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ABSTRACT 

A D-T neutron source is amplified when emitted into a body of material with 

appreciable (n,2n),(n,3n) or (n,f) cross sections. This amplification is 

described by a simple theory, approximating the strict integral trauspart 

description of the process. The distribution of neutrons in energy, from 

14 MeV down to the (n,2n) threshold, is approximated by effective one-group 

cross sections for amplifiers of high and medium mass numbers; two-group 

cross sections are needed for Be. The spatial character of the multiplication 

is described by average collision probabilities for non-flat collision 

sources. The probabilities are approximated for spherical shell geometry with 

a small nurober of geometrical parameters. 

The theory enables a very accurate determination of a 2 + 2a 
3 

+(vf-t)af n, n n, n 
at the source energy from measurements of total multiplications. If total 

leakages abo~e the (n,2n) threshold are also measured, then the hardness of 

the secondary neutron spectra can be estimated. 

The accuracy of the approximate theory was ascertained by energy-space detailed 

transport comparison calculations for Be, Cu, Zr, Fe, Pb and U238. 



Untersuchungen zur Multiplikation von Neutronen einer D-T-Neutronen­

quelle in Blanketmaterialien von Fusionsreaktoren 

ZUSAH1Y1ENFASSUNG 

In Materialien mit merklichen (n,2n),(n,3n) oder (n,f) Reaktionswir­

kungsquerschnitten wird die Anzahl von Neutronen vergrößert werden. 

Diese Neutronenmultiplikation wird hier durch eine einfache Theorie 

beschrieben, die die strenge Beschreibung durch die integrale Trans­

porttheorie annähert. Für Materialien mit hoher und mittlerer Massen­

zahl werden die energieabhängigen Reaktionsquerschnitte durch einen 

effektiven Eingruppenquerschnitt beschrieben, für Be ist eine Dar­

stellung mit zwei Energiegruppen notwendig. Die räumliche Abhängigkeit 

des Multiplikationseffektes wird durch mittlere Stoßwahrschein­

lichkeiten berechnet, wobei die Stoßquellen nicht als räumlich konstant 

angenommen werden. Die Stoßwahrscheinlichkeiten werden für sphärische 

Geometrie durch eine kleine Zahl von Geometrieparametern angenähert. 

Aus den Hessungen der Gesamtmultiplikation kann man mit Hilfe dieser 

Theorie für die Quellenergie sehr genau den Wert von an 2n + 2Ch 3n + , , 
(vf-l)af bestimmen. Wenn die Gesamtneutronenleckage oberhalb der 

(n,2n)-Schwelle ebenfalls gemessen wird, kann man die Härte des 

Sekundärneutronenspektrums abschätzen. 

Die Zuverlässigkeit des Näherungsverfahrens wurde für die Neutronen­

multiplikation an Be, Cu, Zr, Fe, Pb und U 238 mit Hilfe genauerer 

Transportrechnungen nachgewiesen. 
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Introduction 

Conceptual designs of D-T fusion devices often call for enhancement of the 

D-T neutron output,prior to entering the Tritium breeding zone. With late 

indications of poorer (n, t) cross sections in lithium /l / the pre-amplification 

of the 14 MeV neutron source becomes almost inevitable. There are a few 

competitor elements for the role of amplifiers, each presenting prospects 

and problems. Current neutron data for Be makes it a prima candidate, but it 

has material problems. Pb has gained attention recently, due to measurements 

which show a better amplification than judged by its current neutron data. 

The actinides, U238 and Th232 for exarnple, though highly amplifying, present 

radiation and proliferation problems. Other, poouer, amplifiers should also 

be studied as they may be used as alloy, or structural constituents in the 

pre-amplification zone, 

/2'/ 

Neutron amplification comprises many aspects/ 3- 61. For exarnple, in two of 

these, t'he benchmarking of differential data vs. experimental integral data and 

the optimal design of a fusion blanket, the calculational tool requires a 

rigorous space-energy transpor.t code. Other aspects, such as the experimental 

<;l..eter..mination of partial neutron data, the comparison between the arnplification 

properties of different materials, and general design considerations, could 

be based on a simpler approximate calculational tool. 

The theory presented in this article is a simple approximate calculational 

tool. Approximations are made in the description of the space-energy distribution 

of the neutrons, as they spread away from the assumed localized monoenergetic 

source by repeated collisions in the material body. Simplicity cornes as a result 

of the approximations made, and of certain features of the energy dependence 

of the cross sections. 

The basic theory is developed in section I. The amplification of the source 

depends critically on the average collision probability for the source neutrons. 

Second in importance is the average collision probability for the neutrons 

after their first coliision~ This probability is often close in magnitude to 

the fundamental-mode type, "stationary", average collision probability, approached 
. h' . . 17,BI . . 11 W~t ~n a few colllslons • Neutronsare assumed to scatter 1sotrop1ca ·y. 
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The slowing down process from the source to the (n,2n) threshold energy is 

approximated by an equation similar to the infinite-medium slowing down 

equation, with group-dependent average collision probabilities taking up 

the role of absorption fractions. 

The average collision probabilities are discussed in section ri. In diffusion 

theory the collision probability for a fundamental-rnode source is a rational 

expression, namely L./(L. + L.g), with L, = B2/3L., where L, is the macroscopic 
g 

transport cross section and B2 is the geometrical buckling of the body. 
2 

Approximately then 1/L.g = al + ßl , where 1 is the mean optical chord 

1 h ' 1 ff' ' K jgj h engt of the body and a and ß are numer~ca coe . 1c~ents. umar as 

fitted the parameters for cuboides, spheres, cylinders, and slabs of all 

thicknesses. In this paper a and ß are fitted for spherical shells. Further, 

the average probability of first collisions in the spherical shell is shown 

tobe also of the approximate. !form L./(L. + L.g), where now 1/L.g = al + ßl
2 

+ yl
3

, 

a and ß being the same coefficients as for the fundamental mode source 

probability. 

The results of sections I and II are used in section III to describe in simple 

terms the multiplication of B-T neu·tron sources in spherical shell of Be, Cu, 

Fe, Zr, Pb and U238. ENDF. /B-IV data taken as basis, accurate multiplications 

were c~lculated with a P3/S16 transport approximation for a central source in 

the shells. The space-integrated energy distributions, evaluated by the method 

of section I, well compare with the transport code results. Favourable cross 

section features enable the use of one energy group to calculate the amplificat~on 

in Cu, Fe, Zr, Pb,· U238, and two groups for Be, 

The possible role of the theory in the analysis of experiments is discussed 

in section IV. In order to determine the nurober of secondaries produced at 

the source energy, a meas.urement of the total multiplication suffices. Extra­

polation to zero thickness is then extremely accurate. A rough estimation of the 

nurober of secondaries emitted above the (n,2n) threshold can be made from total 

multiplication measurements in thin and thick shells. If. the totalleakage 

of neutrons above the (n,2n) threshold is also measured, then the effective 

nurober of the secondaries above the (n, 2n)- thresholq can be directly determined 

for each shell thickness. Finally the model developed is used in section V to 

analyse Takahashi 1 s /3/ measured mul tiplications in Pb shells. 
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I. 'l'heory 

We start with a monoenergetic problem. D-T neutrons are generated at the 

"source energy", enter the amplifier body and have a chance for making one 

or more collisions. The probability for a collision depends on the spatial 

distribution of the collisions and on the angular distribution of the 

neutrons coming out of these collisions. The calculation of an,average 

probability for a collision becomes simpler if the angular distribution 

is assumed isotropic, so ·that preceding collisions can be assumed to 

constitute an isotropic collision source. Such an assumption is known 

to be quite accu~ate, provided the neutrons generating the collision 

source are considered to have interacted with the medium with a reduced 

total cross section, the so-called transport cross sec tion 

(J = (J - 1 I(J tr t ~-" el 

As a consequence, the average collision probabilities are functions of 

(I. I) 

~tr , the macroscopic transport cross section. We shall denote the average 

collision probability of the source neutron by P., and the average probabilities 

for subsequent collisions by wl, w2, etc. 

Two kinds of secondaries, emitted in a collision, are considered: 

;\. = the nurober of secondaries produced in a collision 

below B2, the (n, 2n) threshold 

n = the nurober of secondaries produced in a collision 

above B2 * 

\) = A + n, the total nurober of secondaries produced 

in a collision 

Actually we mean "in '.tJhe source group 11 instead of "above 
but we use the latter term in the interest of an overall 
in the article. 

B II 

2 '. consJ.stency 

(I.2) 



In parallel we define some neutranie properties of the amplifying medium 

as follows: 

L = the number of neutrons slowing down below B2 per 

one source neutron 

H = the number of neutrons leaking out of the amplifier 

above B2, per one source neutron 

M = L+H, the total multiplication of one source neutron 

Good amplifiers have very small absorption cr0ss sections, so H above B
2 

is a measure of the total leakage out of the amplifier up to considerable 

amplifiers thicknesses. L is the number of neutrons leaking out 

or getting absorbed below B2 . We shall return to the difference between 

M and the total leakage as we discuss later the analysis of experiments. 

