KfK 3776 September 1984

Abscheidung von elementarem ¹³¹I an Aktivkohlen unter Störfallbedingungen

H. Deuber Laboratorium für Aerosolphysik und Filtertechnik

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Laboratorium für Aerosolpyhsik und Filtertechnik

KfK 3776

Abscheidung von elementarem 131 I an Aktivkohlen unter Störfallbedingungen

H. Deuber

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003 Abscheidung von elementarem 131 I an Aktivkohlen unter Störfallbedingungen

Kurzfassung

Unter simulierten Störfallbedingungen (maximale Temperatur: 130 O C) wurde kein entscheidender Unterschied in der Abscheidung von 131 I, beaufschlagt als elementares Iod, durch verschiedene frische und gealterte kommerzielle Aktivkohlen festgestellt. In allen Fällen war das 131 I, das tiefe Aktivkohlebetten durchdrang, in einer nichtelementaren Form. Es ist zu schließen, daß ein minimaler Abscheidegrad für elementares Radioiod von 99,99 %, der in den RSK-Leitlinien für DWR-Störfallfilter gefordert wird, mit verschiedenen kommerziellen Aktivkohlen gleichermaßen erreicht werden kann.

Retention of Elemental ¹³¹I by Activated Carbons Under Accident Conditions

Summary

Under simulated accident conditions (maximum temperature: 130 $^{\circ}$ C) no significant difference was found in the retention of 131 I loaded as elemental iodine, by various fresh and aged commercial activated carbons. In all the cases, the 131 I passing through deep beds of activated carbon was in a non-elemental form. It is concluded that a minimum retention of 99.99 % for elemental radioiodine, as required by the RSK guidelines for PWR accident filters, can be equally well achieved with various commercial activated carbons.

Inhaltsverzeichnis

	Verzeichnis der Tabellen	III
	Verzeichnis der Abbildungen	IV
1.	Einleitung	1
2.	Auslegung und Betrieb von DWR-Störfallfiltern	1
3.	Frühere Untersuchungen	3
4.	Experimentelles	5
5.	Ergebnisse	13
	5.1 Durchlaßgrad für ¹³¹ I	13
	5.2 Chemische Form des penetrierenden 131 I	21
6.	Zusammenfassung	23
7.	Literatur	24
	Anhang A: Durchlaßgrad für ¹³¹ I als I ₂	26
	(als Funktion der Bettiefe)	
	Anhang B: Verteilung des ¹³¹ I auf Test- und Sicherheitsbetten (¹³¹ I als I ₂)	63

Verzeich	nnis der Tabellen	Seite
Tab. 1	Daten deutscher DWR-Ringraumabluftfilter (Auslegungsstörfall)	2
Tab. 2	Einfluß verschiedener Parameter auf den Durchlaßgrad verschiedener imprägnierter Aktivkohlen für Radio- iod, beaufschlagt als I ₂ , nach Literaturangaben (Temperatur <u><</u> 150 ^O C)	4
Tab. 3	Daten der untersuchten Aktivkohlen	8
Tab. 4	Testparameter	9
Tab. 5	Testübersicht	10
Tab. 6	Durchlaßgrad verschiedener imprägnierter Aktivkohlen für ¹³¹ I als I ₂ (30 ^O C)	16
Tab. 7	Durchlaßgrad verschiedener imprägnierter Aktiv- kohlen für ¹³¹ I als I ₂ (130 ^O C)	17
Tab. 8	Durchlaßgrad verschiedener nichtimprägnierter Aktivkohlen für ¹³¹ I als I ₂ (30 bzw. 130 ^O C)	20

<u>Textteil</u>

		Durchlaßgrad für 131 I als I $_2$ (als Funktion der Bettiefe) in Tests unter gleichen Bedingungen (30 °C):	
Abb.	1	207 B (KI)	11
Abb.	2	207 B (TEDA)	12
		Durchlaßgrad für 131 I als I $_2$ bei verschiedenen Bettiefen und Alterungszeiten (30 $^{\rm o}$ C):	
Abb.	3	207B (KI), 207B (TEDA), Kiteg II, Radshield 25	18
Abb.	4	208C (KI), 208C (TEDA), BJN 4712, Radshield 26	18
		Durchlaßgrad für 131 I als I2 bei verschiedenen Bettiefen und Alterungszeiten (130 °C):	
Abb.	5	207B (KI) 207B (TEDA), Kiteg II, Radshield 25	19
Abb.	6	208C (KI), 208C (TEDA), BJN 4712, Radshield 26	19

