KfK 3729 Mai 1984

Elektrochemische Untersuchung des Korrosionsverhaltens von Feinkornbaustahl 1.0566 und Weicheisen in chloridhaltigen, wäßrigen Lösungen

> R. E. Schmitt, F. Cañadillas, R. Köster Institut für Nukleare Entsorgungstechnik

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Nukleare Entsorgungstechnik

KfK 3729

Elektrochemische Untersuchung des Korrosionsverhaltens von Feinkornbaustahl 1.0566 und Weicheisen in chloridhaltigen, wäßrigen Lösungen

R.E. Schmitt, F. Canadillas⁺⁾, R. Köster

+) Junta de Energia Nuclear, Madrid/Spanien

Kernforschungszentrum Karlsruhe GmbH., Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

.

Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

Zusammenfassung

Der Vergleich des Korrosionsverhaltens von Feinkornbaustahl 1.0566 (FK) in O,1 M KCl- und Q-Lösung zeigt deutlich, daß der O₂-Gehalt und der pH-Wert die Korrosion von (FK) maßgebend beeinflussen.

Unter gleichen Bedingungen frei korrodierende Proben von (FK) in O,1 M KCl bei T= 25° C und von (FK) und Weicheisen (Fe) in Q-Lösung bei T= 90° C bestätigen qualitativ und quantitativ in guter Näherung das elektrochemisch ermittelte Korrosionsverhalten.

Die untersuchten Werkstoffe (FK) 1.0566 und (Fe) zeigen in Q- Lösung bis $T^{=}55^{\circ}$ C auf Grund des geringen O₂-Gehaltes und eines pH-Wertes pH \geq 4 eine zufriedenstellende Korrosionsbeständigkeit. Bei Temperaturerhöhung auf T= 90° C erniedrigt sich der pH-Wert auf ca. pH 3,6 und die einsetzende Säurekorrosion bewirkt eine starke Zunahme der Korrosionsrate.

Sowohl die elektrochemischen Ergebnisse, wie Differenzen der Korrosionspotentiale E_C und variierende Abtragsraten verschiedener Proben, als auch die optische Untersuchung metallographischer Schliffbilder unterschiedlicher Proben zeigen eine gemischte Korrosion an. Gleichmäßige Flächenkorrosion und unterschiedlich stark ausgeprägte ungleichförmige Korrosion in Form von Mulden und Löchern wird nebeneinander beobachtet. Dieses Verhalten wird auf Inhomogenitäten der Struktur und der Zusammensetzung innerhalb der Werkstoffe zurückgeführt.

Die Korrosionspotentiale E_c (mV) vs. Ag/AgCl (3M KCl) für Feinkornbaustahl Nr. 1.0566 (= FK) und Weicheisen (= Fe) in quinärer Salzlösung (=Q-Lösung) und für (FK) in O,l M KCl, die nach der open-circuit-Methode (E_c^t) und aus den potentiodynamischen Stromdichte-Potential-Verlauf (E_c^l) erhalten werden, stimmen gut überein.

Mit zunehmender Temperatur verschieben sich die Korrosionspotentiale E_C zu negativen Werten. Das $\triangle E$ für T= 35° C und T= 90° C ist in 0,1 M KCl für (FK) größer als in Q-Lösung.

Die mittlere Korrosionsrate W für (FK) steigt in O,1 M KCl von W= O,24 mm.a⁻¹ bei T= 35° C auf W= O,26 mm.a⁻¹ bei T= 55° C und sinkt für T= 90° C auf W= O,11 mm.a⁻¹ ab.

In Q-Lösung liegen die Korrosionspotentiale E_C für (FK) ca. 60-80 mV positiver als in O,l M KCl und zeigen einen geringeren Einfluß der Temperatur. Die Werte E_C und der Temperatureinfluß für (Fe) in Q-Lösung entsprechen den Werten für (FK).

Bei T= 35° C werden in Q-Lösung praktisch gleiche mittlere Korrosionsraten W für (FK) und (Fe) mit W= 0,030 mm.a⁻¹ gefunden. Für T= 55° C liegen die Werte für (Fe) mit W= 0,110 mm.a⁻¹ höher als für (FK) mit W= 0,060 mm.a⁻¹. Bei T= 90° C werden dagegen für (FK) mit W= 0,8 mm.a⁻¹ höhere Korrosionsraten als für (Fe) mit W= 0,5 mm.a⁻¹ gefunden. Die Abtragsraten verschiedener Proben dieser Werkstoffe in Q-Lösung differieren bei T= 35° - 55° C um ca. Faktor 2. Bei T= 90° C variieren die Abtragsraten unterschiedlicher Proben bis um den Faktor \leq 10. Dies deutet auf eine ungleichförmige Korrosion hin.

Electrochemical Investigation of the Corrosion Behavior of Mild Steel 1.0566 and Soft Iron in Chloride Containing Aqueous Solutions

Summary

The comparison of the corrosion behavior of (FK) in 0.1 M KCl and Q-brine makes evident that the O_2 -content and the pH-value substantially influence the corrosion of (FK).

Specimens made of (FK) in 0.1 M KCl at $T = 25^{\circ}C$ and specimens made of (FK) and (Fe) in Q-brine at $T = 90^{\circ}C$, all of them exposed to corrosion under identical conditions confirm in a good approximation, both qualitatively and quantitatively, the electrochemically determined corrosion behavior.

The materials investigated, (FK) 1.0566 and (Fe), exhibit a satisfactory corrosion resistance in Q-brine up to $T = 55^{\circ}C$. This is due to the low O₂-content and a pH \geq 4. If the temperature rises to $T = 90^{\circ}C$ the pH-value drops to approximately pH 3.6 and the onset of corrosion by the presence of acid gives rise to a considerable increase in the corrosion rate.

Both the electrochemical results and differences of the corrosion potentials E_c as well as varying corrosion rates for different specimens and the optical examination of micro-sections of different specimens exhibit a mixed type of corrosion. Uniform surface corrosion and different degrees of non-uniform to occur side by side. This behavior is attributed to inhomogeneities of the structure and of composition within the materials.

There is good agreement between the corrosion potentials E_c (mV) versus Ag/AgCl (3 M KCl) for mild steel no. 1.0566 (= FK) and soft iron (= Fe) in quinary salt-mine-brine (Q-brine) and for (FK) in 0.1 M KCl, all of them obtained under the open circuit method (E_c^t) and from the potentio-dynamic current density-potential plot (E_c^1).

With increasing temperature the corrosion potenials E_C get shifted towards negative values. The value ΔE is higher in 0.1 M KCl for (FK) than in Q-brine at T = 35°C and T = 90°C.

