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~ Abstract

Linear theory of Rayleigh-Taylor instability growth at a density profile
which varies exponentially between regions of constant density is dis-
cussed in detail. The exact theory provides an approximate but conserva-
tive simple formula for the growth constant and it shows that a hitherto
widely used theory erroneously underestimates the growth constant.

A simple but effective "synthetical model" of nonlinear bubble growth is
obtained from a synthesis of linear theory and constant terminal bubble
speed. It is applied to pusher shell break-up in an inertial confinement
fusion pellet to determine the maximum allowable initial perturbations and
the most dangerous wavelength. In a situation typical of heavy ion drivers
it is found that the allowable initial perturbations are increased by a
few orders of magnitude by the gradual density transition and another
order of magnitude by nonlinear saturation of the bubble speed. The grad-
ual density transition also shifts the most dangerous wavelength from
about once to about four times the minimum pusher shell thickness.

The following topics are treated briefly: Reasons conflicting with use of
the synthetical model to decide whether the pusher shell in a certain simu-
lation will be broken up; other nonlinear theories available in the litera-
ture; further realistic effects that might aggravate instability growth.

EinfluB von stetiger Dichtednderung und nichtlinearer Satt1gung auf das
Wachstum von Rayleigh-Taylor Instabilitaten

Zusammenfassung

Die lineare Theorie der Rayleigh-Taylor Instabilitdt an einem Dichtepro-
fil, das zwischen Gebieten konstanter Dichte einen exponentiellen Anstieg
aufweist, wird ausfihrlich diskutiert. Die strenge Theorie liefert eine
einfache aber konservative Ndherungsformel fiir die Wachstumskonstante und
sie zeigt, daB eine bisher weithin benutzte fehlerhafte Theorie die Wachs-
tumskonstante unterschatzt.

Durch Aneinanderfiigung der linearen Theorie und einer konstanten Blasen-
grenzgeschwindigkeit wird ein einfaches aber niitzliches "kombiniertes
Modell" des nichtlinearen Blasenwachstums gewonnen. Es wird angewendet auf
die Bestimmung von maximal erlaubten Anfangsstorungen und gefahrlichster
Wellenlange im Fall des Aufbruchs der Pusherschale in einem Brennstoff-
kiigelchen fiir Kernfusion durch TragheitseinschluB. In einer fiir Schwer-
ionentreiber typischen Situation ergibt sich, daB die zuldssigen Anfangs-
storungen durch die stetige Dichtednderung um einige GropBenordnungen und
durch die nichtlineare Sdttigung der Blasengeschwindigkeit um eine weitere
GroBenordnung vergroRert werden. Die stetige Dichteanderung verschiebt
auBerdem die gefdhrlichste Wellenldnge vom Einfachen auf etwa das Vier-
fache der minimalen Dicke der Pusherschale.

Folgende Themen werden kurz behandelt: Griinde, die der Anwendung des kombi-
nierten Modells auf die Entscheidung ob die Pusherschale in einer bestimm-
ten Simulation aufbricht oder nicht, entgegenstehen; andere nichtlineare
Theorien in der Literatur; weitere realistische Effekte, die das Wachstum
der Instabilitaten beschleunigen konnten.



Table of contents

1.

2.

Introduction

Linear theory of Rayleigh-Taylor instabilities

2.1

2.2
2.3
2.4
2.5

2.6

General equations

2.1.1 Statement of the problem and
historical review

2.1.2 Basic equations

2.1.3 Remarks

2.1.4 Transition to nondimensional variables

2.1.5 Boundary conditions

Superposed liquids of constant densities

Free surfaces

Remarks

Exponential density transition without

free surfaces

Note on general initial conditions

Estimate of instability growth at gradual

density transitions

3.1
3.2
3.3
3.4

Introductory remarks

Determination of the growth constant

Less effective bounds of the growth constant
Hitherto used incorrect estimate of

growth constant

Nonlinear bubble growth

4.1
4.2
4.3
4.4

The problem

Simple synthetical model
Nonlinear theory of bubble growth
Other nonlinear theories

page

10
11
11
12
13
15

16
25

28
28
28
29

30

35
35
36
42
44




6.

79

Applications to pusher shell breakup

5.1 Formulation of the problem
5.2 Determination of maximum allowable

jnitial perturbations

5.2.1
5.2.2

Numerical example
Possible extensions

5.3 Most dangerous wavelength

5-3.1
5.3.2

5.3.3

5.3.4

Introductory discussion
Determination from shortest
breakthrough time

Determination from smallest maximum
allowable initial disturbances
Potential effect of reduction of the
terminal bubble speed by a gradual
density transition

5.4 Discussion of effects that could lead
to faster instability growth

5.4.1
5.4.2
5.4.3
5.4.4

Effect of finite pusher shell thickness
Effect of compressibility

Effect of three-dimensional disturbances
Nonlinear effect of higher harmonics

Summary and conclusions

Literature

47
47

49
49
52
56
56

57

59

61

62
62
64
65
66

68

71




1. Introduction

Rayleigh-Taylor instabilities occur when a boundary between two fluids is
accelerated in the direction of the denser fluid. The classical example is
a layer of water being suspended by air so that it cannot fall freely.
This system is equivalent to one without gravity but an upward accelera-
tion of amount g. Of course, a perfectly flat interface would persist, but
any sinusoidal perturbation of wave number k (e.g. any Fourier component
of any arbitrary initial disturbance) has been shown to grow as et where
nz = gk, if the density of the air is neglected for the moment. This is a
result of linear analysis which is valid for small deviations from a
stable state only. The development after this initial "linear" stage is
characterized by the fact, that an initially sinusoidal perturbation
deviates from this shape and develops into a "bubble and spike" configura-
tion, in which, finally, round ended columns of the lighter fluid (the
"bubbles") penetrate the heavier fluid at a constant speed, while spikes
of the heavier fluid fall freely through the lighter one.

Among many other and widespread fields in physics as e.g. star formation,
dynamics of the ionosphere, drop shattering by shocks, and film boiling,
Rayleigh-Taylor instabilities play an important role in inertial confine-
ment fusion. For this special way of attaining thermonuclear burn, extreme-
ly high fuel (DT) densities are required. It is hoped to reach them by
spherically imploding small spherical pellets containing the fuel. The
necessary high pressures shall be broduced by depositing highly energetic
particles (photons, heavy ions, light ions or electrons) in the outer
shell of the pellet. Evaporation of that shell is expected to drive the
inner parts of the pellet (the fuel) towards the center where it accumu-
lates and reaches high pressures and densities. In this process, mainte-
nance of spherical symmetry is of crucial importance. One possible source
of asymmetries is the growth of any irregularities due to Rayleigh-Taylor
instabilities.

There are several occasions during pellet compression, in which Rayleigh-
Taylor instabilities can become important. In this report, however, the
problem will be discussed with the background of one situation which is of
special importance in 1ight and heavy ion fusion: stability of the pusher
shell adjacent to the fuel during the inward acceleration of the fuel. As




an illustration, a case obtained by Tahir and Long (1982) simulating
performance of a drafted HIBALL pellet with the MEDUSA code will be used.
Figure 1 shows the relevant density distributions (on a logarithmic
scale). Part a) showing the original configuration makes evident that the
pellet consists of a large void surrounded by a single layered shell com-
prising fuel (DT), pusher (LiPb), and tamper (Pb). Part b) shows the situa-
tion about 27 ns after start of the energy deposition on the pellet by the
ions. They have heated mainly the pusher so that its outer part expanded,
blowing a compressed pusher layer and the fuel inwards. This created a
zone (2.65 mm to 2.77 mm) in the pusher where less dense material accel-
erates denser material. In this region disturbances could grow and distort
or even destroy the pusher-fuel interface. In this way pusher material
could be mixed with the fuel and prevent its burn even if ignition still
were possible. Actually, a thin layer of pusher material adjacent to the
fuel remains cold and moves with the fuel forming the so-called payload.
Destruction of this pusher shell almost certainly would make ignition
impossible. Since a spherically symmetric pellet calculation cannot tell
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Figure 1: Logarithmic density profiles of HIBALL pellet
(Tahir and Long (1982)):
a) initial state
b) unstable situation during compression phase




whether the pusher shell will survive, a separate check is necessary and
it is the purpose of this report to discuss a (zero to) first order

approach to this question.

NDue to the combined actions of continuous ablation and spherical conver-
gence the pusher shell during the acceleration process attains a minimum
thickness d and rapidly becomes thicker afterwards. It seems reasonable

and has become customary to take this minimum thickness as a measure of

the maximum allowable disturbance amplitude. Also, arguments which will be
discussed explicitly later in this report show that from all possible sinu-
soidal perturbations (all wavelengths) those with wavelengths about equal
to the amplitude in question are the first to reach this amplitude. So,
while no information is yet available on the possible nature of initial
disturbances in the pusher shell that could grow due to Rayleigh-Taylor
instability, the minimum pusher shell thickness d gives a measure of the
most dangerous wavelength and of the maximum allowable amplitude. This
report describes how the growth of the most dangerous disturbance can be
estimated conservatively on the basis of data obtained from spherical
pellet calculations, The method allows to determine a maximum allowable
initial perturbation which, at present, essentially must be taken as

figure of merit when comparing different pellet designs and/or driver para-
meters, because there is no reliable figure available to compare the allow-
able initial amplitude and velocity with.

The above discussion only partly illustrates the complexity of the physi-
cal situation in which the pusher shell stability is to be investigated.
Simple application of the classical formulae cited above would be inappro-

priate for a number of reasons:

1. The instability does not occur at an interface between materials of
different densities but at a gradual density transition.

2. Under the prevailing éonditions, i.e. temperatures of the order of one
million Kelvin and pressures of several tens of megabars, the material
will behave like an ideal gas with modifications due to degeneracy. To
what extent it can be approximated by an incompressible liquid remains

to be clarified.




10.

11.

In addition to pressure variations, the density of the fluid may be
altered by heat addition due to ion deposition, thermal conduction, or
thermal radiation.

An especially important pressure variation in perpendicular direction
is due to heat transport (mainly by radjation) from the wave crests
filled with hotter material into the neighbouring troughs containing
cooler material. This heat transport is expected to produce a trans-
verse pressure distribution which opposes instability growth.

Instead of being due to an external gravitation field or uniform
acceleration of the whole system, the acceleration of the pusher shell
is due to a positive pressure gradient within the pusher. So, in prin-
ciple, the "gravitation" to be considered is variable with space in
all directions and time.

The instability is limited to a small "instability zone" where the
gradients of pressure and density have opposite signs. In the adjacent
regions the arrangement is stable and impedes instability growth.

Due to continuous ablation the instability zone may move towards the
fuel-pusher interface. Usually this is expressed differently: the
material may flow (convect) through the instability zone from the
high-density to the low-density side (from the top to the bottom).

Instead of filling the whole half-spaces above and below the density
transition zone with homogeneous fluids, respectively, especially
"above" the instability there are only limited Tayers of pusher
material and fuel.

In reality, the instability occurs at the surface of a sphere., Treat-
ing it as flat is a valid approximation for shorter wavelengths only.

As real fluids, fuel and pusher material are equipped with surface

tension and viscosity.

In reality, instabilities may be three-dimensional in nature. While
this is neglected in most instances, it may have an influence on the

growth rate.




12. Since the test amplitude is of the order of the wave length, it would
be inappropriate to use linear theory throughout. It would under-
estimate considerably the time to reach the test amplitude.

13. Initially, disturbances of different wave lengths may be present. In
the linear regime'these different modes may be considered separately
as they do not interact with each other. In the nonlinear regime, how-
ever, the presence of higher harmonics may increase the growth of the

fundamental mode.

It appears that full and combined account of all the points listed above
requires a full numerical simulation with a two- or even three-dimensional
hydrocode. However, due to the expenditure of such calculations, they must
be limited in number. Also, it is urgently required to understand the ef-
fect of the realistic refinements on the basis of physical considerations
- not least to obtain guidance and realistic test cases for the numerical
studies. Actually, quite some of the topics are amenable to more or less
accurate analysis. It has, for instance, been shown by Suydam (1978) that
surface tension is rather unimportant while viscosity could greatly reduce
instability growth if it were to increase with pressure as indicated by

yet unconfirmed experimental evidence.

In the present report only the first (gradual density transition) and the
twelfth topic (nonlinear growth) will be treated, with some comments on
effects that may increase the growth rate. In the theoretical studies and
the example given, constant acceleration and density gradient will be

used., It should, however, be kept in mind, that in a half-analytical proce-
dure, those variables may be re-determined (from a spherical pellet simula-
tion) from time to time, so that quasi-steady variations of them can be
covered. In this way, it will be possible to take into account some

effects of varying energy deposition (e.g. range shortening, ion energy
variation) and other time dependencies in a straight forward manner.

