KfK 3457 August 1984 (⊿.E×.)

Experimental Determination of the Atmospheric Dispersion Parameters at the Karlsruhe Nuclear Research Center for 160 m and 195 m Emission Heights

Part 2: Evaluation of Measurements

> P. Thomas, K. Nester Hauptabteilung Sicherheit Projekt Nukleare Sicherheit

Kanstorschungszentrum Karlsruhe GmbH

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE Hauptabteilung Sicherheit

Projekt Nukleare Sicherheit KfK 3457

Experimental Determination of the Atmospheric Dispersion Parameters at the Karlsruhe Nuclear Research Center for 160 m and 195 m Emission Heights

Part 2: Evaluation of Measurements

P. ThomasK. Nester

Komiorschungszenkum Kadsnuhe GmbH Zeutraliabiliothek

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

t

Abstract

Experiments are carried out at the Kernforschungszentrum Karlsruhe in order to determine the atmospheric diffusion of pollutants. The influence on atmospheric diffusion by conditions specific to the site will be investigated.

For evaluation of the measurements the diffusion is assumed to be a steady-state process. A two-dimensional Gaussian distribution is used as the theoretical approximation of the concentrations. The dependence of the dispersion parameters σ_y and σ_z on the downwind distance is described by a power function. A least squares fit is applied to calculate the horizontal and vertical dispersion parameters and the normalized diffusion factor with the respective errors from the measured wind velocity, emission rate and concentration distribution. The dispersion parameters determined are assigned to stability classes by the measured standard deviation of the vertical wind direction.

The reported dispersion parameters are derived from 18 experiments with mostly two sampling periods of 30 min duration each. In 17 experiments two different tracers were released simultaneously at 160 m and 195 m height, in one experiment three different tracers were released. The results of the individual experiments have been combined and smoothed to a set of dispersion parameters for the stability classes A to F.

In Part 1 of this report the diffusion experiments are described and the measured data are presented in detail. The results of earlier experiments performed at the Kernforschungszentrum Karlsruhe for emission heights of 60 m and 100 m have been published already.

Ι

Experimentelle Bestimmung der atmosphärischen Ausbreitungsparameter für Emissionshöhen von 160 m und 195 m am Kernforschungszentrum Karlsruhe

Teil 2: Auswertung der Meßergebnisse

Zusammenfassung

Am Kernforschungszentrum Karlsruhe werden Experimente durchgeführt, um die Ausbreitung von Schadstoffen in der Atmosphäre zu erforschen. Standortspezifische Einflüsse sollen dabei untersucht werden.

Mittels der Methode der kleinsten Fehlerquadrate werden aus der gemessenen Konzentrationsverteilung die horizontalen und vertikalen Ausbreitungsparameter und der normierte Ausbreitungsfaktor mit den zugehörigen Fehlerbreiten ermittelt. Für die Konzentration wird eine zweidimensionale Gaußverteilung zugrunde gelegt. Die Ausbreitung wird als stationär angenommen. Ein Potenzansatz beschreibt die Abhängigkeit der Ausbreitungsparameter von der Quelldistanz. Die Zuordnung der ermittelten Ausbreitungsparameter zu Ausbreitungskategorien erfolgt über die gemessene Standardabweichung der vertikalen Windrichtung.

Die angegebenen Ausbreitungsparameter stammen von 18 Experimenten mit zumeist zwei Sammelperioden von 30 min Dauer. In 17 Experimenten wurden jeweils zwei verschiedene Tracer, in einem Experiment jeweils drei verschiedene Tracer simultan in 160 m und 195 m Höhe freigesetzt. Die Ergebnisse der Einzelversuche wurden zusammengefaßt und geglättet und ergaben einen vollständigen Satz von Ausbreitungsparametern für die Ausbreitungskategorien A bis F.

Im ersten Teil dieses Berichtes werden die Ausbreitungsexperimente beschrieben und die Meßergebnisse in Form von Tabellen und Abbildungen dargestellt. Die Ergebnisse früherer Experimente am Kernforschungszentrum mit 60 m und 100 m Emissionshöhen wurden bereits veröffentlicht.

1. Introduction

Conventional and nuclear facilities release pollutants into the atmosphere during routine operation and in case of accidents. To assess the resulting impact on the health of the population living in the environment of the facility, atmospheric diffusion calculations must be performed. Although the Gaussian plume model is the simplest solution of the diffusion equation, it is used in numerous theoretical diffusion studies, especially when a large number of individual cases have to be treated [1,2]. This model has been incorporated also in regulatory guides [3,4] because of its simplicity of application and the restricted number of input data required. It is a disadvantage of the Gaussian model that many effects influencing diffusion are not taken into account directly. They have to be introduced into this model by the dispersion parameters. To get reasonable estimates of the concentration field using the Gaussian plume model, it is necessary to consider carefully the influences of topography, atmospheric stability, source height and sampling time by choosing an appropriate system of dispersion parameters. Such systems have been developed theoretically [5,6]. Another approach consists in the determination of the dispersion parameters from diffusion experiments performed under various meteorological and topographical conditions.

At the Kernforschungszentrum Karlsruhe (KfK) the dispersion parameters have been determined experimentally as a function of the downwind distance, source height, and stability class. The detailed measured data of experiments with emission heights of 160 m and 195 m have been compiled in [7]. They comprise emission and concentration data of the tracers as well as comprehensive information about the meteorological conditions up to a height of 200 m for each diffusion experiment. In this report the data of [7] are evaluated by a least squares fit to deduce dispersion parameters. Finally, these parameters are pooled and smoothed to establish a set of dispersion parameters for stability classes A to F.

The results of the dispersion experiments performed at the KfK at source heights of 160 m and 195 m provide a valuable contribution to the knowledge of dispersion parameters over terrain with major surface roughnesses. They complete the results of the Karlsruhe diffusion experiments performed at tracer release heights of 60 m and 100 m [8,9]. The effect of source height on the dispersion parameters can be deduced from these experiments.

