KfK 3717 März 1984

Verträglichkeit von Werkstoffen für Druckgasflaschen mit verunreinigtem Rubidium

H. U. Borgstedt, H. E. Noppel, R.-D. Penzhorn Institut für Material- und Festkörperforschung Institut für Radiochemie Projekt Wiederaufarbeitung und Abfallbehandlung

Kernforschungszentrum Karlsruhe

·

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Material- und Festkörperforschung Institut für Radiochemie Projekt Wiederaufarbeitung und Abfallbehandlung

> KfK 3717 PWA 70/83

Verträglichkeit von Werkstoffen für Druckgasflaschen

mit verunreinigtem Rubidium

H.U. Borgstedt, H.E. Noppel und R.-D. Penzhorn

KERNFORSCHUNGSZENTRUM KARLSRUHE GMBH, KARLSRUHE

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

.

Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

Zusammenfassung

Die Korrosionswirkung von Rubidium mit mehr oder weniger hohen Gehalten an Oxid oder Hydroxid auf einen Baustahl und vier austenitische Chromnickelstähle unter Endlagerungsbedingungen wurde geprüft. Die Werkstoffe waren entweder als Behälterwand unter Wandspannung oder als Prüflinge unter Zugspannung eingesetzt. Bei Temperaturen von 150 und 200 ^OC wurden die Versuche bis zu 30 000 Stunden ausgedehnt.

Die Ergebnisse eingehender Nachuntersuchungen zeigen, daß die Rubidiumkorrosion unter den Endlagerungsbedingungen zu vernachlässigen ist. Sie überwindet praktisch die Oberfläche der Werkstoffe nicht. Die Festigkeit und Zähigkeit der Werkstoffe wird durch Rubidium nicht beeinträchtigt. Die verschiedenen Werkstoffe zeigen alle ein gleich gutes Verträglichkeitsverhalten.

Aus den Befunden kann der Schluß gezogen werden, daß die Rubidiumkorrosion das Konzept einer Krypton-85-Endlagerung in Druckflaschen nicht gefährden kann, da innerhalb der Lagerzeit keine Werkstoffschädigung durch Rubidium zu erwarten ist.

Compatibility of materials for pressurized cylinders with unpurified rubidium

Summary

The corrosion of a mild steel and four austenitic chromium nickel steels by rubidium, containing varying amounts of oxide and hydroxide, was investigated taking into account conditions prevailing in a repository. The materials were tested as pressurized cylinders as well as cylindrical specimens under a tensile load. Corrosion tests were carried out at 150 and 200 $^{\circ}$ C for a period of time extending up to 30 000 hours.

From the metalographical examination of the investigated samples it is apparent, that corrosion by Rb under final storage conditions is negligible. The observed attack is limited to the metal surface. Neither strength nor toughness of any of the examined materials was impaired by rubidium. All the investigated materials showed the same good compatibility behaviour.

It is concluded that corrosion by Rb does not pose a restriction to the concept of ⁸⁵Kr storage in pressurized cylinders, because no significant material degradation is expected within the storage period in the repository.

1. Einleitung

Eine Voraussetzung für die Entsorgung des Kr-85 in Druckgasflaschen ist der Nachweis, daß die für die Behälter, Schweißnähte und Ventile benutzten Werkstoffe für die Dauer der Lagerung nicht durch Rubidium, der stabilen Tochter des Kr-85, infolge von Korrosionsreaktionen in einer die Sicherheit beeinträchtigenden Weise geschädigt werden. Denn in einer 50 Liter Druckgasflasche mit 100 bar Krypton mit einem Anteil von 6 % Kr-85 wird nach 99 %igem Zerfall mehr als ein Kilogramm Rb erzeugt. Abb. 1 verdeutlicht, daß im Hinblick auf eine evtl. Korrosion durch Rb die Bedingungen während der ersten 20 Jahre am kritischsten sind: Höchste Temperatur, Rb im flüssigen Zustand sowie höchster Gasdruck mit entsprechend hoher Zugspannung auf die Behälterwand. Das zunächst gasförmige durch Kr-85-Zerfall sich bildende Rb nimmt bis zum Sättigungspunkt zu, um dann zu Tröpfchenaerosolen zu kondensieren, die durch Sedimentation bzw. Diffusion an die Behälterwand unter Bildung eines Dreiphasensystems im Laufe der Zeit abgeschieden werden. In den ersten Zeitabschnitten ist darüber hinaus mit der Getterung des entstehenden Rubidiums durch die im Kr vorhandenen Verunreinigungen zu rechnen. Beispielsweise würden die reaktionsfreudigen Verunreinigungen Sauerstoff und Feuchte zur raschen Bildung von Rubidiumoxid (Rb₂O) und Rubidiumhydroxid (RbOH) führen. Somit wird auf der Behälterinnenwand zunächst eine Rb₀O- bzw. RbOH-Schicht abgeschieden, die jedoch nach weiterem Kr-85-Zerfall durch die sich ausbildende Flüssigmetallschmelze wieder heruntergelöst wird (s. Abb. 2). Da das Oxid, vermutlich auch das Hydroxid, eine beträchtlich hohe Löslichkeit in der Alkalimetallschmelze hat, kann es auch im gelösten Zustand mit den Werkstoffen in Reaktion treten. Nach Löslichkeitsangaben aus der Literatur (1) steht, wie Abb. 3 zeigt, bei 150 bis 200 $^{\circ}$ C das Oxid Rb₂O mit dem gelösten Sauerstoff im Gleichgewicht und die Lösung kann bis zu etwa 20 Atom % Sauerstoff aufnehmen. (Schon bei 40,2 ^oC zerfällt Rb₃O peritektisch unter Bildung von gut kristallisiertem Rb₂O).

Das Verträglichkeitsverhalten der leichten Alkalimetalle mit einer Reihe von Werkstoffen ist bis zu hohen Temperaturen gründlich untersucht worden. Unter vielen anderen Werkstoffen sind die austenitischen und ferritischen Stähle ausgezeichnet gegen die Metallschmelzen beständig und als Behälterwerkstoffe geeignet. Ein hoher Sauerstoffgehalt im flüssigen Metall kann allerdings die Verträglichkeit deutlich vermindern (2). Aus einer Vielzahl von Untersuchungen ist bekannt, daß die Korrosion der Stähle durch Alkalimetalle erst ab etwa 400 ^oC einen größeren Umfang erreicht. In stagnierenden Schmelzen ist der Effekt relativ schwach, da in ihnen kein wesentlicher Korrosionsprodukttransport die Korrosion fördern könnte. Dennoch erschien es für Rubidium und seine Mischungen mit seinem Oxid und Hydroxid notwendig, unter den Bedingungen der Endlagerung Korrosionsversuche mit verschiedenen Behälterwerkstoffen durchzuführen. Zum ersten war die Rubidiumkorrosion betreffende Erfahrung sehr beschränkt, weshalb aus den Literaturangaben eine Aussage für die Einsatzbedingungen nicht abgeleitet werden konnte (3). Zum anderen war die Möglichkeit einer Flüssigmetallversprödung (4) nicht auszuschließen, da diese gerade bei Temperaturen wenig oberhalb der Schmelztemperatur in Erscheinung tritt. Zum dritten war schließlich die Gefahr einer Alkalikorngrenzenkorrosion zu befürchten, da im Anfangsstadium der Lagerung hohe Konzentrationen an Oxid und Hydroxid zu erwarten waren.

Aus allen diesen Gründen wurde im Auftrag des Projektes Wiederaufarbeitung und Abfallbehandlung ein Versuchsprogramm entwickelt, das Korrosionsuntersuchungen bei 150 und 200 ^OC an Grundwerkstoff und Schweiße auch unter realistischen mechanischen Belastungen erlauben sollte. Neben den austenitischen Stählen und Schweißzusatzwerkstoffen wurde auch ein Baustahl in das Programm einbezogen.

2. Experimentelle Methoden

Für eine möglichst den Endlagerungsbedingungen nahe Prüfmethodik wurden die Werkstoffe in Form von Druckbehältern, die mit Rubidium oder Rubidium mit Zusätzen von Rubidiumoxid oder Rubidiumhydroxid oder beiden bis zu einem jeweils gleichen Füllstand gefüllt und mit Argon auf den Innendruck von 100 bar gebracht wurden, eingesetzt. Diese Behälter wurden in regelbaren Temperaturkammern bei den vorgesehenen Temperaturen von 150 und 200 ^OC bis zu 30 000 Stunden ausgelagert. Zugaben von Rubidiumoxid und Rubidiumhydroxid simulierten dabei die Verunreinigungen des Kryptons durch Sauerstoff und Feuchte oder andere Sauerstoff abgebende Gase. In die Druckbehälter wurden zusätzlich Teststreifen aus zu prüfenden Werkstoffen mit einer Prüfschweißnaht eingebracht. Die Form der Behälter aus dem austenitischen Stahl Werkstoff-Nr. 1.4306 und die Einbringung des Teststreifens einschließlich Schweißnaht ist aus der Abb. 4 zu ersehen. Diese Behälter konnten von zwei Lieferanten bezogen werden. Behälter aus dem Baustahl 1.0305 waren nicht erhältlich. Sie wurden nach eigenen Angaben in der in Abb. 5 dargestellten Form in den Zentralwerkstätten des Kernforschungszentrums hergestellt. In diese Behälter wurde kein Teststreifen eingeschweißt. Auch hier wurde jeweils bis zu einem gewissen Füllstand die Alkalischmelze eingefüllt.