In Q-brine the corrosion potentials E_C for (FK) take more positive values by about 60 - 80 mV than in 0.1 M KCl and are less influenced by temperature. The values E_C for (Fe) and the respective influence of temperature in Q-brine are similar to the values applicable to (FK).

The mean corrosion rate W for (FK) rises in 0.1 M KCl from W = 0.24 mm $\cdot a^{-1}$ at T = 35°C to W = 0.26 mm $\cdot a^{-1}$ at T = 55°C and drops to W = 0.11 mm $\cdot a^{-1}$ at T = 90°C.

At T = 35°C practically the same mean corrosion rates W are found in Q-brine for (FK) and (Fe), namely W = 0.030 mm $\cdot a^{-1}$. At T = 55°C the value W = 0.110 mm $\cdot a^{-1}$ for (Fe) is higher than for (FK) which is W = 0.060 mm $\cdot a^{-1}$. On the other hand for (FK) higher corrosion rates are found at T = 90°C, namely W = 0.8 mm $\cdot a^{-1}$ as compared with W = 0.5 mm $\cdot a^{-1}$ for (Fe). The corrosion rates of various specimens of these materials in Q-brine differ by approximately the factor 2 at T = 35°C to 55°C. At T = 90°C the corrosion rates of different specimens vary by up to the factor \leq 10. This suggests non-uniform corrosion.

Inhaltsverzeichnis

Seite

Zusa	Zusammenfassung					
I.	Einleitung	1				
II.	Versuchsbedingungen	1				
III.	Auswertungsmethoden	3				
IV.	Ergebnisse	5				
IV.1	Korrosionspotentiale	5				
IV.2	Stromdichte-Potential-Verhalten	6				
IV.3	Bestimmung der Korrosionsstromdichten I _C					
	und der Korrosionsraten	8				
v.	Diskussion der Ergebnisse	9				
VI.	Literatur	11				
VII.	Tabellen, Abbildungen, Bilder	12				

I. Einleitung

In vorangegangenen Untersuchungen/1/ wurde das Verhalten von (FK) 1.0566 in H_2O und Q-Lösung bei T= 35° C, 55° C und 90° C mit Standversuchen in geschlossenen Systemen bestimmt. Das Verhalten von Weicheisen (Fe) wurde unter gleichen Bedingungen in H_2O und Q-Lösung bei T= 35° C und 170° C untersucht.

Die Versuchsdauer für diese Standversuche in geschlossenen Systemen betrug 75 d und 150 d. Als Proben wurden Bleche im Anlieferungszustand verwendet. In jedes System, mit V= 800 ml Korrosionsmedium, wurden 6 Einzelproben von je F= 18 cm² eingesetzt. Das über den Lösungen stehende Luftvolumen V₂ betrug ca. V₂= 200 ml.

Im Gegensatz zu diesen Standversuchen in geschlossenen Systemen sollen die im folgenden beschriebenen elektrochemischen Untersuchungen Aufschluß geben über das Verhalten von (FK) 1.0566 in O,l M KCl- und Q-Lösung und von Weicheisen (Fe) in Q-Lösung bei T= 35° C und 90° C im offenen und unbewegten System.

II. Versuchsbedingungen

Untersucht werden Proben aus:

1) Feinkornbaustahl (FK) 1.0566: 0,17 % C; 0,44 % Si; 1,49 % Mn; 0,021 % P; 0,004 % S; 0,045 % Al; 97,83 % Fe

2) Weicheisen (Fe): 0,015 % C; 0,01 % Mn; 0,015 % P; 0,015 % S; 99,94 % Fe;

Die Probenfläche beträgt $F= 1 \text{ cm}^2$ oder $F= 2,4 \text{ cm}^2$. (FK) 1.0566 wird in 0,1 M KCl- und Q-Lösung, (Fe) nur in Q-Lösung untersucht.

Die Q-Lösung wird bei T= 55° C aufbewahrt und besitzt bei dieser Temperatur folgende Zusammensetzung:

MgCl₂ MgSO4 NaCl KCl H₂O Gew.% 26,5 1,5 1,8 4,7 65,5 $D^{55} = 1,3 \text{ g/cm}^3$ pH 4,2 + 0,1 Für T= 25° C ergibt sich eine Zusammensetzung von: MgCl₂ NaCl KC1 MqSO1 H₂O Gew.% 24,7 2,3 1,9 67,8 3,3 $D^{25} = 1,27 \text{ g/cm}^3$ pH 4,7 + 0,1

Verwendet wird die Q-Lösung der Zusammensetzung bei T= 55° C, die auf die jeweiligen Temperaturen thermostatisiert wird und einen Bodensatz von NaCl besitzt. Die Proben des Anlieferungszustandes werden nacheinander mit SiC-Papier 120, 320, 500 und 800 geschliffen und im Exsiccator über Silikagel aufbewahrt. Für Untersuchungen in 0,1 M KCl wird die Lösung mit Preßluft gesättigt und dabei ca. 4-5 h thermostatisiert. Die Proben werden eingesetzt und über t= 8-12 h wird eine konstante Potentialeinstellung E_C^t (\pm 2 mV) abgewartet, bevor die I/E- Kurve aufgenommen wird.

In Q-Lösung werden die vorbereiteten Proben in die thermostatisierte Lösung eingesetzt und die Einstellung des Korrosionspotentials E^t_{C} für t= 12 h abgewartet und die I/E-Kurve aufgenommen.

Die Aufnahmen der I/E-Kurven erfolgt über einen Potentialbereich von $E_I = E^t - 250 \text{ mV vs.}$ Ag/AgCl bis zum Endpotential $E_F = E_C^t + 250 \text{ mV vs.}$ Ag/AgCl mit Potential-Vorschubgeschwindigkeiten (Scan) von $\Delta E/t = 0, 1 - 0,05 \text{ mV.sec}^{-1}$.

Das verwendete Gerät ist ein PAR 350-A Corrosion - Measurement - System der Firma EG&G.

Als Gegenelektroden werden zwei stabförmige Reinstgraphitelektroden (\emptyset 6 mm) verwendet und als Bezugselektrode (Reference-Electrode) dient

eine Silber-Silberchlorid-Ag/AgCl(3 M KCl)-Elektrode. Die verwendete Ag/AgCl-Elektrode zeigt, bezogen auf die Normalwasserstoff-Elektrode (NHE), folgende Temperaturabhängigkeit für den untersuchten Temperaturbereich (Tabelle A):

Tab. A	Temperaturabhängigkeit des Potentials E (mV) der Ag/AgCl-
	Referenzelektrode vs. NHE*

T (°C)	E (MV) vs. NHE
25	+ 207
35	+ 199
55	+ 183
90	+ 153

III. Auswertungsmethoden

Die Korrosion von Eisen in O,1 M KCl-Lösung (pH = 6,7 + O,2) in Gegenwart von Sauerstoff ist eine Sauerstoffkorrosion und die Korrosionsgeschwindigkeit hängt primär von der zur Verfügung stehenden Sauerstoffmenge ab, die bei unbewegten Lösungen durch O₂-Diffusion zum Metall bestimmt ist. Es handelt sich um eine kathodisch kontrollierte Reaktion /2/.

