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ABSTRACT

A D-T neutron source is amplified when emitted into a body of material with

appreciable (n,2n),(n,3n) or (n,f) cross sections. This amplification is
described by a simple theory, approximating the strict integral transport
description of the process. The distribution of neutrons in energy, from

14 MeV down to the (n,2n) threshold, is approximated by effective one-group
cross sections for amplifiers of high and medium mass numbers; two-group
cross sections are needed for Be. The spatial character of the multiplication
is described by average collision probabilities for non-flat collision
sources. The probabilities are approximated for spherical shell geometry with

a small number of geometrical parameters.

T i i + + (v -

he theory enables a very accurate determination of on,Zn 2Gn,3n (vf 1)0f
at the source energy from measurements of total multiplications. If total
leakages above the (n,2n) threshold are also measured, then the hardness of

the secondary neutron spectra can be estimated.

The accuracy of the approximate theory was ascertained by energy-space detailed

transport comparison calculations for Be, Cu, Zr, Fe, Pb and U238.




Untersuchungen zur Multiplikation von Neutronen einer D-T-Neutronen—-

quelle in Blanketmaterialien von Fusionsreaktoren

ZUSAMMENFASSUNG

In Materialien mit merklichen (n,2n),(n,3n) oder (n,f) Reaktionswir-
kungsquerschnitten wird die Anzahl von Neutronen vergrdBert werden.
Diese Neutronenmultiplikation wird hier durch eine einfache Theorie
beschrieben, die die strenge Beschreibung durch die integrale Trans-—
porttheorie annihert. Fiir Materialien mit hoher und mittlerer Massen-—
zahl werden die energieabhingigen Reaktionsquerschnitte durch einen
effektiven Eingruppenquerschnitt beschrieben, fiir Be ist eine Dar-
stellung mit zwei Energiegruppen notwendig. Die rdumliche Abhidngigkeit
des Multiplikationseffektes wird durch mittlere Stofiwahrschein-
lichkeiten berechnet, wobei die StoBquellen nicht als rdumlich konstant
angenommen werden. Die StoBwahrscheinlichkeiten werden fiir sphirische

Ceometrie durch eine kleine Zahl von Geometrieparametern angendhert.

Aus den Messungen der Gesamtmultiplikation kann man mit Hilfe dieser
Theorie fiir die Quellenergie sehr genau den Wert vom Op on + 20, 35 +
(vg=1)0f bestimmen. Wenn die Gesamtneutronenleckage oberhalb der
(n,2n)-Schwelle ebenfalls gemessen wird, kann man die Hirte des

Sekunddrneutronenspektrums abschitzen.

Die Zuverldssigkeit des Nidherungsverfahrens wurde fiir die Neutronen-
multiplikation an Be, Cu, Zr, Fe, Pb und U 238 mit Hilfe genauerer

Transportrechnungen nachgewiesen.
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Introduction

Conceptual designs of D-T fusion devices often call for enhancement of the
D-T neutron output,prior to entering the Tritium breeding zone. With late

11/

indications of poorer (n,t) cross sections in lithium the pre—amplification
of the 14 MeV neutron source becomes almost inevitable. There are a few
competitor elements for the role of amplifiers, each presenting prospects

and problems. Current neutron data for Be makes it a prime candidate, but it

has material problems. Pb has gained attention recently, due to measurements/zy
which show a better amplification than judged by its current neutron data.
The actinides, U238 and Th232 for example, though highly amplifying, present
radiation and proliferation problems. Other, poorer, amplifiers should also
be studied as they may be used as alloy, or structural constituents in the

pre-amplification zone.
/3-6/

these, the benchmarking of differential data vs. experimental integral data and

Neutron amplification comprises many aspects . For example, in two of

the optimal design of a fusion blanket, the calculational tool requires a
rigorous space-energy transport code. Other aspects, such as the experimental
determination of partial neutron data, the comparison between the amplification
Properties of different materials, and general design considerations, could

be based on a simpler approximate calculational tool,

The theory presented in this article is a simple approximate . calculational
tool. Approximations are made in the description of the space-energy distribution
of the neutrons, as they spread away from the assumed localized monoenergetic
source by repeated collisions in the material body. Simplicity comes as a result
of the approximations made, and of certain features of the energy dependence

of the cross sections.

The basic theory is developed in section I. The amplification of the source
depends critically on the average collision probability for the source neutrons.
Second in importance is the average collision probability for the neutrons

after their first collision. This probability is often close in magnitude to

the fundamental-mode type, "stationary", average collision probability, approached

/7,8/

within a few collisions . Neutrons are assumed to scatter isotropically.




The slowing down process from the source to the (n,2n) threshold energy is
approximated by an equation similar to the infinite-medium slowing down
equation, with group-dependent average collision probabilities taking up

the role of absorption fractions.

The average collision probabilities are discussed in section II. In diffusion
theory the collision probability for a fundamental-mode source is a ratiomal
expression, namely I/(Z + Ig), with Zg = B2/32, where I is the macroscopic
transport cross seection and B2 is the geometrical buckling of the body.
Approximately then 1/Ig = ol + Blz,'where 1 is the ﬁean optical chord

length of the body and o and B are numerical coefficients. Kumar/g/ has

fitted the parameters for cuboides, spheres, cylinders, and slabs of all
thicknesses. In this paper o and 8 are fitted for spherical shells. Further,
the average probability of first collisions in the spherical shell is shown

to be also of the approximaterﬁorﬁ /(X + Ig), where now 1/Ig = al + 1% + Y13s

o ahd B being the same coefficients as for the fundamental mode source

probability.

The results of sections I and II are used in section III to describe in simple
terms the multiplication of B-T neutron sources in spherical shell of Be, Cu,

Fe, Zr,‘Pb and U238, ENDF /B-IV data taken as basis, accurate multiplications

were caiculated with a P3/S16 transport approximation for a central source in

the shells. The space-integrated energy distributions, evaluated by the method

of section I, well compare with the transport code results. Favourable cross
section features enable the use of one energy group to calculate the amplification

in Cu, Fe, Zr, Pb, U238, and two groups for Be.

The possible role of the theory in the analysis of experiments is discussed

in section IV. In order to determine the number of secondaries produced at

the source energy, a meadurement of the total multiplication suffices. Extra-
polation to zero thickness is then extremely accurate. A rough estimation of the
number of secondaries emitted above the (n,2n) threshold can be made from total
multiplication measurements in thin and thick shells. If the total leakage

of neutrons above the (n,2n) threshold is also measured, then the effective
number of the secondaries above the (m,2n)- threshold can be directly determined
for each shell thickness. Finally the model developed is used in section V to

analyse Takahashi's /3/ measured multiplications in Pb shells.




I. Theory

We start with a monoenergetic problem. D-T neutrons are generated at the
"source energy", enter the amplifier body and have a chance for making one
or more collisions. The probability for a collisiom depends on the spatial
distribution of the collisions and on the angular distribution of the
neutrons coming out of these collisions. The calculation of an.average
probability for a collision becomes simpler if the angular distribution
is assumed isotropic, so-that preceding collisions can be assumed to
constitute an isotropic collision source. Such an assumption is known
to be quite accurate, provided the neutrons generating the collision
source are considered to have interacted with the medium with a reduced
total cross section, the so-called transport cross section

Opy = Op = MO q (1. 1)
As a consequence, the average collision probabilities are functions of
Ztr » the macroscopic transport cross section. We shall denote the average
collision probability of the source neutron by P, and the average probabilities

for subsequent collisions by W], W2, etc.

Two kinds of secondaries, emitted in a.collision, are considered:

X = the number of secondaries produced in a collision
below Bz, the (n,2n) threshold

N = the number of secondaries produced in a collision (1.2)
above B, #

V = A+n, the total number of secondaries produced

in a collision

% . ,
Actually we mean "in the source group" instead of "above B ",
?ut we use the latter term in the interest of an overall consistency
. 1n the article.,
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In parallel we define some neutronic properties of the amplifying medium

as follows:

L = the number of neutrons slowing down below B2 per
one source neutron

H = the number of neutrons leaking out of the amplifier (I.3)
above B2’ per omne source neutron

M = L+H, the total multiplication of one source neutron

Good amplifiers have very small absorption cress sections, so H above B2
is a measure of the total leakage out of the amplifier up to considerable
amplifiers thicknesses. 'L is the number of neutrons leaking out

or getting absorbed below B2. We shall return to the difference between

M and the total leakage as we discuss later the analysis of experiments.
In order to relate L, H, M, to A,n, v we introduce also

F = the total number of collisions above BZ’ resulting from (I.4)

the introduction of one source neutron into the medium

clearly F =P +PaW_ + PNnW . nW,, +...... or,

1 12

F=P (1 +nW, + n2W1W2 + n3w1w W, o+ veend ) (1.5)

1 273

Since we are not considering amplifiers which are supercritical above B2’
i.e, n < 1, the sum in Eq.(I.5) converges. At each collision A neutrons

fall below B hence

2’
L = AF (I.6)

Also, at each collision extrav~] neutrons are added to the medium, hence

M=1+ (A +n =1)F (I.7)




_5_.
then Eqs.(I.3), (I.5),(I.7) together give
H=1- (1 -gn)F (1.8)

Obviously we would like to find a practical approximation for the

infinite sum in F, Eq.(I.5). It has been shown /8/ that, whatever the

initial collision source, namely the source for Wl,the series wl,wz,
rapidly convergesto a "stationary" W , the source which-is distributed
like a reactor fundamental mode flux 9/. Often W3 is already practically
coincident with Wm. A first order approximation to the sum in F then

results from equating .