2. Evaluation Technique

The concentration distributions measured at ground level in the diffusion experiments are used to determine the dispersion parameters. For this purpose, the least squares technique is applied to fit the double Gaussian function to the concentrations measured. Because of the emission technique used and the physical and chemical properties of the tracers droplet or particle formation is not anticipated. The deposition of the tracers has been neglected because these effect is small as compared to the error of measurement.

2.1 The Double Gaussian Function

The double Gaussian function describing the concentration C(x,y) close to the ground level at the field point P(x,y) downwind of the source reads

$$C(x,y) = \frac{\chi(x,y) \dot{A}_{0}}{u} = \frac{\dot{A}_{0}}{\pi u \sigma_{v}(x) \sigma_{z}(x)} \exp \left[-\frac{y^{2}}{2 \sigma_{v}^{2}(x)} - \frac{H^{2}}{2 \sigma_{z}^{2}(x)}\right] \quad (1)$$

This follows from the diffusion equation for steady-state conditions, constant emission rate and reflection of the tracer at ground level, where

χ (x,y)	normalized diffusion factor in m ⁻² ,
x	downwind distance in m,
У	crosswind distance in m,
Н	emission height in m,
σ _y , σ _z	horizontal and vertical dispersion parameters, resp., in m.

The foot of the source coincides with the origin of the Cartesian coordinate system.

2.2 Dispersion Parameters

The dispersion parameters σ_y and σ_z describe the horizontal and vertical distributions, respectively, of the concentration perpendicular to the transport direction. They are functions of the downwind distance x.

For this dependence on x, the power functions

$$\sigma_{y} = \sigma_{oy} x^{p_{y}}, \sigma_{z} = \sigma_{oz} x^{p_{z}}$$
(2)

are chosen.

2.3 Least Squares Method

The measured tracer concentrations C_i determined at field points with the coordinates x_i and y_i are available from the experiments. A weighting factor g_i is assigned to each measured tracer concentration.

The four coefficients σ_{oy} , p_y , σ_{oz} , p_z must be found to fit the function C(x,y) of Eq. (1) to the measured C_i in such a way that the sum of the square deviations

$$Q = \sum_{i=1}^{n} g_{i} (C(x,y) - C_{i})^{2}$$
(3)

becomes minimum. n is the number of tracer concentrations.

This yields four equations determining the four coefficients σ_{oy} , p_y , σ_{oz} , p_z . Since the function C(x,y) is not a linear function of the coefficients, an approximation technique with iterative improvement must be applied to solve the four equations.

The least squares fit yields also the errors in the coefficients and the errors in any function of the coefficient, hence, the errors in the dispersion parameters σ_y and σ_z . These errors qualify the least squares fit and, hence, the reliability of the deduced dispersion parameters. The errors are due to differences existing between the measured concentration distribution and the theoretical double Gaussian function. Compared with these differences, the errors in measurement are hardly significant. The evaluation technique is described in detail in [8,9].

2.4 Weighting Procedure and Initial Approximations

First computer runs showed a disadvantage of the evaluation technique. If different coefficients σ_{oy} , p_y , σ_{oz} , p_z were used as first approximations, the same concentration distribution gave rise to different dispersion parameters σ_y and σ_z . But these dispersion parameters showed good agreement at downwind distance with maximum concentration. The respective sums of least squares differed only slightly in most cases. To avoid this disadvantage a weighting procedure was chosen that preferred low concentration values at small and large downwind distances in the following manner:

$$g_{i} = C_{max} / C(x_{i}, 0)$$
 (4)

 C_{max} is the maximum value of all values $C(x_i, 0)$ of Eq. (1). In Eqs. (1) and (4) the dispersion parameters σ_y , σ_z are inserted which have been determined in the previous step.

This weighting procedure was chosen because it is comparable with a separate evaluation of the concentration data of each zone, as performed by many authors (for example [10,11,12]).

2.5 Transport Direction

The best fit to the measured concentrations can be achieved if transport directions are chosen which differ slightly from that deduced from measurements of the wind direction. For this reason, several evaluation runs are carried out while varying the transport direction in steps of 1°. Again, that direction is deemed to be representative whose respective least squares sum ist smallest.

2.6 Wind Velocity

The wind velocity must be known for Eq. (1). For emission heights of 160 m and 195 m it is measured at 160 m and 200 m heights, respectively, of the meteorological tower and averaged over the sampling time. A corresponding wind velocity should be used in diffusion calculations together with the dispersion parameters from this report.

2.7 Experiments Suited for Evaluation

The concentrations measured in some of the sampling periods do not furnish physically meaningful dispersion parameters with the evaluation technique described in this paper. Reasons are that only the background concentrations or one wing of the crosswind distribution are measured because of changes in the wind direction or that periods have been considered in which several zones show two concentration peaks or more than one peak occurs

in the downwind direction. During these periods extremely nonsteady state conditions prevail which are not described by the double Gaussian function.

3. Results of Individual Experiments

Table 1 shows the coefficients σ_{oy} , σ_{oz} , p_y , p_z as determined and the dispersion parameters σ_y and σ_z with the respective error widths at three downwind distances for all sampling periods suited for evaluation. The three distances roughly represent the shortest and the longest downwind distances of the sampling locations and that distance at which the maximum of concentration is found. The individual periods of one experiment are combined by forming the geometric mean value of the σ -parameters. These combined parameters are also indicated. In addition, Table 1 contains the stability class prevailing during the experiment and the mean transport directions θ and θ' deduced from wind measurements and from the least squares fit, respectively.

Figures 1 to 71 show the dispersion parameters σ_y and σ_z determined and the normalized diffusion factor χ as a function of the downwind distance x. All periods suited for evaluation of one experiment are combined. The error widths are indicated as shaded areas. If two tracers had been released simultaneously in one experiment, the results of both tracers are plotted to facilitate comparison.