(A) Für kathodisch kontrollierte Reaktionen kann bei Kenntnis der anodischen Tafelkonstante b_A und des linearen Gleichstrom-Polarisationswiderstandes R_p die Berechnung der Korrosionsstromdichte I_c näherungsweise nach der von Stern und Weisert /3/ abgeleiteten Beziehung erfolgen:

(1)
$$b_{A}$$
 = anodische Tafelkonstante (V.Dec⁻¹)
 $I_{C} = \frac{b_{A}}{2.3} \cdot \frac{1}{R}$ p $Polarisationswiederstand (Ω cm⁻²)
 I_{C} = Korrosionsstrom (A) pro Fläche (cm²)
= Korrosionsstromdichte (A.cm⁻²)$

[&]quot;Nach Angaben des Herstellers: Dr. W. Ingold KG

(B) Tritt im kathodischen Teil der I/E-Kurve eine deutliche Diffusionsgrenzstromdichte I_D auf, ohne daß ein linearer, kathodischer Tafelbereich erkennbar ist, wird die O₂-Diffusion geschwindigkeitsbestimmend und I_D entspricht der Korrosionsstromdichte, $I_D = I_C$. Damit ein reiner Diffusionsgrenzstrom vorliegt, sollte der Grenzstrombereich nicht mehr als 120 mV vom Korrosionspotential E_C entfernt beginnen /3/. Zur Bestimmung von $I_D = I_C$ wird der Grenzstrombereich bis zum Schnittpunkt mit E_C extrapoliert und die entsprechende Stromdichte als I_D verwendet. Die nach Gleichung (1) erhaltenen Werte können für verschiedene Proben um den Faktor 2-4 differieren, da die Korrosionspotentiale E_C unterschiedlicher Proben nicht völlig reproduzierbar

sind und der Polarisationswiderstand Rp als Rp =
$$\frac{\Delta n}{di_G} = \frac{\Delta n}{\Delta i_G} = \frac{\Delta E}{\Delta i_G}$$

definiert ist mit:

 η = Überspannung = E - E_C = Δ E

 i_G = Gesamtstromdichte A.cm⁻²

E = Elektrodenpotential unter Belastung (Polarisation)

 $E_{C} = Korrosionspotential$

bewirken schon kleine Unterschiede von E_C auch bei konstanter Gesamtstromdichte i_G Differenzen der Polarisationswiderstände um den Faktor 2-4 für unterschiedliche Proben.

Zur Bestimmung der mittleren Korrosionsrate von (FK) 1.0566 in 0,1 M KCl werden beide Methoden verwendet und die erhaltenen Werte verglichen.

(C) Handelt es sich um durchtrittskontrollierte Reaktionen mit linearen anodischen und kathodischen Tafelbereichen, kann der Korrosionsstrom i und die Korrosionsstromdichte I_C n\u00e4herungsweise nach der Stern-Geary-Gleichung /4/ bestimmt werden:

(2)

$$I_{c} = \frac{b_{A} \cdot b_{C}}{2, 3 \cdot (b_{A} + b_{C}) \cdot R_{p}}$$

$$b_A$$
 = anodische Tafelkonstante (V.Dec⁻¹)
 b_c = kathodische " "
 Rp = Polarisationswiderstand ($\Omega \cdot cm^{-2}$)
 I_c = Korrosionsstrom i (A) pro
Fläche (cm^2) = Korrosions-
stromdichte (A.cm⁻²)

(D) Werden in der I/E-Kurve lineare, anodische und kathodische Tafelbereiche gefunden, kann die Bestimmung der Korrosionsstromdichte auch durch graphische Extrapolation dieser Bereiche bis zum gemeinsamen Schnittpunkt beim Korrosionspotential E_c erfolgen /1,5/.

Beide Methoden (C) und (D) wurden zur Bestimmung der mittleren Korrosionsraten von (FK) und (Fe) in Q-Lösung herangezogen und die erhaltenen Werte werden miteinander verglichen.

Aus dem Korrosionsstrom bzw. der Korrosionsstromdichte I_c (mA.cm⁻²) errechnet sich die Abtragsrate W (mm.a⁻¹) und die Massenänderungsrate

M (mg.dm⁻².d⁻¹) nach:
(3) W (mm.a⁻¹) = 3,267.
$$\frac{1}{Z} \cdot (\frac{At \cdot I_C}{D})$$
 /6/.

z = Zahl der ausgetauschten Elektronen At = Atomgewicht in (g) I_c = Korrosionsstromdichte (mA.cm⁻²) D = Dichte (g.cm⁻³) und M (mg.dm⁻².d⁻¹) = 8,952 $\cdot \frac{1}{Z}$ At.I_c /6/

Aus 4-8 Einzelmessungen werden die mittleren Korrosionsraten W und M bestimmt.

IV Ergebnisse

IV.1 Korrosionspotentiale

Die sich nach t= 12 h frei einstellenden Korrosionspotentiale E_C^t (opencircuit-potential) und die aus potentiodynamischen I/E-Kurven ermittelten Werte E_C^1 für (FK)-Proben in O,1 M KCl und für (FK)- und (Fe)-Proben in Q-Lösung geben die Tabellen 1-3 wieder.

Die Übereinstimmung von E_{C}^{t} (mV) und E_{C}^{l} (mV) vs. Ag/AgCl ist mit < (+ 3%) gut (Tab. 1).

Die Potentiale E_{C}^{t} stellen sich in O,1 M KCl erst nach t= 8-12 h auf angenähert konstante Werte (<u>+</u> 2 mV) ein. Die Werte E_{C}^{t} nach t= 12 h differieren für die untersuchten Proben um max. 6 % oder 40 mV (Tab. 1). In Q-Lösung liegen E_{C}^{t} und E_{C}^{l} ca. 60-80 mV positiver als in O,1 M KCl- Lösung. Auch hier unterscheiden sich die Werte verschiedener Proben nur wenig (<u>+</u> 2 %) und E_{C}^{t} und E_{C}^{l} -Werte sind nahezu identisch (s. Tab. 2 und 3).

