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Abstract 

The importance of a dynamic density dependence of the a-particle-bound 
nucleon force is demonstrated by deformed folding model analyses of 
elastic and inelastic scattering of 104 MeV a-particles from 50Ti 
and 52cr. Approximations are discussed and technical details are given. 

DYNAMISCHE DICHTEABHÄNGIGKEIT DER ALPHA-NUKLEON-KRAFT IN FALTUNGSMODELLEN 
DER UNELASTISCHEN STREUUNG VON ALPHA-TEILCHEN 

Die Bedeutung einer dynamischen Dichteabhängigkeit der a-Teilchen-Nukleon
Wechselwirkung wird in Faltungsmodell-Analysen der elastischen und Unela
stischen Streuung von 104 MeV a-Teilchen an 50Ti und 52cr demonstriert. 
Formalismus und Approximationen werden diskutiert. 
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A most sucessful description and semi-microscopic interpretation of 
a-particle scattering from nuclei is provided by single folding models 
generating the real part of the a-particle-nucleus optical potential 
by a convolution of an effective a-particle-bound nucleon interaction 
V~f~ (ta,t) with the nucleon-density distribution or the transition 
density of a nuclear transition, respectively (see e.g. Rebel et al. 1974). 
It has been shown that interesting information about the size and the 
shape of nuclei can be extracted from high-quality scattering data on 
this basis (see e.g., Gils et al. 1980). The extension of the folding 
model to inelastic scattering often invokes a collective model description 
of the excitation of nuclear states, introducing a permanently or 
dynamically deformed density distribution (thus providing the transition 
densities in terms of the 11 deformation 11 of the ground state density). 
In the particular case of a vibrational model the transition densities 
are derived from a nucleon distribution P(r) with a dynamically 
deformed surface usually introduced by a vibrating half-way radius 
(of a Fermi-type distribution) 

Here the a~V are combinations of phonon-creation and annihilation operators 
of the multipolarity (A,p) with A ~ 2. In the framewerk of this model the 
transition density is essentially obtained from a Taylor series expansion 
of the ''deformed 11 density areund c = c

0
• The vibrational model form 

factor proves to be a rather general parametrization of the radial shape 
of the transition density, even for transitions where a collective 
excitation may not be taken too 1 iterally. Thi.s enables a relatively 

( 1 ) 

model independent extraction of isoscalar transition rates from (a,a') data. 
(Rebel et al. 1981, Corcalciuc et al. 1983). 

An important question in explicit folding model analyses is the problern 
of an adequate and reliable a-particle-bound nucleon effective interaction. 
Many previous calculations have used density-independent interactions 
calibrated e.g. for the case of elastic scattering from 40ca and 
describing rather well the diffraction region of the differential scattering 
cross sections. However, density-independent interactions fail to 
reproduce the cross section at larger scattering angles for higher energy 
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projectiles when the particles probe deeper into the nucleus and would 
provide information about the densities at smaller radii. Such a feature 
has been shown in elastic (Friedman et al. 1978) as well as in inelastic 
scattering of a-particles (Pesl et al. 1983). This lacuna of the effective 
interaction has been remedied in elastic scattering analyses (Gils et al. 1980) 
by introducing a density-dependent factor g(p) by writing 

accounting for Saturation with increasing density. 

A particular choice of V~f~ as sucessfully used by Friedman et al. (1978) 
for analyses of elastic scattering of 104 MeV a-particles is the Gaussian 
form 

= V exp (-jt -tj 2;a2) o a 

g(p) = _ Y P2/3(r) 

with V
0 

= 64.6 MeV a = 1.798 fm and 2 
y = 1.9 fm 

Effects of density-dependent interactions on inelastic scattering are 
well known in proton scattering and influence the nuclear shape in
formation extracted by deformed folding studies of (p,p') data for 
permanently deformed nuclei (Hamilton and Mackintosh 1977, 1978, 
Mackintosh 1978 e.g.)~The sensitivity of inelastic a-particle scattering 
cross sections to the saturation properties of the effective interaction 
is somewhat surprising and contrary to the general beliefthat inelastic 
a-particle scattering is mainly determined by the low-density surface 
region. 