The dispersion parameters of the experiments Nos. 52 to 67 have already been used to stablish a family of dispersion parameters for the stability classes A to F [13]. These dispersion parameters and normalized diffusion factors are plotted as dashed lines in Figs. 1 to 71 for comparison. 4. Determination of a Representative Set of Dispersion Parameters

4.1 Combination within the Same Stability Class

The dispersion parameters of each period which belong to the same stability class were combined by forming the geometrical mean value. To determine the stability class the standard deviation σ_{ϕ} of the vertical wind direction was used, which had been measured at 100 m height using a vector vane (Type 1053 III, Meteorology Research Inc.).

A classification scheme corresponding to the Pasquill-Gifford categories A to F was established. A frequency distribution of σ_{ϕ} and correlations between σ_{ϕ} , the temperature gradient, the wind speed and the radiation balance resulted in the following scheme:

Stability class	$\sigma_{\phi}^{}$ in degrees
А	> 14.5
В	10.5 - 14.5
С	7.0 - 10.5
D	3.3 - 7.0
E	1.8 - 3.3
F	<u><</u> 1.8

Because σ_{ϕ} is only measured at a few sites, we have developed statistically equivalent systems based on the meteorological parameters mentioned above and on the horizontal standard deviation σ_{θ} of the wind direction [14]. We have not tried until now to correlate σ_{y} and σ_{z} directly to σ_{θ} and σ_{ϕ} according to Pasquill [15] and Draxler [16].

The results of the combination have been compiled in Tab. 2. No experiments have been carried out for the stability classes E and F. From experience with tracers released at a height of 100 m it was anticipated that the ground level concentrations at most sampling positions would not exceed the detection limit during stable stratification. The exponents p_y and p_z are not monotonous functions of the stability classes. However, for practical application of the dispersion parameters going beyond the source heights and distances directly covered by the experiments, a monotonous function seems to be appropriate. This aim could be attained by a number of additional experiments. But this way is very time consuming and laborious. The more reasonable procedure consists in a suitable smoothing of the σ -curves.

4.2 Smoothing of the Dispersion Parameters

The evaluation of the individual experiments shows that the error band of the dispersion parameters is minimum around the concentration maximum. Therefore, in the smoothing process, it is attempted to preserve the position x_{max} and the normalized diffusion factor χ_{max} of this maximum:

$$x_{max} = \left(\frac{H}{\sigma_{oz}} \sqrt{r}\right)^{1/p_{z}}$$
(5)

$$\chi_{\max} = \frac{1}{\pi \sigma_{\text{oy}} \sigma_{\text{oz}}} \left(\frac{\sigma_{\text{oz}}}{H} \sqrt{\frac{r}{e}} \right)^{r}$$
(6)

$$r = \frac{p_y + p_z}{p_z}$$
(7)

e = base of the natural logarithm

The general smoothing technique is performed in the following manner: Curves of p_y , p_z , x_{max} and χ_{max} are established as a function of σ_{ϕ} . These curves fit the results of the experiments for classes A to D. Then the curves are extrapolated to classes E and Fusing the dispersion parameters of the diffusion experiments at KfK with emission heights of 60 m and 100 m [17]. Finally, p_y , p_z , x_{max} and χ_{max} are taken from these curves at σ_{ϕ} -values, corresponding to the long term average σ_{ϕ} of each stability class B to F. In the case of class A the mean σ_{ϕ} -value from Tab. 2 was used instead of the long-term average. The latter leads to an extrapolation providing a lower diffusion factor. From Eqs. (5) to (7) the factors σ_{oz} and σ_{oy} are calculated. The results are compiled in Tab. 3, and are plotted in Figs. 76 and 77.

4.2.1 Downwind Distance x max

 x_{max} is calculated for a source height of 180 m using the dispersion parameters from the experiments of the lower source heights [17]. In Fig. 72 x_{max} is plotted versus σ_{ϕ} (thin line). For comparison x_{max} evaluated from the experiments with source heights of 160 m and 195 m is also plotted in Fig. 72 using the data of Tab. 2 (full line).

 x_{max} is influenced mainly by σ_z , which is a function of σ_{ϕ} . Therefore, it is possible to determine approximately the dependence of σ_{ϕ} on source height as indicated by arrows in Fig. 72. The relation of $\sigma_{\phi 1}$ and $\sigma_{\phi 2}$ is plotted in Fig. 73. For classes A and B σ_{ϕ} increases with the source height ($\sigma_{\phi 2} > \sigma_{\phi 1}$) whereas it decreases with the height under neutral and stable conditions ($\sigma_{\phi 2} < \sigma_{\phi 1}$). By an extrapolation of the curve to the origin in Fig. 73 x_{max} is determined for the stability classes E and F.

The height dependence of σ_{ϕ} during stable statification is given in [18]:

$$\sigma_{\phi 1} \approx \frac{\sigma_{w1}}{u} = f(H_1, L) = \frac{G(H_1)}{\ln(H_1/Z_0) + cH_1/L}$$
 (8)

$$\sigma_{\phi 2} \approx \frac{\sigma_{w2}}{u} = f(H_2, L) = \frac{G(H_2)}{\ln(H_2/Z_0) + cH_2/L}$$
 (9)

С	const.,
\mathbf{L}	Monin-Obukhov stability length scale,
^H 1 ^{, H} 2	heights,
Z _o	roughness length,
u	wind speed,
σw	standard deviation of the vertical wind speed,
G (H)	height dependence of σ_w .

If we replace L in Eq. (8) using Eq. (9) the following relation between $\sigma_{\phi1}$ and $\sigma_{\phi2}$ is derived:

$$\sigma_{\phi 1} = \frac{\sigma_{\phi 2}}{b + a \sigma_{\phi 1}}$$
(10)

The solid curve in Fig. 73 is extrapolated as a dashed line to the origin using Eq. (10). The values for a and b are 0.0542 and 0.549, respectively. This dashed line furnishes the extrapolation of x_{max} in Fig. 72 (dashed thick line).

