a cooperative arrangement 

for LWR fuel rod behavior research between the Federal Ministry of Re­

search and Technology (Federal Republic of Germany) and the Nuclear Re­

gulatory Commission (USA) /1-8/. Out-of-pile single effects uo2/Zry re­

action experiments /1,2/ and integral rod and bundle tests /3,4/ have been 

performed at the Karlsruhe Nuclear Research Center as part of the German 

Nuclear Safety Project. The primary objectives of the out-of-pile inte­

gral rod and bundle tests are to reach cladding temperatures up to 

2200°C to investigate uo
2 

dissolution by liquid zircaloy, the tempera­

ture escalation due to the steam/zircaloy interaction, the influence 

of spacer, absorber, and control rod guide tube materials on fuel rod 

behavior and failure, and the fragmentation of severely embrittled fuel 

rods on quench /3,4/. In-pile tests performed by EG & G Idaho, Inc., in 

the Power Burst Facility (PBF) at the Idaho National Engineering Laba­

ratory include an extensive series of power-cooling-mismatch tests com­

pleted in 1980 /5-8/, and a series of in-pile bundle tests currently 

in progress to investigate fuel rod behavior under a variety of severe 

fuel darnage (SFD) conditions /9,10/. The primary objectives of the PBF 

SFD program include characterization of fuel rod darnage resulting from 

severe cladding oxidation and melting, uo
2 

dissolution and melting, and 

fuel rod fragmentation. The Severe Core Darnage Analysis Package (SCDAP) 
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is being developed by EG & G Idaho for the detailed analysis of LWR 

fuel rod bundle behavior under severe fuel darnage conditions /11/. The 

results of the uo
2
;zry-4 chemicalinteraction experiments up to the 

melting point of Zry-4 (~1760°C), which are presented in this paper, 

and the results of uo 2;zry-4 dissolution experiments above the melting 

point of Zry-4 /12/ are used for the interpretation of out-of-pile and 

in-pile SFD test results and for the modeling of fuel rod behavior. 

The reaction of uo
2 

with zirconium and zirconium alloys was studied sys­

tematically and reported by Mallett et al. in 1957 /13/ and by Grassman 

and Rooney in 1965 /14/ at temperatures up to 1200°C. Their studies, 
0 however, were performed primarily at temperatures below 1200 C for long 

reaction times. Extrapolation of these results to higher temperatures 

and shorter reaction times has limited validity, particularly since pure 

zirconium and Zircaloy-2 were used in these reaction experiments rather 

than Zircaloy-4. In addition, solid contact between the fuel and clad­

ding materials did not exist in all cases, and the geometry of the spe­

cimens did not correspond to that of a fuel rod in a LWR. More recently, 

the kinetics of the reaction at high temperatures were reported in 1979 

by Hofmann and Politis /1/, who performed extens~ve uo2/Zry-4 out-of­

pile experiments between 900 and 1500°C in an inert atmosphere with an 

external overpressure for annealing times of 3 and 60 minutes, and in 

1980 by Paul et al. /15/, who performed uo
2
;zry-2 experiments between 

1000 and 1500°C in vacuum for times of 3 to 600 minutes. In 1983, Rosinger 

/16/ published results of uo
2
;zry-4 experiments performed at 1100 and 

1200°C in argon at 1 bar for periods of 5 to 120 minutes, and Parsans 

et al. /17/ of experiments performed between 1500 and l850°C in vacuum 

for times of 1 to 125 minutes. The present work describes the results 

of out-of-pile uo
2
;zry-4 experiments conducted from 1300 to 1700°C in 

an inert atmosphere wfrth an exte~nal overpressure for annealing times of 

1 to 150 minutes '· and includes the resul ts of the earlier experiments 
0 performed at 1000, 1100,,\and 1200 C /1/. 

2. Experiment Design and Conduct 

The out-of-pile uo
2
;zry-4 reaction experiments were performed in argonwith 

shortzry-4 cladding specimens filled with stoichiometric high-density uo2 
pellets. The specimen dimensions and other important parameters are summa­

rized in table 1. The chemical composition of the Zry-4 cladding is given 

in i;able 2. The specimens were sealed in helium at atmospheric pressure and 

roorn temperature. 
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A schematic of the high temperature/high pressure autoclave equipment 

MONA is shown in figure 1. Experiments can be performed up to a maxi-
o mum temperature of about 2200 c, and a maximum pressure of 200 bar in 

argon or 40 bar in an argon/oxygen mixture. The specim2n is contained 

in a high pressure vessel and inductively heated, with the cladding as 

susceptor. Cladding temperature is monitared continuously by pyrometer 

and can be measured at three different axial elevations and orienta­

tions of the specimen. In the present expertments, an infrared pyrometer 

calibrated against thermocouple measurements was used. 

The uo
2
;zry-4 experiments were performed at temperatures from 1300 to 

l700°C and reaction times from l to 150 minutes. Each specimen was 

heated at 10 K/s at atmospheric pressure up to the desired temperature, 

and held at this temperature for 60 seconds to allow the cladding and fuel 

to reach thermal equilibrium (figure 2). External pressure was applied 

within 2 to 3 seconds to collapse the cladding onto the fuel. The ex­

ternal pressure ranged from 1 to 80 bar, with the majority of the tests 

conducted at 40 bar. At the end of the test, the specimen was cooled 

under pressure at 5 K/s (figure 2). The cooldown rate was regulated to 

minimize the formation of cracks in the embrittled cladding, which 

simplifie~ metallographic evaluation of the reaction zones. 

The uo2;zry-4 reaction was also investigated as a function of external 

pressure at 1400 and 1700°C. Specimens were tested at 2, 5, 10, 20, 40, 

60 and 80 bar external pressure for 10 minutes. Additional experiments 

were performed with tungsten foil (20 ~m x 2 mm) between the cladding 

and fuel to determine the location of the original uo
2
;zry-4 interface. 

The reaction temperature ranged from 1400 to 1700°C with an annealing 

time of 10 minutes and an external pressure of 40 bar. 

All of the specimens were examined metallographically to determine the 

extent of the uo
2
;zry-4 reaction. Same specimens were examined by scan­

ning electron microscope (energy dispersive analyses) and electron miere­

probe (wavelength dispersive analyses) to identify the reaction products, 

and by Auger electron spectroscopy to determine the oxygen content of the 

cladding as afunction of distance from the uo
2
;zry-4 interface. 
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3. Experiment Results 

The extent of the chemical interaction between uo
2 

and Zry depends de­

cisively on whether or not solid fuel-cladding contact exists. In the 

absence of direct uo
2
;zry contact, oxygen can be transported from the 

uo2 to the Zry via the gas phase only. With no external pressure, no 
0 uo

2
;zry reaction layers have been observed up to 1500 C since no con-

tact existed /1/. Above 1500°C, localized fuel cladding contact always 

occurs due to the greater thermal expansion of the fuel than of the 

cladding, which causes the fuel-cladding gap to close. With sufficient 

external pressure, the cladding collapses completely onto the fuel pel­

lets and solid uo
2
;zry contact exists. Under these conditions, the chem­

ical interaction between uo
2 

and Zry is circumferentially and axially 

very uniform. Zircaloy reduces uo 2 (to uo
2

_x) to form metallic oxygen­

stabilized a-Zr(O) and uranium metal. The uranium reacts only with zir­

conium low in oxygen and therefore penetrates and/or diffuses into the 

cladding to form a (U,Zr) alloy rich in uranium. The (U,Zr) alloy lies 

between two oxygen-stabilized a-Zr(O) layers and is liquid above about 

1150°C, depending on the Zr content. The a-Zr(O) layer adjacent to the 

fuel contains small amounts of the (U,Zr) alloy, primarily along grain 

boundaries. The a-Zr(O) layer adjacent to the ß-Zry region contains no 

(U,Zr) alloy. During cooldown of the specimen, the hypostoichiometric 

uo2-x decomposes into stoichiometric uo2.00 and additional metallic 

uranium. The sequence of the individual reaction layers from the fuel 

to the cladding outside surface at room temperature is: 

[uo + u] + [a-Zr (0) + (U, Zr) ] + (U, Zr) + a-Zr (0) b + prior* ß-Zry 
2 · a 

which are shown schematically in figure 3. In general, the number of 

reaction layers and their sequence is the same for all temperatures 

and reaction times. 

Optical photomicrographs of a typical specimen (1600°C for 3 minutes) 

are shown in figure 4 in the as-polished condition (bright field), and 

K During the experiment, this portion of the cladding was ß-phase, and 
on cooldown transformed into a-phase. At room temperature, it is 
therefore referred to as prior ß-Zry. 
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after oxidation in air (both bright field and polarized light). In the 

as-polished photomicrograph, metallic u and Zr inclusions are visible 

in the uo
2 matrix as shiny partiales. In air, the metallic U and the 

u in the (U,Zr) alloy oxidize readily to uo
2

, a~ ilie Zr remains met-

allic. Comparison of the as-polished and oxidized-in-air photomicro-

graphs thus shows the amount of Zr which has diffused into the uo
2 

ahead of the uo
2
;a-Zr(O) reaction interface. The {a-Zr(O) + (U,Zr)} 

a a 
and (U,Zr) reaction layers and interfaces are easily recognized after 

the U has oxidized in air. The a-Zr(O)b interface with the relatively 

unreacted portion of the cladding is not visible in bright field and 

is therefore examined in polarized light. The extent of the reaction 

differs greatly, increasing with increasing temperature and time. The 

dependence of the reaction on temperature at 1400, 1500, 1600, and 

1700°C after 10 minutes is shown in polarized light in figure 5. The 

dependence of the reaction on time at 1600°C for 3, 6, 10, and 20 min­

utesie shown in bright field (oxidized in air) in figure 6. 

The overall distributions of U and Zr at the uo
2
;a-Zr(O)a interface 

are shown in electron miereprobe (EMP) photographs in figure 7 (1600°C 

for 10 minutes) • In the fuel region, metallic uranium and zirconium parti­

älesare clearly apparent, and are shown in more detail in scanning elec­

tron microscope (SEM) photographs in figure 8 (1700°C for 10 minutes) • 

The U partiales (which contain some Zr) are designated U(Zr), and the 

Zr partiales (which contain some O) are designated Zr(O). Uranium par­

tiales areevident across theentire pellet cross section, with a much 

higher concentration of U near the uo
2
;a-Zr(O)a interface. At the inter­

face (figure 9), some uo
2 

grains are completely surrounded by metallic 

U and have been chemically dissolved to varying extents by Zr. At longer 

times this process is more pronounced. The U does not remain at the inter­

face. It penetrates (as a liquid) along the a-Zr(O) grain boundaries 
a 

(and, to a small extent, probably diffuses through the a-Zr(O) matrix) 
a 

into the cladding to form the (U,Zr) layer or globules. Figure 8 clear-

ly shows that Zr diffuses or penetrates into the uo
2

• The extent of Zr 

diffusion depends on temperature and time, and Zr has been observed up 

to ~500 ~m from the UO /a-Zr(O) interface. The amount of Zr in the fuel 
2 a 

decreases rapidly with increasing distance from the interface. 
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The {a-Zr(O) + (O,Zr)} layer (figures 4, S,and 6) is made up of relative-
a 

ly small, radially elongated a-Zr(O) grains (compared to the a-Zr(O)b 

grains). The (O,Zr) alloy is present along the grain boundaries as 

"stringers" and as small globules within the grains, with some 0 dis­

solved in the a-Zr(O) matrix. The results of the tungsten marker ex­

periments show that the original oo
2
;zry-4 interface lies between the 

{a-zr (0) + (O,Zr)} and (O,Zr) layers* (figure 10). In the figure, one 
a 

edge of the tungsten foil is clearly shown in the upper right hand 

photograph. As is evident in the upper left hand photograph, the posi­

tion of the foil corresponds to the {a-Zr(O) + (O,Zr)l/(O,Zr) inter-
a 

face. The {a-Zr(O)a+ (O,Zr)} layer therefore forms in the fuel region. 

