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Abstract 

A horizontal layer is heated from below and cooled from above so 

that the enclosed single-component liquid is frozen in the upper 

part of the layer. When the imposed temperature difference is 

suchthat the Rayleigh number across the liquid is supercritical, 

there is Benard convection coupled with the dynamics of the soli­

dification interface. An experiment is presented which shows that 

the .interfacial corrugations that result are two-dimensional when 

this "ice" is thin but hexagonal when the "ice" is thick. A weak­

ly-nonlinear convective instability theory is presented which 

explains this behavior, and isolates the mechanism of the pattern 

selection. Jump behavior is seen in the liquid-layer thickness at 

the onset of hexagonal convection. 



Musterauswahl in einkomponentigen Systemen bei Kopplung von 

Benard Konvektion mit Gefriervorgängen 

Zusammenfassung 

Eine horizontale einkomponentige Flüssigkeitsschicht wird an der 

Unterseite erwärmt und an der Oberseite derart gekühlt, daß der 

obere Teil der Schicht gefriert. Wenn die an die Schicht angeleg­

te Tempera turd i fferen z einen kritischen Wert überschreitet, re­

sultiert in dem flüssigen Teil der Schicht eine Benard Konvek­

tion, die mit den Gefriervorgängen an der Eisoberfläche gekoppelt 

ist. Es wird ein Experiment vorgestellt, das die Verformung der 

Eisfläche unter der Wirkung der Benard Konvektion zeigt. Die 

resultierenden Verformungen haben zweidimensionalen Charakter, 

wenn die Eisschicht dünn ist, nehmen jedoch hexagonalen Charakter 

bei dicken Eisschichten an. Es wird eine schwach nichtlineare 

Instabilitätstheorie vorgestellt, welche dieses Verhalten des 

Systems einschließlich der Auswahl der Muster an der Gefrierflä­

che erklärt. Es wird ein sprunghaftes Anwachsen der Schichthöhe 

der Flüssigkeit bei Beginn der Konvektion mit hexagonaler Zell­

form von der Theorie vorhergesagt. 
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1. Introduction 

Convection can be the dominant mode of heat and mass transport in 

many processes that involve the freezing or melting of material. 

Such is the case for the freezing of ponds or bays and the 

storage of thermal energy based on the mel ting of the storage 

material. The solidification in molds of liquid metals or alloys 

and the growth of crystals from mel t or aqueous solutions are 

cases where double-diffusive processes may be present so that 

there is the need to understand the interaction in multicomponent 

systems. Although the effect of convective transport in all these 

processes has been a subject of many experimental and theoretical 

investigations (see e.g. Fester ( 1969), Farhadieh and Tankin 

(1975), Fischer (1981), Saitoh and Hirose (1980. 1982), Hurle & 

Jakeman ( 1981), Marshall ( 1981)) fundamental uncertainties exist 

in the prediction of the progress and the shape of the freezing 

or melting front. The growth of crystals from binary solutions is 

a process where the interaction of adverse temperature and 

concentration gradients may generate unwanted interfacial 

instabilities during a unidirectional solidification (Mullins & 

Sekerka ( 1964), Coriell et al.( 1980), Coriell and Sekerka ( 1982), 

Hurle & Jakeman (1983)). These instabilities generally deform the 

i ni tially planar sol id-1 iquid i nterface a nd 1 ead to a c ell ular 

pattern of micro-segregation. The interaction of the temperature 

and concentration field near a progressing solidification front 

gives rise to the so-called morphological instability (Mullins & 
Sekerka 1964) in which convective effects are negligible. Weakly 

nonlinear theories ( Wollkind & Segel ( 1970), Wollkind & Raissi 

( 1974), Sriranganathan et al. ( 1983)) lead to prediction of hexa­

gonal patterns for the resulting interfacial corrugations. 

Interfacial instabilities may also originate from the onset of 

solutal or thermal convection in the liquid phase if the gradi­

ents are parallel to the gravity vector. Stability criteria based 

on linear analyses for solutal driven convection have been given 

for various conditions by Hurle, Jakeman & Wheeler (1982, 1983). 

They also analyse the complex system of interacting morphological 
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instabilities and solutal convection and show that stationary and 

oscillatory (overstable) perturbations of the temperature, con­

centra t ion and ve loc i ty may occur when t he c ri t i cal cond i tions 

are exceeded. 

In the present work we wish to focus on systems in which thermal 

convection and corrugations of a 

Rtrongly coupled. We consider a 

freezing/melting interface are 

horizontal layer of a single 

component liquid 7 cyclohexane, which is transparent, has no ano= 

molouR physical properties near i ts freezing point and whose 

thermal variations in physical properties are negligible. The 

layer is heated from below and the boundary temperature adjusted 

Ro that the upper part is frozen and there is a solid-liquid in­

terface. Depending on the Rayleigh number of the liquid, the heat 

in the liquid is transfert1 ed either by conduction only or by 

conduction and convection. The natural convection generally will 

occur in cellular form as it is observed in Benard convec-

tion. If the heat is transported uniformly by conduction only the 

interface between the solid and liquid layer will be planar; 

however it will become corrugated, if natural convection occurs 

in the liquid. The situation iR sketched in figure 1. 