W, =W, = ..0... W (1.9)
m

which immediately yields

F=p 1 (1.10)
1=ni_

Often, see e.g. later for a central source in a spherical shell, W1
is an average over a collision source which is still distributed differently

from the stationary distribution, therefore it is necessary to define

= I.11
wl Wo+s (I.11)

With the result
F = W 2 Ok I.12
P(l + (W+8ON + (W +8)W Nn° + (W +8)Wn" + ...) ( )

and,after summation,

1 + n(W.-W )
F =P ¢ e b m (1.13)

] - nwm
In many instances the term n(Wl-Wm) is small and may be brought into

the denominator, with the approximate result

Fop —21_ (I.14)
I -nw,

Next, we show that if Wm is approached from above by the series W]’WZ"'

(this will be the case for a spherical shell), then the expression of




Eq.(I.14) for F is a valid approximation even if the term n(Wl—Wm) is

not very small. If generally
wn,= (1+pn) Wm n=1,2..004,
it follows:

, 2 2
Fo= B(1 + (l4pW-n + (1+p) (140 )0, n™ + o),

where it is assumed that
> > > cves 2
P 7 Py 7 Py 0

We do not know the actual values of Pss but we certainly can make

a choice of H consistent with (I.17). We choose

1
Py
ST T S —— (n=2,3,.....)
n-1
it (1+pn)
k=1

It is easy to show by induction that

n n Kk
M(l+p ) =1 + 3 p
n kel 1

k=1

from which
F=P( 1+ (1+p )W n+ (1+p +p2)(w n)42+ cend)
17 %m" 171 m

Regrouping the summations in Eq.(I.20) yields

_ 2 2
F =P [(l+wm,n+ WonTE
+o.Wn(l + W .n+ w2n2+ cees)
1 'm m* m

+£mﬁﬂumw+wﬁf+”“ﬂ

(I.15)

(I.16)

(L.17)

(I.18)

(I.19)

(1.20)

(1.21)




therefore

F=p ! (1.22)

(1-w n) (1=p,W n)

and with p; as defined in Eq.(I.15), finally

F = p L. (1.23)
l—Wln

In order to simplify the notation, we define W = W, and rewrite
Eq.(I1.23) as
1 (1.24)
1-Wn
a result stating that the total collision rate generated above B, is as
if all generations of nonvsource neutrons were colliding with the average

probability of the first generationm.

The calculation of the collision probabilities P and W will be discussed

in the next section, and the case of neutron multiplication with energy
degradation will be taken up later, but Eqs.(I.6), (I.8) and (I.24) already
constitute an approximate formulation of the amplification in high and
mediidm mass number materials. In these materials at 14 MeV, the (m,2n)

(n, 3n) and (n,f) events for 14 MeV source neutrons produce neutrons almost

entirely below B,, i.e., below the multiplication range; inelastic events

2’
which do produce neutrons in the multiplication range are a small fraction
of the total aof all events} and elastic scattering leaves most of the
scattered neutrons in the source group. Since the inelastic events are rela-
tively few we may "enforce" a one-group process by assigning a fraction

f of the inelastically scattered neutrons to stay in the source-group,

l—fl to fall below the multiplication range. Thus,

+ . .
Oeltr flolnelastlc

Oer (1.25)

(l—fl)ginelastic * 20n,2n * 30n,3n * vfoh,f

A~
Otr

(for high and medium mass number elements)




We note that Eqs.(I.6),(I.7), and (I.8) entail

1-H
= =n (1.26)
Eq. (I.26) is thus characteristic of the one-group amplification process.

If M and H are measured, or calculated with a multigroup transport code ,

then the validity of the simple one-group scheme can be tested by forming

the ratios L/A, M=1)/(v-1), (1-H)/(1-N0).

Turning next to the degradation process, we start by rewriting Eq. (I.24)

as

= nw
= 1 + T (1.27)

|

If no source-group neutrons were generated in the collisions, i.e.,

N=0, then the total collision count per collision of source neutrons
would remain 1. If n#0, then a collision of source neutrons introduces
N neutrons into the system and nW/(1-nW) is the total collision count
generated by this n "collision source". Generally,we may consider the
collision events started by non-source neutrons in dissociation from the
actual source by starting with a distributed source of neutrons. If we

define

Y(n,W) = the total collision count generated from ! distributed
neutron. by collisions characterized by an n neutron- (1.28)

return per collision, and by an average probability W

then, starting with £ distributed neutrons,from balancing it follows:

Y =W + nY) (1.29)

The bracketed sum on the R.H.S. of Eq.(I.29) is the total number of neutrons
produced directly as source neutrons (Z) or by collisions (ny).The total collision

rate of these neutrons is their number multiplied by the collision probability

W, and the product is equated to the L.H.S. of the equation.




Eq.(I.29) is a finite-medium counterpart of the infinite medium balance

equation which is clearly Y =g+ ™. The solution of Eq.(I.29) is

y = = (1.30)
1-nwW

which, expectedly,reduces to the second term of the R.H.S. of Eq.(I.27)
for the ease T = 1.
We generalize Eq.(I.29) to the energy-dependent case by intreducing a multi-
group picture. But the results from the following .analysis can also be
concluded in a continous energy'degrédation description, We assume a total
number of G energy groups,.counting from source to the (n,2n) threshold

energies. The problem is characterized by

Cn’ (n=1,G) = number of distributed-source neutrons in group n

Vin (k=1,n(n=1,G)) = number of neutrons produced in group n by
?

‘a collision in group k

W = an average collision probability in group n. for ail (1.31)

generations of collisions

Y = the total collision count generated in group n

We have to note that a-priori it is not cettain that in the energy dependent
problem an average Wn can be found which well approximates the average collision
probability of all collision generations; secondly the explicite definition

of such a W in geometry and cross section terms may be difficult compared

to the single group case. Both these questions will be taken up in the next
section. For the moment we borrow the later conclusion. that, for a bare

homogeneous body, in diffusion theory an approximation to Wn can be found.

The multigroup generalization of Eq.(I.29) is

by = W L h) (1.32)

n
A (1.33)
k .




Rearranging the double sum, we have:

Define:

Then

G U
I -
n=] n n
)

Y = Y
k=1 ™
"= Y
= g EE
W
n=l "n
G
S
n=|
]
n, = v
k n=k kn
G
Y n
k=1

A

G
Zlcn +

o
v () vy )
kzl K ek Ko

the total collision rate in the

amplificatfion range

theaverage collision probability for

the amplification range

the total distributed collision-source

in the amplification range

the total number of neutrons produced in

group k in the amplification range

kwk the average number of neutrons produced in

the amplification range .

Eq.(I1.34) reads

Y= WL + nY),

(I.34)

(1.35)

(I.36)

(1.37)

(I.38)

(1.39)

(1.40)

which has exactly the same form as Eq.(I.29). The interpretation of Eq.(I.40)

is as follows., If W is a properly defined average collision probability over the

amplification range (Eq.(I.36)), then a distributed collision-source of Z neutrons

in this range will generate a total collision count as if the collision process

was a one-group process, each collision generating n (Eq.L.39) neutrons back

into the group.
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Obviously, if also

A = the number of neutrons produced in a collision
n (1.41)

in group n below the amplification range,

then,

is the average number of neutrons produced

below the amplification range by collisions in the (I.42)

amplification range

N and X characterize the amplification of non—source neutrons. As such they
must be independent of ¢ , the distributed collision-source strength.

Indeed the solution of Eq. (I.40) is

V= 1_‘L . (1.43)

Together with Eqs.(I.39) and (I.42), the nondependence of A and n on
the magnitude of 7 can be ascertained. We make use of this fact by choosing

C = n (1.44)
in order to ensure that, as of the first emission of non—-source neutrons,

the number emitted into the amplification range is the correct average number
by which the effective one-group description for non-source neutrons is enabeled.
With this choice

= W (1.45)

w_—._._._

I-nW

and the collision rate of non=-source neutrons is entirely specified.