Die Mittelwerte E_{c}^{t} und E_{c}^{l} der untersuchten Proben unterscheiden sich für gleiche Bedingungen um max. (± 3 %). Um die Temperaturabhängigkeit der Potentiale unter E^{t} und E_{c}^{l} zu erfassen, müssen die gegen eine Ag/AgCl (3 M KCl)-Elektrode gemessenen Werte auf die Normalwasserstoff-Elektrode (NHE) umgerechnet werden, nach:

da das Potential der Silber-Silberchlorid-Elektrode temperaturabhängig ist (s. Tab. A). Mit zunehmender Temperatur verschieben sich die Korrosionspotentiale e_C vs. NHE in O,1 M KCl um ca. 50-90 mV und in Q-Lösung um ca. 20-40 mV zu negativen Werten.

Die Potentialwerte e_C und E_C von (FK) und (Fe) in Q-Lösung differieren nur wenig (vgl. Tab. 2 und 3).

IV.2 Stromdichte-Potential-Verhalten (I/E-Kurven)

Nach einer Einstelldauer von t= 12 h für E_c^t werden die Proben vom Anfangspotential $E_I = E_c^t - 250 \text{ mV}$ bis zum Endpotential $E_F = E_c^t + 250 \text{ mV}$ mit 0,1 -0,05 mV.sec⁻¹ anodisch polarisiert.

In O,l M KCl zeigt sich im kathodischen Teil der I/E-Kurve ein Diffusionsgrenzstrom-Bereich, der ca. 80-100 mV negativer als E_C beginnt. In diesem Bereich ändert sich die kathodische Stromdichte I_C mit negativer werdendem Potential E nur geringfügig (Abb. 1).

Dieser Grenzstrom-Bereich wird in O,l M KCl für jede der untersuchten Temperaturen beobachtet. Für T= 55° C liegt der Wert für I_D (= Diffu-

sionsgrenzstromdichte) höher als für T= 35° C und T= 90° C. Dieses Verhalten kann qualitativ durch das O_2 -Lösungsvermögen verdünnter wäßriger Salzlösungen und mit der Temperaturabhängigkeit der O_2 -Diffusionsgeschwindigkeit im betrachteten Temperatur-Intervall erklärt werden. Zwischen T= 35° C und ca. T= 80° C nimmt die O_2 -Löslichkeit nur geringfügig ab, sinkt darüberhinaus aber bis zum Siederpunkt der Lösung praktisch auf O ab. Andererseits steigt die Diffusionsgeschwindigkeit mit zunehmender Temperatur.

Das I/E-Verhalten von (FK) und (Fe) in Q-Lösung in Abhängigkeit von der Temperatur zeigen die Abbildungen 2 und 3. Es wird kein Diffusionsgrenzstrom beobachtet. Das Auftreten linearer, anodischer und kathodischer Tafelbereiche zeigen eine diffusionskontrollierte Reaktion an, deren langsamster und damit geschwindigkeitsbestimmender Schritt der Austausch von Ionen und Elektronen durch die Phasengrenze Metall/ Medium darstellt. Da der Sauerstoff-Gehalt der Q-Lösung auf Grund des hohen Salzgehaltes von ca. 34 Gew.% gegenüber der O,1 M KCl mit nur ca. O,7 Gew.% KCl deutlich niedriger liegen muß und der pH-Wert durch die temperaturabhängige Hydrolyse des MgCl₂ von ca. pH 4,5+0,1 für T= 35^o C auf ca. pH 3,6+0,1 erniedrigt wird, nimmt der Einfluß der O2-Korrosion stark ab und mit zunehmender Temperatur wird eine Säurekorrosion bestimmend. Im anodischen Bereich der I/E-Kurve steigt die Stromdichte in den untersuchten Medien schon bei kleinen Potentialänderungen in positive Richtung stark an. Passivierungsvorgänge werden nicht beobachtet. Die Materialien korrodieren unter den vorgegebenen Bedingungen aktiv. Die Stromdichte I nähert sich für Potentialwerte positiver als $E = E_C^t + 250 \text{ mV vs. Ag/AgCl, in Abhängig-}$ keit von der Temperatur, Grenzwerten von ca. I= $10^{-2} - 10^{-1}$ (A.cm⁻²).

Ein charakteristischer Unterschied im I/E-Verhalten zwischen (FK) 1.0566 und (Fe) kann nicht beobachtet werden (vgl. Abb. 2 und 3).

IV.3 <u>Bestimmung der Korrosionsstromdichten I_C und der</u> Korrosionsraten

Die zur Bestimmung der Korrosionsraten W (mm.a⁻¹) und M (mg.dm⁻².d⁻¹)von (FK) 1.0566 in O,1 M KCl notwendigen Korrosionsstromdichten I_C werden (A) nach Gleichung (1) und (B) aus den Diffusionsgrenzstromdichten $I_D = I_C$ bestimmt. Die für verschiedene (FK)-Proben nach (A) und (B) ermittelten Werte für die unterschiedlichen Temperaturen, sowie die sich daraus ergebenden Mittelwerte W und M sind in Tabelle 4 zusammengefaßt.

Die Tabellen 5 und 6 geben die Korrosionsraten W und M für (FK) und (Fe) in Q-Lösung für T= 35°, 55° und 90° C wieder. In Q-Lösung wird die Korrosionsstromdichte (C) nach Gleichung (2) und (D) durch graphische Extrapolation der geradlinigen anodischen und kathodischen Tafelbereiche bestimmt (Tab. 5 und 6). Ergibt sich kein gemeinsamer Schnittpunkt der extrapolierten Tafelbereiche beim Korrosionspotential E_C^1 , wird die Stromdichte I_A näherungsweise als Korrosionsstrom I_C gewählt, die sich aus dem Schnittpunkt der Verlängerung des geradlinigen, anodischen Kurventeils mit dem Korrosionspotential E_C^1 ergibt.

In Abbildung 4 ist die Abhängigkeit der mittleren Korrosionsraten $W(mm.a^{-1})$ von (FK)- und (Fe)-Proben in den untersuchten Lösungen als Funktion der Temperatur graphisch dargestellt.

Die zum Vergleich über einen Zeitraum von 7 d frei korrodierenden Proben von (FK) 1.0566 in O,1 M KCl bei T= 25° C und von (FK) 1.0566 und Weicheisen (Fe) in Q-Lösung bei T= 90° C zeigen vergleichbare Korrosionsraten mit ähnlichen Differenzen zwischen verschiedenen Proben, wie dies bei den elektrochemischen Untersuchungen gefunden wurde. Die Werte für jeweils 2-3 Proben sind in Tabelle 7 aufgeführt und werden mit den mittleren Korrosionsraten W der elektroschemisch bestimmten Werten verglichen.