In order to relate L, H, M, to A.,n, v we introduce also 

F = the total number of collisions above B2 , resulting from 

the introduction of one source neutron into the medium 

clearly F = P + ~nw 
1 

+ Pnw 1 nw2' +...... or, 

+ • • • • • ) 

Since we are not considering amplifiers which are supercritical above B
2

, 

i.e. n < 1, the sum in Eq.(I.S) converges. At each collision A. neutrons 

fall below B
2

, hence 

(I. 3) 

(I. 4) 

(I. 5) 

L = A.F (I.6) 

Also, at each collision extrav~l neutrons are added to the medium, hence 

M = 1 + (A. + T1 -I)F (I. 7) 
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then Eqs. (1.3), (I.S), (I. 7) tagether give 

H = I - (I - n )F 

Obviously we would like to find a practical approxirnation for the 

infinite surn in F, Eq.(I.S). It has been shown 181 that, whatever the 

initial collision source, narnely the source for w
1
,the series w

1
,w

2
, 

rapidly convergesto a "stationary" W , the source which·is distributed 

like a reactor fundamental rnode flux Ufg;. Often w
3 

is already practically 

coincident with W . A first order approximation to the surn in F then 
rn 

results frorn equating 

which imrnediately yields 

F = p 
t-nw . rn 

w 
m 

Often, see e.g. later for a central source in a spherical shell, w
1 

(I. 8) 

(I. 9) 

(I. 1 0) 

is an average over a collision source which is still distributed differently 

frorn the stadonary distribution, therefore it is necessary to define 

w = w + ö 
1 rn 

with the result 

F = P( 1 + (W +o)n + (W +.ö)W n2 + (W +.t-)W2n 3 + .•. ) m · rn rn· rn u rn 

and,after surnrnation, 

F = p ' 
+ )l(Wl-Wm) 

- nw m 

In rnany instances the terrn n(w
1
-wm) is srnall and rnay be brought into 

the denominator, with the approxirnate result 

F - p 
. 1 

-nw 
1 

Next, we show that if Wrn is approached frorn above by the series w1,w2 ... 

(this will be the case for a spherical shell), then the expression of 

(I. 11) 

(I. 12) 

(1.13) 

(1.14) 



Eq.(I.I4) for Fis a valid approximation even if the term n(W
1
-wm) is 

not very small. If generally 

n = 1,2 ••••• , 

it follows: 

where it is assumed that 

p I > P2 > P3 > ' ' ' • > 0 

We do not know the actual values of p., but we certainly can make 
l 

a choice of p. consistent with (I. 17). We choose 
l 

p = n n-1 
n (I +p ) 

n 
k=l 

It is easy to show by induction that 

n 
TI (I +p ) = 

n 
k=l 

from which 

n k 
+ L PI 

k=l 

(n=2,3, ..... ) 

Regrouping the summations in Eq. (!.20) yields 

[ 
2 2 

F = P (I +W n + W n + •• • • • m· m· 

+ p 1 w n< 1 + w n + w2 n 2 + •••• ) m m· m 

(I. 15) 

(!.16) 

(I. 17) 

(!.18) 

(!.19) 

(I. 20) 

(!.21) 
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therefore 

F = p (I. 22) 

and with p 1 as defined in Eq.(I.15), finally 

F = p (I. 23) 
1-w n 1 

In order to simplify the notation, we define W _ W 
1 

and rewri te 

Eq. (1.23) as 

F = p (I. 24) 
1-wn 

a result stating that the total collision rate generated above B
2 

is as 

if all generations of non":"source neutrons were colliding witlh the average 

Probability of the first generation. 

The calculation of the collision probabilities P and W will be discussed 

in the next section, and the case of neutron multiplication with energy 

degradation-will be taken up later, but Eqs.(I.6),, (:1.8) and (I.24) already 

constitute an approximate formulation of the amplification in high and 

medium mass nurober materials. In these materials at 14 MeV, the (n,2n) 

(n, 3n) and (n, f) event's for 14 MeV source neutrons produce neutrons almest 

entirely below B2, i.e., below the multiplication range; inelastic events 

which do produce neutrons in the multiplication range are a srnall fraction 

of the total of all events; and elastic scattering leaves most of the 

scattered neutrons in the source group. Since the inelastic events are rela­

tively few we rnay 11enforce 11 a one-group process by assigning a fraction 

f of the inelastically scattered neutrons to stay in the source-group, 

1-f I to fall below the multiplication ran~e. Thus, 

a + f cr. 
1 

. eltr I Lne astLc 
a 
tr (I. 25) 

(1-f )cr. . + 2cr 2 + 3a 3 + vfcr f I LnelastLc n, n n, n n, 

Otr 
(for high and medium mass nurober elements) 



-8-

We note that Eqs.(I.6),(I.7), and (I.8) entail 

L 
;\ 

M-1 I -H = -- = v-1 1-n 

Eq:, (I. 26) is thus characteristic of the one-group amplification process. 

If M and H are measured, or calculated with a muU:igroup transport code , 

then the validity of the simple one-group scheme can be tested by forming 

the ratios L/A, (M-1)/(v-1), (1-H)/(t-n). 

Turning next to the degradation process, we start by rewriting Eq. (I.24) 

as 

(I. 26) 

F p = I + nw 
1-nw (I.27) 

If no source-group neutrons were generated in the collisions, i.e., 

n=O, then the total collision count per collision of source neutrons 

would remain I. If n~O, then a collision of source neutrons introduces 

n neutrons into the system and nW/(1-nW) is the total collision count 

generated by this n "collision source". Generally,we may consider the 

collision events started by non-source neutrons in dissociation from the 

actual source by starting with a distributed source of neutrons. If we 

define 

~(n,W) = the total collision count generated from I distributed 

neutron by collisions characterized by an n neutrau­

return per collision, and by an average probability W 

then, starting with s distributed neutrons~rom balancing it follows: 

~ = W(s + n~) 

(!. 28) 

(I. 29) 

The bracketed sum an the R.H.S. of Eq. (1.29) is the total number of neutrons 

produced directly as source neutrons (s) or by collisions (n~).The total collision 

rate of these neutrons is their number multiplied by the collision probability 

W, and the product is equated to the L.H.S. of the equation. 
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Eq.(I.29) isafinite-medium eoonterpart oftheinfinite medium balance 

equation which is clearly lj! = r;+ n1y. The solution of Eq. (1.29) is 

which, expectedly,reduces to the secend term of the R.H.S. of Eq.(I.27) 

for the aase r; = n. 

(1.30) 

We generalize Eq.(I.29) to the energy-dependent case by introducing a multi­

group picture. But the results from the following .analysis can also be 

concluded in a continous energy degradation description~ He assume a total 

nurober of G energy groups, courtting from source to the (n,2n) threshold 

energies .. The problern is characterized by 

r;n' (n=l,G) = nurober of distributed-source neutrons ~n group n 

Vk (k=t,n(n=l,G)) = nurober of neutrons produced in group n by n, 
a collision in group k 

W = an average collision probability in group n, for all 
n 

generations of collisions 

l/!n the total collision count generated in group n 

(I. 31) 

We have to note that a-priori it is not cettain that in the energy dependent 

problern an average W can be found which well approximates the average collision 
n 

probability of all collision generations; secondly the explicite definition 

of such a W in geometry and cross section terms may be difficult compared 
n 

to the single group case. Both these questions will be taken up in the next 

section. For the moment we borrow the later conclusion that, for a bare 

homogeneaus body, in diffusion theory an approximation to W can be found. 
n 

The multigroup generalization of Eq. (I. 29) is 

n 
lj;n = Wn(r;n +I lj;kvkn) 

k=l 
(I. 32) 

We devide b w Y n and sum up over all groups 

G lj;n G G n 
I w = I r; + I I lj;kvkn 

n=l n n=l n n=l k=l 
(1.33) 



Rearranging 

G 

l: 
n=l 

Define: 

w-

s -

nk -

n -

-to-

the double surn, we have: 

t/J, G G G n l sn + L t/Jk(/: vkn) = w 
n n=l k=l n=k 

G 

L Sn' 
n=l 

G 

L V 
n=k kn, 

G 

l: nkt/Jk 
k=l 

t/1 

the total collision rate in the 

arnplificat(on range 

fueaverage collision probability for 

the arnplification range 

the total distributed collision-source 

in the arnplification range 

the total nurnber of neutrons produced 

group k in the arnplification range 

theaverage nurnber of neutrons produced 

the arnplification range . 

Then Eq.(I.34) reads 

t/1 = W(s + nt/1), 

(I. 34) 

(I. 35) 

(1.36) 

(I. 37) 

in 

(!.38) 

in 

(1.39) 

(I. 40) 

which has exactly the sarne form as Eq.(I.29). The interpretation of Eq.(I.40) 

is as follows. If W is a properly defined average collision probability over the 

arnplification range (Eq.(I.36)), then a distributed collision-source of s neutrons 

in this range will generate a total collision count as if the collision process 

was a one-group process, each collision generating n (Eq.I.39) neutronsback 

into the group. 
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Obviously, if also 

then, 

A = the number of neutrons produced in a collision 
n 

in group n below the amplification range, 

G 

L An\jJn 
n=l 
~~\jJ---- is the average number of neutrons produced A :: 

below the amplification range by collisions in the 

amplification range 

(I. 41) 

(I. 42) 

n andA characterize the amplification of non-source neutrons. As such they 

must be independent of s , the distributed collision-source strength. 

Indeed the solution of Eq. (1.40) is 

w 
tiJ = s t-nw • (I. 43) 

Together with Eqs,(I.39) and (1.42), the nondependence of A and non 
the magnitude of s can be ascertained. We make use of this fact by choosing 

s = n (I. 44) 
in order to ensure that, as of the first emission of non-source neutrons, 

the number emitted into the amplification range is the correct average number 

by which the effective one-group description for non-source neutrons is enabeled. 

With this choice 
_ nw 

1jJ - t-nw 

and the collision rate of non-source neutrons is entirely specified. 