Lewis (1950) has reported three stages of Rayleigh-Taylor instability

growth:

1. Stage described by first-order theory (small amplitudes, exponential
growth),

2. transition stage,

3. final stage (steadily growing bubbles, freely falling spikes).




Later, Birkhoff (1955) has proposed to consider two further stages:
4. Distortion stage (boundaries between bubbles and spikes are distorted
by vorticity and Kelvin-Helmholtz instability),
5. mixing stage (a turbulent mixing zone is formed between the two fluids).

Discussions in this report are limited to the first three stages. They are
termed linear, transition and nonlinear stage, respectively. The last two
stages need not be considered because the conditions in the envisaged
application roughly correspond to Lewis' experiment:

a) The density of the low-density (the blow-off) region is small compared
with that of the high-density region (the pusher shell).

b) For definiteness, discussions are 1arge1y restricted to a single sinu-
soidal initial perturbation.

c) Interest is limited to displacement amplitudes of the order of the wave-
Tength (the displacement being measured relative to the virtual undis-
torted interface or isodensity line). The last two stages can be ex-
pected to occur only beyond these amplitudes.

Studying Rayleigh-Taylor instability with neglect of the curvature of the
unstable shell appears to be justified since the wavelength considered is
of the order of 10 pm while the radius of the shell is of the order of a
few millimeters. There are, however, other types of instabilities with
wavelengths comparable to the circumference of the sphere that may destroy
the symmetry, i.e. the sphericity. It has been demonstrated with numerical
simulations by Plesset and Chapman (1971) that a spherical cavitation
bubble collapsing close to a wall will deviate from the spherical shape
soon and produce a liquid jet projected towards the wall. Furthermore,
Frohlich and Anderle (1980) have observed (e.g. their Figure 3.31) that
such jets are formed quite frequently and without close neighbourhood of a
fixed wall. This type of instability is, of course, not treated in this
report .

In the second chapter the linear theory of Rayleigh-Taylor instability as
used later is collected. Chapter three discusses the application of the
results for gradual density transitions and in chapter four two approaches
to a description of the nonlinear behaviour are presented. Chapter five
contains applications and further discussions, and chapter six briefly
summarizes the conclusions.




2. Linear théory of Rayleigh-Taylor instabilities
2.1 General equations
2.1.1 Statement of the problem and historical review

This chapter summarizes those parts of linear theory that are of impor-
tance for the discussions presented later., It is concerned with inviscid
fluids the density of which remains constant with time in any fluid ele-
ment (e.g. an isothermal and incompressibie fluid). Surface tension will
be neglected, however, allowance will be made for gradual density varia-
tions. Further assumptions are plane geometry in Cartesian coordinates x
and z, a constant body force g antiparallel to the z-axis, and small devia-
tions from an equilibrium state in which the fluid is at rest in the coor-
dinate system. One may think of g as being due to a rotation free gravita-
tion field, however, any constant acceleration of the coordinate system in
the z-direction just adds to the numerical value of g.

For the "classical" case of discontinuous density variations, the growth
rate in the unstable case (the denser fluid above) has been determined by
Lord Rayleigh (1883), but is characterized as "known" by him. Also, Lamb
(1932) in his Articles 227ff only gives references for the treatment of
more complicated cases by Airy and Stokes already around 1840. Later the
same result was derived another time by Taylor (1950) for the unstable
case and an accelerating system which is fully equivalent to a system at
rest but with gravity. He also investigated the influence of a finite
depth of the 'upper' fluid layer and initiated the first systematic experi-
mental studies of this instability, Lewis (1950). Therefore, the unstable
case, today, is known as Rayleigh-Taylor instability.

The theory of instabilities at gradual density transitions has as well
been established by Lord Rayleigh (1883). So, this case is as classical as
the one which is usually called so, but apparently, hundred years later,
part of Lord Rayleigh's work - exactly the theory needed in the present
context - has fallen into oblivion. This may be due to the fact that Lord
Rayleigh apparently did not have a means at his disposal-to conveniently
solve the transcendental equation which is pért of the full solution. So,
he mainly discussed some 1imiting cases. His most important explicit




result was that at a gradual density transition the growth rate remains
finite when the wave number goes to infinity. Much 1ater, E. Teller pro-
posed the possibility of such a behaviour to LeLevier et al. (1955) who
confirmed the speculation by an incorrect theory, see chapter 3, Only
recently, the correct theory was rediscovered (or reinvented) and dis-
cussed in more detail by three authors: Gerhauser (1980, 1983), Mikaelian
(1982), and Kull (1982). The work of Hunt (1961) is less useful due to the
approximations used. It appears that the above cited authors were unaware
of the fact that the full solution had been supplied by Lord Rayleigh
(1883). (Mikaeliah's reference to Lord Rayleigh's work is wrong.)

2.1.2 Basic equations

Denoting time as t, pressure as p, density as Qs and the Lagrangian
coordinates as X and Z so that the velocities in x- and z-direction are
9X/ot and 97/9t, respectively, the appropriate hydrodynamic equations read
(see e.g. Batchelor (1970), p. 174):

79?;2"92(’5 . 2:?6 =0 (2.1)
g g;)i + _g_f’__ = ( (2.2)
56 v FE v sy =0 e

As described in detail by Chandrasekhar (1961), pp. 428-30, they can be
considerably simplified in the following way: At first all variables are
split into their.steady-state part (labelled by subscript zero) which they
assume in the (presumed) steady equilibrium state and an increment due to
the disturbance:




pP=p,+3p
¢ = ¢o +dg
Xz)(o-l-ch
Z=2Z,+68Z

Insertion of these definitions in (2.1) to (2.4) assuming that 9X,/9t =
07,/0t = 0 and retaining only terms which are at the most linear in the
quantities describing the disturbance, gives:

9 th _
ot + Ys §Z = 0 (2.5)
) .
Qo 98{;2 X + ,aax Sp =0 (2.6)
92.
So 22 YA + f—z— 5,0 + Sg-? = 0 (2.7)
%- gg + gf . agz go . = 0 (2.8)

Furthermore, the solution is sought in terms of normal modes, assuming

]

)kx+né]

d X ?e[scz). e

(2.9)

Lkx +nt |
§Z = Re [wcz) - e ] (2.10)
and similar expressions for 6§ and §p, with Re denoting the real part.

Thus , equations (2.5) to (2.8) combine to give

N

go CLZ_Z _;(,_Z- ol 2 h?_ 0(.2 '90)\/\/ = 0 (2.11)
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2.1.3 Remarks

It is worth noting that insertion of (2.9) and (2.10) in (2.5) gives

£ olwi(z)
S(z) = ’E:' oz

Here the imaginary unit i only reflects the 90° phase shift between the
components of the displacement: If, e.g. §X behaves as sin kx, §Z behaves
as cos kx. The essential point is that X is proportional to 9éZ/3z for
all x where X is not identically zero by virtue of its x-dependence. This
means that vanishing of the tangential velocity at a horizontal boundary
is equivalent to vanishing of the normal gradient of the vertical velo-
city. It also means that, along any (vertical) line x = const., the x-com-
ponents of displacement and velocity change sign when the z-components go
through a (local) maximum or minimum. This can Tead to a nodal structure
of the flow field.

Furthermore, it can be seen that (2.11) only determines n2, so that both
signs of n are allowable. Since (2.11) is linear, any linear combination
of eNt and e-Nt s a valid solution of (2.11). The coefficients of this
Tinear combination are to be determined from the initial conditions. So,
writing the displacement in z-direction which is the only one to be

discussed further as
§Z(x,2z,t) = wi(z) coo kx : h(t)

the amplitude h(t) will (in the case nZ> 0) grow as

h(t) = h, corbL nt + he sk nt (2.12)

1]

where h, is the amplitude of the initial displacement and HB the amplitude
of the initial disturbance velocity.

For small arguments (nt-—+0), cosh nt =1 and sinh nt —nt so that in the
Timit nt — 0 (2.12) becomes

he) = h, + lé'wa-t

(2]
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which was referred to as initial impulse approximation by Harlow and Welch
(1966) since they considered the initial velocity perturbation as the
result of an impulsive acceleration at time zero. This relation describes
the early time behaviour of any disturbance and, as pointed out by Baker
and Freeman (1981), the behaviour of systems without acceleration for
which n = 0, For this case, the above linear growth law has first been
derived by Richtmyer (1960). It is strictly true for incompressible fluids
and Richtmyer has shown that it can also be applied to the case of com-
pressible fluids where the initial velocity disturbance is created by a
shock passing in normal direction through an undulated interface between
the fluids.

2.1.4 Transition to nondimensional variables

Now, the nondimensional coordinate
£ - k2 (2.13)

is introduced, differentiation with respect to this coordinate is denoted
by a prime and (the square of) a nondimensional growth constant is defined
by
2
y = n_ ' (2.14)

%k

In this way (2.11) becomes

|
°
—~
N
-t
o
~

T :go _— j%
w +——9—o~w—(1 on)w

2.1.5 Boundary conditions
The kinematical condition on w is that it must be continuous everywhere.,

If the geometry is unbounded, |jw]-+0 for 18] — oo is required in order
that the kinetic energy be finite. A further condition which w has to



_’]2._

fulfill at any bouhdary, at § = w say, can be derived by integrating
(2.15) fromw -€ to e+ € and taking the limit & = 0. With the defini-
tions ‘

e (w™) = Lim o (w-¢)

E=» O

s (w?) = Liw 6’00+8)
E->» O

where £>0 and &= ¢, or w, and

¢o (w7) = f:‘
So (w™) = Q:

this gives

o W) = gy wiw )+ L W) (g-g) = 0. 2s)

The equations (2.15) and (2.16) together with the conditions on w listed
after (2.15) fully contain the stability problem described in the

beginning of this chapter. However, analytical solutions are available for
special cases only.

2.2. Superposed liquids of constant densities

A very important case is the "classical" one with

o = $4 ' § <0

\/
(S

o = 82 $
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In this case g; vanishes in both half planes so that, (2.15) reduces to

"
w - w = 0

in both half planes. So, with an arbitrary constant c

t§
(V.v4 = cC: e

are solutions and because they have to vanish as [g] —= o= one has to
choose

e fS £ 0 (2.17)
-3

w c- e >0

[

(2.18)
where use of the

same constant ¢ in both half planes ensures continuity of
wat §= 0. From (2.17) and (2.18) one obtains that

w'(07)

w (0)

w' (0T) = —w (0)

so that (2.16) with w= 0, gf: §4 » and g:=gzg1'ves the "classical"
growth rate

2 ~ K4
>,=__§______

§2 + §9 = A

(2.19)

which is called the Atwood ratio A.

2.3 Free surfaces

Next, the case of an unstable free surface is considered, i.e. the case

o = O § <o
go 7 0

§ >0,
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% *
hence @y = 0 and ¢ >0.

Then (2.16) gives as the free boundary conditions

v w' (0*) = — w(0) (2.20)
from which
_ w (0)
y W'(o+)

Rewriting (2.15) as

wo- w o+ 3o [. +—-——- VN/] C7)

it can be seen that the former solution (2.18) solves the problem for any

density distribution ¢4(&), §>0.

Because it gives

W' - W 'fov- a// é 20 )

i

y =1 and the two terms within the brackets cancel each other. This
reduces the differential equation (2.11) again to

w' - w = 0
which is solved by (2.18), but this time without assumptions on Qo-
Mikaelian (1982) has demonstrated explicitly that the solution (2.18)

still holds when density steps are present at some <« >0: For any density
. * ,
dlfferenceagz -??, the boundary condition obtained from (2.16) is

yoowi(w) = = wi(w) (2.21)

resembling the free boundary condition (2.20), if w(§) and w'(§) are con-
tinuous at the positionw which certainly is the case with (2.18). Since
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y =1 and (2.18) gives

i

w' - w for all ‘5}0)
any number of arbitrary density steps is allowed.

