
Bestimmung von Hydroxylamin in Purex-Prozeßlösungen

D. Ertel, P. Weindel Institut für Heiße Chemie Projekt Wiederaufarbeitung und Abfallbehandlung

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE Institut für Heiße Chemie

Projekt Wiederaufarbeitung und Abfallbehandlung

KfK 3668 PWA 100/83

Bestimmung von Hydroxylamin in Purex-Prozeßlösungen

D. Ertel, P. Weindel

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

Zusammenfassung

Hydroxylamin läßt sich unter PUREX-Randbedingungen spezifisch zu salpetriger Säure HNO2 oxidieren, die durch Diazotierung von Sulfanilsäure und Kupplung mit α -Naphthylamin zu rotem Azo-farbstoff umgesetzt wird. Spektralphotometrische Extinktionsmessungen bei 520 nm ergeben im Meßbereich 10^{-5} bis 10^{-6} M NH₂OH lineare Eichfunktionen.

Der Einfluß anderer Reduktionsmittel im Prozeß ($N_{2}H_{4}$, Pu-III) sowie derjenige von U-VI, HNO3 u.a.m. wurde untersucht und quantitativ bestimmt. Daraus ergeben sich für NH₂OH-Konzentrationen > 0,01 M keine analytischen Einschränkungen.

Abstract

DETERMINATION OF HYDROXYLAMINE IN PUREX PROCESS SOLUTIONS

In PUREX process solutions hydroxylamine or HAN, respectively, can be oxidized specifically to give nitrous acid, HNO_2 , which by subsequent GRIESS reaction forms the well-known reddish azo-dye. Its absorbance is spectrophotometrically measured at 520 nm and results in linear calibration graphs covering the analytical range of 10^{-5} to 10^{-6} M NH_2OH .

The influence of other reductants (N_2H_4 , Pu-III) as well as of further PUREX main constituents like U-VI, HNO_3 etc. was checked-up and determined quantitatively.

There are no analytical limitations in case of HAN concentrations > 10-2 M.

1. Einleitung

Hydroxylamin ist eines der für den PUREX-Prozeß in Betracht kommenden Reduktionsmittel /l/. Es hat gegenüber den gebräuch-licheren Fe-II und U-IV den Vorteil, daß es chemisch zu gasförmigen Reaktionsprodukten umgesetzt werden kann /2/ und deshalb weder Abfallprobleme (Fe) noch Produktausweitungen (U) verursacht.

Da Hydroxylamin wie auch die anderen Reduktionsmittel durch die im PUREX-Prozeß allgegenwärtige salpetrige Säure unbrauchbar werden, wird es gewöhnlich stets in Kombination mit dem "Nitritfänger" Hydrazin eingesetzt.

Hydroxylamin und Hydrazin liegen in PUREX-Prozeßlösungen als Oniumverbindungen vor:

$$NH_{2}OH + H^{+} \implies NH_{3}OH + pK 6,0$$
 $N_{2}H_{4} + H^{+} \implies N_{2}H_{5} + pK 7,9$

Analytisch spielt die molekulare Erscheinungsform beider Verbindungen hier nur eine untergeordnete Rolle; wir behalten deshalb im folgenden die Bezeichnung Hydroxylamin bzw. den Formelausdruck NH₂OH bei.

Verfahrenstechnisch spricht man in diesem Zusammenhang vom HAN-Prozeß (HAN = Hydroxylammoniumnitrat).

Zur Prozeßkontrolle muß die Konzentration von Hydroxylamin laufend überwacht werden. Im allgemeinen erfolgt dies durch analytische Untersuchung entsprechender Lösungsproben.

2. Problemstellung

Es gibt kaum spezifische Analysenmethoden für Hydroxylamin. In den meisten Fällen bestimmt man das Reduktionsvermögen, das oxidimetrisch gemessen wird. Das bedeutet in bezug auf den PU-REX-Prozeß, daß solche Analysenmethoden immer nur das gesamte Reduktionspotential erfassen, d.h. die Summe der Konzentrationen von beispielsweise NH₂OH, N₂H₄, Pu-III u.s.w.

