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Abstract 

Linear theory of Rayleigh-Taylor instability growth at a density profile 
which varies exponentially between regions of constant density is dis
cussed in detail. The exact theory provides an approximate but conserva
tive simple formula for the growth constant and it shows that a hitherto 
widely used theory erroneously underestimates the growth constant. 

A simple but effective ••synthetical model" of nonlinear bubble growth is 
obtained from a synthesis of linear theory and constant terminal bubble 
speed. It is applied to pushershell break-up in an inertial confinement 
fusion pellet to determine the maximum allowable initial perturbations and 
the most dangeraus wavelength. In a situation typical of heavy ion drivers 
it is found that the allowable initial perturbations are increased by a 
few orders of magnitude by the gradual density transition and another 
order of magnitude by nonlinear saturation of the bubble speed. The grad
ual density transition also shifts the most dangeraus wavelength from 
about once to about four times the minimum pusher shell thickness. 

The following topics are treated briefly: Reasons conflicting with use of 
the synthetical model to decide whether the pusher shell in a certain simu
lationwill be broken up; other nonlinear theories available in the litera
ture; further realistic effects that might aggravate instability growth. 

Einfluß von stetiger Dichteänderung und nichtlinearer Sättigung auf das 
Wachstum von Rayleigh-Taylor Instabilitäten 

Zusammenfassung 

Die lineare Theorie der Rayleigh-Taylor Instabilität an einem Dichtepro
fil, das zwischen Gebieten konstanter Dichte einen exponentiellen Anstieg 
aufweist, wird ausführlich diskutiert. Die strenge Theorie liefert eine 
einfache aber konservative Näherungsformel für die Wachstumskonstante und 
sie zeigt, daß eine bisher weithin benutzte fehlerhafte Theorie die Wachs
tumskonstante unterschätzt. 

Durch Aneinanderfügung der linearen Theorie und einer konstanten Blasen
grenzgeschwindigkeit wird ein einfaches aber nützliches "kombiniertes 
Modell" des nichtlinearen Blasenwachstums gewonnen. Es wird angewendet auf 
die Bestimmung von maximal erlaubten Anfangsstörungen und gefährlichster 
Wellenlänge im Fall des Aufbruchs der Pusherschale in einem Brennstoff
kügelchen für Kernfusion durch Trägheitseinschluß. In einer für Schwer
ionentreiber typischen Situation ergibt sich, daß die zulässigen Anfangs
störungen durch die stetige Dichteänderung um einige Größenordnungen und 
durch die nichtlineare Sättigung der Blasengeschwindigkeit um eine weitere 
Größenordnung vergrößert werden. Die stetige Dichteänderung verschiebt 
außerdem die gefährlichste Wellenlänge vom Einfachen auf etwa das Vier
fache der minimalen Dicke der Pusherschale. 

Folgende Themen werden kurz behandel't: Gründe, die der Anwendung des kombi
nierten Modells auf die Entscheidung ob die Pusherschale in einer bestimm
ten Simulation aufbricht oder nicht, entgegenstehen; andere nichtlineare 
Theorien in der Literatur; weitere realistische Effekte, die das Wachstum 
der Instabilitäten beschleunigen könnten. 
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1. Introduction 

R~yleigh-Taylor instabilities occur when a boundary between two fluids is 
accelerated in the direction of the denser fluid. The classical example is 
a layer of water being suspended by air so that it cannot fall freely. 
This system is equivalent to one without gravity but an upward accelera
tion of amount g. Of course, a perfectly flat interface would persist, but 
any sinusoidal perturbation of wave number k (e.g. any Fourier component 
of any arbitrary initial disturbance) has been shown to grow as ent, where 

n2 = gk, if the density of the air is neglected for the moment. This is a 
result of linear analysis which is valid for small deviations from a 
stable state only. The development after this initial "linear" stage is 
characterized by the fact, that an initially sinusoidal perturbation 
deviates from this shape and develops into a "bubble and spike" configura
tion, in which, finally, round ended columns of the lighter fluid (the 
"bubbles") penetrate the heavier fluid at a constant speed, while spikes 
of the heavier fluid fall freely through the lighter one. 

Among many other and widespread fields in physics as e.g. star formation, 
dynamics of the ionosphere, drop shattering by shocks, and film boiling, 

Rayleigh-Taylor instabilities play an important role in inertial confine
ment fusion. For this special way of attaining thermonuclear burn, extreme
ly high fuel (DT) densities are required. It is hoped to reach them by 
spherically imploding small spherical pellets containing the fuel. The 

necessary high pressures shall be produced by depositing highly energetic 
particles (photons, heavy ions, light ions or electrons) in the outer 
shell of the pellet. Evaporationofthat shell is expected to drive the 
inner parts of the pellet (the fuel) towards the center where it accumu
lates and reaches high pressures and densities. In this process, mainte
nance of spherical symmetry is of crucial importance. One possible source 

of asymmetries is the growth of any irregularities due to Rayleigh-Taylor 
instabilities. 

There are several occasions during pellet compression, in which Rayleigh

Taylor instabilities can become important. In this report, however, the 
problern will be discussed with the background of one situation which is of 

special importance in light and heavy ion fusion: stability of the pusher 
shell adjacent to the fuel during the inward acceleration of the fuel. As 
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an illustration, a case obtained by Tahir and Long (1982) simulating 
performance of a drafted HIBALL pellet with the MEDUSA codewill be used. 
Figure 1 shows the relevant density distributions (on ·a logarithmic 

scale). Part a) showing the original configuration makes evident that the 

pellet consists of a large void surrounded by a single layered shell com

prising fuel (DT), pusher (LiPb), and tamper (Pb). Part b) shows the situa

tion about 27 ns after start of the energy deposition on the pellet by the 
ions. They have heated mainly the pusher so that its outer part expanded, 

blowing a compressed pusher layer and the fuel inwards. This created a 

zone (2 .65 mm to 2. 77 mm) in the pusher where 1 ess dense material acce 1-

erates denser material. In this region disturbances could grow and distort 

or even destroy the pusher-fuel interface. In this way pusher material 
could be mixed with the fuel and prevent its burn even if ignition still 

were possible. Actually, a thin layer of pushermaterial adjacent to the 
fuel remains cold and moves with the fuel forming the so-called payload. 
Destruction of this pusher shell almost certainly would make ignition 
impossible. Since a spherically symmetric pellet calculation cannot tell 
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Figure 1: Logarithmic density profiles of HIBALL pellet 

(Tahir and Long (1982)): 

a) initial state 

b) unstable situation during compression phase 
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whether the pusher shell will survive, a separate check is necessary and 

it is the purpose of this report to discuss a (zero to) first order 
approach to this question. 

Oue to the combined actions of continuous ablation and spherical conver

gence the pusher shell during the acceleration process attains a minimum 

thickness d and rapidly becomes thicker afterwards. It seems reasonable 

and has become customary to take this minimum thickness as a measure of 
the maximum allowable disturbance amplitude. Also, arguments which will be 

discussed explicitly later in this report show that from all possible sinu
soidal perturbations (all wavelengths) those with wavelengths about equal 
to the amplitude in question are the first to reach this amplitude. So, 
while no information is yet available on the possible nature of initial 
disturbances in the pusher shell that could grow due to Rayleigh-Taylor 

instability, the minimum pusher shell thickness d gives a measure of the 

most dangerous wavelength and of the maximum allowable amplitude. This 
report describes how the growth of the most dangerous disturbance can be 
estimated conservatively on the basis of data obtained from spherical 

pellet calculations. The method allows to determine a maximum allowable 

initial perturbation which, at present, essentially must be taken as 
figure of merit when comparing different pellet designs and/or driver para

meters, because there is no reliable figure available to compare the allow
able initial amplitude and velocity with. 

The above discussion only partly illustrates the complexity of the physi
cal situation in which the pusher shell stability is to be investigated. 

Simple application of the classical formulae cited above would be inappro

priate for a number of reasons: 

1. The instability does not occur at an interface between materials of 

different densities but at a gradual density transition. 

2. Under the prevailing conditions, i.e. temperatures of the order of one 

million Kelvin and pressures of several tens of megabars, the material 

will behave like an ideal gas with modifications due to degeneracy. To 

what extent it can be approximated by an incompressible liquid remains 

to be clarified. 
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3. In addition to pressure Variations, the density of the fluid may be 
altered by heat addition due to ion deposition, therm·al conduction, or 
thermal radiation. 

4. An especially important pressure Variation in perpendicular direction 

is due to heat transport (mainly by radiation) from the wave crests 
filled with hotter material into the neighbouring troughs containing 

cooler material. This heat transport is expected to produce a trans

verse pressure distribution which opposes instability growth. 

5. Instead of being due to an external gravitation field or uniform 
acceleration of the whole system, the acceleration of the pusher shell 
is due to a positive pressure gradient within the pusher. So, in prin
ciple, the "gravitation" to be considered is variable with space in 
all directions and time. 

6. The instability is limited to a small "instability zone 11 where the 
gradients of pressure and density have opposite signs. In the adjacent 
regions the arrangement is stable and impedes instability growth. 

7. Due to continuous ablation the instability zone may move towards the 
fuel-pusher interface. Usually this is expressed differently: the 
material may flow (convect) through the instability zone from the 
high-density to the low-density side (from the top to the bottom). 

8. Instead of filling the whole half-spaces above and below the density 
transition zone with homogeneaus fluids, respectively, especially 
"above" the instability there are only limited layers of pusher 

material and fuel. 

9. In reality, the instability occurs at the surface of a sphere. Treat

ing ~t as flat is a valid approximation for shorter wavelengths only. 

10. As real fluids, fuel and pusher material are equipped with surface 

tension and viscosity. 

11. In reality, instabilities may be three-dimensional in nature. While 

this is neglected in most instances, it may have an influence on the 
growth rate. 
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12. Since t~e test amplitude is of the order of the wave length, it would 

be inappropriate to use linear theory throughout. It would under
estimate considerably the time to reach the test amplitude. 

13. Initially, disturbances of different wave lengths may be present. In 

the linear regime these different modes may be considered separately 

as they do not interact with each other. In the nonlinear regime, how

ever, the presence of higher harmonics may increase the growth of the 
fundamental mode. 

It appears that full and combined account of all the points listed above 

requires a full numerical simulation with a two- or even three-dimensional 
hydrocode. However, due to the expenditure of such calculations, they must 

be limited in number. Also, it is urgently required to understand the ef
fect of the realistic refinements on the basis of physical considerations 
- not least to obtain guidance and realistic test cases for the numerical 
studies. Actually, quite some of the topics are amenable to more or less 

accurate analysis. It has, for instance, been shown by Suydam (1978) that 
surface tension is rather unimportant while viscosity could greatly reduce 

instability growth if it were to increase with pressure as indicated by 

yet unconfirmed experimental evidence. 

In the present report only the first (gradual density transition) and the 

twelfth topic (nonlinear growth) will be treated, with some comments on 
effects that may increase the growth rate. In the theoretical studies and 

the example given, constant acceleration and density gradientwill be 

used. It should, however, be kept in mind, that in a half-analytical proce

dure, those variables may be re-determined (from a spherical pellet simula
tion) from time to time, so that quasi-steady variations of them can be 

covered. In this way, it will be possible to take into account some 
effects of varying energy deposition (e.g. range shortening, ion energy 

variation) and other time dependencies in a straight forward manner. 

Lewis (1950) has reported three stages of Rayleigh-Taylor instability 

growth: 
1. Stage described by first-order theory (small amplitudes, exponential 

growth), 

2. transition stage, 
3. final stage (steadily growing bubbles, freely falling spikes). 
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Later, Birkhoff (1955) has proposed to consider two further stages: 
4. Distortion stage (boundaries between bubbles and spike's are distorted 

by vorticity and Kelvin-Helmholtz instability), 

5. mixing stage (a turbulent mixing zone is formed between the two fluids). 

Discussions in this report are limited to the first three stages. They are 
termed linear, transition and nonlinear stage, respectively. The last two 
stages need not be considered because the conditions in the envisaged 
application roughly correspond to Lewis• experiment: 
a) The density of the low-density (the blow-off) region is small compared 

with that of the high-density region (the pusher shell). 
b) For definiteness, discussions are largely restricted to a single sinu

soidal initial perturbation. 
c) Interest is limited to displacement amplitudes of the order of the wave

length (the displacement being measured relative to the virtual undis
torted interface or isodensity line). The last two stages can be ex
pected to occur only beyond these amplitudes. 

Studying Rayleigh-Taylor instability with neglect of the curvature of the 
unstable shell appears tobe justified since the wavelength considered is 
of the order of 10 ~m while the radius of the shell is of the order of a 
few millirneters. There are, however, other types of instabilities with 
wavelengths comparable to the circumference of the sphere that may destroy 

the symmetry, i.e. the sphericity. It has been demonstrated with numerical 
simulations by Plesset and Chapman (1971) that a spherical cavitation 
bubble collapsing close to a wall will deviate from the spherical shape 
soon and produce a liquid jet projected towards the wall. Furthermore, 

Fröhlich and Anderle (1980) have observed (e.g. their Figure 3.31) that 
such jets are formed quite frequently and without close neighbourhood of a 

fixed wall. This type of instability is, of course, not treated in this 
report. 