The same considerations apply to the case of a stable free surface, where
(2.17) gives

w' = w for all § < 0

*
so that (2.16) with ¢o = 0 gives y = -1,

2.4 Remarks

Before continuing with gradual density variations, it may be worth to note
(Mikaelian (1982), Kull (1982)) that the flow fields discussed above are
often called surface modes or (in the stable case) gravity waves. For each
wave number and surface there is just one mode of this type. These modes
are irrotational. The physical reason for this is that in a homogeneous
nonviscous fluid rotation is a conserved quantity. The initial state with
the fluids at rest is free of rotation. So, in the regions of constant
density and without viscosity which could produce rotation, the flow field
remains irrotational. However, in the case of two superposed fluids the
tangential velocities at the material interface in which the two irrota-
tional flow fields contact each other have opposite directions so that in
this line rotation is infinite. As will become clear in the next section,
this does not remain so for instability modes in a gradual density transi-
tion. In that case neither the density variation nor the rotation is con-
centrated in a singular line but fills the whole region with variable
density. These instability modes are called internal modes because they
result from antiparallel gradients of density and pressure within the
interior of a fluid body. They exhibit closed flow paths similar to convec-
tion cells. As mentioned by Lord Rayleigh (1883) and most explicitly dis-
cussed by Gerhauser (1980, 1983) there exist for any wave number infinite-
1y many higher modes which show ever increasing numbers of layers of such
flow cells but grow ever slower.
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As shown in the last section, surface modes occurring at a free surface
have the striking property that the growth constant (or oscillation fre-
quency) does not depend on the density profile within the fluid. Nor does
it depend on the compressibility of the fluid, as mentioned by Kull
(1982).

It should be noted that the surface mode originating from a free surface
is only a partial solution to the problem, if the density of the fluid is
variable. In that case, the full solution will be a linear combination of
the free surface mode and other surface modes (if density steps are
present) and internal modes (if density gradients occur). In this way the
overall growth rate will depend on the whole density distribution. An
example of this will be discussed in subsection 5.4.1.

Among all unstable modes the free surface mode will grow the fastest.
Therefore, in any problem with an unstable free surface, instability
growth is dominated by the free surface mode. This statement may be
questionable under very special initial conditions, but such special cases
need not be considered here. The matter has been discussed extensively by
Mikaelian (1983a,b).

Surface modes with a growth rate which is independent of the density varia-
tion within the fluid have also been found at the outer surface of spheri-
cally imploded shells by Kidder (1976) and, under more general assump-
tions, by Book and Bernstein (1980). The latter call only this mode a
Rayleigh-Taylor mode and term the internal modes convective modes.

2.5 Exponential density transition without free surfaces

The growth rates of instabilities at an exponentially increasing density

profile

L

Go (§) e, e’és 0<E <A (2.22)

were first determined by Lord Rayleigh (1883) under different boundary
conditions. The case with flat plates at §= 0 and §=A is fully treated
in the text book by Chandrasekhar (1961). The general problem has been
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reconsidered by Gerhauser (1980, 1983), Kull (1982), and Mikaelian (1982)
The appropriate conditions for the present purpose (which have been
treated by Lord Rayleigh (1883) and the last three authors) are

¢ (%)

04 ' 5 .é‘ o

(2.23)

GA

go(g) €. = Q,- € §>4.

[}

(2.28)

In the regions with constant density, solutions similar to (2.17) and
(2.18) are appropriate:

§
wi(s) = ¢, e § <0 (2.25)
~(§-A)
wi(s) = ¢, e T 2 A (2.26)
For 0 € 5 €A (2.15) reduces to
w' o+ Bw' - (/l—é;)w, =0 (2.27)
the general solution of which is
o 8 &3
wif) = ¢, e + ¢, e 2§ (2.28)
where & and o are the roots of the characteristic equation
2
s’ +ﬂ$c’—(/7-*§,i)=0 (2.29)

so that
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a
N

Q
i

- | (2.30)
& -o, = 27D (2.31)

with D=4+ %4 ~B7y . (2.32)

Again, y and thus o} -o, as well as c3/cq have to be determined from the
boundary conditions at § = 0 and §=A: With 90(3) being continuous, gf=3
and (2.16) requires w'(w®) = w'(w”), i.e. w'($) must be continuous, as
w(%) must be. Taking into account (2.25) and (2.26) this means:

¥
2

w') /wi) = (2.33)

w'(A) /w () =-1 . (2.34)

Before determining the unknowns, it is convenient to rewrite (2.28)
following Lord Rayleigh (1883). Observing (2.30) and (2.31) as well as

& = (& +03)/2 + (0] ~0,)/2
and CYE

i

(o) +0,)/2 — (o, —T,) /2
(2.28) can be rearranged to give

w(§) = 2775, €2 n (1554 0)T).

With the definitions

)

< % = 1D (2.35)

-4 [’

0
)
o

c, (2.36)

Co = —27c5c, (2.37)
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this becomes

<
wi(§) = ¢ €25 pim (£5-1) . (2.38)

Now, application of the boundary conditions (2.33) and (2.34) gives:

004//—’-’-—-%' (4+7§) (2.39)
)2 2 2
2¢w495 =F(¢)=75A/L'Lg¢ a (2.40)
A
12— ] [}
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Figure 2: Graphical solution of the transcendental equation (2.40) for
A= 10 and vanishing B. (After Gerhauser (1980, 1983).)
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and knowing ¢, the growth constant y can be determined after (2.32) and
(2.35):

Y = £
1+ B84 + g/a*

Equations (2.38) to (2.41) together with (2.25) and (2.26) constitute the
full solution of the problem (as usual, c, remains a free constant and c;
and cp have to be chosen as w(0) and w(A) after (2.38), respectively). As
demonstrated by Figure 2, (2.40) has infinitely many solutions which corre-

(2.41)

spond to infinitely many instability modes (assuming A>0). It is suffi-
cient to consider ¢>0, since (2.40) and (2.41) are symmetric and (2.38)
and (2.39) are antisymmetric, so that w(§) just changes sign when the nega-
tive solution of (2.40) is chosen. The curve f(¢) in Figure 2 illustrates
the case of A= 10 and vanishing :8 In this case all solutions are real.
This behaviour remains as Tong as B&2.

C—

Figure 3: Normalized displacement distributions of the fastest growing
mode for A= 5, (After Kull (1982),)

For B%2, one has 0< ¢0<7Cfor‘ the smallest solution ¢0 of (2.40) which
according to (2.41) gives the largest growth rate. Then after (2.39) cotI"
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is negative, i.e. /2 < ['< 0. Therefore sin(g/a-§ -1) is positive at
5= 0. Examples of w(§) are plotted in Figure 3. As already noted by Kull
(1982) this type of figure shows that the maximum of the disturbance lies
close to the low-density side of the transition region for 82 2 and moves
towards the center of that region for decreasing ,G

0.1

Figure 4:

A —

Nondimensional growth constants (squared) for an exponential
density transition profile. The thick line represents the
classical value (Atwood ratio) valid for step profiles,

The growth constants are shown as functions of 84 = 1n(92/91)
or the Atwood ratio A (see top fringe). Above BA= 6,

A is very close to 1. (After Kull (1982).)

The nondimensional growth constants (squared) obtained with ¢0, i.e. for
the fastest growing instability modes, are shown in Figure 4 together with
the Atwood ratio A which represents the classical result. The figure
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demonstrates that small values of ,8can considerably reduce the growth
constant. For Atwood ratios A close to one the reduction starts to become

effective for ﬂ:zZ. Actually, in the limit A-—=1, i.e.ﬁA_-*w, y -1 for
A= 2.

Another way to look at these results is the dispersion relation n(k) the
asymptotic value of which can be obtained straightforward: If one con-
siders a fixed density profile with A =~1 and a certain scale length L of

the exponential density variation, one has

L = 4/kg | (2.42)

Thus, k-*o= means [B3-+=0. From (2.41) one sees, that for a fixed density
distribution (i.e. BA fixed so that A->e=when B--0) y—=g for [B-0.
Therefore, for k—ee=, the factor y in

n = ?yg,/( (2.43)

tends towards B, which after (2.42) in 1/Lk. This combines to give
n — 7?//_ , k — o=, (2.44)

The dispersion relation, calculated after (2.43) is shown in Figure 5

where it 1is compared with the "classical" dispersion relation n = 75?1
which would apply to a density step with A = 1. Here the length L has been
used to define nondimensional quantities. The figure clearly demonstrates
that both growth rates practically agree with each other until Lk = 0.6
i.e. /353147 and that the growth rate at a gradual density transition does
not grow beyond the classical value for k = 1/L. This latter result has al-
ready been derived by Chakraborty (1975) as discussed in the next chapter.

The cases with ﬂ< 2 are easy to discuss and of main practical interest
because of their reduced growth rates. From a theoretical view point, how-
ever, it is also interesting to study how the classical behaviour of inter-
faces is approached when @ grows beyond 2, the graphical representation of
which is already included in Figure 4. For ﬂ>2 there is always a (posi-
tive) critical value 4, of A such that
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Figure 5: Dispersion relations for a gradual density transition with
length scale L and a density step, assuming an Atwood ratio
close to one, '

,GZAO /Lf - Ac_ = 2

and ¢o becomes zero. (This is the case D = 0 mentioned by Kull (1982).) In
the Timit A — 4, (2.38) becomes

§ /.8
(Ac

W(ﬁ):coe L )

A+ BA/2 )

IR

+ (2.45)

while (2.41) remains valid. Such a case is plotted in Figure 6 for /3= 4
which gives 4,= 2/3. w1th/3 slightly smaller, the curves are very similar
with the maximum slightly shifting to the right as indicated at the top
fringe of the figure. It is interesting to note that in the case /3= 2,
jﬁax here is smaller than for & = 5, but is larger in relation to 4. So,
for ﬂSeZ, the maximum of the disturbance also moves towards the center of
the transition region if the latter grows thinner.
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For A>4,, ¢0 becomes imaginary. However, equations (2.38) to (2.41)
remain valid. Just in terms of the real variables

?:i—¢ and y_:%’—l

the ordinary sine and cotangent are replaced by the corresponding hyper-
bolic functions. (In his discussion of these different cases, Gerhauser
(1980, 1983) disregards the role that f3|31ays and, therefore, erroneously
states that ¢0 were imaginary for A<A,. This would be true for <2

| only, but then Ac_<0 which is out of range.)

For ﬁ>2 and /3A2;10, the equations governing the fastest growing mode
can be simplified considerably, since in the modified equation (2.40):

BN — ¢ A
A

Zcf cotth ¢ = (2.46)

coth @ can safely be replaced by one (9>0). (The reason for this is that
2¢ cothtf lTooks 1ike 2¢ essentially, so that @ becomes large as Agrows.)
The solution of the simplified equation is

¢ = (B/2~41)A (2.47)

and equation (2.39) then yields

]

2% . (2.48)

RS

2
¢ 6

Furthermore, the location of the maximum can be determined to be

fMM = ’6".‘/3(_2;2'%) (2.49)
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and (2.38) can be rearranged to give

r =% -
wi(s) = —%[e - e ~ ] (2.50)

showing that w(%) under these conditions can be well approximated by e-$
except in a narrow region above g =0, e.g. 0< 3 < 2§max- Also, y deter-
mined after (2.41) and (2.44) is one. These two results indicate, that the
cases which can be approximated in the way just discussed very much re-
semble the case of superposed fluids of different densities. As an example
the case 8= 20, A= 2/3 is plotted in Figure 6, which has A_= 0.02...
and:’imax 2~ 0,036. It is seen, that the shape is very similar to e~ § which

is plotted also for comparison.

1.0

0.8

w (0) —o

0.6

0.4

0.2

D [ e e e e e ——— — —— —

-1/3 176 13 12 2/3 1

Figure 6: Normalized displacement distributions of the fastest growing
mode for A = 2/3.

2.6 Note on general initial conditions

In the major part of the literature on Rayleigh-Taylor 1nstabi11£y and
almost throughout this report a pure sinusoidal initial perturbation is
considered. This means that, out of the whole variety of possible instabi-
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lity modes (wavelengths) only a single one is studied. Of course, this is
possible because any dependence of the initial conditions in x-direction
may be Fourier-analyzed and the full result may be obtained by superposi-
tion of the individual results for all Fourier components. But it is
important to note that this is true in the linear phase only.