4.2.2 Exponent p

In Fig. 72 the exponents p_z of the individual periods of the experiments are plotted versus σ_φ . The corresponding correlation coefficient of 0.55 demonstrates the weak correlation existing between p_z and σ_φ . The linear regression line is compared to the

dashed line. The dashed line is derived in the following manner: For each class, A to D, $\sigma_{\phi 2}$ is taken from Fig. 73. The p_z -values corresponding to these $\sigma_{\phi 2}$ values are determined from the p_z/σ_{ϕ} plot for the smaller source heights and plotted versus σ_{ϕ} in Fig. 74. This dashed line is well inside the scatter of the points in Fig. 74. It is used as a relation between p_z and σ_{ϕ} ; this is consistent with an earlier evaluation of experiments Nos. 52 to 67 [13].

4.2.3 Exponent p

Figure 75 is the scatter plot of the exponent $\rm p_y$ versus σ_φ . The correlation coefficient of 0.26 is still weaker than between $\rm p_z$ and σ_φ . There is no pronounced relation between $\rm p_y$ and the stability classes. Therefore, the arithmetic mean value 0.82 of all $\rm p_y$ -values was chosen for all classes.

4.2.4 Maximum of the Normalized Diffusion Factor χ_{max}

In Fig. 72 the χ_{max} -values of classes A to D from Tab. 2 are plotted by a thick line as a function of σ_{ϕ} . In Fig. 72 the χ_{max} values of the classes A and B are combined by calculating the geometric mean value of the dispersion parameters of all experiments performed for classes A and B.

The thick line has to be extrapolated to classes E and F. For this purpose, the thin line in Fig. 72 is constructed in the following manner: σ_y is taken from the results of the lower source heights [17]. σ_z is calculated using x_{max} from Fig. 72 (thick line) und p_z from Fig. 74 (dashed line) via Eq. (5). The difference of both χ_{max} -curves mainly reflects the influence of source height on σ_y , because both curves refer only to σ_z for the great source heights. It is assumed that the decrease in σ_y with height for stable conditions is proportional to that of class D. This furnishes the extrapolation of the thick line parallel to the thin line in Fig. 72.

5. Discussion of the Results

The results of the diffusion experiments are influenced mainly by the source height and by the structure of the surface in the invironment of the KfK, characterized by a roughness length of about 1.5 m. If comparisons with experimental results of other authors are performed, this fact has to be taken into account.

5.1 Vertical Dispersion Parameter σ_{q}

As expected, the vertical dispersion parameters decrease with increasing atmospheric stability. The σ_z -curves for classes A and B do not represent the real vertical spread of the plume. They are too steep. The σ_z -curve is only a least squares fit of the Gaussian distribution to the concentration field measured near ground level; it is determined by the large scale up and downward motions of the tracer in the convective boundary layer. These motions lead to a rather short source distance of the maximum ground level concentration, observed especially under class A conditions.

The downwind distances x_{max} of the maximum concentration calculated from the dispersion parameters of individual experiments within the same stability class agree better with each other than the dispersion parameters themselves. Therefore, this distance x_{max} , which is influenced most by σ_z , is used for a comparison with the dispersion parameters derived from diffusion experiments carried out in Brookhaven [19], St. Louis [10] and Jülich/Karlsruhe [20] (see Tab. 4). Only for the stability classes A to C the distance x_{max} calculated with the parameters of this report agrees well with the x_{max} -values determined from the dispersion parameters published in [10,20]. The Brookhaven experiments for all classes, however, give nearly the same x_{max} as derived from the Karlsruhe experiments with emission heights of 160 m and 195 m.

5.2 Horizontal Dispersion Parameter σ_v

The azimuthal distribution of the concentration field is influenced by variations in the wind direction and by the topography. Both effects are reflected more in the horizontal than in the vertical dispersion parameters. This is also obvious from the great error width of the σ_v -curves derived from the individual experiments.

One of the results of our experiments is the fact that the concentration distribution under stable atmospheric conditions is broader than in the case of neutral stability. This effect observed for release heights of 60 m and 100 m was extrapolated to the $\sigma_{\rm y}$ -parameters belonging to the greater source heights.

A comparison of σ_y -parameters with those from the experiments for smaller source heights shows a significant decrease with height. This reflects the reduced influence of the topography on the concentration distribution near ground level.

5.3 Normalized Diffusion Factor χ

The normalized diffusion factor χ summarizes the maximum pollutant burden to be expected from short-term emissions. Since σ_z has a stronger influence upon χ than σ_y , the error bands are small as compared to the σ_y -curves. The increase in σ_y with stability from D to F is reflected also in the χ_{max} values. For the classes E and F χ_{max} is much smaller than the corresponding values calculated with the St. Louis or the Brookhaven dispersion parameters (see Tab. 4).

6. Final Remarks

An evaluation of the experiments No. 52 up to 67 for source heights of 160 m and 195 m has already been published in [13]. We have compared the short-term and long-term diffusion factors around a

180 m heigh source. Calculated with this old set of dispersion parameters and the new one from Tab. 3. The results for both sets of σ -parameters are shown in Figs. 78 and 79.

The deviation of both curves in each figure is small as compared to the uncertainty of the evaluation. The differences in both sets of σ -parameters are not significant in practical applications.

10. References

- [1] Der Bundesminister for Forschung und Technologie (Editor), Deutsche Risikostudie Kernkraftwerke, Verlag TÜV Rheinland, Köln (1980).
- [2] N. C. Rasmussen, Reactor Safety Study An Assessment of Accident Risks in US Commercial Nuclear Power Plants, United States Nuclear Regulatory Commission, WASH-1400 (NUREG-75/014), (1975).
- [3] Der Bundesminister des Innern, Allgemeine Berechnungsgrundlagen für die Bestimmung der Strahlenexposition durch Emission radioaktiver Stoffe mit der Abluft, Köln (1977).
- [4] NRC, Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors. Regulatory Guide 1.111, Washington, D. C. (1977).
- [5] J. S. Irwin, Estimating Plume Dispersion A Recommended Generalized Scheme, Preprints of Fourth Symposium on Turbulence, Diffusion and Air Pollution, Reno, Americ. Met. Soc., Boston (1979)
- [6] J. C. Wamser et al., Darstellung und Anwendung eines verbesserten, universell gültigen Ausbreitungskriteriums, Staub-Reinhaltung der Luft, Vol. 40, Nr. 6 (1980).