V. Diskussion der Ergebnisse

Das temperaturabhängige Korrosionsverhalten von (FK) 1.0566 in 0,1 M KCl- und in Q-Lösung zwischen T= 35° und T= 90° C unterscheidet sich deutlich.

In Q-Lösung liegen die Abtragsraten von (FK) für T= 35° C und T= 55° C deutlich niedriger als in O,1 M KCl-Lösung. In beiden Lösungen ist ein Anstieg der Korrosionsrate mit Erhöhung der Temperatur von T= 35° C auf T= 55° C zu beobachten (Tab. 4 und 5, Abb. 4). Während aber in O,1 M KCl die Korrosionsrate von (FK) für T= 90° C deutlich unter die Werte für T= 55° C absinkt, erfolgt in der Q-Lösung eine starke Zunahme der Korrosionsrate für T= 90° C. Dies deutet auf unterschiedliche geschwindigkeitsbestimmende Reaktionen hin. In O,1 M KCl ist der O₂-Gehalt und die O₂-Diffusionsgeschwindigkeit bestimmend für die Korrosionsgeschwindigkeit, während in Q-Lösung auf Grund des deutlich geringeren O₂-Gehaltes und eines niedrigeren pH-Wertes die Säurekorrosion zunehmend Einfluß nimmt und bei T= 90° C (pH 3,6+0,1) maßgebend ist.

In verdünnten, wässrigen Neutralsalzlösungen, wie z.B. O,1 M KCl, ist der O₂-Gehalt im Bereich T= 30° - 80° C nur wenig temperaturabhängig und der O₂-Gehalt erniedrigt sich nur geringfügig, während die O₂-Diffusionsgeschwindigkeit mit der Temperatur zunimmt. Dies erklärt den Anstieg der Korrosionsrate zwischen T= 35° C und T= 55° C. Oberhalb von T= 80° C nimmt die O₂-Löslichkeit bis zum Siedepunkt der Lösung stark ab und erklärt damit das Absinken der Korrosionsrate für T= 90° C durch Erniedrigung des O₂-Gehaltes.

In Q-Lösung liegt der O₂-Gehalt bei T= 25° C mit 1-2 ppm um den Faktor 3-5 niedriger als in O,1 M KCl oder H₂O. Die pH-Werte für T= 35° C und T= 55° C liegen mit pH= 4,5+O,1 und pH= 4,2+O,1 nur wenig oberhalb von pH 4 und unterhalb von pH 4 ist für Eisen mit einem Anstieg der Korrosionsrate durch Säurekorrosion zu rechnen /7/. Das Ansteigen der Korrosion zwischen T= 35° C und T= 55° C für (FK) und (Fe) in Q-Lösung ist einmal auf die Erhöhung der O₂-Diffusion des verbleibenden O₂-Gehaltes und auf die Erniedrigung des pH-Wertes zurückzuführen. Die bei T= 90° C zu beobachtende Erniedrigung des pH-Wertes auf pH= $3,6\pm0,1$ erklärt das starke Ansteigen der Korrosionsrate durch Säurekorrosion (Tab. 5, 6; Abb. 4).

Im Unterschied zu (FK) 1.0566 steigt die Korrosionsrate für Weicheisen (Fe) zunächst bis $T=55^{\circ}$ C stärker an als für (FK), während die Zunahme von $T=55^{\circ}$ C nach $T=90^{\circ}$ C für (FK) größer ist als für (Fe). Dies kann auf unterschiedlicher Zusammensetzung und Struktur der beiden Werkstoffe beruhen (Abb. 4).

Sowohl die auftretenden Differenzen der Korrosionspotentiale E_C als auch die differierenden Korrosionsraten unterschiedlicher Proben deuten auf Inhomogenitäten in Struktur und Zusammensetzung innerhalb der einzelnen Werkstoffe hin.

Eine Untersuchung polarisierter und frei korrodierter Proben von (FK) 1.0566 und (Fe) durch Stereomikroskop- und Schliffbilder (Bl – B9) zeigt das Auftreten einer gemischten Korrosion an, bei der gleichzeitig eine gleichförmige Flächenkorrosion neben einer unterschiedlich stark auftretenden ungleichförmigen Korrosion (Löcher, Mulden) erfolgt. Die Bilder (B7A – 7D) verdeutlichen dieses Nebeneinander unterschiedlicher Korrosionsangriffe am Beispiel einer von $E = E^{t} - 250 \text{ mV}$ bis $E = E^{t} + 250 \text{ mV}$ polarisierten Probe des (FK) 1.0566 in Q-Lösung (B 7A). Auf einer Fläche von F= 1 cm² zeigen sich extrem glatte Bereiche (B 7B) mit geringerem Abtrag, Gebiete mit höherem gleichmäßigen und ungleichmäßigen Abtrag (Mulden) (B 7C) und Bereiche mit starkem ungleichförmigen Abtrag in Form von Mulden und Löchern (B 7D). Die Anzahl und Tiefen der Mulden und Löcher differieren stark für unterschiedliche Proben.

Die optische Untersuchung der Proben bestätigt damit die elektrochemischen Ergebnisse.

Die durchgeführten Untersuchungen zeigen, daß für die aktiv korrodierenden Werkstoffe (FK) 1.0566 und Weicheisen (Fe) hier nicht primär der Chlorid-Ionen-Gehalt für das Korrosionsverhalten maßgeblich ist, sondern daß der O₂-Gehalt und der pH-Wert der Lösung das Ausmaß der Korrosion entscheidend beeinflussen.

VI. Literatur

- /l/ F. Canadillas, E. Smailos, R. Köster, "Korrosionsuntersuchungen zur Eignung eines Baustahls für die Auslegung von Behältern zur Endlagerung hochradioaktiver Abfallprodukte" KfK 3549, Juni 1983
- /2/ U.R. Evans "Einführung in die Korrosion der Metalle", Verlag Chemie GmbH Weinheim, Bergstr., 1965, S. 75
- /3/ M. Stern, E.D. Weisert, Proc. Amer. Soc. Test Mat. <u>59</u> (1959), 1280
- /4/ E. Heitz, Werkstoffe und Korrosion, <u>19</u> (1968) 773-781
- /5/ M. Stern, J. Geary, Elektrochem. Soc., 104 (1957) 56
- /6/ U.R. Evans, T.P. Hoar, Proc. Roy. Soc. (A) 137 (1932) 343
- /7/ H. Kaesche, "Die Korrosion der Metalle", Springer Verlag, 2. Aufl., 1979, S. 57
- /8/ H.H. Uhlig, "Corrosion and Corrosion Control", Second Edition 1971, J. Wiley & Sons Inc., P. 98