( 2) 

(3) 

In the present paper we would like to draw attention on the fact that 
precise (a,a') scattering data in the 100 MeV region, extending to large 
angles are even sensitive to the details of the manner in which the density 
dependence is introduced in the explicit folding model calculations. 
Our starting point is an observation of Pesl et al (1983) who analysed, 
in a coupled channel procedure,the differential cross sections of 
elastic and inelastic scattering of 104 MeV a-particles from 50Ti and 
52cr using the force given by eq. (3). Instead of the density-independent 
(real) potential of the 0 + If = L transition 
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<I Lllu II I 0> = _,.L(2L+1)- 112 ßm c J ~ · VL(r('J,r)r2 dr f = i = DI L o ar "" 

+ second order terms 

(with ß~ the 11 deformation 11 parameter of the density and VL the L-th 
multipale component of an density-independent effective interaction V~f~ 
they calculated the real part of the transition potentials by 

<If = Lll u II I;= O>soo = 

= -iL(2L+1)- 112 ßm c J ~ g( ) · v01 (r r)r2 dr L o Clr P L a' 

+ secend order terms 

assuming a static density dependence by 

2/3 g(p) = 1 - y pL=O (r) 

(4) 

( 5a) 

( 5b) 

with pL=O being the spherical part of the dynamically deformed distribution 
p(r). Indeed, as compared to the results based on e.q. (4) considerably 
improved fits for large angle scattering could be obtained, but at the 
expense of quite unreasonable values of the transition rates and of the 
deformation parameters of the density distribution. The values of the 
11 deformation 11 parameters were found tobe rather small, in fact similar 
to the values of potential deformation resulting from an usual extended 
optical potential analysis (see Tab. 1). This can hardly be assumed to 
be reasonable. 

In the present work we do not restriet the density dependence to the 
monopale part of the deformed density p(r) and allow the saturation factor 
to follow dynamic changes of the density p(r) without introducing any 
additional parameters. Since the inclusion of the density dependence can 
be considered as a replacement of the nuclear density p(r) in the folding 
integral by an effective density (Srivastava and Rebel 1984) 

-+ -+ r 2/3 -+ ,1 Peff(r) = p(r) J. - y p (r)J (6a) 

the dynamic density dependence factor g•(p) replacing g(p) in e.q. (5a) follows 
from an expansion of the effective density Peff(r),(in first order, say) 
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g•(p) = (1 - ~ y p/13 (r)) (6b) 

with p
0

(r) being the monopale part of p(~). While by eq. (Sb) the same factor 
g(p) appears for elastic and inelastic scattering, the dynamical density 
dependence leads to different saturation factors, additionally dependent 
on the order of deformation. 

The influence of the nuclear shape on the saturation factor is quite 
obvious in cases of permanent deformation, here, infact, a static effect 
taken into account by including all multipoles of p(t) in a generalized 
expression like eq. (Sb). 

do/dQ [mb/sr l 

1 

Fotding Model 
Density Dependent 

Force 

9c.H. [deg.J 

52Cr (a,a~) 52Cr 
ELab= 104 MeV 

• o+ 
• 2 .. 11110"1 

• q+ .,o-2 

Fig. 1: 104 MeV a-particle scattering from S2cr described by a folding 
model with dynamic density dependence of the a-nucleon inter
action 
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The following results of coupled channel analyses of 104 MeV a-particle 
+ + + 50 . 52 ( ) scattering from the 0 , 21 and 41 states of Tl and Cr Pesl et al. 1983 

will show that the effect of a dynamical density dependence is substantial 
and cannot be ignored. 

Tab. 1 presents the results of ordinary extended optical model analysis (EOM) 
with a Wood-Saxon squared real part of the potential, of the procedure 
with static density dependence (SOO) and with dynamic density dependence (000). 
The latter procedure givesthe natural result that the potential distribution 
is less deformed than the density distribution and gives isoscalar rates 
which are consistent with values found by implicit procedures or electro
magnetic results (see Tab. 2). We mention that for these N = Z nuclei 
the electromagnetic values (Endt 1979) need not be in perfect aqreement with 
isoscalar values. The MIFP values result from a modified implicit folding 
procedure (Srivastava and Rebel 1984). The excellent agreement of the 
theoretical cross sections calculated with dynamical density dependence 
with the experimental data is displayed for the case 52cr(a,a•) in Fig. 1. 