When gradual density transitions are considered instead of a single inter-
face there occurs another complication of the same kind: As indicated in
the last section the differential equation (2.27) has infinitely many solu-
tions corresponding to the infinitely many solutions of.the transcendental
equation (2.40). Hence, for any single wavelength there are now still
infinitely many instability modes. Up to now only the fastest growing mode
has been discussed. This means that the displacement (in %-direction) con-

sidered was implicitly assumed to be given by

]

§Z(§,§5 t) hi(€) w,(§) con§ (2.51)

which implies the initial conditions
§Z(§,5,0) = h) w,(§): cos§ (2.52)
6.2 (§,5§,00 = b (0) 'Woéﬁ)'mg (2.53)

where § = kx, h(t) is given by (2.12) and wo(g) is the characteristic func-
tion or eigenfunktion of (2.27) corresponding to the lowest eigenvalue

1/y, determined fr0ﬂl¢b. Even if the right.g-dependence is assumed, a
general initial condition will differ from (2.52) and require expansion
after a complete set of orthonormal functions. That the eigenfunctions
wi(g) have the required properties is most easily seen by verifying that
the differential equation (2.27) together with the boundary conditions
(2.33) and (2.34) and the definition (2.22) constitutes a Sturm-Liouville
system, see e.g. Ince (1926), Articles 10.6 ff and 11.5 ff. From this and
in particular gg(g) > 0 follows immediately:

a) There exists an infinite set of real and positive eigenvalues which can
be arranged in increasing order of magnitude such that
/’/Yo < A/y,, L oo

and which tends towards infinity.
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b) If the corresponding eigenfunctions are wy, Wi, ..., then wy has
exactly m zeros in the interval 0 < § <A,

c) The eigenfunctions form an orthonormal set.

d) Any continuous function on 0< § £ A which obeys the boundary condi-
tions may be expanded into an infinite series of the eigenfunctions
which converges absolutely and uniformly towards the function. Such a
Sturm-Liouville development is completely equivalent to a Fourier

cosine development.

The increasing number of zeros of the solutions w;j(&) means the existence
of an increasing number of nodal planes separating individual layers of
flow cells. At the elevations of the intervening maxima or minima the hori-
zontal displacements will vanish as discussed in 2.1.3.

Since any initial disturbance naturally fulfills the assumptions of d), it
can be decomposed into the components corresponding to the eigenfunctions.
Thus, from any actual initial disturbance the "effective" initial disturb-
ance at any elevation may be found, i.e. the initial disturbance that will
grow with the growth constant of the fastest growing mode. All higher
modes grow so much slower that they shoulid really be of no concern. (Of
course, this may be different for different density profiles.)




3. Estimate of instability growth at gradual density transitions
3.1 Introductory remarks

As discussed in the introduction, instabilities of the pusher shell grow
in the presence of a gradual density transition. Such a situation has been
treated in the previous chapter and the results will be utilized here
although the actual density profile may differ considerably from the
assumed exponential profile. However, to the writer's knowledge there is
only one other type of density profile which has been correctly treated
analytically: Lamb (1911) studied oscillations (and by the same token
instabilities) in an adiabatic and compressible atmosphere of finite
height assuming a constant density gradient. But he applied boundary condi-
tions which prevent use of his results in the present context: a flat
plate at the bottom and a free boundary at the top. Only recently,
Mikaelian (1982, 1983, 1984) has developed an algorithm which allows to
study instability growth at arbitrary density profiles by approximating
them with a step profile.

3.2 Determination of the growth constant

It has been shown in the last chapter that an (exponential) gradual den-
sity transition with a Togarithmic derivative B can lead to an important
reduction in growth rate (as compared to the classical value y = A which
applies to density steps), if B8 is much smaller than 2. In the example
given by Tahir and Long (1982), which will be presented in detail in the
next chapter, /3ﬁ50.2 and the growth constant is reduced by about a factor
15 which means that the effect is really important in cases of practical

interest.

Knowing B and &, the (nondimensional) height of the transition zone, y can
be determined by solving equations (2.40) and (2.41). It is, however, in
many cases of practical interest possible to avoid the solution of the
transcendental equation (2.40). To this end, (2.41) is replaced by its
Timit for A —eeewhich is
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* <
1 + B4

This y* is an upper bound of y for all LB 2 and y* =1 forﬁa 2.

Figure 4 shows that in many cases (e.g. B<l, A> 0.95) one does not lose
much by using this much simpler approximation. It is important to note
that (3.1) provides a conservative estimate of the growth constant. It is
therefore to be preferred to another approximation equally valid for
A->e= in which @ in the denominator of (2.41) is replaced by 7€ (Kull
(1982)). That approximation, while having the advantage of still depending
on A, always underestimates the growth constant. This can be seen from
Figure 2 which shows that the lowest 95 is always smaller thanTC.

3.3 Less effective bounds of the growth constant

As a corollary from Lord Rayleigh's (1883) work, Chakraborty (1975)
determined that

y <R | (3.2)

and y—»ﬁ for k+eo°, i.e. B0 and A-+oo while fBA fixed. Comparison with
(3.1) or Figure 4 shows that this is an effective upper bound for small
and 1argeﬁA, but only in this range. However, (3.2) is valid in the whole
range of B and A so that for [BA4<1 one may obtain

y < % (pa < 1) (3.3

which for small /3 may be an upper bound which is more efficient than the
general relation (see Kull (1982))

y < A < ﬁA/z (3.4)

the second part of which can be helpful for ﬂA<2 and large /3 Actually,
(3.3) and sometimes even (3.4) may give lower but still conservative
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estimates of y than (3.1). But this holds for small Atwood ratios only.
These are not of practical interest in the present context and, therefore,
these bounds are catagorized as less effective, here.

For the case of an exponentially varying density, i.e. for @ constant in
space, (3.2) and (3.3) are the inequalities which Gamalii et al. (1980)
without any argument and without requiring /8 = const give as their equa-
tion (5) in which, apparently, the conditions have been interchanged
erroneously.

An "elementary, illuminating, and rigorous" proof of such an inequality in
which B is replaced by the maximum that 9/678(1ng0) assumes has been
announced by Frese (1982). His further statement that the corresponding
instability modes "act only in a thin layer near the mininum of_?o/gg "
appears questionable in the 1ight of the discussions at the end of the pre-
ceding chapter. It may be true for k-+eeonly and, therefore, of little

practical use.

3.4 Hitherto used incorrect estimate of growth constant

The theory on which the above outlined estimate of the instability growth
rate is based was published by Lord Rayleigh (1883) more than a hundred
years ago. Nevertheless, to the present author's knowledge, it has not
been used in the present context up to now. Instead, a growth rate esti-
mate due to LeLevier, Lasher and Bjorklund (1955) has been widely used:
Bangerter et al. (1975), Bangerter and Meeker (1977), Hussey and McDaniel
(1981), Pert (1981), Targove (1981), Tahir and Long (1982), Jacobs (1983).

LeLevier et al. (1955) have considered the antisymmetric density profile

o = g ~(S-310/2 6" §3z0
A%

%o = S, +(g,-8,)/2-€ § <0 (3.

i

(3.5)

which is plotted in Figure 7a. In Figure 7b the exponential profile (2.22)
to (2.24) is plotted for comparison. Starting from the basic equation
(2.3) and assuming separation of variables similar to (2.10)




-31~

[

b) ph

Ppr————
I
|
P4 :
- 2
0 A 7
Figure 7: Density transition profiles:
a) antisymmetric
b) exponential
-t ¢
with wi(f) = c, e , 2 0 (3.7)
5 0
wi(s) = ¢, e ) § < (3.8)

they determined the time-dependent part of the disturbance velocity by re-
quiring continuity of pressure at § = 0. The time-dependent factor turned
out to be an exponential function and the growth constant was found to be
given by

(3.9)
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In Figure 8 this relation is compared with Lord Rayleigh's result (2.41),
showing a more pronounced reduction of the growth constant by the anti-
symmetric density profile, especially for = 2 (and higher values of Q).
For small @ and A =21, on the other hand, the results are similar since
both, (2.41) or its simpler substitute (3.1) and (3.9) tend towards @3 for
A—1 and B0, '

Figure 8: Comparison of the growth constants found by Lelevier et al.
(1955) for the antisymmetric profile with Lord Rayleigh's
(1883) result for the exponential profile,

Figure 8 does not yet indicate a contradiction since different density pro-
files (shown in Figure 7) have been considered. It is more serious that,

as already pointed out by Targove (1981), the ansatz which was assumed by
LeLevier et al. (1955) and which is given here as (3.7) and (3.8) does not
fulfill the boundary condition at € = 0 which for a continuous density pro-
file requires w'(§) to be continuous, see the discussion after (2.32). It
is difficult to judge to what extent such a formal deficiency influences
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the resulting growth rate. However, as demonstrated in chapter 2, the
growth rate shows up as an eigenvalue in the differential equation from
which the z-dependence of the disturbance velocity is determined, if the
instability is analyzed in terms of normal modes. This eigenvalue in turn
is determined from the proper boundary conditions. So, the result of
LeLevier et al. (1955) must be considered as unreliable,

As a further check, the method of Lelevier et al. (1955) has been applied
to the exact solvable problem treated in section 2.5. The result is

g = (eA(p-d) ﬁ[( aipn) (/5 1)+ e Alf-4 )_4] (3.10)

for p*d, and

y = A/A+2) | , p=A (3.11)

and it is for f3= 0.5 compared with Lord Rayleigh's result in Figure 9. It
is seen that the result of this method can be wrong (to the optimistic
side). Therefore, the result of Lelevier et al. (1955), i.e. equation
(3.9), should not be relied on further. |

It is interesting to note that y after (3.10) goes to A as /8—>°% for all
values of/GA. So, (3.10) is the uniform approximation to the step profile
result (i.e. A), the absence of which Kull (1982, p. 24) remarks. Actual-
1y, a numerical comparison of (3.10) and (3.11) with the correct result
obtained from (2.40) and (2.41) shows that (3.10) and (3.11) provide
reasonable approximations of the correct result for all @32 1. It can also
be observed that for sufficiently large A (possibly A > A.) the approxima-
tion overestimates the growth rate and thus provides a conservative esti-
mate. Nonetheless, (3.10) is of little practical use since all the growth

constants so determined are close to A anyhow.

It might be found astonishing that, in the range of 3321, the ansatz of
LeLevier et al. (1955) which is formally inconsistent leads to such rather
reasonable results. The reason for this becomes obvious on inspection of
Figure 4 which demonstrates that for ﬂ>2 and A >A, the correct solution
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is well approximated by exponential functions except in a small region
above zero where the formal inconsistency occurs.

In the opposite case, B-+0, y after (3.10) goes to B/2, showing that the
result is off by a factor of 2 to the optimistic side.

Method of Lelevier
et al. applied to
0.1 exponential profile

0.1

1 5 10
pA —

Figure 9: Comparison of the growth constants determined with the method
of LeLevier et al. (1955) for the exponential profile with the
correct result due to Lord Rayleigh (1883).
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4, Nonlinear bubble growth
4.1 The problem

Even under the assumed simplifying conditions linear theory as that
presented in chapter 2 describes the growth of an infinitesimally small
disturbance only. As the disturbance grows, nonlinear effects (still under
the same simplifying assumptions) will start to reduce the growth accelera-
tion. Also, these effects will cause a change in the shape of the disturb-
ance, If it is sinusoidal in the beginning, the crests where the light
fluid penetrates the heavier fluid will start to broaden and form round-
ended columns or bubbles, while the troughs become increasingly narrow and
form spikes of the heavier fluid that "fall" through the lighter medium.
(The latter being true for Atwood ratios close to one only, see e.g. Daly
(1967)). Since the disturbance amplitudes within the high density material
are characterized by the bubble amplitude, only the question of bubble
growth is considered further. The important point about this is that the
bubble rather quickly assumes a constant 'terminal (or ultimate) bubble
speed' K}, so that finite bubble amplitudes (larger than some fraction of
the wavelength) need much more growth time than linear theory would pre-
dict.

The above discussion is qualitatively supported by experimental observa-
tion, e.g. Lewis (1950) and Emmons, Chang, and Watson (1959). However, it
is difficult to obtain quantitative information from experiments because
they suffer from numerous complications as not purely sinusoidal initial
perturbations, wall effects, actions of surface tension and viscosity,
Kelvin-Helmholtz instability, etc. More reliable quantitative information
can be expected from fully numerical simulations. However, apparently for
reasons of computational stability, they are often initiated with such
high disturbance velocities that linear theory is not applicable, e.g.
Harlow and Welch (1966) and Daly (1967). While Daly (1969) has done many
calculations in the linear regime, he does not presenf how the computed
growth rates depart from those predicted by linear theory. Such informa-
tion is provided by Baker, Meiron, and Orszag (1980) and Menikoff and
Zemach (1983). Combining the information from these two sources, it can be
concluded that in the case of small initial perturbations the bubble
growth rate soon starts to increase more leisurely than predicted by
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linear theofy and approaches the terminal bubble speed by increasing
monotonically. Only with larger initial perturbations, the bubble speed
may overshoot and exceed slightly the terminal bubble speed for some time.
The really nonlinear theories that have been available until recently do
not describe correctly the late-time behaviour of instabilities. They are

commented upon at the end of this chapter.