VII. Tabellen Abbildungen Bilder Tab. 1: Korrosionspotentiale verschiedener [FK] 1.0566-Proben in 0,1 M KCl in Abhängigkeit von der Temperatur unter freiem Luftzutritt nach der Zeit t = 12 h; E_{C}^{t} (mV) = Korrosionspotential, bestimmt nach der open-circiut-Methode E_{C}^{1} (mV) = Korrosionspotential aus potentiodynamischer I/E-Kurve E_{C} (mV) vs. Ag/AgCl (3 M KCl); e_{C} (mV) vs. NHE⁺⁾ E_{C}^{t} , E_{C}^{1} , e_{C}^{t} , e_{C}^{1} = Mittelwerte

Temperatur [^O C]	Ko	orrosionspo [mV]	Mittelwerte [mV]				
	Ec	E ¹ C	e ¹ c	-Et c	- <u>-</u> 1 Ec	-e ^t c	-e ¹ c
35	-671	-684	-485				
35	-680	-674	-481				
35	-664	-662	-463				
35	-676	-670	-467				
35	-666	-666	-457	-681	-682	-482	-483
35	-668	-669	-459				
35	-715	-692	-516				
35	-692	-702	-493				
35	-680	-700	-481				
35	-696	-700	-497				
55	-688	-691	-511				
55	-696		-507				
55	-700	- 752	-569	-698	-707	-515	
55	-706	-690	-507	-090	101		-524
2.0	700	090	507				
90	-700	-719	563				
90	-714	-762	-602				
90	-692	-698	-542	-703	-730	-547	-574
90	-706	-742	-586				

+) NHE = Normal-Wasserstoff-Elektrode

Tab. 2: Korrosionspotentiale verschiedener [FK] 1.0566-Proben in Q-Lösung in Abhängigkeit von der Temperatur unter freiem Luftzutritt nach der Zeit t = 12 h; E_{C}^{t} (mV) = Korrosionspotential, bestimmt nach der open-circuit-Methode E_{C}^{1} (mV) = Korrosionspotential aus potentiodynamischer I/E-Kurve E_{C} (mV) vs. Ag/AgCl (3 M KCl); e_{C} (mV) vs. NHE⁺) E_{C}^{t} , \overline{e}_{C}^{1} , \overline{e}_{C}^{1} = Mittelwerte

Temperatur	Kc	rrosionspo	tentiale	Mittelwerte						
[°C]		[mV]			[V m]					
	E_c^t	E_{c}^{1}	e_c^1	Ec	E1 C	et	e ¹ _c			
35	-624	-625	-426		- <u></u>	9 <u>, 199 - 19</u> , 19, 19, 19, 19, 19, 19, 19, 19, 19, 19				
35	-622	-606	-407							
35	-628	-602	-403	-623	-611	-424	-412			
35	-620	-611	-412							
35	-622	-610	-411							
55	-628	-594	-411							
55	-628	-589	-406							
55	-620	-620	-437	-627	-610	-444	-427			
55	-628	-630	-447							
55	-630	-616	-433							
90	-614	-610	-454							
90	-616	-607	-451							
90	-616	-610	-454	-614	-608	-458	-452			
90	-620	-611	-455							
90	-618	-605	-449							
90	-606	-608	-452							
90	-612	-608	-452							

+) NHE = Normal-Wasserstoff-Elektrode

Tab. 3: Korrosionspotentiale verschiedener [Fe]-Proben in Q-Lösung in Abhängigkeit von der Temperatur unter freiem Luftzutritt nach t = 12 h; E_c^t (mV) = Korrosionspotential, bestimmt nach der open-circuit-Methode E_c^1 (mV) = Korrosionspotential aus potentiodynamischer I/E-Kurve E_c (mV) vs. AG/AgCl (3 M KCl); e_c (mV) vs. NHE⁺) \overline{E}_c^t , \overline{E}_c^1 , \overline{e}_c^t , \overline{e}_c^1 = Mittelwerte

Temperatur	:	Korrosion	spotentia	. Mittelwerte					
[°C]		[mV	7]		[mV]				
	Et	E ¹ C	e ¹ c	Et c	\overline{E}_{C}^{1}	ectec	e1 c		
35	-620	-615	-416	or	ан раца лицон цос — "дочация —				
35	-616	-612	-413						
35	-622	- 625	-426	-622	-620	-423	-421		
35	- 628	-630	-431						
55	-622	-602	-419						
55	-608	-601	-418						
55	-612	-610	-427	- 613	-606	-430	-423		
55	-610	-612	-429						
90	-596	-583	-427						
90	-624	-618	-462						
90	-620	-607	-451	-615	-602	-459	-446		
90	-610	-584	-454						
90	-620	-609	-453						
90	-620	-611	-455						

+) NHE = Normal-Wasserstoff-Elektrode Tab. 4: Mittlere Korrosionsraten \overline{W} [mm^a⁻¹] und \overline{M} [mg·dm⁻¹·d⁻¹] von FK [1.0566] in 0,1 M KCl unter freiem Luftzutritt; Berechnung von I_c erfolgt (A) nach Gl. (1) und (B) aus Diffusionsgrenzstromdichte I_D = I_c durch Extrapolation; pH 6,7 ± 0,3; E_c^1 (mV) vs. Ag/AgCl; dE/dt = 0,1 - 0,05 mV.sec⁻¹