(I. 45) 

In similarity to Eqs.(I.6) and (1.8), the leakage and slowing down rates for 

one non-source neutron, H* and 1* respectively, are given by (W replaces P) 

H* 
= !=~WJ-
= AW (per 

t-nw 
one non-source neutron) (I. 46) L* 
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The total counts, per one source neutron, are 

H = 1 - P + PnH* 
(I.47) 

L = PA. + PnL* source 

or, (1-neff)P 
H = 1 -

1-neffw 
(I. 48) 

L Aeff p 
= 

1-neffw 

where eff 
n - n 

(I. 49) 

Aeff - A. + (A. - A. )nW source source 

Eqs.(I.48) and (I.49) constitute the main result of the energy degradation 

analysis. In form they are identical with the one-group Eqs.(I.6) and (I.8), 

however neff and A.eff are now parameters including the effect of the degradation 

in the amplification range. We observe that,if there is a considerable variation 

of n(E) with energy, then neff may be considerably different from n (i.e. · source st from n of the 1 (source) group) ,depending through the collision rate energy 

spectrum (solution of Eq.I.32) on the size of the amplifier. Variation in 
, eff . . . , . 
1\ , ln compartson Wlth 1\ are more restra1ned due to the factor nW source' 
multiplying ·.the difference (A.-A. ) in Eqs. (I.4a). In principle, though, 

ff sour!f 
there is a dependence of A. e and ne on the size of the system, or equivalently 

on the average W. Thus 

eff 
n = neff (W) 

(I. 50) 

Fortunately, as will be shown in section III, often this dependence is weak, 

enabling the formation of size-dependent A.eff and neff to go with the Eqs.(I.48) 

namely the effective one-group equations for the amplification process. 
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II. Collision Probabilities 

We begin again with the monoenergetic one-group problem. 

Collision probabilities can be calculated by transport or Monte Carlo 

methods for a given geometry. Much simplicity, and some physics insight, 

i.s gained from the persuit of analytical expressions for collision proba­

bilities, We shall first deal in general with the collision probabilities 

involved in the theoretical formulae of section I, then the discussion 

will focus entirely on spherical shells; most attentionwill be gi~en 

to W . 
m 

As discussed before, an exact evaluation of P is of utmost importance. 

If the source-body has a one-dimensional symmetry, then 

where 6 is the body thickness in the direction connecting the source and 

the body. In other casesavPr::~3es rnust be performed 

II.I 

II.2 

While there is a great vari.ety in P, depending on the shape of the body and the 

source-body, there are common features in W. It has been demonstrated/S/ 
m 

that, whatever the distribution of an external source or of the first collided 

neutrons is, the distributions of neutrons with higher collisions rapidly 

converges toan asymptotic form~ . Bethe/ 7 / has argued that ~ for 
m m 

a bare body is exactly the fundamental-mode flux distribution for the body 

at criticality in the group of neutrons under consideration. The central 

argument is that ehe nth distribution depends on the (n-l)th distribution 

but not on the nurober of neutrons generated in the (n-l)th collision. Therefore 

onemay choose the nurnber of neutrons emitted back into the colliding group, 

namely n, to be of an appropriate magnitude such that in the limit of large n 

the total nurober of neutrons making the nth and (n+l)th collisions is the 

same. Then the body is critical and the spatial distribution of the neutrons 

is the fundamental mode flux distribution. 
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Within the diffusion approxirnation a basic relation between the collision 

probability W and the geornetrical buckling of the critical systern can be rn 
established. Assurning a one-group neutron population, in each collision n 
neutrons are emitted back in the group and A neutrons below the group. The 

nurnber n was so adjusted as to ensure criticality by these one-group neutrons, 

and A is essentially an absorption fraction, since this is the nurnber of neutrons 

disappearing frorn the group on each collision. The group does of course not 

contain source neutrons; the effective one-group leakage and absorption 

(slowing down) are given by H* and L* of Eqs,(I.46). Define: 

Pnon - the non-leakage probability frorn a 

critical bare reactor 

Since neutrons either leak out or are absorbed in a one-group picture, 

the non leakage probability is 

and since 

p 
non 

L: 
A = 

= 

a 

L:tr 

L* 

L*+H* 

AW m =-----
AW +( 1-W ) rn rn 

where L:a is the absorption cross section, it is 

p = 
non +(1-W~ ~ 

w L: m a 

On the other hand, the diffusion theory expression for the non leakage 

probability out of a critical bare reactor is 

I p = ___ ...:;..... __ _ 
non 1 + (~ )B2 

a 

where D is the diffusion coefficient, and B2 the geometrical buckling. 

Cornparing (II.6) \.;rith (II. 7),we obtain a basic relation 

w = rn 

(II.3) 

(II.4) 

(II.S) 

(II.6) 

(II. 7) 

(I I. 8) 
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D = 1/(3~tr) , also 

( 1-W ) - 1 
m 

~ 2 
= 1 + 3( __!_r) 

B 

For all bodies of usual interest, such as spheres and spherical 

shells, finite and infinite slabs, finite and infinite cylinders, B
2 is 

an eigenvalue of the wave equation IJ 24J+B 2cp=O and is given by 

I 
\' B. 2 

• {., 1 
1=1 

(1=1, or 2, or 3) 

(II.9) 

(I I. I 0) 

where I is the order of dimension of the geometry. The diffusion boundary 

corlditions also determine the partial bucklings B. as 
1 

B 2 
i 

C.2 
1 

=---
(ß.+d) 2 

1 

h . . h . th d' . w ere C. are constants, typ1cal of the curvature 1n t e 1 1mens1on, 
1 

(II.II) 

ßi is the body extension along the ith dimension, and d is the extrapolation 

distance, Then 

~ 2 tr 
3( B:' ) 

1 

= 

2 
(x. + o) 

1 

c.z 
1 

h A • • • h • th d • • d -~ • w ere x. = ~ u., the opt1cal th1ckness 1n t e 1 1mens1on, an v· 1s 
1 tr 1 

the extrapolation distance in units of the mean free path. 

(II. 12) 

Introducing the optical mean chord length ~ as a representative measure of the 

body size, we have 

x. p.~ 
1 1 

(II. 13) 

and 
(1-W ) 1 p. 

)2(..9,+ ~ )2 I + 3 I< 1 
= m c. P· i 1 1 

(II. 14) 

In diffusion approximation we have to assume that the body is suffi­

ciently large in each direction. Thus 8 « x. , or 8 /p. « ~, and with the 
1 1 

expansion of squares in Eq. (II. 14) in two terms, finally 

(II.15) 
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Eq.(II. 15) is not new. Kumar 191 has fitted s
1 

and s 2 for bodies of 

various shapes no·t only in the diffusion range 9, >> I, but also down to 

zero chord length. In Table (II. I) we compare Kumar's values for s 2 in 

the ranges (0-3) and (1-10) for 9,, with the diffusion theory s
2 

value 

for 9, » I. 

We turn our attention next to spherical shells with a central point source. 

Pis exactly given by Eq.(II.I). In order to find suitable expressions 

for W,we have utilized tabels and graphs given by Bethe et al/7/ for W 

and W in the optical thickness range 0 < x < 1.6. m 

We start with the conjecture that W can be fitted by the form of Eq. (II. 15) 
m 

Rewriting Eq.(II. 15) as 

where 

W (k,x) 
m 

(1-W (k,:x:))'X 
m 

(II.I6) 

(II. 17) 

a fitting of the L.H.S. of Eq.(II. 16) by the R.H.S. was carried out for each k. 

For k=O, .2, .4., .6 and .8 the L.H.S. was an almost perfect straight line in x 

in the range (0. -1.6), with some relatively small magnitude exceptions at 

x < 0.2. For k~I.O (the limit of an in!initely narrow shell), there is some 

devl.ation of the W /{(1-~4 )x} value from a straight ·line. These fits are shown 
m m 

in Figs. II.l through II.6 .. The ~ and ßk' determined by this procedure, are 

given in Table II.2. 

"The curve W(k,x)/{(1-W )x} is above a straight line, the deviation increasing m 
with x. An example of this characteristics feat'ure is shown in Fig. II. I. 

We therefore tried to fit. W by adding a third, square, term to the R.H.S. of 

Eq. (II. 6.), ,namel,y 

W(k,x) 

( 1 -w (k, x)) x 
(II.I8) 

retaining the ~ and ßk from the fit of Eq. (II. 16). The f.ittihg of the yk values 

are.. also given ·in Table II.2. Table IL 3 .shows a comparison between accurate W(k, x) 
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values, and values obtained with Eq. (II. 18) and the parameters of Table II.2. 

Most W values are reproduced to better than 1%, with some exceptions for 

k=O at low x values. 

For large x values we turn to Eq.(II.9). As x becomes larger 

than I , an exact fit for ak becomes less important; therefore our interest 

in Eq. (II.9) focusses on obtaining from it ßk values. The general .solution 

of the wave equation in spherical geometry can be represented by/ 7/ 

sin B (r+ o) 
r 

Setting~' to zero at the inner radius R
1

, and setting ~ to zero at the 

extrapolated bouddary R
2

+d leads to 

-1 k 
B (LHd) = TI - tan (1-k · M) 

(II.l9) 

(I I. 20) 

To determine ßk' the limit (:., + ~ is investigated, therefore d/f:.. + O, 

thereupon rendering Eq.(II.20)an expression for Bß.But weshall also tauch 

upon the solution of Eq. (II.20) for finit x, . therefore we write down the 

t . b d A • • 1' 17 I 1 ransport relat.lon etween Bd an Bu at cr1t1ca 1ty , name Y 

Bd = 0. 7 tan - 1 Bß 
X 

Hrl.ving solved the coupled equations (II. 20) and (II. 21) for a selection 

of x values from zero to infinity we observed that 

B(f:..+d) = C(x) 

(II.21) 

(II.22) 

where C (x) is a wea:k function of x. Values ß(~), ß*(l), ß~~(O), as determined 

from Eq.(II.22) and Eq.(II.9), are shown in Fig.II.4. Although the application 

of the diffusion theory relation, Eq. (II.9), is not strict for x=O 

or x=l., we observe nevertheless the interesting fact that ßr(o) are very close 

to the fitted ßk of Table II.2, except for the k=1 shell. We have no satis­

factory argument for explaining whether this is merely a coincidence. 
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ßk(oo) are slightly higher than ßk(O), repeating the pattern of Table II. 1. 