In similarity to Eqs.(I.6) and (I.8), the leakage and slowing down rates for

one non-source neutron, H¥ and L¥ respectively, are given by (W replaces P)

1-W 7

1-nW
AW (per one non-source neutron) (1.46)

gy

1-nW

H*

L*
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The total counts, per one source neutron, are

1 - P + pna*

e
]

(I.47)
L = P\ + PnL¥
source
or, (l-neff)P
H=1"- —————— (I.48)
]_neffw
eff P
L =2 off
1=-n W
where eff _
n =n
(I.49)
NI + (A=A YW
source source

Eqs.(I.48) and (I.49) constitute the main result of the energy degradation

analysis. In form they are identical with the one-group Eqs.(I.6) and (I.8),

eff

however n and Aeff are now parameters including the effect of the degradation

in the amplification range. We observe that,if there is a considerable variation

eff

of n(E) with energy, then n may be considerably different from n (i.e.

source
from n of the 15t (source) group),depending through the collision rate energy

spectrum (solution of Eq.I.32) on the size of the amplifier. Variation in

eff . . .
A s 1ln comparison with xsource’ are more restrained due to the factor nW

multiplying the difference (A=A ) in Eqs.(I.4a). In principle, though,

eff  SOUEEE
and n

there is adependence of A on the size of the system, or equivalently

on the average W. Thus

Aeff - Aeff(W)

eff eff
n =7 (W)

(1.50)

Fortunately, as will be shown in section III, often this dependence is weak,

enabling the formation of size-dependent AEff and neff to go with the Eqs. (I.48)

namely the effective one-group equations for the amplification process.
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IT. Collision Probabilities

We begin again with the monoenergetic one—group problem.

Collision probabilities can be calculated by transport or Monte Carlo
methods for a given geometry. Much simplicity, and some physics insight,
is gained from the persuit of analytical expressions for collision proba-
bilities. We shall first deal in general with the collision probabilities
involved in the theoretical formulae of section I, then the discussion
will focus entirely on spherical shells; most attention will be given

to W .
m

As discussed before, an exact evaluation of P is of utmost importance.

If the source-body has a one-dimensional symmetry, then

P =1 - o NOogyh IT.1

where A is the body thickness in the direction conmnecting the source and

the body. In other casesaverages must be performed

P=1-< oNotrd 11.2

While there is a great variety in P, depending on the shape of the body and the
source-body, there are common features in Wm. It has been demonstrated/B/
that, whatever the distribution of an external source or of the first collided
neutrons ijig, the distributions of neutrons with higher collisions rapidly

17/

converges toan asymptotic form ¢m. Bethe has argued that ¢m for

a bare body is exactly the fundamental-mode flux distribution for the body

at criticality in . the group of neutrons under consideration. The central
argument is that che nth distribution depends on the (n—l)th distribution

but not on the number of neutrons generated in the (n—l)th collision. Therefore
one may choose the number of neutrons emitted back into the colliding group,
namely n, to be of an appropriate magnitude such that in the limit of large n

th and (n+1)th collisions is the

the total number of neutrons making the n
same. Then the body is critical and the spatial distribution of the neutrons

is the fundamental mode flux distribution.
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Within the diffusion approximation a basic relation between the collision
probability W and the geometrical buckling of the critical system can be
established. Assuming a one-group neutron population, in each collision 7
neutrons are emitted back in the group and X neutrons below the group. The

number T was so adjusted as to ensure criticality by these one-group neutrons,
and X is essentially an absorption fraction, since this is the number of neutrons
disappearing from the group on each collision. The group does of course not

contain source neutrons; the effective one-group leakage and absorption

(slowing down) are given by H¥ and L¥ of Eqs.(I.46). Define:

P = the non-leakage probability from a
non (11.3)
critical bare reactor ’
Since neutrons either leak out or are absorbed in a one-group picture,
the non leakage probability is
> i L ___Awm
non o _ (I1.4)
L™+H Awm+(1 wm)
and since
Za
A= =, (1I1.5)
Z:t]:‘
where Za is the absorption cross section, it is
Pnon - :—W 2 ’ (11.6)
o (e
e
m a
On the other hand, the diffusion theory expression for the non leakage
probability out of a critical bare reactor is
P on lD 2 ’ (I1.7)
n I+ ()B
a‘
where D is the diffusion coefficient, and B2 the geometrical buckling.
Comparing (II.6) with (II.7),we obtain a basic relation
)
tr
Wm = 2 (II.8)
b + DB

tr




with
D = 1/(3Ztr) , also

-1 Ztr 2
(1—Wm) = 1 + 3¢ —B) . (11.9)

For all bodies of usual interest, such as spheres and spherical
shells, finite and infinite slabs, finite and infinite cylinders, B2 is

an eigenvalue of the wave equation.v2¢+B2¢=0 and is given by

I
B = ) B, (1=1, or 2, or 3) (1I1.10)

where I is the order of dimension of the geometry. The diffusion boundary
codditions also determine the partial bucklings Bi as

9 Ciz
B = 2
i (A£+d)

(IT.11)

. . .th .. .
where Ci are constants, typical of the curvature in the 1 dimension,
Ai is the body extension along the ith gimension, and d is the extrapolation

distance., Then

2
I 2 (xi + 8)

3( _gl,f.) = —— (IT1.12)
i C,
i
where X, = ZtrAi’ the optical thickness in the ith dimension, and & is

the extrapolation distance in units of the mean free path.

Introducing the optical mean chord length £ as a representative measure of the

body size, we have

_ (11.13)
X, = piﬁ
and 0.
-yt =13 Y2 )as £H? (11.14)
m i €4 o3

In diffusion approximation we have to assume that the body is suffi-
ciently large in each direction. Thus § << X; , 0T § /pi << g, and with the

expansion of squares in Eq.(II.14) in two terms, finally

-1 _ 2
U—%& = l+a]L + e% . (11.15)
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has fitted €1 and €, for bodies of

various shapes not only in the diffusion range £ >> 1, but also down to

Eq.(II1.15) is not new. Kumar

zero chord length. In Table (II.1) we compare Kumar's values for €, in
the ranges (0-3) and (1-10) for %, with the diffusion theory €, value

for £ >> 1,

We turn our attention next to spherical shells with a central point source.
P is exactly given by Eq.(II.1). In order to find suitable expressions
for W,we have utilized tabels and graphs given by Bethe et a1/7/ for W

and Wm in the optical thickness range O < x < 1.6.

We start with the conjecture that Wm can be fitted by the form of Eq.(II.15)
Rewriting Eq.(II.15) as

Wm(k,x) _
' = ak + ka (II.16)
(1-W_(k,%))x
where
x = Ztr (RZ'RI)
(I1.17)
k = RI/R2

a fitting of the L.H.S. of Eq.(II.16) by the R.H.S. was carried out for each k.
For k=0, .2, .4., .6 and .8 the L.H.S. was an almost perfect straight line in x
in the range (0. -1.6), with some relatively small magnitude exceptions at

X £ 0.2, For k=1.0 (the limit of an infinitely narrow shell), there is some
deviation of the Wm/{(l-Wm)x} value from a straight ‘line. These fits are shown
in Figs. II.1 through II.6. The O and Bk,,determined by this procedure, are

given in Table II.Z2.

‘The curve W(k,x)/{(l-Wm)x} is above a straight line, the deviation increasing .
with x. An example of this characteristics feature is shown in Fig. II.1. .
We therefore tried to fit.W by adding a third, square, term to the R.H.S. of
Eq.(II1.6), namely

Wk, x)

.
=0 +Rx+y xS (II.18)
T AT e

retaining the 0 and B from the fit of Eq.(II.16).The fitting of the Vi values

are also given in Table II.2.Table II.3 shows a comparison between accurate W(k,x)




values, and values obtained with Eq.(II.18) and the parameters of Table II.2.

Most W values are reproduced to better than 1%, with some exceptions for

k=0 at low x values.

For large x values we turn to Eq.(II.9). As X becomes larger

than |, an exact fit for d1£becomes less important; therefore our interest
in Eq.(II.9) focusses on obtaining from it Bk values. The general solution
17/

of the wave equation in spherical geometry can be represented by

p =SB (11.19)

Setting ¢' to zero at the inner radius R,, and setting ¢ to zero at the

1’

extrapolated bouddary R2+d leads to

B(A+d) =T - tan_l(Tk_—ke BA) (I1.20)

To determine By s the limit A > « is investigated, therefore 4/A + O,

thereupon rendering Eq.(II.20)an expression for BA.But we shall also touch

upon the solution of Eq.(II.20) for finit x, - therefore we write down the

17/

transport relation between Bd and BA at criticality , namely
Bd = 0.7 tan ! %A- (I1.21)

Having solved the coupled equations (II.20) and (II.21) for a selection

of x values from zero to infinity we observed that
B(A+d) = C(x) (11.22)

where C(x) is a weak function of x. Values B(®), 8¥(1), B¥(0), as determined
from Eq.(II.22) and Eq.(II.9), are shown in Fig.II.4. Although the application
of the diffusion theory relation, Eq.(II.9), is not strict for x=0

or x=1., we observe nevertheless the interesting fact that BE(O) are very close

to the fitted B, of Table II.2, except for the k=1 shell. We have no satis-

k
factory argument for explaining whether this is merely a coincidence.