Work on related systems is scarce. Yen ( 1980) performs experi­

ments on melting ice blocks underneath or above a heated horizon­

tal l ayer o f v..ra ter. He fi nds regular pa t tern s o f corruga t ions a t 

the ice surface. When the ice block is melted from below, he 

observes an array of small "inverted hemispherical cells" at the 

ice surface. A pattern of axisymmetric troughs and crests occur 

at the ice surface when the ice block is melted from above. No 

explanation is given for the occurrence of the different shapes 

of the intet'face deflections. The density anomaly of water at 4 

°C may have had a major influence on the pattern formation. Pan­

taloni et al. (1977) have obtained hexagonal planforms of solid­

liquid interfaces in R~yleigh-B~nard experiments conducted with 

mol ten sal ts. They a t tri bute t he appearance o f such pa t te rns to 

the strong thermal variations of the viscosity in the fluid layer 

close to the solidification front. Such non-Boussinesq effects 

have been shown by Busse (1967) to give rise to hexagonal convec-
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tion in uncoupled systems. Pantaloni et al. (1977) imply that the 

convective pattern in the liquid generates the hexagonal corruga­

tions at the solid-liquid interface. 

It is the aim of the present investigation to identify the pat­

terns of convective flow and interfacial corrugation, determine 

the parametric ranges in which different patterns occur and 

study the basic mechanics of the interfacial-flow interactions. 

In section 2 we report on experiments which identify the corruga­

tions of the interface. In section 3 we perform a weakly non­

linear analysis of the coupled convective/interfacial system. We 

compare the theory and experiment and explain the mechanism of 

the pattern selection and the observations of the experiments. In 

section 4 we summary the study. 
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2. Experiments 

2.1 Apparatus and Procedure 

The test apparatus is displayed schematically in figure 2. The 

test volume is confined a t the lower and upper side by square 

copper plates of 287x287 mm 2 surface each. The side walls consist 

of 5 mm thick glass plates. The distance between the horizontal 

plates is varied by placing small ceramic spacers of low heat 

conductivi ty at the rim of the plates. Spacers of height 4.18 mm 

and 5.04 mm are employed in the experiments. The manufacturing 

tolerances of both flatness of the copper plates and the spacer 

heights is less than ~0.02 mm. For temperature control the copper 

plates are put in direct contact to a system of meandering cool­

ing channels at their lower and upper sides respectively. Coolant 

is provided from two high precision thermostats of temperature 

variance /::,.T = +0.01°C. The whole test chamber including the con­

necting pipes to the thermostats is insulated against external 

temperature perturbations by styrofoam plates and rubber foam 

hoses. 

For measuring the temperatures at the horizontal boundaries two 

Ni-Cr-Ni thermocouples ~re positioned in the upper copper plate 

and one in the lower plate, each 0.2 mm beneath the surface adja­

cent to the test volume. The same zero point thermostat serves as 

a reference instrument for all thermocouples. Temperature fluc­

tuations of less than +0.01 °C are assured. The thermoelectric 

vol tage i s ampli fied by d i fference ampl i fiers by a factor 1000 

and displayed by a digital voltmeter. 

Before starting the actual tests the thermocouples are calibrated 

by correlating the signals to the melting temperature of the test 

liquid, cyclohexane. The properties of this liquid are listed in 

table 1. The calibration is performed by first reducing the tem­

perature at th~ upper copper plate until a thin layer of solidi­

fied material of less than 0.1 mm is formed a t the surface. We 

shall herea fter call this solid "ice". Then the tempera ture is 

slowly raised until only a few tiny patches of "ice" are seen on 
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the surface. During this process the temperature of the lower 

copper plate is kept constant at 6.9 °C. An equivalent procedure 

is used for calibrating the thermocouple in the lower plate. This 

calibration is essential for obtaining the two main measured 

quantities, the temperature differences T0 - Ts and Ts - T1• 

Cyclohexane is chosen as the test liquid since the material pro­

perties are well known and no anomalies in material properties 

exist in the range 3 °C and 8°C where the experiments have been 

carried out. Moreover, cyclohexane is transparent and exhibits a 

fixed melting temperature. 

The s tructure of t he sol id-1 iquid inter face, i.e. t he "ice" sur­

face, is directly visualized through Observation slits at all 

four glass side walls. The reflection of the "ice" structure by 

the polished surface of the lower copper plate of mirror quality 

is an essential aid for the direct observation. However, for a 

photographic documentation the upper copper plate is removed from 

the test apparatus at certain fixed temperature levels of the 

lower and upper plate. Photos are then taken of the corrugated 

"ice" surface under favorable lighting conditions. The removal of 

the plate has to be rapid in order to avoid unwanted sublimation 

of the cyclohexane or condensation of air humidity at the "ice" 

surface. Typically, photographs were taken between 30 and 6 0 

seconds after the start of the dismantling of the insulation of 

the appara tus. 

2.2 Observations 

We shall relate our observations to the case of pure heat conduc­

tion in which the solid-liquid interface is planar and its posi­

tion is at z = hL. This state is analyzed in Section 3 where we 

find that 

- B • ( 2. 1) 

Here A. ( S) and ;,_(L) are the thermal conductivities for the solid 
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and liquid, respectively, and for srnall B, B turns out to be the 

equivalent Biot nurober for the heat transfer frorn the liquid to 

the solid. Notice that B also rneasures the arnount of "ice" pre­

sent. 