In the second chapter the linear theory of Rayleigh-Taylor instability as 

used later is collected. Chapter three discusses the application of the 
results for gradual density transitions and in chapter four two approaches 
to a description of the nonlinear behaviour are presented. Chapter five 
contains applications and further discussions, and chapter six briefly 

summarizes the conclusions. 



-7-

2. Linear theory of Rayleigh-Taylor instabilities 

2.1 General equations 

2.1.1 Statement of the problern and historical review 

This chapter summarizes those parts of linear theory that are of impor

tance for the discussions presented later. It is concerned with inviscid 

fluids the density of which remains constant with time in any fluid ele
ment (e.g. an isothermal and incompressible fluid). Surface tensionwill 
be neglected, however, allowance will be made for gradual density Varia
tions. Further assumptions areplane geometry in Cartesian coordinates x 
and z, a constant body force g antiparallel to the z-axis, and small devia

tions from an equilibrium state in which the fluid is at rest in the coor
dinate system. One may think of g as being due to a rotation free gravita

tion field, however, any constant acceleration of the coordinate system in 

the z-direction just adds to the numerical value of g. 

For the "classical" case of discontinuous density variations, the growth 

rate in the unstable case (the denser fluid above) has been determined by 

Lord Rayleigh (1883), but is characterized as "known" by him. Also, Lamb 

(1932} in his Articles 227ff only gives references for the treatment of 

more complicated. cases by Airy and Stokes already around 1840. Later the 

same result was derived another time by Taylor (1950) for the unstable 
case and an accelerating system which is fully equivalent to a system at 

rest but with gravity. He also investigated the influence of a finite 
depth of the 'upper' fluid layer and initiated the first sy~tematic experi

mental studies of this instability, Lewis (1950). Therefore, the unstable 
case, today, is known as Rayleigh-Taylor instability. 

The theory of instabilities at gradual density transitions has as well 
been established by Lord Rayleigh (1883}. So, this case is as classical as 

the one which is usually called so, but apparently, hundred years later, 

part of Lord Rayleigh's work - exactlj the theory needed in the present 

context - has fallen into oblivion. This may be due to the fact that Lord 

Rayleigh apparently did not have a means at his disposal··to conveniently 

solve the transeendental equation which is part of the full solution. So, 

he mainly discussed some limiting cases. His most important explicit 
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result was that at a gradual density transition the growth rate remains 

finite when the wave number goes to infinity. Much later, E. Teller pro

posed the possibility of such a behaviour to Lelevier et al. {1955) who 

confirmed the speculation by an incorrect theory, see chapter 3. Only 
recently, the correct theory was rediscovered (or reinvented) and dis

cussed in more detail· by three authors: Gerhauser {1980, 1983), Mikaelian 

{1982), and Kull {1982). The work of Hunt {1961) is le.ss useful due to the 
approximations used. It appears that the above cited authors were unaware 
of the fact that the full solution had been supplied by Lord Rayleigh 
{1883). (Mikaelian's reference to Lord Rayleigh's work is wrong.) 

2.1.2 Basic equations 

Denoting time as t, pressure as p, density as g, and the Lagrangian 
coordinates as X and Z so that the velocities in x- and z-direction are 
ax;at and ~ Z/~t, respecti vely, the appropriate hydrodynamic equations read 

(see e.g. Batchelor (1970), p. 174): 

()2 X 'd2.Z 
+ - 0 {2.1) 

'& x 'dt ~z r;)t 

CJg 
9t 

+ + 

+ 'dZ . 'd 'i 
9t ~z. 

0 (2.2) 

0 (2.3) 

0 (2.4) 

As described in detail by Chandrasekhar (1961), pp. 428-30, they can be 
considerably simplified in the following way: At first all variables are 

split into their.steady-state part (labelled by subscript zero) which they 
assume in the (presumed) steady equilibrium state and an increment due to 
the di stu rbance: 
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p - Po +- cf JO 

~ = fo +- cf~ 

X ::::: )(o + ÖX 

z - Z 0 + SZ 

Insertion of these definitions in (2.1) to (2.4) assuming that 3X0 /ot = 

aZ 0 /dt = 0 and retaining only terms which are at the most 1 inear in the 
quantities describing the disturbance, gives: 

d2. sx + 
d2. sz 0 (2.5) -

'dx C>t 9z~t 

CSo 
~2. 

cSx + d 8p 0 (2.6) -
062 dX 
d2. 

ÖZ + 
'() 

dp Ög·~ 0 go t- - (2. 7) 
f(Jt2. az. 
9 6g 'dZ 'd 0 {2.8) + ·- ~0 -<at ~t Olz. 

Furthermore, the solution is sought in terms of normal modes, assuming 

[ 
..ikX+-VJt] 8 X = 7<e .s<.z.) · e {2.9) 

f" [ ..ikx+vd:J o 2 ::. 'Re w(z.) - e (2.10} 

and similar expressions for cfs and Öp, with Re denoting the real part. 

Thus, equations (2.5) to (2.8) combine to give 

0. {2.11) 
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2.1.3 Remarks 

It is worth noting that insertion of (2.9) and (2.10) in (2.5) gives 

S(z) = 
k 

o( W(.Z) 

olz. 

Here the imaginary unit i only reflects the 90" phase shift between the 

components of the displacement: lf, e.g. SX behaves as sin kx, ÖZ behaves 

as cos kx. The essential point is that 6X is proportional to a6Z/az for 
all x where &X is not identically zero by virtue of its x-dependence. This 

means that vanishing of the tangential velocity at a horizontal boundary 

is equivalent to vanishing of the normal gradient of the vertical velo
city. It also means that, along any (vertical) line'x = const., the x-com
ponents of displacement and velocity change sign when the z-components go 

through a (local) maximum or minimum. This can lead to a nodal structure 
of the flow field. 

Furthermore, it can be seen that (2.11) only determines n2, so that both 
signs of n are allowable. Since (2.11) is linear, any linear combination 

of ent and e-nt isavalid solution of (2.11). The coefficients of this 

linear combination aretobe determined from the initial conditions. So, 

writing the displacement in z-direction which is the only one to be 
discussed further as 

Sz ( x, z, 1:) - w(z) · ~ kx · J" (t) 

the amplitude h(t) will (in the case n2,.. 0) grow as 

• 
h (t) = h 0 ~ Vlt + ho ~~ Vlt (2.12) 

VI 

• where h0 is the amplitude of the initial displacement and h0 the amplitude 
of the initial disturbance velocity. 

For small arguments (nt-o), cosh nt-+-1 and sinh nt-+nt so that in the 

limit nt -+0 (2.12) becomes 

h (t) 
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which was referred to as initial impulse approximation by Harlow and Welch 

(1966) since they considered the initial velocity perturbation as the 

result of an impulsive acceleration at time zero. This relation describes 

the early time behaviour of any disturbance and, as pointed out by Baker 

and Freeman (1981), the behaviour of systems without acceleration for 

which n = 0. Forthis case, the above linear growth law has f~rst been 

derived by Richtmyer {1960). It is strictly true for incompressible fluids 
and Richtmyer has shown that it can also be applied to the case of com

pressible fluids where the initial Velocity disturbance is created by a 
shock passing in normal direction through an undulated interface between 
the fluids. 

2.1.4 Transition to nondimensional variables 

Now, the nondimensional coordinate 

5 = kz (2.13) 

is introduced, differentiation with respect to this coordinate is denoted 
by a prime and (the square of) a nondimensional growth constant is defined 
by 

r\2. 
y-

~k 

In this way (2.11) becomes 

8 • 

W 
11 

-1-- g 0 W I - ( 1 - j_y. !0 

) W = 0 . 
~0 ~0 

2.1.5 Boundary conditions 

(2.14) 

(2.15) 

The kinematical condition on w is that it must be continuous everywhere. 

If the geometry is unbounded, fwi__..O for 1~1 4- oeis required in order 

that the kinetic energy be finite. A further condition which w has to 
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fulfill at any boundary, at ~ = w say, can be derived by integrating 
(2.15) fromw-e tow+e and taking the limit e-+0. With the defini

tions 

where 

this 

er (w+) - ~ ~ (w+t:) 
E-+ 0 

e.>O and t::l= J'o or w, and 

(w-) 
~ 

C?o - ~'i 

(w-4-) * <Jo - ~2. 

gives 

* I + #- I - /f ( * y) ~ 2. w ( w ) - g 1 w ( w ) + y w ( w) ~2.. - ~ ~ = 0 . (2.16) 

The equations (2.15) and (2.16) together with the conditions on w listed 

after (2.15) fully contain the stability problern described in the 

beginning of this chapter. However, analytical solutions are available for 
special cases only. 

2.2. Superposed liquids of constant densities 

A very important case .is the 11 classical 11 one with 
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In this case ~~ vanishes in both half planes so that, (2.15) reduces to 

II 
w - w = 0 

in both half planes. So, with an arbitrary constant c 

w = 
:t5 c... e 

are solutions and because they have to vanish as 151 ~ ~ one has to 
choose 

~ 
w - C· e (2.17) 

-~ 
w - C· e (2.18) 

where use of the same constant c in both half planes ensures continuity of 

w at ~= 0. From (2.17) and (2.18) one obtains that 

\N' ( 0) 

- - w {O) 

so that (2.16) with c.v= 0, <g:=- 5"1 , and <s:=-s2..gives the 11 classical 11 

growth rate 

y - A (2.19) 

which is called the Atwood ratio A. 

2.3 Free surfaces 

Next, the case of an unstable free surface is considered, i.e. the case 

(]o = 0 s ~ 0 

rso > 0 ~ ~0 ) 
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-H H 
hence s> 1 = 0 and g 2 > 0. 

Then (2.16) gives as tbe free boundary conditions 

from which 

y = 

Rewriting (2.15) as 

II 
- w 

- - W (O) 

w(o) 

w 1(o+-) 

+ [w , -1 J +-y-w 

(2.20) 

it can be seen that the former solution (2.18) solves the problern for any 

density di stribution _s'o(S), ~ > 0. 

ßeca use it g i ves 

' w - - vV f or- all S '::/- 0 J 

y = 1 and the two terms within the brackets cancel each other. This 

reduces the differential equation (2.11) again to 

w" vv - 0 

which is solved by (2.18)~ butthistime without assumptions on Jo· 

Mikaelian (1982) has demonstrated explicitly that the solution (2.18) 
still _holds when density steps are present at some w>O: ·For any density 

difference~~ -~i, the boundary condition obtained from (2.16) is 

y. vv 
1 
(w) = - w (w) (2.21) 

resembling the free boundary condition (2.20), if w(~) and w'(~) are con
tinuous at the positionw which c.ertainly is the case with (2.18). Since 
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y = 1 and (2.18) gives 

I w ::::: - vv 

any number of arbitrary density steps is allowed. 

The same considerations apply to the case of a stable free surface, where 
(2.17) gives 

w - vv for al/ 

~ 
so that (2.16) with g2 = 0 gives y = -1. 

2.4 Remarks 

Before continuing with gradual density variations, it may be worth to note 
(Mikaelian (1982), Kull (1982)) that the flow fields discussed above are 
often called surface modes or (in the stable case) gravity waves. For each 

wave number and surface there is just one mode of this type. These modes 

are irrotational. The physical reason for this is that in a homogeneaus 

nonviscous fluid rotation is a conserved quantity. The initial state with 
the fluids at rest is free of rotation. So, in the regions of constant 
density and without viscosity which could produce rotation, the flow field 

remains irrotati~nal. However, in the case of two superposed .fluids the 

tangential velocities at the material interface in which the two irrota

tional flow fields contact each other have opposite directions so that in 

this line rotation is infinite. As will become clear in the next section, 
this does not remain so for instability modes in a gradual density transi

tion. In that case neither the density variation nor the rotation is con
centrated in a singular line but fills the whole region with variable 

density. These instability modes are called internal modes because they 

result from antiparallel gradients of density and pressure within the 

interior of a fluid body. They exhibit closed flow paths similar to convec

tion cells. As mentioned by Lord Rayleigh (1883) and most explicitly dis

cussed by Gerhauser (1980, 1983) there exist for any wave number infinite

ly many higher modes which show ever increasing numbers of layers of such 

flow cells but grow ever slower. 
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As shown in the last section, surface modes occurring at a free surface 

have the striking property that the growth constant (or oscillation fre
quency) does not depend on the density profile within the fluid. Nor does 

it depend on the compressibility of the fluid, as mentioned by Kull 

( 1982). 