Zu einem späteren Zeitpunkt wurden außerdem noch Testeinrichtungen für die Korrosionsprüfung unter Zugbelastung entwickelt und für eine weitere Versuchsserie eingesetzt. Diese Einrichtungen sind nach dem in der Abb. 6 gezeigten Prinzip gebaut. Die zylindrische Stahlprobe mit einem Durchmesser von 4 mm (im Meßbereich) und einer Meßlänge von 32 mm wurde mit Gewinden M8 mit den beiden Enden des Gehäuses verschraubt. Das Mittelstück der Prüflinge wurde gemäß DIN 50125 gestaltet (s. Abb. 7). Nach dem Füllen mit Rubidium und Zusätzen wurden die Einrichtungen durch Met-X-Dichtungen abgedichtet und verschraubt. Die Zugbelastung wurde durch Zusammenpressen einer genormten Stahlfeder erzeugt. Sie simuliert die auf eine Gasflaschenwand wirkende Druckspannung und kann in weiten Grenzen variiert werden. Der Vorteil dieser Einrichtung bestand in einer freien Wahl der zu prüfenden Werkstoffe und dem geringen Volumen, in dem nur eine geringe Menge des teuren Alkalimetalls gebraucht wurde. Die kompletten Einrichtungen wurden in Temperaturkammern, in einer Serie auch im Lagerbecken des FR-2-Reaktors in Karlsruhe zur Ermittlung eines Einflusses der Gammastrahlung auf die Korrosionsreaktion ausgelagert. Die Bestrahlungseinrichtung besteht im wesentlichen aus einem 7 m langen gasdichten Edelstahltauchrohr, dessen Außendurchmesser 108 mm beträgt. An einer zentrisch eingeschraubten Halterungsstange wurden die Testprüfstände im Tauchrohr aufgehängt. Zur Halterung von 6 Stück FR-2-Brennelementen, die als Strahlenquelle verwendet wurden, diente eine BE-Garderobe (Abb. 8). Für die Versuche unter γ -Bestrahlung wurden die Testprüfstände mit einer Miniaturheizung versehen und die Zugfeder sowie Faltenbalg weiter nach oben verlegt, so daß sich um den Mittelteil des Prüflings nur zwei konzentrische Rohre befinden, nämlich der Rb-Behälter mit aufgewickelten und fixierten metallisch-keramischen Heizleitungen und das Mantelrohr des Prüfstandes. Auf diese Weise konnte eine "Verschattung" der Y-Strahlung durch die massive Stahlfeder auf den Prüfling vermieden werden (s. Abb. 9). Die Testprüfstände wurden für den Einsatz im Lagerbekcen außerdem mit einem Thermoelement versehen, so daß eine exakte Temperaturüberwachung und -regelung möglich war. Die Testprüfstände sind ihrerseits so angeordnet, daß 5 Stück zu einer Kette aneinander geschraubt werden konnten. Dadurch konnte das Strahlungsprofilder FR-2-Brennelemente weitestgehend ausgenutzt werden.

Die Strahlendosis wurde zunächst im leeren Bestrahlungsrohr bei angehängten Brennelementen gemessen. Nach Beendigung des Dauerversuchs wurde diese Messung wiederholt.

Die Füllung der Druckbehälter und Testprüfstände sowie die Dosierung des Rubidiums und der Zusätze erfolgte in einer Schutzgasbox in ständig gereinigtem Argon. Die Behälter standen nach dem Füllen unter Argon von einem bar. Zur Erreichung eines höheren Drucks wurden sie mit einem Gasversorgungssystem verbunden.

Nach der Auslagerung der Behälter wurden Werkstoffproben aus den Behälterwerkstoffen selbst und aus den Teststreifen entnommen. Die Effekte der Einwirkung der Rubidiumschmelze wurden durch eine Reihe von verschiedenen Nachuntersuchungen ermittelt. Die Einflüsse auf das Gefüge wurden mit metallografischen Methoden untersucht. Die Querschliffe wurden im polierten und im geätzten Zustand beurteilt. Die Vergrößerung erreichte einen Faktor 500. Die oberflächlichen Phänomene wurden in rasterelektronenmikroskopischen Aufnahmen bis zu einer 5000fachen Vergrößerung sichtbar gemacht.

Wegen einer möglichen Materialversprödung wurde auf die Ermittlung mechanischer Kennwerte im Zugversuch bei Raumtemperatur größter Wert gelegt. Bei diesen Untersuchungen wurden von allen Werkstoffen und für alle Parameter die Streckgrenzen, die Bruchlasten und die Bruchdehnungen ermittelt. Alle diese Versuche wurden bei konstanter Dehngeschwindigkeit von 1 mm/min ausgeführt. Auch nach diesen Versuchen wurden teilweise noch metallografische Nachuntersuchungen, mindestens aber visuelle Prüfungen der Art des Bruchs vorgenommen.

3. Versuchsergebnisse

Tabellen I - XXXIV geben eine Übersicht über die durchgeführten Versuche. Dabei bedeuten

s _o	-	Querschnitt des Prüflings
L _o	=	Länge des Prüflings
Δ_{L}	=	Verlängerung
Roto.2	=	Zuglast bei 0.2 % Dehnung
Rm		Zuglast bei Bruch
A D	=	Bruchdehnung am Diagramm
A _P	=	Bruchdehnung an der Probe.

Die Palette der untersuchten Werkstoffe ist in der Tabelle XXXV zusammengestellt. Eine Vielzahl von Einzelergebnissen ist inzwischen angefallen. Im folgenden wird versucht, die Ergebnisse als Funktionen der Zeit und der Versuchsparameter darzustellen. In einigen Fällen wurden auch die die Kapseln verschließenden Ventile inspiziert. In diese war kein Rubidium, das selbst bei den mäßigen Temperaturen der Tests sehr zum Kriechen neigt, eingedrungen. Daher gab es auch keine Effekte durch Flüssigmetallkorrosion.

3.1 Ergebnisse der metallografischen Nachuntersuchungen

Die Schliffbilder von Proben aus dem Baustahl Werkstoff-Nr. 1.0305, die aus mit Rubidium, Rubidium mit Oxidzusatz und auch mit Natrium mit unterschiedlichem Oxidgehalt beschickten Behälter herausgeschnitten sind, zeigen keinen über die erste Kornlage hinausgehenden Effekt des Mediums bis zu Einsatzzeiten von 20 000 Stunden. Die Abb. 10 vergleicht exemplarisch die Befunde an Proben in Kontakt mit hinsichtlich des Hydroxidgehalts unterschiedlichem Rubidium. Die Schliffbilder sind typisch für die Gruppe von Proben aus diesem Werkstoff. Auf den Probenoberflächen treten verschiedentlich Oxidschichten von bis zu 0.01 mm Stärke auf, die jedoch weder mit der Versuchsdauer noch mit dem Oxidoder Hydroxidgehalt des Rubidiums systematischen Zusammenhang aufweisen.

In gleicher Weise wurden die austenitischen Behälterwerkstoffe und Proben auf die Effekte der Auslagerungszeit und der Zusammensetzung der Alkalimetallschmelze metallografisch untersucht. Abbildungen 11a und 11b enthalten Schliffbilder von Proben des Stahls 1.4306 aus der Wand von Druckbehältern, die bei 200 ^oC ausgelagert worden waren. Auch diese Bilder zeigen, daß die Flüssigmetallkorrosion die Oberflächenzone des Stahls nicht überwunden hat. Die Untersuchungen an den anderen austenitischen Stählen ergeben das gleiche Resultat, die Effekte sind von gleicher Art und in allen Fällen sehr schwach. Auch auf dem austenitischen Werkstoff treten allerdings eine Größenordnung dünnere Schichten auf, die möglicherweise oxydischen Charakters sind. Der Zusatz von Oxid und Hydroxid zum Rubidium hat in dem Temperaturbereich der Versuche keine sichtbare Verstärkung der Korrosionserscheinungen bewirkt. Die Proben aus den Kapselwänden, den Teststreifen und den mittels Federspannung gedehnten Rundproben zeigen keinen Einfluß einer Spannung unterhalb der Streckgrenze auf das Korrosionsverhalten an.