(there, e
2
). Wehave had no nurnerical data to deterrnine an optimal x, 

above which ßk(oo) should be used. The educated guess is x = 3, and results 

of the next two sections do not suggest any gross error in this choice. 

~ and yk were kept the sarne for all x. 

Next we exarnine the definition and application of collision probabilities 

in the slowing down context. P is a probability for source neutrons and 

is not affected by .tihe slowing down process. As regards W, the question is 

whether its definition as in section I, and its dependence on E , as above, tr 
hold. We have no way of directly exarninin·g this ques.tion, but we can exarnine 

instead the case of W • rn 

The fundamental reactor theorern states that in the diffusion approxirnation 

the flux in the bare ~eactor is separated in space and energy, the spatial 

separant satisfying the sarne equation and boundary conditions as in the one­

group case. Defining 

<f> = f ID(B) 
g g\ 

the fundamental mode flux in group g 

and rnultiplying the wave equation for ~(B) by fg we obtain 

'iJ 2 cp X B
2

cp = 0 
g g 

The total leakage and absorption in group g are 

Leakage in group g = - J dV ('iJ· J ) 
g 

Absorption in group g = J dV E <P a,g g 

(II.23) 

(11.24) 

(II.25) 

The rnultigroup relation between current (J ) and flux (<f> ) is strictly not given 
g g 

by Fick's law as in one-group diffusion, but we may assurne that the slowing 

down problern has been solved and that an effective Et has been det~rmined r,g 
such that the current and flux are related by 

J = - __,_..;:.__ • <P 
-g 3E g 

tr,g 

The non-leakage probability in group g is then 

(Absorption) 
p 
non,g = = 

B2 
1+ -~-.;...._-

(Absorption) +(Leakage) 
g g 

3E E tr,g a,g 

(I I. 26) 

(I I. 27) 
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Comparing Eqs-(11.27) and (11.28) yields 

"' L: L: 
(1-W )- 1 = 1 + 3 

m, g 
tr,g tr,g 

B2 
(11.29) 

Generally L: ~ L: , but if we simplify tr,g tr,g 

(11. 30) 

then we have a formal analogy between Eq. (11.29) and the one-group 

expreasion for W , Eq. (11.9). 1fone wants to estimate the corresponding error 
m 

(usually small, for a moderate variation of otr(E) in the multiplication 

range) inherent in Eq.(11.30), then there is also a practical analogy between 

Eq.(11.29) and Eq.(11.9). 

Eq.(11.16) and Table 11.2 

Practically, then W m,g 
in the· same way as W . 

m 
clude the same, conjecturing that the 

as the one-group difference wm-wl. 

difference 

can be evaluated from 

As regards w1 we con­,g 
W - w

1 
remains as small m,g ,g 

Finally we have to remernher that the analysis affered above was based on 

diffusion theory and is applicable with increasing validity to increasing 

amplifier sizes. The reverse is true as we decrease the size of the amplifier. 

The energy spectra based on the solution of the generalized slowing down 

equations (1.32), with W derived by the method discussed above, 
m 

will deviate to some extent from the true spectra as the system becomes 

smaller. 
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III. Analysis of the Neutron Amplification in Pb,Zr,Cu,Fe, U238 and Be 

The theory laid out in the preceding two sections was applied to Pb,Zr, 

Cu,Fe, U238 and Be. A D-T neutron source was assumed at the center of 

a series of spherical shells for each of these materials. All shells had 

an inner radius of 10 cm, and the shell thicknesses ranged from 0.2 to 

50 cm. The transport code ITRAN, with ENDF/B-IV cross sections for these 

materilals, was used to calculate the multiplicities L, H, and M. 

Th 1 ' ' ' ' '11 h h 'eff d eff f h 1' f' t' e ana ys1s 1n th1s sect1on w1 s ow t at A an n or t e amp 1 1ca 1on 

energy ranges of these materials have a smooth-dependence on the size of the 

shell, or on W, so that the amplification process in these materials can be 

accurately described with geometry independent one-group parameters, or 

two-group cr<Jl'SS sections for Be. 

Characteristic data which are relevant to neutron amplification in the 

materials, mentioned above, are surmnarized in Tables III. l. In each material 

the relevant B
2

, the (n,2n) threshold, was taken to be some cut-off energy 

below which a 
2 

is negligible. Effective one-group cross sections are given 
n, n 

in Table III.2. The comparison between the L,H,M values predicted with the 

one-group description and the ITRAN results, is shown in Tables III.3. 

We use the term "one-group" in the following sense. The equations determining 

L and H (M=L+H) are Eq. (I.48), with two exceptions: for U238 they are modified 

to account for the amplification by fission below the (n,2n) threshold9 

for Be a·two-group process is taken . In these equations Pis calculated 

from Eq, (II. I) with a correction applied to the shell thickness 

6, to account for the fact that the source in the ITRAN calculations,for 

numerical reasons, was not a centerpoint but rather a distributed source in a 

small shell arround the centerpoint. The correction is derived in an appendix. 

W, the average collision probability for once-collided neutrons, is given by 

Eq, (II. 18). The parameters ~' ßk,yk for this equation were interpolated from 

entries in Table II. 2. The crt value for which W was calculated (x=6E ) , r tr 
was a for the sottrce group. tr 
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and s in the data tables mean, respectively, 0 /0 and 
g eltr tr 

0
1-+g

10tr, 1 • 
in all these 

As we consider the data for Pb, Zr, Fe, and Cu we notice that 

materials (a) n is small, (b) 0 1.s slightly increasing in 
tr 

the energy direction from the source energy to B2 • These trends are helpful 
eff in setting up an n ' as can be realized from the form of Eqs(1.48).Strictly, 

Weff (A) 
u should be determined frum the solution of the slowing down equations 

(1.32), then from Eq. (1.36). Because of the increasing 0 (see (b)above) 
tr 

i t is, 
eff 

W (6) > W(6E 
1

) • 
tr, 

(III. 1) 

W. h 1 eff . h • • 1.t small n s the exact W value 1.n small s ells 1.s un1.portant 

and an neff can be chosen so as to compensate in the thick shells for the 

f eff act that in the one-group model one sets W = W(66 
1
). Tables 111.3 tr, 

show that the one-group parameters for Pb, Zr, Cu, and Fe of Table 111.2 

i~deed reproduce very accurately the L,H, and M multiplicities as calculated 

with 1TRAN and ENDFB/B-1V. 

In U238 the neutrons slowed down below B
2 

are further amplified because the 

fission threshold of U238, ~ 1 ~i:!V is lower than the (n, 2n) threshold, i .e. 

~ 6 MeV. However ,we may estimate this further amplification from the r.obs.ervati-on 

that in a heavy element the neutrons which fall below B
2 

almost entirely are 

scattered inelastically, the spectrum being of the evaporative type. 

We also observe that the evaporative-type spectra of secondaries from (n,2n) 

and (n, 3n) reactions are, in gross terms, not much different from a 

fission spectrum. Approximately, then, all neutrons generated in U238 by 

collisions above B
2 

are generated with a fission spectrum. Hence we may utilize 

the reactor theory notion of the fast effect to estimate the amplification of 

neutrons fallen below B
2

. For each neutron borne with a fission spectrum, the 

fast·-effect factor E is the nurober of neutrons degraded below the fission 

threshold, either by direct collisions in the fuel or by leaking into a non-

re turning moderater. Presently L is the nurober of neutrons · appearing below B2 
in a fission spectrum; hence sL is the count of all neutrons either leaking 

out in the energy range between the fission and (n,2n) threshold or slowing 

down below the fi.ssion threshold. Eventually all neutrons below the 

fission threshold either leak out or get absorbed ; therefore, in other words 
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EL is the nurober of neutrons leaking out below B2 or which are ab­

sorbed below the fission threshold. 

Following the considerations above we generalize our definitions of H,L,M 

to read 

H - total leakage above the (n,2n) threshold 

EL - total leakage below the (n,2n) threshold 

and absorption below the fission threshold 

M :: H + EL 

From reactor theory, an expression for E is /8/ 

E = I + 0.09Pi 
I-0.52P2 

(III.2) 

(III. 3) 

where P
1 

is the collision probability for fission-generated neutrons, and the 

probabilities for subsequent collisions above the fission threshold are assumed 

to be all equal to P
2

, the probability ·for secend collisions. In our case, P
1 

is equal to W, the average collision probability following the collision of the 

source neutrons, therefore W is approached from above and, due to the 
m 

analysis of section I, the best estimate for E would be by 

E = I + 0.09W 

J-0.52W 
(III.4) 

In orderthat Eq.(III.4) can effectively be used in Eqs.(III.2), then in the 

one-group Eqs.(I.48), we assume that W of Eq.(III.4) is W(6Etr,l), namely the 

sameWas used in Eq.(I.48). This assumption rests an the observation that 

only slightly in the range from the fission to the (n,2n) threshold is 

than a (E) in the range from the (n,2n) threshold to source. The com-tr 
parison of H, EL, M by Eqs. (I.48),(III.2), and (III.4) with the corresponding 

multiplicities by the ITRAN runs is shown in Table III.3.e. to be very satis­

factory. 