We conclude that the dynamic density-dependence of the effective a-particle
nucleon interaction plays a vital role in providing a consistent semi
microscopic description of inelastic scattering of higher-energy a-particles 
from vibrational nuclei. 

We thank Or. R. Beck, Or. H.J. Gils and Prof. R.S. Mackintosh for useful 
comments and information. 



Nucleus 

50 Ti 

52Cr 

Tab. 1 : 

Proc. vo r vfco av/am wo rw aw 6o2 6o4 
[MeVJ [fm] [fnif [MeV] [fm] [fni] 

EOM 143.5 1.43 1. 17 18.6 1.61 0.57 0. 12 0.06 
SDD - 1. 04 0.52 18.1 1.58 0.63 0.12 0.09 
DDD - 1. 07 0.49 18. 1 1.58 0.64 0.18 0.125 

EOM 151.8 1.39 1.20 22.3 1. 51 0. 72 0. 13 0.05 

SDD - 1. 08 0.46 20.7 1.54 0.68 0.12 0.08 

DDD - 1. 08 0.46 21.4 1. 51 0. 72 0.175 0.11 

Results of o+- 2~- 4~ -coupled channel analyses of 50Ti(a,a') and 52cr(a,a') 

(E = 104 MeV), described on the basis of an anharmonic vibrational model. The 
a 

the strength and geometry of the imaginary part (WS form). 

624 Jv/4A i;F 

[MeV fm 3
] 

o+ 2+ 

0.075 311 1.9 5.7 

0.075 297 2.5 4.1 

0.010 299 3.7 5.4· 

0.075 303 2.8 6.3 

0.075 295 2. 1 2.7 

0.05 293 2.4 3. 1 

differential cross sections 

parameters W
0

, rw, aw describe 

For sake of simplicity the deformation of the imaginary potential is taken to be identical to that of the real 

part or of the underlying density distribution (Fermi shape) in the folding procedure. 

4+ 

2. 1 
3.5 
3.2 

1.7 
2.2 
2.9 

0> 

I 
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G2 [s.p.u.] 50 Ti 52 er 

EM a 5.8 ± 0.4 11 ± 1 

MIFP b 6. 1 ± 0.3 7.5 ± 0. 1 

SDD 3.5 4.4 

DDD 8. 1 8.7 

G4 s.p.u. 

EM a 3.4 ± 0.6 

MIFP c 4.2 3.0 

SDD 1.8 1.8 

DDD 3.7 2.9 

a EM = Electromagnetic values (Endt, 1979) 
b MIFP Applied to values obtained by Rebel et al. 1981 
c MIFP Applied to values obtained by Pesl et al. 1983 

Tab. 2: Isoscalar transition rates GL (in single-particle 
units) for o+ + 2~ and o+ + 41 transitions in 
50r; and 52cr 
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Appendix A 

The Deformed Folding Model with Density-Dependent Forces. 

With a density-dependent effective a-bound-nucleon interaction of the type 

a-N(+ +) ( I+ +I 2/3(+) ( ) Veff ra,r = v01 r -r ) [1- yp r] A1 

the real-part UR(ra) of the deformed optical potential is given by 

uR("fa) = Jv 01 (1ra-"fl) p(r) [1- YP 213("f)J dr (A2) 

Obviously this is quite similar to the density-independent formulation 
(Rebel et al. 1974) if we replace the deformed density distribution p(r) by a 
sort of effective density (Srivastava and Rebel 1984) 

Peff(f) = p(f) - yp 5/ 3(r) (A3) 

Introducing the deformation of the matter distribution by an angular dependence 
of the half-way radius, 

(A4) 

in the vibrational case e.g., we expand the effective density in powers t of 
the Operators a\~ 

Peff(r) = P~~~ + x~t [p~~~(r)·a~~)lY\~(~) (A5) 

=a 

and (t) 
Peff = 

\~ 

apeff 

acot 

~·Je consider the 1Termi 11 -distributions 

with 

p = p [1 + S] -q 
q 00 

r-c 
S = exp (-Q) a 

and p
00 

resulting from the normalization of distribution with q = 1. 