It should be noted that the surface mode originating from a free surface 

is only a partial solution to the problem, if the density of the fluid is 
variable. In that case, the full solution will be a linear combination of 

the free surface mode and other surface modes {if density steps are 
present) and inte:nal modes (if density gradients occur). In this way the 

overall growth rate will depend on the whole density distribution. An 
example of this will be discussed in subsection 5.4.1. 

Among all unstable modes the free surface mode will grow the fastest. 

Therefore, in any problern with an unstable free surface, instability 

growth is dominat~d by the free surface mode. This statement may be 
questionable under very special initial conditions, but such.special cases 

need not be considered here. The matter has been discussed extensively by 

Mikaelian (1983a,b). 

Surface modes with a growth rate which is independent of the density varia
tion within the fluid have also been found at the outer surface of spheri

cally imploded shells by Kidder (1976) and, under more general assump

tions, by Book and Bernstein (1980). The latter call only this mode a 
Rayleigh-Taylor mode and term the internal modes convective modes. 

2.5 Exponential density transition without free surfaces 

The growth rates of instabilities at an exponentially increasing density 
profil e 

ß,S 
~" e. (2.22) 

were first determined by Lord Rayleigh {1883) under different boundary 

conditions. The case with flat plates at 3= 0 and ~=6 is fully treated 

in the text book by Chandrasekhar {1961). The general problern has been 
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reconsidered by Gerhauser (1980, 1983), Kull (1982), and Mikaelian (1982). 
The appropriate conditions for the present purpose (which have been 

treated by Lord Rayleigh (1883) and the last three authors) are 

~0 ( 5) = g 2.. = es~ . e ßll 

In the regions with constant density, so 1 ut i ons similar to (2.17) 
(2.18) are appropri ate: 

w (~) 
S; 

~ ~ c1 e 

w ( ~) - Cz. 
-( ~ -6) 

e t 
For 0 ~5'ö (2.15) reduces to 

w" + f3w 1 
- (/1- .Y)w -0 

the general solution of which is 

~5 +- c ·e 2.. 
'+ 

' 0 

~/:). 

where ~ and er2..are the roots of the characteristic equation 

so that 

(2.23) 

(2.24) 

and 

(2.25) 

(2.26) 

( 2. 27) 

(2.28) 

(2.29) 
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{2.30} 

(2.31) 

with D- 1 + (3 2 1'+ -ßly {2.32} 

Again, y and thus 0:: -~ as well as c3/c4 have to be determined from the 

boundary conditions at ~ = 0 and ~ = ll: With S'o{~) being continuous, rg; = s: 
and {2.16} requires w•(w+) = w•(cv-), i.e. w•(s) must be continuous, as 

w(l) must be. Taking into account (2.25} and (2.26} this means: 

w '(o) I w (o) 1 (2.33} 

w I (,1) I w (~) - - 1 (2.34) 

Before determining the unknowns, it is convenient to rewrite (2.28} 
following Lord Rayleigh (1883}. Observing (2.30} and (2.31} as well as 

and cri =- ( ~ +- cr;J/2 

(2.28} can be rearranged to give 

With the definitions 

. (jJ ii) .-(... - ::: (2.35} L\ 

. r ~ß -4,.. = (2.36} c.., 

Co :::: -2 f c 3 c,/ (2.37} 



-19-

this becomes 

w (s) - (2.38) 

Now, application of the boundary conditions (2.33) and (2.34) gives: 

~ r = - A ( -1 + 11-) (2.39) 
~ 2 

'2. 2./ ,.!.. 2 I:J. 2. 
z. ~ vo4- ~ - f c r) = P t1 4-; 'e - (2.40) 

12 
I 

I 
10 I 

2 Q> cot Q> 
I 

8 

6 
I 

4 I 
I 

2 I 
1q,4 

<t> 4n: Sn: 
I I 

-2 I I 
I I 

-4 I I 
I I 

-6 I I 
f (<l>)= I I 

-8 
I Q>2 I I -~+T I I 
I I I -10 I I I 
I I I 

-12 I I I I I I 

Figure 2: Graphical solution of the transeendental equation (2.40) for 
6= 10 and vanishingß. (After Gerhauser (1980, 1983).) 
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and knowing ;, the growth constant y can be determined after (2.32) and 
(2.35): 

y (2.41) 

Equations (2.38) to (2.41) tagether with (2.25) and (2.26) constitute the 

full solution of the problern (as usual, c0 remains a free constant and c1 

and c2 have tobe chosen as w(O) and w(A) after (2.38), respectively). As 
demonstrated by Figure 2, (2.40) has infinitely many solutions which corre
spond to infinitely many instability modes (assuming ,13>0). It is suffi
cient to consider (>>0, since (2.40) and (2.41) are symmetric and (2.38) 
and (2.39) are antisymmetric, so that w(!) just changes sign when the nega
tive solution of (2.40) is chosen. The curve f(f}) in Figure 2 illustrates 

the case of !l = 10 and vanishing ß· In this case all sol utions are real. 
This behaviour remains as long as (3!5:2. 

t o.a 

-0.6 
)..J) 

0.4 

0.2 

ß= o 1 I 
I I 

I 
I 
I 
I 

0 ~~~--~--_L--~ ____ L_ __ ~--~--_L~~==~ 

-3 0 

Figure 3: Normalized displacement distributions of the fastest growing 
mode for A= 5. (After Kul'l (1982).) 

For ß~2, one has O<f/>o<TCfor the smallest solution;o of (2.40) which 
according to (2.41) gives the largest growth rate. Then after (2.39) cot r 
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is negative, i.e. -71)2 <.. r< 0. Therefore sin(~/.1·5 - r) is positive at 
~= 0. Examples of w(3) are plotted in Figure 3. As already noted by Kull 
(1982) this type of figure shows that the maximum of the disturbance lies 

close to the low-density side of the transition region for ß~ 2 and moves 
towards the centerofthat region for decreasing~. 

0.8 0.9 A___... 

I 
I 
I A I 1.0 I 

t 0.9 ·------+-
QS 

n.:_ 
g k 

0.5 0.5 

0.1 

5 

Figure 4: Nondimensional growth constants (squared) for an exponential 
density transition profile. The thick line represents the 
classical value (Atwood ratio) valid for step profiles. 

10 

The growth constants are shown as functions of (Jll = ln(~21Yl) 
or the Atwood ratio A (see top fringe). Above (JA= 6, 
Ais very close to 1. (After Kull (1982).) 

The nondimensional growth constants (squared) obtained with ~o, i.e. for 
the fastest growing instability modes, are shown in Figure 4 together with 
the Atwood ratio A which represents the classical result. The figure 



-22-

demonstrates that small values of ß can considerably reduce the growth 
constant. For Atwood ratios A close to one the reduction starts to become 

effective for (3~2. Actually, in the limit A....j>o1, i.e. (31!-0">, y -+1 for 

ß = 2. 

Another way to look at these results is the dispersion relation n(k) the 

asymptotic value of which can be obtained straightforward: If one con
siders a fixed density profile with A ~1 and a certain scale length L of 

the exponential density Variation, one has 

L= 4/k(3 (2.42) 

Thus, k-oo means (3-o. From (2.41) one sees, that for a fixed density 
distribution (i .e. (!>6 fixed so that .6-+.-when ;s-o) y-p for ,ß-+0. 
Therefore, for k -o<>, the factor y in 

(2.43) 

tends towardsß, which after (2.42) in 1/Lk. This combines to give 

) (2.44) 

The dispersion relation, calculated after (2.43) is shown in Figure 5 

where it is compared with the "classical" dispersion relation n = 7'9'k' 
which would apply to a density step with A = 1. Here the length L has been 

used to define nondimensional quantities. The figure clearly demonstrates 

that both growth rates practically agree with each other until Lk = 0.6 

i .e. ß ~ 1. 7 and that the growth rate at a gradua 1 dens ity trans it i on does 

not grow beyond the classical value for k = 1/L. This latter result has al
ready been derived by Chakraborty (1975) as discussed in the next chapter. 

The cases with (3 < 2 are easy to di scuss and of main pract tcal i nterest 

because of their reduced growth rates. From a theoretical view point, how

ever, it is also interesting to study how the classical behaviour of inter

faces i s approached when ß grows beyond 2, the graphi ca 1 representat i on of 

which is already included in Figure 4. For (3> 2 there is always a (posi
tive) critical value Llc. of fj suchthat 
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t 
n 

{g7I 
2 

1 

Figure 5: Dispersion relations for a gradual density transition with 

length scale L and a density step, assuming an Atwood ratio 
close to one. 

- ll c 

and 'Po becomes zero. (This is the case D = 0 mentioned by Kull (1982).) In 
the 1 i mit A ...". ll,, ( 2. 38) becomes 

w (5) - (2.45) 

while (2.41) remains valid. Such a case is plotted in Figure 6 for ;s= 4 

which gjves Llc.= 2/3. With,ß slightly smaller, the curves are very similar 
with the maximum slightly shifting to the right as indicated at the top 
fringe of the figure. It is interesting to note that in the case ~= 2, 

Smax here is smaller than for ~ = 5, but is larger in relation to ~. So, 
for ß~ 2, the maximum of the disturbance also moves towards the center of 
the transition region if the latter grows thinner. 
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For A>Ae,(;o becomes imaginary. However, equations (2.38) to (2.41) 
remain valid. Just in terms of the real variables 

and 

the ordinary sine and cotangent are replaced by the corresponding hyper
bolic functions. (In his discussion of thesedifferent cases, Gerhauser 

(1980, 1983) disregards the role that p plays and, therefore, erroneously 

states that (Jo were imaginary for A<A,. This would be true for (3<2 
only, but then ~e.<O which is out of range.) 

For (!>> 2 and ,tSil~10, the equations governing the fastest growing mode 

can be simplified considerably, since in the modified equation (2.40): 

(2.46) 

coth9' can safely be replaced by one ( 5P>O). (The reason for this isthat 

2rp coth Cf looks like 2'f essentially, so that r becomes large as.Agrows.) 
The solution of the simplified equation is 

r = r ßlz 1)11 

and equation (2.39) then yields 

" 0 ___ 2. 
t = 2.. ~ ß 

Furthermore, the location of the maximum can be determined to be 

.im (2. =2/ß) 
ß-2.... 

(2.47) 

(2.48) 

(2.49) 
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and (2.38} can be rearranged to give 

w ( 5) Co 

2.. (2.50} 

showing that w(~) under these conditions can be well approximated by e-~ 
except in a narrow region above ~= 0, e.g. 0< ~ < 2!max· Also, y deter
mined after (2.41} and (2.44} is one. These two results indicate, that the 
cases which can be approximated in the way just discussed very much re

semble the case of superposed fluids of different densities. As an example 

the casef3= 20, /j= 2/3 is plotted in Figure 6, which has /je= 0.02 ••• 

and jmax ~ 0.036. It is seen, that the shape is very similar to e-!s which 
is plotted also for comparison. 

Location of maximum for ß= 4 3 2 

t 1.0 

1-.J) 0.8 

): 

0. 6 

0.4 

0.2 

0 
-1/3 0 116 1/3 1/2 213 

~__..,... 

Figure 6: Normalized displacement distributions of the fastest growing 

mode for ~ = 2/3. 

2.6 Note on general initial conditions 

In the major part of the literature on Rayleigh-Taylor instability and 

almost throughout this report a pure sinusoidal initial perturbation is 

considered. This means that, out of the whole variety of possible instabi-
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lity modes (wavelengths) only a single one is studied. Of course, this is 

possible because any dependence of the initial conditions in x-direction 

may be Fourier-analyzed and the full result may be obtained by Superposi

tion of the individual results for all Fourier components. But it is 

important to note that this is true in the linear phase only. 

When gradual density transitions are considered instead of a single inter

face there occurs another complication of the same kind: As indicated in 

the last section the differential equation (2.27) has infinitely many solu

tions corresponding to the infinitely many solutions of.the transeendental 

equation (2.40). Hence, for any single wavelength there are now still 
infinitely many instability modes. Up to now only the fastest growing mode 

has been discussed. This means that the displacement (in ~-direction) con
sidered was implicitly assumed to be given by 

(2.51) 

which implies the initial conditions 

sz (!,5, o) ( 2 • 52) 

(2.53) 

where j = kx, h(t) is given by (2.12) and w0 (.s) is the characteristic func
tion or eigenfunktion of (2.27) corresponding to the lowest eigenvalue 

1/y0 determined fromtp0 • Even if the right!-dependence is assumed, a 
general initial condition will differ from (2.52) and require expansion 

after a complete set of orthonormal functions. That the eigenfunctions 

w;(~) have the required properties is most easily seen by verifying that 
the differential equation (2.27) tagether with the boundary conditions 
(2.33) and (2.34) and the definition (2.22) constitutes a Sturm-Liouville 
system, see e.g. Ince (1926), Articles 10.6 ff and 11.5 .ff. From this and 

in particular q~(~) > 0 follows immediately: 

a) There exists an infinite set of real and positive eigenvalues which can 

be arranged in increasing order of magnitude such that 

-1/yo < /l/y1 < ••• 
and which tends towards infinity. 
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b) If the corresponding eigenfunctions are w0 , w1, ••• , then wm has 

exactly m zeros in the i nterval 0 < 5 <-A. 

c) The eigenfunctions form an orthonormal set. 

d) Any continuous function on 0~ ~ '6. which obeys the boundary condi
tions may be expanded into an infinite series of the eigenfunctions 
which converges absolutely and uniformly towards the function. Such a 
Sturm-Liouville development is completely equivalent to a Fourier 
cosine development. 