We also inroduce the Rayleigh nurober R to rneasure convection in 

the liquid. Here 

R '"' ctg 
(T -T )hL

3 
0 s (2.2) 

where a is the volurne expansion coefficient, g is the rnagnitude 

of the gravitational acceleration, K(L) is the thermal diffusi­

vi ty and v is the kinernatic viscosi ty. 

In all experirnents we keep T0 fixed so that the ternperature dif­

ference T
0 

- Ts is fixed and we vary the temperature T1 of the 

upper boundary. Thus, unlike the classical experirnents in Benard 

convection, the Rayleigh nurober is varied through changes in hL, 

not through changes in the ternperature difference. 

Each experirnent begins with a value of T1 giving convection in 

the liquid. T1 is then reduced in srnall steps. When T1 reaches a 

value where the "ice" surface becornes planar, the state of pure 

co~duction has replaced the state of convection. Frorn here the 

experimental run is reversed by increasing the ternperature T1 in 

srnall incrernents keeping T
0 

fixed until the initial state of 

convection i s reached agai nl) Different exper irnen ta 1 runs lasted 

typically between 2 and 4 weeks. The rates of stepwise change of 

the ternperature at the upper plate was 0.5 K/rnin, the state of 

each rneasuring point was at least stationary for 90 rninutes be­

fore the data were taken. 

Photographs of corrugated "ice" surfaces are shown in figure 3. 

Depending on the thickness of the "ice" layer, different patterns 

occur. If the "ice" layer is very thin, i.e. about 0.1 rnrn or 

less, line pa tterns appear as shown in figure 3a. A hexagonal 

pattern is generated for "ice" layers whose thicknesses are corn­

parable to the depth of the liquid layer as shown in figure 3c. 

1) In temperature ranges where qualitative changes in the flow 
behavior were expected the monotonic variations in the tempera­
ture Tl were supplemented by cyclic Variations in order to fix 
the temperature threshold of transitions. 
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In an intermediate range both polygonal and line patterns were 

observed to coexist as displayed in figure 3b. 

The different states realized during two runs of experiments are 

shown in the graph of figure 4. Each state is characterized by 

two parameters, the Rayleigh number R and the Biot number B. For 

the upper curve the total layer depth h is 5.04 mm, whereas for 

the lower curve h = 4.18 mm. The range of different patterns of 

the "ice" surface is characterized by the parameter B. We find 

two-dimensional line patterns for B < 0.05 and hexagonal patterns 

for B > 0.16. For the intermediate range 0.05 < B < 0.16 a mixed 

pattern of lines and polygons is observed. The particular experi­

mental trajectories shown by the experiments is due to the fact 

that variations in T1 in the experiment cause both the Rayleigh 

number and the Biot number to vary simultaneously. Generally the 

different states could also be arranged under the condition of a 

constant Rayleigh number though the temperatures at both copper 

plates would have to be varied appropriately. As mentioned be­

fore, for reasons of experimental convenienc e, on ly the tempera­

ture of the upper copper plate was actually changed. 

An ~nalysis of the experimental errors has shown that the values 

B for t he tra nsi tion between the different "ice" pa t terns are 

accurate within the following bounds: 

0.02 < B < 0.08, l ine pa ttern I mixed pa t tern transi t ion 

0.13 < B < 0.19, mixed pattern/hexagonal pattern transition. 

Our experimental Observations lead to a physical mechanism for 

the generation of the patterns of corrugation that couple convec­

tive flow with interface deflection. 

If the Rayleigh number of the liquid layer exceeds a cri tical 

value, cellular convection starts enhancing the heat transfer in 

the liquid layer. This results in partial melting of the "ice" 

when the critical conditions are moderately exceeded. Since the 

convection cells are characterized by zones of up-flow and down­

flow, the "ice" melting is not uniform. More "ice" is melted near 
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the zones where warmer fluid rises toward the interface compared 

to zones where cold fluid sinks towards to lower boundary. This 

effect is displayed schematically in figure 1. It results in a 

formation of crests and troughs at the "ice" surface as observed 

in figure 3. 

The surface deflection can lead to a sufficient degree of verti­

cal asymmetry that hexagonal convection can be created as shown 

by Davis and Segel (1968) for fluid-fluid interfaces. Our experi­

mental Observations indicate that this is the case when B is 

large. When B is small enough we see only line patterns. We next 

outline a theory based on these ideas. 

3. Theoretical Model and Analysis 

3.1 Formulation 

Consider the configuration sketched in figure 1 where the hori­

zontal parallel plates at z = 0 and z = h have infinite horizon­

tal extent. The lower plate at z = 0 is fixed at the temperature 

T = T0 while the upper plate at z = h is fixed at temperature T = 

T1. The material between the plates is single component liquid if 

T > Ts and its solid if T < Ts. The layer is heated from below in 

that T1 < T8 < T
0 

and there is a solid-liquid interface at z = n 
with 0 < n < h. The material properties are the density p

0
, the 

specific heat cp, the thermal conductivity .X, diffusivity K, kine­

matic viscosi ty v, and the volume expansion coefficient a; super­

scripts S and L will be used to designate solid and liquid prop­

erties when required. 