Die hauptsächlichsten Bestimmungsmethoden sind die bromatometrische Analyse sowie die Titrationen mit Ce-IV und Fe-III. Geringere Bedeutung haben photometrische und elektrometrische Analysenmethoden /3,4/. Über Farbreagentien zum Nachweis von Hydroxylamin gibt FEIGL /5/ einen tabellarischen Überblick.

Speziell in Verbindung mit PUREX-Prozeßanalytik werden Ce-IV-und Fe-III-Titrationen von Hydroxylamin erwähnt /6/. Aus neuester Zeit stammt eine indirekte colorimetrische Methode, die auf der Reduktion Fe-III Fe-II durch Hydroxylamin beruht und eine Farbmessung des entstehenden Eisen-II-FERROZINE-Komplexes beinhaltet /7,11/.

Ziel unserer Untersuchungen war eine Analysenmethode, die unter den Randbedingungen des PUREX-Prozesses Hydroxylamin auch in Gegenwart anderer Reduktionsmittel zu bestimmen gestattet. Unsere Prämissen lauteten demgemäß:

- Substanzspezifität
- hohe Meßempfindlichkeit, damit evtl. durch Verdünnen Fremdeinflüsse eliminierbar sind, und
- einfach Arbeitsweise, damit auch in Handschuhboxen bzw. fernbedient gearbeitet werden kann.

Eine der empfindlichsten Nachweismethoden für Hydroxylamin /5/ist die Oxidation zu HNO2 mit anschließender Umsetzung zu dem bekannten roten Azofarbstoff (GRIESS-Reaktion). Diese Reaktion wird in unseren Labors seit langem zur "Nitrit"-Bestimmung in PUREX-Prozeßlösungen benutzt und hat sich ausgezeichnet bewährt /10/. Zu prüfen war also, inwiefern die Oxidation NH2OH -> HNO2 unter den gegebenen Bedingungen quantitativ und störungsfrei gelingt.

Wir fanden zunächst den Hinweis /8/, daß Hydroxylamin in essigsaurer Lösung durch überschüssiges Jod zu salpetriger Säure oxidiert wird

$$NH_{2}OH + 2 J_{2} + H_{2}O \longrightarrow HNO_{2} + 4 HJ$$
 (Rk.1),

und daß Hydrazin diese Reaktion nicht stört. Manche Autoren /3,4/ bemerken jedoch, daß auch andere Reaktionsprodukte entstehen können, z.B.

$$2 NH_{2}OH + 2 J_{2} \rightarrow N_{2}O + 4 HJ + H_{2}O$$
 (RK.II)

bzw. daß Mischprodukte auftreten (N2O, HNO2).

N.P. KOMAR et al. /9/ stellten fest, daß unter bestimmten Arbeitsbedingungen Rk. I quantitativ verläuft und sich somit zur (indirekten) Analyse geringer Hydroxylamin-Konzentrationen eignet. Dabei wird HNO_2 in statu nascendi von Sulfanilsäure abgefangen, mit α -Naphthylamin umgesetzt und der entstehende Azofarbstoff photometriert.

Diese Methode muß naturgemäß versagen, wenn Nitrit bzw. HNO₂ primär vorhanden ist. Aufgrund allgemeiner Überlegungen läßt sich jedoch ausschließen, daß in den Prozeßphasen, in denen Hydroxylamin eingesetzt wird, gleichzeitig auch HNO₂ vorliegt. Wir haben deshalb die von N.P. KOMAR et al. beschriebene Methode im Hinblick auf ihre Anwendbarkeit für die PUREX-Prozeß-analytik geprüft.