— 5 —

Auch die metallografischen Untersuchungen an den Teststreifen mit Schweißnähten am Werkstoff 1.4301 ergeben den beruhigenden Befund, daß die Schweißungen selbst nach 30 000 Einsatzstunden in Rubidium mit Oxid- und Hydroxidgehalten keine besonderen Korrosionsvorgänge erfahren.

3.2 Befunde mit dem Rasterelektronenmikroskop

Da sich die Wechselwirkung der Stähle mit dem verunreinigten Rubidium weitgehend auf die Oberfläche selbst beschränkte, empfahl sich die Anwendung des Rasterelektronenmikroskops zur Untersuchung der Oberflächenveränderungen.

Die sehr unebenen Innenflächen der Proben aus den Baustahlkapseln zeigen im Rasterelektronenmikroskop nach dem Einsatz mit Rubidium eher einen saubereren Zustand als im Ausgangszustand. Das könnte einerseits mit einer Reduktion der Oberflächenoxide durch Rubidium, aber auch mit der Auflösung des Alkalimetalls, bei der in alkalischer Lösung Wasserstoff frei wird, zusammenhängen. Die Innenflächen des Werkstoffs 1.0305 werden jedoch nicht bis zum blanken metallischen Zustand reduziert, wie das durch Natrium geschieht. Oxidgehalte im Alkalimetall verstärken den Flächenanteil der Oxidbedeckung eher noch. Dieses Bild ändert sich praktisch auch nach 20 000 Einsatzdauer nicht, wenn man davon absieht, daß an solchen Proben etwas Rubidium an der Oberfläche fixiert wird.

Die aus den Whitey-Kapseln geschnittenen Proben aus dem Stahl 1.4306 sind praktisch über den ganzen Auslagerungsversuch hin mit dieser Methode kontrolliert worden. Die Befunde nach 2 000, 3 000, 20 000 und 30 000 Stunden bei Temperaturen von 150 und 200 [°]C gleichen sich sehr weitgehend, auch sind die morphologischen Unterschiede gegenüber Kontrollproben, die nur mit Argon ausgelagert waren, sehr gering. Abb. 12 zeigt als Beispiel die Befunde nach 20 000 Stunden bei 200 [°]C. Allerdings wurde an Proben, die 30 000 Stunden bei 200 [°]C eingesetzt waren, mit der EDAX ein wenig Rubidium an der Oberfläche gefunden, das sich aber nicht lokalisieren ließ.

Die Untersuchung der Schweißnähte an den Teststreifen aus Stahl 1.4301, die bei 150 ^OC 20 000 Stunden ausgelagert worden waren, im Rasterelektronenmikroskop bestätigte den Befund der Metallografie. Die Oberflächen zeigen, wie man in Abb. 13 sehen kann, lediglich ihre beim Schweißen entstandene Morphologie und

keine Spuren von einem interkristallinen Korrosionseffekt auch in den relativ großen Flächenbereichen, die hierbei beobachtet worden sind.

3.3 Ergebnisse der Zerreißversuche

Alle Zerreißversuche bei Raumtemperatur wurden mit der konstanten Dehngeschwindigkeit von 1 mm/min gefahren. Aus diesen Versuchen kann man die Größen Streckgrenze, Bruchlast und Bruchdehnung ermitteln. Die Diagramme, für die ein typisches Beispiel in Abb. 14 gezeigt ist, geben auch Auskunft über das duktile Bruchverhalten der Werkstoffe.

Da die Dehnungs-Spannungs-Diagramme für alle Prüflinge ähnlich ausgefallen sind, werden zum Vergleich der nach verschiedenen Zeiten aufgetretenen Effekte die Bruchspannungen und die Bruchdehnungen über der Auslagerungszeit aufgetragen. Soweit möglich werden die mit in Argon ausgelagerten Proben erhaltenen Werte mit in die Vergleiche einbezogen. In Abb. 15 sind die Werte für den Baustahl 1.0305 in Form von Streubändern aufgetragen. Dabei zeigt es sich, daß die Bruchlast für die in Rubidium korrodierten Proben noch etwas über der der Kontrollproben und die Bruchlast in etwa im Streubereich der Kontrollwerte liegt.

Im Prinzip sind die an den austenitischen Kapselwandproben erhaltenen Ergebnisse gleich. In Abb. 16 ist das für den Stahl 1.4306 nach Auslagerung bei 150 ^OC gezeigt. Die Bruchspannung ist mit den Kontrollwerten vergleichbar, die Bruchdehnung liegt sogar höher, besonders bei Auslagerung mit hohen Rubidiumoxidgehalten. Die Versuche bei 200 ^OC an dem gleichen Material wurden bis 30 000 Stunden ausgedehnt und beim Versuchsende mit Kontrollproben verglichen, wobei der Vergleich wiederum günstig für die mit der Alkalimetallschmelze ausgelagerten Proben ausfällt (Abb. 17).

Auch die in den Testeinrichtungen unter Zugbelastung geprüften Proben aus dem Stahl 1.4301, 1.4550 und 1.4541 zeigen hinsichtlich Bruchspannung und Bruchdehnung nahezu gleiche Werte wie nichtausgelagerte Kontrollproben. Die Ergebnisse aus diesen Versuchen sind in der Abb. 18 zusammengefaßt. Die Befunde sind für diese Art von Versuchen typisch und treffen in ähnlicher Weise für die übrigen Werkstoffe dieses Programms zu. Die nach den Zerreißversuchen untersuchten Proben zeigten in keinem Fall ein anderes Erscheinungsbild als das einer duktil und ohne korrosionsbedingte interkristalline Rißbildung reißenden Probe, wie das aus den Makrofotos der Abb. 19 zu ersehen ist.

3.4 Ergebnisse der Versuche unter Strahleneinwirkung

Bei den Proben, die im FR-2-Lagerbecken korrodiert worden sind (Gesamtdosis $1,3 - 1,6 \cdot 10^6$ Gy), wurde ein leichter Abfall der Festigkeit und eine entsprechende Zunahme der Duktilität festgestellt (s. Abb. 20). Beides ist unterschiedlich zu den Ergebnissen an der Mehrzahl aller Proben und kann durch die Y-Strahlung und andere Versuchparameter nicht erklärt werden. Die Änderungen sind aber nicht drastisch (s. Abb. 21) und auch an diesen Proben wurden keine stärkeren Korrosionserscheinungen als an den übrigen Proben gefunden.

4. Diskussion der Befunde

Bei den Auslagerungsversuchen selbst hat sich schon gezeigt, daß die Druckbehälter aus verschiedenen Stählen in Gegenwart von Rubidium mit mehr oder weniger großen Gehalten an Oxid oder Hydroxid bei einem Innendruck von 100 bar in keinem Fall versagt haben. War für die Behälterwerkstoffe selbst aufgrund der Auslegung ein solches Versagen auch weit außerhalb der Erwartungen, so muß man doch die Feststellung machen, daß auch Schweißnähte unter den genannten Bedingungen standhalten. Auch an den Ventilen konnten keine Schäden festgestellt werden. Die Versuche haben immerhin 30 000 Stunden Einsatzzeit bei 200 ^OC abgedeckt, das sind rund 3,5 Jahre. Hinsichtlich der Korrosionseffekte entspräche das einer Auslagerungszeit von etwa zehn Jahren bei 150 ^OC.

Die Nachuntersuchungen haben nun das Verständnis der Erscheinungen in den Auslagerungsversuchen in gewisser Weise extrapolierbar gemacht. In keinem Fall sind die Korrosionserscheinungen durch Rubidium und seinen Verunreinigungen tiefer als etwa 0.005 mm an den Korngrenzen in die Werkstoffe eingedrungen. Ebenso wurde ein Nachlassen der Festigkeit und der Zähigkeit der Werkstoffe durch Rubidiumeinwirkung nicht beobachtet. Die geringfügigen Reaktionen einschließlich der Fixierung von etwas Rubidium auf den Kapselwänden beschränken sich ganz auf die Werkstoffoberflächen.

Alle untersuchten Werkstoffe haben in gleicher Weise hohe Resistenz gegen die Rubidiumkorrosion auch in Anwesenheit höherer Gehalte an Oxid oder Hydroxid gezeigt. Vom Gesichtspunkt der Flüssigmetallkorrosion sind keine unterschiedlichen Bewertungen für die einzelnen Werkstoffe abzugeben. Man ist also frei, nach anderen Gesichtspunkten wählen zu können.