The increasing number of zeros of the solutions w;(s) means the existence 
of an increasing number of nodal planes separating individual layers of 
flow cells. At the elevations of the intervening maxima or minima the hori
zontal displacements will vanish as discussed in 2.1.3. 

Since any initial disturbance naturally fulfills the assumptions of d), it 
can be decomposed into the components corresponding to the eigenfunctions. 
Thus, from any actual initial disturbance the "effective" initial disturb
ance at any elevation may be found, i .e. the initial disturbance that will 
grow with the growth constant of the fastest growing mode. All higher 
modes grow so much slower that they should really be of no concern. (Of 
course, this may be different for different density profiles.) 
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3. Estimate of instability growth at gradual density transitions 

3.1 Introductory remarks 

As discussed in the introduction, instabilities of the pusher shell grow 

in the presence of a gradual density transition. Such a situation has been 

treated in the previous chapter and the results will be utilized here 
although the actual density profile may differ considerably from the 

assumed exponential profile. However, to the writer's knowledge there is 

only one other type of density profile which has been correctly treated 
analytically: Lamb (1911) studied oscillations (and by the same token 

instabilities) in an adiabatic and compressible atmosphere of finite 
height assuming a constant density gradient. But he applied boundary condi

tions which prevent use of his results in the present context: a flat 
plate at the bottom and a free boundary at the top. Only recently, 

Mikaelian (1982, 1983, 1984) has developed an algorithm which allows to 
study instability growth at arbitrary density profiles by approximating 

them with a step profile. 

3.2 Determination of the growth constant 

It has been shown in the last chapter that an (exponential) gradual den

sity transition with a logarithmic derivative ß can lead to an important 
reduction in growth rate (as compared to the classical value y = A which 
applies to density steps), if p is much smaller than 2. I~ the example 

given by Tahir and Long (1982), which will be presented in detail in the 
next chapter, (Jz0.2 and the growth constant is reduced by about a factor 

iS'which means that the effeet is really important in eases of praetieal 
interest. 

Knowing f3 and 6, the (nondimensional) height of the transition zone, y can 
be determined by solving equations (2.40) and (2.41). It is, however, in 

many cases of practieal interest pos~ible to avoid the solution of the 
transeendental equation (2.40). To this end, (2.41) is replaced by its 

1 imit for fl -- whi eh i s 
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* y (3.1) 

This y* is an upper bound of y for all f3~ 2 and y* = 1 for ß~ 2. 
Figure 4 shows that in many cases (e.g. (3<1, A > 0.95) one does not lose 
much by using this much simpler approximation. It is important to note 
that (3.1) provides a conservative estimate of the growth constant. It is 
therefore to be preferred to another approximation equally valid for 
A-+-, in which </>in the denominator of (2.41) is replaced by-n;(Kull 
(1982)). That approximation, while having the advantage of still depending 

on ~' always underestimates the growth constant. This can be seen from 
Figure 2 which sl'lows that the lowest ~ is always smaller thanTt:. 

3.3 Less effective bounds of the growth constant 

As a corollary from Lord Rayleigh's (1883) work, Chakraborty (1975) 
determined that 

y<ß (3.2) 

and y-+(3 for k....,.O"', i .e. ß-+0 and /J.-Otf.> while ßll fixed. Comparison with 
(3.1) or Figure 4 shows that this is an effective upper bound for small 

and largeßll, but only in this range. However, (3.2) is valid in the whole 

range of ß and !l so that for ßll<.1 one may obtain 

"' y < A ( (31l < 1 ) (3.3) 

which for small ß may be an upper bound which is more efficient than the 
general relation (see Kull (1982)) 

y < A < (36/2 (3.4) 

the second part of which can be helpful for (!>!:J<2 and largefJ. Actually, 

(3.3) and sometimes even (3.4) may give lower but still conservative 
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estimates of y than (3.1). Butthis holds for small Atwood ratios only. 

These are not of practical interest in the present context and, therefore, 
these bounds are catagorized as less effective, here. 

For the case of an exponentially varying density, i.e. for ß constant in 
space, (3.2) and (3.3) are the inequalities which Gamalii et al. (1980) 

without any argument and without requiring fi = const give as their equa
tion (5) in which, apparently, the conditions have been interchanged 
erroneously. 

An 11 elementary, illuminating, and rigorous 11 proof of such an inequality in 

which ß is replaced by the maximum that ~/9~(lnS0 ) assumes has been 
announced by Frese (1982). His further statement that the corresponding 

instability modes 11 act only in a thin layer near the mininum of j0 /f~ 11 

appears questionable in the light of the discussions at the end of the pre
ceding chapter. It may be true for k~~only and, therefore, of little 

practical use. 

3.4 Hitherto used incorrect estimate of growth constant 

The theory on which the above outlined estimate of the instability growth 
rate is based was published by Lord Rayleigh (1883) more than a hundred 
years ago. Nevertheless, to the present author•s knowledge, it has not 

been used in the present context up to now. Instead, a growth rate esti

mate due to LeLevier, Lasher and Bjorklund (1955) has been widely used: 

Bangerter et al. (1975), Bangerterand Meeker (1977), Hussey and McDaniel 
(1981), Pert (1981), Targove (1981), Tahir and Long (1982), Jacobs (1983). 

Lelevi er et al. (1955) have considered the antisymmetric density profile 

go - g2. 
-(J:S 

- ( S2..- S-t) /2 . e ~ ~0 (3 .5) 

ß~ s ~0 ~0 - ~ .. +(g2..-3 .. )1l·e ( 3 .6) 

which is plotted in Figure 7a. In Figure 7b the exponential profile (2.22) 

to (2.24) is plotted for comparison. Starting from the basic equation 

(2.3) and assuming separation of variables similar to (2.10) 
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a) p 

-----=--- p1 
0 

b) 

0 

Figure 7: Density transition profiles: 
a) antisymmetric 
b) exponential 

w ( ~) 
-~ ~ ~ 0 with - Co e ( 3. 7) 

w (5) s 
~ ' 0 (3.8) - Co e 

) 

they determined the time-dependent part of the disturbance velocity by re

quiring continuity of pressure at ~ = 0. The time-dependent factor turned 
out to be an exponential function and the growth constant was found to be 
given by 

y - ß . A • 
ß+-1 

(3.9) 



-32-

In Figure 8 this relation is compared with Lord Rayleigh's result (2.41), 

showing a more pronounced reduction of the growth constant by the anti
symmetric density profile, especially for ß = 2 (and higher values of ß). 
For small ß and A ~1, on the other hand, the results are similar since 
both, (2.41) or its simpler substitute (3.1) and (3.9) tend towards p for 

A-+ 1 and (3-+0. 
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Figure 8: Comparison of the growth constants found by LeLevier et al. 
(1955) for the antisymmetric profile with Lord Rayleigh's 

(1883) result for the exponential profile. 

Figure 8 does not yet indicate a contradiction since different density pro

files (shown in Figure 7) have been considered. It is more serious that, 
as already pointed out by Targove (1981), the ansatz which was assumed by 

LeLevier et al. (1955) and which is given here as (3.7) and (3.8) does not 
fulfill the boundary condition at S = 0 which for a continuous density pro

file requires w'(~) tobe continuous, see the discussion after (2.32). It 
is difficult to judge to what extent such a formal deficiency influences 
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the resulting growth rate. However, as demonstrated in chapter 2, the 
growth rate shows up as an eigenvalue in the differential equation from 

which the z-dependence of the disturbance velocity is determined, if the 
instability is analyzed in terms of normal modes. This eigenvalue in turn 
is determined from the proper boundary conditions. So, the result of 
Lelevier et al. (1955) must be considered as unreliable. 

As a further check, the method of Lelevier et al. (1955) has been applied 
to the exact solvable problern treated in section 2.5. The result is 

for (3"4:11, and 

y = Ä /(ll +2) ') 
(3.11) 

and it is for f3 = 0.5 compared with Lord Rayleigh's result in Figure 9. It 
is seen that the result of this method can be wrong (to the optimistic 

side). Therefore, the result of Lelevier et al. (1955), i .e. equation 
(3.9), should not be relied on further. 

It is interesting to note that y after (3.10) goes to Aas ß-"'"""', for all 
values of (3/J. So, (3.10) is the uniform approximation to the step profile 
result (i.e. A), the absence of which Kull (1982, p. 24) remarks. Actual
ly, a numerical comparison of (3.10) and (3.11) with the correct result 
obtained from (2.40) and (2.41) shows that (3.10) and (3.11) provide 
reasonabl e approximations of the correct result for all f3 ~ 1. It can also 
be observed that for sufficiently large IJ. (possibly Ä ~Ac,) the approxima

tion overestimates the growth rate and thus provides a conservative esti
mate. Nonetheless, (3.10) is of little practical use since all the growth 
constants so determined are close to A anyhow. 

It might be found astanishing that, in the range of ß~ 1, the ansatz of 
Lelevier et al. (1955) which is formally inconsistent leads to such rather 

reasonable results. The reason for this becomes obvious on inspection of 
Figure 4 which demonstrates that for (3>2 and A >Ae the correct solution 
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is well approximated by exponential functions except in a small region 
above zero where the formal inconsistency occurs. 

In the opposite case, ß..."..O, y after (3.10) goes to ß/2, showing that the 

result is off by a factor of 2 to the optimistic side. 
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Figure 9: Comparison of the growth constants determined with the method 

of Lelevier et al. (1955) for the exponential profile with the 
correct result due to Lord Rayleigh (1883). 
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4. Nonlinear bubble growth 

4.1 The problern 

Even under the assumed simplifying conditions linear theory as that 
presented in chapter 2 describes the growth of an infinitesimally small 

disturbance only. As the disturbance grows, nonlinear effects (still under 

the same simplifying assumptions) will start to reduce the growth accelera

tion. Also, these effects will cause a change in the shape of the disturb
ance. If it is sinusoidal in the beginning, the crests where the light 
fluid penetrates the heavier fluid will start to broaden and form round
ended columns or bubbles, while the troughs become increasingly narrow and 
form spikes of the heavier fluid that "fall" through the lighter medium. 
(The latter being true for Atwood ratios close to one only, see e.g. Daly 
(1967)). Since the disturbance amplitudes within the high density material 
are characterized by the bubble amplitude, only the question of bubble 
growth is considered further. The important point about this is that the 

bubble rather quickly assumes a constant •terminal (or ultimate) bubble .. 
speed• At, so that finite bubble amplitudes (larger than some fraction of 
the wavelength) need much more growth time than linear theory would pre
dict. 

The above discussion is qualitatively supported by experimental observa

tion, e.g. Lewis (1950) and Emmons, Chang, and Watson {1959). However, it 

is difficult to obtain quantitative information from experiments because 
they suffer from numerous complications as not purely sinusoidal initial 
perturbations, wall effects, actions of surface tension and viscosity, 
Kelvin-Helmholtz instability, etc. More reliable quantitative information 
can be expected from fully numerical Simulations. However, apparently for 
reasons of computational stability, they are often initiated with such 
high disturbance velocities that linear theory is not applicable, e.g. 
Harlow and Welch (1966) and Daly (1967). While Daly {1969) has done many 
calculations in the. linear regime, he does not present how the computed 

growth rates depart from those predicted by linear theory. Such informa

tion is provided by Baker, Meiron, and Orszag (1980) and Menikoff and 
Zernach (1983). Combining the information from these two sources, it can be 
concluded that in the case of small initial perturbations the bubble 
growth rate soon starts to increase more leisurely than predicted by 
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linear theory and approaches the terminal bubble speed by increasing 
monotonically. Only with larger initial perturbations, the bubble speed 

may overshoot and exceed slightly the terminal bubble speed for some time. 

The really nonlinear theories that have been available until recently do 

not describe correctly the late-time behaviour of instabilities. They are 

commented upon at the end of this chapter. 

Very recently a nonlinear theory has been developed by Kull (1983), which 

describes bubble growth throughout from the initial linear phase to the 
late quasi-steady 'phase and is in excellent agreement with all pertinent 
information available otherwise. Unfortunately, this theory cannot be made 

to directly account for the very important effect of growth reduction by 

gradual density transitions discussed in chapter 3. Therefore, at first, 
in the next paragraph, a simple synthetical model is presented in which 
just the linear theory is used until it is reasonable to switch to the 
terminal bubble speed. After that, the results of Kull's theory are pre
sented and used to check the simple model. Finally, some older nonlinear 
theories are discussed briefly. 