Metallic 0 then penetrates and/or diffuses into the a-Zr(O), primarily 

along grain boundaries, to interact with oxygen-p6or Zr. The interfaces 

with oo2 and with the (O,Zr) layer are quite distinct. 

The (O,Zr) alloy layer, which consists primarily of uranium and contains 

almest no oxygen, is liquid above about ll50°C, depending on the Zr con­

tent. Op to about l400°C, the (O,Zr) alloy forms as a uniform, closed 

layer between two a-Zr(O) layers (figure ll). After very long annealing 

times, the (O,Zr) layer is transformed into many small spherical parti-' 
\ 

cles (figure 11).At l500°C and above, large globules of (O,Zr) alloy 

form within the a-Zr(O)b layer (figure 12). Aftershort annealing times, 

small a-Zr(O) platelets are present at the edges of the (O,Zr) globules. 

With increasing time, the a-Zr(O) platelets (which contain some 0) grow 

in size, consuming large portians of the (O,Zr) globules (figure 12). The 

formation of small spherical particles at lower temperatures and large 

globules at higher temperatures may be due to the change in interfacial 

energy between the liquid (O,Zr) alloy and the a-Zr(O)b matrix, which is 

determined by the 0 and Zr contents of the (O,Zr) alloy and by the 0 con­

tent of, and gradient across, the surrounding a-Zr(O)b phase /18/. 

* Tungsten marker experiments were performed by Hofmann and Politis in the 

earlier experiment series /1/, and the original oo
2
;zry-4 interfacewas 

determined to lie between the (O,Zr) alloy and the a-Zr(O)b layers. At that 

time, relatively few marker experiments were conducted, with varying results. 

~n the present work, several experiments 

clearly show that the original interface 

and (O,Zr) alloy layers (figure 10). 

were performed and the results 

lies between the{a-Zr(O) + (O,Zr)} 
a 
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The a-Zr(O)b layer is rnade up of large a-Zr(O) grains (figures 4, 5 and 

6). In cantrast to the a-Zr(O) layer, it contains no (U,Zr) alloy 
a 

along the grain boundaries and, in general, no U in the rnatrix. The 

boundary between the a-Zr(O)b layer and the rernainder of the cladding 

(prior ß-zircaloy) is generally distinct, but can be very irregular 

in places where large a-Zr(O) incursions extend into the prior ß-zirca­

loy. The cladding is severely ernbrittled when the thickness of the to­

tal reaction zone is large cornpared to the thickness of the rernaining 

Zry-4. After 10 rninutes at 1700°C (figure 5), and 20 rninutes at l600°C 

(figure 6), the cladding is cornpletely ernbrittled. That is, the a-Zr(O)b 

region extends to the outside surface of the cladding. On cooldown, the 

severely ernbrittled cladding fractures in rnany places throughout the 

a-Zr(O)b layer (figures 4, 5, and 6). 

The essential objective of the uo
2
;zry-4 reaction experirnents is a quan­

titative analytical description of the chemical interaction. It is there­

fore necessary to deterrnine the thickness of the various reaction zones 

as functionsofternperature and time. As shown in figure 3, Zone 

I is defined as the thickness of the {a-Zr(O + (U,Zr)} layer, 
a 

Zone II as the thickness of Zone I plus that of the (U,Zr) alloy layer, 

and Zone III as the thickness of Zone II plus that of the a-Zr(O)b layer. 

The individual reaction zone thicknesses were rneasured directly with 

an optical microscope or from photomicrographs at a minimum of sixteen 

orientations on each sample. The average and standard deviation were 

calculated for each reaction zone of each specimen and are given in 

table 3. The standard deviation of the zone II values tended to be the 

largest, particularly at 1500°C and above, because of large variations 

in the size of the globules. Two test series were performed at 1600°C 
0 and 2 additional samples were tested at 1700 C (table 3) due to the 

relatively large uncertainty in temperature measurements at very high 

temperatures. The results show good agreement. The tungsten marker 

specimens were evaluated at azimuthal locations away from the tungsten 

foil and the results are included in table 3. 
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As a result of the external overpressure, some of the liquid (U,Zr) alloy 

may flow into the dishing volumes in the fuel stack. In figure 13, a long­

itudinalsection of a specimen tested at 1700°C for 60 minutes is shown. 

All three pellet interfaces are filled with (U,Zr) alloy, shown at higher 

magnification on the right. It should beemphasized, therefore, that the 

tlückness ot the (U,Zr) "layer" corresponds only approximately to the actual 

amount of (U,Zr) alloy formed during the uo
2
/Zry-4 interaction. In addi­

tion, due to the globule formation of the (U,Zr) alloy at and above 1500°C, 

the (U,Zr) layer thickness was arbitrarily defined and actually contains 

some a-Zr(O)b. 

3.3 UO /Zry-4 Reaction Kinetics --2------------------------

The chemical interaction between uo2 and Zry-4 is a diffusion~controlled 

process. The reaction obeys a parabolic rate law. The reaction zone thick­

nesses are therefore plotted versus the square root of time at 1300, 1400, 

1500, 1600,and 1700°C in figures 14 through 18, respectively. A linear re­

gression using the method of least squares was performed for each reaction 

zone at each temperature. All of the data corresponding to parabolic reac­

tion kinetics (up to but not including the plateau) for each zone at each 

temperature was used for each regression. For simplicity, only the average 

values with uncertainty bands of ±1cr for each zone at each reaction time 

are shown in the figures. Since the reaction zones have zero thickness at 

time zero, the y-intercept in all cases is zero. The calculated regression 

constants (slopes of the lines) and standard errors of estimate are given 

in table 4. The total reaction zone thickness is plotted versus the square 

root of time for all test temperatures in figure 19. 

The affinity of zirconium for oxygen, which results in an oxygen gradient 

across the cladding, is the driving force for the uo
2
/zry-4 reaction. 

Therefore, as the cladding becomes saturated with oxygen, the parabolic 

dependence of the reaction zone thickness on time ceases. Once the 

a-Zr(O)b layer has reached the outside surface of the cladding, the 

thicknesses of the individual reaction zones remain essentially constant 

with increasing time, although the total oxygen content of the cladding 
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continues to increase. The Zr-Zro
2 

phase diagram is shown in figure 20. 
0 

The 0 content of a-Zr(O) varies between 2.1 and 6.7 wt.% at 1300 c, and 
0 3.5 and 7.6 wt.% at 1700 c. Thus, a small increase in the thickness of 

the cladding may occur after the a-Zr(O)b layer has reached the cladding 

outside surface due to the additional uptake of 0 up to Saturation of 

the a-Zr(O)b phase. The a-Zr(O)b layer reached the cladding outside sur­

face after approximately 70 minutes at 14oo
0 c, 30 minutes at 1500°C, 

12 minutes at 16oo0c, and 6 minutes at 1700°C (figures 15 through 18). 

The maximum measured 0 content (from AES analyses) was 6.5 wt.% 0 after 

100 minutes at 1600°C (see Section 3.4). 

The total reaction zone reached a maximum thickness of about 870 ~m for 

all temperatures, which compares to an original cladding wall thickness 

of 725 ~m. This increase in thickness is due primarily to the penetra­

tion of liquid U into the cladding to form the (U,Zr) layer or globules. 

In figures 15 through 18, after the plateau has been reached, the thick­

ness of the (U,Zr) layer ranges from 90 to 150 ~m. The cladding thickness 

also increases due to the collapse of the cladding onto the fuel pellet 

(up to 45 ~m) and, to a lesser extent, due to the small volume increase 

which accompanies the uptake of oxygen by zircaloy to form a-Zr(O). 

The depth of oxygen diffusion into the cladding from the original uo 2/zry-4 

interface, in addition to the growth of the individual reaction zones, is 

also important for predicting fuel rod behavior. As mentioned in the pre­

vious section, the tungsten marker experiments showed that the original 

interfacelies between the {a-Zr(O) + (U,Zr)} and the (U,Zr) layers 
a 

(figure 10). Diameter measurements across the specimens from the different 

reaction layer interfaces showed that thediameterof the {a-Zr(O) + (U,Zr} I a 
(U,Zr) interface is approximately constant with both increasing time and 

temperature (figures 21 and 22, respectively) which also indicates that this 

is the position of the original interface. Therefore, the thickness of 

Zone I was subtracted from the total reaction zone thickness (Zone III) 

to obtain an adjusted reaction zone thickness. The caloulated regression 

constants and standard errors of estimate are given in table 4. 
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Reaction zone growth rate is plotted versus reciprocal temperature in an 

Arrhenius diagram in figure 2J. for each reaction zone. All of the data 

corresponding to parabolic reaction kinetics for each zone at each tempera­

ture was used to perform each regression. The following analytical expressions 

were calculated: 

x
2
/t = 

x2/t = 
x

2/t 

x
2/t 

5.50 exp (-57 I 700/RT) 

0.707 exp(-50,100/RT) 

1.62 exp ( -45 I 200/RT) 

0.259 exp(-41,3JO/RT) 

(1) Zone 

(2) Zone 

(3) Zone 

(4) Zone 

with 

I 

II (~ 1400°C) 

III 

III - Zone I (adjusted 

respect to position of 

original oo
2
/Zry-4 interface) 

where the growth rate coefficient x2/t is in cm2/s, R is 1.987 cal/mol-K, 

and T is in K. Ninety-five percent confidence limits for the predicted values 

and standard errors of estimate for each equation and for the individual 

coefficients (intercept and activation energy) were determined. Details 

of the calculatmons are presented in the appendix. 

The equation for Zone II is only valid UP to 14öo0 c. From 1000 to 1400~C, 

the (O,Zr) layer is a uniform,closed layer between the two a-Zr(O) layers 

(figure 3,11). At 15oo0 c and above, because ofthelarge g1obules of (O,Zr) 

which form within the a-Zr(O)b layer (figure 12), an arbitrary (O,Zr) 

layer thickness was defined which contains some a-Zr(O)b. This data was 

therefore not included in the ZOne II regression. Also, since the (O,Zr) 

alloy is liquid above 115o0 c, the formation of this layer is not strictly 

a diffusion-controlled process. In theory, therefore, it is not correct 

to represent the growth of this layer in an Arrhenius diagram. 