Anhang A: Durchlaßgrad für 131 I als I₂ (als Funktion der Bettiefe)

		Duro	chlaßgrad	bei	verschiedenen	Nachströmzeiten	(30)	·():	
Abb.	A-	1	207B (KI))					27
ADD. Abb	A- A-	2	ZU/B (IEL Kitog II	JA)					28
Abb.	A-	4	Radshield	1 25					30
Abb.	A-	5	208C (KI))					31
Abb.	A-	6	208C (TEE	DA)					32
ADD.	A-	/	BJN 4/12 Padebiole	1 26					33
ADD.	H -	0	Raushier	1 20				_	54
		Duro	chlaßgrad	bei	verschiedenen	Nachströmzeiten	(130	^о С)	

Abb. A-	9 207B (KI)	35
Abb. A-10	0 207B (TEĎA)	36
Abb. A-1	1 Kiteg II	37
Abb. A-1	2 Radshield 25	38
Abb. A-1	3 208C (KI)	39
Abb. A-14	4 208C (TEĎA)	40
Abb. A-1	5 BJN 4712	41
Abb. A-10	6 Radshield 26	42

Seite

Durchlaßgrad bei verschiedenen Alterungszeiten (30 ^O C):	
Abb. A-17 207B (KI) Abb. A-18 207B (TEDA) Abb. A-19 Kiteg II Abb. A-20 Radshield 25 Abb. A-21 208C (KI) Abb. A-22 208C (TEDA) Abb. A-23 BJN 4712 Abb. A-24 Radshield 26	43 44 45 46 47 48 49 50
Durchlaßgrad bei verschiedenen Alterungszeiten (130 ^O C):	
Abb. A-25 207B (KI) Abb. A-26 207B (TEDA) Abb. A-27 Kiteg II Abb. A-28 Radshield 25	51 52 53 54
Durchlaßgrad (bei einer Alterungszeit von 12 Monaten) ohne und mit Vorerhitzen auf 180 ^o C (30 ^o C):	
Abb. A-29 207B (KI) Abb. A-30 207B (TEDA) Abb. A-31 Kiteg II Abb. A-32 Radshield 25	55 56 57 58
Durchlaßgrad bei verschiedenen Nachströmzeiten (30 ^O C):	
Abb. A-33 207B Abb. A-34 208C	59 60
Durchlaßgrad bei verschiedenen Nachströmzeiten (130 ^O C): Abb. A-35 207B Abb. A-36 208C	61 62
Anhang B: Verteilung des $\frac{131}{I}$ auf Test- und Sicherheitsbetten $\frac{(^{131}I \text{ als } I_2)}{(^{131}I \text{ als } I_2)}$	
Verteilung bei verschiedenen Alterungszeiten (30 ^O C):	
Abb. B- 1 207B (KI) Abb. B- 2 207B (TEDA) Abb. B- 3 Kiteg II Abb. B- 4 Radshield 25	64 65 66 67
Verteilung bei verschiedenen Alterungszeiten (130 ^O C):	
Abb. B- 5 207B (KI) Abb. B- 6 207B (TEDA) Abb. B- 7 Kiteg II Abb. B- 8 Radshield 25	68 69 70 71
Verteilung bei verschiedenen Temperaturen (30 bzw. 130 ^O C):	
Abb. B- 9 207B Abb. B-10 208C	72 73

1. Einleitung

Deutsche Druckwasserreaktoren (DWR) sind mit Iodfiltern zur Filtration der Ringraumabluft im Störfall ausgerüstet /1/. In den RSK-Leitlinien für DWR wird für diese Filter ein Abscheidegrad von \geq 99,99 % bzw. ein Durchlaßgrad von \leq 0,01 % für elementares Radioiod (I₂) gefordert. Die entsprechenden Werte für organisches Radioiod (vorwiegend CH₃I) sind 99 % bzw. 1 % /2/.