4.2 Simple synthetical model 

Numerical simulations, as reported in the last section, indicate that 

linear theory very soon starts to overestimate bubble growth. They also 

indicate that under the condition of very small initial perturbations, the 
bubble growth rate will never exceed the terminal bubble speed observed in 

experiments and simulations and found theoretically. For such initial con

ditions, a conservative estimate of the bubble amplitude can be obtained 

by using linear theory until the so predicted growth rate equals the termi
nal bubble speed and applying the latter from then on. This model is, 

therefore, merely a synthesis of two already well known special solutions. 

Linear theory predicts the disturbance amplitude in any plane to grow as 

. . 
AU;) = ~ 

h 
~..,t. (4.1) 
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Here (2.12) has been specialized to the bubble amplitude A and the initial 

displacement amplitude h0 and the initial velocity amplitude h~ are now .. 
called A0 and A0 , although, in the linear regime, the amplitudes of bubble 
and (precursor of) spike are equal. In general, the initial disturbances 

of both, displacement and velocity, will be nonzero. In the absence of 
reliable information on those disturbances it seems appropriate to assume 

• 
Ao :::: y, A 0 

(4.2) 

so that (4.1) reduces to 

A (i) Ao 
..,t 

- e (4.3) 

which resembles the growth law used in many instances but actually, on the 
basis of a more careful investigation of the time behaviour during the 
linear phase, implies that an initial displacement amplitude A0 and an 
initial velocity disturbance with amplitude nA0 are assumed. Setting the 
latter to zero would practically cut the bubble amplitudes at later times 
by two. 

As indicated above, the relation (4.3) will be used until a time t1 in .. 
which the bubble speed A equals the terminal bubble speed At: 

• 
Al ~-t) 

which gives (4.4) 

and 
VI t-1 1. 

0 

A lt4 ) :::::: Ao e - At .., ) (4.5} 

• 
·t -1 

~( A-c ) :::::: -
"' Y1 V\ A o 

and • (4.6} 

• The terminal bubble speed At is given by 

( 4. 7} 
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where A. is the wavelength, g the acceleration, and F an empirical constant 
which is often called the Froude number. This constant has been determined 
experimentally to lie in the range 0.2 ••• 0.3 by Emmons, Chang, and 

Watson (1960), theoretJcal considerations placed it at about 0.24, 
Garabedian (1957), or between 0.22 and 0.24, Birkhoff and Carter (1957). 

Purely numerical simulation by Harlow and Welc.h (1966) gave results in 

agreement with Garabedian (1957). Using other numerical techniques, Baker, 

Meiron, and Orszag (1980) found F = 0.225± 0.002 (after an extrapolation) 
and Menikoff and Zernach (1983) found F = 0.23. The only fully analytical 
determination is due to Layzer (1955) or Kull (1983) (see paragraph 4.3) 
and gives 

- A/z. 
F == (bn:::) ~ 0. 230 (4.8) 

in good agreement with the other results. This value of F will be used in 
what follows. (See, however, the discussion in 5.4.4.) 

In summary, bubble 'growth is described by the following equations: 

Alt) : foy t ~ t 1 ( 4. 9) 

AU:) :::: (4.10) 

• 
where At is given by (4.7) and (4.8) and t1 is defined by (4.6). 

Introducing the non-dimensional quantities 

<X = A k (4.11) 

and r = t ('j-k)'Yz > (4.12) 

the above relations read: 



<X Ce) 

where 
- 'Yz. 

('3) 
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.. 
+ <x.-t ( r - r..,) 

for r: ~ 7:1 

) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

and the dot, when used in connection with dimensionless variables, denotes 
derivation with respect to ~. 

Here it should be noted that 

= 
~2. 

y (4.17) 

after (2.14). An illustration of the model for the classical case y = 1 
will be given in Figures 10 and 11. 

.. 
Similar models have'been developed independently by Frieman (1954),,Layzer 

(1955), Fishburn (1974), Suydam (1978), and Pilch et al. (1981). The model 
presented here very much resembles the one due to Layzer (1955). In all 
these models, the growth constant n contained in (4.9) and (4.10) has been 
determined from the classical formula (2.21) together with (2.14). This 
would not be appropriate in the presence of a gradual density transition 
which, as discussed in the previous chapter, can effectively reduce the 
growth constant. For the linear phase this can be accounted. for by deter
mining the growth constant n from (2.14) and {3.1). Unfortunately, there 
is no relation available describing the effect of the density gradient on 
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the terminal bubble speed. So, one cannot take advantage of this possibly 
important effect and the analysis of bubble growth is inconsistent with 

this respect. Strictly speaking, there is even no evidence available, 

which indicates that the nonlinear behaviour at really gradual density 

transitions corresponds to that observed at density steps with large 

Atwood ratios. It is, however, expected (and assumed in the synthetical 
model) that the latter constitutes an upper limit to instability growth in 

the nonlinear regime as it does in the linear regime. 

The model presented here assumes the Atwood ratio A to be close to one. A 
generalization to smaller values of Ais easy for the linear part of the 

model only. It would consist of replacing the simple formula (3.1) by the 

equations (2.40) and (2.41). Guidance in deciding whether the extra 
expenditure were worthwhile could be obtained from Figure 4. The situation 
is not as clear for the nonlinear phase. First, even for density jumps the 
physical picture outlined in section 4.1 is valid for large Atwood ratios, 

above 0.5 say, only. Second, it is not clear whether the terminal bubble 
speed depends an the Atwood ratio. Birkhoff (1955), using apprbximate argu

ments, derived that the terminal bubble speed would vary asl'1-S'll92'· 
However, Daly (1966) as well as Crowley (1970) found no dependence of the 
terminal bubble speed on the Atwood ratio in the range 0.33 ' A ~ 0.82 in 
their numerical simulations using the MAC method. It is hoped that a 

generalization of the nonlinear theory tobe presented next can remove 

this discrepancy. 

The criterion used in this model for switching from the linear theory to 

the terminal bubble speed may also be taken as an indication of the range 

in which linear theory can be applied reasonably. It is, therefore, 
interesting to note that the criterion which has been formulated using the 
growth velocity can be translated into one which is based on the ampli-
tude. From 

• .. 
A l&-1) '= A-c (4.18) 

one obtains 

1.. • 
A lt1 ) :::::. Ae-n (4.19) 
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either on the basis of assumption (4.2) or assuming t1 to be so large that 

exp(-nt1) may be neglected, i.e. assuming a very small A0 • With 

::::: 

after (2.14) and (4.7) this gives 

wh i eh becomes 

"F·A. 
121[,y i 

after (4.8). In the classical case of an interface, y = 1 and 

i3'k 

(4.20) 

(4.21) 

(4.22) 

.. (4.23) 

which is a little bit larger than the value A./67tgiven by Kull (1983) but 

still much smaller than the value of 0.4 A which is often cited as the 
amplitude at which nonlinear behaviour starts. 

In the presence of a gradual density transition, y will be smaller than 

one and the amplitude range in which linear theory is applied will be 
extended. 

It should be mentioned that these results are obtained only if one assumes 
(4.2) or small initial amplitudes. In general, the switch-over amplitude 
obtained from the velocity criterion will depend on the initial amplitude. 
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4.3 Nonlinear theory of bubble growth 

Layzer (1955) has developed a nonlinear theory describing the motion of 
the bubble vertex. Kull (1983) within a more complete study of nonlinear 

bubble growth has repeated the derivation allowing for an initial velocity 
e 

disturbance. The result is an analytical formula giving the bubble speed « 
(II 

as a function of the initial conditions ~ 0 and «0 and the actual bubble 
ampl itude 0(: 

;:, z. __ ~ [ 1 - e 3 
(0(-o(o) 1- e.:~Cl( [ 2. (o<- «o)- <X. 2. (I( + 2.. e8

0( 0 ) J 
"" (4.24) 

2 .,_ e-3 o< • 

Numerical integration of (4.24) gives the nonlinear development of the 
bubble amplitude in full agreement with all available information. In 
particular, as pointed out by Kull (1983), for small amplitudes, 3<X «. 1, 

one obtains (in nondimensional form) the result (2.12) known from linear 

theory and in the limit of large amplitudes, (4.24) reduces to (4.15) 

which is the nondimensional equivalent of (4.7) and (4.8). 

As a first application, the synthetical model presented in the last sec
tion is compared with pure linear theory and the fully nonlinear theory in 
Figures 10 and 11. Tothis end, equations (4.13) to (4.16) are applied to 
the classical case of superposed fluids with an Atwood ratio of one, in 
whi eh case 

(4.19) 

Furthermore, as a typical initial condition, 

• 
<Xo = o( o = 0. 01 (4.20) 

is chosen. Figure 10 showing the (logarithm of the) bubble growth rate is 

the equivalent of Fig. 6.1 in the report by Pilch et al. (.1981) but is no 
longer based on physical intuition only. Figure 11 which shows bubble 
amplitudes demonstrates that the empirical model overestimates the ampli
tude because it overestimates the growth rate during the transition regime 

between the true linear regime and the asymptotic nonlinear regime. It 

furthermore demonstrates the potential big advantage of the synthetical 

model over linear theory. (In a similar figure by Layzer (1955) obviously 
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the curve labels have been exchanged by mistake: a should read B, A should 
read b, and vice versa.) 

The nonlinear theory by Layzer {1955) has been extended to include surface 

tension by Rajappa (1967). From this, in particular, the effect of surface 
tension on the terminal bubble speed may be obtained which, however, is 

not considered here. 

4.4 Other nonlinear theories 

Since linear theory becomes increasingly doubtful as the amplitude grows, 
there have been many attempts to develop higher-order theories, mainly for 
the "classical" situationoftwo-dimensional disturbances at the interface 

between a semi-infinite fluid and vacuum. Probably the first to do so was 

Ingraham (1953) who presented the principle equations and worked out the 

second-order solution. His theory was generalized by Baker and Freeman 
{1981) to include initial velocity disturbances. 

Emmons, Chang, and Watson (1960) developed a third-order theory including 

surface tension in order to study finite initial amplitude effects on the 

stability criterion, i.e. on the critical wavenumber beyond which instabi
lity is prevented by surface tension. But as discussed e.g. by Kiang 

(1969) and Rajappa (1970) their method was inappropriate and partially 
gave wrong results. Later the destabilizing effect of finite initial ampli

tudes (the critical wavenumber increases with initial amplitude) has cor

rectly been derived by Kiang (1969), Nayfeh (1969) and Amaranath {1980). 
Nayfeh also gave a second-order solution for the unstable case, remarking 

correctly that it is valid only for short times. (Nayfeh in addition 
studied the effect of a finite thickness of a fluid layer which is bounded 

by a flat plate). 

Rajappa (1970a, 1970b) presented a third-order theory including surface 

tension. While his result on the critical wavenumber is incorrect (see 

Nayfeh or Amaranath) he presents (in the second paper) results indicating 

that his theory is able to describe the development of instabilities well 

into the nonlinear regime with a steadily growing bubble. Amaranath and 

Rajappa (1976) have extended the theory to include a finite density of the 
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lighter fluid and Rajappa and Amaranath (1977) have studied three-dimen

sional disturbances (presenting only second-order results for the ampli
tude). 

The difficulty with all the higher-order theories for unstable cases is to 

find out how far in time they can be used. It is clear that they must fail 

at some time because the higher-order terms (i.e. higher terms in a 
Fourier series) are kept small by increasing powers of the initial ampli

tude h0 only, i.e. they areproportional to h0 , h6, hÖ, etc. On the other 
hand their time behaviour is characterized by exp(nt), exp(2nt), exp(3nt), 
etc. so that inevitably, after some time, higher-order terms will become 
more important than terms of lower order, indicating bad convergence of 
the series, the first two or three terms of which are considered only. The 
above considerations also indicate that decreasing the growth constant n 
increases the time interval in which any finite-order theory may be 
appl ied. In the case of 1 inear theory and. assuming the switch.:.over crite

rion of the synthetical model of subsection 4.2 even the amplitude up to 
which it could be used was increased by decreasing n (see the end of sec
tion 4.2). Hence, with a strong influence of surface tension, third-order 
theory may accurately describe the disturbance amplitudes up into the non
linear regime as presented in Figures 2 and 3 of Rajappa (1970b). But it 

seems difficult to predict e.g. the terminal bubble speed from such a 
theory and without additional information (as e.g. an experiment) because 
it is completely unknown (within the theory) whether the terminal bubble 
speed is reached at all within the range of validity of the theory, and if 
it were, at what time. 