The total and adjusted growth rate equations are compared to oo2/zr, oo2/Zry-2, 

and steam/Zry-4 results from the literature in figure 24 and in table 5. 
0 Mallett et al. /13/ examined the 00/Zr interaction up to 1100 C, and the 

activation energy of 37,000 kcal/mol is somewhat lower than our result 

of 45,200 kcal/mol for the growth of the total reaction zone (Zone III). 
0 

Grassman and Rooney /14/ studied the oo
2
/Zry-2 interaction up to 1300 c, 

and Paul et al. /15/ up to 1Soo0 c. The activation energies from the two 

studies are very similar (50,000 and 47,540 kcal/mol, respectively) and 

somewhat higher than our result. The steam/Zry-4 results of six investi-
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gations (growth of the a-Zr(O) + Zro2 double layer) are shown as a region 

in figure 24 /19-24/. Note that the adjusted growth rate curve (Zone III -

Zone I) lies below this region, but the total growth rate curve overlaps 

the steam/Zry-4 region above about 1100°C. That is, the uo2/Zry-4 reaction 

occurs as rapidly as the steam/Zry-4 reaction above about 1100°C. 

The o, Zr, and U contents of the individual re.action layers were determined 

by Auger electron spectroscopy (AES) and electron microprobe (EMP) analyses 

of specimens tested at 1500, 1600, and 1700°C. Concentrations of lighter 

elements, e.g., oxygen, can be determined very accurately by AES analysis 

using suitable standards, and of heavier elements, e.g., Zr and U, more 

accurately by EMP analysis using suitable standards and correction factors. 

Of particular importance with respect to cladding embrittlement are the 

maximum 0 content and the 0 distribution across the cladding as functions 

of temperature and tilme. The AES and EMP results for the a-Zr(O) and 
a 

a-Zr(O)b matrices (the (U,Zr) alloy contains very little or no 0) are 

presented and compared in table 6. The uncertainty* in 0 content from 

AES analysis of all reaction zones is less than ±0.5 wt.%. The uncertai~­

ties in Zr and U content from AES analysis of the a-Zr(O) matrices are 

somewhat larger. The uncertainties in the AES results are described in 

detail in Reference 25. The Sn content was not determined. The oncertain­

ties in Zr, u, and Sncontents from EMP analysis of the a-Zr(O) matrices 

are ±3.0, ±0.2, and ±0.1 wt~%, re~~ectively. The 0 content was determined 

by differance {100 wt.% - (Zr + U + Sn contents) }and has an uncertainty 

of ±J.o wt.%. The agreement between the AES and EMP results is excellent. 

0 
.EMP results of a specimen tested for 6 minutes at 1500 C are shown graphi-

cally in f igure 25_, with Zr and U contents in each of the reaction layers 

plottedas functions of distance from the uo2/a-Zr(O)a interface. In the 

{a-Zr(O) + (U,Zr)} region, the results for the a-Zr(O) matrix and the a a 
(U,Zr) stringers are plotted separately. 

* All uncertainties are ±3cr. 
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The AES results of four specimens tested for 6, 30, 100, and 150 minutes 

at 1500°C are shown in figure 26, of three specimens tested for 3, 20, and 

100 minutes at 1600°C in figure 27, and of three specimens tested for 3, 

10, and 60 minutes at 1700°C in figure 28. (The complete AES results for 

all specimens examined are published in Reference 25.) The 0 and u con­

tent in the a-Zr(O)a' a-Zr(O)b, and prior ß-Zry matrices areplottedas 

functions of distance from the uo2/a-Zr(O)a interface at the top of each 

figure, with Zr, o, and U elemental distribution maps below. The compo­

sitions of the a-Zr(O)a' a-Zr(O)b, and prior ß-Zry matriees as determined 

from b.oth AES and EMP analyses can be described as follows: 

- Initially, an 0 gradient exists across the zircaloy from the uo2 to 

the cladding outside surface (with an 0 minimum in the (U,Zr) region). 

With increasing time, the 0 gradient across the cladding levels off 

and the total 0 content of the cladding increases up to a maximum of 

about 6 wt.%. 

- The Oconcentrationprofile across the a-Zr(O) layer is relatively 
a 

flat for annealing times of 3 minutes or more. The matrix contains 

up to 10 wt.% U (with an average value of about 6wt.%) and up to 

1.6 wt.% Sn. The overall composition of a-Zr(O) remains relatively 
a 

constant with increasing time. With the exception of very long anneal-

ing times, the Sn content is always less than in the a-Zr(O)b matrix. 

- The 0 concentration profile across the a-Zr(O)b layer is also rela­

tively flat, and dropsrather abruptly at the a-Zr(O)b/prior ß-Zry 

interface. The matrix contains up to about 6 wt.% 0 (although in 

general slightly less than the a-Zr(O) matrix), no u (in general), and 
a 

up to 1.6 wt.% Sn. After very long annealing times, the 0 contents of the 

two a-Zr(O) matrices are about equal and, near the (U,Zr) globules, the 

a-Zr(O)b matrixalso contains up to about 6 wt.% U. 

- The prior ß-Zry matrix contains up to 3 wt.% 0 and up to 1.6 wt.% Sn 

(which corresponds to the initial Sn content of Zry-4). In no case does 

the matrix contain U, even after very long annealing times. 

The O, Zr, and U contents of the uranium-rich (U,Zr) alloy regions were 

also determined by AES and EMP analyses. Unfortunately, discrepancies 

exist between the two sets of measurements for many different specimens. 

The AES results show much higher 0 and Zr contents in the alloy (up to 

5 wt.% 0 and up to 55 wt.% Zr) than the EMP results (no 0 and up to 35 wt.% Zr), 

especially in the stringers. The width of the electron beam used in the 
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AES measurements was relatively large (4 ~m), and in the EMP measurements 

much smaller (0.1 to 1.0 ~m). The stringers are on the average about 0.5 ~m 

wide, with globules up to about 10 ~m in diameter. Therefore, one possible 

explanation for the discrepancy between the AES and EMP results in the 

stringers is that the AES beam analysed a portion of the surrounding 

a-Zr(O) matrix, resulting in erroneously large 0 and Zr contents. Since 
a 

EMP analysis gives in general more accurate results for heavier elements, 

the EMP results are presented alone in table 7. (The AES results are 

shown graphically in the lower portians of figures 26, 27 and 28). The 

uncertainties in Zr, 0 and Sn contents from EHP analyses of the (O,Zr) 

alloy are ±1.1, ±3.0 and ±0.1 wt.%, respectively. The 0 content was 

determined by difference {100 wt.%- (Zr+ 0 +Sn contents)} and has 

an uncertainty of ±3.2 wt.%. The compositions of the 0-rich metallic 

phase in the oo2 near the oo
2
/a-Zr(O)a interface, the (O,Zr) stringers 

in the a-Zr(O) layer, and the (O,Zr) layer and/or globules as determined 
a 

by EMP analysis can be described as follows: 

- In general, the uranium-rich (O,Zr) metallic phases contain no 0 and no 

Sn. 

-In the fuel near the oo2/a-Zr(O)a interface, metallic 0 particles 

containing small amounts of Zr (up to about 2 wt.%) are present. 

- The (O,Zr) alloy stringers and particles in the a-Zr(O) matrix contain 
a 

slightly more Zr (up to about 5 wt.%). With increasing time, the Zr 

content decreases and the 0 content increases correspondingly. No Zr 

or 0 concentration gradients are evident in this region. 

- The (O,Zr) alloy layer or globules contain up to 35 wt.% Zr and up to 

1 wt.% Sn after very short annealing times. With increasing time (and 

increasing 0 content of the surrounding a-Zr(O) matrix), the Zr content 

decreases to a minimum of about 3 wt.% as the Zr reacts with 0 to form 

additional a-Zr (0) along the edges of the globules (figure 12), and the 

0 content increases correspondingly. The Sn content in the (O,Zr) alloy 

decreases to zero as the Sn reacts with Zr to form a Zr-rich (Zr,Sn) 

alloy at the edges of and in some cases within the globules. The (Zr,Sn) 

alloy contains up to 15 wt.% Sn. 
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- After very long annealing times, the compositions of all of the (U,Zr) 

alloy phases across the entire oxidized cladding cross section are 

very similar (no oxygen, 2 to 3 wt.% Zr, 97 to 98 wt.% u, and no Sn). 

With increasing temperature, the phenomena and tendencies described above 

for all of the a-Zr(O) and (U,Zr) alloy phases are accelerated. For example, 

at 1500°C the cladding is saturated with Oafter about 60 minutes, and at 
0 

1600 C after about 30 minutes. 

After very long annealing times at high temperatures, the compositions 

of the (U,Zr) globules and of the surrounding a-Zr(O)b matrix become more 

complex. EMP results of a specimen tested at 1600°C for 100 minutes are 

shown in figure 29. The globule is made up of (U,Zr) alloy regions within 

a lattice rich in o, Fe, and er, and is surrounded by a Sn-rich layer. 

(The 0-, Fe-, and Cr-rich lattice and Sn-rich border were also observed 

in globules of specimens tested at 1500°C for 100 and 150 minutes). Above 

the globule is an isolated (U,Zr)o2 ceramic particle. The a-Zr(O)b near 

the globule contains about 5 wt.% U (see also figures 26,27, 28). Uranium was 

found in the a-Zr(O)b matrix near the (U,Zr) globules in several specimens 

tested for very long annealing times. When the cladding is completely 

saturated with o, i.e., an 0 gradient is no longer present, the Zr in the 

(U,Zr) alloy preferentially reacts with 0 from the surrounding a-Zr(O) 

matrix to form additional a-Zr(O) (figure 12), and the U content of the 

remaining (U,Zr) alloy increases. The movement of Zr and U within the 

globules is probably very rapid since the (U,Zr) alloy is a liquid at test 

temperatures. The composition of the additional a-Zr(O) (or prior (U,Zr) 

alloy) which forms is very similar to that of the a-Zr(O) matrix (up to 
a 

6 wt.% each of 0 and U). 

The (U,Zr) alloy is liquid above about 1150°C and may flow into the dishing 

volumes between pellets (and into cracks and open porosity) due to the exter­

nal overpressure (figure 13). AES analyses were performed on this material 

from the specimen tested at 1700°C for 60 minutes (figure 30) · In close 

contact with uo2 , Zr from the (U,Zr) alloy reacts with 0 from the uo2 to 

form a thin homogeneaus layer of a-Zr (0). In some cases, a-Zr.(O) incursions 
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extend into the (U,Zr) region. The compositions of the a-Zr(O) and (U,Zr) 

phases are included in tables 6 and 7. The a-Zr(O) phase contains 3 to 5 

wt.% 0 and 6 to 10 wt.% U. The (U,Zr) phase contains no O,about 4 wt.% Zr·, 

and is predominately a single phase. Some second-phase particles with a 

higher Zr content are also present in the (U,Zr) region. Some of the 

Zr (0) which was observed within the uo2 near the fuel/cladding interface 

may have formed by a similar process, i.e., the liquid (U,Zr) penetrated 

along connected pores into the uo 2 pellet and the Zr interacted with the 

uo2 to form a-Zr(O) within the fuel region. 