- [7] P. Thomas et al., Experimental Determination of the Atmospheric Dispersion Parameters at the Karlsruhe Nuclear Research Center for 160 m and 195 m Emission Heights. Part 1, Measured Data, KfK 3456 (1983).
- [8] P. Thomas, K. Nester, Experimental Determination of the Atmospheric Dispersion Parameters over Rough Terrain. Part 2, Evaluation of Measurements, KfK 2286 (1976).
- [9] P. Thomas, K. Nester, Experimental Determination of the Atmospheric Dispersion Parameters at the Karlsruhe Nuclear Research Center for 60 m and 100 m Emission Heights. Part 2, Evaluation of Measurements, KfK 3091 (1981).
- [10] J. McElroy, A Comparative Study of Urban and Rural Dispersion, J. of Appl. Meteorol. 8, No. 1, pp. 19-31 (1969).
- [11] S. E. Gryning, Elevated Source SF_6 -Tracer Dispersion Experiments in the Copenhagen Area, Ris ϕ -R-446 (1981).
- [12] M. Yersel, R. Goble, J. Morrill, Short Range Dispersion Experiments in an Urban Area, Atm. Env. 17, pp. 275-282 (1983).
- [13] W. Hübschmann, K. Nester, P. Thomas, Auswertung von Ausbreitungsversuchen in Jahresbericht 1979 der Hauptabteilung Sicherheit, KfK 2939, p. 183 (1980).
- [14] K. Nester, Statistically Equivalent Systems for the Determination of Dispersion Categories, Seminar on Radioactive Releases and their Dispersion in the Atmosphere Following a Hypothetical Reactor Accident, Risø (1980).

- [15] F. Pasquill, Atmospheric Dispersion Parameters in Gaussian Plume Modeling, Part 2, Possible Requirements for Change in the Turner Workbook Values, EPA-600/4-76-030b, Washington, D. C. (1976).
- [16] R. R. Draxler, Determination of Atmospheric Diffusion Parameters. Atmos. Environ., 10, 99-105 (1976).
- [17] K. Nester, P. Thomas, Im Kernforschungszentrum Karlsruhe experimentell ermittelte Ausbreitungsparameter für Emissionshöhen bis 195 m, Staub-Reinh. Luft 39, pp. 291-295 (1979).
- [18] S. R. Hanna, G. A. Briggs, R. P. Hosker, Jr., Handbook on Atmospheric Diffusion, Technical Information Center, U. S. Department of Energy (DOE/TIC-11223), (1982).
- [19] I. A. Singer, M. E. Smith, An Improved Method of Estimating Concentrations and Related Phenomena from a Point Source Emission, J. of Appl. Meteorol. 5, pp. 631-639 (1966).
- [20] H. Geiß, K. Nester, P. Thomas, K. J. Vogt, In der Bundesrepublik Deutschland experimentell ermittelte Ausbreitungsparameter für 100 m Emissionshöhe, JüL-1707, KfK 3095 (1981).

class	exp.	Tracer and emission		0	θ'		σу		σz	x	°у	$\frac{\Delta \sigma}{\sigma y}$	σz	$\frac{\Delta \sigma_z}{\sigma_z}$
Stab.	No. of	height (m)	Period			боу	ړ ^d	oz	Pz	(m)	(m)	(원)	(m)	(%)
A	57	CF2Br2 160 m	1	65°	68°	7.78	0.447	0.00157	1.92	100 300 2500	61 99 256	66 21 82	11 91 5379	34 8 61
			2	68°	73°	0.0532	1.23	0.212	1.15	100 300 2500	16 60 823	46 14 67	43 152 1756	108 49 83
			1+2			0.643	0.839	0.0182	1.54	100 300 2500	31 77 456	40 13 57	22 119 3111	41 14 56
		CFC1, 195 m	1	68°	74°	7.49	0.528	0.0531	1.37	100 300 2500	85 152 466	75 26 90	29 131 2376	45 15 82
			2	69°	72°	1.26	0.750	0.446	1.04	100 300 2500	40 91 444	57 19 79	53 165 1485	79 35 83
			1+2			3.07	0.639	0.154	1.20	100 300 2500	58 117 455	47 16 60	39 145 1841	39 14 60
В	52	CF2Br2 160 m	1	57°	50°	0.120	1.037	0.407	0.854	100 600 2000	14 91 319	61 19 24	21 99 277	19 8 24
			2	46°	49°	0.340	0.916	0.109	1.12	100 600 2000	23 119 359	41 9 27	19 141 543	12 8 19
			1+2			0.202	0.978	0.211	0.989	100 600 2000	18 105 342	39 10 21	20 118 388	13 7 18
		CFC1, 195 m	1	58°	54°	6.82	0.474	0.299	0.919	100 .600 2000	60 141 250	213 60 73	21 107 323	81 27 92
			2	47°	50°	0.0854	1.05	0.154	1.06	100 600 2000	11 70 246	54 15 27	20 132 467	29 9 34
			1+2			0.763	0.762	0.215	0.990	100 600 2000	26 100 250	89 22 40	21 121 399	48 16 56
в	60	CF2Br2 160 m	1	224°	218°	7.68	0.630	0.00630	1.64	200 400 3500	216 335 1313	65 31 117	37 117 4089	16 16 86
		CFC1, 195 m	1	217°	211°	3.79	0.670	0.00767	1.62	200 400 3500	132 210 898	66 33 99	41 126 4228	14 13 74