Bk(w) are slightly higher than Bk(O),‘repeating the pattern of Table II.I.
(there, 82). We have had no numerical data to determine an optimal x,
above which Bk(®) should be used. The educated guess is x = 3, and results
of the next two sections do not suggest any gross error in this choice.

O and'Yk were kept the same for all x.

Next we examine the definition and application of collision probabilities

in the slowing down context. P is a probability for source neutrons and

is not affected by kthe slowing down process. As regards W, the question: is
whether its definition as in section I, and its dependence on Ztr’ as above,
hold. We have no way of directly examining thisquestion, but we can examine

instead the case of Wm.

The fundamental reactor theorem states that in the diffusion approximation
the flux in the bare reactor is separated in space and energy, the spatial
separant satisfying the same equation and boundary conditions as in the one-

group case, Defining
¢g = fg?(B) the fundamental mode flux in group g (I1.23)
and multiplying the wave equation for Q(B) by fg we obtain

2 B2y =0 1I1.24
Vd>g>< d>g ( )

The total leakage and absorption in group g are

Leakage in group g = —de(V-Jg)
(II.25)

Absorption i o = (dV L
orption in group g = [dV I ¢

The multigroup relation between current (Jg) and flux (¢g) is strictly not given
by Fick's law as in one-group diffusion, but we may assume that the slowing
down problem has been solved and that an effective Ztr g has been determined

)
such that the current and flux are related by

1
J = = —— IT.26
BT i e
tr, g
The non-leakage probability in group g is then
(Absorption) i

P = g = (II-27)
non, g BZ

(Absorptlon)g +(Leakage)g 1+ =

3z z
tr,g a,g




Comparing Eqs-(II.27) and (II.28) yields

ar

-1 Ztr gztr g
(1-W_ ) " =1+ 3 —28—2 (11.29)
m, g 2
B
Generally % # 7 s but if we simplify

tr, g tr, g

~

- : .
tr, g er,g (11.30)

then we have a formal analogy between Eq. (I1.29) and the one-group
expredsion for Wm, Eq.(II.9). Ifone wants to estimate the corresponding error
(usually small, for a moderate variation of Otr(E) in the multiplication

range) inherent in Eq.(II.30), then there is also a practical analogy between

Eq.(II.29) and Eq.(II.9). Practically, then Wm can be evaluated from

'8
Eq.(I1.16) and Table II.2 in the same way as W . As regards W, g Ve con~
9
clude the same, conjecturing that the difference Wm - W] . remains as small
] 9

as the one-group difference W W, .
Finally we have to remember that the analysis offered above was based on
diffusion theory and is applicable with increasing validity to increasing
amplifier sizes. The reverse is true as we decrease the size of the amplifier.
The energy spectra based on the solution of the generalized slowing down
equations (I.32), with Wm derived by the method discussed above,

will deviate to some extent from the true spectra as the system becomes

smaller.




III. Analysis of the Neutron Amplification in Pb,Zr,Cu,Fe, U238 and Be

The theory laid out in the preceding two sections was applied to Pb,Zr,
Cu,Fe, U238 and Be. A D-T neutrem source was assumed at the center of
a series of spherical shells for each of these materials. All shells had
an inner radius of 10 cm, and the shell thicknesses ranged from 0.2 to
50 cm. The transport code ITRAN, with ENDF/B-IV cross sections for these

materials, was used to calculate the multiplicities L, H, and M.

£

. . . . £ . ox .
The analysis in this section will show that Aef and ne £ for the amplification

energy ranges of these materials have a smooth-dependence on the size of the
shell, or on W, so that the amplification process in these materials can be
accurately described with geometry independent one-group parameters, or

two—group cress sections for Be.

Characteristic data which are relevant to neutron amplification in the
materials, mentioned above, are summarized in Tables III.!. In each material

the relevant B the (n,2n) threshold, was taken to be some cut—off energy

2,

2n
9
in Table III.2. The comparison between the L,H,M values predicted with the

one-group description and the ITRAN results, is shown in Tables III.3.

below which o, is negligible. Effective one-group cross sections are given

We use the term "one-group" in the following sense. The equations determining
L and H (M=L+H) are Eq.(I.48), with two exceptions: for U238 they are modified
to account for the amplification by fission below the (n,2n) thresholdy

for Be a two-group process is taken . In these equations P is calculated

from Eq. (II.1) with a correction applied to the shell thickness

A, to account for the fact that the source in the ITRAN calculations,for
numerical reasons, was not a centerpoint but rather a distributed source in a
small shell arround the centerpoint. The correction is derived in an appendix.
W, the average collision probability for once-collided neutrons, is given by
Eq.(II.18). The parameters ak’Bk’Yk for this equation were interpolated from
entries in Table IIL.2. The Otr value for which W was calculated (x=AZtr),

was Otr for the source group.




The terms Na1 and Eg in the data tables mean, respectively, Oeltr/Otr and
Gl*g/gtr,l' As we consider the data for Pb, Zr, Fe, and Cu we notice that
in all these materials (a) n 1is small, (b) Opy is slightly increasing in
the energy direction from the source energy to B2. These trends are helpful
in setting up an neff, as can be realized from the form of Eqs(I.48).Strictly,
weff(A) should be determined frum the solution of the slowing down equations
(I.32), then from Eq.(I.36). Because of the increasing Gtr (see (b)above)
it is,

VY s war, ) . (IIT.1)

tr,l

With small n's the exact Weff value in small shells is uniportant
and an neff can be chosen so as to compensate in the thick shells for the
fact that in the one-group model one sets weff = W(AZtr ]). Tables III.3
show that the one—group parameters for Pb, Zr, Cu, and %e of Table TII.2
indeed reproduce very accurately the L,H, and M multiplicities as calculated

with ITRAN and ENDFB/B-IV.

In U238 the neutrons slowed down below B2 are further amplified because the
fission threshold of U238, ~ | MeVis lower than the (n,2n) threshold, i.e.

~ 6 MeV. However ,we may estimate this further amplification from the wobservation
that in a heavy element the neutrons which fall below B2 almost entirely are
scattered inelastically, the spectrum being of the evaporative type.

We also observe that the evaporative-type spectra of secondaries from (n,2n)
and (n,3n) reactions are, in gross terms, not much different from a '
fission spectrum. Approximately, then, all neutrons generated in U238 by
collisions above B2 are generated with a fission spectrum. Hence we may utilize
the reactor theory notion of the fast effect to estimate the amplification of
neutrons fallen below BZ‘ For each neutron borne with a fission spectrum, the
fast-effect factor € is the number of neutrons degraded below the fission
threshold, either by direct collisions in the fuel or by leaking into a non-
returning moderator. Presently L is the number of neutrons -appearing below B2
in a fission spectrum; hence €L is the count of all neutrons either leaking
out in the energy range between the fission and (n,2n) threshold or slowing

down below the fission threshold. Eventually all neutrons below the

fission threshold either leak out or get absorbed ; therefore, in other words




€L is the number of meutrons leaking out below B2 or which are ab-

sorbed below the fission threshold.

Following the considerations above we generalize our definitions of H,L,M

to read

H = total leakage above the (n,2n) threshold

el = total leakage below the (n,2n) threshold (1I11.2)
and absorption below the fission threshold

M= H+ €L

From reactor theory, an expression for € is /8/

g =1 + —2:09E (III.3)
1-0.52P,

where P] is the collision probability for fission-generated neutrons, and the
probabilities for subsequent collisions above the fission threshold are assumed

to be all equal to P,, the probability ‘for second collisions. In our case, Pl

2’
is equal to W, the average collision probability following the collision of the
source neutrons, therefore Wm is approached from above and, 'due to the

analysis of section I, the best estimate for € would be by

e =1+ 29 (III.4)
1-0.52W

In order that Eq.(III.4) can effectively be used in Eqs.(III.2), then in the
one-group Eqs.(I.48), we assume that W of Eq.(III.4) is W(Aztr,l)’ namely the
same W as used in Eq.(I.48). This assumption rests on the observation that
Otr(E) in the range from the fission to the (n,2n) threshold is only slightly
higher than Otr<E) in the range from the (n,2n) threshold to source. The com-
parison of H, €L, M by Eqs.(I.48),(III.2), and (III.4) with the corresponding
multiplicities by the ITRAN runs is shown in Table III.3.e. to be very satis-—

factory.