3.5 UO /Zry-4 Chemical Interaction as a Function of External Pressure --2--------------------------------------------------------------· 
The influence of external pressure (1 to So bar) on the uo

2
/Zry-4 inter­

action under non-oxidizing conditions was investigated at 1400 and 1700°C. 

In figure 31, reaction zone thickness is plotted versus pressure for the 

three reaction zones at 1400 and 17oo0 c. At 14oo0 c, the interaction is 

independent of external pressure above about 10 bar, and at 1700°C above 

about 5 bar. Internal pressure at room temperature was 1 bar, which 

corresponds to 5.6 bar at 1400°C and 6.6 bar at 1700°C, assuming constant 

internal volume. The actual internal pressure at test temperatures is 

difficult to calculate because the internal volume at temperature is not 

easily determined. However, the internal pressures were probably somewhat 

higher than 5.6 and 6.6 bar since the internalvolume decreases with in­

creasing temperature due to the greater thermal expansion of the fuel than 

of the cladding. The significance of these results is that at 1400°C a 

minimum differential pressure of approximately 5 bar is required for good 

uo2/zry contact and uniform reaction layer formation. At 1700°C, the 

interaction is independent of differential pressure in the examined range 

of 1 to 80 bar. That is, differential thermal expansion of the fuel and 

cladding alone is sufficient for good fuel/cladding contact. At very low 

external pressures where the fuel/cladding contact was not good, many 

pores were observed in the a-Zr(O)a phase near the uo
2 

interface. 

3.6 Uncertainties 

Rand.om variations ia the reaction zone thicknesses were principally caused 

by uncertainties in the measurements of: (a) reaction zone thickness, (b) 
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reaction time, and (c) reaction temperature (calibration error and repro­

ducibility). The equations describing the data are presented with 95% 

confidence limits in the appendix, which indicate the portion of the data 

variation not explained by the diffusion-based model. Probable and pos­

sible sources of error in the data-taking process and the adequacy of the 

assumed model are discussed below. 

Variations in reaction zone thickness were quantified by performing a number 

of measurements (at least 16) for each reaction zone of each specimen. For 

each specimen, the variability was characterized by calculating the standard 

deviation (1cr) for each reaction zone thickness, as shown in figures 14 

through 18 and given in table 3. The Zone I interfaces were uniform and 

well-defined, and in most cases ±1cr for Zone I was less than ±10 Jlm. The 

Zone II interfaces at 1300 and 1400°C were also uniform and well-defined, 

except after very long annealing times, and in most cases ±1cr was less 

than ±10 Jlm. However, at 1500, 1600, and 1700°C, the variation in Zone II 

values was larger due to the globule formation of the (U,Zr) layer and the 

irregularity of the (U,Zr)/a-Zr(O)b interface lfigure 6). One standard 

deviation for Zone II at the higher temperatures was, in general,60 Jlm or 

less. The Zone III interfaces were relatively uniform but in several cases 

large incursions of a-Zr(O) extended into the prior ß-Zry region, making 

it difficult to define this interface. One standard deviation for Zone III 

was, in general, 30 Jlm or less. 

The uncertainty associated with performing the thickness measurements was 

estimated tobe ±10 Jlm (±3cr). This uncertainty includes the resolution 

limit of the optical microscope and the ability of the operator to align 

the specimen. This err6r is small compared to the sources discussed below. 

The uncertainty in reaction time arises from the heatup and cooldown periods, 

during whicll additional uo2/Zry-4 reaction may occur. As shown in figure 2, 

heatup and thermal equilibration were performed without external pressure, 

preventing (in most cases) any fuel/cladding interaction. Localized contact 

did occur at 1500°c and above, even without external pressure, due to the 

greater thermal expansion of the fuel than of the cladding. At 1600°C, 
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therefore, the maximum additional reaction time due to heatup was (100°C f 

10 K/s + 60 s) = 70 s and at 1700°C, 80 s. However, the extent of the 

reaction during this time was probably limited since uniform fuel/cladding 

contact did not exist. Cooldown was performed at 5 K/s under pressure 

(figure 2) . Substantial additional fuel/cladding interaction probably 

occurred within the first 2oo0 c of cooldown. Therefore, the maximum 

additional reaction time due to cooldown was (200°C + 5 K/s) = 40 s. Up to 

and including 1500°C, the maximum total error in reaction time was thus 

+40 s. This error is small for reaction times of 3 minutes or more. Above 
0 

1500 c, the maximum total error was +120 s, which becomes significant 

at the shorter reaction times. However, this estimate seems to be some­

what large since shifting all of the data points at 1600 and 1700°C 

(figures 17 and 18) 120 s to the right results in substantial negative 

reaction zone thicknesses at time zero. From the data in figures 17 and 

18, it appears that only the specimens tested for 1 minute have a notice­

able error, indicating that the total error in reaction time at high tem­

peratures is probably closer to +60 s than +120 s. 

The uncertainty in reaction temperature is by far the largest and most 

difficult to quantify. The uncertainty arises in calibrating the emissivity 

(which is actually measured) against temperature (the desired result). The 

calibration was performed by direct comparison of thermocouple-measured 

temperatures and infrared pyrometer-measured emissivities. The thermo­

couples were Pt-10% Rh/Pt with an uncertainty of ±(0.5% T) from 700 to 1700°C, 
0 

as given by the manufacturer. The calibration was performed at 1300 and 1400 C, 

at which the thermocouple has an uncertainty of ±7°C. All of the temper-
o 

atures determined by pyrometer measurements above 1400 C were therefore 

extrapolations of the calibration curve. Emissivity is a function of the 

temperature of the material, the wavelength of the radiation, and the 

chemical composition of the material. Emissivity also varies depending on 

the radiation direction and the material surface condition. All of these 

factors contribute to the uncertainty in the emissivity measurement. 

However, several factors indicate that the temperature measurement was 

relatively good. First, related experiments performed recently in a 

different apparatus showed that the melting point of Zry-4 is 1760 ± 30°C 

/26/. Cladding melting was observed in several specimens tested at 1750°C in 

MONA but in none of the specimens tested at 1700°C. Second, the results at 

1500 and 1600°C are reasonably spaced with respect to the results at 1400 

(the upper limit of the thermocouple calibration) and 1700°C (figure 19). 
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Third, the two test series performed at 1600°C showed good repeatability. 

Therefore, the temperature uncertainty is estimated to be ± 30°C. 

The equations developed to describe the data (Eqs. 1,2,3,4) assume that the 

uo2/Zry-4 interaction can be modelled by considering only the diffusion 

of oxygen into the cladding. However, although oxygen diffusion is the 

predominant force for the reaction, other phenomena may be important as 

well. For example, the liquid (U, Zr) alloy may flow into the dishing 

volumes between pellets and into pellet cracks and open porosity due 

to the external overpressure. The observed amount of (U,Zr) alloy was 

probably less than the amount actually formed during the reaction. In 

addition, the irregularity of the (U,Zr)/~-Zr(O)b interface at high 

temperatures and definition of a (U,Zr) "layer" resulted in errors in 

the Zone II values. Since the maximum extents of the globules were 

measured and no attempt was made to convert the actual globule area into 

a layer thickness, the (U,Zr) "layer" actually contains some {);-Zr(O)b. 

That is, the reported Zone II thicknesses at high temperatures are 

too large. The 95% confidence limits given in the appendix for the 

growth rate equations therefore contain contributions from stochastic 

processesaffectingthe experimental data and physical phenomena not 

considered by the assumed model. 

4. Discussion 

4.1 UO /Zry-4 Chemical Interaction Phenomena --2-------------------------------------

The chemical interaction between uo2 and Zry-4 results in the following 

individual reaction layers at room temperature: 

[uo2 + U}+[~-Zr(O)a,+ (U,Zr)]+ (U,Zr) + ~-Zr(O)b+ prior ß-Zry 

which are shown in schematically in figure 3. In general, the number of 

reaction layers and their sequence is the same for all temperatures and 

reaction times. 
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Metallic U has been observed in the fuel across the entire pellet cross 

section, with a much higher concentration of U near the uo2/a-Zr(O)a 

interface (figure 8). At the pellet center, most of the U forms during 

cooldown as hypostoichiometric uo
2 

decomposes into stoichiometric 
-x 

uo2 . 00 and elemental U (figure 32). Near the interface, a large part of 

the u forms at temperature due to the reduction of uo2 below the 

uo2_x/(uo2_x + U) phase boundary. As Zry takes up 0 and reduces the 

uo2 to uo2-x at high temperatures, the fuel region remains a single 

phase (figure 32) until the uo
2
_x/(uo

2
_x + U) phase boundary is reached 

(0/U = 1.92 at 1700°C). Reduction of the fuel below the phase boundary 

results in the formation of U in the fuel region at test temperatures, 

particularly near the fuel/cladding interface due to the diffusion of Zr 

into the uo
2

. 

Metallic Zr particles containing some o have also been observed in the fuel 

up to about 500 ~ from the uo 2/a-Zr(O)a interface (figure 8). Elemental 

Zr clearly diffuses or penetrates into the uo 2 ahead of the reaction inter­

face. Therefore, the interface region has to be treated as a ternary 

system. Only ternary diffusion couples can result in the formation of two-· 

phase zones /27/. 

The a-Zr(O) layer forms by diffusion of 0 into the cladding. The fuel is a 
chemically dissolved by Zry to form metallic a-Zr(O) and elemental U. The 

U does not remain at the uo2/a-Zr(O)a interface. It penetrates as a liquid 

along the a-·Zr (0) grain boundaries into the cladding to interact with 
a 

0-poor Zr and form a (U,Zr) alloy. The (U,Zr) alloy is present in small 

amounts (up to about 10% of the area) along the a-Zr(O) grain boundaries a 
and as small globules wihtin the a-Zr(O) grains. No pronounced composi­

a 
tion gradients in the alloy as a function of distance from the reaction 

interface were found. The a-Zr(O) matrix itself contains elemental U 
a 

(up to about 6 wt.%). In specimens tested at higher temperatures (1500°C 

and above), some of the U is present at room temperature as very small, 

homogeneously distributed inclusions (figure 3~. The nurober of inclusions 

increases with increasing temperature. The a-Zr(O) can dissolve a small 

amount of U at high temperatures to form a homogeneaus solid Solution of 
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Zr, O, and U, and on cooling, metallic U may precipitate in the matrix /1/. 