Table 1: Determined dispersion parameters $\boldsymbol{\sigma}_{\!\boldsymbol{y}}$ and $\boldsymbol{\sigma}_{\!\boldsymbol{z}}$

x: downwind distance

 $\boldsymbol{\theta} \colon$ mean transport direction from wind measurements

 $\boldsymbol{\theta}':$ mean transport direction from least squares fit

class	f exp.	Tracer and emission	г	θ	θ'		^о у		σ _z	х	σу	$\frac{\Delta \sigma_{y}}{\sigma_{y}}$	σz	$\frac{\Delta \sigma_z}{\sigma_z}$
Stab.	No. of	(m)	Period			σογ	۲ ^q	σ _{oz}	₽ _z	(m)	(m)	(8)	(m)	(%)
В	64	CF2Br2 160 m	1	281°	277°	0.0256	1.39	2.41	0.719	200 500 4800	41 146 3385	29 17 77	109 211 1071	49 29 80
			2	271°	283°	7.06	0.589	1.46	0.763	200 500 4800	160 274 1040	70 36 151	83 168 943	42 44 149
			1+2			0.425	0.990	1.88	0.741	200 500 4800	81 200 1874	30 18 81	95 188 1005	33 25 83
		CFCl, 195 m	1	286°	284°	1.14	0.802	0.0697	1.34	200 500 4800	80 167 1024	36 21 96	85 292 6076	24 20 89
			2	275°	274°	0.00170	1.95	1.25	0.705	200 500 4800	51 301 24501	63 32 69	52 100 492	11 11 48
			1+2			0.0440	1.38	0.295	1.02	200 500 4800	66 233 5291	43 16 92	66 167 1678	12 20 86
В	67	CF2Br2 160 m	1	276°	269°	0.00308	1.59	0.0474	1.19	200 800 3200	14 125 1127	45 11 38	26 134 697	9 11 30
		CFC1, 195 m	1	282°	270°	0.00118	1.63	0.0581	1.17	200 800 3200	7 65 622	41 11 33	29 145 733	10 9 27
с	55	CF2Br2 160 m	1	238°	236°	1.23	0.648	0.0310	1.15	300 1600 5000	49 146 306	27 5 16	21 145 536	8 7 15
			2	225°	232°	0.136	0.941	0.0187	1.19	300 1600 5000	29 140 411	37 6 19	17 123 481	8 4 11
			1+2			0.407	0.795	0.0240	1.17	300 1600 5000	38 144 355	23 5 12	19 135 511	7 5 11
		CFCl, 195 m	1	243°	236°	5.29	0.433	0.0210	1.20	300 1600 5000	62 129 211	60 11 33	20 150 589	16 11 27
			2	240°	232°	0.00171	1.50	0.0765	1.00	300 1600 5000	9 109 602	112 26 46	23 125 393	41 11 38
			1+2			0.0951	0.967	0.0401	1.10	300 1600 5000	24 119 359	47 11 23	21 134 470	14 8 19
C	62	CF2Br2 160 m	1	241°	251°	0.0101	1.39	0.0142	1.41	100 700 4900	6 90 1345	34 7 25	9 141 2179	11 5 19
			2	230°	247°	8.80	0.435	0.0744	1.12	100 700 4900	65 152 355	141 31 99	13 114 993	42 18 73
			1+2			0.298	0.913	0.0325	1.26	100 700 4900	20 118 697	66 15 51	11 125 1451	26 12 45
		CFC1, 195 m	1	245°	250°	0.110	1.03	0.0366	1.29	100 700 4900	13 95 713	82 18 66	14 166 2026	32 15 57
			2	229°	243°	1.26	0.704	0.0859	1.10	100 700 4900	32 127 501	103 28 64	14 116 985	34 14 54
			1+2			0.372	0.867	0.0561	1.19	100 700 4900	20 109 589	73 17 51	13 136 1381	25 11 43

class	exp.	Tracer and emission		θ	θ'		бу		σ _z	×	σу	$\frac{\Delta \sigma_y}{\sigma_y}$	σ _z	$\frac{\Delta \sigma_z}{\sigma_z}$
Stab. c	No. of	height (m)	Period			σογ	р _у	σ _{oz}	, p _z	(m)	(m)	(%)	(m)	(8)
С	66	CF2Br2 160 m	2	90°	76°	7,68	0.433	0.154	1.07	200 500 4000	76 113 279	116 52 145	45 119 1101	20 39 136
	_	CFCl ₃ 195 m	2	65°	63°	0.0177	1.35	0.0104	1.47	200 500 4000	23 78 1290	54 23 66	25 97 2051	29 7 61
с	73	CFC1, 160 m	1	36°	38°	1.03	0.690	0.0139	1.30	150 1000 2700	33 121 239	241 52 74	9 108 393	72 24 65
			2	41°	36°	0.0129	1.29	0.575	0.760	150 1000 2700	8 97 351	56 17 30	26 109 232	14 10 21
			1+2			0.115	0.991	0.0894	1.03	150 1000 2700	16 108 289	77 20 33	15 109 301	41 14 40
		CF2Br2 195 m	1	43°	40°	0.126	0.980	0.00941	1.36	150 1000 2700	17 109 289	37 7 12	9 113 438	23 6 12
			2	47°	37°	5.06	0.477	0.0615	1.05	150 1000 2700	55 136 219	40 12 6	12 89 253	10 2 6
			1+2			0.797	0.728	0.0241	1.21	150 1000 2700	31 122 252	32 8 8	10 100 333	10 3 7
с	68	CF₂Br₂ 160 m	1	246°	242°	9.50	0.411	0.221	0.864	250 2200 5400	92 225 325	58 16 32	26 171 371	19 21 35
			2	237°	242°	8.94	0.410	0.108	0.938	250 2200 5400	86 210 303	73 16 30	19 148 343	23 17 32
			1+2			9.22	0.411	0.155	0.901	250 2200 5400	89 217 314	45 11 22	22 159 357	14 13 23
		CFC1, 195 m	1	251°	243°	9.81	0.404	0.320	0.797	250 2200 5400	91 220 317	53 12 18	26 147 300	15 10 20
			2	241°	241°	3.33	0.552	1.29	0.591	250 2200 5400	70 233 383	72 20 24	34 122 207	17 12 21
			1+2			5.71	0.478	0.641	0.694	250 2200 5400	80 227 348	44 11 15	30 134 249	12 8 15
D	53	CF2Br2 160 m	1	199°	192°	3.01	0.484	0.00362	1.32	300 2200 5500	47 124 194	32 4 9	7 92 305	9 2 6
			2	210°	201°	0.288	0.907	0.0570	1.00	300 2200 5500	51 309 709	33 6 13	17 129 324	10 5 11
			1+2			0.933	0.695	0.0144	1.16	300 2200 5500	49 196 371	61 10 21	11 109 314	37 8 28
		CFC1, 195 m	1	205°	193°	5.20	0.581	3.56	0.429	300 2200 5500	143 455 775	141 38 43	41 97 143	20 10 18
			2	216°	201°	4.78	0.586	4.06	0.428	300 2200 5500	135 435 744	90 25 39	45 105 155	14 9 17
			1+2			4.99	0.584	3.80	0.426	300 2200 5500	140 447 763	80 22 30	43 101 149	12 7 13