The coupled effects of buoyancy-driven convection and phase chan­

ges will be described by thermal conduction in the solid and the 

Boussinesq equations (Mihaljian 1962) in the liquid. At the in­

terface atz= n, we assume that there is no undercooling so that 

T (L) = T 
s ' 

( 3. 1 ) 
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The jump in heat flux is balanced by the production of latent 

heat L, 

(3.2) 

where n is the unit normal vector to the interface 

n .. ( 3. 3) 

Subscripts x,y,z,t represent partial differentiation. The inter­

face is non-mobile but deformable so that there is the kinematic 

condition 

p (L) 
0 ( 3 • 4 ) 

and the no slip condition 

.. V • _! 
(2) ... 0 ( 3. 5) 

where t( 1) and t( 2 ) are unit tangent vectors 

1 1 

t
(l)- 2 2 2-2 2)-2 

- (l+ny , -nxny' nx)(1+nx +ny ) (l+ny (3.6a) 

(3.6b) 

The governing system possesses a static equilibrium solution in 

which the interface is planar at z = n = hL, the velocity vector 

~ is identically zero, the pressure p is hydrostatic and the 

temperatures are purely conductive. Here, 

and 

-(S) 
T 

z-h1 
,.. T - (T - T ) -s s 1 h-h1 

(3.7b) 
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( 3. 7) satisfy condi tions ( 3.1), 

T
0 

at z = 0. The flux condition 

the pararneters so that 

where 

(S) 
A 

.,. ~(L) 

T - T s 1 
T - T 

0 s 
- B 

T ( S) = T 1 a t z = h and 

( 3.2) further constrains 

( 3. 8) 

( 3. 9) 

Thus, the thicknesses of the solid and liquid layers are deter­

rnined by T0 , T1 and Ts. In particular, as B + 0, the solid dis­

appears. 

We now introduce the following scales: 

x,y,z ~ ' 

t hL2/K(L) 
' I 

W:: [K(L)aghL 
2 (3.10) u,v,w (T -T )/v] 

0 s 

p \1 p (L) W/h 
o L ' 

T-T s T -T .• 
0 1 8 

We use the sarne syrnbols as before to denote non-dimensional quan­

tities; the full governing Boussinesq systern is as follows: 

T (L) + R 2 v • 'iJ T (L) ... 'iJ2 T(L) 
t (3.11a) 

(3.11b) 
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on z = o, 

on z ... 1 + B, 

on z ... Tl, 
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pSnt = [A 'V (S) - 'VT(L) ] "!! , 

I 
2 2-2 

( p- I ) ( I +n +n ) 11 = v • n 
X y t 

V • .., V • 
(2) 

t ... 0 ' 

k = (0, 0, 1 ). 

(3.11c) 

(3.11d) 

(3.11e) 

(3.11f) 

(3.11g) 

(3.11h) 

(3.11i) 

(3.11j) 

(3.12) 

Here equa tions ( 3.11 a, b, c) are the Boussinesq equa tions for the 

liquid and equation (3.11d) gives the thermal field in the solid. 

The following non-dimensional groups emerge: 

R .,. 
a& (T - T )h J 

o s L (3.12a) 

p ... 
\) 

...... (L) 
K 

( 3. 1 2b) 

(3.12c) 
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(S) 

K "'(1}' 
K 

>. (S) 
B""-

>.(L) 

T -T 
s I 

T -T 
0 s 
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( 3. 12d) 

( 3. 12e) 

(3.12f) 

( 3. 12g) 

The main parameters that govern steady convection in the present 

system are R and B. Notice that due to condi tion ( 3.8), a change 

in, say, T1 causes both B and R to change simultaneously, the 

latter due to the variation in hL. 

In non-dimensional terms, the basic state has v = Q, p hydrosta­

tic and 

0 < z < 1 ( 3. 1 3a) 

'T(s) .. x- 1 (t-z), 
(3.13b) 

< z < l+B 

3. 2 Weakly Nonlinear Steady Convection 

We wish to consider the basic state in which a slight rise in the 

temperature of the upper plate causes a slight melting of the 

solid. The i ncrease in hL, gi ven tha t T 
0

-T s i s fixed, causes the 

Rayleigh nurober to pass through its critical value R0 leading to 

steady cellular convection of amplitude E:. We seek to describe 

this weakly nonlinear steady convection using a perturbation 

theory fir.st described by Malkus and Veronis (1958) by writing 

+ ••• ( 3. 1 4a) 



-15-

2 
p ... p + & p 1 + & p2 + ••• 

(3.14b) 

( ) (L) (L) 2 T (L) + 
TL •T +ETl +E 2 ... ( 3. 1 4c ) 

(3.14d) 

n "" 1 + • 0 0 
( 3. 1 4e) 

and representing 

(3.15) 

for all other pararneters fixed. We substitute forrns (3.14) and 

(3.15) into systern (3.11) and equate to zero coefficients of like 

powers of E: • 

At order unity we reobtain the basic state. At order E we obtain 

the linear stabili ty problern under neutral condi tions. We sepa­

rate variables using normal rnodes 

where the planform function ~ satisfies 

~ + ~ 
XX yy 

2 ..... k ~ 

and the usual norrnalization condition 

-;z .. 1 

( 3. 16a) 

(3.16b) 

(3.17) 

Here the overbar denotes horizontal average over one period in x 

and y, i.e. over one cell and k is the overall wave number. 