In Be, expectedly, the amplification is not possible in a one-group description. 

With very high n values, and an extensive energy range from source to B2, 

there are coasiderable changes in neff and Aeff with the shell thickness. 
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These relativelymarked changes are the result of energy spectruro shifts 

in the aroplification range. In Fig. III. 1, the spectruro of neutrons, F(E), 

in the energy range 2-·13 MeV for three Be shells of thicknesses 3,9 and 

so cro is shown. vJe note that there is a good degree of agreeroent between the 

ITRAN produced spectra and the spectra evaluated by the solution of the 

generalized slowing down equations (I. 32), In corroboration of the at'~roents 

developed at the end of section II we also note that the generalized slowing 

down spectra lose accuracy as the shell becoroes thinner. 

For the two-group description for Be we chose the first group to coincide 

with the 13.5 - 15.0 MeV range used as source group 1.n the ITRAN ca:Lculations. 

The group pararoeters in the two-group description are 

n
11 

- the actual nurober of neutrons generated in group 1 

by collision in group 1. 

s1 - the actual nurober of neutrons generated in group 2 

by collisions in group 

A.
1 

- an effective nurober of neutrons generated below B2 
by collisions in group 

n2 - an effective nurober of neutrons generated l.n group 2 

by collisions in group 2 

A.2 - an effective nurober of neutrons generated below B2 
by collisions l.n group 2. 

a - the actual a in group tr, I tr 

a - an effective a in group 2 
tr,2 tr 

With these pararoeters, as defined, and the leakages and slowing down 1.n the 

two groups counted, the result is 

L = 

(III.S) 

H = 
[
I-n-s 1 1 
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We emphasize that the choice of 13.5 MeV as the energy boundary between the 

two groups may not be optimal. The two-group Be parameters, as given in 

Table III.2 and used in Eqs. (III.5), leave some room for optimization, as 

can be judged from the -co.mpariso·n of the multiplicities for Be, namely 

Table III.3.f. 

IV~ The Role of the Theory in the Analysis of Multiplication Experiments 

We shall begin with the simplest experiment, namely one designed to measure 

the total leakage K out of the shell: 

K - measured total leakage out of the shell per one 

source neutron (IV. I) 

In order for the theory to the effective, we have to establish a practical 

relation between K and M. Obviously 

M = K + A (IV.2) 

A - absorption below the multiplication range 

per one source neutron (IV. 3) 

If the experiments are performed in a range of thicknesses for which the 

absorption is negligihle below the multiplication range, theh M - K. If such 

is not the case, then A may be estimated by an iterative procedure, the nature 

of which will be discussed shortly. For the moment we go on assuming there is 

an effective way of determining M(K). 

The quantity easiest to determine from M is v , the number of secondaries source 
generated in a collision of source neutrons. In order to avoid the problern 

of multiple collisions one ideally performs the measurements in a.number of 

thin shells and deduces V from 

V - I = Lim M-I 
x-+0 P 

or, equivalently, one deduces cr + 2cr 
3 

- cr from 
n,2n n, n a 

[ M-I] cr 2 + 2cr 3 - cr = cr Lim --P , 
n, n n, n a tr x-+O 

(IV. 4) 

(IV. 5) 



-25-

the R.H.S of Eqs. (IV.4) and (IV.S) being the correct expressions for v-I 

in the absence of multiple collisions. In Figs. IV.!, IV.2, and IV.3, we 

showsuch possible determinations of v-1 by extrapolation to zero thickness. 

Wehave used the ENDF/B-IV/ITRAN calculated multiplicities as "experimental" 

data. We have excluded from these Figs. the calculated data below I cm of 

thickness because of bet·ter simulating the non-ideal circutnstances 

of the experiment. We observe that in all three Figs, for Pb, U238 and Be, 

the v*-1 values (we shall use v* for values determined by the R.H.S. of Eq.(IV.4) 

or of corresponding later expressions, prior to extrapolation to zero) con­

stitute a steep curve as we approach zero. This renders the extrapolation 

to zero somewhat uncertain. 

An improvement in·the V -1 approach to zero may come as a result of assuming 

n=nel' where n l=a 1 /a , and utilizing the expression for v-1 as given e e tr tr 
by the present theory, namely 

v-1 Lim M-1 
x-+0 P 

( t-nw) (IV.6) 

We assume, of course, that a 
1 

(E) and ~ (E) are well known in the multi-
e tr tr 

plication range so that some average <nel> can be used in Eq(IV.6). At least 

we assume that (n 
1

) is known, and with this latter assumption 
e ~:;ource 

we have evaluated the R.H.S. of Eq. (IV.6). We see (in Figs. IV.!, IV.2, IV.3) 

that the slope of v*-1 becomes much smaller for Pb and U238; the improvement 

in the v*-1 slope for Be is .not so marked. 

In itself, the fact that the slope of the v*-1 curve, as determined from Eq. 

(IV· 6) remains high does not indicate that the procedure or the assumptions 

made are wrang. The fact may be that in Be n - nel but that v-I (i.e. an, 2n) 

increases rapidly,with decreasing energy suchthat with the thickness of the 

shell, and the concurrent enhancement of the slowing down process, an ln-

d eff · b · b d 1 h h · · t t t f crease v 1s e~ng o serve . We cnow t at t lS 1s not a correc s a e o 

cross sections as we consult Table III.l.f; but as "experimenters" we have 

no acseess to such a table. But since our theory does take account of multiple 

collisions we may try to gain information about n from measurements in 

thick shells. 
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Suppose we consider nel as a zeroth estimate of n, narnely n(O)=nel' 

and that with this value for n(O) the v value deterrnined frorn thin-shells 

by Eq, (IV.6) is an v~O) value. Then, in order to utilize the thick-shell 

rneasurernents, we invert the equation forM, Eq.(I.48), to read 

(O) . 
1-P V -1 

n < 1) = M-1 
w (IV. 7) 

thus obtaining an iterated value for n. 

As we see in Table IV. 1, a very reasonable n value for thick-shells is ribtained 

by the iteration. Further the iterated n value is quite insensitive to V(0)_1; 

this is irnportant, because the v-1 value, deterrnined frorn a steep v*-1, may be 

in sorne error. Using the iterated n back in Eq.(IV.6), a rnuch rnore convenient 

approach to zero is obtained for Be. In the case of Pb and U238 such iterations 

change very little because the assurnption n~ nel for these rnaterials happens 

to be a good n(O) estirnate, 

We have shown that the application of the theory to the experimentally deterrnined 

quantity M assists in obtaining a convenient exptrapolatipn to zero by 

which a 2 of source neutrons isdeterrnined. It also yields a rough estirnate 
effn' n 

of n (effective nurober of secondaries emitted into the rnultiplying range) 

for thick shells. 

Returning to the problern of the absorption below B
2

, we suggest a solution by 

iteration. Let the procedure described above of deterrnining a V out of an M 

be forrnalized as an operation Q, thus 

V = Q(M) 

and let the absorption below B
2

, as calculated by a transport code for a 

given v, be denoted by 

A = A(v) 

then the iteration process is perscribed by 

v(O) = V as known initially 
M(n) = K + A(V(n)) 

v(n+1) = Q (M(n)) 

(IV.8) 

(IV.9) 

(IV.10) 
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We continue with a measurement designed to determine the total multiplication 

M, as well as the leakage above B
2

, H. Since the theory makes a distinction 

between H and M, such a measurement could better make use of the theory than 

the sole determination of M. Inverting Eqs. (1.48) we have 

p - (1-H) 
n = 

P - W(l-H) 

(IV. II) 

v-1 = (M-1) t-W 

P-W( J-H) 

Thus a direct determinafion of neff(6) and \!eff(li,) from the measured H(.6) 

and M(.6) is possible. Figs. IV. I through IV.4 showsuch directly-determined 

\! and n values, again.the Hand M values calculated with ITRAN/ENDF/B-IV, 

providing the "experimental" date. We have to keep in mind that W in Eqs. 

(IV.!!) is a Weff; by its definition it depends on the cross section 

scattering matrix in ·the multiplication range, therefore there 

cannot be an unequivocal determination of n and \! through Eqs. (IV. II), 

from the measurement of just the two quantities M arid H. Nevertheless, if 

the Variation of otr in the multiplication range is known, or sensible 

variations in Weff can be estimated otherwise, bounds can be determined for 

the Variation of neff(.6) and \!eff(.6). This already is some knowledge about 

the hardness of the spectrum of secondaries as a function of energy. 

A measurement of M and H also requires the need to determine M(K) by 

iteration. We ?Ssume that below the multiplication range cross 

section data are sufficiently accurate for the transpürt calculation of the 

absorption per one neutron slowing down below the multiplication range. 

Define 

( i )cal. _ the calculated absorption below B
2 

per one neutron introduced below B2 

then, since, 

we have 

(IV.12) 

(IV. 13) 

(IV. 14) 
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V. Analysis of Takahashi's Neutron Multiplication Experiments Ln Pb 

Recent measurements by Takahashi et al/ 2/ show the multiplication in Pb 

to be much higher than calculated with current Pb cross section data. 

The following is an analysis of Takahashi's data, based on the presently 

developed theory. 