3. Experimentelle Angaben

Alle verwendeten Reagentien hatten p.a. - Qualität (MERCK):

 $NH_2OH \cdot HC1-Stamml\"osung$ 1 g $NH_2OH/1 = 0,03 M$

CH₃COONa·3 H₂O 0,3 M in H₂O

Sulfanilsäure 1% Lösung (3 T H₂O + 1 T CH₃COOH)

∠ Naphthylamin 0,3% Lösung (7 T H₂O + 3 T CH₃COOH)

Jodlösung 0,01 M in CH₃COOH (TRITRISOL)

Na₂S₂O₃ 0,01 M in H₂O (TRITRISOL)

HNO₃ 1 M

Fe(SO3NH2)2 1 M (hergestellt aus Fe-Pulver und

NH2SO3H unter N2 Atmosphäre

N₂H₄ 1 g/1 (hergestellt aus Hydrazinsulfat)

U-VI 1 g/1 (hergestellt aus Uranylnitrat)

Pu-III 21 g/1 (hergestellt durch Fe-II-Reduk-

tion von Pu-IV und Stabilisierung mit

genau bekannter HAN-Menge.

Alle photometrischen Messungen wurden mit dem ZEISS-Spektralphotometer PMQ 3 unter Verwendung von Einmal-Küvetten (1 cm) aus Polystyrol (GREINER) ausgeführt.

Verdünnungen wurden unter Verwendung von HAMILTON-Dilutern hergestellt.

Bestimmungsgang:

Zum NH₂OH - Aliquot gibt man 1 ml Na-acetat und 0,5 ml Sulfanilsäure. Dann fügt man 0,5 ml Jodlösung hinzu, schüttelt und läßt 7 Minuten im Dunkeln stehen.

20 Minuten danach mißt man die Extinktion bei 520 nm gegen eine entsprechende Blindlösung.

Der Arbeitsaufwand für eine Analyse (Doppelbestimmung) beträgt ca. 45 Minuten.

Hinweis:

Stark verdünnte NH₂OH-Lösungen, wie sie hauptsächlich für die im folgenden beschriebenen Test eingesetzt wurden, sind nicht beständig und müssen mindestens täglich frisch hergestellt werden.

4. Ergebnisse

Unsere Versuche mit zunächst reinen NH2OH-Lösungen bestätigten die Ergebnisse von N.P. KOMAR und Mitarbeitern.

Wir fanden für NH₂OH-Konzentrationen im Bereich 1 - 10 μ g/25 ml reproduzierbare, lineare Eichfunktionen E = a·c mit a = 3,766·10⁴ und folgende Fehlerbreiten:

1,4
$$\mu$$
g NH₂ OH/25 m1 = 3,3 % (N = 10)
5,0 " 1,2 % " 10,0 " 0,8 % "

Höhere Meßkonzentrationen führten zur Bildung von Trübungen und Niederschlägen, während niedrigere Konzentrationen unter den vorgegebenen Meßgrenzen ($E \ge 0.05$) nicht mehr erfaßbar waren.

Aufgrund des Vorliegens einer oberen Meßgrenze von 10 µg NH₂OH/25 ml mit E($_{1cm}$) \simeq 0,5 ist die generelle Verwendung von 2 cm-Küvetten zu empfehlen.

Gemäß Rk. I bildet sich aus NH2OH eine äquimolare Menge HNO2. Berechnet man aus den gemessenen Extinktionen die korrespondierenden HNO2-Mengen (auf der Basis von Eichfunktionen, die unter vergleichbaren Bedingungen erstellt wurden), so läßt sich daraus eine Bestätigung dieses Reaktionsablaufs ableiten; der Korrelationskoeffizient ist 0,95.

Im folgenden wird der Einfluß verschiedener Parameter auf die NH₂OH-Analyse untersucht:

a) Farbkonstanz

Die Prüfung auf zeitliche Veränderlichkeit der Färbung ergab, daß die Lösungen mit 5 µg NH2OH / 25 ml mindestens 60 Minuten nach dem oben spezifizierten Meßzeitpunkt stabil waren, wohingegen Lösungen mit 10 µg NH2OH / 25 ml höchstens noch 10 Minuten farbkonstant blieben. Nach Überschreitung dieser Zeitgrenzen tritt zunächst Entfärbung ein, später ggf. Niederschlagsbildung.

b) HNO3-Konzentration

Die Farbintensität des entstehenden Azofarbstoffs erreicht im pH-Bereich 3,00 - 3,50 Optimalwerte /9/; man arbeitet deshalb mit Acetatpuffer.