The ternperature field in solid satisfies v2T1(s) = 0 along with 

T1(S)(x,y,1+B) = 0 and T1(S)(x,y,1) = A.- 1n. We find that 

T (S) (z) '"' ,_-l 'H A (z;) 
1 1 

( 3.18) 
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sinh k B (1-l;;) 
A(r;) "' sinh k B 

( 3. 19a) 

(3.19b) 

The linear stability problern in the liquid governs Benard convec­

tion under neutral conditions: 

1 

(D2-k2 )T 1 (L) + R2 W 1 .,. 0 (3.20a) 

1 
2 2 2 k2 R2 T (L) -- 0 • 

(D -k ) w1 - 1 • (3.20b) 

with 

(3.20c) 

and 

(3.20d) 

Here D = d/dz and 

~ ... - B -l [d: A (1;) ] = k coth k B. (3.21) 

r;=o 

Note that the horizontal veloci ty components u 1 and v 1 can be 

written as 

(3.22) 

The condi tions ( 3.20d) show tha t a t the onse t of convection the 

solid-liquid interface behaves like a planar, rigid solid that is 

an imperfect thermal conductor. This thermal condition comes from 

the temperature and heat flux conditions (3.11g,h) linearized 
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about z = 1 . These have the form 

T(L) (1) = Hl (3.23a) 1 
and 

D T(L)(I) "' - iH1• 
(3.23b) 

1 

.On the right-hand side of (3.23b) we have used solution- (3.19). 

Notice that as Bi= 0, i,- 1 ~ B so that the solid disappears- and 

the interface becomes a perfect conductor. In this limit DT 1 (1) = 
0(1) and is bounded away from zero. 

System ( 3.20) has a minimum critical Rayleigh nurober Re which 

corresponds to k = kc. In Figures 5 and 6 we plot these as func­

tions of B as obtained by a straightforeward numerical integra­

tion. These are obtainable from the calculations of Nield ( 1968) 

even though we have a wave-number dependent "Biot" nurober 'tt. In 

all theory that follows we take k = kc for each given B. 

It is easy to see that DT 1(1) < 0 so from equation (3.23b), we 

have H 1 > 0. Thus, there is a surface elevation ( H 1 > 0) above a 

rising (W 1 > 0) convective current. This is consistent with the 

idea that the rising current is warm (T 1 > 0) so that it melts 

solid compared to its neighbors. 

It is convenient in what follows to introduce a generalized 

notation for the description of disturbances in the liquid. We 

follow Davis and Segel ( 1968) and wri te the four-vector '!'., 
1. 

u. 
1. 

. v. 
1. 

wi 

T. (L) 
1. 

( 3. 2 4a) 
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and the linear operators L and M, 

v2 0 0 0 

0 v2 o 0 

L "" v2 o 
(3.24b) 

= 0 0 

0 0 0 v2 

and 

0 0 0 0 

0 0 0 0 
M .. (3.24c) = 0 0 0 

0 0 I 0 • 

In terms of notation ( 3.24) the linear stabili ty problern in the 

liquid written using the primative equations can be posed as 

follows: 

I 

(3.25a) 
{L + R z M } • 'i' 
.. c ... -1 

... 0 

'iJ•v = 0 • -J (3.25b) 

If we pose the scalar product of two vectors '!' A and '!' 8 as 

(3.26) 

then using the methods of Davis and Segel (1968), it is straight­

foreward to show subject to the present boundary conditions 

(3.20c,d), that system (3.25a,b) is self-adjoint. Note that these 

conditions are derived from 
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U ... w .. T (L) "' 0 on z "" 0 
1 .. vl 1 1 (3.27a) 

and 

U '"' v .,. w • T ( L) + J T ( L) "" 0 on Z '"' 1 • 
1 1 1 lz 4... 1 (3.27b) 

We now turn to the order c: 2 terms of the perturbation theory. In 

the solid, v2r2 (S) = o with r 2 (S) = o at z = 1+B and T2 (S) = 
-i -T(S) ;\ n n 

1 
at z = 1. Thus, 

2 lz 

(3.28) 

and we find that the 0(8 2 ) Stefan condition becomes 

(3.29) 

Herewe have used forms (3.18), (3.19), (3.21) and (3.28) as well 

as early relations on boundary conditions on the liquid at z = 1. 

Finally, we use T2 (S) - ;\- 1n2 + T1z(S) n1 = 0 on z = 1 to elimi­

nate n 2 and find that T(L) (1) +iT
2
(L) (1) = 0; here we have 

2z 
used equation (3.23b). 