Die Ergebnisse dieses Versuchsprogramms zeigen, daß sich ungünstiger erscheinende und entsprechend interpretierte Versuchsergebnisse und daraus abgeleitete Werkstoffbewertungen (5) sich unter unseren Versuchsbedingungen, die den Endlagerungsbedingungen näher liegen, nicht einstellen. Die Korrosionseffekte werden erst oberhalb von Temperaturen, von denen ab die Feststoffdiffusion eine merkliche Geschwindigkeit erreicht, deutlich stärker. Die Versuchsergebnisse, die bei 500, 580 und 620 ^OC an verschiedenen Stählen erhalten worden sind, lassen sich auf Temperaturen unterhalb der Schwelle für die Feststoffdiffusion nicht übertragen. Es ist sinnlos, bei so hohen Temperaturen zeitraffende Korrosionsuntersuchungen anzustellen. Insofern steckt in diesen Ergebnissen auch kein Widerspruch zu den bei uns gewonnenen Erkenntnissen.

Auch in unseren Versuchen haben einige Druckbehälter für eine gewisse Zeit eine Überhitzung auf über 250 ^OC erlitten. Die Korrosionsbefunde an diesen Prüflingen lagen durchaus im Bereich der Befunde der Serie aller Proben. Man kann daraus schließen, daß die Temperaturschwelle für stärkere Korrosion durch die Alkalimetallschmelze sicher oberhalb 250 ^OC anzusetzen ist. Das ist in Einklang mit der Theorie, da bei diesen niedrigen Temperaturen die Geschwindigkeit der Diffusion der Legierungsbestandteile noch unmeßbar klein ist. Effekte können weder über die Matrix noch in den Korngrenzen tiefer in die Werkstoffe eindringen, wenn die Korrosion wie hier über Lösungs- und Oxydationsprozesse abläuft.

In den Hochtemperaturuntersuchungen sind oxydische und metallische Korrosionsschichten beobachtet worden (5,6), die eine Mitwirkung des Rubidiumoxids oder -hydroxids an den Korrosionserscheinungen erkennen lassen. Den Reaktionen der Sauerstoff enthaltenden Verbindungen wird eine bedeutende Beschleunigung der Korrosion bei höheren Temperaturen zugeschrieben. In eigenen Grundlagenuntersuchungen konnte gezeigt werden, daß bei Temperaturen von 400 – 500 ^OC Chrom mit Rubidiumoxid unter Bildung von Verbindungen reagiert (7). Bei hohem Sauerstoffpotential entsteht eine Verbindung Rb₄CrO₄, bei niedrigen Potentialen,

wie sie in verdünnten Lösungen vorliegen, entsteht ein RbCrO₂ oder Rb₃CrO₃. Aufgrund der gemessenen Sauerstoffpotentiale konnten freie Bildungsenthalpien der Doppeloxide berechnet werden. Es ist nicht sicher, ob in ähnlicher Weise auch Eisen durch Rubidiumoxid oxydiert werden kann. Die Gleichgewichtseinstellung ist schon bei 500 ^OC nicht sehr schnell, aber doch hinreichend in Bezug auf die Zeiträume der Korrosionsvorgänge. Schon bei 400 ^OC wird die Gleichgewichtseinstellung nur erreicht, wenn die Temperatur vorher höher war, bei niedrigen Temperaturen um 200 ^OC finden keine derartigen Reaktionen statt. Diese Versuchsergebnisse stützen die Feststellung, daß die Ergebnisse bei hohen Temperaturen nicht auf die Bedingungen der Endlagerung übertragen werden können.

Die Ergebnisse des umfangreichen Versuchsprogramms sprechen auch gegen eine eventuelle Flüssigmetallversprödung der Stähle im Temperaturintervall 150 – 200 ^OC. Flüssigmetallversprödung ist ein metallphysikalischer Effekt, der in manchen Kombinationen von Werkstoffen mit Metallschmelzen bei relativ niedrigen Temperaturen spontan zu sprödem Materialversagen führt. Diese Versprödung tritt ein, wenn mindestens zwei der folgenden drei Bedingungen erfüllt sind (4):

- 1. die Komponenten des festen Werkstoffs sind begrenzt in der Schmelze löslich
- 2. die Komponenten des festen Werkstoffs bilden mit dem Flüssigmetall keine intermetallischen Verbindungen
- 3. beide Metalle weisen ähnliche PAULING'sche Elektronegativitäten auf.

Gezielte Untersuchungen in Richtung auf dieses Phänomen wurden in Harwell ausgeführt (8). Die Ergebnisse der dort durchgeführten Versuche sind in Einklang mit den genannten Bedingungen, die für das System Rubidium - Stahl nicht erfüllt sind. Flüssigmetallversprödung wird also nicht beobachtet. Diese Erscheinung dürfte auslegungsgemäß selbst dann nicht auftreten, wenn das Material anfällig gegen eine solche Wirkung des Rubidiums wäre. Überraschend ist, daß sich die Proben im Zugversuch in Rubidium duktiler als an Luft verhalten. Die Ergebnisse unserer mechanischen Nachuntersuchungen weisen in die gleiche Richtung. Ein Einfluß von energiereicher Strahlung auf die Flüssigmetallkorrosion ist nur in untergeordnetem Maße zu erwarten (2). Trotzdem wurden fünf Versuche bei 200 $^{\circ}$ C im Lagerbecken des FR-2-Reaktors durchgeführt; die Nachuntersuchungen bestätigen im wesentlichen die Erwartungen, eine nennenswerte Korrosion ist nicht eingetreten.

Die nach Abschluß aller Versuche erhaltenen Ergebnisse an den verschiedenartigen Werkstoffen der Kapseln und Proben erhärten insgesamt die bereits früher veröffentlichten Befunde (9,10). Die Grundlagenuntersuchungen über die chemischen Reaktionen zwischen Stahlelementen und dem Sauerstoffgehalt im Rubidium machen die Befunde verständlich. Die Ergebnisse werden durch die in Harwell gewonnenen Erfahrungen gestützt, sie werden durch die zum Teil ungünstigen Befunde in den USA nicht abgeschwächt. Man kann daher aus unseren Versuchsergebnissen den Schluß ziehen, daß die Kryptonendlagerung in Druckflaschen aus Baustahl oder aus verschiedenen austenitischen Edelstählen für die notwendige Lagerzeit von 100 Jahren bei Temperaturen bis zu 200 ^OC möglich und sicher ist. Das entstehende Rubidium samt den Gehalten an Oxid und Hydroxid bedeutet keine Einschränkung, da es nachweislich bei den Lagertemperaturen keinen die Werkstoffe schädigenden Einfluß hat.

Danksagung

Wir danken den HerrenG. Wittek und K. Vogel, KTB/FR-2, für die Genehmigung und die Mithilfe bei der Durchführung der Korrosionsversuche unter γ-Bestrahlung im Lagerbecken des FR-2.

Literatur

- (1) A. Simon, Z. anorg. allg. Chemie 395 (1973) 301
- (2) H.U. Borgstedt, Werkstoffe und Korrosion 26 (1975) 103
- (3) W.E. Berry, "Corrosion in Nuclear Applications", J. Wiley and Sons, Inc., New York 1971, p. 305-307
- (4) C.F. Old, J. Nucl. Mat. 92 (1980) 2
- (5) T.R. Pinchback et al., Nucl. Technol. 54 (1981) 201
- P.K. Nagets et al., Materials Screening Tests for the Krypton-85
 Storage Development Program. Final Report. ENICO-1081 (1981)
- (7) P.G. Gadd, H.U. Borgstedt, J. Nucl. Mat. <u>119</u> (1983) 154-161
- (8) M.G. Nicholas, P. Trevena, EUROPEAN Appl. Res. Reports 4 (1983) p. 1172-1222
- (9) R.-D. Penzhorn et al., Trans ANS 31 (1979) 517
- (10) R.-D. Penzhorn, "Alternativverfahren zur Kr-85 Endlagerung", Bericht KfK-2482 (1977)
- (11) Stahlschlüssel, 1983, Verlag Stahlschlüssel

<u>Abb. 1:</u> Wärmeleistungs- und Aktivitätsabfall sowie die entsprechende Rb-Bildung von 0,1 MCi Kr-85 als Funktion der Lagerungszeit.

Lagerungszeit bei verschiedenen 02- Konzentrationen im Kr

Abb. 3: Löslichkeit von Sauerstoff in Rubidium und auftretende Phasen

Abb. 4: Druckbehälter mit Teststreifen

1

18

Wöhrle & Co., Restett 4-1737

Wohrle & Co., Rastall 46 454

Mal.- Nr. 682 019 🦻

Abb. 7: Prüfling

Abb. 8: Bestrahlungseinrichtung mit Edelstahltauchrohr und Brennelementgarderobe

.