The measurements were done for a D-T neutron source, placed Ln the center of a 

spherical cavity formed by Pb sphercial shells. Four shells were measured, 

all four with the inner radius of 10 cm, and with thickness . of 3,6,9, 

and 12 cm. The leakage spectrum of neutrons ernerging from the shell was 

monitared and integrated above 0.2 MeV. These (0.2-I4)MeV multiplications 

have to be multiplied by correction factors, determined by Takahashi 

through the use of transport calculations. Table V.1 shows the total 

multiplications. 

Included in the table are also \ralues of H. These wer:e obtained by us from 

·.tihe experimental data. To be reminded, M-H is the multiplication below 7 MeV, 

the (n,2n) threshold; Takahashi reports experimental values for H 3
4 , the 

7 7 • 4 
multiplication in the range 0,3 to 4MeV. The difference H

4 
= H.

3 
- H.

3 
could 

be evaluated from a graph in the Takahashi article /'1./, showing the leakage 

spectrum per source neutron for the 9 cm shell. This is used, tagether with the 
7 4 

ratios (H 3 /H ) as determined from ITRAN-ENDF/B-IV runs for all 4 shells, 
• • 3 

to form 

7 
(H4)shell 

= (H 7)EXPER.r Hr ]TRAN 

' 3 SHELL - H 4 
.3 SHELL 

r Hr4 ]EXPER. 

l H.3 SHELL9 
(V. 1) 

[ 

H7 ]TRAN 

HJ SHELL9 

7 As can be seen in Table V.l, the (H
4

) values thus obtained aresmall fractions 

of the multiplications in the (0.3-4) MeV range, The approximation of Eq. (V.1) 

thus could not have introduced an appreciable error. 
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Table V. 1 also shows the ratio r;, namely 

s - M-H 
M-1 

for the four shells, and it is noticed that s deviates only slightly 

(V.2) 

across the four shells. According to Eq.(I.26), and the discussion following 

it, the constancy of s renders the one-group description of the multiplication 

a valid description. 

In the preceding sections a one-group amplification process was described 

'th h 'd f · ,eff d eff S · 1 h Wl t e al o two effectlve numbers,namely A an n trlct y, t ese 

numbers depend on the solution of the generalized slowing down equation 

(1.32) above (n,2n) threshold, but adopting the strict approach means the 

use of the emission distribution data, the very data which should be 

determined frorn the experirnent. Instead, we shall use a sornewhat heuristic 

definition f0r the one-group pararneters, not requiring an iterated solution 

of the slowing down equations. 

Define 
a - total transport cross section 

a - elastic transport cross section 
e 

a - inelastic cross section 
1 

a
2

- (n,2n) cross section 

a
3

- (n,3n) cross section 

a - absorption cross section 
a 

f
1
,f

2
,f

3
- fractions of the neutrons emitted in, inelastic, 

(n,2n), (n,3n)reactions respectively, which remain above B2 

The fractions f have to be regarded as effective fractions. 

The neutrons are assurned to rernain in the source-group during the collision 

process; certainly,for elastic scattering in Pb this isavalid assurnption, 

but non-elastic neutrons falling below the source group bring about further 

multiplications only by a rnagnitude proportional to <v-1>; an average net 

multiplication over the ernission spectrurn. Thus, 

f. = f. • 
l l 

<v-1> (over ernission spectrurn i above B2) 
(v-1) at scurce energy 
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where 

= the actu~l fraction of neutrons emitted above B
2 (V. 4) 

by type i non-elastic collisions of source neutrons 

We shall return later to consequence resulting from the distinction between 

the actual fraction f and the effective fraction f. Next we analyse the 

experimenral results, as :summarized in Table (V. 1) in terms of the cross 

sections and emission fractions as defined above. Neglecting 0 from the 
a 

start, we have 7 cross sections and fractions to consider, namely 

0,0 1,02, 0
3

, f
1
,f

2
,f3• We can simplify by "disposing of" 0

3 
with the defi­

nitions 

0* = 02 + 203 2 

f* 
2f202 + (1+3f3)·03 

"' 2 
202 + 403 

These definitions are so set as to preserve the original definition of n 
and v. They are now given by 

Since we have effectively a one-group process (Eq.(V.2), and the ensuing 

discussion) , we write 

v-n [ * 0
1 ] I;=-= 2 - 2f - (1-f ) -

v-1 2 1 0* 
2 

But, from Table V.1, I;~ 1.70, therefore solving Eq.(V.7) for f; yields 

Suppose all inelastic neutrons remain non-degraded, then f
1
=1, and 

f; = 0.15. Clearly the effective return fraction of inelastic scattering 

may be smaller than I, so we have 

f; 2: o. 15, 

(V.5) 

(V.6) 

(V.7) 

(V.8) 

(V.9) 
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a very high, effectively non-degraded emission fraction of (n,2n)events. 

The result of Eq.(V.g)is,corroborated by the more direct approach of 

consider±ng individual shell multiplications in Table (V.I) and trying 

to match them with a set of cross sections and emission fractions, as 

applied to the one-group amplification formulae (1.48), namely to 

M-I = (v- I) 
p 

1-nw 
(V. 10) 

There are 4 parameters Ln the expressLons for \J and n of Eqs. (V.6). So to 

simplify we set f
1 

= I (namely assume all inelastic events tobe totally 

effective for re-amplification) from the start, in this way trying to 

obtain a low estimate for f* . Now 
2 

M (V. II) 

and the search is for the most fitting triad (o, o;,f;). 

Some results of the search are shown in Fig.V.I through Fig.V.4. With 

f; = 0, or f; = 0. 1, no triad could reproduce the experimental M-I values 

with reasonable proximity. Only going as high as f* = 0.2 resulted in 
2 

marginal fitting. This value of f~ is consistent with the low limit for 

f~ given in Eq.(V.9) and found in a different manner. 

We now turn to an interpretation of these f; values in terms of f 2 and~\ 

namely the effective and actual (n,2n) secondary emissions returned for 

re-amplification. Eqs.(V.S) inverted reads 

f = f* - [ l - 2f* ( 03 )'l 
2 2 2 2 02 1 (V. 12) 

and defining, 

m - (V. 13) 

<o2 + 2o3> for (n,2n)+(n,3n) emissions above B
2 

we have, by Eq. (V.3) 

f = mf* - m( 1 
2 2 2 

(V. 14) 
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With B2 of the isotopes of natural Pb being at least 6.7 MeV,the 

available energy left for the two ernerging neutrons, after an (n,2n) 

collision at 14.7 MeV, is at most 8 MeV. The f
2 

fraction is then spread 

from 6.7 to 8 MeV, a small energy span just above B2 • As a consequence, 

m is a large number. Current ENDF/B-IV data yield m ~ 10. 
03 

Fig. V.5 show·s f 2 • ( Öz) for four choices of (m,f; ). The most 

probable line is the (m=IO, f; = 0.2) linej as f
2 

goes from zero to 

the maximum possible value of 0.5 ,(o
3
;o

2
) goes from 2.0 to 1.5. As 14.7 

is just 1.3 MeV above the minimum (n,3n) threshold of the isotopes of 

natural Pb, it is impossible that o
3 

has already risen so sharply at 

the expense of o2 . The least probable line is then (m=S, f~ = 0. 15) 

line: as f 2 goes from zero to 0.5 ,(o
3

;o
2

) goes from .75 to .25. Current 

data set o3; o
2 

at 0.015, nevertheless we could examine the .25 value for 

o3/o2 because for 14.7 MeVneutrons o
3

/o
2 

starts to become a steep in­

creasing function of energy. 

To assume o3!o2 = 0.25 results in T; = 0.5. The latter implies that 

in each (n,2n) reaction one of the ernerging neutrons takes up almost all 

of the available energy, namely 6.7 to 8 MeV. This should constitute 

a drastically different distribution of secondaries than the evaporation 

type spectrum with an average energy of ~ 3.5 MeV, as currently assumed 

for the two emission neutrons. We have, though, to rule out the former type 

of distribution as we study Fig.(V.6). 

Fig. V.6 shows three spectra of neutrons in the range from 0.3 to 12 MeV. 

Neglecting the very low energy tail, this is the energy range for secondaries 

from nonelastic collisions. Of the three spectra, two are for the neutrons 

leaking out of the 9 cm shell: one was evaluated from a corresponding 

graph in the Takahashi et al. report, the other is the result of a ITRAN/ 

ENDF/B-IV run. The third is the non elastic emission spectrum as evaluated 

from ENDF/B-IV data for the source group. We emphasize that these spectra 

are normalized each to unity, not to I source neutron. What we observe are, 

thus,purely spectral distributions. 
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There is no evidence of an excess of neutrons in the 6 - 8 MeV range 

as the experimental spectrum is compared with the calculated spectrum. 

The latter ,we remember ,is based on data assigning an evaporation distribution 

to both neutrons. In fact,the non elastic basic data (the third spectrum 

Ln the figure) is quite similar to the leakage spectra, all three spectra 

clearly showing an accumulation of neutrons about an average energy about 

3 MeV. 

In conclusion,we state that the Takahashi experiment shows an unusual 

high multiplicative power of Pb. The only consistent explanation of this 

high multiplicative power LS to assume (i) a high o
3
;o

2 
ratio for D-T 

neutrons and/or (ii) a high fraction of the emission of the (n,2n) reaction 

falling above the (n,2n) threshold. Both these assumptions are difficult 

to settle with our knowledge and understanding of neutron interactions. 
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VI. Conc lusions 

The amplification of D-T neutron sources can be described in simple terms. 