class	f exp.	Tracer and emission	đ	θ	θ'		^о у		σ _z	×	σу	$\frac{\Delta \sigma_{y}}{\sigma_{y}}$	σ _z	$\frac{\Delta \sigma_z}{\sigma_z}$
Stab.	No. of	(m)	Perio			боу	р <mark>у</mark>	oz	₽ _z	(m)	(m)	(%)	(m)	(%)
D	58	CF2Br2 160 m	1	81°	80°	1.16	0.713	0.0417	1.13	300 1200 5600	68 183 546	34 10 29	26 125 717	12 9 29
			2	82°	81°	0.00416	1.46	0.0442	1.14	300 1200 5600	17 126 1182	23 6 22	30 144 833	8 7 22
			1+2			0.0695	1.09	0.0429	1.14	300 1200 5600	35 158 846	26 7 24	29 139 804	10 7 24
		CFCl, 195 m	1	82°	83°	4.84	0.546	4.07	0.439	300 1200 5600	109 232 539	46 21 23	50 91 180	9 6 16
			2	82°	78°	3.76	0.570	0.0126	1.35	300 1200 5600	97 214 515	39 10 41	28 181 1447	14 10 35
			1+2			4.27	0.558	0.226	0.895	300 1200 5600	103 223 527	32 10 23	37 129 511	10 7 23
D	61	CF2Br2 160 m	1	47°	47°	0.0430	1.09	0.392	0.740	400 1800 8400	30 152 815	20 8 13	33 101 314	3 4 · 9
			2	50°	49°	1.81	0.616	1.63	0.556	400 1800 8400	73 183 473	14 7 15	45 105 248	4 4 11
			1+2			0.279	0.853	0.799	0.648	400 1800 8400	46 167 621	15 7 12	39 103 279	3 3 8
D	63	CF2Br2 160 m	1	49°	51°	0.0633	0.987	0.00399	1.37	500 1700 9200	29 98 517	18 7 17	20 • 106 1075	9 3 17
			2	41°	43°	0.0135	1.26	0.0722	0.990	500 1700 9200	34 160 1344	28 11 28	34 114 609	6 7 19
			1+2			0.0292	1.12	0.0170	1.18	500 1700 9200	31 121 803	22 8 21	26 110 809	11 4 20
D	65 -	CF2Br2 160 m	1	31°	26°	3.35	0.423	0.262	0.807	250 2000 6000	35 83 133	469 159 60	23 121 294	460 77 364
			2	17°	29°	8.99	0.411	0.0543	1.05	250 2000 6000	87 205 322	51 9 27	18 160 507	13 12 25
			1+2			5.48	0.417	0.119	0.929	250 2000 6000	55 130 206	44 10 17	20 139 385	12 7 17
D	69	CF2Br2 160 m	1	31°	37°	5.14	0.461	0.294	0.757	600 3200 8400	98 212 330	53 13 27	37 132 274	14 15 30
			2	37°	37°	3.13	0.524	0.233	0.798	600 3200 8400	89 215 356	36 12 24	38 146 316	8 13 25
			1+2			4.01	0.492	0.262	0.777	600 3200 8400	93 213 343	30 8 18	38 139 294	7 10 19
		CFC1, 195 m	1	36°	35°	7.88	0.446	2.76	0.480	600 3200 8400	137 289 445	61 21 30	59 132 210	15 21 39
			2	42°	38°	9.27	0.430	1.99	0.533	600 3200 8400	145 298 452	80 27 46	60 147 245	17 29 53
			1+2			8.54	0.438	2.34	0.506	600 3200 8400	141 294 448	48 17 25	60 139 227	11 17 32