5

Withrin & Co., Social 45, 1985

Ar + Rb + 23 % RbOH · 2H20

Ar + Rb + 0, 12 % Rb0H · 2H₂0

 $Ar + Rb + 0,47 \% RbOH \cdot H_20$

Abb. 10: Druckbehälter – Innenwand, geätzt Werkstoff – Nr.: 1.0305 Temperatur: 150 °C Zeit: 20 000 h

Abb. 11a: Druckbehälter-Innenwand, geätzt Werkstoff-Nr.: 1.4306 Temperatur: 200 °C Zeit: 30 000 h

Druckbehälter – Innenwand, geätzt Werkstoff – Nr.: 1.4306 Temperatur: 200°C Zeit: 10 000 h

Abb. 11 h

Rb

 $Rb + Rb_2O$

0.05 mm

20000 h

Abb. 12:

Rubidiumkorrosion der Kapselwand aus Stahl 1.4306

Zerreißversuch an Stahl 1.4306 nach 20000 h Kontakt mit Rb bei 150 °C (1 mm/min)

<u>Abb. 15:</u> Zeitlicher Verlauf von Bruchspannung und Bruchdehnung bei Proben aus dem Baustahl 1.0305

Zeitlicher Verlauf von Bruchspannung und Bruchdehnung bei Proben aus dem austenitischen Stahl 1.4306

Proben aus dem austenitischen Stahl 1.4306

Bruchspannung und Bruchdehnung von Proben aus den Testeinrichtungen für Korrosionsversuche unter Zugspannung

Ar + Rb + 1,8 % Rb20

Ar + Rb + 0,20 % Rb0H · 2 H₂0

KK

Abb. 20:

Zugversuche von Prüflingen nach Gammabestrahlung, geätzt Werstoff-Nr.: 1.4541 Temperatur: 200 °C Zeit: 3860 h

Abb. 21

Tabelle	Testmedium Ar Rb Rb ₂ O RbOH•aq bar) (g) (mg) (mg)			Werkstoff Zugproben	-Nr.; art;	1.0305 Druckbehi	ilterwanda			
Ar (bar)				Mech So (mm ²)	anisc ^L o (mm)	he Nac AL (mm)	hunt $\frac{R_{p0,2}}{(N/mm^2)}$	ersuc R _m (N/mm ²)	hunge ^A D (%)	n bei RT A _P (%)
	Referenz	rüfling		16,01	25,0	8,7	95	416	45,3	34,8

* :*	·····	Versuc	hstempera	tur: 150	000	Versuchs	dauer:	6200 h		unit - 18.
100	-	-	-	18,76	25,0	9,3	113	403	42,9	37,2
100	-	-	-	16,50	25,0	8,3	82	405	43,7	33,2
100	102,27	-	` -	16,54	25,0	8,5	91	414	40,6	34,0
100	102,27	-	_	16,54	25,0	9,4	130	414	45,8	37,6
100	101,05	500		16,70	25,0	8,9	114	414	44,5	35,6
100	101,05	500	-	16,44	25,0	8,6	134	414	42,7	34,4

<u>Tabelle II</u>

Werkstoff-Nr.: Zugprobenart: Versuchstemperatur: 150°C

1.0305 Druckbehälterwandausschnitt

Versuchsdauer: 20000 h

	festm	ediu	m	Mechanische Nachuntersuchungen bei RT						
Ar	Rb	Rb20	RbOH•aq	s _o	Lo	⊿L	R _{p0,2}	Rn	AD	Ap
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)
100	-	-	_	16,75	21	8,70	211	419	49,0	41,4
100		-	-	16,00	21	9,40	198	417	52,1	44,8
100	113,65	-	-	16,00	21	9,20	206	426	50,7	43,8
100	113,65	-	-	15,91	21	9,45	237	423	52,1	45,0
100	104,78	500	-	15,86	21	9,10	240	421	48,6	43,3
100	104,78	500	-	15,95	21	9,25	236	426	48,6	44,1

Tabelle III

Werkstoff-Nr.: Zugprobenart: Versuchstemperatur: 150°C

1.0305 Druckbehälterwandausschnitt Versuchsdauer: 20000 h

	restm	ediu	m	Mech	anisc	he Nac	hunt	ersuc	hunge	n bei RT
Ar	Rb	Rb ₂ 0	RbOH·aq	s _o	Lo	ΔL	^R p0,2	Rm	A _D	Ap
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)
100	102,81	-	-	17,18	21	8,90	137	416	51,0	42,4
100	102,81	-	-	16,66	21	9,20	129	421	57,3	43,8
100	105,34	-	130	14,12	21	8,00	205	420	47,1	38,1
100	105,34	· _	130	14,42	21	7,40	190	432	44,3	35,2
100	110,29	-	250	16,11	21	9,30	158	408	57,9	44,3
100	110,29	-	250	15,64	21	8,70	125	404	52,5	41,4
100	105,93	-	500	16,20	21	9,10	133	414	57,6	43,3
100	105,93	-	500	16,42	21	8,70	155	415	52,4	41,4

Tabelle	<u>VI</u>	Versuc	hstempera	Verkstoff- Zugprobena tur: 150	erkstoff-Nr.: 1.0305 ugprobenart: Druckbehälterwandausschnitt ur: 150 ⁰ C Versuchsdauer: 6370 h					
9	festm	ediu	m	Mech	Mechanische Nachuntersuchunger					n bei RT
Ar	Na	Na202		s _o	Lo	дЪ	R _{p0,2}	Rm	A D	AP
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)
100	-		-	18,71	25,0	8,90	95	404	46,1	35,6
100	-	-	-	17,68	25,0	8,70	122	408	43,7	34,8
100	69,54	-	raa t	16,47	25,0	7,40	106	408	35,2	29,6
100	69,54	-	-	17,09	25,0	7,80	88	417	39,8	31,2
100	68,92	500	-	16,32	25,0	8,30	123	428	40,6	33,2

Tabe	11	е	V
Sector Statements and Statements		Statistics and	

· · · · · · · · · · · · · · · · · · ·	/erkstoff-Nr.:
Z	Sugprobenart:
Versuchstemperat	ur: 150 ⁰ 0

1.0305 Druckbehälterwandausschnitt Versuchsdauer: 20000 h

	Testm	ediu	m	Mechanische Nachuntersuchungen bei RT							
Ar	Na	Na202	Į	s _o	Lo	⊿L	R _{p0,2}	Rm	A _D	AP	
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm^2)	(N/mm ²)	(%)	(%)	
100	-		-	15,17	21	10,30	226	424	54,8	49,1	
100		-	- ·	14,66	21	9,30	267	332	48,1	44,3	
100	70,64	-	tend (17,43	21	9,60	234	413	51,0	45,7	
100	70,64	-	-	16,87	21	9,70	218	402	53,8	46,2	
100	71,53	500	-	16,53	21	9,35	263	419	47,6	44,5	
100	71,53	500		15,24	21	8,80	210	414	48,8	41,9	

<u>Tabelle VI</u>

Werkstoff-Nr.: Zugprobenart: 1.4301 Druckbehälterwandausschnitt

Versuchstemperatur: 200⁰C

Versuchsdauer: 20000 h

	Testmedium				Mechanische Nachuntersuchungen bei RT						
Ar	Rb	Rb20	RbOH·aq	s _o	Lo	4L	^R p0,2	R _m	A D	AP	
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)	
100	-	-		15,25	21	20,40	260	700	107,1	97,1	
100	-	-	-	15,81	21	19,30	236	676	103,1	91,1	
100	57,47	-	-	15,81	21	17,50	263	657	94,3	83,3	
100	57,47		_	15,81	21	17,90	316	651	96,2	85,2	
100	56,08	510		15,41	21	20,20	- 219	690	107,8	96,2	
100	56,08	510		15,30	21	19,00	231	673	101,9	.90,5	

Tabelle	TIA	Versuc	hstempera	Werkstoff- Zugprobena tur: 200	-Nr.: art: D ^o C	1.4301 Druckbehälterwandausschnitt Versuchsdauer: 30000 h					
	ſestm	ediu	m	Mechanische Nachuntersuchungen						n bei RT	
Ar	Rb	Rb ₂ 0	RbOH•aq	s _o	г ^о	⊿L	R _{p0,2}	R _m	A _D	Ap	
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)	
100	58,31	-	-	14,28	21	19,4	240	673	109,5	92,4	
100	58,31	-	-	14,78	21	20,9	249	660	117,4	99,5	
100	58,88	520	-	15,04	21	19,7	227	668	102,4	93,8	
100	58,88	520	-	15,44	21	19,0	203	663	108,3	90,5	