Vor allem um festzustellen, mit welchen Aktivkohlen die genannten Werte für elementares Radioiod am besten erreicht werden können, wurden Untersuchungen zur Abscheidung von elementarem ¹³¹I an verschiedenen kommerziellen Aktivkohlen unter simulierten Störfallbedingungen durchgeführt.

In diesem Bericht wird auf Untersuchungen eingegangen, die unter Bedingungen durchgeführt wurden, die hinsichtlich der Bedingungen im Ringraum eines DWR während eines Auslegungsstörfalls als konservativ angesehen werden können (maximale Temperatur: 130 ^OC). Über die Messungen wurde teilweise schon berichtet /3/. Auf Untersuchungen unter extremen Bedingungen (Temperatur: 180 ^OC) wird in einem anderen Bericht eingegangen /4/.

2. Auslegung und Betrieb von DWR-Störfallfiltern

Auf Daten zu Auslegung und Betrieb von deutschen DWR-Ringraumabluftfiltern für den Auslegungsstörfall wurde bereits eingegangen /3/. Die Daten sind in Tab. 1 zusammengefaßt. Es ist insbesondere ersichtlich, daß eine hohe Temperatur (deutlich unter 150 O C) nur während einer kurzen Periode (deutlich kürzer als ein Tag) zu erwarten ist.

Aus Daten für schwere Störfälle /5/ kann geschlossen werden, daß die Belastung der DWR-Ringraumabluftfilter bei schweren Störfällen nicht viel größer ist als im Auslegungsstörfall, wenn die Integrität des Sicherheitsbehälters erhalten bleibt.

Parameter	Einheit	Wert
Bettiefe	cm	≈ 50
Luftgeschwindigkeit	cm/s	≈ 50
Verweilzeit	S	≈ 1
Temperatur ^a)	°C	< 150; ≥ 30
relative Feuchte ^{a)}	%	< 10; < 100
Dauer des Filterbetriebs ^{a)}	d	< 1; < 60
I-Konzentration	mg/m ³	< 1
I-Beladung	mg/g b)	< 1

<u>Tab. 1:</u> Daten deutscher DWR-Ringraumabluftfilter (Auslegungsstörfall)

a) erster Wert : anfängliche Phase des Störfalls;
zweiter Wert : spätere Phase des Störfalls

^{b)} mg I/g Aktivkohle

3. Frühere Untersuchungen

Auf frühere, in der Literatur beschriebene Untersuchungen wurde ebenfalls bereits eingegangen /3/. Die wesentlichen Ergebnisse sind in Tab. 2 zusammengestellt. Daraus geht hervor, daß bis etwa 150 ^OC bei einer vorgegebenen Aktivkohle (Korngröße) insbesondere Alterungszeit, Temperatur und Nachströmzeit (Spülzeit) für die Abscheidung von I₂ von Bedeutung sind. Die Ergebnisse sind in Übereinstimmung mit der Vorstellung, daß die Abscheidung von I₂ an Aktivkohle weitgehend auf physikalischer Adsorption beruht.

Es ist zu betonen, daß in früheren Experimenten in der Regel eine geringe Verweilzeit (0,1 bis 0,2 s) verwendet wurde. Außerdem wurde generell keine genaue Analyse der chemischen Form des die untersuchte Aktivkohle penetrierenden Iods durchgeführt. Tab. 2:Einfluß verschiedener Parameter auf den Durchlaßgrad (P) verschiedener imprägnierterAktivkohlen für Radioiod, beaufschlagt als I_2 , nach Literaturangaben (Temperatur ≤ 150 °C)

Parameter	Anderung von P bei Änderung oder Vergrößerung des Parameters	Bemerkungen ^{a)}		
Grundmaterial	nicht signifikant			
Korngröße	Zunahme	$P \approx 10^{-2}$ % berichtet		
Imprägnans	nicht signifikant			
Alterungszeit	Zunahme	$P > 10^{-2}$ % berichtet		
I ₂ -Konzentration	möglicherweise signifikant	Bildung anderer Iodverbindungen; Überschreiten der Beladungs- kapazität		
Temperatur	Zunahme	bei langer Nachströmzeit; P > 10-2 % berichtet		
rel. Feuchte	nicht signifikant			
Luftgeschwindigkeit	nicht signifikant	bei gleicher Verweilzeit		
Verweilzeit	Abnahme			
Nachströmzeit	Zunahme	bei hoher Temperatur; P ≈ 10 ⁻² % berichtet		
Bestrahlung	Zunahme	Bildung anderer Iodverbindungen; P ≈ 10 ⁻² % berichtet		