In Be, expectedly, the amplification is not possible in a one-group description.

With very high n values, and an extensive energy range from source to BZ’

eff eff

there are considerable changes in n and A with the shell thickness.
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These relatively marked changes are the result of energy spectrum shifts

in the amplification range. In Fig.III.1, the spectrum of neutrons, F(E),
in the energy range 2-13 MeV for three Be shells of thicknesses 3,9 and

50 cm is shown. We note that there is a good degree of agreement between the
ITRAN produced spectra and the spectra evaluated by the solution of the
generalized slowing down equations (I.32). In corroboration of the arguments
developed at the end of section II we also note that the generalized slowing

down spectra lose accuracy as the shell becomes thinner.

For the two-group description for Be we chose the first group to coincide
with the 13.5 - 15.0 MeV range used as source group in the ITRAN calculationms.

The group parameters in the two-group description are

”11 - the actual number of neutrons generated in group |

by collision in group 1.

gl ~ the actual number of neutrons generated in group 2

by collisions in group |

A -~ an effective number of neutrons generated below B2

by collisions in group |

n, - an effective number of neutrons generated in group 2

by collisions in group 2

A - an effective number of neutrons generated below B2

by collisions in group 2.
o] - the actual Oy in group 1

- an effective i oup 2
Otr,2 Otr n group

With these parameters, as defined, and the leakages and slowing down in the

two groups counted, the result is

p W
O 2
L= [ ALt o ]
I

=¥ I=n,¥,
(111.5)
p 1-W
H = ——‘1— [ 1 -~ n] - gl .____2;
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We emphasize that the choice of 13.5 MeV as the energy boundary between the
two groups may not be optimal. The two-group Be parameters, as given in
Table III.2 and used in Eqs.(III.5), leave some room for optimization, as
can be judged from the -comparison of the multiplicities for Be, namely

Table III.3.f,

IV. The Role of the Theory in the Analysis of Multiplication Experiments

We shall begin with the simplest experiment, namely one designed to measure

the total leakage K out of the shell:

K = measured total leakage out of the shell per one

source neutron (Iv. 1)

In order for the theory to the effective, we have to establish a practical

relation between K and M. Obviously

M=K+ A (1v.2)

Z absorption below the multiplication range

g
I

per one source neutron (1v.3)

If the experiments are performed in a range of thicknesses for which the
absorption is negligible below the multiplication range, theh M .~ K. If such
is not the case, then A may be estimated by an iterative procedure, the nature
of which will be discussed shortly. For the moment we go on assuming there is
an effective way of determining M(K).

The quantity easiest to determine from M is v the number of secondaries

source’
generated in a collision of source neutrons. In order to avoid the problem
of multiple collisions one ideally performs the measurements in a.number of

thin shells and deduces Vv from

V- 1=Lin M-I (IV.4)
x>0 P
or, equivalently, one deduces o + 20 - 6_ from
n,2n n, 3n a
o] + 20 -0 =0 [Lim M;l] (IV.5)
n,2n n,3n a tr P J°

x>0




the R.H.S of Eqs.(IV.4) and (IV.5) being the correct expressions for v-I

in the absence of multiple collisions. In Figs. IV.1, IV.2, and IV.3, we
show such possible determinations of v=1 by extrapolation to zero thickness.
We have used the ENDF/B-IV/ITRAN calculated multiplicities as '"experimental"

data. We have excluded from these Figs. the calculated data below | cm of

thickness because of better simulating the non—ideal circumstances

of the experiment. We observe that in all three Figs, for Pb, U238 and Be,

the v¥~1 values (we shall use V¥ for values determined by the R.H.S. of Eq.(IV.4)
or of corresponding later éxpressions, prior to extrapolation to zero) con-
stitute a steep curve as we approach zero. This renders the extrapolation

to zero somewhat uncertain.

An improvement in-the v -1 approach to zero may come as a result of assuming

n=ne1, where nel=0eltr/0tr’ and utilizing the expression for v-1 as given

by the present theory, namely

V=1 = Lim M-l
- IV.6
wo p (W) (1V.6)
We assume, of course, that Oeltr(E) and Utr(E) are well known in the multi-
plication range so that some average <ne > can be used in Eq(IV.6). At least

1

we assume that (n 1) ree is known, and with this latter assumption
el’ sourc
we have evaluated the R.H.S. of Eq.(IV.6). We see (in Figs. IV.1, IV.2, 1IV.3)

that the slope of v¥-1 becomes much smaller for Pb and U238; the improvement

in the v¥-] slope for Be is mot so marked.

In itself, the fact that the slope of the V¥-1 curve, as determined from Eq.
(IV.6) remains high does not indicate that the procedure or the assumptions
made are wrong. The fact may be that in Be n ~ Na1 but that v-1 (i.e. On,Zn)
increases rapidly with decreasing energy such that with the thickness of the
shell, and the concurrent enhancement of the slowing down process, an in-—
creased voff is being observed. We know that this is not a correct state of
cross sections as we consult Table III.1.f; but as '"experimenters' we have

no acseess to such a table. But since our theory does take account of multiple

collisions we may try to gain information about 1 from measurements in

thick shells.



0

Suppose we consider Nep 28 2 zeroth estimate of n, namely n =Ng1»

(0)

by Eq.(IV.6) is an Vgo) value. Then, in order to utilize the thick-shell

and that with this value for n the v value determined from thin-shells

measurements, we invert the equation for M, Eq.(I.48), to read

a0 M1 (1IV.7)

thus obtaining an iterated value forny.

As we see in Table IV.l, a very reasonable n value for thick-shells is obtained
: L . ’ . * 13 . 0
by the iteration. Further the iteratedn value is quite insensitive to V( )—l;

this is important, because the v-1! value, determined from a steep v¥-1, may be
in some error. Using the iteratedn back in Eq.(IV.6), a much more convenient
approach to zero is obtained for Be. In the case of Pb and U238 such iterations
change very little because the assumption n~ N.1 for these materials happens

to be a good ﬁ(O)

estimate.
We have shown that the application of the theory to the experimentally determined
quantity M assists in obtaining a convenient exptrapolatipn to zero by
which O on of source neutrons is determined. It also yields a rough estimate
eff ™’ . , , . . .
of n (effective number of secondaries emitted into the multiplying range)

for thick shells.

Returning to the problem of the absorption below B, , we suggest a solution by

2
iteration. Let the procedure described above of determining a v out of an M

be formalized as an operation Q, thus

v o= QM) (1V.8)

and let the absorption below B as calculated by a transport code for a

2’
given v, be denoted by

A= AW) (IV.9)

then the iteration process is perscribed by

V(O) = \ a8 known initially
™ -k o+ aw®)) (IV.10)
LB+ Q(M(n))




We continue with a measurement designed to determine the total multiplication
M, as well as the leakage above BZ’H' Since the theory makes & distinction
between H and M, such a measurement could better make use of the theory than

the sole determination of M. Inverting Eqs. (I.48) we have

P - (1-H)
n =
P - W(1-H)
(IV.11)
V-1 = (M—]) _.l_:_w_._._
P-W(1-H)

' ££ .
Thus a direct determination of neff(A) and V° (A) from the measured H(A)
and M(A) is possible. Figs. IV.1 through IV.4 show such directly-determined
V and n values, again.the H and M values calculated with ITRAN/ENDF/B~IV,

providing the "experimental" date. We have to keep in mind that W in Egs.

(Iv.11) is a Weff; by its definition it depends on the cross section
scattering matrix in the muttiplication range, therefore there

cannot be an unequivocal determination of 1 and V through Eqs. (IV.11),
from the measurement of just the two quantities M add H. Nevertheless, if
the variation of Opy in the multiplication range is known, or sensible
variations in Weff can be estimated otherwise, bounds can be determined for
the variation of neff(A) and Veff(A). This already is some knowledge about

the hardness of the spectrum of secondaries as a function of energy.

A measurement of M and H also requires the need to determine M(K) by
iteration. We gssume that below the multiplication range cross

section data are sufficiently accurate for the transport calculation of the
absorption per one neutron slowing down below the multiplication range.

Define

( A ) = the calculated absorption below B
t - 2 (1V.12)
per one neutron introduced below B2
then, since,
M=K +(%)L (IV.13)
we have A.cal.
M =K +() (M-H) (IV.14)

L
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V. Analysis of Takahashi's Neutron Multiplication Experiments in Pb

Recent measurements by Takahashi et 31/2/ show the multiplication in Pb

to be much higher than calculated with current Pb cross section data.

The following is an analysis of Takahashi's data, based on the presently
developed theory.