The neutron slowing down process in the energy range from 14 MeV to the 

(n,2n) threshold can be approximated with a generalized slowing down 

equation in which the usual infinite medium slowing down collision rates 

are modified by average collision probabilities. With proper averaging 

of group-to-group cross sections and of average collision probabilities, 

the process can effectively be described with one, or two, group parameters. 

The nuclear parameters for the approximate description of the amplification 

'eff d eff h b f d b 11' · · h are A an n , t e num er o neutrons generate y co LSlons 1n t e 

amplification energy range, respectively below and in the amplification 

range. The geometrical parameters are P and W, the average collision 

probabilities for,respectively, source neutrons and first non-source 

gen:era:tion of neutrons. 

Practical formulae for W in spherical s~ell geometry, with the source at center, 

are developed. The dependence of W on the optical thickness of the shell 

is intimately related to the dependence of W on the optical thickness. 
m 

W is the average collision probability for late neutron generations which m 

is shown, in diffusion theory, to be intimately related to the geometrical 

buckling of the body in which the collision process takes place. 

The effective dese.ription of the amplification as a one-group process, with 

its analytical expressions for the effect of multiple collisions, is 

helpful in deducing source-energy cross sections from measurements of total 

multiplications. Measurements of total multiplications and of the total 

leakage above the (n,2n) threshold can be combined with the analytical ex­

pressions·of the thebry to provide·some data on the hardness of the spectrum 

of the secondary neutron emissions of 14 MeV source neutrons. 
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APPENDIX THE AVERAGE COLLISION PROBABILITY FOR A UNIFORM, ISOTROPIC, 

SMALL SPHERICAL SOURCE SHELL IN A SPHERICAL MATERIAL SHELL 

The calculation of <P> is based on Fig. A.t. The smallnes of source 

has two aspects 

The material shell thickness, in the direction 8 for a neutron 

generated at the point r in the source, is 

'-2 2 2 • 12 2. 2 • 
R,(r,8) = "{R

2 
- r sin 8 - 'IR

1 
- r s1.n 8 

(A. I) 

(A.2) 

(A. 3) 

Us ing (A. 1) we expand the square roots in Eq, (A. 3) in two tenns each 

The result is 

where 

R, ~ /::,+o(r,8) 

I I I 2 . 2 o(r,8) = -(- - -)r Sl.n 8 
2 R

1 
R

2 

The collision probability for the neutron generated at r and 

travelling in 8 is 

P(r,8) = - e 
-L:R,(r,8) 

therefore, 

where, for a uniform and isotropic source, 

2 r dr 

(A. 4) 

(A.S) 

(A.6) 

(A. 7) 

(A. 8) 

(A. 9) 
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Using (A.4) Ln (A.8) we ha~e 

but, with (A. I) and (A.2) 

L:o(r,e) « 1 

therefore 

<o> is easily calculated from (A.6) and (A.9). The final result is 

I <o> = 
5 

5 5 
r2 - rl 

3 3 
r2 - rl 

(A. 10) 

(A. II) 

(A. 12) 

(A. 13~ 
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Table II.1: The Coefficient s
2 

in the ~xpression 

[1 + E 1 (chord) + E 2 (chord) 2 J - 1 for 
the Average Escape Probability for a 

Centrally Peaked Source 

I 
Kumar's fitting 

0 < ~L: < 3 1 < .Q,L: < 10 

Infinite Slab .030 .0578 

Sphere . 13 6 . 1 52 

Cylinders H/D + oo .093 . 11 4 

H/D = 1 . 0 . 170 . 178 

H/D = 0. 1 .099 .089 

Cube . 19 5 . 193 

Diffusion 
'J'heory 
(:IDq. I I. 14) 

1 << .Q,L; 

.0760 

. 1 71 

. 130 

. 204 

. 107 

.228 



-41-

Table II. 2: Coefficients a, 13, y for the Analytical 

Representation of the Probabilities Wm and 

W for Spherical Shells 

a i3 y 
k 

0 < X < 3 3 < X 

o.o .75 .237 .304 .30 

0. 2 .92 .360 . 4 54 .30 

0.4 1 . 1 7 . 510 . 634 . 27 

0.6 1 . 4 7 . 657 .824 .25 

0.8 1 . 8 7 .847 1 .020 .25 

0.9 2.25 .748 .25 

1 . 0 2.94 . 580 .25 

2] 
-1 

1 - w = [1 + akx + i3 kx m 

i3 kx 2 3 - -1 
1 - w = [1 + akx + + YkXr J 
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Table II.3: The Fitted Probability W Compared with the 

Aceurate Probability 

Uppe:r figures 

lower figures 

parts per thousand 

W (accurate) in parts per thou.sand 

[ W · ( fi tted) - W (accurate)] in 

~· 0.0 0.2 0.4 0.6 0.8 0. 9 1 . 0 

• 1 68* 91* 110* 130* 153* 186* 230* 
+4 -2 -1 +3 +8 -10 -38 

. 2 140* 17 5* 210 244 289 325 390* 
+1 -6 -6 0 -3 -16 -57 

. 4 270* 322* 368 415 473 509 560* 
-3 -11 -7 0 -4 -12 -34 

.8 488* 535* 585 633 681 707 735* 
-8 -6 -3 0 0 -2 -5 

1.2 636* 680* 7 21 7 57 793 828* 
+3 -1 -1 +2 +1 +2 

1.6 742* 77n* 809 837 861 883* 
+8 +2 -1 -2 -1 +2 

*values taken from a graph in Bethe's article; uon stared 

figures are values read from tabulations in Bethe's article. 
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Table II.4: Values of the Parameter ßK as Determined from 

the Application of the Diffusion Relation 

(Eq. II. 9) to Transport-Theory Bucklings 

k o. 0.2 0. 4 0. 6 0.8 1 . 0 

Fitted 0<X<1.6 . 23 7 .360 . 510 . 6 57 .847 . 580 -
Diffusion Appr. 

-+ o. .304 .396 . 513 .652 .844 1 . 21 6 

= 1 • .304 .413 .556 .730 .945 1 . 21 6 

-+ 00 . 304 . 4 54 . 634 .824 1 .020 1 . 21 6 
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Table III. I. a: Pb Dat·a 

Group <Energy> 0 tr nel n >. t; 
MeV 

Source 14. 2 3.059 . 186 .280 1 . 434 • 17 4 

2 1 2. 9 3.113 • 199 . 279 1. 409 .012 

3 11.6 3.211 . 21 6 .282 1 . 3 56 .016 

4 10.5 3.217 • 216 .260 1 • 317 .013 

5 9.5 3.273 .222 • 2 58 1 0 17 2 .019 

6 8.6 3.326 .229 .252 .962 .016 

7 7.8 3.326 .234 .256 • 811 .015 

8 7 • 1 3.386 .230 .230 .783 .015 
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Table III.1.b: Zr Data 

Group <Energy) 0 tr n n ;\. t,; 
MeV el 

Source 14. 2 1. 93 .088 • 184 1 . 41 2 .086 

2 1 2. 9 1 . 98 .100 . 17 4 1 . 3 64 .023 

3 11 . 6 2.02 . 106 . 18 5 1 . 108 .008 

4 10.5 2.07 • 11 4 • 17 8 1 • 103 .010 

5 9.5 2. 1 2 . 1 20 . 189 . 98 5 .010 

6 8.6 2. 1 6 .138 • 19 6 .857 .009 

7 7.8 2.23 . 1 50 • 211 .796 .015 

8 7 • 1 2.36 . 190 . 190 .803 .023 
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Table III.1.c: Cu DATA 

e 

Group < Energy> 0 tr n . -el n ::\ s 

Source 14.2 1.85 .088 • 14 9 1 .05 5 .089 

2 1 2. 9 1. 86 • 1 28 . 1 50 .987 .055 

3: 11.6 1 . 9 2 .092 • 1 50 .814 .004 

4 10.5 1. 94 .097 .098 .826 .001 
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Table III.1.d: Fe DATA 

Group < Energy> 0 tr n.el n A E, 
MeV 

Source 1 4 . 2 1 . 67 .092 . 183 .950 .092 

2 1 2. 9 1 . 64 . 1 50 . 1 71 .892 .082 

3 1 1 • 6 1. 71 .091 .092 .904 .009 
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Table III.1.e: U238 Data 

Group <Energy> 0 tr nel n A s 
MeV 

Source 14. 2 3o23 0 1 26 .182 2.634 • 1 26 

2 1 2. 9 3.26 • 13 9 • 185 2. 51 5 . 011 

3 11.6 3.40 • 14 3 . 190 2.163 .014 

4 10o5 3o48 0 1 54 
0 187 2.056 .013 

5 9.5 3o55 . 1 55 . 183 1.993 .012 

6 8.6 3.60 . 1 56 • 17 8 1 . 9 29 .006 

7 7.8 3.67 • 1 61 . 180 1 • 7 83 0. 

8 7. 1 3.76 .173 • 193 1 . 489 0. 