(A6) 

(A7) 

(A8 a) 



-10-

Thus, we get with 

B = 1 I [a•(1+S)l 

or in general by use of the relation 

dp 
-::r;::---""cq = .9. [p P ] 
uc

0 
a q - q+1 

With these expressions eq. (A6) is written 

or more explicitely 

(o)( ) ( ) [1 Y P21/3(r)] Peff r = P1 r -

{1) 2 ä~1 [ 1 5 2/3(r)] Peff(r) = c ac
0 

- J YP1 0 

2 
( 2) 2 'd p 1 

[1 - (j) 2 YP~/ 3 (r)] Peff(r) = c {~ 0 
0 

(A8 b) 

(A9 a) 

(A9 b) 

(A9c) 

(A10) 

( A 11) 

(A 11 b) 

(A11 c) 
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Appendix 8: The Approximation p((ra + r)/2) ~p(r) 

Our explicit folding model calculations are based on the approximation 
-+ -+ 

2/3 ra+r 2/3-+ 
P (--2--) = P (r) (81) 

in the density-dependent factor of the effective interaction. 
This approximation facilitates the formalism considerably and is also the 
basis of the results for geometrical properties of folding potentials 
(Srivastava 1982) and for recent modifications of implicit folding 
procedures (Srivastava and Rebel 1984). 

W'th -+ -+ -+ . 
1 s = r - r we see 1n a ' 

whereas p varies with t the p213-term varies with t;2. 

(82) 

As p213-variation is also more smooth, in particular in the tail region, 
f ff . · tl 11 f V () 1 p213(-+r - -+s/2) or a su 1c1en y sma range o 01 s we can rep ace a 

by the average value and define 

with 

Jv = J Vor(s)dt = TI3/2 b3 vo 

when assuming a Gaussian shape v01 = V
0 

exp(- s2;b2). 

Expanding p213(t + t;2) in a Taylor series 

(where V operates only on p213(r)) and integrating over dt, we get 

b2 2 

(-+) -+ T6 V 2/3 -+ Peff r = p(r) [ 1 - y e p (r)] 

(83) 

(84) 

(85) 
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With a Fourier transformation 

Peff is written 
b2k2 

-y-1-Jdite-16 
(2TI) 3 

~ p(t) [ 1 - Y P2/3ty.) + o(\72)1 (86) 

showing the approximation (81) as leading term provided 0(172) is sufficiently 
small. 

We estimate the term o(\72) for a Gaussian shape p(r) 

P2/3(r) = P 2/3 e-2/3 r
2
;a2 

0 

Introducing the Fourier transform 
~ 3 k2 2 - E" a 

p213(t) = const~e 

the effective density (eq. 86) is written 

2 2 
Peff(r) = p(r) [1-const e-r Ia ] 

2 
i=3a2/2+b2/4=<r2> [1+ b2 ], 

P 4<r >p 

<r2
> being the ms radius of the density distribution. 

p 2 
Thus the neglect of o(\7 ) appears to be reasonable, 
;{' 
I I 

~ 0.05 

+ + r +r 
Considering eqs. (82-6) identical arguments could replace p 2/ 3 (~) 
by p213 (t) (considerably simplifying the folding integral). a 

(87) 

However, the extraction of a particular multipole component of the potential 
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would involve all multipoles of p since 

or 

with 

= f 

ZLM ( r ) = L T1 m ( r ) · x1 m ( r ) 
a 11 11a 22a 

1 2 
m1m2 

We many recognize that any dependence from the position ra of the 
a-projectilewouldcomplicate the formulation. In fact, this cannot 

(B8a) 

(B8b) 

(B8c) 

be excluded a priori. But we know from detailed studies of elastic 
a-particle scattering (Gils 1983) that the influence of the density p(r ) a 
at the site of the a-particle is small. Most likely it simulates some 
kind of a polarization of the a-particle diving into p. Just, such 
effects seem to be neglected by the approximation (Bt). 
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Appendix C: Multipoles of the folded potential for a density 
dependent force 

In this appendix we consider the formulation of a deformed folding model 
using various forms of the saturation factor g(p) and of the density independent 
part v01 Cira-r) of the effective interaction. 