The measurements were done for a D-T neutron source, placed in the center of a
spherical cavity formed by Pb sphercial shells. Four shells were measured, '
all four with the inner radius of 10 cm, and with thickness . of 3,6,9,

and 12 cm. The leakage spectrum of neutrons emerging from the shell was
monitored and integrated above 0.2 MeV. These (0.2~14)MeV multiplications
have to be multiplied by correction factors, determined by Takahashi
through the use of tramsport calculations. Table V.1 shows the total

multiplications.

Included in the table are also walues of H. These were obtained by us from

the experimental data. To be reminded, M-H is the multiplication below 7 MeV,
the (n,2n) threshold; Takahashi reports experimental values for H g , the

multiplication in the range 0.3 to 4MeV. The difference HZ = H 7. H g could

. .3
be evaluated from a graph in the Takahashi article /Z/, showing the leakage

spectrum per source neutron for the 9 cm shell. This is used, together with the

ratios (H 3/H 3) as determined from ITRAN-ENDF/B-IV runs for all 4 shells,

t
° form —~ .7 < EXPER.
H
4
EXPER. _ .7 _ TRAN A
7 _ 7 'rH H
B ghe1r = M 3) b . L 7.3 JsHELL9 V.13
SHELL |~ & .
.3~ SHELL H,
Hg SHELL9

As can be seen in Table V.1, the (HZ) values thus obtained are small fractions
of the multiplications in the (0.3-4) MeV range. The approximation of Eq.(V.l)

thus could not have introduced an appreciable error.
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Table V.1 also shows the ratio r, namely

Y
1t

M-H
2 V.2
Y1 (V.2)

for the four shells, and it is noticed that ¢ deviates only slightly
across the four shells. According to Eq.(I.26), and the discussion following
it, the constancy of f renders the one-group description of the multiplication

a valid description.

In the preceding sections a one-group amplification process was described
with the aid of two effective numbers,namely Xeff and nEff. Strictly, these
numbers depend on the solution of the generalized slowing down equation
(I.32) above (n,2n) threshold, but adopting the strict approach means the
use of the emission distribution data, the very data which should be
determined from the experiment. Instead, we shall use a somewhat heuristic

definition for the one-group parameters, not requiring an iterated solution

ot the slowing down equations.

Define
0 - total transport cross section

- elastic transport cross section

0,~ inelastic cross section

02— (n,2n) cross section

03— (n,3n) cross section

0, absorption cress section

f],fz,f3 ~- fractions of the neutrons emitted in, inelastic,

(n,2n), (n,3n)reactions respectively, which remain above B2

The fractions f have to be regarded as effective fractionms.

The neutrons are assumed to remain in the source-group during the collision
process; certainly, for elastic scattering in Pb this is a valid assumption,
but non-elastic neutrons falling below the source group bring about further
multiplications only by a magnitude proportional to <v-1>; an average net

multiplication over the emission spectrum. Thus,

<v-1> (over emission spectrum i above B?9)
(v-1) at scurce energy

-
rh
Fe




where
EZT = the actual fraction of neutrons emitted above B2 v.4)
by type 1 non-elastic collisions of source neutrons

We shall return later to consequence resulting from the distinction between
the actual fraction f and the effective fraction f. Next we analyse the
experimenral results, as :summarized in Table (V.1) in terms of the cross
sections and emission fractions as defined above. Neglecting o, from the

start, we have 7 cross sections and fractions to consider, namely

050,505, Ogs f],fz,f3. We can simplify by ''disposing of" Oy with the defi-
nitions
#*
9, 02 + 203
(V.5)
e 2f202 + (l+3f3)-03
2
202 + 403
These definitions are so set as to preserve the original definition of n
and v, They are now given by
v=1 o+ og/o
, (V.6)
e 1 - - o gty i
ne=1 - [(1-£)0, /o + (1-2£5)0% /0]
Since we have effectively a one=-group process (Eq.(V.2), and the ensuing
discussion) , we write
v=n % 0] (
1 R S - (1-f.) — V.7
L= =2 [2f2 (1-£,) *] )
g
2
But, from Table V.1, ¢ ~ 1.70, therefore solving Eq.(V.7) for f; yields
I 9
% = 0,15 + = (1-£,) — (v.8)
2 2 1 o¥
2
Suppose all inelastic neutrons remain non-degraded, then fl=]’ and
f; = 0.15. Clearly the effective return fraction of inelastic scattering
may be smaller than 1, so we have
£% > 0,15, (V.9)

2




-;3]—
a very high, effectively non-degraded emission fraction of (n,2n)events.

The result of Eq.(V.9)is.corroborated by the more direct approach of
considering individual shell multiplications in Table (V.1) and trying
to match them with a set of cross sections and emission fractions, as

applied to the onme-group amplification formulae (I.48), namely to

M=-1 = (v-1) P (V.10)
I-nW

There are 4 parameters in the expressions for v and n of Egs.(V.6). So to
simplify we set f1 = ] (namely assume all inelastic events to be totally
effective for re-amplification) from the start, in this way trying to
obtain a low estimate for f; . Now

M = M(o, o’z*, f*z* ) (V.11)

and the search is for the most fitting triad (o, Og,fg).

Some results of the search are shown in Fig.V.I through Fig.V.4. With

f; = 0, or f; = 0.1, no triad could reproduce the experimental M-1 values
with reasonable proximity. Only going as high as fg = 0.2 resulted in
marginal fitting. This value of fg is consistent with the low limit for
fg given in Eq.(V.9) and found in a different manner.

We now turn to an interpretation of these f; values in terms of f2 and fzg
namely the effective and actual (n,2n) secondary emissions returned for

re-amplification. Eqs.(V.5) inverted reads

o
£ =f*-[l—2f*(——3] (V.12)
2 = 5 2 205,

and defining,

(02 + 203) at 14 MeV
m = (V.13)

<02 + 203> for (n,2n)+(n,3n) emissions above B

2
we have, by Eq.(V.3)

93
- 2£%, =2 ) (V.14)
2’ o,

£, = mf¥ - m(

1
2 2 2




— 32 —

With B2 of the isotopes of natural Pb being at least 6.7 MeV,the

available energy left for the two emerging neutrons, after an (n,2n)

collision at 14.7 MeV, is at most 8 MeV. The f2 fraction is then spread

from 6.7 to 8 MeV, a small energy span just above B2. As a consequence ,
m is a large number. 8urrent ENDF/B-IV data yield m ~ 10.

Fig. V.5 shows 9 o ( 32 ) for four choices of (m,fg ). The most

#
2
the maximum possible value of 0.5,(03/62) goes from 2.0 to 1.5. As 14.7

probable line is the (m=10, £] = 0.2) line{ as ?; goes from zero to

is just 1.3 MeV above the minimum (n,3n) threshold of the isotopes of

natural Pb, it is impossible that o, has already risen so sharply at

3
the expense of 02. The least probable line is then (m=5, f; = 0,15)

line: as f2 goes from zero to 0.5,(03/02) goes from .75 to .25. Current

data set 03/ o, at 0.015, nevertheless we could examine the .25 value for

2
03/02 because for 14.7 MeV neutrons 03/02 starts to become a steep in-—

creasing function of energy.

5 = 0.25 results in f;-= 0.5. The latter implies that

in each (n,2n) reaction one of the emerging neutrons takes up almost all

To assume 03/0

of the available energy, namely 6.7 to 8 MeV. This should constitute

a drastically different distribution of secondaries than the evaporation
type spectrum with an average energy of ~ 3.5 MeV, as currently assumed

for the two emission neutrons. We have, though, to rule out the former type

of distribution as we study Fig.(V.6).

Fig. V.6 shows three spectra of neutrons in the range from 0.3 to 12 MeV.
Neglecting the very low energy tail, this is the energy range for secondaries
from nonelastic collisions. Of the three spectra, two are for the neutrons
leaking out of the 9 cm shell: one was evaluated from a corresponding

graph in the Takahashi et al. report, the other is the result of a ITRAN/
ENDF/B~IV run. The third is’ the non elastic emission spectrum as evaluated
from ENDF/B-IV data for the source group. We emphasize that these spectra
are normalized each to unity, not to 1 source neutron. What we observe are,

thus,purely spectral distributions.




There is no evidence of an excess of neutrons in the 6 — 8 MeV range

as the experimental spectrum is compared with the calculated spectrum.

The latter ,we remember ,is based on data assigningan evaporation distribution
to both neutrons. In fact,the non elastic basic data (the third spectrum

in the figure) is quite similar to the leakage spectra, all three spectra
clearly showing an accumulation of neutrons about an average energy about

3 MeV.

In conclusion,we state that the Takahashi experiment shows an unusual

high multiplicative power of Pb. The only consistent explanation of this
high multiplicative power is to assume (i) a high 03/02 ratio for D-T
neutrons and/or (ii) a high fraction of the emission of the (n,2n) reaction
falling above the (n,2n) threshold. Both these assumptions are difficult

to settle with our knowledge and understanding of neutron interactions.