At lower temperatures (1300 and 14oo0 c), U precipitates have not been ob­

served in the a-Zr(O) matrix (although U is present in the matrix), even 

after very lang annealing times (figure 34), which indicates that the sol­

ubility limit of U in a-Zr(O) was not exceeded. No gradients in U content 

of the a-Zr(O) matrix as a function of distance from the reaction inter-
a 

0 
face were found. At the lowest temperatures (1200 C and below), no U is 

present in the matrix. 

The appearance and composition of the (U,Zr) layer and globules change sub-
o stantially with increasing temperature and reaction time. Up to about 1400 c, 

the (U,Zr) alloy forms initially as a uniform, closed layer between the 
0 

two a-Zr(O) layers. At 1500 C and above, large globules of (U,Zr) alloy 

form within the a-Zr(O)b layer. As the cladding becomes saturated with 0 

(with increasing time), the Zr in the (U,Zr) alloy, which has a greater 

affinity for 0 than for u, begins to react with 0 from the surrounding 

a-Zr(O) matrix to form additional a-Zr(O). The U content of the (U,Zr) alloy 

therefore increases with increasing time, and the Zr content decreases. 
0 At lower temperatures (1300 and 1400 C) after very lang annealing times, 

the (U,Zr) layer is transformed into many small spherical particles (figure 11), 

which is probably the result of two processes: (a) the growth of additional 

a-Zr(O) into the (U,Zr) region, isolating portians of the liquid alloy, and 

(b) the tendency of the U-rich alloy to form spheres to reduce its interfa­

cial energy with respect to the surrounding a-Zr(O) matrix /18/. At higher 
0 temperatures (1500 c and above) after lang annealing times, the additional 

a-Zr(O) consumes large portians of the (U,Zr) globules (figure 12), leaving 

a complex structure of (U,Zr) alloy and Zry-4 alloying elements (Sn, Fe, and 
0 

Cr) (figure29). At the lowest temperatures (1200 C and below), the growth 

of additional a-Zr(O) into the (U,Zr) region after lang annealing times was 

not observed. At these temperatures, the reaction kinetics are relatively 

slow and the examined reaction times (up to 60 minutes) were not lang enough 

for the cladding to become saturated with oxygen /1/. 



-21-

Wetting behavior studies of the U/Zry-4 and U/a-Zr(O) systems have shown that the 

Wettability of Zry by liquid u worsens with increasing 0 content of 

the Zry. That is, a U-rich (U,Zr) alloy or metallic U wets 0-poor 

Zry much better than a-Zr(O). Therefore, as the 0 content of the cladding 

increases, the (U,Zr) alloy will preferentially take on a spherical or 

globular shape to reduce its surface area, and thereby minimize the inte­

gral interfacial energy of the system /18/. 

0 The compositions of the (U,Zr) globules at 1500 C and above range from about 

65 wt.% U and 35 wt.% Zr after short annealing times to about 97 wt.% U and 

3 wt.% Zr after long annealing times. The U-Zr phasediagram is shown in 

figure 35. The compositions of the globules all lie in the two-phase (a-U + 

o) region at room temperature. The a-u phase contains 99 wt.% U and 1 

wt.% Zr and the~o phase contains 49 to 57 wt.% U and 43 to 51 wt.% Zr 

(at room temperature). It is reasonable, therefore, that the rangein compo­

si tion of the (U, Zr) alloy under non-equilibrd:'tlm condi tions lies between 

the a-U and o phase compositions. At higher temperatures, up to the solidus 

line in figure 35, U and Zr are completely miscible (isomorphous system). 

At the higher Zr contents (30 to 35 wt.%) for the test temperatures examined 
0 

(1300 to 1700 C), the alloy can range from solid to partially liquid to com-

pletely liquid. At the lower Zr contents, the alloy is completely liquid at 

all examined temperatures and times. (It should be emphasized that the phase 

diagram has not been precisely determined - the dashed curves in figure 35 

indicate that the phase boundaries have not been reliably established - and 

only represents equilibirum conditions which, in general, were not the case 

for these specimens· There is a great deal of discussion in the literature 

about whether the o phase is a metastable or stable intermediate phase /28/.) 

The a-Zr(O)b layer forms in the original cladding 

0 from the U02/a-Zr(O)a reaction interface through 

regions to the 0-poor ß-zry region. In cantrast to 

region by diffusion of 

the a-Zr(O) and (U,Zr) 
a 

the a-Zr(O) layer, the 
a 

a-Zr(O)b layer contains no (U,Zr) alloy along grain boundaries or within 

grains and no metallic U in the matrix (except after very lang annealing 

times). The transitions in composition from the a-Zr(O) region and (U,Zr) 
a 

layer or globules to the a-Zr(O)b region are, in general, distinct and 

abrupt (figures 25, 26, 27
1 

28). Although the 0 sontents in the a-Zr(O)a and 
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a-Zr(O)b layers are very similar or nearly identical, the U content changes 

abruptly. After very long annealing times, the a-Zr(O)b region near the 

(U,Zr) globules may also contain up to 5 wt.% U. The 

additional a-Zr(O) {or prior (U,Zr) alloy)} which forms along the edges 

of the (U,Zr) globules contains U. The original a-Zr(O)b matrix contains 

no U. The compositions of the a-Zr(O) and additional a-Zr(O) matrices are 
a 

very similar (up to about 6 wt.% each 0 and U) and both formed in U-rich 

regions (the uo
2 

pellet and the (U,Zr) alloy, respectively). The a-Zr(O)b 

matrix, however, formed in a U-free region (the Zry-4 cladding}. Apparently, 

if a-Zr(O) forms in a U-rich region at high temperatures, the matrixwill 

contain u, and vice versa. The absence of U in a-Zr(O}b away from the (U,Zr) 

globules (and the absence of any gradients in U content in the a-Zr(O) 
a 

matrix indicates that U diffuses very slowly in a-Zr(O) {the diffusionrate 

probably depends on the 0 content of the a-Zr(O)}, especially compared to 

O. The movement of large amounts of U from the reaction interface to the 

(U,Zr) layer therefore probably occurs in the liquid phase along the (U,Zr) 

stringers. 

The prior ß-Zry region contains from 1 to 3 wt.% 0 (fi.gures 26,27,28 and Reference 

25), as determined by AES analysis. From the Zr-Zro2 phase diagram (figure 20), 
0 0 

ß-Zr can contain up to 0.8 wt.% 0 at 1300 C and up to 1.7 wt.% 0 at 1700 C. 

The additional 0 which can be dissolved in ß-Zry, as compared to ß-Zr, can 

probably be attributed to the presence of the alloying elements in ß-Zry 

(Sn, Fe, and Cr). 

The isothermal section of the U-Zr-0 ternary phase diagram at 1000°C is shown 

in figure 36 /29/. The initial tie-line for the fuel/cladding interaction 

lies between uo
2 

at point A and Zr at point B. As the reaction proceeds, 

point B moves continuouslyfrom Zr toward oxygen-saturated a-Zr(O), the 

final stable reaction product between Zr and 0 in the uo2/zr interaction 

under solid state conditions (point C). Oxygen-stabilized a-Zr(O) contains 

a maximum of about 30 at.% oxygen, as shown in frlgure 20. Point A moves 

relatively little (toward uo
2

_x) since the amount of uo2 _in the experiments 

was always much larger than the amount of zircaloy (6.8 g/cm uo
2 

and 1.5 g/cm 

Zry}. The final tie-line for the interaction is therefore AC. When this 

equilibrium position has been reached, the quasi-binary a-Zr(O) (with 30 at.% 

oxygen)- uo2 phasediagram is applicable (figure 37 /26/). 
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The wetting behavior of various liquid/solid combinations of u, Zry, 

a-Zr(O), and uo2 has been investigated in argon from 1800 to 2000°C /18/. 

The surface and interfacial energies of the various systems were deter­

mined from the measured wetting angles. Estimation of the total interfa­

cial energy for two different reaction layer sequences of the uo
2
/Zry-4 

interaction shows that the observed sequence (figure 3) : 

uo2 + a-Zr(O)a + (U,Zr) + a-Zr(O)b + prior ß-Zry 

is energetically more stable than another possible sequence: 

uo
2 

+ a-Zr(O) + (U,Zr) + prior ß-Zry. 

That is, the total interfacial energy tends toward a minimum for the 
0 temperature range 1130 to 1700 C. 

The observed sequence of reaction layers can also be explained from the 

U-Zr-0 ternary phase diagram /1,30/. The diffusion path between final com­

positions of a diffusion couple need not necessarily be a straight line. 

HofmannandPolitis suggested a straight line between uo
2 

and a-Zr(O) /1/. 

Olander suggested a rather complicated diffusion path which matches the 

observed reaction layer arrangement /30/. 

4.2 uo2/Zry-4 Reaction Kinetics 
-- ------------------------

The rate-determining step in the uo2/Zry-4 reaction is the diffusion of 0 

into the zircaloy cladding. This is confirmed by the good agreement between 

the activation energies for the oxidation of zircaloy by uo2 and by steam. 

In the uo2/Zry-4 reaction, the activation energy for the growth of the 

total reaction zone is 45,200 cal/mol, and for the growth of the { (U,Zr) + 

a-Zr(O)b} reaction zone, which corresponds approximately to the growth 

of the a-Zr(O)b layer alone, is 41,300 (figure 23). The (U,Zr) layer 

should have little or no effect on the reaction kinetics since it can 
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dissolve very little 0 and it is liquid, thereby providing an easy path 

for 0 druffusion. In the steam/Zry-4 reaction (as investigated by Leistikow 

and Schanz), the activation energy for the growth of the {a-Zr(O) + Zro2} 

double layer is 43,900 cal/mol, and for the growth of the a-Zr(O) layer 

alone is 43,600 cal/mol /19/~ 

The kinetics of the oo2/zry-4 reaction have been successfully modeled by 

Denis and Garcia /31/. Oxygen diffusion is assumed tobe the rate-deter­

mining step in the reaction and Zr diffusion is not considered. The model 

accurately predicts the interface movements and growth rates for the in-

dividual reaction layers, based upon the experimental results of Reference 

and the present work. The model is more sophisticated than that developed 

by Cronenberg and El-Genk /32/, which considered only the transformation 

of ß-Zry into a-Zr (0) due to 0 diffusion to describe the resulting 0 gra-

dients in both the fuel and cladding. They did not treat the formation 

of a (O,Zr) alloy layer between two a-zr(O} layers, as has been observed 

experimentally. 

1 

The oo2/Zry-4 reaction occurs as rapidly as the steam/Zry-4 reaction above 

about 1100°C (figure 24), since both reactions are governed by the diffusion 

of 0 into the cladding. If the external reaction alone is considered in 

predicting cladding embrittlement, the reaction time corresponding to a 

specific extent of cladding embrittlement may be severely overestimated. 

It is shown below that the time required for the growth of a specified 

thickness of either the external {a-Zr(O) + Zro
2

} double layer or the 

internal {a-Zr(O)a + (U,Zr) + a-Zr(O)b} total reaction zone alone is 4 

times greater than the time required for the growth of the same total 

reaction zone thickness due to both the external and internal reactions. 