Without surface tension, the above theories are of rather limited use for 

a description of the disturbance amplitudes because the higher-arder 
Fourier terms, as indicated above, grow with higher powers of exp(nt), 
Therefore, the period in which they are already large enough to really 
contribute to the sum of the series but still smaller (by an order of 
magnitude, say) than the preceding term is rather limited. An illustration 

of this for the second-order term is given in Figure 7 of Prosperetti and 

Jacobs (1983). (By the way, their somewhat higher estimate of the Froude 
number characterizing the terminal bubble speed may be due to the fact 
that their method gives a bubble which is slightly peaked at the top.) The 
numerical results represented in that figure also show that for any term 
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the period until the next higher term becomes important too becomes 

rapidly smaller with the order of the term. In other words, the number of 
terms required for a reasonable description of the interface increases 

rapidly and at an increasing rate. Therefore, adding higher-arder terms 

becomes increasingly inefficient (and, in addition, much more involved). 

A completely different approach to a nonlinear theory of Rayleigh-Taylor 

instability is the generalized coordinate method developed by Oienes 

(1978). This method is quite promising because it rather elegantly 
describes the shape variation of the interface and (when an ordinary 

differential equation is integrated numerically) allows for considerable 
freedom in including real fluid effects (but not compressibility). 

However, as presented in the paper, i .e. with only one term retained in 

the series expansion of the velocity field (only one generalized 

coordiante), it gives absurd late-time results: the spike amplitude 

becomes infinite within a finite time while the bubble amplitude remains 
below a fixed value. 
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5. Applications to pusher shell breakup 

5.1 Formulation of the problern 

As already described in the introduction, inertial confinement fusion re

quires extremely high fuel densities and during the implosion which shall 

lead to them, Rayleigh-Taylor instabilities can occur because pusher mate
rial at low density but high temperature and therefore high pressure is 

accelerating compressed but much colder pushermaterial (and the fuel in 

front of it). The instability zone which e.g. in Figure lb is located 
roughly between 2.66 mm and 2.77 mm is characterized by a gradual density 

transition. It is essential that the thin shell of compressed pusher mate
rial in front of it is not broken up by the instabilities, i.e. not pene
trated completely by the 11 bubbles 11 filled with light and hat material. 

Numerical pellet simulations performed under the assumption of spherical 

symmetry do not answer this question directly. Two-dimensional pellet simu

lations, even if available, are very involved. Therefore, aseparate model 

is needed. Here, the synthetical model presented in the last chapter is 

used to determine maximum allowable initial perturbations which can serve 

as figure of merit when comparing different pellet designs and/or illumina

tion histories with respect to the pellet's vulnerability to pusher shell 

breakup on the basis of information provided by spherical pellet Simulations. 

For two reasons the allowable initial amplitude characterizing both 

initial perturbations cannot simply be compared directly with some other 

figure to decide whether the pusher shell in a certain case should sur
vive. Firstly, the model is overly pessimistic. Although it accounts for 
two important effects, the gradual density transition and the nonlinear 

growth saturation, it leaves out many other effects that might further 

strongly reduce instability growth, as e.g. lateral heat transfer. It is 
difficult to judge how important such effects are without having tested 

them under the appropriate boundary conditions. For example, in all 

studies on laser fusion the density gradient is so steep that it has 

little effect on instability growth, while, in the present case it well 

makes a difference, as will become obvious soon. There are, of course, 
also effects that can increase the growth rate. But their potential seems 

not to be too great. They will be di scussed in some more detail in a 

separate section of this chapter. The second obstacle preventing direct 



-48-

comparison of the maximum allowable initial perturbations with the actual 

initial perturbations is absence of information on the latter. In the 

literature, the discussion concentrates on surface imperfections and for 

reasons that are far from being clear, surface imperfections below 10 nm 

arequotedas necessary and possible (e.g. Bangerterand Meeker (1977), 

Hendricks et al. (1981)). This figure, however, may berather meaningless 

in the present context, since, as e.g. in the here considered illustrating 

case, the instability under discussion may not grow at a material inter

face but at a density gradient that develops within the pusher material. 
One could imagine that distortions develop in this region during the accel

eration process because imperfections of the pusher-fuel interface imply 
variations of the (areal) mass tobe accelerated. Initial perturbations so 

produced may be characterized as kinematic in cantrast with static pre
fabricated perturbations. They have been observed by Ripin et al. {1982). 

Such disturbances will always grow because of both effects: kinematics and 

Rayleigh-Taylor instability. In the beginning, kinematics will prevail, 

but later instability growth may predominate. {The above mentioned experi
ment seems not to have entered the second stage.) In this situation it is 

difficult to determine an initial amplitude. Most probably, however, both, 

initial amplitude and initial {disturbance growth) velocity must be taken 

to be nonzero. Therefore, the assumption {4.2) has been chosen for the 
synthetical model. 

Application of the synthetical model in conjunction with the estimate of 

instability growth at gradual density transitions presented in chapter 3 

means that the linear growth constant is calculated for a region of expo

nentially increasing density between regions of constant densities (see 
Figure 7b) and a constant acceleration in the positive z-direction. In 

order to specify a breakup criterion it is observed that the pusher shell 

assumes a minimum thickness d during the compression phase and rapidly 

grows thicker afterwards due to spherical convergence. The shell is 

assumed to remain intact as long as the bubble amplitudes do not become 

larger than the minimum thickness d. In addition, for the following 

numerical example, the wavelength is assumed to equal the minimum thick

ness d, too, because it is common practice to assume this wavelength to be 

most dangerous. The most dangeraus wavelength will be discussed in more 

detail in the third section of this chapter. 
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5.2 Determination of maximum allowable initial perturbations 

5.2.1 Numerical example 

Tahir and Lang (1982} have simulated the performance of a former HIBALL 

pellet with the MEDUSA code and provided the information necessary to 
apply the synthetical model. This case has already been studied with a 
similar model by Jacobs (1983}. But that study still used the result of 
the theory by LeLevier et al. (1955}, which now has been shown tobe 

wrang. Therefore, the case is reconsidered here. 

As determined by Tahir and Lang (1982}, the Atwood ratio formed with the 
two extreme densities is close to one all the time, the minimum thickness 
i s 

d :::: ( 5 .1) 

the total acceleration time is, 

(5.2} 

the acceleration gives 

= A3 1. 
2. 5" • AO Wl I s (5.3) 

and the inverse length scale of the density gradient is 

A ~ -1 T = ß k == t-. 3 9 . -1o m (5.4) 

so that wi th 

i\. ::::. ol :::: A6 rVVl (5.5} 

k 
6 --1 

:::::: 3. 93 · AO W1 (5.6} 

and ß :::: o.-11?8, ( 5. 7) 

From (5.3} tagether with (4.7} and (4.8} one gets 
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• 
A~: =- 4- 600 W1/S. 

Now, after (4.10) 

• 
At • 

Al 1:2 ) - + At (t2 --t") 
h 

so that t1 
-1 A{tz) 

+ t.2.. (5.8) - • ..., 
At 

Here, after (2.14) 

(5.9) 

where y is replaced by y* after {3.1) since ß< 0.5 and A ~0.95: 

* y ~ 0. -186 . (5.10) 

This value shows that the gradual density variation, in this case, reduces 

the growth constant by a factor 

""/ ( o . .1~6 )- z ~ 2. 3 

as compared to the classical value given by y = 1. From (5.9) 

Vl ::: {5.11) 

and with this and {5.8) {5.12) 

so that, after (4.4) 

(5.13) 

which implies, after (4.2), 

(5.14) 
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These are the amplitudes of the maximum allowable initial perturbations. 

Growth of the here discussed disturbance with these initial conditions is 

shown in Figure 12, comparing linear theory and the synthetical model, 

which both take into account the retarding effect of the gradual density 

transition, and the nonlinear theory of Kull, in which this effect cannot 

be accounted for. Actually, consistent use of (4.2) leads to different 

initial velocity disturbances, the one used in connection with Kull's 
theory being larger. But use of the same initial Velocity shifts the 

straight part of the curve to the right by 0.1 ns only. So this effect may 

be neglected. 
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Figure 12: Growth of bubble amplitude in the HIBALL pellet case, assuming 

the maximum allowable initial perturbation amplitudes after 

(5.13) and (5.14). Comparison of empirical model, linear 

theory and nonlinear theory due to Kull (1983). 
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The above d~termined allowable initial displacement amplitude is an 

extremely small fraction of the wavelength (2·10-4). Therefore, initial 
amplitudes even ten times as large arestill in the range where linear 
theory applies and the synthetical model as formulated here always over

estimates the bubble growth velocity. So, with initial amplitudes that 
allow survival of the pusher shell, this model will always be conserva
tive. 

In order to further illustrate the importance of the two effects which are 
included in the synthetical model one may calculate the figure of merit, 

A0 , with 1 i near theory al one and/or the growth constant n = & appro
priate for a free surface (A = 1 being assumed throughout). The results 

are as follows: 

Full synthetical model: 

Linear theory with account 
of gradual density transition: 

Synthetical model without account 

of gradual density transition: 

Linear theory without account 
of gradual density transition: 

A0 = 2.75·10-9 m 

A0 = 0.32·10-9 m 

A0 = 0.2·10-12 m 

A0 = 0.2•10-15 m 

The last two numbers which are small even an atomic and nuclear length 
scales, respectively, show how important it is to account for effects that 
reduce the linear growth constant like (in this case) the gradual density 
transition. They also show that nonlinear saturation becomes more 
important with increasing linear growth constant. But even in the case 
studied here with its small growth constant, nonlinear saturationstill 
contributes one order of magnitude. 

5.2.2 Possible extensions 

In the example presented in the last subsection the result partially 
depends on the procedure by which the parameters (boundary conditions) are 
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determined from the numerical pellet simulation. So, the above presented 
result is not necessarily as conservative as the synthetical model is. For 
instance, as can be seen from Figure lb, the density profile in the case 

considered is far from being exponential. In that case it would be conser
vative to define ßas the spatial maximum of the logarithmic derivative of 

the density distribution. Actually, the ß used above is some spatial mean 

value defined by 

A -ll {5.15) 

where Ä is the {dimensionless) thickness of the transition region taken to 

be bounded by z1 and z2, i .e. 

IJ:. :::: k ( Zz. - 'Z.., ) 

and ~2.. 
::: ~ ( Zz,) 

q-1 =- ~ cz ... ) 

On the other hand, the ß used in the numerical example is the largest that 

has been found during the whole acceleration phase and represents a rather 
sharp maximum. Before and after this maximum, ß is only about half as big. 
Therefore, the ß used should still be conservative. Similar considerations 
apply to the acc~leration which, however, seems to vary less with space 
and time. 

A more elegant and more realistic way to treat the problern would be to 
take the actual density profile. For the period in which linear theory 
applies, this can be achieved using a formalism developed by Mikaelian 
{1982). He has derived formulas to calculate the fastest growing insta
bility mode of an arbitrary density profile given as a series of density 
steps. This is just as the finite-difference pellet simulation codes deter
mine the density profile. With this method the largest growth constant 

could be determined directly and without recourse to an exponentially 

varying density and the corresponding analytical relations used in this 
report. 
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Of course, the determination of the largest growth constant may be 

repeated after certain time intervals (not necessarily after each time 

step). At the same times the (spatial maximum of the) acceleration may be 

determined and both data may be used to calculate instability growth with 

almost full time dependence. This procedure would remove avoidable 
pessimism and the necessity to define an acceleration time interval. 

The above outlined scheme in which instability growth is calculated in 

several time steps could probably be extended to account for another 

effect which may be expected to reduce instability growth: convection or 

flow of material through the instability zone. In the present context 

where only an acceleration which is constant in space can be considered, 

the instability zone is identical with the density transition region and 

convection will occur if the region of increasing density moves forward 
(in the direction of the acceleration) with respect to the Lagrangian mesh 

cells. Since the disturbance amplitude quickly dies away with distance 

from the location of maximum disturbance, this convection of formerly 

further away material layers into the zone of increased disturbance growth 

(the density transition zone and possibly its close vicinity) would con

tinuously reduce the initial amplitudes to be considered in the next time 

step. While this growth reducing effect occurs where it is needed -

upstream, i .e. towards the pusher shell - disturbance amplitudes will be 

increased downstream where they do not matter. How important this effect 
might be remains to be clarified. 

Clearly, this concept requires calculation of the z-dependence of the 

disturbances. But that can be done Straightforward as demonstrated in 

chapter 2 (see Figure 2) for continuous density variations and by 

Mikaelian (1982, 1983a,b) for multiple step functions. It is further 

necessary that the maximum growth constant is used only in connection with 

that portion of the initial amplitude at a certain location which is the 

component of that amplitude corresponding to the fastest. growing eigen

mode. The same fact is expressed by Mikaelian (1983a) slightly different: 

In order that the disturbance everywhere grows as a normal mode (i .e. with 

one growth constant) the initial disturbances have to be proportional to 

the corresponding eigenfunction. But, of course, additioral amplitudes may 

be present- they just do not grow so fast. If, e.g. the here outlined 
scheme is coupled with a calculation of the kinematic development of 
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initial disturbances as discussed in subsection 5.1.1, the initial distur

bances will be equal at all interfaces. But only at the location of the 

maximum of the eigenfunction this whole initial disturbance will be con
sidered as initial value. At other locations the effective initial ampli

tudes will be smaller corresponding to the shape of the eigenfunction. 