<u>Tabelle VIII</u>

Werkstoff-Nr.: Zugprobenart: 1.4301 Prüfling

	Testmedium.			Mechanische Nachuntersuchungen bei R						
Ar	Rb	Rb ₂ 0	RbOH•aq	s _o	Lo	⊿L	^R p0,2	R _m	AD	Α _P
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)
	Referenz	prüflin	g	28,37	35	12,6	708	846	36,6	36,0
	Referen:	zprüflin,	g	28,27	35	12,5	707 ⁻	849	35,9	35,7
		Versue	hstempera	tur: 200	D ^o C	Versuchsd	auer: 60	000 h		
1	7,88	-	-	28,56	35	9,3	726	870	27,4	26,6
1	7,80	70	-	28,56	35	12,4	746	872	36,3	35,4
1	8,44	140	-	28,56	35	11,9	746	870	34,7	34,0
1	8,06	-	15	28,46	35	11,0	732	878	31,4	31,4
1	7,99	-	30	28,56	35	11,5	746	866	33,9	32,9
1	7,67	70	15	28,27	35	10,2	759	884	29,6	29,1
1	8,42	140	30	28,46	35	11,5	771	878	33,6	32,6

Tabelle IX

Werkstoff-Nr.: Zugprobenart:

Versuchstemperatur: 200°C

1.4301 Prüfling

Versuchsdauer: 12000 h

ſ	Cestm	ediu	m	Mech	anisc	he Nac	hunt	ersuc	hunge	ngenbeiRT A _D (%) (%) (%) 39.5 38.7				
Ar	Rb	Rb ₂ 0	RbOH•aq	s _o	Lo	۹Ľ	^R p0,2	Rm	AD	AP				
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)				
1	8,06	-	-	28,37	30	11,6	736	796	39,5	38,7				
1	7,43	70	-	28,07	30	11,7	733	805	40,3	39,0				
1	8,10	140	-	28,37	30	10,2	722	812	34,7	34,0				
1	8,09	-	15	28,18	30	11,7	701	793	39,8	39,0				
1	8,05	-	30	28,75	30	12,4	690	796	41,5	41,3				

				Zugprobena	art:	Prüfling						
		Versuc	hstempera	tur: 200	o°a	Versuchsd	auer: 20	0000 h				
	Testm	ediu	ш	Mech	anisc	he Nachuntersuchungenbei RT						
Ar	Rb	Rb ₂ 0	RbOH·aq	s _o	Lo	⊿L	R _{p0,2}	Rm	A _D	Α _P		
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)		
1	7,62	-	-	27,81	32	12,0	729	798	38,1	37,5		
1	8,54	70	-	28,27	32	12,7	744	808	40,0	39,7		
1	8,31	140	-	28,37	32	10,8	762	817	34,4	33,8		
1	7,79	-	15	28,27	32	11,4	771	820	36,4	35,6		
1	7,57	-	30	28,56	32	11,4	760	812	37,0	35,6		

Werkstoff-Nr.: 1.4301

<u>Tabelle XI</u>

<u>Tabelle X</u>

Werkstoff-Nr.: Zugprobenart:

1.4301 Prüfling

Versuchstemperatur: 200⁰C

Versuchsdauer: 6000 h

I	estm	ediu	m	Mecha	anisc	he Nac	hunt	ersuc	hunge	n bei RT
Ar	Rb	Rb20	RbOH•aq	s _o	Lo	ΔL	^R p0,2	Rm	A _D	A _P
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)
1	-	9400		28,27	35	10,9	745	879	32,1	31,1
1		-	8090	28,37	35	12,2	881	983	36,3	34,9

<u>Tabelle XII</u>

Werkstoff-Nr.: Zugprobenart: o°c

1.4306 Druckbehälterwandausschnitt

Versuchstemperatur:	150'
---------------------	------

Versuchsdauer: 3000 h

1	restm	ediu	m	Mechanische Nachuntersuchungen bei RT							
Ar	Rb	Rb20	RbOH•aq	s _o	Lo	AL	R _{p0,2}	R	AD	AP	
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)	
100	_	-	-	10,92	40,75	17,4	234,9	677,8	42,7	43,2	
100	-	-	-	10,92	41,33	19,3	179,5	682,8	46,7		
100	57,25	-	-	7,46 (Nut)	27,22	20,5	243	709	75,3		
100	57,25	-	-	8,0 (Nut)	26,55	20,9	190	688	78,7		
100	57,405	505	-	6,1 (Nut)	26,23	18,6	169	570	70,9		
100	57,405	505	-	7,91	26,15	20,4	186	589	78		

<u>Tabelle X</u>	<u>111</u>		We Zu	Werkstoff-Nr.: 1.4306 .Zugprobenart: Druckbehälterwandausschnitt						a.
		Versuchs	stemperatu	ır: 150 ⁰	C V	ersuchsdau	er: 200	00 h		
]	lestm	ediu	m	Mech	anisc	he Nac	hunt	ersuc	hunge	n bei RT
Ar	Rb	Rb20	RbOH.aq	So	Lo	⊿L	R _{p0,2}	Rm	A _D	AP
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)
100 °	-	-	-	8,89	22	9,65	286,9	714,5	43,86	51,89
100	-	-	-	9,67	22	11,00	316,3	733,7	50,0	60,6
100	56,26	-	-	9,48	22	10,30	132,5	691,8	46,82	59,02
100	56,26	-	-	9,83	22	13,10	204,4	739,7	59,6	72,6
100	61,17	510	-	10,24	22	15,95	206,9	716,6	72,50	82,20
100	61,17	510	-	10,65	22	15,40	197,8	722,4	70,0	85,9
<u>Tabelle X</u>	IV	Versuch	We Zu stemperatu	erkstoff-N Agprobenar Ar: 150 ⁰	Ir.: 1 t: I C V	.4306)ruckbehält /ersuchsdau	terwandaus ler: 200	schnitt 90 h		
9	Cestm	ediu	m	Mech	anisc	he Nac	hunt	ersuc	hunge	n bei RT
Ar	Rb	Rb20	RbOH·aq	So			R _{00.2}	R	A _D	A _P
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)
100	-	68500		14,49	25	15,8	204	636	63,2	74,8
100	-	68500	-	14,54	25	16,6	212	654	66,4	78,0
Tabelle XV	<u>/</u>	2. 11. 1. 100 May 1999	We	rkstoff-N	r.: 1	.4306		Angene en angene and angene and angene an	4 ₀₀	<u></u>

Tal	be	11	Le	XV
and a subscription of the local division of	distant and the second	-	-	

Zugprobenart:

Teststreifen

Versuchstemperatur: 150°C

Versuchsdauer: 3000 h

r	lestm.	ediu	ш	Mech	anisc	he Nac	hunt	ersuc	hunge	n bei RT
Ar	Rb	Rb ₂ 0	RbOH•aq	s _o	Lo	⊿L	R _{D0.2}	R _m	A _D	AP
(bar)	. (g)	(mg)	(mg)	(mm ²)	(mm)	. (mm)	(N/mm ²)	(N/mm ²)	(%)	(%)
(100)	-	_	-	5,2	38 , 76	25,85	210,9	556 , 2	66,7	74,4
(100)	57,25	-	-	5,22	25,81	22,2	238,3	560,0	86	64
(100)	57,405	505		5,14	25,85	22,75	238,3	585,5	88	70

Tabelle XVI

Werkstoff-Nr.: Zugprobenart:

1.4306 Teststreifen

01	
Versuchstemperatur:	150 ⁰ 0

Versuchsdauer: 20000 h

נ	lestm	ediu	В	Mech	Mechanische Nachuntersuchungen bei RT						
Ar	Rb	Rb ₂ 0	RbOH.aq	s _o	L _o	⊿L	R _{p0,2}	R _m	A D	А _Р	
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm^2)	(N/mm ²)	(%)	(%)	
(100) (100) (100)	- 56,26 61,17	- - 510	-	4,81 4,84 4,87	22 22 22	20,45 20,30 20,25	258,0 198,6 238,7	604,7 587,8 586,2	92,95 92,27 92,05	99,81 102,16 100,00	