VI. Conclusions

The amplification of D-T neutron sources can be described in simple terms.
The neutron slowing down process in the energy range from 14 MeV to the

(n,2n) threshold can be approximated with a generalized slowing down
equation in which the usual infinite medium slowing down collision rates
are modified by average collision probabilities. With proper averaging
of group-to-group cross sections and of average collision probabilities,

the process can effectively be described with one, or two, group parameters.

The nuclear parameters for the approximate description of the amplification
are Aeff and neff, the number of neutrons generated by collisions in the
amplification energy range, respectively below and in the amplification
range. The geometrical parameters are P and W, the average collision
probabilities for,respectively, source neutrons and first non-source

generation of neutrons.

Practical formulae for W in spherical shell geometry, with the source at center,
are developed., The dependence of W on the optical thickness of the shell

is intimately related to the dependence of W on the optical thickness.

Wm is the average collision probability for late neutron generations which

is shown, in diffusion theory, to be intimately related to the geometrical

buckling of the body in which the collision process takes place.

The effective desecription of the amplification as a one-group process, with
its analytical expressions for the effect of multiple collisions, is

helpful in deducing source-energy cross sections from measurements of total
multiplications. Measurements of total multiplications and of the total
leakage above the (n,2n) ‘threshold can be combined with the analytical ex-
pressions-of the theory to provide some data on the hardness of the spectrum

of the secondary neutron emissions of 14 MeV source neutrons.
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APPENDIX : THE AVERAGE COLLISION PROBABILITY FOR A UNIFORM, ISOTROPIC,
SMALL SPHERICAL SOURCE SHELL IN A SPHERICAL MATERIAL SHELL

The calculation of <P> is based on Fig. A.l. The smallnes of source

has two aspects
r, << R (A. 1)
Lr, << 1 (A.2)

The material shell thickness, in the direction 6 for a neutron

generated at the point r in the source, is

v

%(r,0) =»/R§ - *sin’e -\/R? - %5in6 (A.3)

Using (A.1) we expand the square roots in Eq.(A.3) in two terms each

The result is

L ~ A+8(r,0) (A.4)
where
A = R2-R1 (A.5)
_L 12, 02
8(x,0) = Z(R] Rz)r s8in”@ (A.6)

The collision probability for the neutron generated at r and

travelling in 6 is

=L (x,0
P(r,0) =1 - e (x, ) (A.7)
therefore, P> = - <e-22(r,6)> ‘ (A.8)
where, for a uniform and isotropic source,
<>z (! & 3 2
= fod(cose) frl 3, rdr (A.9)

~ 2
27T
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Using (A.4) in (A.8) we hawe

<P> = ]—e_ZA < e—Zé(r,6)> (A.10)

but, with (A.1) and (A.2)
£8(r,0) << 1 (A.11)
therefore

P> = |- L(BF <5>) (A.12)

<8§> is easily calculated from (A.6) and (A.9). The final result is

T - r
1 T2 TN ]
=1 R | .l
6> =5 34 [.R R-l (A.13)
r 1 2
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Table II.1: The Coefficient e, in the Expression
[1 + e, (chord) + e, (chord)®]™" for
the Average Escape Probability for a

Céntrallwaeaked Source

biffusion
Theory
Kumar's fitting (Bq. II.14)

0 < & < 3 1 < 2 < 10 1T << W

Infinite Slab .030 .0578 .0760
Sphere .136 .152 171
Cylinders H/D » = .093 .114 . 130
H/D = 1.0 .170 .178 . 204

H/D = 0.1 .099 .089 . 107

Cube .195 .193 .228




Table II.2: Coefficients o, B, vy for the Analytical
Representation of the Probabilities Wm and
W for Spherical Shells

a B Y
k 0O < x< 3 3 < X
0.0 .75 . 237 .304 .30
0.2 .92 .360 .454 .30
0.4 1.17 .510 . 634 .27
0.6 1.47 . 657 .824 .25
0.8 1.87 .847 1.020 .25
0.9 2.25 . 748 .25
1.0 2.94 . 580 .25

O+ apX + ByX 27

]
=
I
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Table II.3: The Fitted Probability W Compared with the
Accurate Probability

Upper figures - W (accurate) in parts per thousand
lower figures - [W'(fitted) - W (accurate{]in
parts per thousand

N;\\\\E‘ 0.0 | 0.2 0.4 0.6 0.8 0.9 1.0
: 68%* 91% 110%* 130% 153% 186% 230%*
y +4 -2 -1 +3 +8 -10 -38
2 140% 175% 210 244 289 325 390%
. +1 -6 -6 0 -3 -16 -57
. 270% 322% 368 415 473 509 560%
. -3 -11 -7 0 -4 -12 -34
8 488%* 53 5% 585 633 681 707 735%
. -8 -6 -3 0 0 -2 -5
1.2 636% 680% 721 757 793 g28%*
. +3 -1 -1 +2 +1 +2
16 742% 77 809 837 861 883*
. +8 +2 -1 -2 -1 +2

*values taken from a graph in Bethe's article; non stared

figures are values read from tabulations in Bethe's article.
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Table II.4: Values of the Parameter BK as Determined from
the Application of the Diffusion Relation
(Eg. II.9 to Transport-Theory Bucklings

k 0. 0.2 0.4 0.6 0.8 1.0
Fitted 0<x<1.6 . 237 .360 . 510 . 657 .847 . 580
Diffusion Appr.

+ 0. .304 .396 .513 .652 .844 11.216
= 1. . 304 .413 .556 . 730 .945 [1.216
> . 304 . 454 . 634 .824 11.020 |1.216
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Table III.I.a:

Pb Data

Group <E32£gy> tr .y n £

Source 14.2 3.059 .186 .280 1.434 . 174
2 12.9 3.113 .199 . 279 1.409 .012
3 11.6 3.211 .216 .282 1.356 .016
4 10.5 3.217 .216 . 260 1.317 .013
5 9.5 3.273 .222 .258 1.172 .019
6 8.6 3.326 .229 . 252 .962 .016
7 7.8 3.326 .234 . 256 .811 .015
8 7.1 3.386 .230 .230 .783 .015
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Table III.1.b: Zr Data

Group <E§2égy) tr nel n A &

Source 14.2 1.93 .088 .184 1.412 .086
2 12.9 1.98 . 100 174 1.364 .023
3 11.6 2.02 . 106 .185 1.108 .008
4 10.5 2.07 114 .178 1.103 .010
5 9.5 2.12 .120 .189 .985 .010
6 8.6 2.16 .138 .196 . 857 .009
7 7.8 2.23 . 150 211 .796 .015
8 7.1 2.36 .190 .190 .803 .023
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Table III.1.c: Cu DATA
Group |<Energy> tr Ne1 n A g
Source 14.2 1.85 .088 .149 1.055 .089
2 12.9 1.86 .128 . 150 .987 .055
3 11.6 1.92 .092 . 150 .814 .004
4 10.5 1.94 .097 .098 .826 .001
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Table III.1.d: Fe DATA
Group |<Energy> Orp Na1 n A 3
MeV
Source 14.2 1.67 .092 .183 .950 .092
2 12.9 1.64 . 150 171 .892 .082
3 11.6 1.71 .091 .092 .904 .009
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Table III.1.e: U238 Data
Group |[<Energy> Oty Na1 n A £
MeV

Source 14,2 3.23 .126 .182 2.634 .126
2 12.9 3.26 .139 .185 2.515 011
3 11.6 3.40 . 143 . 190 2.163 .014
4 10.5 3.48 . 154 .187 2.056 .013
5 9.5 3.55 .155 .183 1.993 .012
6 8.6 3.60 . 156 .178 1.929 .006
7 7.8 3.67 .161 . 180 1.783 0.
8 7.1 3.76 .173 .193 1.489 0.
9 6.4 3.84 .184 .184 1.153 0.