In the discussion so far it has been assumed that instability growth can 

effectively be described by the fastest growing instability mode only. 

Actually it might be necessary to take into account several modes - but 
probably a few are enough. This is no principal difficulty but only 

increases the numerical effort. The problern has been treated by Mikaelian 
{1983a,b). 

The time dependent method discussed here can also be made to account for 
another effect which- again- has already been mentioned by Mikaelian 
(1984): lf the material is compressed during the acceleration or if it 

expands at some other time, always the disturbance amplitudes are reduced 
or increased correspondingly. This is another effect modifying the 
z-dependence of the disturbance amplitudes. If it is taken into account 

also, it might really be necessary (or at least prudent) to decompose at 

any time step the actual z-distribution of the amplitudes into the 
components corresponding to the (most important) eigenfunctions of the new 
density profile. Of course, compression or extension of existing distur

bance amplitudes is only part of the effect that material compressibility 

has. While, in the present context, collision of shells as mentioned by 

Mikaelian (1984) is of no concern, one has to worry about the increasing 
effect which compressibility may have on the growth constants. This effect 

will be discussed in a further section of this chapter. 

The discussion of the extended calculational scheme so far was limited to 
the linear phase. Nothing nearly as sophisticated is available for the non

linear phase. The best (i.e. least conservative) is to assume the terminal 
bubble speed given by (4.7) and (4.8) to take over when the growth rate of 
the disturbance at the rear interface of the pusher shell reaches this 

velocity. This .proposal makes use of the fact that disturbances grow the 

fastest somewhere in the middle of the density transition region. So the 
terminal bubble speedwill be reached there earlier. However, there is no 

easy way to calculate individual disturbance amplitudes at the different 
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interfac~s after switching to the terminal bubble speed because the 

z-dependence of the corresponding flow field is difficult to determine. 

One only knows that higher harmonics couple in with increasing weight. But 

elongated use of linear theory is conservative because the disturbance 
amplitudes in the middle of the density transition region (which, however, 

are of no direct concern) will be overestimated and because the funda
mental mode considered in linear theory dies out slower in the z-direction 

(essentially as exp(-kz)) than the higher modes which actually will come 

into play, and which die out faster, e.g. as exp(-2kz) and exp(-3kz). 

5.3 Most dangeraus wavelength 

5.3.1 Introductory discussion 

Since the synthetical model presented in paragraph 4.2 describes the 

growth of disturbances basically correct up to the range in which destruc

tion of the pushershell occurs, this model is suited to determine the 
most dangeraus wavelength. There are two ways to do so: The first consists 

of determining the breakthrough time at which the bubble reaches a certain 
amplitude (in the following called critical amplitude). The most dangeraus 
wavelength then is the one with the shortest breakthrough time. (Just as 
well one might determine the wavelength reaching the largest bubble ampli

tude within a certain time interval.) This procedure has the disadvantage 
that the result not only depends on the critical amplitude chosen but also 

on the assumed initial disturbances, and that the breakthrough time is a 
rather insensitive parameter. On the other hand, it has the advantage that 

it can be used when the time variation of the density gradient and the 
acceleration shall be accounted for. Also, this procedure has already been 

used by Frieman (1954}, Capriotti (1973}, Fishburn (1974}, Suy~am (1978}, 
and Jacobs (1983). It is therefore again considered here to some extent in 
order to demonstrate it in conjunction with the revised synthetical model. 

The second possibility for determining a most dangeraus wavelength is to 

calculate the maximum allowable initial perturbations as a function of the 
wavelength and looking for the minimum of this curve. While this procedure 

can be followed only if the density gradient and the acceleration are 

assumed constant in time, one need not assume initial perturbations and 

the results are more pronounced because the maximum allowable initial 
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perturbations are a much more sensitive parameter - making it a suitable 

figure of merit. 

In a further subsection the potential effect of a reduction of the termi

nal bubble speed by gradual density transitions is explored by assuming a 

corresponding relation. 

5.3.2 Determination from shortest breakthrough time 

Inverting (4.10) and inserting (4.6) one obtains 

(5.15) 

as the breakthrough time, i.e. the time to reach a critical amplitude 
which is here called A*. This formula is valid as long as A* is larger 

-'1 
than the switch-over amplitude A(t1) which is [trY'k] after (4.22). 
Thus, for the example treated in the last paragraph, i.e. A* = d = 16~m 
and a length scale of the density variation of L = 1/~k = 13.53 ~m, (5.15) 
is valid up to the wavelength A.= 174 ~m, in which caseßis just larger 
than 2 so that already 1 is the conservative approximation for y. The re-, 
sult is shown in Figure 13 for different choices of the parameters n and 

A0 • All the curves show minima (which have been marked) because disturb
ances with shorter wavelengths have larger growth constants in the linear 
phase but reach the nonlinear phase earlier and then grow at a slower rate 
while disturbances with longer wavelengths have smaller growth constants 
in the linear phase but grow faster in the nonlinear phase. The most dan
gerous wavelength ~* depends slightly on the initial disturbances. Figure 
13 shows however that it is larger than the critical amplitude A* in all 

the cases considered here. It also shows that the curves are very fl at 
araund the minima. 

When calculating· the curves A, B, and C the density gradient has been 

taken into account by using a growth constant n determined with y = y* 

after (3.1). A certain density gradient (with fixed length scale L) slows 
down shorter wavelength disturbances more efficiently than those with 



t 10 
V) 
c 
c 8 
Q) 

E ....._ 6 
..c 
0"1 
::J 4 0 
L. 

..c ....._ 

...:X:: 2 d 
Q) 

'--
CO 

0 

-58-

With account of density gradient 

\ 

Ao 
1nm 

\ ( 
Snm 

~----------~~10nm 

0 -----10nm 
··~--.. ~----········· ....... E A. I •••eoooooooeooe ............................. Y..... 500 

Without account of density gradient 

~ Length scale L of density gradient 
1 1-'-- Amplitude at which breakthrough occurs 

10 20 30 40 50 

Wavelength 1n }Jm 
60 
.... 

70 

Figure 13: Breakthrough time as a function of wavelength and initial 

disturbances (A0 as indicated, A0 = nA0 ) 

larger wavelengths. This is not only true for the linear phase where it is 
accounted for in the present model but also in the nonlinear phase (if a 

density gradient reduces the terminal bubble speed). Therefore, at a 

gradual density transition, the most dangeraus wavelength is larger than 

at a density step. This is demonstrated by curves C and D which use the 
same initial displacement amplitude. But curve D has been obtained using 

the classical growth constant for density steps with y = 1. Curve D has 
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its minimum at about 1.7 times the critical amplitude A*, while the 

minimum of curve C lies at 3.6A*. If the gradual density transition would 

really reduce the ultimate bubble speed, the most dangeraus wavelength 

would become even larger. Therefore, the most dangeraus wavelength at a 
gradual density transition may be expected around 4A* if the initial 

disturbances of all wavelengths are equal and it may lie between 2A* and 

BA* depending on which wavelength has the largest initial disturbances if 

those are randomly· distributed. 

Finally, curve E in comparison with curve 0 shows that even for a density 

step the most dangeraus wavelength occurs at much higher values if the ini
tial displacement amplitude is assumed proportional to the wavelength. 
This may explain why Kull (1982) with his simplified nonlinear model of 
bubble growth also finds rather large ratios between most dangeraus wave
length {in his case the wavelength reaching the highest bubble amplitude 
within a certain time) and critical amplitude (in his case the maximum 

bubble amplitude) as illustrated in his Figure 4. Actually, use of the 
assumption (~.2) in all the cases presented means that the initial velo

cities decrease with growing wavelength {or increase only with ii::_ instead 
of A. for curve E). This tends to give smaller most dangeraus wavelengths 
here and in the next subsection. 

5.3.3 Determination from smallest maximum allowable initial disturbances 

In this case just the procedure followed in subsection 5.1.2 is conducted 

for different wavelengths i\.. The result, still for the same example, is 
shown as curve A in Figure 14. While the most dangeraus wavelength {52 ~m) 

is in the range expected after Figure 13, Figure 14 shows also that the 
maximum allowable initial disturbances at this most dangeraus wavelength 
are much smaller than those obtained for i\. = 16 ~m, an effect which is not 

so clearly indicated by Figure 13. Of course, if one wanted to determine 

whether a fusion pellet will work, the smallest maximum allowable initial 

disturbances would be those which had to be compared to the unavoidable 

initial perturbations. The corresponding initial displacement amplitude A0 

is therefore called the critical initial amplitude A8. The range of wave

lengths to be considered for this purpose would still be rather large 
(e.g. 2A* to 5A*) because also the here obtained curve is flat around the 
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initial velocity A0 = nA0 as a function of wavelength and 
initial disturbances. 

minimum. In this context it is important to note how strongly the critical 

initial amplitude depends on the critical amplitude A*. The critical 

initial amplitudes obtained for A* = 16 ~m, 8 ~m, and 5 ~m are 0.88 nm, 

0.21 nm, and 0.11 nm, respectively (see also curve B in Figure 14). A 

thicker minimum shell thickness d which means a larger critical amplitude 

A*, therefore, has an important effect on the critical initial amplitude 

A~. Hence, to design a pellet which is resistent against pusher shell 
breakup by Rayleigh-Taylor instabilities is much easier for a breakeven 
experiment than it is for a pellet with a gain appropriate for a fusion 

reactor. For in the second case the necessary high hydrodynamic efficiency 

of the compression process requires a small minimum pusher shell 
thickness. 
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Curve B in Figure 14 also shows that the most dangerous wavelength A* is 

roughly proportional to the critical amplitude A*. The ratios of A*/A* 

obtained for A* = 16 ~m, 8 ~m, and 5 ~m are 3.3, 3.9, and 4.0, respective

ly. Therefore, when comparing different pellet simulations, it is reason

able to assume ~in each case tobe 3 or 4 times the critical amplitude 
which, in turn, is some fraction of the minimum pusher shell thickness 
(e.g. A* = d} observed in the different cases. In addition, curve B in 
Figure 14 shows that the range of potentially dangerous wavelengths has 
increased with decreasing A*. ForA*= 8 ~mit extends from A* to 10 A*, 
roughly. 

If the 11 classical 11 growth constant appropriate for a density step is used, 
the most dangerous wavelength A* is given by 

For A* = 16 ~m, 8 ~m, and 5 ~m the ratios A*/A* are 0.66, 0.35 and 0.23, 

respectively. In this case, the most dangerous wavelength is even smaller 
than the critical amplitude. But again the most dangerous wavelength for a 
density step is considerably smaller than for a gradual density transition 

(assuming the same shell thicknesses). 

5.3.4 Potential effect of reduction of the terminal bubble speed 
by a gradual density transition 

In order to estimate the potential importance of the growth rate reducing 
effect that a gradual density transition may have during the nonlinear 
phase in which the bubble grows steadily, one may assume the terminal 
bubble speed to be given by F·1 y*gi\.1• Such a dependence would increase 
the most dangerous wavelength after either definition by about 30 % and 
increase the critical initial amplitude by about 40% (in the cases A* = 

16 ~m). This rather benign effect is due to the fact that the most danger
ous wavelength is about 4 times the length scale L of the density Varia
tion anyhow (L = 13.5 ~m, A* = 16 ~m, A* = 52 ••• 54 ~) and the effect of 
the density gradient ceases at ll= 4~. The latter has been shown to apply 



-62-

during the linear phase and has been assumed here for the nonlinear phase. 

But it is clear that there must be a wavelength beyond which a certain den

sity gradient is no longer important. So, one cannot expect another order

of-magnitude effect from a reduction of the terminal bubble speed by a 

gradual density transition. (It may, however, help considerably when the 

ratio L/A* is larger.) 

5.4 Discussion of effects that could lead to faster instability growth 

5.4.1 Effect of finite pusher shell thickness 

One difference between the model situation considered here and the real 

situation in a fusion pellet, which one could consider as important, is 
the finite thickness of the pusher shell which, in the models• from which 

the growth laws are determined, is replaced by a semi-infinite fluid with 
constant density. 

The linear theory of Rayleigh-Taylor instabilities at finite fluid layers 

bounded by vacuum on both sides is well established. First Taylor (1950) 

has considered the case of sinusoidal initial displacements on the two 

sides which are in phase. Axford (1974) has allowed for a phase shift 
between these initial displacements and also considered a~bitrary initial 

displacements and certain time-dependent accelerations. Mikaelian (1983a) 

has generalized Taylor's case by including initial velocity disturbances. 