A)	т	=	35°C
----	---	---	------

A) I - 55	~C		1 _c	1 _c								
I	² c Rp	ь _А	nach (A)	nach (B)	Ко	rrosions	raten au	s I _c	F	orrosia	nsraten	aus I _D
(1	nV) [Ω·cm ⁻²]	[V·Dec ⁻¹]	[mA·cm ⁻²]	[mA·cm ⁻²]	(mm	•a ⁻¹]	[mg*dm	⁻² ·d ⁻¹]	(1	m•a ^{−1}]	(mg	·dm ⁻² ·d ⁻¹]
					W	₩ ⁺⁾	М	<u>M</u> +)	W	₩ ⁺⁾	м	<u>₩</u> +)
-674	1410	0,045	1,4.10-2	1,5.10-2	0,160		35		0,180		38	<u> </u>
-670	0 1670	0,074	1,9·10 ⁻²	2,1·10 ⁻²	0,220		48		0,250		53	
-669	720	0,065	3,9.10-2	3,4·10 ⁻²	0,460		98		0,400		85	
-702	920	0,053	2,5·10 ⁻²	3,1·10 ⁻²	0,290	0,240	63	51	0,360	0,265	78	57
-696	6 4260	0,044	0,5·10 ⁻²	2,9·10 ⁻²	0,050		12		0,340		73	
-700	0 1350	0,097	3,1·10 ⁻²	2,2·10 ⁻²	0,375		78		0,260		55	
-662	1970	0,081	1,8.10-2	2,2·10 ⁻²	0,210		45		0,260		55	
-680	2070	0,067	1,4.10-2	1,6·10 ⁻²	0,160		35		0,190		40	
-715	4570	0,060	0,6·10 ⁻²	1,5.10-2	0,070		15		0,180		38	
-662	940	0,070	3 , 2 · 10 ⁻²	2,0.10-2	0,380		80		0,230		50	
B) T = 55 ^C	Ċ											
-694	1750	0,062	1,5·10 ⁻²	1,8·10 ⁻²	0,175		37		0,210		45	
-690	1030	0,069	2,9·10 ⁻²	2,7·10 ⁻²	0,340	0,260	73	56	0,320	0,285	68	61
-752	1480	0,089	2,6.10-2	2,4·10 ⁻²	0,305		65		0,280		60	
-690	1570	0,069	1,9·10 ⁻²	2,8·10 ⁻²	0,220		48		0,330		70	
C) T = 90 ^O	c											
-719	2040	0,054	1,15·10 ⁻²	1, 3·10 ⁻²	0,135		29		0,150		33	
-762	2110	0,050	1,03·10 ⁻²	1,2·10 ⁻²	0,120	0,110	25	23	0,140	0,130	30	27
-698	3520	0,051	0,63·10 ⁻²	0,8.10-2	0,074		15		0,090		20	
-742	3250	0,071	0,95·10 ⁻²	1,1.10-2	0,110		24		0,130		27	

+) Mittelwerte

Tab. 5: Mittlere Korrosionsraten \overline{W} [mm·a⁻¹] und \overline{M} [mg·dm⁻²·d⁻¹] von [FK] 1.0566 in Q-Lösung unter freiem Luftzutritt; Berechnung von I_c erfolgt (C) nach Gl. (2) und (D) durch graphische Extrapolation E_c^1 (mV) vs. Ag/AgCl; dE/dt = 0,1 - 0,05 mV.sec⁻¹

A) $T = 35^{\circ}C$

pH 4,5 <u>+</u> 0,1

. 1				^I c	1 _c									
E	Rp	bA	PC	nach (C)	nach (D)	Korr	cosions:	aten n	ach (C)	Kori	cosionsra	aten	nach (D)	
(mV)	[Ω• cm ²]	[V·Dec ⁻¹]	[V·Dec ⁻¹]	[mA·cm ⁻²]	[mA·cm ⁻²]	(mm•a	<u>[']</u>	[mg•di	m ⁻² ·d ⁻¹]	[mm]	'a'']	[mg	•dm ⁻² •d ⁻¹]	
						W	W	М	й	W	พิ	М	M	
-625	4970	0,062	0,143	3,8.10 ⁻³	2,3.10-3	0,044		10		0,027		6		
-606	5600	0,030	0,087	1,7·10 ⁻³	1,4.10-3	0,020		4		0,016		4		
-594	8350	0,033	0,128	1,4.10-3	1,5·10 ⁻³	0,016	0,030	3	7	0,017	0,026	4	6	
-602	6620	0,050	0,118	2,3.10-3	2,4.10-3	0,027		6		0,028		6		
-611	3840	0,044	0,149	4,1.10 ⁻³	3, 8·10 ⁻³	0,047		11		0,044				
-610	4860	0,036	0,105	2,4·10 ⁻³	2,1·10 ⁻³	0,028		6		0,024		5		
B) T = 5	5 ⁰ C													
рн 4,	2 <u>+</u> 0 , 1													
-589	4990	0,025	0,137	1,8.10 ⁻³	7,3·10 ⁻³	0,022		5		0,085		18		
-626	1970	0,047	0,119	7,4.10-3	6,6.10-3	0,087		18		0,077		16		
-630	3570	0,056	0,125	4,7.10 ⁻³	4,1·10 ⁻³	0,055		12		0,048		10		
-616	1900	0,042	0,123	7,2.10-3	6,9.10-3	0,084	0,056	18	12	0,080		17	12	
-594	4740	0,030	0,128	2,2.10 ⁻³	0,9.10 ⁻³	0,026		6		0,011		3		
-634	3550	0,067	0,120	5,3·10 ⁻³	2,3·10 ⁻³	0,061		13		0,027		6		
C) T = 90	o ^o c													
рН 3,6	5 <u>+</u> 0,1													
-608	360	0.040	0.145	3.8.10 ⁻²	4,4.10 ⁻²	0,445		95		0,515	1	10		
-611	1060	0,045	0,132	$1.4 \cdot 10^{-2}$	2,2.10 ⁻²	0,160		35		0,260		55		
-610	115	0.038	0,105	$1.1 \cdot 10^{-1}$	$9,1.10^{-2}$	1,240	0.820	275	190	1,070	0 710 2	30	145	
-608	280	0,040	0,115	4.6.10-1	6,4.10 ⁻²	0,540	0,830	115	160	0,750	1	60	145	
-612	130	0,071	0,138	3,3.10 ⁻¹	2,2.10 ⁻²	0,390		83		0,250		55		
-611	120	0,072	0,127	1.7.10 ⁻¹	1,1.10 ⁻¹	1,950		426		1,290	2	45		
-610	154	0,046	0,112	9,0·10 ⁻²	7,2.10 ⁻²	1,060		225		0,840	1	65		

Tab. 6: Mittlere Korrosionsraten \overline{W} [mm·a⁻¹] und \overline{M} [mg·dm⁻²·d⁻¹] von Weicheisen [Fe] in Q-Lösung unter freiem Luftzutritt Berechnung von I_C erfolgt (C) nach Gl. (2) und (D) durch graphische Extrapolation E_C^1 (mV) vs. Ag/AgCl; dE/dt = 0,1 - 0,05 mV.sec⁻¹