Very recently a nonlinear theory has been developed by Kull (1983), which
describes bubble growth throughout from the initial linear phase to the
late quasi-steady phase and is in excellent agreement with all pertinent
information available otherwise. Unfortunately, this theory cannot be made
to directly account for the very important effect of growth reduction by
gradual density transitions discussed in chapter 3. Therefore, at first,
in the next paragraph, a simple synthetical model is presented in which
Jjust the linear theory is used until it is reasonable to switch to the
terminal bubble speed. After that, the results of Kull's theory are pre-
sented and used to check the simple model. Finally, some older nonlinear

theories are discussed briefly.

4.2 Simple synthetical model

Numerical simulations, as reported in the last section, indicate that
Tinear theory very soon starts to overestimate bubble growth. They also
indicate that under the condition of very small initial perturbations, the
bubble growth rate will never exceed the terminal bubble speed observed in
experiments and simulations and found theoretically. For such initial con-
ditions, a conservative estimate of the bubble amplitude can be obtained

by using linear theory until the so predicted growth rate equals the termi-
nal bubble speed and applying the latter from then on. This model is,
therefore, merely a synthesis of two already well known special solutions.

Linear theory predicts the disturbance amplitude in any plane to grow as

AlE) = Ao corxb nt + -é;o kb nt (4.1)
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Here (2.12) has been specialized to the bubble amplitude A and the initial
displacement amplitude hy and the initial velocity amplitude hB are now
called A, and AB, although, in the linear regime, the amplitudes of bubble
and (precursor of) spike are equal. In general, the initial disturbances
of both, displacement and velocity, will be nonzero. In the absence of
reliable information on those disturbances it seems appropriate to assume

A, = nA, (4.2)
so that (4.1) reduces to
t
Aty = A, e” (4.3)

which resembles the growth law used in many instances but actually, on the
basis of a more careful investigation of the time behaviour during the
linear phase, implies that an initial disp]acement amplitude Ay and an
initial velocity disturbance with amplitude nA, are assumed. Setting the
latter to zero would practically cut the bubble amplitudes at later times
by two.

As indicated above, the relation (4.3) will be used until a time ty in
which the bubble speed A equals the terminal bubble speed Ay:

e & e
Alt) = nA, e = A,
. —nt,
which gives A, = Ay - '4,;,' e 5 (4.4)
A _ nty A4 A
and ) = Ay e = 5 A (4.5)
: 1 /it
and t, = o | A ) . (4.6)

The terminal bubble speed Kt is given by

o 7
Ap = 'F’(}?\)z (4.7)




where A is the wavelength, g the acceleration, and F an empirical constant
which is often called the Froude number. This constant has been determined
experimentally to lie in the range 0.2 ... 0.3 by Emmons, Chang, and
Watson (1960), theoretical considerations.placed it at about 0.24,
Garabedian (1957), or between 0.22 and 0.24, Birkhoff and Carter (1957).
Purely numerical simulation by Harlow and Welch (1966) gave results in
agreement with Garabedian (1957). Using other numerical techniques, Baker,
Meiron, and Orszag (1980) found F = 0.225+ 0.002 (after an extrapolation)
and Menikoff and Zemach (1983) found F = 0.23. The only fully analytical
determination is due to Layzer (1955) or Kull (1983) (see paragraph 4.3)

and gives
-,
F = (éﬂ:) a~ 0,230 (4.8)

in good agreement with the other results. This value of F will be used in
what follows. (See, however, the discussion in 5.4.4,)

In summary, bubble growth is described by the following equations:

nt

Alt) = A, e for t < £, (4.9)
A(E) = —:; A't + A.t (t-t,) (4.10)

for t > ¢,

where Ay is given by (4.7) and (4.8) and tj is defined by (4.6).
Introducing the non-dimensional quantities

¢ T o- )t '
an = 9 )5, (4.12)

the above relations read:




n ( kj—ﬁizr

x(t) = &, € ¢ for € < T, (4.13)

(/

@k)? .
x (T) = —%—4— e v %, (T-7,) (4.14)
for T > T,

. -

where &, = (3) z (4.15)
(o k)% . (gk)®
z = ¥4 2, (& ) (4.16)
1 i t V‘ o(o )

and the dot, when used in connection with dimensionless variables, denotes

derivation with respect to T.

Here it should be noted that

m/(gk)”Z = y"/" , (4.17)

after (2.14). An illustration of the model for the classical case y = 1

will be given in Figures 10 and 11.

Similar models have been developed independently by Frieman (1954),>Layiér
(1955), Fishburn (1974), Suydam (1978), and Pilch et al. (1981). The model
presented here very much resembles the one due to Layzer (1955). In all
these models, the growth constant n contained in (4.9) and (4.10) has been
determined from the classical formula (2.21) together with (2.14). This
would not be appropriate in the presence of a gradual density transition
which, as discussed in the previous chapter, can effectively reduce the
growth constant. For the linear phase this can be accounted for by deter-
mining the growth constant n from (2.14) and (3.1). Unfortunately, there
is no relation available describing the effect of the density gradient on




the terminal bubble speed. So, one cannot take advantage of this possibly
important effect and the analysis of bubble growth is inconsistent with
this respect. Strictly speaking, there is even no evidence available,
which indicates that the nonlinear behaviour at really gradual density
transitions corresponds to that observed at density steps with large
Atwood ratios. It is, however, expected (and assumed in the synthetical
model) that the latter constitutes an upper limit to instability growth in
the nonlinear regime as it does in the linear regime.

The model presented here assumes the Atwood ratio A to be close to one. A
generalization to smaller values of A is easy for the Tinear part of the
model only. It would consist of replacing the simple formula (3.1) by the
equations (2.40) and (2.41). Guidance in deciding whether the extra
expenditure were worthwhile could be obtained from Figure 4. The situation
is not as clear for the nonlinear phase. First, even for density jumps the
physical picture outlined in section 4.1 is valid for large Atwood ratios,
above 0.5 say, only. Second, it is not clear whether the terminal bubble
speed depends on tﬁe Atwood ratio. Birkhoff (1955), using approximate argu-
ments, derived that the terminal bubble speed would vary asTFTQEEE;;ﬁ.
However, Daly (1966) as well as Crowley (1970) found no dependence of the
terminal bubble speed on the Atwood ratio in the range 0.33 € A £0.82 in
their numerical simulations using the MAC method. It is hoped that a
generalization of the nonlinear theory to be presented next can remove

this discrepancy.

The criterion used in this model for switching from the linear theory to
the terminal bubble speed may also be taken as an indication of the range
in which linear theory can be applied reasonably. It is, therefore,
interesting to note that the criterion which has been formulated using the
growth velocity can be translated into one which is based on the ampli-
tude. From

Ate) = A, (4.18)
one obtains

Ak,) = L4, (4.19)
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either on the basis of assumption (4.2) or assuming t; to be so large that
exp(-nty) may be neglected, i.e. assuming a very small Ay. With

n = '/ygk (4.20)

after (2.14) and (4.7) this gives

A
A (¢ = — 4,21
which becomes
A A4
Alt R —— = — 4,22
) = Ty 7k (4.22)
after (4.8). In the classical case of an interface, y = 1 and
A A
Alg,) = —2— = 2 :

which is a 1ittle bit larger than the value A/6mgiven by Kull (1983) but
still much smaller than the value of 0.4 A which is often cited as the
amplitude at which nonlinear behaviour starts.

In the presence of a gradual density transition, y will be smaller than
one and the amplitude range in which linear theory is applied will be
extended.

It should be mentioned that these results are obtained only if one assumes
(4.2) or small initial amplitudes. In general, the switch-over amplitude
obtained from the velocity criterion will depend on the initial amplitude.
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4.3 Nonlinear theory of bubble growth

Layzer (1955) has developed a nonlinear theory describing the motjon of
the bubble vertex. Kull (1983) within a more complete study of nonlinear
bubble growth has repeated the derivation allowing for an initial velocity
disturbance. The result is an analytical formula giving the bubble speed~&
as a function of the initial conditions «, and«§0 and the actual bubble
amplitude o(:

2 2[1- 8] &2 (x-a) - k(1425 ]
o = (
2 4+ e—3x

Numerical integration of (4.24) gives the nonlinear development of the
bubble amplitude in full agreement with all available information. In
particular, as pointed out by Kull (1983), for small amplitudes, 3¢ & 1,
one obtains (in nondimensional form) the result (2.12) known from linear
theory and in the limit of large amplitudes, (4.24) reduces to (4.15)
which is the nondimensional equivalent of (4.7) and (4.8).

4.24)

As a first application, the synthetical model presented in the last sec-
tion is compared with pure linear theory and the fully nonlinear theory in
Figures 10 and 11. To this end, equations (4.13) to (4.16) are applied to
the classical case of superposed fluids with an Atwood ratio of one, in
which case

Y
n = (?lc) . (4.19)
Furthermore, as a typical initial condition,
(4
X, = X, = 0. 01 (4.20)

is chosen. Figure 10 showing the (logarithm of the) bubble growth rate is
the equivalent of Fig. 6.1 in the report by Pilch et al. (1981) but is no
Tonger based on physical intuition only. Figure 11 which shows bubble
amplitudes demonstrates that the empirical model overestimates the ampli-
tude because it overestimates the growth rate during the transition regime
between the true linear regime and the asymptotic nonlinear regime. It
furthermore demonstrates the potential big advantage of the synthetical
model over linear theory. (In a similar figure by Layzer (1955) obviously
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the curve labels have been exchanged by mistake: a should read B, A should

read b, and vice versa.)

The nonlinear theory by Layzer (1955) has been extended to include surface
tension by Rajappa (1967). From this, in particular, the effect of surface
tension on the terminal bubble speed may be obtained which, however, is

not considered here.

4.4 Other nonlinear theories

Since linear theory becomes increasingly doubtful as the amplitude grows,
there have been many attempts to develop higher-order theories, mainly for
the "classical" situation of two-dimensional disturbances at the interface
between a semi-infinite fluid and vacuum. Probably the first to do so was
Ingraham (1953) who presented the principle equations and worked out the
second-order solution. His theory was generalized by Baker and Freeman
(1981) to include initial velocity disturbances.

Emmons, Chang, and Watson' (1960) developed a third-order theory including
surface tension in order to study finite initial amplitude effects on the
stability criterion, i.e. on the critical wavenumber beyond which instabi-
lity is prevented by surface tension. But as discussed e.g. by Kiang
(1969) and Rajappa (1970) their method was inappropriate and partially
gave wrong results. Later the destabilizing effect of finite initial ampli-
tudes (the critical wavenumber increases with initial amplitude) has cor-
rectly been derived by Kiang (1969), Nayfeh (1969) and Amaranath (1980).
Nayfeh also gave a second-order solution for the unstable case, remarking
correctly that it is valid only for short times. (Nayfeh in addition
studied the effect of a finite thickness of a fluid layer which is bounded
by a flat plate).

Rajappa (1970a, 1970b) presented a third-order theory including surface
tension. While his result on the cr{tical wavenumber is incorrect (see
Nayfeh or Amaranath) he presents (in the second paper) results indicating
that his theory is able to describe the development of instabilities well
into the nonlinear regime with a steadily growing bubble. Amaranath and
Rajappa (1976) have extended the theory to include a finite density of the
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lighter fluid and Rajappa and Amaranath (1977) have studied three-dimen-
sional disturbances (presenting only second-order results for the ampli-
tude),

The difficulty with all the higher-order theories for unstable cases is to
find out how far in time they can be used. It is clear that they must fail
at some time because the higher-order terms (i.e. higher terms in a
Fourier series) are kept small by increasing powers of the initial ampli-
tude hy only, i.e. they are proportional to hy, hg, hg, etc. On the other
hand their time behaviour is characterized by exp(nt), exp(2nt), exp(3nt),
etc. so that inevitably, after some time, higher-order terms will become
more important than terms of lower order, indicating bad convergence of
the series, the first two or three terms of which are considered only. The
above considerations also indicate that decreasing the growth constant n
increases the time interval in which any finite-order theory may be
applied. In the case of linear theory and assuming the switch-over crite-
rion of the synthetical model of subsection 4.2 even the amplitude up to
which it could be used was increased by decreasing n (see the end of sec-
tion 4.2). Hence, with a strong influence of surface tension, third-order
theory may accurately describe the disturbance amplitudes up into the non-
linear regime as presented in Figures 2 and 3 of Rajappa (1970b). But it
seems difficult to predict e.g. the terminal bubble speed from such a
theory and without additional information (as e.g. an experiment) because
it is completely unknown (within the theory) whether the terminal bubble
speed is reached at all within the range of validity of thé theory, and if

it were, at what time.