) 2/3 + 2/3 + g(p = [1 - a p (r)] [1 - ß p (r )] . a ( c 1 ) 

and + + 
2/3 r + r 

g(p) = [1 - Y P ( 2 a )] (C2) 

For v01 we consider three different shapes 

(C3) 

(C4) 

(C5) 

The multipoles 

Vlm(ra,r) = f VDI(raJ) . y~m(~a) ylm(~) dsta dst 

are analytically given by 

v,m = -
1
- ö(r - r) 

r 2 a 
for the ö-force (C3) 

a 

r2 + r2 
1 2i r r 

V V ( a ) 4 . '( a lm = o exp - -"2- · TI 1 Jl - 2 
~ ~ 

for the Gaussion force (C4) 

Vlm = V
0 

4n jl (i r~< ) hi1) ( \r> ) for the YUkawa force (C5) 
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where r <(r>) is the smaller (larger) value of ra and r and hi 1) is the 
spherical Hankelfunction of the first kind and jl is spherical Bessel function. 

In the case of a density-independent force (g(p) = 1) the multipoles of 
the interaction potential are just given by 

(C6) 

where plm(r) are the multipoles of the deformed density distribution 

(C7) 

For the form (C1) the real part of the interactionpotential is given 
by 

(C8) 

The multi pol es of. W(r a) are 

(C9) 

with 

(C10) 

Introducing the multipoles Tlm by 

( c 11 ) 

we write 

~ 

u,m(ra) = x,m(ra) - a zlm(ra) - ß z,m(ra) (C12) 
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with 

X 
r,,,2,] 
l 0 0 0 w, m ( r ) • T 1 m ( r o) 

1 1 a 2 2 
(C13) 

Through the term ß z1m all multipoles Plm do contribute to a particular 
multipale Ulm' which makes practical calculations some-what unpleasant. 
The form (C2), which appears physically less justified than (C1), is 
even a more complicated case. 

+ + + 
Denoting (r + r)/2 = R we expand 

a 

+ 
It is reasonable to assume that for small IRI < t:, 

p(1) can b! considered to be spherical so that Tlm = 0 for 
1 ~ 0 at IRI < s. 

Now taking a Slater-expansion of T1 m {R) I R11 we get 
. . - 1 1 

= 
1 

( -1) 2 p ( ) "' * "' 
11 ml 12 ra,r yl m (ra) yl m (r) 

2 2 2 2 

(C14) 

(C15) 
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In the above expression, we note that the Slater coefficients P are independent 
of m2, as T1 m (R)/Rl 1 is spherically symmetric. We also get, decomposing the 

l 1 1 
solid harmonics, R 1 v1 (see Appendix 0) 

1m1 

11 A I m 
R v1 m (R) = Q (ra,r) (-1) 1. 

1 1 13m3 1113 

11 - 13 13 

m1 - m3 m3 

"' 
v,1-13' m1-m3(ra) 

where 1/2 

we also note that, in the Slater expansion, 

"' v1 m (r ) 
4 4 a 

V 1 i s i ndependent of m4 as V DI i s centra 1 . 
4 

1 
(-1) 1 /(213+ 1). 

11 

-m1 

"' 
( r) 

(C.16) 

(C.17) 

(C.18) 



Thus we write 

+ + 
U(ra) = X (ra) 

where 

+ 
J + p2/3 S( ra) = P(r) ( 

::: I 
1 11 12 
m m1 m2 

where 

-18-

+ 
- y s ( ra) 

+ + 
ra + r + + + 

VDI (ra,r) dr 
2 ) 

13 14 
11m 1 1 1 1 (ra) · 

1 2 3 4 

m3 m4 

y (r ) y m -m ( ~ ) y 1 m ( ~ ) • 12 m2 a 11-13, 1 3 a 44 a 

12+m1 

-m 1 

I 1 1 1 (r ) = (-1) 
1m 1 m1 2 314 a 

J P1m (r) 

(C .19) 

(C.20) 

(C.21) 

(C. 22) 
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Using the resu1ts (0.2) and (0.3) from Appendix 0, we get 

and 

V l m (r~ ) V I ~ ) V ( A '-" l m 'ra 1 -1 m -m r a) 
2 2 4 4 1 3' 1 3 

= 
LI M' 

LI IM' I 

I V* ( f) 
12m2 

r 
12 

m2 
\.. 