class	exp.	Tracer and emission		θ	θ'		бу		σ _{.z}	x	°у	Δσy σy	σz	$\frac{\Delta \sigma_z}{\sigma_z}$
Stab. 0	No. of	height (m)	Period			боу	گ ط	oz	^p z	(m)	(m)	(%)	(m)	(%)
D	70	CFC1 ₃ 160 m	1	67°	68°	0.701	0.813	3.55	0.414	300 2900 5300	72 457 746	69 20 28	38 97 124	10 11 15
			2	61°	59°	0.00541	1.47	2.42	0.482	300 2900 5300	24 697 1671	63 21 30	38 113 151	11 15 21
			1+2			0.0616	1.14	2.93	0.448	300 2900 5300	42 559 1113	49 16 22	38 105 137	8 10 13
		CF2Br2 195 m	1	.67°	64°	1.20	0.957	3.78	0.430	300 2900 5300	281 2462 4383	143 43 43	44 116 151	14 20 27
			2	61°	66°	0.197	1.03	3,95	0.410	300 2900 5300	71 736 1371	96 25 35	41 104 133	12 9 14
			1+2			0.487	0.994	3.86	0.420	300 2900 5300	141 1343 2446	83 23 28	42 110 142	9 9 13
D	72	CFCl, 160 m	1	67°.	68°	0.0737	0.990	0.254	0.815	400 2500 8300	28 171 560	31 10 29	34 150 398	10 12 26
			2	65°	65°	4.88	0.460	2.02	0.496	400 2500 8300	77 178 308	70 26 40	39 98 177	16 15 32
			1+2			0.602	0.724	0.715	0.656	400 2500 8300	46 174 414	41 13 31	36 121 266	10 11 23
		CFC1 ₃ (JRC)* 160 m	1	67°	68°	6.25	0.417	0.215	0.824	400 2500 8300	76 163 270	26 5 15	30 136 364	7 7 26
			2	65°	68°	1.49	0.628	4.12	0.405	400 2500 8300	64 203 430	28 11 19	47 98 160	7 7 14
			1+2			3.06	0.522	0.941	0.615	400 2500 8300	70 182 340	22 7 12	37 115 241	5 6 12
		CF₂Br₂ 195 m	1	71°	69°	0.00296	1.36	0.0599	0.981	400 2500 8300	10 125 640	33 9 21	21 130 420	17 4 16
			2	70°	66°	0.164	0.817	2.62	0.452	400 2500 8300	22 98 261	170 48 100	39 90 155	28 11 28
			1+2			0.0220	1.09	0.396	0.717	400 2500 8300	15 111 408	75 20 35	29 108 255	24 7 24
		SF6 195 m	1	71°	66°	1.57	0.606	0.894	0.622	400 2500 8300	59 179 370	188 52 65	37 116 245	42 28 66
			2	70°	68°	0.993	0.622	1.80	0.509	400 2500 8300	41 129 272	88 32 96	38 97 179	20 11 26
			1+2			1.25	0.614	1.27	0.566	400 2500 8300	49 152 317	97 32 43	38 106 210	21 14 31

*Sampled and analysed by Joint Research Center Ispra

Stability	a	y	c	J Z	σ		
CIASS	ooy	Ру	σ _{oz}	^p z	φ		
A	1.406	0.739	0.0530	1.370	15.00		
В	0.127	1.123	0.121	1.133	13.14		
с	0.363	0.855	0.0590	1.115	8.56		
D	1.040	0.705	0.487	0.710	6.31		

Table 2: Experimentally determined dispersion parameters for emission heights of 160 and 195 m

σ	y	σ	σ _h	
σ _{oy}	р _у	σ _{oz}	pz	Ψ
1.08	0.82	0.0253	1.50	15.0
0.667	0.82	0.0341	1.32	12.0
0.436	0.82	0.114	0.99	8.3
0.432	0.82	0.349	0.71	5.1
0.637	0.82	0.556	0.55	2.5
1.214	0.82	0.472	0.50	1.2
	о у 1.08 0.667 0.436 0.432 0.637 1.214	σ _y φ _{0y} p _y 1.08 0.82 0.667 0.82 0.436 0.82 0.432 0.82 0.637 0.82 1.214 0.82	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	σ_y p_y σ_{oz} p_z r_{oy} p_y σ_{oz} p_z 1.080.820.02531.500.6670.820.03411.320.4360.820.1140.990.4320.820.3490.710.6370.820.5560.551.2140.820.4720.50

*extrapolated

Table 3: Smoothed and centered dispersion parameters for emission heights of 160 and 195 m

Stability	Kar	lsruhe	Jülich	/Karlsruhe [20]	St. Lo	uis [10]	Brook	haven [19]
class	× max	X _{max}	x max	X _{max}	x max	X _{max}	x max	χ_{max}
	in km	$in m^{-2}$	in km	in m ⁻²	in km	in m^{-2}	in km	in m ⁻²
A	0.32	0.830.10 ⁻⁵	0.38	0.246.10 ⁻⁵	_	-	-	_
В	0.55	0.850.10 ⁻⁵	0.70	0.356.10 ⁻⁵	0.73	0.595.10 ⁻⁵	0.55	0.741.10 ⁻⁵
С	1.25	0.635.10 ⁻⁵	1.06	0.486.10 ⁻⁵	1.13	0.490.10	1.02	0.663.10-5
D	3.85	0.235.10 ⁻⁵	1.90	0.380.10 ⁻⁵	2.06	0.390.10 ⁻⁵	3.48	0.497.10 ⁻⁵
Е	16.0	$0.450 \cdot 10^{-6}$	4.50	0.122.10 ⁻⁵	5.19	0.346.10 ⁻⁵	-	-
F	55.0	0.820.10 ⁻⁷	26.4	$0.54 \cdot 10^{-7}$	-	-	48.46	0.140.10 ⁻⁵

Table 4: Source distance x and amount χ_{max} of the maximum of the normalized diffusion factor for an emission height of 180 m

FIG. 2: VERTICAL DISPERSION PARAMETER ØF EXPERIMENT NØ.52, PERIØDS 1+2 H=160M, TRACER CF2BR2 H=195M, TRACER CFCL3 ---- CØMBINED, SMØØTHED, AND CENTERED RESULTS

FIG. 39: HORIZONTAL DISPERSION PARAMETER OF EXPERIMENT NO.65, PERIODS 1+2 HHHHHHHH H=160M, TRACER CF2BR2

FIG. 40: VERTICAL DISPERSIÓN PARAMETER ØF EXPERIMENT NØ.65, PERIØDS 1+2 HHHHHHHH H=160M, TRACER CF2BR2

.

Ţ

Figure 73: Relation of $\sigma_{\substack{\phi|1\\\phi|2}}$ (small source heights) and $\sigma_{\substack{\phi|2\\\phi|2}}^{\phi|1}$ (great source heights)

.

Fig. 76: Combined, smoothed, and centered horizontal dispersion parameters

Fig. 77: Combined, smoothed, and centered vertical dispersion parameters

Figure 78: Normalized short-term diffusion factor

Figure 79: Maximum long-term diffusion factor

102