To directly compare the external and internal reactions, it is necessary 

to express the reaction zone thicknesses in the same form, e.g., as the 

thickness of original cladding wall consumed. Considering the external 

reaction, the volume expansion accompanying the uptake of 0 by zircaloy 

to form a-Zr(O) is very small and can be neglected. That is, the a-Zr(O) 

thickness is assumed to correspond directly to an original cladding 
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thickness. However, it is known that the growth of Zro2 is accompanied 

by a volume expansion of 1.56 (which occurs predominately in the radial 

direction). The thicknesses of the a-Zr(O) and Zro
2 

layers can be cal­

culated for a specific reaction temperature and time using the following 

correlations /19/: 

X a-Zr(O) 

= 

= [t • 0.508 exp(-43,561/RT)]
1

/ 2 

1/2 
[t • 0.0782 exp(-40,164/RT)] 

( 5) 

(6) 

where x is in cm, t in seconds, R is 1.987 cal/mol-K, and T is in K. The 

total reaction zone thickness on the outside surface can therefore be 

converted to a thickness of original cladding wall consumed from: 

xcladding consumed (external) 
(7) 

The total reaction zone thickness on the inside surface is not as easily 

converted to a thickness of original cladding consumed. The reaction 

interface moves during the test as zircaloy chemically dissolves the uo 2 , 

oxygen diffuses into the cladding to form a-Zr(O), liquid U penetrates 

along the a-Zr(O) grain boundaries to form the (U,Zr) layer, and Zr 

diffuses into the uo2• The thickness of original cladding wall consumed 

is approximately equal to the total reaction zone thickness minus the 

thickness of the (U,Zr) layer, or the sum of the a-Zr(O)a and a~Zr(O)b 

thickness. Due to the globule formation of the (U,Zr) alloy, it is not 

a simple matter to subtract this amount of material from the total re­

action zone thickness. Therefore, as a first approximation, the 

total reaction zone thickness is assumed to represent the thickness of 

the original cladding wall consumed. The cladding consumed can then be 

calculated from Eq. 3 for a specific reaction temperature and time: 

xcladding consumed (internal) = [t • 1 •62 exp(-45,200/RT)J
112 

· (8) 
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A comparison of the reaction times required for the grcrwth of equivalent 

thicknessesof: (a) the steam/Zry-4 total reaction zone alone, (b) the 

uo2/zry-4 total reaction zone alone, and (c) the combined external and 

internal reaction zones, is presented in table 8 for several different 

temperatures and times. Note in table 8 that the thickness of the original 

cladding wall consumed by the external reaction and the thickness of the 

internal reaction zones are very nearly equal for all temperatures and 

times. Using the same temperatures,the reaction times required for the 

growth of equivalent thicknesses of the combined external and internal 

reaction zones were calculated by trial and error. For example (table 8), 

at 1100°C after 60 minutes, 213 ~m of cladding wall are consumed by the 

external reaction alone and 201 ~m by the internal reaction alone. How-
o ever, after only 15 minutes at 1100 c, 207 ~m are consumed by both the 

external and internal reactions (106.5 + 100.5 ~m, respectively). That is, 

if only the external reaction is considered in determining cladding em­

brittlement, the reaction time is overestimated by a factor of 4. Since 

the external and internal reactions are known to obey parabolic rate laws 

and occur at approximately the same rate, it is logical that halving the 

external and internal reaction zone thicknesses divides the reaction time 

by 4. 

Oxygen uptake embrittles zircaloy cladding by the formation of brittle 

a-Zr(O). The cladding is severely embrittled if the thickness of the total 

reaction zone is large compared to the thickness of the remaining ß-Zry, 

which is relatively ductile. Many of the uo2/Zry-4 specimens were severely 

embrittled and broke very easily during the tests, on cooldown, and/or 

during posttest handling. Of the specimens which broke, the majority 

fractured at one location, several at two, and one at six locations (the 

specimen tested at 1400°C for 150 minutes). All of the breaks occurred at 

pellet-ta-pellet interfaces. A failure map for all of the specimens tested 

from 1300 to 1700°C (both cooldown and handling failures) up to 100 minutes 

is shown in figure 38. A very clear, distinct pattern of failure behavior 

is apparent. The specimens tested at lower temperatures withstood much langer 

times at reaction temperatures before breaking than those tested at the 

highest temperatures. 
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Of particular importance with respect to the mechanical stability of the 

cladding is the thickness of the cladding wall that has not been chemically 

influenced by oxygen uptake and therefore retains the original strength 

and ductility of the cladding, i.e., the chemically uninfluenced ß-Zry. 

The extent of the chemical changes in the cladding can be represented 

by the total thickness of the two oxygen-stabilized a-Zr(O) phases. The 

(U,Zr) alloy can be neglected since it contains only small amounts of Zr. 

With respect to the strength of the total reaction zone, the (U,Zr) alloy 

can also be neglected since it is liquid above about 1150°C and at lower 

temperatures has a low yield strength. Very probably, the a-Zr(O) phase 
a 

also contributes little to the overall strength of the cladding since it 

contains the (U,Zr) alloy along grain boundaries. This may be the reas6n 

that cracks have never been observed in the a~Zr(O) zone, since the grains 
a 

are free to move with respect to each other at high temperatures, and at 

low temperatures thermal and mechanical stresses are relieved by plastic 

deformation of the (U,Zr) alloy. The mechanical properties of the oxidized 

cladding are therefore predominately determined by the strength and duc­

tility of the a-Zr(O)b and ß-Zry phases. 

Many different embrittlernent criteria have been developed to predict both 

failures due to thermal shock on quenching and failures due to subsequent 

handling. Haggag of EG&G Idaho, Inc., recently published a study of the 

applicability of several different ernbrittlernent criteria with respect to 

PBF fuel rods tested in-pile and ANL fuel rods tested out-of-pile /33/. The 

study concluded that the Chung and Kas~er criteria for the two types of 

failure, wh±ch are based on the 0 content of the rernaining ß-phase and state 

that /34/: 

- To withstand thermal shock during a reflood, the thickness of the re­

rnaining ß-phase containing <0.9 wt.% 0 should be >o.1 rnm, and 

- To withstand posttest handling, the thickness of the rernaining ß-phase 

containing <0.7 wt.% 0 should be >o.3 rnm, 

are rnost appropriate since these criteria rnake it possible to differentiate 

between thermal shock and handling failures. A second ernbrittlernent criterion 

discussed by Haggag which also shows good rod failure prediction (but does not 
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distinguish between the types of rod failure) is that of Pawel /35/. He 

suggested the values of 0.7 wt.% for the mean 0 concentration in the 

ß-phase, tagether with a 95% saturation condition, as critical criteria 

for the onset of room temperature embrittlement. 

In the present case, however, these embrittlement criteria cannot be 

directly applied to the uo2/zry-4 specimens since: (a) the reaction is 

one-sided and the criteria are based on two-sided oxidation, and (b) the 

specimens are much shorter (0.1 m as compared to the 1m PBF rods), which 

has an influence on the forces induced during handling. 

4.4. Fission Product Release 

During the uo
2
/Zry-4 interaction, the Zry chemically dissolves the outer 

portion of the uo2 pellet. The posttest pellet diameters of eight speci­

mens tested at 1400, 1500, 1600 and 1700°C in which the cladding had 

completely reacted to a-Zr(O) were measured. The average posttest dia­

meter was 8.68 ± 0.05 mm (±1cr). Since the original pelletdiameterwas 

9.11 mm, the maximum area of fuel dissolved was 6.01 mm
2 

The cross­

sectional area of the original pellet was 65.2 mm
2

. Therefore, a maxi­

mum of 9.2% of the pellet can be dissolved by the Zry cladding. In an 

actual fuel rod, since the uo2 crystalline structure is totally destroyed 

by chemical interaction with the Zry, complete release of gaseous and 

volatile fission products in this region must be assumed. 

5. Conclusions 

Out-of-pile uo2/Zry-4 chemical interaction experiments in argon from 1000 

to 1700°c and the reaction kinetics have been described. The conclusions 

can be summarized as follows: 

- The extent of the reaction depends decisively on the fuel/cladding contact 

conditions. 
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If solid contact exists, zircaloy reduces the uo2 to form oxygen­

stabilized a-Zr(O) and metallic u. The U reacts with Zr low in 

oxygen to form a (U,Zr) alloy rich in U which is liquid above 
0 

about 1150 C. 

The reaction layers form in a particular sequence at all reaction 

temperatures and times: 

[uo2 + u] +[a-Zr(O)a + (U,Zr) ]+ (U,Zr) + a-Zr(O)b+ prior ß-Zry. 

- The original uo2/zry-4 interfacelies between the {a-Zr(O)a + (U,Zr)} 

and (U,Zr) layers. The a-Zr(O) therefore forms in the fuel region 
a 

and the (U,Zr) and a-Zr(O)b layers in the cladding region. 

- In the examined temperature range, the reaction obeys a parabolic 

rate law. The diffusion of 0 into the cladding is the rate-determining 

step in the reaction. 

0 uptake by the Zry causes the cladding to become embrittled. The maxi­

mum measured 0 content of the a-Zr(O) is about 6 wt.%. On cooldown and/or 

during posttest handling, the embrittled specimens break very easily. 

- The uo2/zry-4 reaction occurs as rapidly as the steam/Zry-4 reaction 

above about 11oo0 c. Therefore, oxidation from both the outside and 

inside cladding surfaces occurs 4 times faster than oxidation from 

either surface alone. 