A) $T = 35^{\circ}C$

рн 4,5<u>+</u>0,1

				^I C	^I C								
EC	Rp	b _A	b _C	nach (C)	nach (D)	Korr	rosions	aten n	ach (C)	Kori	osions	caten r	nach (D)
(mV)	[Ω•cm ⁻²]	[V·Dec ⁻¹]	[V·Dec ⁻¹]	$[mA \cdot cm^{-2}]$	[mA.cm ⁻²]	(mm • a	⁻¹]	[mg•d	$m^{-2} \cdot d^{-1}$] [mm•	a ⁻¹]	[mg·	•dm ⁻² •d ⁻¹)
						14	₩ ⁺)	м	м ⁺⁾	W	₩ ⁺)	м	M ⁺⁾
-615	5250	0,053	0,114	3,0.10 ⁻³	2,1.10 ⁻³	0,035		8,0	- create - contain - contain - a	0,024		5,0	
-616	4300	0,048	0,130	3,5·10 ⁻³	2,8·10 ⁻³	0,041	0.034	9,0	75	0,032	0.030	7,0	6 9
-622	6800	0,056	0,125	2,5·10 ⁻³	2,3·10 ⁻³	0,028	0,034	6,0	1,5	0,026	0,050	6,0	0,5
-628	4850	0,044	0,112	2,8.10 ⁻³	3,2.10-3	0,033		7,0		0,037		8,0	
B) T = 5	5°C												
рН 4,	,2 <u>+</u> 0,1												
-602	1280	0,041	0,094	9,9·10 ⁻³	1,1.10 ⁻²	0,115		25,0		0,128		27 , 0	
-601	1800	0,037	0,141	7,1.10 ⁻³	6,5·10 ⁻³	0,082	0.110	18,0	24.0	0,075	0,113	16,0	25
-610	2020	0,055	0,130	8,3·10 ⁻³	6,9·10 ⁻³	0,096	0/110	21,0	2.1,0	0,080	•	17,0	
-612	1040	0,043	0,118	1,3.10 ⁻²	1,5.10 ⁻²	0,150		32 , 0		0,170		38,0	38,0
C) T = 9	o ^o c												
рНЗ,	.6 <u>+</u> 0,1												
-583	240	0,041	0,125	5,6.10 -2	3,6.10-2	0,650		140		0,420		90	
-618	560	0,060	0,145	3,3·10 ⁻²	3,9.10-2	0,380	0,500	83	108	0,450	0,495	98	107
-607	790	0,030	0,129	1,3·10 ⁻²	1,9.10-2	0,150		33		0,220	•	48	
-584	440	0,040	0,159	3,2·10 ⁻²	2,8.10-2	0,370		80		0,325		70	
-609	190	0,050	0,125	8,2·10 ⁻²	9,1·10 ⁻²	0,950		205		1,060	2	230	

+) Mittelwerte

Tab. 7: Korrosionsraten W $[mm \cdot a^{-1}]$ von frei korrodierten [FK]-Proben in 0,1 M KCl bei T = $25^{\circ}C$ und von [Fe]- und [FK]-Proben in Q-Lösung bei T = $90^{\circ}C$ im Vergleich mit elektrochemisch bestimmten, mittleren Korrosionsraten \overline{W} $[mm \cdot a^{-1}]$; Versuchsdauer für frei korrodierende Proben: 7 d

т °C	Medium	Werkstoff	frei korrodierend W [mm•a ⁻¹]	elektrochemisch bestimmte mittlere Korrosionsrate \overline{W} [mm·a ⁻¹]
25 ⁰	0,1 м ксі	FK[1.0566]	0,288	0,240 +)
	n		0,115	
90 ⁰	Q-Lösung	FK[1.0566]	0,180	
	H		0,820	0,830
	0		0,320	:
90 ⁰	0-Tösung	[Fe]	0.210	
	H H	()	0,680	0,500

⁺⁾ für T = 35° C

 $\Box - - - T = 90^{\circ} \text{ C}; \quad dE/dt = 0,10 \text{ mV} \cdot \text{sec}^{-1}$

- 21 -

Abb. 2 I/E-Verhalten von Feinkornbaustahl 1.0566 in Q-Iösung unter Luft; E(V) vs. Ag/AgCl (3 M KCl);

 $\begin{array}{cccc} & & & & -1 \\ \Delta & - & - & T \\ & & & - & - & T \\ \end{array} \begin{array}{c} T &=& 35^{\circ} & C; \\ \Delta & - & - & T \\ \end{array} \begin{array}{c} dE/dt &=& 0, 10 & \text{mV} \cdot \text{sec}^{-1} \\ dE/dt &=& 0, 10 & \text{mV} \cdot \text{sec}^{-1} \\ dE/dt &=& 0, 10 & \text{mV} \cdot \text{sec}^{-1} \end{array}$

- 22 -

Abb. 4 Temperaturabhängigkeit der elektrochemisch bestimmten, mittleren Korrosionsraten \overline{W} von (FK) 1.0566 in 0,1 M KCl und Q-Lösung, und von (Fe) in Q-Lösung für T = 35° C, 55° C und 90° C unter freiem Luftzutritt: 0----* (FK)1.0566 in 0,1 M KCl; Auswertung nach (A) (FK)1.0566 in 0,1 M KCl; Auswertung nach (B) (FK)1.0566 in Q-Lösung ; Auswertung nach (C) Δ-----(FK)1.0566 in Q-Lösung ; Auswertung nach (D) ; Auswertung nach (C) (Fe) in Q-Lösung _____ (Fe) in Q-Lösung ; Auswertung nach (D) (FK)1.0566 in 0,1 M KCl bei T = 25° C frei korrodierend Ø

- B 1FK 1.0566; 0,1 M KCl (luftgesättigt); $T = 25^{\circ}C$ Freie Korrosion2Probenfläche: $F = 1 \text{ cm}^2$ (kreisförmig); Dauer: t = 7 dProbenzustand: geschliffen (SiC 800)hell: korrodierte Bereiche
 - A) 1. Probe

Massenverlust: M = 4,32 mg/7d

B) 2. Probe

4,5:1

Massenverlust: M = 1,42 mg/7d

A)

4,5:1

B) Ausschnittvergrößerung:

5,0:1

4,5:1

B)

C)

A)

200:1

A)

B)

4,5:1

<u>B 5</u> FK 1.0566 ; Q-Lösung ; $T = 90^{\circ}$ C Polarisierte Probe: $dE/dt = 0,1 \text{ mV} \cdot \text{sec}^{-1}$ $E_{I} = E_{C}^{t} - 250 \text{ mV}$ $E_{F} = + 250 \text{ mV}$ F = 1 cm² ; Probenzustand: geschliffen (SiC 800)

4,5:1

B)

A)

4,5:1

B) Schliffbild: A) linke Seite

<u>B 7</u> FK 1.0566 ; Q-Lösung ; $T = 90^{\circ} C$ Freie Korrosion ; Dauer: 7 d $F = 2,4 \text{ cm}^2$; Probenzustand: geschliffen (SiC 800)

A)

4,5:1

Massenverlust: M = 11,66 mg/7d

B) Schliffbild: A) - Mitte

B8Fe (Weicheisen) ; Q-Lösung ; $T = 90^{\circ}$ CFreie Korrosion ;Dauer: 7 dF = 1 cm² ;Probenzustand: geschliffen (SiC 800)

A)

4,5:1

A)

B) Schliffbild: A) - Mitte

200:1

4,5:1