		Versuc	hstempera	Zugproben tur: 20	art: 0 ⁰ C	Druckbehälterwandausschnitt Versuchsdauer: 2000 h							
<u> </u>	Pestm	ediu		Mech	anisc	he Nac	hunt	ersuc	hunge	n bei RT			
Ar	Rb	Rb ₂ 0	 RbOH•aq`	s s		l ⊿L	R _{n0.2}	R		A _p			
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)			
100	-	69250	-	14,65	25	15,8	195	195 649 63,2 7					
100	-	69250	-	15,48	25	14,65	230	639	58,6	69,4			
<u>Tabelle</u>	XVIII	Versuc	bstempera	Werkstoff Zugproben tur: 20	-Nr .; art; 0 ⁰ C	1.4306 Druckbehå Versuchsd	ilterwanda lauer: 2	usschnitt 000 h	· · · · · · · · · · · · · · · · · · ·				
Г	lestm	ediu	m	Mech	anisc	he Nac	hunt	ersuc	hunge	n bei RT			
Ar	Rb	Rb ₂ 0	RbOH.aq	So	Lo	⊿L	R _{p0,2}	Rm	а _р	А _Р			
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)			
100	55,25	-	1300	14,52	25	15,5	219	660	62,0	73,6			
100	55,25	-	1300	14,55	25	14,9	167	652	59,6	69,4			
<u>Tabelle</u>	XIX	Versuc	hstempera	Werkstoff Zugproben tur: 20	-Nr.: art: 0 [°] C	1.4306 Druckbehä Versuchsd	lterwanda auer: 3	usschnitt 000 h					
1	lestm	ediu	m	Mech	anisc.	he Nac	hunt	ersuc	hunge	n bei RT			
Ar	Rb	₽Ъ ₂ 0	RbOH•aq	s _o	г _о	⊿L	^R p0,2	R	A D	Ap			
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm^2)	(%)	(%)			
100	56 , 18	-	-	15,05	25	14,9	234	654	59,6	71,2			
100	56,18	-	-	14,68	25	15,2	227	663	60,8	71,4			
100	54,12	500	-	14,02	25	14,7	194	662	58,8	74,4			
100	54,12	500		14,25	25	15,3	180	657	61,2	73,8			
Tabelle XX Versuchstempere				Werkstoff Zugproben tur: 20	-Nr.: art: 0 ⁰ C	1.4306 Druckbehä Versuchsd	ilterwanda auer: 1	usschnitt 0000 h					

1	lestm	ediu	m	Mech	anisc	he Nac	hunt	ersuc	hunge	n bei RT
Ar	Rb	Rb20	RbOH·aq	s _o	Lo] ⊿L	R _{p0,2}	R	A _D	Ap
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)
100	54,52	-	-	14,28	21	17,0	137	600	103,2	81,0
100	52,29	500	-	14,20	21	18,5	138	599	109,4	88,1
100	52,29	500	-	14,29	21	16,75	144	604	101,6	79,8
100	54,08	1200	-	14,39	21	18,1	123	593	110,5	86,2
100	54,08	1200	-	14,46	21	16,5	142	596	99,1	78,6
100	55,25	-	100	13,86	21	15,8	141	598	95,9	75,2
100	55,25	-	100	14,24	21	16,2	172	599	98,4	77,1
100	54,67	-	200	14,49	21	17,5	135	595	105,7	83,3
100	54,67	-	200	14,03	21	16,5	143	610	101,6	78,6
100	54,32	500	100	14,04	21	16,7	105	599	104,6	79,5
100	54,32	500	100	13,99	21	15,9	133	608	98,1	75,7

Werkstoff-Nr.: 1.4306

Tabelle XVII

Tabelle)	<u>(XI</u>
-----------	------------

Verkstoff-Nr.: Zugprobenart: Versuchstemperatur: 200⁰C 1.4306 Druckbehälterwandausschnitt Versuchsdauer: 20000 h

5	rest m	ediu	Д	Mech	anj. sc	he Nac	hunt	ersuc	hunge	n bei RT
Ar	Rb	Rb20	RbOH·aq	s _o	L L	j ⊿ L	R _{p0,2}	R _m	A _D	AP
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	- (%)
100	56,02	1200	-	13,85	21	15,5	164	591	. 88,8	73,8
100	56,02	1200	-	13,85	21	16,6	171	591	93,6	79,1
100	56,78	-	100	14,11	21	16,4	201	580	90,5	78,1
100	56,78	-	100	13,10	21	16,8	195	598	92,6	80,0
100	54,27	-	200	13,19	21	15,5	187	602	87,4	73,8
100	54,27	-	200	13,94	21	16,6	211	615	91,7	79,1

Tabelle XXII

Werkstoff-Nr.: Zugprobenart: 1.4306 Teststreifen

		Versuc	hstempera	tur: 200	o°c	Versuchsd	auer: 20	0000 h		
I	estm	ediu	m	Mech	anisc	he Nac	hunt	ersuc	hunge	n bei RT
Ar	Rb	Rb ₂ 0	RbOH.aq	s _o	r°	⊿L	R _{p0,2}	Rm	A D	A _P
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm^2)	(N/mm ²)	(%)	(%)
(100)		-		5,13	21	20,70	203	577	103,30	98,60
(100)	57,47	_	-	5,11	21	20,50	199	579	100,2	97,6
(100)	56,08	510	-	5,06	21	20,40	209	581	100,2	97,10

<u>Tabelle XXIII</u>

Werkstoff-Nr.: Zugprobenart: 1.4306 Druckbehälterwandausschnitt

		Versuc	hstempera	tur: 200	o ^o c	Versuchsd	auer: 30	0000 h			
נ	lestm	ediu	п.	Mechanische Nachuntersuchungenbei R							
Ar	Rb	Rb20	RbOH·aq	s _o	Lo	ΔL	Rp0.2	Rm	A D	A _P	
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)	
100	-	-	-	11,00	21	14,30	205	682	90,5	68,1	
100	-	-	-	10,02	21	14,00	166	685	84,4	66,7	
100	49,52	-	-	10,47	21	13,90	159	697	85,2	66,2	
100	49,52	-	-	10,10	21	12,30	199	687	75,4	58,6	
100	47,69	500		10,86	21	12,40	167	706	76,4	59,1	
100	47,69	500	-	10,02	21	12,80	171	709	79,7	61,0	

Tabelle	VIXX			Werkstoff Zugprobena	-Nr.: art:	1.4306 Teststrei	fen			
		Versuc	hstempera	tur: 200	o°c	Versuchsd	auer: 30	0000 h		
	Testm	ediu	ш	Mech	anisc	he Nac	hunt	ersuc	hunge	n bei RT
Ar	Rb	Rb ₂ 0	RbOH•aq	s _o	L _o	⊿L	R _{p0,2}	R _m	A _D	Α _P
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)
(100)	49,52		-	4,55	21	19,20	205 ·	549	101,6	91,4
(100)	58,31	****	-	4,68	21	19,0	245	580	92,6	90,5
(100)	47,69	500	-	4,64	21	18,90	205	584	101,3	90,0
(100)	58,88	520	-	4,78	21	19 ,7	242	578	92,4	93,8
<u>Tabelle</u>	<u>xxv</u>			Werkstoff Zugprobena	-Nr.: art:	1.4541 Prüfling				
Testmedium Mechanische Nachuntersuchungenbei RT										
$\begin{bmatrix} Ar & Rb & Rb_2O & RbOH \cdot aq & S_o & L_o & AL & R_{pO,2} & R_m & A_D & A_p \\ (Ar & Ar $									A _P	
(bar)	(g)	(mg)	(mg)	(mm ⁻)	(mm)	(mm)	(N/mm ⁻)	(N/mm ⁻)	(%)	(%)
Referenzprüfling 12,50 32,00 16,00 459 710 49,80 50,00									50,00	
	Referenz	prüfling		12,50	32,00	15,70	431	694	48,40	49,10
	• · · · · · · · · · · · · · · · · · · ·	Versuc	hstempera	tur: 150	D ^o d	Versuchsd	auer: 60	000 h		
1	6,69	-	-	12,57	32,00	15,2	561	745	47,7	47,5
1	8,49	140	_	12,63	32,00	16,5	446	714	52,0	51,6
Tabelle	XXVI	Versuc	hstempera	Werkstoff- Zugprobens tur: 150	-Nr.: art: D ^O C	1.4541 Prüfling Versuchsda	auer: 12	2000 h		
2	Cestm	ediu	m	Mech	anisc	he Nac	hunt	ersuc	hunge	n bei RT
Ar	Rb	Rb ₂ 0	RbOH•aq	So	Lo	ΔL	Rp0,2	R _{in}	A _D	А _Р
(bar)	(g)	(mg)	(mg)	(mm²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)
1	7,15	-	-	12,57	32	16,0	483	706	49,7	50,0
1	8,26	140	-	12,38	32	16,1	483	708	50,0	50,3
<u>Tabelle</u>	XXVII	Versuc	hstempera m	Werkstoff- Zugprobens tur: 150	Nr.: art:) ^o C	1.4541 Prüfling Versuchsda	auer: 20	0000 h	h 11 m m m	n hai Da

	festm	ediu	m	Mech	anisc	he Nac	hunt	ersuc	hunge	n bei RT
Ar	Rb	Rb20	RbOH·aq	s _o	Lo	ΔL	R _{p0.2}	R _m	A _D	А _Р
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)
1	8,62	-	-	12,57	32,00	17,00	452	706	53,10	53,10
1	8,09	140	-	12,57	32,00	16,20	456	702	50,60	50,60