At order 8 2 the governing system is the liquid has the form 

-1 
y1•Vu1 I P2x 1 

p 
I 

R2 R2 
.. _ 

{L + M }•'l' - P2y -1 .!.R 2 R ~·.!1 ... P vt" Vv ... c ... -=-2 c .. r- t 2 c 1 
P2z p ~I. VW 1 
0 ~1 • VT 1 (L 

(3.30a) 

v · y
2 

= o. ( 3 . 3 ob ) 

The boundary conditions at z = 0 are 

u = = T
2
(L) -- 0 2 v2 = w2 on z = 0. (3.30c) 
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The boundary condi tions a t z = 1 are obtained by referring the 

conditions on the deflecting interface to its mean position z = 1 

and using the ordert: condi tions for simplifying the expressions. 

The final form requires a good deal of algebraic manipulation and 

leads to the following: 

(x,y,l) 
(3.30d) 

(L) ..b (L) 
T2 _ (x,y, I) + eL T

2 
(x,y, I) .. 0 • 

2: 

We now apply the Fredholm alternative and take the scalar product 

of equation (3.30a) with f.1. From Davis and Segel (1968) we see 

that (i) the pressure gradient terms vanishes, (ii) the nonlinear 

term vanishes, (iii) the terms involving the operator inversion, 

using Green's theorem, of k +Re 112 t;1 vanish except for the 

boundary intergrals. In the latter terms we use conditions (3.21) 

and (3.30c,d) to reduce these. The results takes the form 

I 

~ Rc'i R1 <!1, ~·_! 1 > =-n 1 (u~ (x,y,1)+i
1 

(x,y,I)J 
z z 

(3.31) 

We now use the definitions of f 1 and ~ from (3.24) and the scalar 

product (3.26) to rewrite equation (3.29) as follows: 

J 1 
w T (L) dz 

0 
I I 

(3.32) 

Finally, we introduce the normal modes ( 3.16), use relation 

(3.22) and eliminate H1 using form (3.23b) to obtain 



-21-

<1>2 (3.33) 

The work of Schlüter, Lortz and Busse ( 1965) Segel ( 1965) and 

Busse (1967) have shown that stability considerations lead to the 

appearance of either roll cells or hexagons and that the nonli­

near competition is contained in the following special form for 
<I>: 

I I Pi 
<!> (x,y) = Y coszky cos-j v3ky + z cos ky , (3.34) 

where rolls have Y = 0, Z i 0 and hexagons have Y = + 2 Z. Th e 

normalization (3.17) requires 

(3.35) 

so that Z = + /2 for rolls and Z = + l213 for hexagons. 

The integration g1v1ng the horizontal average, is zero for rolls 

so that R1 = R1(R) = 0 in this case while for hexagons it gives 

+ ~ 16 k2. Figure 7 shows R1 = R1 (H) for hexagons with Z > 0 as a 

function of B. Here we have used the numerically computed eigen­

functions w1 and T1(L) to evaluate expression (3.33) and we have 

used the normalization max W1(z) = 0.93848 k 2c (B). 

At this stage we could obtain the order E2 solutions, examine the 

order E3 perturbation terms and formally obtain R2 (B) for B arbi­

trary; this would then give us 

R(H) ... R + R (H) E: + R (H) E:2 
c I 2 

(3.36a) 

for hexagons and 

R(R) - R 
c 

+ R(R) 
2 

E:2 (3.36b) 

for rolls. However, if Bis not small, there is no justification 

for the retention in equation (3.36a) of the term R2 (H) E2 since 

it is obtained by perturbation theory in E which makes it formal­

ly negligible compared to R1 (H) E. On the other hand if B is 
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small +), so that a double expansion in E and B is permissible, 

than all three terms ean be retained. Thu s, i t i s then justi fi-

able to write 

R(H)(B) ""R(H)(O) "' c2 • R 2 2 c 
[0.89360+0.04959 P-I +0,06787 p"2 J~ (3.37a) 

R(R)(B) - R(R)(O)"' c2 • R 2 2 c 
[0.69942-0,00472 p" 1 +0.00832 p"2], (3.37b) 

R (B) - R (0) "" 1707.762 • c c 
(3.37c) 

k (B) - k (0) ""3.119 c c 
(3.37d) 

where 

I I 
c2 ... Rz ! W 

1 
(z) T (L)(z) dz ... 2904.4 

c 0 
I (3.37e) 

The values gi ven in ( 3.37a, b) are eomputed by Sehlüter et al. 

( 1965); we have i nserted faetors Re and c2 to aeeount for the 

differenees in non-dimensionalization and eigenfunetion normali­

zation between Sehlüter et al. and us. We do so in equations 

(3.38) below as well. For small B, ~- 1 = 0 (B) so that formula 

(3.33) gives, eonsistent with Figure 7, that 

(3.37f) 

From now on we use,the symbol Re to denote Rc(O). 