9 6.4 3.84 • 184 . 184 1. 1 53 0. 
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Table III.1 .f: Be Data 

Group <Energy> 0 tr n n !t ~ 
MeV el 

Source 1 4 . 2 . 950 .315 .989 . 532 .048 

2 1 2. 9 .818 .206 1 .066 .485 .267 

3 11 . 6 1 . 03 . 3 28 1 . 110 . 41 2 .095 

4 10.5 1 .08 .334 1 .o 28 .474 . 1 21 

5 9.5 1 . 16 .356 .984 .488 .07 6 

6 8.6 1 . 20 . 3 57 .978 .479 .048 

7 7.8 1. 22 .356 .976 .470 .038 

8 7 . 1 1 . 25 .354 .971 . 528 .034 

9 6.4 1 . 30 .344 .918 .494 .038 

10 5.8 1 . 34 .400 .838 . 551 .037 

1 1 5.0 1 . 28 .378 . 638 .741 .072 

1 2 4 . 1 1 . 4 2 .388 . 57 3 .732 .059 

1 3 3.3 1. 77 .490 .490 .694 .029 

14 2.7 1. 9 5 . 1 60 . 1 60 . 8 57 .027 
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Table III.2: Effective One- and Two-Group Parameters for Multipliers 

of D-T Neutron"Sources 

Energy I Material Group Extension I cr t Number of Secondaries Emitted 
(MeV) I r 

:(barns) +(<B~) I +I + 2 

U238 I 14.9- 6.1 3.23 • 191 2.637 

Pb I 14.9- 6.7 3.06 .260 1.430 

ZR 1 14.9- 6.7 I. 93 • 128 1.472 

CU 1 14.9- 10.0 1.85 • 135 1.070 

FE I 14.9 - II. I I. 67 • 156 .975 

BE I 14.9 - 13.5 0.95 .048 .941 .560 

2 13.5 - 2.5 I. 21 .850 .376 

~~2 here means the bottarn energy of group 2 in Be, 

or bottarn enerBy of group I in the other materials 



Table III.3.a : Amplification in Pb 

b.(cm) k p w ITRAN RESULTS (1 GROUP/ITRAN)-1 % 
X 

M-I L H M-I L H 
I 

.2 .980 . 0202 .0203 t . 0526 .0144 . 0290 . 986 -1.6 +1.2 -o. 1 

.5 .952 .0505 .049E • 115 .0359 .0724 .963 -1.3 +1.4 -o. 1 

I. 0 .909 . l 01 .0971 . 193 .0714 • 144 .927 -1.2 +1.4 -0.3 
(Jl 
~ 

3.0 .769 . 303 .264 .386 .205 .417 .788 +0.5 -1.4 -0.6 

9.0 .526 .909 .599 .656 .502 1.03 .470 -0.7 +0.1 -0.9 

15.0 .400 1.51 .782 .795 .685 1.42 .268 -0.7 -0.5 +0.9 

25.0 .286 2.53 .922 . 907 .833 1.73 . 105 -0.2 -0. 1 +2.4 

50.0 . 167 5. OS .994 .981 .917 l. 91 .0087 +0.4 0.0 

- --- -···- ---- ----- '------ - ------ ------- ----L_ _____ -- --- -



Table III.3.b: Amplification in Zr 

11(cm) k X p w 

0.2 .980 .0164 .0165 0.432 

1.0 .909 .0822 .0797 .162 
-

3.0 .769 .247 .220 .332 

9.0 .526 .739 .525 .588 

15.0 .400 I. 23 • 711 .731 
_..,_ - - . --- -

50.0 I. 6 7 4. 1 I .984 .968 

-
I 

I I 
I 

ITRAN RESULTS 

M-1 L H 

.00909 .0235 .986 

.0488 .116 .932 

.140 .341 .800 

j 

.343 .836 .508 

.469 I. 15 .320 

j.667 1.65 .0193 

l l I 

(1 GROUP/ITRAN)-1 

M-I L 

+0.4 +4.0 

+0.1 +3.0 

-1.4 -0.5 

-0.8 o.o 

+0.4 +0.2 

+0.3 +1.2 

I 

% 

H 

-0.1 

-0.4 

+0.] 

-0.6 

-I. 1 

+3.2 

Ol 
1\J 



Table III.3.c : Amplification in Cu 

ti(cm) 

1:0 .909 ! • 154 
--

3.0 .769 .470 

9.0 .526 1. 41 

15.0 .400 2.35 

50.0 .167 7.84 

-----··--·-

~ 

~ 
.1467 .. 214 .0312 .162 .869 +0.3 +0.8 -0.1 

.378 .514 .0835 

. 759 .791 . 17 3 

. 906 .901 .209 

r 
! 
\ 
I 
I 

.436 

.910 

1 • 1 04 ' 
; 

' 

i 
.648 \ -0.2 . -0.3 +0.2 

l 
.263 I +o. 1 -0. 1 +0.8 

. 1050 +1.1 0.0 r +-2 .6 

I 

. 9996 1 • 996 . 231 1. 231 j -·~0037 +2. 3 +0.~-~- -~ __l 

(J1 
(,) 

\ 



Table III.3.d: .Amplification inFe 

!J.(cm) k X p w 

.2 .980 .0284 .0284 .0727 

.5 .952 .0711 .0695 .155 

I. 0 .909 .142 • 134 .254 
' 
; 

3.0 .769 .427 .350 .484 

9.0 .526 H28 .725 .763 

15.0 .400 2. 13 .883 .882 

25.0 .286 3.56 . 972 .960 

50.0 .167 7. 11 .9992 .994 

ITRAN RESULTS 

M-1 L 11 

.00382 .0275 .976 

.00949 .0681 .941 

.0186 .134 .884 

.0504 .368 .683 

• 108 .801 .307 

• 133 .997 .136 

.148 l. 114 .0338 

. 152 1 ~ 15 I .0009 

(1 GROUP/ITRAN)-1 
% 

M-1 L H 

-1.3 +2.0 0.0 

-1.7 +1.8 -0.1 

-I. 7 +1.0 -0.2 

-1.5 +0.4 -0.3 

-o. 1 +0.1 -0.3 

+0.7 +0.1 +0.2 

+1.3 o.o +4.2 

+1.7 +0. 1 
I 

01 
.f>. 



Table III.3.e: Amplification in U238 

L'1(cm) k X p w c: 

.2 .980 .0291 . 0290 .0742 I. 0069 

.5 .952 .0727 .0710 . 157 8 1. 0155 

1.0 • 909 . 145 . 137 .258 I. 0268 

3.0 .769 .436 .356 .400 I. 0592 

9.0 .526 I. 31 . 732 .770 1. 116 

15.0 .400 2. 18 .888 .886 1. 148 

25.0 .286 3.63 .974 .9617 1. 1 73 

50.0 . 16 7 7.27 .9993 .995 1. 186 
; ' 

I 
I 

- - ----------·- -~ ------

ITRAN RESULTS 

M-I c:L H 

.0542 .0770 . 977 

• 136 .193 .943 

.274 .387 .887 

.791 1. 103 .688 

1.85 2.54 . 311 

2.38 3.24 . 138 

2.71 3.67 .0341 

2.82 3.82 .00120 

(1 GROUP/ITRAN)-1 
% 

M-I c:L H 

+0.3 +1.5 -o. 1 

+0.3 +1.5 -0.2 

-0.4 +0.5 -0.4 

-1.5 -0.5 -0.8 

-0.9 -0.5 -1.7 

-0.2 o.o -2.0 

+0.5 +0.4 +2.1 

+1.4 +1.0 
I ! 

! 

I 

I 

I 

I 

I 

I 

-

(}1 
(}1 



Table III.3.f : Amplification in Be 

-

-~ Ll(cm) k X p w 
group 

.2 .980 .0228 .0228 .0591 
2 

\ I -· o326 .0741 

1.0 .909 .114 .1090 .213 

2 . 163 .258 

3.0 .769 .342 .292 .419 

2 .490 .490 

9.0 .526 1.026 .644 .695 

1.47 .769 
2 

15.0 .400 I. 711 .821 .829 

2 2.45 .886 

50.0 • 167 5.70 .997 • 989 

8. 16 .992 
2 

ITRAN RESULTS 

M-I L H 

• 013 I . 0135 • 9996 

.0669 .0730 .9938 

.223 .264 .9584 
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Table IV. 1 
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Iterated Number of Secondaries Emitted in the 

Multiplication Region; Eq. (IV.7) 

Be Be I Pb l 

n( 1):iterated n (1): i terated 
I 

n ( 1): i terated 

0 
from (O) from from 

\)( )=1.56 \) =1.52 V(o)=1.70 

.55 .72 • 150 

.69 • 76 .209 

• 71 .74 .226 

.70 .73 .233 

.70 .72 .230 



Table v.1:; Multiplications, Partial Multiplications, and Derived Quantities from the 

Takahashi's Experiment on Pb Spherical Shells 

M~ltiplication per one source neutron 

Shell 'H M 
out er 

0-0.3 0.3- 4 4-7 7- 1 5 0- 15 
thicknesE M-H I 1 - <~> I (cm) MeV MeV MeV MeV MeV M-1 l; = -M-1 

3 .074 . 420 .025 . 77 5 1.294+.01 .294 1. 77 4.7 % 

6 . 183 .760 .036 • 584 1.563+.01 .563 1. 74 3.0 % 

9 .250 1 .050 .040 .500 1.840+.03 .840 1. 59 5.9 % 

12 .336 1 - 190 .038 .372 1.936+.09 .936 1. 67 1 . 2 % 

<> = 1.69 
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Fig. lll. 1: Energy Distribution of the Space-Integrated 
Collision Rate of Non-Source Neutrons in Be 
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Fig, IV, I: Extrapolation to Zero to determine the Number 
of Secondaries in U238 
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Fig. IV.3: Extrapolation to Zero to determine the Humber 
of Secondaries in Be 
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Fig. IV.4: Effective Nurober of Secondaries Ernitted in Be above 
the (n,2n)threshold 
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Fig. V.4: Attempts to fit Experimental Hultiplications with f; = 0.20 
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