The basic result of all these analyses is that the two surface modes 

linearly combine to give unstable growth with some superposed oscillations 
at both interfaces. As shown in subsection 2.3 the growth or oscillation 
constants of these modes are independent of the density distribution 

within the fluid. Hence, they are also independent of the fluid layer 

thickness and this thickness only enters into factors multiplied to the 
functions describing the growth of the amplitudes. If we take Taylor's 
case (zero initial velocities) as a typical one and neglect the oscilla

tory part of the solution, the displacement amplitude h1.at the unstable 
surface develops as 
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(5.17} 

Here h1o and h2o are the initial displacement amplitudes at the unstable 
and stable surfaces, respectively, and the minimum pusher shell thickness 
d has been used as finite fluid layer thickness. One sees (most easily for 

h20 = 0} that a disturbance at a finite fluid layer may indeed grow faster 

than with a semi-infinite fluid. On the other hand, if h2o > h1oe-kd, the 
disturbance will grow slower than with a semi-infinite fluid. It is, how
ever, more important to realize that the additional factors are quite 

small andin fact barely realizable as long as A.<.n:d, say • 

. 
The same considerations apply if the unstable free surface is modified by 

adding a region of exponentially decreasing density. Merely the single un

stable free surface mode is replaced by the infinite set of internal modes 

belanging to the gradual density transition. In the present context the 

fastest growing mode is the most interesting one (one may even assume only 

this modetobe present initially) and it will always combine linearly 

with the oscillatory mode from the stable surface since the eigenfunction 
of this latter mode is not orthogonal to that of the fastest growing inter
nal mode as those of all the other internal modes are. But, of course, the 

growth constant of the fastest growing mode depends on the thickness of 
the fluid layer above the region of exponentially increasing density. Some

what astonishingly this growth constant slightly decreases when the fluid 

depth is decreased from infinity to zero. The transeendental equation from 
which these growth constants can be determined has already been given by 
Mikaelian (1984). 

As to the nonlinear phase, the situation is not as clear. There are some 

numerical studies available for fluid layers with sharp boundaries but the 

results are not reported in such a way that they could be used here direct

ly. Verdon et al. (1982) state in their introduction that "Fora shell of 

finite thickness, a constant bubble rise velocity is prohibited by the 

finite mass reservoir of a fluid layer," and report later that •• ••• the 

bubble velocity is actually decreasing at the time illustrated, in can
trast to the constant bubble rise Velocity which results in the semi

infinite layer." It is not clear whether this means that the finite fluid 
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layer tends to reduce the bubble speed below the terminal bubble speed 

assumed in the synthetical model. The above cited Statements also are 
possibly not fully in line with what is reported by some of the same 

authors in McCrory et al. (1981): "The instability evolves because of a 
nearly constant bubble rise velocity which removes mass from the bubble 

region ," and " ••• the shell thickness near the bubble decreases 1 inearly 
with time." (In these calculations the situation may have been different 

because thermal conduction was included.) 

While still not fully conclusive, the reported studies at least do not 

indicate a sensible increase in the terminal bubble speed due to a finite 

shell thickness. Furthermore, as derived in the previous subsection, a 
wavelength about 3 to 4 times the minimum shell thickness should be chosen 

as the most dangeraus one. This is allowed by the results of linear theory 
presented above and if the final bubble amplitude is only one third of the 
wavelength, any ·nonlinear effects should not become too important. 

In conclusion, one may state that the effects of a finite fluid layer are 

negligible at the most interesting wavelengths of 3 to 4 times the layer 
thickness and that these effects would hardly affect the results derived 

so far in this chapter. 

5.4.2 Effect of compressibility 

At the pressure level present during the compression phase (typically 

several MPa) the pusher material must be considered as compressible in 
cantrast to what has been assumed so far in this report. There has been 

some confusion about the role that compressibility may play for instabil
ity growth. Some of these eari i er pub 1 i cat i ons are di scussed by Bernstein 

and Book (1983) and Baker (1983). However, clear and rather general re

sults were first obtained by Kull (1982). Fora perfect (.polytropic) fluid 

he showed that the growth constants for unstable modes always increase 
with compressibility but can never exceed 19i('. The first part of these 

findings was also found by Bernstein and Book (1983) for a special case 
and shown by Newcomb (1983) to be a special case of a known comparison 
theorem in the calculus of variations. So, this seems to be quite general

ly valid, shedding some doubt on Baker's (1983) result which includes the 
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possibility that compressibility decreases the growth constant. 

The second part of Kull's (1982) finding makes clear that compressibility 
has only little effect when the growth constant n is close to i9i(' 
anyhow, which has been found confirmed in all the actual cases studied. 
However, the smaller n is in comparison with '(9i(', the more pronounced is 

the effect of compressibility. This is found in the special case of a 
sawtooth-like density profile due to the superposition of two isothermal 
compressible fluids treated by Kull (1982) and Bernstein and Book (1983). 
There the reasons for decreasing n are decreasing Atwood ratio and the sta

bilizing effect of the density gradient outside the unstable interface, 

which increases with wavelength. So, one might also expect that compressi
bility can, to some moderate extent, cancel the growth constant reducing 

effect of a gradual density transition. An evaluation of the importance re
quires consideration of the special situation and determination of the 
polytropic exponent that is most suitable to model the pusher material. 

For the nonlinear phase, Suydam (1978) presents some arguments leading to 
the conclusion that the terminal bubble speed will always be well sub
sonic, so that compressibility may be neglected in this phase. 

5.4.3 Effect of three-dimensional disturbances 

The synthetical model as presented here consistently assumes two-dimen
sional disturbances which extend over a distance of at least several wave

lengths in the direction perpendicular to the two coordinates here con
sidered. Whether this condition is met in reality must remain an open 

question. There are, however, indications that three-dimensional distur

bances might grow faster. Rajappa and Amaranath (1977) present a non

linear theory of Rayleigh-Taylor instabilities in three dimensions. Their 
first-or_der solution is linear theory. They first compare hexagonal and 

reetangular disturbance cross-sections and conclude that the reetangular 

cell pattern will manifest itself because it requires less energy. For the 

worst case, a quadratic cell and neglecting surface tension, the growth 

constant is larger than the two-dimensional growth constant by a factor 

21/4~1.189. 
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Layzer (1955) has worked out nonlinear models of bubble vertex motion 

(similar to the one later presented by Kull (1983)) in axially symmetric 
(cylindrical) and plane two-dimensional flow. For the linear phase he (as 

later Daly (1969)) finds that the growth constant for cylindrical flow is 

larger by a factor of -(3.832/TC '~ 1.104 where 3.832 stands for the first 

zero of J1, the Bessel function of order one. 

For the terminal bubble rise the Froude number found by Layzer (1955) for 
the cylindrical case is even larger by a factor of f3rt/3.83~~1.568 so 

that F = 0.361. This may be compared with F = 0.328 found theoretically 
(using slightly different approximations) by Davies and Taylor (1950) for 

bubbles rising in tubes of circular cross-sections if one identifies the 

wavelength with the tube diameter. Their experimental results vary 
(essentially with the tube diameter) between 0.283 and 0.346. 

Both effects could easily be included into the synthetical model by adjust

ment of the parameters. 

5.4.4 Nonlinear effect of higher harmonics 

As shown by Kull (1983) the Froude number F which characterizes the termi
nal bubble speed depends on the amplitude B of the second harmonic. If one 

assumes a pure sinusoidal initial perturbation, B = 0 initially. But as 

shown by the higher-order (nonlinear) theories discussed in 4.4 it starts 

to grow due to nonlinear effects. In this case the second harmonic is in 
phase wi th the fundamenta 1 mode so that, after Kull (1983), the Froude 
number is reduced below its value of 0.236 which it assumes for B = 0. 

Therefore, F = 0.230 appears to be appropriate for an initially sinusoidal 

perturbation. If, however, the second harmonic is already present in the 

initial perturbation, it can occur with a negative initial amplitude (a 

phase shift of ~) and then the Froude number may be larger. This result is 
confirmed by numerical simulations reported by Verdon et al. (1982). In 

addition, ßaker et al. (1980) have found a similar effect with the fifth 

harmonic having an initial amplitude one tenths of the initial amplitude 

of the fundamental mode. They found F to be as high as 0.28 with probably 

a large error margin. These results show that a larger Froude number may 

be appropriate if a random distribution of Fourier components in the ini-
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tial disturbance is to be taken into account. This can be done easily in 
the synthetical model. 

On the other hand one could speculate that higher harmonics during the 

linear phase may have a growth reducing effect because they help to create 
or flatten a density gradient. This occurs at a sharp interface because 
higher harmonics grow much faster making the interface fuzzy and thus pro
ducing a density transition region on the length scale of the basic mode. 
A similar effect can be expected at a gradual density transition if the 
length scale L of the density variation is initially much shorter than the 

minimum shell thickness d. This effect, of course, can only be observed if 
the most dangerous wavelength itself has to grow by many e-foldings before 
it can become dangerous. 

All in all, the effect of higher harmonics should not be too important. 
Also, this discussion should cover the nonlinear effect of arbitrary 
shorter wavelengths, not only just the higher harmonics. The nonlinear 
effect of larQer wavelengths i.e. bubble amalgamation in which faster grow
ing bubbles of larger wavelength 11eat up 11 those of shorter wavelength (see 
Layzer (1955)) needs not be considered here because it should not become 
important within the range of amplitudes to be considered. 
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6. Summary and conclusions 

Linear theory of Rayleigh-Taylor instabilities at a region of exponential
ly increasing density between regions of constant density as developed by 

Lord Rayleigh (1883) and others is discussed in detail. From this, a 
simple formula is derived which approximately describes the growth con
stant reduction by a gradual density transition. It is further shown that 
an incorrect theory by Lelevier, lasher, and Bjorklund (1955) underesti
mates the growth constant. 

A simple but effective model of nonlinear bubble growth is obtained from a 
synthesis of linear theory and constant terminal bubble speed. In its 
linear part it can take into account the growth constant reduction by a 
gradual dens ity trans it i on. 

The synthetical model of nonlinear bubble growth is applied to the problern 

of pusher shell breakup in an inertial confinement fusion pellet during 
the compression phase. The model is used to determine two quantities: 

a) maximum allowable initial perturbations 
b) most dangeraus wavelength. 

In the case of a pellet tentatively designed for a conceptual heavy 
ion-beam driven reactor, the following observations are made (at a wave
length equal to the minimumpushershell thickness): 

a) The gradual density transition at the outside of the pusher shell 
reduces the growth rate during the linear (small amplitude) regime in 

such a way that the maximum allowable initial perturbations are 
increased by a few orders of magnitude. 

b) The nonlinear saturation of the bubble growth rate increases the 
maximum allowable initial perturbations by another order of magnitude. 

c) In the presence of the gradual density transition at the outside of the 
pusher shell, the most dangeraus wavelength is about four times the 

critical amplitude (amplitude at which the pushershell is broken up) 

which is usually identified with the minimum pusher shell thickness. In 
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cantrast with that the most dangeraus wavelength is about equal to the 

critical amplitude if the pusher shell is bounded by density steps on 
both sides. 

During ablatively driven compression of an inertial confinement fusion 
pellet instability growth may be influenced by much more physical pro
cesses and boundary conditions than so far considered in the synthetical 

model. While most of them are expected to further reduce (possibly drasti
cally) instability growth, a few have a potential to accelerate instabili
ty growth. In a discussion of these it is found that the finite pusher 
shell thickness can hardly become important. To some limited extent aggra
vated growth due to three-dimensional disturbances and nonlinear inter
action of higher harmonics present in the initial disturbances could con

servatively be accounted for in the synthetical model. But this seems not 
. ' 

to be appropriate as long as much more important growth reducing effects 

are neglected. Compressibility might be the most important growth rate 
increasing effect. Fortunately its importance increases with decreasing 
growth constant so that only growth constants far below the classical 
value can be affected appreciably. It appears that this effect should be 

-

accounted for in a more complete theory. To this end, studies of the 
special density profile and the material properties are required. 

The above considerations suggest that the synthetical model and the approx
imate formula to account for a gradual density transition, which both are 
reasonably conservative in the model situations from which they were ob
tained may allow a conservative estimate of instability growth during 

pellet compression. However, use of these results to determine whether the 
pusher shell in a certain case will be destroyed by Rayleigh-Taylor insta

bilities is counterindicated by at least two reasons: In the first place, 
the model most probably is overly pessimistic because several effects are 
not yet included, which have the potential of effectively reducing instabi

lity growth. Secondly, knowledge on the effective initial perturbations 
within the instability zone is still insufficient. The model can rather 
serve to determine a figure of merit such as the maximum allowable initial 

perturbation, which allows to compare different pellet designs and/or 
illumination histories with respect to Rayleigh-Taylor instability growth. 
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As a consequence of the findings with respect to the most dangerous wave
length and the (small) effect of the finite pusher shell thickness, a wave
length about three to four times as long as the critical amplitude may be 
chosen when determining the figure of merit. This reduces the importance 

of nonlinear effects within the amplitude rangetobe considered. 

An outline is given of how the synthetical model could be made more 
realistic and flexible and slightly more complete using already available 

numerical techniques and numerical results from a pellet simulation code. 
Also, the nonlinear theories presently available in the literature are 
briefly discussed. 
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