Without surface tension, the above theories are of rather limited use for
a description of the disturbance amplitudes because the higher-order
Fourier terms, as indicated above, grow with higher powers of exp(nt),
Therefore, the period in which they are already large enough to really
contribute to the sum of the series but still smaller (by an order of
magnitude, say) than the preceding term is rather limited. An illustration
of this for the second-order term is given in Figure 7 of Prosperetti and
Jacobs (1983). (By the way, their somewhat higher estimate of the Froude
number characterizing the terminal bubble speed may be due to the fact
that their method gives a bubble which is slightly peaked at the top.) The
numerical results represented in that figure also show that for any term



the period until the next higher term becomes important too becomes
rapidly smaller with the order of the term. In other words, the number of
terms required for a reasonable description of the interface increases
rapidly and at an increasing rate. Therefore, adding higher-order terms
becomes increasingly inefficient (and, in addition, much more involved).

A completely different approach to a nonlinear theory of Rayleigh-Taylor
instability is the generalized coordinate method developed by Dienes
(1978). This method is quite promising because it rather elegantly
describes the shape variation of the interface and (when an ordinary
differential equation is integrated numerically) allows for considerable
freedom in including real fluid effects (but not compressibility).
However, as presented in the paper, i.e. with only one term retained in
the series expansion of the velocity field (only one generalized
coordiante), it gives absurd Tate-time results: the spike amplitude
becomes infinite within a finite time while the bubble amplitude remains

below a fixed value.




5. Applications to pusher shell breakup
5.1 Formulation of the problem

As already described in the introduction, inertial confinement fusion re-
quires extremely high fuel densities and during the implosion which shall
lead to them, Rayleigh-Taylor instabilities can occur because pusher mate-
rial at low density but high temperature and therefore high pressure is
accelerating compressed but much colder pusher material (and the fuel in
front of it). The instability zone which e.g. in Figure 1b is located
roughly between 2.66 mm and 2.77 mm is characterized by a gradual density
transition. It is essential that the thin shell of compressed pusher mate-
rial in front of it is not broken up by the instabilities, i.e. not pene-
trated completely by the "bubbles" filled with 1ight and hot material.
Numerical pellet simulations performed under the assumption of spherical
symmetry do not answer this question directly. Two-dimensional pellet simu-
lations, even if available, are very involved. Therefore, a separate model
is needed. Here, the synthetical model presented in the last chapter is
used to determine maximum allowable initial perturbations which can serve
as figure of merit when comparing different pellet designs and/or illumina-
tion histories with respect to the pellet's vulnerability to pusher shell
breakup on the basis of information provided by spherical pellet simulations.

For two reasons the allowable initial amplitude characterizing both
initial perturbations cannot simply be compared directly with some other
figure to decide whether the pusher shell in a certain case should sur-
vive. Firstly, the model is overly pessimistic. Although it accounts for
two important effects, the gradual density transition and the nonlinear
growth saturation, it leaves out many other effects that might further
strongly reduce instability growth, as e.g. lateral heat transfer. It is
difficult to judge how important such effects are without having tested
them under the appropriate boundary conditions. For example, in all
studies on Taser fusion the density gradient is so steep that it has
Tittle effect on instability growth, while, in the present case it well
makes a difference, as will become obvious soon. There are, of course,
also effects that can increase the growth rate. But their potential seems
not to be too great. They will be discussed in some more detail in a
separate section of this chapter. The second obstacle preventing direct




comparison of the maximum allowable initial perturbations with the actual
initial perturbations is absence of information on the Tatter. In the
literature, the discussion concentrates on surface imperfections and for
reasons that are far from being clear, surface imperfections below 10 nm
are quoted as necessary and possible (e.g. Bangerter and Meeker (1977),
Hendricks et al. (1981)). This figure, however, may be rather meaningless
in the present context, since, as e.g. in the here considered illustrating
case, the instability under discussion may not grow at a material inter-
face but at a density gradient that develops within the pusher material.
One could imagine that distortions develop in this region during the accel-
eration process because imperfections of the pusher-fuel interface imply
variations of the (areal) mass to be accelerated. Initial perturbatfons SO
produced may be characterized as kinematic in contrast with static pre-
fabricated perturbations. They have been observed by Ripin et al. (1982).
Such disturbances will always grow because of both effects: kinematics and
Rayleigh-Taylor instability. In the beginning, kinematics will prevail,
but later instability growth may predominate. (The above mentioned experi-
ment seems not to have entered the second stage.) In this situation it is
difficult to determine an initial amplitude. Most probably, however, both,
initial amplitude and initial (disturbance growth) velocity must be taken
to be nonzero. Therefore, the assumption (4.2) has been chosen for the

synthetical model.

Application of the synthetical model in conjunction with the estimate of
instability growth at gradual density transitions presented in chapter 3
means that the linear growth constant is calculated for a region of expo-
nentially increasing density between regions of constant densities (see
Figure 7b) and a constant acceleration in the positive z-direction. In
order to specify a breakup criterion it is observed that the pusher shell
assumes a minimum thickness d during the compression phase and rapidly
grows thicker afterwards due to spherical convergence. The shell is
assumed to remain intact as long as the bubble amplitudes do not become
Targer than the minimum thickness d. In addition, for the following
numerical example, the wavelength is assumed to equal the minimum thick-
ness d, too, because it is common practice to assume this wavelength to be
most dangerous. The most dangerous wavelength will be discussed in more
detail in the third section of this chapter.
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5.2 Determination of maximum allowable initial perturbations

5.2.1 Numerical example

Tahir and Long (1982) have simulated the performance of a former HIBALL
pellet with the MEDUSA code and provided the information necessary to

apply the synthetical model. This case has already been studied with a
similar model by Jacobs (1983). But that study still used the result of

the theory by Lelevier et al. (1955), which now has been shown to be

wrong., Therefore, the case is reconsidered here.

As determined by Tahir and Long (1982), the Atwood ratio formed with the
two extreme densities is close to one all the time, the minimum thickness

is

d = 16 jun
the total acceleration time is,
t, = 8 ns,
the acceleration gives
g = 2.5 40" m/s?
and the inverse length scale of the density gradient is
== Bl = 739 40" i

so that with

L

A od = /fé/uxvvn

s -
k = 3.93 40" m™ "
and B = 0..488.

From (5.3) together with (4.7) and (4.8) one gets

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)




AL = %600 mys.

Now, after (4.10)

Aly) = 25 & Ay (¢,

Alt,)
so that é,’ = :’;:1 A.z + t, (5.8)
: t

Here, after (2.14)
.
n = (ygk) ‘

where y is replaced by y* after (3.1) since 8< 0.5 and A 2 0.95:

»* g "
y £ vy = P ﬁ%t =~ 0. 486 . (5.10)

This value shows that the gradual density variation, in this case, reduces

the growth constant by a factor
4,

-
(0.496) ¢ =~ 2.3

as compared to the classical value given by y = 1. From (5.9)

n o= 4.353 407 1 (5.11)
(5.12)

and with this and (5.8) t, = 5. 261 ns

so that, after (4.4)

Ay = 2.75 nm (5.13)

which implies, after (4.2),

A.o = nA,= 3.73 m/s (5.14)
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These are the amplitudes of the maximum allowable initial perturbations.

Growth of the here discussed disturbance with these initiaf conditions is
shown in Figure 12, comparing linear theory and the synthetical model,
which both take into account the retarding effect of the gfadua] density
transition, and the nonlinear theory of Kull, in which this effect cannot
be accounted for. Actually, consistent use of (4.2) leads to different
initial velocity disturbances, the one used in connection with Kull's
theory being larger. But use of the same initial velocity shifts the
straight part of the curve to the right by 0.1 ns only. So this effect may
be neglected.

’ |
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Figure 12: Growth of bubble amplitude in the HIBALL pellet case, assuming
the maximum allowable initial perturbation amplitudes after
(5.13) and (5.14). Comparison of empirical model, linear
theory and nonlinear theory due to Kull (1983).



The above determined allowable initial displacement amplitude is an
extremely small fraction of the wavelength (2-10-4). Therefore, initial
amplitudes even ten times as large are still in the range where linear
theory applies and the synthetical model as formulated here always over-
estimates the bubble growth velocity. So, with initial amplitudes that
allow survival of the pusher shell, this model will alwéys be conserva-

tive,

In order to further illustrate the importance of the two effects which are
included in the synthetical model one may calculate the figure of merit,
Ay, with Tinear theory alone and/or the growth constant n =’V§Eﬂappro—
priate for a free surface (A = 1 being assumed throughout). The results

are as follows:

Full synthetical model: Ay = 2,75-10-9 m
Linear theory with account

of gradual density transition: Ao = 0.32:10"9 m
Synthetical model without account

of gradual density transition: Ao = 0.2-10-12 p
Linear theory without account

of gradual density transition: Ao = 0.2:10-15

The Tast two numbers which are small even on atomic and nuclear length
scales, respectively, show how important it is to account for effects that
reduce the linear growth constant like (in this case) the gradual density
transition. They also show that nonlinear saturation becomes more
important with increasing linear growth constant. But even in the case
studied here with its small growth constant, nonlinear saturation still

contributes one order of magnitude.

5.2.2 Possible extensions

In the example presented in the last subsection the result partially
depends on the procedure by which the parameters (boundary conditions) are




determined from the numerical pellet simulation. So, the above presented
result is not necessarily as conservative as the synthetical model is. For
instance, as can be seen from Figure 1lb, the density profile in the case
considered is far from being exponential. In that case it would be conser-
vative to define B as the spatial maximum of the logarithmic derivative of
the density distribution. Actually, the 8 used above is some spatial mean

value defined by

A= —"&- Lo _S% | (5.15)

where A is the (dimensionless) thickness of the transition region taken to

be bounded by z; and zp, i.e.
A = k (,22,"24)
and g, = §(2Zz)

¢4 = g(z,,).»

On the other hand, the ,@used in the numerical example is the largest that
has been found during the whole acceleration phase and represents a rather
sharp maximum. Before and after this maximum, /Zis only about half as big.
Therefore, the /3 used should still be conservative. Similar considerations
apply to the acceleration which, however, seems to vary less with space

and time,

A more elegant and more realistic way to treat the problem would be to

take the actual density profile. For the period in which linear theory
applies, this can be achieved using a formalism developed by Mikaelian
(1982). He has derived formulas to calculate the fastest growing insta-
bility mode of anvarbitrary density profile given as a series of density
steps. This is just as the finite-difference pellet simulation codes deter-
mine the density profile. With this method the largest growth constant
could be determined directly and without recourse to an exponentially
varying density and the corresponding analytical relations used in this
report.
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0f course, the determination of the largest growth constant may be
repeated after certain time intervals (not necessarily after each time
step). At the same times the (spatial maximum of the) acceleration may be
determined and both data may be used to calculate instability growth with
almost full time dependence. This procedure would remove avoidable
pessimism and the necessity to define an acceleration time interval.

The above outlined scheme in which instability growth is calculated in
several time stepsvcou1d probably be extended to account for another
effect which may be expected to reduce instability growth: convection or
flow of material through the instability zone. In the present context
where only an acceleration which is constant in space can be considered,
the instability zone is identical with the density transition region and
convection will occur if the region of increasing density moves forward
(in the direction of the acceleration) with respect to the Lagrangian mesh
cells. Since the disturbance amplitude quickly dies away with distance
from the lTocation of maximum disturbance, this convection of formerly
further away material layers into the zone of increased disturbance growth
(the density transition zone and possibly its close vicinity) would con-
tinuously reduce the initial amplitudes to be considered in the next time
step. While this growth reducing effect occurs where it is needed -
upstream, i.e. towards the pusher shell - disturbance amplitudes will be
increased downstream where they do not matter. How important this effect

might be remains to be clarified,

Clearly, this concept requires calculation of the z-dependence of the
disturbances. But that can be done straightforward as demonstrated in
chapter 2 (see Figure 2) for continuous density variations and by
Mikaelian (1982, 1983a,b) for multiple step functions. It is further
necessary that the maximum growth constant is used only in connection with
that portion of the initial amplitude at a certain location which is the
component of that amplitude corresponding to the fastest. growing eigen-
mode, The same fact is expressed by Mikaelian (1983a) slightly different:
In order that the disturbance everywhere grows as a normal mode (i.e. with
one growth constant) the initial disturbances have to be proportional to
the corresponding eigenfunction. But, of course, additional amplitudes may
be present - they just do not grow so fast. If, e.g. the here outlined
scheme is coupled with a calculation of the kinematic development of




initial disturbances as discussed in subsection 5.1.1, the initial distur-
bances will be equal at all interfaces. But only at the lacation of the
maximum of the eigenfunction this whole initial disturbance will be con-
sidered as initial value. At other locations the effective initial ampli-

tudes will be smaller corresponding to the shape of the eigenfunction.