Table IIT.1.f: Be Data

Group <En§£3y> Oy nel n A 3
Source 14.2 . 950 .315 .989 .532 .048
2 12.9 .818 . 206 1.066 .485 .267
3 11.6 1.03 .328 1.110 .412 .095
4 10.5 1.08 .334 1.028 .474 121
5 9.5 1.16 .356 .984 .488 .076
6 8.6 1.20 .357 .978 .479 .048
7 7.8 1.22 .356 .976 .470 .038
8 7.1 1.25 .354 .971 . 528 .034
9 6.4 1.30 .344 .918 .494 .038
10 5.8 1.34 .400 .838 . 551 .037
11 5.0 1.28 .378 .638 .741 .072
12 4.1 1.42 .388 . 573 .732 .059
13 3.3 1.77 .490 .490 .694 .029
14 2.7 1.95 . 160 . 160 .857 .027
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Table III.2: Effective One- and Two-Group Parameters for Multipliers

of D-T Neutron Sources

Energy
Material}{ Group | Extension o] Number of Secondaries Emitted
tr
(MeV) (barns)
a + 1 > 2 +(<B§)
0238 1 14.9 = 6.1 3.23 . 191 2.637
Pb ] 14,9 - 6.7 |[3.06 .260 1.430
ZR 1 14,9 - 6.7 |1.93 .128 1.472
Cu 1 14.9 - 10.0 | 1.85 . 135 1.070
FE 1 14,9 - 11, 1.67 . 156 .975
BE 1 14.9 - 13.5 |10.95 . 048 <941 «560
2 13.5 = 2.5 1.21 .850 .376

*BZ here means the bottom energy of group 2 in Be,

or bottom energy of group 1 in the other materials




Table III.3.a : Amplification in Pb

Aem)| ® . P - ITRAN RESULTS (1 GROUP/ITRAN)-1 %
M-1 L H M-1 L H

.2 .980{ .0202 }.0203{ .0526 | .Ol44} .0290 | .986 | =-1.6 | +1.2 | -0.1
.5 .952| .0505 | .0498 .115 .0359 | .0724 .963 | -1.3 | +1.4 | -0.1
1.0 .909 | .101 .0971} .193 L0714 | 144 .927 | -1.2 | +1.4 | -0.3
3.0 .769 | .303 .264 | .386 .205 417 .788 | +0.5 -1.4 | -0.6
9.0 .526 | .909 .599 | .656 .502 1.03 470 | 0.7 | +0.1 -0.9
15.0 | .400 | 1.51 .782 | .795 .685 1.42 .268 | -0.7 | -0.5 | +0.9
25.0 | .286 | 2.53 .922 | .907 .833 1.73 .105 | -0.2 -0.1 +2.4
50.0 | .167 | 5.05 .994 | .981 .917 1.91 .0087 | +0.4 0.0

L

— G —




Table I1I.3.b: Amplification in Zr

ITRAN RESULTS (1 GROUP/ITRAN)-1 Z
A(cm) k X P W
M-1 L H M-1 L H
0.2 | .980 [.0164 |.0165|0.432 |.00909| .0235 | .986 | +0.4 | +4.0 | -0.1
1.0 | .909 |.0822 |.0797 | .162 |.0488 | .116 932 | +0.1 | +3.0 | -0.4
3.0 | .769 |.247 220 | .332  [.140 | .341 .800 | -1.4 | 0.5 | +0.1
9.0 | .526 |.739 525 |.588  |.343 | .836 .508 | 0.8 0.0 |-0.6
15.0 | 400 | 123|711 |.731 l4e9 | 1.15 320 | +0.4 | +0.2 |-1.1
0.0 1 1.67 | 411  \.984 1.968 .00 | 45 0193 | +0.3 | +1.2  |+3.2
WE




Table III1.3.c : Amplification in Cu

—— = T - S ' e — A!»-—- e - — - — - - ———"‘—"1
! l ! | 1TRAN RESULTS _ (1 GROUP/ITRAN)-1
A(em) | g ! X ; P W 2
i | 3 i
§ § % M= L l H M-1 L I il
.2 . .950 ; .0314  .0313. .0797  .00647 .o334l 973 | 0.0 | +1.1 | 0.0
; 5 ? . -
1:0 .909 | 154 L1467 1 .214 - .0312 162 = .869 | +0.3  +0.8 -0.1
i : | | i |
3.0 .769 | .470 . .378  .514 ' .0835 436 - 648 | -0.2 - -0.3 | +0.2
9.0 .526 1.41 .759 .791  § .173 [ .910 . .263 1 +0.7 -0.1 { +0.8
. H 1 R i
' ‘;’ 1 :. T
15.0 .400 2.35 .906  .901  .209 | 1.104  .1050 | +1.1 0.0 _ 2.6
50.0 167 7.84 .9996 © .996 © .231 i 1.231 i .00037}+2.3  +0.4
. ; i } i
- : i | ]

— €5 —




Table III.3.d: Amplification in Fe

ITRAN RESULTS

(1 GROUP/ITRAN)-I

A(em) k X P W y
| M-1 L i M-1 L H
.2 .980 .0284 .0284 | .0727 | .00382 | .0275 | .976 -1.3 +2.0 0.0
-5 .952 L0711 .0695 | .155 .00949 | .0681 |.941 -1.7 +1.8 -0.1
1.0 |.909 L142 .134 .254 .0186 .134 . 884 -1.7 +1.0 -0.2
3.0 | .769 427 .350 484 .0504 .368 .683 -1.5 +0.4 -0.3
9.0 |.526 1128 .725 .763 .108 .801 .307 -0.1 +0.1 -0.3
15.0 |.400 2.13 .883 .882 .133 .997 .136 +0.7 +0.1 +0.2
25.0 |.286 3.56 .972 .960 . 148 1.114 |.0338 | +1.3 0.0 +4.,2
50.0 .167 L}.ll .9992 .99 .152 1.151 .0009 | +1.7 +0.1

— PG —




Table III.3.e: Amplification in U238

ITRAN RESULTS

(1 GROUP/ITRAN)-1

A(cm) k X P W € .
M-1 eL H M-1 el H

.2 .980 .0291 |.0290 .0742 .0069 . 0542 .0770 .977 +0.3 +1. -0.1
.5 .952 .0727 .0710 .1578 .0155 .136 .193 <943 +0.3 +1. -0.2
1.0 .909 . 145 .137 .258 .0268 | .274 .387 .887 -0.4 +0. -0.4
3.0 .769 . 436 .356 . 400 .0592 .791 1.103 .688 -1.5 -0. -0.8
9.0 .526 1.31 .732 .770 .116 1.85 2.54 .311 -0.9 -0. -1.7
15.0 .400 2.18 . 888 .886 . 148 2.38 3.24 .138 -0.2 0. -2.0
25.0 .286 3.63 .974 .9617 .173 2.71 3.67 .0341 +0.5 +0. +2.1
50.0 .167 7.27 .9993 .995 . 186 2.82 3.82 .00120 | +1.4 +1.

— 6§ —




group

ok

Table

I1T1.3.f : Amplification in Be

A(em) k x P W ITRAN RESULTS a GROUglITRAN)_I
M-1 L H M-1 L H

.2 .980 7.0228 1 .0228 .0591 .0131 .0135 .9996 -1.2 -0.4 0.0
0326 L0741

1.0 . 909 .114 . 1090 .213 . 0669 .0730 .9938 +2.1 +2.1 0.0
. 163 .258

3.0 .769 . 342 .292 419 .223 .264 .9584 2.7 -3.3 +0.3
.490 ' .490

9.0 .526 1.026 644 .695 .694 .933 . 762 -2.0 -3.9 +2.9
1.47 .769

15.0 .400 1.711 .821 .829 1.075 1.53 .546 4. 4 +2.3 +3.4
2.45 .886

50.0 .167 5,70 .997 .989 1.81 2.76 .0501 | +9.5 +6.0 +7.2
8.16 .992
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Table IV.1 : Iterated Number of Secondaries Emittedin the
Multiplication Regionj Eq. (IV.7)

Shell Be Be Pb
Thickness n(]):iterated n(l):iterated n(l):iterated
= el e | e

1 .55 .72 . 150

3 .69 .76 .209

9 .71 74 .226

15 .70 .73 .233

50 .70 .72 .230




Table V.1:¢
Multiplication per one source neutron
Shell " H M
outer | 5_6.3] 0.3-4| 4-7]|7-15]| o0-15
thickresd M—H r
{(cm) MeVv MeV MeV MeV MeV M-1 = ¥=1 - <C>]
3 .074 .420 .025 .775 1.294+.01 .294 1.77 4.7 %
6 .183 .760 .036 . 584 1.563+.01 .563 1.74 3.0 %
9 . 250 1.050 .040 . 500 1.840+.03 .840 1.59 5.9 %
12 .336 1.190 .038 .372 1.936+.09 .936 1.67 1.2 %
<> = 1.69

Multiplications, Partial Multiplications, and Derived Quantities from the

Takahashi's Experiment on Pb Spherical Shells
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Fig, IV.I:

of Secondaries in U238
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Fig. IV.2: Extrapolation to Zero to determine the Number of Secondaries
in Pb
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Fig. IV.3: Extrapolation to Zero to determine the Number

of Secondaries in Be
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Fig, IV.4: Effective Number of Secondaries Emitted in Be above
the (n,2n)threshold
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Fig. V.1I: Aitempts to fit Experimental Multiplications with
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Fig. V.5: Interdependence of ?é arid —gﬁ-for the Analysis of the
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