•

				Zugprobena	irt:	Prüfling				
		Versuc	hstempera	tur: 200	o°a	Versuchsd	auer: 60	000 h		
1	ſestm	ediu	m	Mech	Mechanische Nachuntersuchungen bei					n bei RT
Ar	Rb	Rb20	RbOH·aq	s _o	Lo	⊿L	R _{p0,2}	R	A D	A _P
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	. (%)	(%)
1	7,54	-	-	12,57	32,0	12,4	663	772	39,1	38,8
1	7,44	70	-	12,63	32,0	16,1	504	725	50,3	50,3
1	7,77	140	-	12,57	32,0	16,2	522	725	50,5	50,6
1	7,98	-	15	12,57	32,0	15,1	538	721	47,3	47,2
1	8,04	-	30	12,63	32,0	16,6	442	718	52,5	51,9
1	8,19	140	30	12,57	32,0	16,0	468	722	50,0	50,0

Werkstoff-Nr.: 1.4541

<u>Tabelle XXIX</u>

Tabelle XXVIII

Werkstoff-Nr.: Zugprobenart:

1.4541 Prüfling

Versuchstemperatur: 200°C

Versuchsdauer: 12000 h

]	ſestm	ediu	m	Mechanische Nachuntersuchungen bei						
Ar	Rb	Rb20	RbOH.aq	s _o	ь ^о	⊿L	R _{p0,2}	Rm	A D	А _Р
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm^2)	(N/mm ²)	(%)	(%)
1	7,01	-	-	12,57	32	15,8	565	741	49,4	49,4
1	8,63	70	-	12,57	32	15,8	452	717	49,8	49,4
1	8,31	140	-	12,57	32	15,7	554	741	49,2	49,1
1	8,04	-	15	12,57	32	16,6	554	741	52,2	51,9
1	7,02	-	30	12,57	32	15,4	526	721	48,9	48,1
1	7,92	140	30	12,57	32	15,5	546	721	48,9	48,1

Tabelle XXX

Werkstoff-Nr.: Zugprobenart: Versuchstemperatur: 200⁰C

Versuchsdauer: 20000 h

1.4541

Prüfling

	Festm	ediu	m	Mechanische Nachuntersuchungenbei						n bei RT
Ar	Rb	Rb20	RbOH·aq	s _o	Lo	⊿L	R _{p0,2}	Rm	A D	А _Р
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)
1	7,16	-	-	12,38	32,00	3,50	831	942	10,90	10,90
1	7,73	70	-	12,63	32,00	16,50	450	702	51,40	51,60
1	8,05	140	-	12,57	32,00	15,50	483	713	48,60	48,40
1	7,80	-	15	12,57	32,00	15,40	538	706	48,00	48,10
1	7,15	-	30	12,57	32,00	15,30	542	721	48,60	47,80
1	8,51	140	30	12,50	32,00	11,60	670	796	36,70	36,30

Tabelle XXXI

Zugprobenart:

Werkstoff-Nr.:

200⁰0 Versuchstemperatur:

Prüfling

1.4541

Versuchsdauer: 3860 h, Y-Bestrahlung

	Testm	ediu	m	Mechanische Nachuntersuchungen bei R						
Ar	Rb	Rb20	RbOH·aq	s _o	Lo	⊿L	R _{p0,2}	R _m	A D	AP
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)
1	7 - 8	-	-	19,09	32,00	21,50	311	611	68,10	67,20
1	7 - 8	70	-	19,64	32,00	25,40	344	616	80,00	79,40
1	7 - 8	140	-	19,24	32,00	27,60	265	604	.86,60	86,30
1	7 - 8	-	15	19,56	32,00	27,00	331	626	84,40	84,40
1	7 - 8	-	30	19,24	32,00	28,30	247	591	88,90	88,40

Tabelle XXXII

Werkstoff-Nr.: Zugprobenart:

1.4550 Prüfling

	ſestm	ediu	m	Mech	anisc	he Nac	hunt	ersuc	hunge	n bei RT
Ar	Rb	Rb20	RbOH.aq	s _o	Lo	⊿L	^R p0,2	R _m	A _D	AP
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)
	Referenzpi	rüfling	1	12,63	32,00	16,60	349	640	52,00	51,90
	Referenzpi	rüfling		12,57	32,00	14,80	339	624	47,00	46,30
		Versuc	hstempera	tur: 200	o ^o c	Versuchsda	auer: 60	000 h		
1	6,47	-	-	12,63	32,0	18,3	419	652	57,8	57,2
1	7,54	70	-	12,63	32,0	16,3	435	667	51,4	50,9
1	8,43	140	-	12,63	32,0	15,7	442	667	49,5	49,1
1	8,07	-	15	12,63	32,0	14,1	566	706	45,2	44,1
1	7,01	_	30	12,63	32,0	16,1	477	535	50,9	50,3
1	7,87	140	30	12,57	32,0	11,5	647	760	36,4	35,9

Tabelle XXXIII

Werkstoff-Nr.: Zugprobenart:

Versuchstemperatur:

200⁰C

1.4550 Prüfling Versuchsdauer:

12000 h

	restm	ediu	m	Mechanische Nachuntersuchungenbei						
Ar	Rb	Rb ₂ 0	RbOH•aq	s _o	Lo	⊿L	R _{p0,2}	R _m	A _D	AP
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)
1	7,08	-	-	12,57	32	13,1	608	725	41,3	40,9
1	7,16	70	-	12,57	32	16,3	417	636	51,3	50,9
1	7,78	140	-	12,57	32	17,1	421	655	54,2	53,4
1	7,27	-	30	12,57	32	17,3	421	651	54,1	54,1
1	8,51	140	30	12,57	32	17,2	417	651	54,7	53,8

				Zugprobenart:		Prüfling					
Versuchstemperatur: 200 [°] C Versuchsdauer: 20000 h											
Testmedium				Mechanische Nachuntersuchung				hunge	n bei RT		
Ar	Rb	Rb ₂ 0	RbOH•aq	s _o	Lo	⊿L	R _{p0,2}	R _m	AD	۸p	
(bar)	(g)	(mg)	(mg)	(mm ²)	(mm)	(mm)	(N/mm ²)	(N/mm ²)	(%)	(%)	
1	7,10	-	-	12,57	32,00	14,40	526	682	45,30	45,00	
1	7,60	70	-	12,63	32,00	14,60	512	675	46,40	45,60	
1	8,18	140	-	12,69	32,00	15,70	448	641	49,40	49,10	
1	7,89	-	15	12,63	32,00	16,20	462	660	50,80	50,60	
1	7,75	-	30	12,57	32,00	16,00	460	651	50,30	50,00	
1	7,39	140	30	12,50	32,00	8,40	635	745	26,70	26,30	

Werkstoff-Nr.:

<u>Tabelle XXXIV</u>

1.4550

DIN- Nor <u>h</u>		1.0305	1.0425	1.4301	1.4306	1.4541	1.4550	1.4316
US- Norn		1		304	304 L	321	347	I
Bezeichnung		st. 35.8	II H	X5CrNi 189	X2CrNi 189	X10CrNiTi 189	X10CrNiNb 189	I
	С	≤ 0,17	≤ 0 , 20	≤0,07	≤0,03	≤0,10	≦0 , 10	≦0 , 02
	Si	≦0 , 35	≦o,35	≦ 1,00	≦1,00	≤1,00	≦1,00	≤ 1 , 4
Chemische Zusammensetzung	Mn	≧0,40	≧0,50	≦2,00	≦2,00	≦2 , 00	≦2,00	≦1 , 9
	Ρ	≦0,050	≦0 , 050	≦0 , 045	≦0 , 045	≦ 0, 045	≦ 0, 045	≦o , 025
	S	≦0 , 050	≦0,050	≦0 , 030	≦0,030	≦0,030	≦0 , 030	≦0,015
	Cr	≦0 , 30	≦0 , 30	17,00-	17,00-	17,00-	17,00-	18,20-
	Mo	_	-	20,00	20,00	19,00	19,00 -	20,80 -
	Ni	_	-	8,50-	10,00-	9,00-	9,00-	9,20-
	Ti	_`	-	10,00	12 , 50 -	11,50 >5x%C	11,50 -	10,80 -
	Nb	-	-	_	-	_	>8 x % C	-
	Ν	≦o , 007	≦0,007	-	· _	-	_	-
	4							
Tief- temperatu: eignung		-	-	+	+	+	+	-

Tabelle XXXV: In Rubidiumkorrosionstests eingesetzte Werkstoffe (11)

— 46 —