In the discussion so far it has been assumed that instability growth can
effectively be described by the fastest growing instability mode only.
Actually it might be necessary to take into account several modes - but
probably a few are enough. This is no principal difficulty but only
increases the numerical effort. The problem has been treated by Mikaelian
(1983a,b).

The time dependent method discussed here can also be made to account for
another effect which - again - has already been mentioned by Mikaelian
(1984): If the material is compressed during the acceleration or if it
expands at some other time, always the disturbance amplitudes are reduced
or increased correspondingly. This is another effect modifying the
z-dependence of the disturbance amplitudes. If it is taken into account
also, it might really be necessary (or at least prudent) to decompose at
any time step the actual z-distribution of the amplitudes into the
components corresponding to the (most important) eigenfunctions of the new
density profile. Of course, compression or extension of existing distur-
bance amplitudes 1is only part of the effect that material compressibility
has. While, in the present context, collision of shells as mentioned by
Mikaelian (1984) is of no concern, one has to worry about the increasing
effect which compressibility may have on the growth constants. This effect
will be discussed in a further section of this chapter.

The discussion of the extended calculational scheme so far was limited to
the Tinear phase. Nothing nearly as sophisticated is available for the non-
linear phase. The best (i.e. least conservative) is to assume the terminal
bubble speed given by (4.7) and (4.8) to take over when the growth rate of
the disturbance at the rear interface of the pusher shell reaches this
velocity. This .proposal makes use of the fact that disturbances grow the
fastest somewhere in the middle of the density transition region. So the
terminal bubble speed will be reached there earlier. However, there is no
easy way to calculate individual disturbance amplitudes at the different




interfaces after switching to the terminal bubble speed because the
z-dependence of the corresponding flow field is difficult to determine.
One only knows that higher harmonics couple in with increasing weight. But
elongated use of linear theory is conservative because the disturbance
amplitudes in the middle of the density transition region (which, however,
are of no direct concern) will be overestimated and because the funda-
mental mode considered in linear theory‘dies out slower in the z-direction
(essentially as exp(-kz)) than the higher modes which actually will come
into play, and which die out faster, e.g. as exp(-2kz) and exp(-3kz).

5.3 Most dangerous wavelength
5.3.1 Introductory discussion

Since the synthetical model presented in paragraph 4.2 describes the
growth of disturbances basically correct up to the range in which destruc-
tion of the pusher shell occurs, this model is suited to determine the
most dangerous wavelength. There are two ways to do so: The first consists
of determining the breakthrough time at which the bubble reaches a certain
amplitude (in the following called critical amplitude). The most dangerous
wavelength then is the one with the shortest breakthrough time. (Just as
well one might determine the wavelength reaching the largest bubble ampli-
tude within a certain time interval.) This procedure has the disadvantage
that the result not only depends on the critical amplitude chosen but also
on the assumed initial disturbances, and that the breakthrough time is a
rather insensitive parameter. On the other hand, it has the advantage that
it can be used when the time variation of the density gradient and the
acceleration shall be accounted for. Also, this procedure has already been
used by Frieman (1954), Capriotti (1973), Fishburn (1974), Suydam (1978),
and Jacobs (1983). It is therefore again considered here to some extent in
order to demonstrate it in conjunction with the revised synthetical model,

The second possibility for determining a most dangerous wavelength is to
calculate the maximum allowable initial perturbations as a function of the
wavelength and looking for the minimum of this curve. While this procedure
can be followed only if the density gradient.and the acceleration are
assumed constant in time, one need not assume initial perturbations and
the results are more pronounced because the maximum allowable initial
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perturbations are a much more sensitive parameter - making it a suitable

figure of merit.

In a further subsection the potential effect of a reduction of the termi-
nal bubble speed by gradual density transitions is explored by assuming a
corresponding relation.

5.3.2 Determination from shortest breakthrough time

Inverting (4.10) and inserting (4.6) one obtains

¥

A 1 .
t, = —;t— + —n‘[-@n (Ab/mAD) —4] (5.15)

as the breakthrough time, i.e. the time to reach a critical amplitude
which is here called A*. This formula is valid as longmis A* is larger
than the switch-over amplitude A(ty) which is [;157'k] after (4.22).
Thus, for the example treated in the last paragraph, i.e. A* = d = 16pm
and a length scale of the density variation of L = 1/8k = 13.53 pm, (5.15)
is valid up to the wavelength A = 174 pm, in which case,@ is just Targer
than 2 so that already 1 is the conservative approximation for y. The re-
sult is sﬁown in Figure 13 for different choices of the parameters n and
Ag. A1l the curves show minima (which have been marked) because disturb-
ances with shorter wavelengths have larger growth constants in the 1inear
phase but reach the nonlinear phase earlier and then grow at a slower rate
while disturbances with longer wavelengths have smaller growth constants
in the linear phase but grow faster in the nonlinear phase. The most dan-
gerous wavelength A* depends slightly on the initial disturbances. Figure
13 shows however that it is larger than the critical amplitude A* in all
the cases considered here. It also shows that the curves are very flat
around the minima.

When calculating the curves A, B, and C the density gradient has been
taken into account by using a growth constant n determined with y = y*
after (3.1). A certain density gradient (with fixed length scale L) slows
down shorter wavelength disturbances more efficiently than those with
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Figure 13: Breakthrough time as a function of wavelength and initial

disturbances (A, as indicated, Ay = nAg)

Targer wavelengths. This is not only true for the linear phase where it is
accounted for in the present model but also in the nonlinear phase (if a
density gradient reduces the terminal bubble speed). Therefore, at a
gradual density transition, the most dangerous wavelength is larger than
at a density step. This is demonstrated by curves C and D which use the
same initial displacement amplitude. But curve D has been obtained using
the classical growth constant for density steps with y = 1. Curve D has




its minimum at about 1.7 times the critical amplitude A*, while the
minimum of curve C lies at 3.6A*, If the gradual density transition would
really reduce the ultimate bubble speed, the most dangerous wavelength
would become even larger. Therefore, the most dangerous wavelength at a
gradual density transition may be expected around 4A* if the initial
disturbances of all wavelengths are equal and it may lie between 2A* and
8A* depending on which wavelength has the largest initial disturbances if

those are randomly distributed,

Finally, curve E in comparison with curve D shows that even for a density
step the most dangerous wavelength occurs at much higher values if the ini-
tial displacement amplitude is assumed proportional to the wavelength.
This may explain why Kull (1982) with his simplified nonlinear model of
bubble growth also finds rather large ratios between most dangerous wave-
length (in his case the wavelength reaching the highest bubble amplitude
within a certain time) and critical amplitude (in his case the maximum
bubble ampiitude) as illustrated in his Figure 4. Actually, use of the
assumption (4.2) in all the cases presented means that the initial velo-
cities decrease with growing wavelength (or increase on1y with 15C instead
of A for curve E). This tends to give smaller most dangerous wavelengths

here and in the next subsection.

5.3.3 Determination from smallest maximum ailowable initial disturbances

In this case just the procedure followed in subsection 5.1.2 is conducted
for different wavelengths A. The result, still for the same example, is
shown as curve A in Figure 14. While the most dangerous wavelength (52 um)
is in the range expected after Figure 13, Figure 14 shows also that the
maximum allowable initial disturbances at this most dangerous wavelength
are much smaller than those obtained for A = 16 pm, an effect which is not
so clearly indicated by Figure 13. Of course, if one wanted to determine
whether a fusion pellet will work, the smallest maximum allowable initial
disturbances would be those which had to be compared to the unavoidable
initial perturbations. The corresponding initial displacement amplitude A,
is therefore called the critical initial amplitude A§. The range of wave-
lengths to be considered for this purpose would still be rather large
(e.g. 2A* to 5A*) because also the here obtained curve is flat around the
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Figure 14: Maximum allowable initial amplitude A, which implies an
initial velocity AO = nAg as a function of wavelength and
initial disturbances.

minimum. In this context it is important to note how strongly the critical
initial amplitude depends on the critical amplitude A*. The critical
initial amplitudes obtained for A* = 16 pym, 8 pm, and 5 pm are 0.88 nm,
0.21 nm, and 0.11 nm, respectively (see also curve B in Figure 14). A
thicker minimum shell thickness d which means a larger critical amplitude
A*, therefore, has an important effect on the critical initial amplitude
A§. Hence, to design a pellet which is resistent against pusher shell
breakup by Rayleigh-Taylor instabilities is much easier for a breakeven
experiment than it is for a pellet with a gain appropriate for a fusion
reactor. For in the second case the necessary high hydrodynamic efficiency
of the compression process requires a small minimum pusher shell
thickness.




Curve B in Figure 14 also shows that the most dangerous wavelength A* is
roughly proportional to the critical amplitude A*, The ratios of A*/A*
obtained for A* = 16 pm, 8 pym, and 5 pm are 3.3, 3.9, and 4.0, respective-
1y. Therefore, when comparing different pellet simulations, it is reason-
able to assume X in each case to be 3 or 4 times the critical amplitude
which, in turn, is some fraction of the minimum pusher shell thickness
(e.g. A* = d) observed in the different cases. In addition, curve B in
Figure 14 shows that the range of potentially dangerous wavelengths has
increased with decreasing A*, For A* = 8 pm it extends from A* to 10 A%,

roughly.

If the "classical" growth constant appropriate for a density step is used,
the most dangerous wavelength A* is given by

z z 3 "%
;\* = '{%{?fz —62[?(3/62 + V3 A6 A )] +ﬁ'9A*}, (5.16)

For A* = 16 pym, 8 pm, and 5 pm the ratios A*/A* are 0.66, 0.35 and 0.23,

respectively. In this case, the most dangerous wavelength is even smaller
than the critical amplitude. But again the most dangerous wavelength for a
density step is considerably smaller than for a gradual density transition

(assuming the same shell thicknesses).

5.3.4 Potential effect of reduction of the terminal bubble speed
by a gradual density transition

In order to estimate the potential importance of the growth rate reducing
effect that a gradual density transition may have during the nonlinear
phase in which the bubble grows steadily, one may assume the terminal
bubble speed to be given by F.7f§¥§33, Such a dependence would increase
the most dangerous wavelength after either definition by about 30 % and
increase the critical initial amplitude by about 40 % (in the cases A* =
16 ym). This rather benign effect is due to the fact that the most danger-
ous wavelength is about 4 times the length scale L of the density varia-
tion anyhow (L = 13.5 ym, A* = 16 pm, A* = 52...54 ym) and the effect of
the density gradient ceases at A= 4wL. The latter has been shown to apply



during the linear phase and has been assumed here for the nonlinear phase.
But it is clear that there must be a wavelength beyond which a certain den-
sity gradient is no longer important. So, one cannot expect another order-
of-magnitude effect from a reduction of the terminal bubble speed by a
gradual density transition. (It may, however, help considerably when the

ratio L/A* is larger.)

5.4 Discussion of effects that could lead to faster instability growth
5.4,1 Effect of finite pusher shell thickness

One difference between the model situation considered here and the real
situation in a fusion pellet, which one could consider as important, is
the finite thickness of the pusher shell which, in the models- from which
the growth laws are determined, is replaced by a semi-infinite fluid with
constant density.

The Tlinear theory of Rayleigh-Taylor instabilities at finite fluid layers
bounded by vacuum on both sides is well established. First Taylor (1950)
has considered the case of sinusoidal initial displacements on the two
sides which are in phase. Axford (1974) has allowed for a phase shift
between these initial displacements and also considered arbitrary initial
displacements and certain time-dependent accelerations. Mikaelian (1983a)
has generalized Taylor's case by including initial velocity disturbances.