+) Equivalently, we eould write B = BE where B = 0( 1) as E + 0 

and perturb in the single parameter e. In this ease for hexa­

gons we would get R - Re + ( R 20+R 21 B) e 2 where R20 would be 

equivalent to the B = 0 result of Sehlüter et al. (1965) and 

R21 would be our RH 1 (0); the results are thus identieal. 
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3.3 Preferred Mode 

The foregoing computation for steady convection leads to an infi­

nite number of convective states, one for each <P, which need to 

be distinguished by stability considerations. This has been done 

generally by Busse ( 1967) for cases where R1 is small and ge­

nerated by thermal variations in fluid properties. His stability 

analysis applies directly to our present work if B is small+) in 

which case four ranges of Rayleigh numbers exist for stable con­

vective states. We can write these as follows: 

I. 0 < R < R "' R 
[R~H))2 

-
4 R(H) A 

pure conduction only 
c 

2 

II. RA< R < R 
c 

III. R < R < ~ .. R 
c c 

VI. RR < R <RB= R + 
c 

v. R > R 
B 

where from Busse (1967) we have 

2 

pure conduction or 
hexagonal convection 

hexagonal convection only 

hexagonal convection or 
roll convection 

roll convection only 

(3.39) 
L2 = 0,29128 + 0,08147 P-I + 0.08932 p- 2 • 

+) The interface deflection and the phase changes give rise to 

new local time derivatives (in the kinematic and Stefan boun­

dary cond i t ions) compared to t he c lassical case. When B i s 

small, these terms do not alter the stability results of Busse 

( 1967) nor the ranges listed above. However, if Bis not 

small, then one does not know the resul t. 

(3.38) 
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These ranges from the small B theory have been drawn in Figure 4 

for P + oo. For purposes of clari ty we have shown the curves for 

values o f B larger than those appropriate for the perturbation 

theory. It is seen that the ranges divide the plane R versus B 

into sectors related to the observations though quantitative 

camparisans are not possible. 

In range I, pure conduction is the only stable steady state. In 

range II 1 pure conduction is locally stable but there can be a 

jump transition to stable hexagonal convection as indicated in 

the bifurcation plot of equations (3.36) of Figure 8. Here a path 

a + b of increasing R results a jump to point c. If R increases 

further, hexagonal convect ion i s main tai ned. Howeve r, i f R i s 

decreased along c + d, then there is a jump down to pure conduc­

tion. Thus, abcd constitutes a hysteresis loop. Since R1 < 0, the 

hexagons that occur have upflow at their centers. Hexagons having 

downflow a t thei r center s are uns ta bl e. In range II I, th e same 

hexagons persist. In range IV both rolls and hexagons are stable 

while in range V only rolls can persist. Again the path a'b'c'd' 

consti tute a hysteresis loop, this time invol ving jumps between 

hexagonal and roll convection. 

3.4 Mean Interface Position 

The nonlinear theory for small B gives ranges for stable hexa­

gons, rolls or both as listed in (3.38). The theory shows that 

the first hexagons seen (as R is increased) should occur through 

a jump as shown in Figure 8. Thus jump occurs somewhere between 

R = RA and R = Re and has magnitude between R1(H)/2R 1 (H) and 

R1 (H) /R 2 (H). Given such a jump in 8, there should be an accompa­

nying jump in the mBan position of the solidification interface. 

We can examine this jump for· small B by first solving for the 

order 8 2 mean temperature "f2 (L). It satisfies 

I 

= RI D (W T(L)) 
c I I 

(3.40a) 



We solve 

T(L) (z) 
2 

T(L)(O) = 0 
2 
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system 

I 

(3.40) to find that 
I 

[ I = R2 { 
c 

z 

I W T(L)dz· ---1--=-
1 I I +t...-1 

0 0 

W T ( L) dzJ z } • 
I I 

We now average equation (3.29) over x and y to obtain 

(3.40b) 

( 3. 4 Oe) 

(3.41) 

( ) - ...p-1 [ (L) ( ) ) 2) 
DT2L (I)"" -i(n2 + ci'ii"T) = -i'(n2 +or... DTI I (3.42) 

where we have used forms (3.16a), (3.17) and (3.23b). We now 

combine equations ( 3.41) and ( 3.42) to obtain 
I 

R7 n .. ;e-l { c I w T(L~z- [oT(L) (I)] 2 } (3.43) 
2 I+ -I I I I 

The relation (3.43) is 

Now, since n ~ 1 + En1 

range R(H) 
( _!_ I 

2 R(H) 
2 

0 

then for B + 0 the mean jump n - 1 = 0 (83). Since n2 > 0, the 

onset of hexagonal convection is accompanied by a jump in mean 

thickness of the liquid layer. 

3.5 Experimental/Theoretical Comparisons 

We have posed a theory for convection initiated by a slight melt­

ing of a solid and the subsequent convection coupled to the de­

flection of an interface sustaining changes of phase. 

The linearized stability theory shows that in spite of the inter­

face temperature being known a priori, the disturbances see an 

imperfectly conducting solid medium at z = 1. Linearized theory 

gives Rc(B) which decreases by about 12.5 o/o as B increases from 

zero to infinity.· The critical wave-number kc(B) decreases by 
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about 9.7 % over the same range. These values are consistant with 

the experimen ta 1 obse rva t ion s. For exampl e our measurement s o f 

the hexagons in figure 3c gives k = 3.0 ~ 0.2 for R = 3300 and 

B = 0.36 while the linear theory for R = Rc(0.36) ~ 1520 and the 

same B gives k "' 2.9. The rolls of figure 3a have k = 2.5 + 0.1 

for R = 7500 and B = 0.03 qualitatively consistent with the wave­

number decreasing with increasing R > Re. 