- Up to about 9 volume % of the uo
2 

can be chemically dissolved by the 

Zry. In an actual fuel rod, complete release of fission products 

in this region of the fuel must therefore be assumed. 
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Table 1: Fuel Rod Specimen Nominal Parameters 

Cladding 

material Zry-4 
outside diameter (mm) 10.75 
inside diameter (mm) 9.30 
wa 11 thi ckness (mm) 0.725 
length (mm) 102 

Fuel pellet 

material uo2(depleted U) 
density (g/cm3) 10.41 (95 % TD) 
oxygen/uranium ratio 2.000 
diameter (mm) 9.11 
length (mm) 11 

weight (g) 7.22 
shape Dished ( both ends) 

Fuel rod 

Internal pressure (bar) 1 ( at 20°C) 
Fi 11 gas He 
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Table 2: Zircaloy-4 Chemical Composition (wt.%) 

Sn 1. 57 

Fe 0.22 
Cr 0.10 

Ni 0.0035 

H 0.0006 

c 0.014 

N 0.0028 

0 0.13 

Zr balance 
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Table 3: Measured uo2/Zry-4 Reaction Zone Thickness as a Function of Temperature 

and Time 

Specimen Temperature Time Measured Reaction Zone Thickness (~m)a 

(OC) (min) I II III 

- - -
X a X a X a 

59M 1300 10 55 0 63 4.5 210 4.6 --
60M 20 77 2.5 91 5.1 294 5.8 

74M 60 115 3.2 140 3.4 502 11 

62M 100 185 6.7 204 8.0 801 26 

63M 150 237 14 268 15 918 26 

2M 1400 3 46 3.9 67 3.6 161 8.3 --
3M 10 79 4.5 104 4.4 286 12 

55M 10 ( ~-J) b 100 5.4 131 8.9 328 8.8 

26M 20 139 4.2 175 7.8 465 24 

2n~ .30 152 5.6 197 7.3 532 19 

28t~ 60 245 10 301 15 836 14 

53 M 100 386 8.8 528 19 860 15 

54 t~ 150 369 11 529 21 I 854 14 
64['~ 1500 3 82 3.2 146 28 275 7.8 -65M 10 155 5.8 226 34 491 9.4 

56M 10(W)b 200 8.4 299 41 640 37 

50 r~ 30 327 9.6 425 31 835 26 

67 M 60 394 8.7 460 38 878 28 

5H1 100 390 12 488 39 871 14 

52 M 150 404 11 509 52 854 13 

68 t~ 1600(Series A) 1 88 2.6 175 53 277 19 

69 M 3 144 4.4 223 43 431 14 

70 M 6 192 4.0 327 62 582 22 

71M 10 267 12 435 59 - -
57 M 10(W)b 289 11 434 73 790 10 
72 M 20 404 9.7 561 52 887 32 

73 t1 30 428 12 583 47 889 21 

33M . 60 386 6.3 517 13 857 11 

49 r~ 100 406 13 530 42 837 19 

106M 1600(Series B) 1 75 1.8 177 23 234 6.4 
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Table 3 (continued) 

Specimen Temperature Time Measured Reaction Zone Thickness (~m)a 

(oC) (min) I II III 
- - -
X cr X cr X cr 

107M 3 113 4.4 252 38 351 24 
108M 6 168 5.4 275 39 486 16 
1091~ 10 221 2.7 317 27 666 12 

75f•1 1700 1 129 2.5 296 44 433 18 --
104M 1 117 4.8 265 59 360 14 

76t·1 3 222 5.8 362 72 677 49 
105M 3 188 5.5 376 49 618 23 

77M 6 302 15 533 75 866 40 
78~1 10 407 8.7 556 75 869 16 
79M 10(\~)b 385 7.5 584 66 842 17 
80t·1 20 427 8.1 574 59 883 17 
40i~ 30 426 15 542 42 852 19 
41M 60 422 19 557 59 871 39 

a. Average and standard deviation calculated from a minimum of 16 measurements. 
b. Tungsten marker specimens. 



Table 4: Regression Constants Calculated Using the Method of Least Squares for the Data from Table 3 

(x = a
0 

+ a1 lt with a
0 

= 0) 

Temperature Zone I Zone II Zone III adjusted reaction zone 
1/2 a b 

a 1 (~m/s ) SEE (~m) a 1 (~m;s 1 1 2 )a SEE (~m)b a1(~m/s1/2)a SEE (~m)b 1/2 a 
a 1 (~m/s ) SEE (~m) b 

1000c 0.326 2.44 0.461 0.817 1.87 5.42 1.54 7.42 
llOOc 0.694 4.27 0.903 6.86 3.31 19.6 2.61 14.0 
1200c 1.09 3.91 1.47 1. 98 6.01 6.03 4.92 6.99 
1300 2.34 15.3 2.66 12.2 9.71 50.8 7.37 43.3 
1400 3.86 12.9 4.87 12.8 13.3 34.0 9.41 24.8 
1500 7.27 20.7 9.88 33.7 19.8 19.7 12.3 31.3 
1600 (Series A) 11.2 14.6 17.1 59.1 32.1 26.5 21.4 22.8 

(Series B) 8.92 6.04 14.8 57.7 26.7 24.5 17.8 21.9 
1700 16.0 15.7 29.1 72.3 46.8 48.5 31.0 46.3 

----~~----~-~-------- ------- -~ ---

a. The a1 values represent the slopes of the lines in Figures 14 through 18. 
b. The standard error of estimate (SEE)of x on ;fit is analogaus to standard deviation and is a measure of the 

scatter about the regression equation. 

c. From Reference 1. 

~ 
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Table 5: Comparison of the Growth Rate Equations for the uo2/Zry and Steam/ 
Zry Reactions 

' \ 

Growth Rate Equationa Interaction Investigators Temperature Range 
(OC) 

U02/Zry-4 present work 1000 to 1700 1.62exp (-45,200/RT)b 
0.30exp (-41,600/RT) 

U0 2/Zr ~~a 11 et t et al 704 to 1093 0.0765exp (-37,000/RT~b 
/13/ 0.060exp (-37,400/RT) 

U02/Zry-2 Grossmann, Rooney 677 to 1300 4 exp (-50,000/RT) 
/14/ 

U02/Zry-2 Paul et al /16/ 1000 to 1500 2.66exp (-47,540/RT)b 
2.53exp (-50,100/RT) 

steam/Zry-4 Leistikow,Schanz, ·800 to 1500 1.66exp ( -43, 885/RT) 
Berg /17/ 

steam/Zry-2 and -4 Urbanic, Heidrick 1050 to 1580 0.132exp (-35,629/RT) 
/18/ 1580 to 1850 0.063exp (-30,846/RT) 

steam/Zry-4 Cathcart et al /l9/ 1000 to 1500 0.682exp ( -41, 700/RT) 
steam/Zry-4 Biederman et al 982 to 1482 0.051exp (-34,230/RT) 

/20/ 
steam/Zry-4 Suzuki et al /21/ 1000 to 1330 0.396exp ( -39, 420/RT) 
steam/Zry-4 Hobson,Rittenhouse 927 to 1370 0.708exp (-41,054/RT) 

/2?/ 

a. Total reaction zone except where noted, R is 1.987 cal/mol-K. 
b. Adjusted with respect to original uo2;zry or Zr interface. 
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Table 6: 0, Zr,and U Contents of the a-Zr(O)Matrices from AES and EMP 

Analyses (in wt.%) 

Temperature Time Speci- Ele- a-Zr(O)a matrixa a-Zr(O)b matrixa 
(Oe) (min) men ment AESb EMPC AESb n1Pc 

1500 6 31M 0 4.9 to 6.1 5.3 -
Zr 88.4 to 90.1 94.6 

u 5.0 to 5.6 _0,1 

60 25M 0 11.5 10.3 

Zr 82.2 88.5 

u 5.3 0.0 

Sn 1.0 1.3 

100 51M 0 4.3 to 6.0 5.0 5. 0 to 6.0 5.3 

Zr 87 to 91 87.9 94 93.1 

u 3.5 to 7.5 5.5 0. 0 to 1.1 0.0 

Sn 1.6 1.6 
150 : 52M 0 4.7 to 6.0 4.9 to 6.3 

Zr 87 to 90 90 to 94 

u 4.9 to 7.0 0.0 to 4.2 
1600 3 15M 0 4.8 4.1 to 5.5 4.0 to 4.7 5.2 --

Zr 87 to 89 85.7 to 89,1 95 to 96 94.7 

u 6.0 to 8,0 6,3 to 9.7 0.0 0.1 

20 18M 0 3.9 to 4.3 3.2 to 4.8 

Zr 87 to 92 95 to 97 

u 4.3 to 9.1 0.0 

30 19M 0 4.8 3.7 

Zr 88.9 94.9 

u 5.3 0.0 

Sn 1.0 1.4 

100 49M 0 5.5 to 6.5 6.4 5.7 to 6.2 5.9 

Zr 86 to 90 84.5 92 to 94 87.9 

u 4.0 to 7.5 8.2 0.0 to 2.5 5.2 

Sn 0.9 1.0 
1700 3 36M 0 5.2 to 5.5 4.2 to 4.6 --

Zr 92 95 to 96 

u 2.2 to 3.2 0.0 to 0.8 
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Table 6(continued) 

Temperature Time Speci- Ele- a-Zr(O)a matrixa a-Zr(O)b matrixa 
(OC) (min) men ment AESb EMPc AESb EMPc 

1700 6 37t1 0 3.9 3.8 

Zr 87.2 94.7 

u 8.2 o.o 
Sn 0.7 1.5 

10 38M 0 5.0 to 6.0 4.5 to 5.0 

Zr 84 to 91 94 

u 3.5 to 9.5 0.0 

20 39t•1 0 6.1 6.9 

Zr 87.2 91.4 

u 5.9 0.0 

Sn 0.8 1.7 

60 41M 0 5.4 to 6.0 5.2 to 5.5 

Zr 89 to 91 95 to 96 

u 3.1 to 4.6 0.0 

60 41M 0 4.7 to 5.1 2.5 to 3.4 

(di shi ng Zr 83 to 85 90. 7 to 91. 5 

volume) u 10 to 12 5.8 to 6.1 

a. Garnposition corresponds to the a-Zr(O) matrix only and does not include the 
(U,Zr) alloy in these two regions. 

b. ~uger ~lectron ~pectroscopy analysis. Uncertainty in 0 content is less than 
± 0.5 wt.%. The uncertainties are described in detail in Reference 25. 

c. flectron ~icro~robe analysis. Uncertainties in Zr~ U, and Sn contents are 
± 3.0, ± -0.2, and ± 0.1 wt.%, respectively. 0 content was determined by 
difference (100, wt.%-(Zr+U+Sn contents) and has an uncertainty of ± 3.0 wt.%. 
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Table 7: 0, Zr,and U Contents of the (U,Zr) Alloy from EMP Analysis (in wt.%)a 

Tempera Time Speci- Ele- uo2 U-rich (U,Zr) (U,Zr) 
ture men ment metallic stringer layer 
( oC) _(min) phase in U02 

1500 6 31M 0 10.8 0.0 1.0 0. 6 to 1. 2 --
Zr 0.0 1.1 4.8 13.7 to 35.1 

u 89.2 98.9 94.1 64.2 to 85.1 

Sn 0.0 0.0 0.0 0.5 

60 25M 0 11.9 0.0 0.0 0.0 

Zr 0.0 2.3 2.9 3.7 

u 88.1 97.7 97.1 96.3 

Sn 0.0 0.0 0.0 0.0 

100 I 51M 0 0.0 o.o 0.0 

Zr 0.9 1.8 2.4 

u 99.1 98.2 97.6 

Sn o.o 0.0 0.0 
1600 3 15~1 0 10.3 o.o 0.9 0.5 to 0.8 -

Zr 0.1 0.8 4.8 21.2 to 30. 5 

u 89.6 99.2 94.3 69.0 to 78.0 

Sn 0.0 0.0 0.0 0.0 

30 19M 0 11.9 0.0 o.o 0.0 

Zr o.o 2.5 3.1 10.2 

u 88.1 97.5 96.9 89.7 

Sn o.o 0.0 0.0 0.1 

100 49M 0 o.o 0.0 

Zr 1.9 2.9 

u 98.1 97.1 

Sn 0.0 0.0 

1700 6 37M 0 11.9 0.0 0.0 --
Zr 0.0 2.0 30.6 

u 88.1 98.0 68.3 

Sn 0.0 0.0 1.1 

20 39M 0 0.0 0.0 

Zr 1.7 3.8 

u 98.3 96.2 

Sn 0.0 0.0 
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Table 7(continued) 

Tempera- Time Speci- Ele- uo2 U-rich (U,Zr) (U,Zr) 
t~re men ment metallic phasE stringer layer 
( C) (min) in U02 

1700 60 41M 0 0.0 --
( dishing Zr 3.8 
volume) u 96.2 

Sn 0.0 

a. Electron microprobe analysis;.Uncertainties in Zr, U, and Sn contents are 
± 1.1, ± 3.0, and ± 0.1 wt.%, respectively. 0 content was determined 

' 
by difference (100 wt.%- (Zr+ U +Sn contents) and has an uncertainty 
of 3.2 wt.%. 