Beim Überschreiten der Pufferkapazität (hier ca. 0,3 Millimole Na-acetat) ist daher mit systematischen Abweichungen zu rechnen. Unsere Untersuchungen ergaben, daß beim Einsatz von > 0,4 Millimole HNO3/Aliquote rapide Intensitätsverluste auftraten.

c) Hydrazin

Die J_2 -Oxidation von N_2H_4 führt zu Stickstoff /3/, sollte also die NH_2OH -Bestimmung nicht stören. Wir haben trotzdem entsprechende Experimente ausgeführt und festgestellt, daß bei Molverhältnissen N_2H_4 / NH_2OH > 10 negative Abweichungen auftreten; sie dürften eher auf den vollständigen Verbrauch des Oxidationsmittels als auf den spezifischen Einfluß von N_2H_4 zurückführen sein.

Da im PUREX-Prozeß i.a. N_2H_4 - Konzentrationen von ca. 0,1 M angewandt werden, sind Störungen lediglich in den seltenen Fällen $NH_2OH < 0,01$ M zu befürchten.

d) Uran (VI)

Bis zu einem Molverhältnis von 300: 1 (Experimentiergrenze) hat U-VI keinen Einfluß auf die NH2OH-Analyse. Daraus ergeben sich für die prozeßanalytische Praxis keinerlei analytische Einschränkungen.

e) Plutonium (III)

Da Pu-IV in Gegenwart von NH₂OH nicht beständig ist, wurde nur Pu-III als mögliche Störkomponente betrachtet.

Wir arbeiteten mit einer Pu(III)-Lösung, die durch Fe(II)-Reduktion aus Pu(IV) hergestellt war und die zur Stabilisierung eine bekannte Menge NH₂OH enthielt; sie wurde bei den Bestimmungen entsprechend in Rechnung gestellt.

Die Versuche ergaben bis zum Molverhältnis 100 : 1 keine signifikanten Abweichungen von den Sollwerten. Bei mehr als hundertfachem Pu(III)-Überschuß zeigte sich jedoch eine Mengengrenze: > 0,84 mg Pu/25 ml Analysenlösung führte zu defizitären Werten für NH₂OH.

Auch dieser Fall ist unter realen Prozeßbedingungen unkritisch.

5. Facit

Die vorgestellte Bestimmungsmethode für Hydroxylamin ist empfindlich (Meßbereich 10^{-5} bis 10^{-6} Mol/Liter) und unter PUREX – Randbedingungen substanzspezifisch. Sie ist einfach und deshalb ggf. auch fernbedient auszuführen; Zeit- und Material-aufwand sind vertretbar.

Wir danken Herrn G. Horn für die unterstützende Beratung bei einigen Experimenten.

6. Literatur

- / 1/ R.G. Wymer, B.L. Vondra (eds.)
 "Light Water Reactor Nuclear Fuel Cycle"
 CRS Press, Boca Raton / Fa., 1981
- / 2/ G.S. Barney, USAEC-Report ARH-SA-100 (1971)
- / 3/ W. Fresenius, G. Jander (eds.)

 "Handbuch der Analytischen Chemie", Bd. III/5a

 Springer-Verlag, Berlin/Heidelberg, 1957
- / 4/ T. Kolasa, W. Wardencki Talanta <u>21</u> (1974) 845
- / 5/ F. Feigl
 "Spot Tests in Inorganic Analysis", 6th ed.
 Elsevier, Amsterdam, 1972
- / 6/ J.M. McKibben, J.E. Bercaw USAEC-Report DP-1248 (1971)
- / 7/ E.W. Baumann Proc. ACS National Meeting, Kansas City, Sept. 1982
- / 8/ L. Kolditz (ed.)
 "Anorganikum", 6. Auflg.

 VEB Deutscher Verlag der Wissenschaften, Berlin 1974
- / 9/ N.P. Komar, T.G. Shapovalova, A.N. Zots J. Anal.Chem. of USSR 29 (1974) 829
- /10/ G. Knittel, D. Ertel, P. Dressler KfK-Report 2263 (1976) und ORNL-tr-4232
- /11/ F. Dias, A.S. Olojola, B. Jaselskis
 Talanta <u>26</u> (1979) 47