The nonlinear theory for small B gives ranges for stable hexa­

gons, rolls or both as listed in (3.38). The range of predicted 

hexagons approaches zero with B consistent with the experimental 

observation that only roll cells are seen for small enough B (B~ 

0.05). For the value B = 0.05 stable hexagons should be in the 

range 

-4 
-4.2 X 10 < 

R-R c 
R 

c 

-I 
< 1.3 X 10 (3.44) 

which would be difficult to see by present techniques. However, 

when B is large the range of stable hexagons should be large 

consistent with the experimental Observation that for B large 

enough (B = 0.16) well formed hexagons or mixed polygonal states 

are always seen. For the value B = 0.16 stable hexagons should be 

in the range 

R-R 
-4.3 X 10- 3 < R c < 1.3 

c 
(3.45) 

This range significantly exceeds the expected range of validity 

at our perturbation theory so that hexagons would be predicted 

"always"! 

The theory shows that the first hexagons seen should be present 

due to a jump from the conduction state. Figure 8 shows a bifur­

ca t ion diagram o f equa t ions ( 3. 36) for hexagons and rolls. As R 

is increased, the pure conduction state loses stability through a 

')·ump of magnitude between 1 R (H)/R (H)and R (H)/R (H) which is 
~ 2 1 2 1 2 , 

O(B) for small B. We have no experimental observations of such 

jumps in the present set-up since viewing from the side of a 

thin, wide layer is difficult. However, in a subsequent experi-
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ment designed to focus on side-wall effects we have used identi­

cal materials but now a chamber having depth 10 mm and horizontal 

dimensions 20 mm x 200 mm. In these experiments B = 5.0 and we 

observe from the side a rapid jump in the mean posi tion of the 

interface upon the onset of convection; the liquid layer doubles 

its thickness at the onset of convection. This is not an effect 

of changes of volume of the material upon solidification but one 

of the dynamical consequences of subcritical bifucation. 

We note that there j_s an aternative mechanism for the creation of 

hexagonal pa t terns as di scussed by Palm ( 196 0), Segel and Stuar t 

( 1962), Busse ( 1967) and Davis and Segel ( 1968). Here thermal 

variations, say .6lJ, across the liquid layer, of each fluid pro-

perty lJ 1 having mean value ll 
0

, lead to R 1 proportional .6lJ/lJ
0

• 

On one hand, cyclohexane closely satisfies the conditions of the 

Boussinesq approximations so that .6lllll
0 

is very small within the 

temperature change T
0

-Ts:::: 1 K. On the other hand since T0 -Ts is 

fixed in the present experiment, independent of B, theories based 

on non-Boussinesq effects would predict a range of hexagons inde­

pendent of B contrary to our Observations. Thus, such non­

Boussinesq mechanisms are negligible in the present case. 

4. Conclusions 

In this paper we have examined a single component liquid that 

solidifies at a known temperature Ts. The configuration involves 

a layer heated from below and cooled from above. A slight melting 

of the solid initiates steady thermal convection coupled to the 

deflection of an interface at which the changes in phase occur. 

We have discussed an experiment in which large values of B (the 

ratio of solid to liquid thicknesses) lead to hexagonal convec­

tion that is readily observed while small values of B lead to 

only to line patterns. Presumably, hexagons exist in a Rayleigh 

number range too small to resolve experimentally. 
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We have discussed a theory for which small values of B are re­

quired since the perturbation theory is questionable when B is 

large. 

We have compared experimental observation with theoretical pre­

diction and found very good qualitative agreement in that (i) 

hexagonal convection and solid-liquid interface patterns predomi­

nate at large B while two-dimensional convection and patterns are 

seen at small B, (ii) the wave-number of the cells is governed 

by a stability theory, (iii) the onset of hexagonal convection is 

accompanied by a jump in the mean position of the solid-liquid 

interface so that the liquid depth suddenly increases. 

The above agreement gives confidence that the coupled convec­

tive/phase-change Rystem considered gives rise to hexagonal 

symmetries and that theRe states are driven by alterations in 

heat transfer at the interface due to interfacial deformation. 

Further, the prediction of upflow in the centers of the hexagonal 

cells fits ones view that the phenomena are well-modeled by the 

theory. This mechanism should be present in other more compli­

cated solidification systems. 
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Fig. 1 Schematic drawing of partially solidified liquid layer. 
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Fig. 2 Experimental apparatus, layer height 4.18 mm and 5.04 mm 1 

layer width and depth 287 mm. 
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a) 

b) 

c) 

Fig. 3 Photographs of corrugated "ice" surfaces a) hexagonal 
pattern, b) mixed hexagonal-line pattern) c) line pattern. 
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Pig. 4 Regime diagram on the R-B plane: lables I-V refer to cri­

tical values listed in (3.38); o denote rolls, 0 denote 

rolls and polygons, e denote hexagons, and x denotes 

states of rest. 
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Fig. 5 Critical Rayleigh number as a function of the Biot number. 
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Fig. 7 Normalized first order correction term of the Rayleigh 

number as a function of the Biot number~ 
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Fig. 8 Qualitative sketch of the dependence of the amplitude on the 

Rayleigh number for rolls and hexagons and bounds of 

stability, hatched curves mark the unstable branches of 

the roll and hexagonal solutions. 
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Fig. 9 The second order correction term for the average layer 

height as a function of the Biot number. 
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