Table 8: Comparison of the Reaction Timesfor Equivalent Reaction Zone Thicknesses for the External 

Steam/Zry-4 Reaction, Internal uo2/Zry-4 Reaction, and Combined (External + Internal) Reactions 

Temper- Single External Reaction Zonea (~m) Internal (External+Internal) Reaction Zonesc 
ature Zone Reaction 
(OC) Reaction cladding Zoneb(~m) cladding wall consumed r·eacti on 

Time a-Zr(O) Zr02 wall consumed (~m) time (min) 
(min) 

1100 60 145 106 213 201 106.5 + 100.5 = 207 15 
1200 30 177 124 256 250 128 + 125 = 253 7.5 

1300 10 164 111 235 236 117.5 + 118 = 235.5 2.5 

60 401 271 575 578 287.5 + 289 = 576.5 15 

1400 30 430 281 610 630 305 + 315 = 620 7.5 

1500 10 359 228 505 534 252.5 + 267 = 519.5 2.5 
-- - -- -- ------ -- ---- - - ------------- ----- ------------···· -- ---- ···-- ------· 

a. The a-Zr(O) and Zro2 reaction layer thicknesses were calculated from Equations 5 and 6, respectively. 

The thickness of cladding wall consumed was then calculated from Equation 7. 

b. The total thickness of the internal reaction zone, which is assumed to represent the thickness of 

cladding wall consumed, was calculated from Equation 8. 

c. The reaction time required for the growth of an equivalent thickness of the combined (external + internal) 

reaction zones was determined by trial and error. The corresponding reaction time is one-fourth of the 

single zone reaction time. 
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Figure 30: Chemical interaction between the liquid (U,Zr) alloy [which 
flows into the pellet dishing volumes due to the external 
overpressure] and uo2 at 1700°C after 60 min 
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Figure 31: uo2;zry-4 reaction zone thickness versus external argon pressure 
at 1400 and 1700°C (annealing time 10 minutes) 
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Figure 32: Detail of the U-0 phase diagram 
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metallic U precipitates near (U,Zr) globule 
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Figure 33: Metallic U precipitates in a-Zr(O)a matrix after 3 min at 
1700°C (SEM photographs) 
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Figure 36: Equilibrium phase aiagram of the (U-Zr-0) ternary system 
at 1000°C 
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APPENDIX 

Statistical Treatment of the uo2;zry-4 Interaction Data 

1. Parabolic Reaction Kinetics 

The growth rate of the uo2;zry interaction layers is assumed to be 
controlled by the diffusion of oxygen from uo2 to zrrrcaloy within 
the cladding. The growth rate is proportional to the current oxide layer 
thickness and has been experimentally observed to be an Arrhenius 
function of temperature. Therefore, the growth rate can be expressed 
as: 

dx _ 1 -B 
df - A x exp (RT) (1) 

where X = layer thickness (cm) 
t = time (s) 
R = 1.987 (cal/mole-K) 
T = temperature (K) 
A,B = constants to be determined. 

Integrating equation (1) for zero layer thickness at zero time yields: 

2 
X -ß T = 2A exp (u). 

Taking logarithms of equation (2) gives a linear equation: 

Letting y 

ao 

a1 

z 

then y 

= ln 

= ln 
B = - R 

1 
= T ' 

B = 1 n (2A) - Rf 

(x 2/t) 
(2A) 

= a + a1z. 0 . 

(2) 

(3) 

(4) 

The constantsa
0

and a1 may be estimated by the method of least squares. 
The correct model is assumed to be: 
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Y· = y. + e. (5) 
1 1 1 

where Y· . 1 = observed value 

Y· . - predicted value 
1 

e. = random error. 
1 

The method estimates the constants by minimizing the sum over n data points 
of the squared errors with respect to each constant /1/: 

n 2 s = r e. 
i =1 1 

n 
- ) 2 = r (y. - yl 

i=l 1 

n 2 = r (y. -a -az.) (6) 
i=l 1 0 1 1 

as n 
aa

0 
- r (-2) (y. - a

0
- a1z;) 

i =1 1 

as n 
aa 1 -

r ( -2z. ) (y. - ao - a1zi). 
i=l l 1 

Setting the partial derivatives to zero leads to a set of so-called normal 
equations: 

n 
r Y· . 1 1 1= 

n 

n 
= n a

0 
+ a1 r z. 

i=l 1 

r yizi = a0 i=l 

n n 
r zi + a1 r 

i=l i=l 

which may be solved for a
0 

and a1 directly. 

z.2 
1 

(7) 

Normal equations for the nonlinear form of equation (1) could likewise have 
been formulated. However, they would have required an iterative solution 
scheme. If the assumption is now made that the errors on ln(x 2/t) are normally 
distributed, as is frequently justified, then the linearization process 
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can be shown to lead to estimates of a
0 

and a1 which may be superior to 
estimates determined from the nonlinear form of the equation /2/. 

The estimators of a
0 

and a1 obtained from the data can be expressed as: 

n 
E (Y. - y) ( z . - z) 

. 1 1 1 1= a:1 = ---------
n - 2 
E (z. - z) 

. 1 1 1= 

ao = y - a:1 z (8) 

1 n 
where y =- E y. n . 1 1 1= 

1 n -z -- E z .. n i =1 1 

Using these estimators, equations were developed for each of the 
reaction zones and aEe given here in the form of equation (2) in cm 2;s: 

i;t = 5.50 exp (-57,700/RT) Zone I 

i;t = 0.707 exp (-50,100/RT) Zone II (9) 

i;t = 1.62 exp (-45,200/RT) Zone I I I 

i;t = 0.259 exp (-41,300/RT) Zone I II -Zone I. 

For the reaction zone adjusted with respect to the position of the original 
U0 2/Zry-4 interface (Zone III -Zone I), the average thickness of Zone I for 
each specimen was subtracted from the Zone III data and the regression per­
formed as usual. Since Zone I was very uniform, this introduced only a small 
error into the adjusted reaction zone equation. The standard error of estimate 
of y on z is defined as: 

(10) 

and determined for each equation as: 

s ( I) = 0.243 y.z 
s ( li) = 0. 213 (11) y.z 
s (III) = 0.257 y.z 
s (III-1)= 0.299. y.z 

for ln (x2/t). Note that the standard errors of estimateare given 
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Confidence intervals at a 95% confidence level for a
0 

and a1 are given by: 

-a - a ± 1 - 1 

t(n-2,D.975) 

t(n-2,D.975) 

n 
~ 

i =1 

2 z. 
1 

n 2 
~ (z .-z) 

. 1 1 1= 
n 

y.z 

~ 
s 

n - 2 
[ ~:(4.-z) ] 

. 1 1 1= 
1/~ 

1/2 

(12) 

where t is the 0.975 percentile value of ::>wdent's t €1istribution vJith n-2 

degrees of freedom. Confidence intervals for the constants given in equa­
tions (9) are then determined from. 

2A = exp (ao) 

= exp Ca ± t ·S J 
0 (n-2,0.975) · a0 

(13) 
B = -Ra 1 

where Sa 0 and sa1 are the estimated standard deviations of a
0 

and a1 as 
defined by (12). The upper and lower confidence limits were found to be: · 

2A ( I ) = (6.61 4. 57) 
2/\ ( I I ) = (0.944 0.502) 
2A (I II) = (2.06 1.27) 
2A (I I I-I) = (0.342 0.196) (14) 
B (I ) = (58,400 57 ,100) 
B ( I I ) = (51,200 49,100) 
B ( II I) = (46,000 44 '11,00) 
B (III-I) = (42,200 40,000) 

Confidence limits forpneddoted values of y = ln (x2/t) can be estimated 
at the 95% confidence level by: 

. . . [.n+1 +(zo-z)2!s/]1/2 (15) 
Yp = Yo ± t(n-2,Q975) 

5
y.z n-2 
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where Yp = predicted value of y corresponding to z=z for the 
0 

population 
y = 

0 
predicted value of y corresponding to z=z

0 
from equation (9) 

2 sample variance of s = z. z 

These curves (from equation (15)) are shown in Figure 1 for each equation. 

2. General Case 

Equation (1) and the analysis following explicitly assumed that time and 
reaction layer thickness could be i1ncorporated into a single dependent 
variable, i.e., that the reaction kinetics are exactly parabolic. To in­
vestigate the more general case where time is also an independent vari­
able, the reaction rate can be assumed to be proportional to the inverse 
of the thickness raised to a power m which is determined from the data: 

dx = Of A ~ exp (- :r). 
X 

(16) 

Integrating: 

1 m+1 B 
m+l x = At exp (- RT) (17) 

and taking logarithms gives: 

ln x = (m!l) ln [A(m+1)] -(m!r) :T + (m!r) ln t. (18) 

Letting y = ln x 

ao = (m!1r ln [A(m+1)J 
(19) 

1 B 
a1 = - (m+l) R 

a2 
1 

= m+l 



then 

1 
z1 = T 

z2 = 1 n t, 

Y = ao + a1z1 + a2z2. 
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(19) 

The normal equations are derived as before, and the resulting equations 
of the form: 

are: 

m+1 
~ = (m+1) (A) exp (~) 

x1· 96 = (1.96)(2.75) exp (-57,100/RT) 
1 

Zone I 

i·04 
t = (2.04)(0.391) exp (-51,100/RT) Zone II (20) 

x2· 10 = (2.10)(0.808) exp (-46,400/RT) Zone III 
t 

2.14 
~ ~ (2.14)(0.114) exp (-42,800/RT) Zone 111-Zone I 

with standard errors of estimates: 

s (I ) = 0.121 
y.z1z2 

s . (I I) = 0.106 y.:Z1z2 
(21) 

s (I II) = 0.126 y. z1 z2 

s y.z1z2 (III-1)= 0.145. 

Note that the standard errors of estimate are given for ln x. 

Confidence internals for the regression coefficients a
0

, a1, and a2 and for 
the predicted values Yp can be determined as before, but with more complexity /3/. 

In particular, the constants A,B, and m are all functions of a
0

, a1, and a2. 
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