The basic result of all these analyses is that the two surface modes
Tinearly combine to give unstable growth with some superposed oscillations
at both interfaces. As shown in subsection 2.3 the growth or oscillation
constants of these modes are independent of the density distribution
within the fluid., Hence, they are also independent of the fluid layer
thickness and this thickness only enters into factors multiplied to the
functions describing the growth of the amplitudes. If we take Taylor's
case (zero initial velocities) as a typical one and neglect the oscilla-
tory part of the solution, the displacement amplitude hj.at the unstable

surface develops as
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Here hig and hpg are the initial displacement amplitudes at the unstable
and stable surfaces, respectively, and the minimum pushe} shell thickness
d has been used as finite fluid layer thickness. One sees (most easily for
hog = 0) that a disturbance at a finite fluid layer may indeed grow faster
than with a semi-infinite fluid. On the other hand, if hpg > hyge-kd, the
disturbance will grow slower than with a semi-infinite fluid. It is, how-
ever, more important to realize that the additional factors are quite
small and in fact barely realizable as long as A<md, say.

The same considerations apply if the unstable free surface is modified by
adding a region of exponentially decreasing density. Merely the single un-
stable free surface mode is replaced by the infinite set of internal modes
belonging to the gradual density transition. In the present context the
fastest growing mbde is the most interesting one (one may even assume only
this mode to be present initially) and it will always combine linearly

with the oscillatory mode from the stable surface since the eigenfunction
of this latter mode is not orthogonal to that of the fastest growing inter-
nal mode as those of all the other internal modes are. But, of course, the
growth constant of the fastest growing mode depends on the thickness of

the fluid layer above the region of exponentially increasing density. Some-
what astonishingly this growth constant slightly decreases when the fluid
depth is decreased from infinity to zero. The transcendental equation from
which these growth constants can be determined has already been given by
Mikaelian (1984).

As to the nonlinear phase, the situation is not as clear. There are some
numerical studies available for fluid layers with sharp boundaries but the
results are not reported in such a way that they could be used here direct-
ly. Verdon et al. (1982) state in their introduction that "For a shell of
finite thickness, a constant bubble rise velocity is prohibited by the
finite mass reservoir of a fluid layer," and report later that "... the
bubble velocity is actually decreasing at the time illustrated, in con-
trast to the constant bubble rise velocity which results in the semi-
infinite layer." It is not clear whether this means that the finite fluid
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layer tends to reduce the bubble speed below the terminal bubble speed
assumed in the synthetical model. The above cited statements also are
possibly not fully in line with what is reported by some of the same
authors in McCrory et al. (1981): "The instability evolves because of a
nearly constant bubble rise velocity which removes mass from the bubble
region," and "... the shell thickness near the bubble decreases linearly
with time." (In these calculations the situation may have been different

because thermal conduction was included.)

While still not fully conclusive, the reported studies at least do not
indicate a sensible increase in the terminal bubble speed due to a finite
shell thickness. Furthermore, as derived in the previous subsection, a
wavelength about 3 to 4 times the minimum shell thickness should be chosen
as the most dangerous one. This is allowed by the results of linear theory
presented above and if the final bubble amplitude is only one third of the
wavelength, any nonlinear effects should not become too important.

In conclusion, one may state that the effects of a finite fluid layer are
negligible at the most interesting wavelengths of 3 to 4 times the layer
thickness and that these effects would hardly affect the results derived

so far in this chapter.

5.4,2 Effect of compressibility

At the pressure level present during the compression phase (typically
several MPa) the pusher material must be considered as compressible in
contrast to what has been assumed so far in this report. There has been
some confusion about the role that compressibility may play for instabil-
ity growth. Some of these eariier publications are discussed by Bernstein
and Book (1983) and Baker (1983). However, clear and rather general re-
sults were first obtained by Kull (1982). For a perfect (polytropic) fluid
he showed that the growth constants for unstable modes always increase
with compressibility but can never eéxceed ¥gk'. The first part of these
findings was also found by Bernstein and Book (1983) for a special case
and shown by Newcomb (1983) to be a special case of a known comparison
theorem in the calculus of variations. So, this seems to be quite general-
ly valid, shedding some doubt on Baker's (1983) result which includes the
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possibility that compressibility decreases the growth constant.

The second part of Kull's (1982) finding makes clear that compressibility
has only 1ittle effect when the growth constant n is close to 1&5?7

anyhow, which has been found confirmed in all the actual cases studied.
However, the smaller n is in comparison with 1f§§ﬂ, the more pronounced is
the effect of compressibility. This is found in the special case of a
sawtooth-1ike density profile due to the superposition of two isothermal
compressible fluids treated by Kull (1982) and Bernstein and Book (1983).
There the reasons for decreasing n are decreasing Atwood ratio and the sta-
bilizing effect of the density gradient outside the unstable interface,
which increases with wavelength. So, one might also expect that compressi-
bility can, to some moderate extent, cancel the growth constant reducing
effect of a gradual density transition. An evaluation of the importance re-
quires consideration of the special situation and determination of the
polytropic exponent that is most suitable to model the pusher material.

For the nonlinear phase, Suydam (1978) presents some arguments leading to
the conclusion that the terminal bubble speed will always be well sub-
sonic, so that compressibility may be neglected in this phase.

5.4.3 Effect of three-dimensional disturbances

The synthetical model as presented here consistently assumes two-dimen-
sional disturbances which extend over a distance of at least several wave-
tengths in the direction perpendicular to the two coordinates here con-
sidered. Whether this condition is met in reality must remain an open
question., There are, however, indications that three-dimensional distur-
bances might grow faster. Rajappa and Amaranath (1977) present a non-
linear theory of Rayleigh-Taylor instabilities in three dimensions. Their
first-order solution is linear theory. They first compare hexagonal and
rectangular disturbance cross-sections and conclude that the rectangular
cell pattern will manifest itself because it requires less energy. For the
worst case, a quadratic cell and neglecting surface tension, the growth
constant is larger than the two-dimensional growth constant by a factor
21/% 221,189,




Layzer (1955) has worked out nonlinear models of bubble vertex motion
(similar to the one later presented by Kull (1983)) in axially symmetric
(cylindrical) and plane two-dimensional flow. For the linear phase he (as
later Daly (1969)) finds that the growth constant for cylindrical flow is
larger by a factor of 17;3§§255ﬁ251.104 where 3,832 stands for the first
zero of Jy, the Bessel function of order one.

For the terminal bubble rise the Froude number found by Layzer (1955) for
the cylindrical case is even larger by a factor of 1f557§T§§_‘n51.568 SO0
that F = 0.361. This may be compared with F = 0.328 found theoretically
(using slightly different approximations) by Davies and Taylor (1950) for
bubbles rising in tubes of circular cross-sections if one identifies the
wavelength with the tube diameter. Their experimental results vary
(essentially with the tube diameter) between 0.283 and 0.346.

Both effects could easily be included into the synthetical model by adjust-
ment of the parameters.

5.4.4 Nonlinear effect of higher harmonics

As shown by Kull (1983) the Froude number F which characterizes the termi-
nal bubble speed depends on the amplitude B of the second harmonic. If one
assumes a pure sinusoidal initial perturbation, B = 0 initially. But as
shown by the higher-order (nonlinear) theories discussed in 4.4 it starts
to grow due to nonlinear effects. In this case the second harmonic is in
phase with the fundamental mode so that, after Kull (1983), the Froude
number is reduced below its value of 0.236 which it assumes for B = 0.
Therefore, F = 0.230 appears to be appropriate for an initially sinusoidal
perturbation. If, however, the second harmonic is already present in the
initial perturbation, it can occur with a negative initial amplitude (a
phase shift of ) and then the Froude number may be larger. This result is
confirmed by numerical simulations reported by Verdon et al. (1982).AIn
addition, Baker et al. (1980) have found a similar effect with the fifth
harmonic having an initial amplitude one tenths of the initial amplitude
of the fundamental mode. They found F to be as high as 0.28 with probably
a large error margin. These results show that a larger Froude number may
be appropriate if a random distribution of Fourier components in the ini-




— 67 —

tial disturbance is to be taken into account. This can be done easily in
the synthetical model.

On the other hand one could speculate that higher harmonics during the
linear phase may have a growth reducing effect because they help to create
or flatten a density gradient. This occurs at a sharp interface because
higher harmonics grow much faster making the interface fuzzy and thus pro-
ducing a density transition region on the length scale of the basic mode.

A similar effect can be expected at a gradual density transition if the
Tength scale L of the density variation is initially much shorter than the
minimum shell thickness d. This effect, of course, can only be observed if
the most dangerous wavelength itself has to‘grow by many e-foldings before
it can become dangerous.

A1l in all, the effect of higher harmonics should not be too important.
Also, this discussion should cover the nonlinear effect of arbitrary
shorter wavelengths, not only just the higher harmonics. The nonlinear
effect of larger wavelengths i.e. bubble amalgamation in which faster grow-
ing bubbles of larger wavelength "eat up" those of shorter wavelength (see
Layzer (1955)) needs not be considered here because it should not become
important within the range of amplitudes to be considered.



6. Summary and conclusions

Linear theory of Rayleigh-Taylor instabilities at a region of exponential-
ly increasing density between regions of constant density as developed by
Lord Rayleigh (1883) and others is discussed in detail. From this, a
simple formula is derived which approximately describes the growth con-
stant reduction by a gradual density transition. It is further shown that
an incorrect theory by Lelevier, Lasher, and Bjorklund (1955) underesti-
mates the growth constant.

A simple but effective model of nonlinear bubble growth is obtained from a
synthesis of linear theory and constant terminal bubble speed. In its
Tinear part it can take into account the growth constant reduction by a
gradual density transition.

The synthetical model of nonlinear bubble growth is applied to the problem
of pusher shell breakup in an inertial confinement fusion pellet during
the compression phase. The model is used to determine two quantities:

a) maximum allowable initial perturbations
b) most dangerous wavelength.

In the case of a pellet tentatively designed for a conceptual heavy
ion-beam driven reactor, the following observations are made (at a wave-
Tength equal to the minimum pusher shell thickness):

a) The gradual density transition at the outside of the pusher shell
reduces the growth rate during the linear (small amplitude) regime in
such a way that the maximum allowable initial perturbations are
increased by a few orders of magnitude.

b) The nonlinear saturation of the bubble growth rate increases the
maximum allowable initial perturbations by another order of magnitude.

c) In the presence of the gradual density transition at the outside of the
pusher shell, the most dangerous wavelength is about four times the
critical amplitude (amplitude at which the pusher shell is broken up)
which is usually identified with the minimum pusher shell thickness. In




contrast with that the most dangerous wavelength is about equal to the
critical amplitude if the pusher shell is bounded by density steps on
both sides.

During ablatively driven compression of an inertial confinement fusion
pellet instability growth may be influenced by much more physical pro-
cesses and boundary conditions than so far considered in the synthetical
model. While most of them are expected to further reduce (possibly drasti-
cally) instability growth, a few have a potential to accelerate instabili-
ty growth. In a discussion of these it is found that the finite pusher
shell thickness can hardly become important. To some limited extent aggra-
vated growth due to three-dimensional disturbances and nonlinear inter-
action of higher harmonics present in the initial disturbances could con-
servatively be accounted for in the synthetical model. But this seems not
to be appropriate as long as much more important growth reduéing effects
are neglected. Compressibility might be the most important growth rate
increasing effect, Fortunateiy its importance increases with decreasing
growth constant so that only growth constants far below the classical
value can be affected appreciably. It appears that this effect should be
accounted for in a more complete theory. To this end, studies of the
special density profile and the material properties are required.

The above considerations suggest that the synthetical model and the approx-
imate formula to account for a gradual density transition, which both are
reasonably conservative in the model situations from which they were ob-
tained may allow a conservative estimate of instability growth during
pellet compression. However, use of these results to determine whether the
pusher shell in a certain case will be destroyed by Rayleigh-Taylor insta-
bilities is counterindicated by at Teast two reasons: In the first place,
the model most probably is overly pessimistic because several effects are
not yet included, which have the potential of effectively reducing instabi-
1ity growth. Secondly, knowledge on the effective initial perturbations
within the instability zone is still insufficient. The model can rather
serve to determine a figure of merit such as the maximum allowable initial
perturbation, which allows to compare different pellet designs and/or
illumination histories with respect to Rayleigh-Taylor instability growth.




As a consequence  of the findings with respect to the most dangerous wave-
Tength and the (small) effect of the finite pusher shell thickness, a wave-
length about three to four times as long as the critical amplitude may be
chosen when determining the figure of merit. This reduces the importance

of nonlinear effects within the amplitude range to be considered.

An outline is given of how the synthetical model could be made more
realistic and flexible and slightly more complete using already available
numerical techniques and numerical results from a pellet simulation code.
Also, the nonlinear theories presently available in the literature are
briefly discussed,
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