12 

l 0 

MI M' I (-1) +. 

v,*4m4(~)V1m(r) 

m +m +m 
= ( -1 ) 2 3 4 f v - ( r) 

12 m2 

14 

m4 

14 

0 

VL'IMI I 

V 
13m3 

( r) 

A 

v1 -m (r) 
4 4 

LI l 11-13 

-M' J m1.,.m3 

LI 1 11-13 
I 

0 J 0 

(r a) 

drt r 

v1m (r) V* ( "') 1 -m· r 
3 3 

1/2 m2+m3+m4 z: 2L+1 = ( -1) 41T [ ( 212 + 1) ( 214 + 1) ( 21 + 1) ( 213+ 1)] 
LM 

M-m [ _:: 
14 -~ 1 

r L 
(-1) 3 -m l M 4 ' J 

( 
12 14 L 1 r L 

l l 0 0 0 J 0 

LI LI I 

M1 -M 1 
I 

LI LI I 

0 0 

(C.23) 

dQr 

m 
13] 
m3 

l l l 
3 

0 0 

(C.24) 
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-+ 
Thus, the fu11 expression for S(ra) becomes 

-+ ( r a) ( r a) 
S(ra) = I . V 1m 111213 LI I MI I 

11 12 13 14 L LI LI I 

m m1 m2 m3 m4 M MI MII 

( 2L+1) (2L 1 +1) 
M+M'+M 1 1 +m2+m4+1 2+1 4+L 

( -1) 4n 4TI 

1/2 

r ,2 14 LI 11-13 LI LI I 

l m2 m4 -M~ 
l m1-m3 MI MI I 

r 12 14 L L 1 13 11-13 13 '11 
I 

I m2 m4 M M m m3 m1-m3 m3 -m 1 

f 12 14 LI 
1 11-13 LI LI I 12 14 L 

l 0 0 0 
J 

0 0 0 0 0 0 

r L 13 l 

l 0 0 0 

(C.25) 

Here we note that un1ess m2+m4 = M1
, the contribution to the above sum would 

be zero. and thus (-1) M
1

+m2+m4 = (-1) 2M
1

= 1~ 

Performing the summation over m2 and m4 we get using 

I (2L+1) 
L 

1 l 
-!yll ~ l 

(C.26) 



[(21+1) (213+1) (211-13+1) 

11 - 13 L 

m1 - m3 -M 

L 

M m 

L 

0 0 

-21-

11 1 m 1 1 1 (ra) m 1 1 2' 3' 4 

(2L+1)(21 2+1)(21 4+1). 

( 4'1T) 

(2L 11 +1~~ 
1/2 

LI I 

w~ 

11 - 13 

m1 - m3 

L 

0 

2 

13 

m3 

L 

0 

Unfortunately, this expression can not be simplified a1~ further, 
and thus makes the computatiön of the mu1tipoles of the deformed fo1ded 
potential unmanageable in any meaningful study. 

11 

-m1 

LI I 

0 

(C.27) 



-22-

Appendix D: Useful expressions 

Herewe give the some of the relations used for deriving resu1ts in the 
appendix C, some of which arenot avai1able in text-books, and have been 
derived by us (see b and c be1ow) 

a) Decomposition of solid harmonics 

Ifr + b, we have = a + 

1/3 
1 v1m(r) 

2: 4TI {21+1)! 1-;>.. r = a 
;\IJ {2f..+1}! ( 2 ( 1 -;>.. ) + 1 )J. 

1+m 1/2 

r 

1-;>.. 
( -1) (2f..+l) m-p 

y 1 - ;>.. • m-p ( a) Yf..IJ (b) 

b) Contraction of three-spherical harmonics. 

= 
L M 

{21 1+1}{21 2+1){2L+l) 

4n 

[ 11 12 L 

-M Ml m2 

1/2 

] 

[ 
11 

0 

b;>... 

;>.. 

p 

12 

0 

= 
(21 1+1}{21 2+1)(2L+1)(2L+l)(21 3+1}(2L 1 +l} 

L M 
LI MI 

(4n) 2 

~1 
I 

1/2 

{D 1) 

v, m (rt) 
3 3 
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c) Angular integration of four spherical harmonics 

= 

LM 

(21 1+1)(21 2+1)(2L+1)(2L+1)(21 3+1)(21 4+1) 

( 4n) 

M+m4 r 12 L ( -1) lll 
m1 m2 -M 

r 11 
12 L 1 
0 0 j l 0 

L' 

-M' 

L' 

0 

(0.2) 

- 1/2 

L 13 14 

M m3 -m 4 

L 13 14 I 
0 0 0 I 

J 

(0.3) 