a) Durchlaßgrade (P): Maximalwerte bei einer Verweilzeit von 0,1 - 0,2 s

- 4 -

4. Experimentelles

Daten der untersuchten kommerziellen Aktivkohlen gehen aus Tab. 3 hervor. Es wurden acht imprägnierte und, zum Vergleich, zwei nichtimprägnierte Aktivkohlen verwendet. Die Aktivkohlen 1 bis 4 sind gängige Aktivkohlen. 207B (KI) wird in den Iodfiltern deutscher Kernkraftwerke vorwiegend eingesetzt. Die Aktivkohlen 5 bis 8 sind weniger gängige, teilweise experimentelle Aktivkohlen. Die Aktivkohlen 5,6 und 8 unterscheiden sich jeweils nur durch das Grundmaterial von den Aktivkohlen 1, 2 und 4. Die nichtimprägnierten Aktivkohlen (9 und 10) werden in Iodfiltern von Kernkraftwerken nicht verwendet (geringe Abscheidung von organischem Radioiod bei hoher relativer Feuchte; vgl. Kap. 5).

Es wurden frische und zum Teil auch gealterte Aktivkohlen untersucht. Die Alterung erfolgte in der Anlagenraumabluft eines DWR. Die in dieser Abluft auftretenden, die Abscheidung von Radioiod an Aktivkohle beeinflussenden Schadstoffe bestehen vorwiegend aus organischen Substanzen (Toluol, Xylol, Nonan, Decan, Dodecan). Anorganische, die Alkalinität der Aktivkohle herabsetzende Substanzen sind zu vernachlässigen /6,7,8,9/. Im Rahmen der vorliegenden Untersuchungen ergaben sich die gleichen Befunde.

Die Alterungszeit in der Anlagenraumabluft betrug 12 Monate. Die Luftgeschwindigkeit in den Aktivkohlestrecken entsprach der in deutschen DWR-Ringraumabluftfiltern und in den anschließenden Labortests eingehaltenen Luftgeschwindigkeit (50 cm/s).

Die Parameter der Labortests sind in Tab. 4 wiedergegeben. Es wurden i. allg. zwei Kombinationen der Temperatur und relativen Feuchte verwendet: a) 30 O C und 98 - 100 % r. F. sowie b) 130 O C und 2 % r. F. Die zweite Kombination kann als in konservativer Weise repräsentativ für die Bedingungen im Ringraum eines DWR während der anfänglichen Phase eines Auslegungsstörfalls angesehen werden, die erste Kombination für die Bedingungen danach. Zur Klärung des Einflusses einer kurzzeitig auftretenden sehr hohen Temperatur wurde in vier Tests vor dem normalen Vorströmen (Vorbefeuchten) bei Testbedingungen während vier Stunden eine Temperatur von 180 O C eingehalten (relative Feuchte: <1 %). Die Nachströmzeit (Spülzeit) nach Ende des Einleitens des Radioiods betrug 2 oder 168 h (1 Woche). Die lange Nachströmzeit war viel länger als die bei hoher Temperatur erwartete Betriebszeit eines Ringraumabluftfilters im Auslegungsstörfall (< 24 h). Eine Übersicht der bei verschiedenen Temperaturen, Nachströmzeiten, und Aktivkohlen (frisch bzw. gealtert) durchgeführten Tests gibt Tab. 5.

Die Bettiefe und Verweilzeit (25 cm bzw. 0,5 s) waren kürzer als bei Ringraumabluftfiltern (50 cm bzw. 1,0 s).

Die Testbetten waren unterteilt, um den Abscheidegrad oder Durchlaßgrad als Funktion der Bettiefe bzw. Verweilzeit zu messen. Bei den gealterten Aktivkohlen wurden die Aktivkohlestrecken unverändert eingesetzt, d. h. die Aktivkohleschichtung wurde nicht verändert.

Die den Testbetten nachgeschalteten, bei ca. 80 ^OC betriebenen Sicherheitsbetten waren ebenfalls unterteilt, um eine Unterscheidung der die Testbetten durchdringenden Iodverbindungen zu ermöglichen. Die Sicherheitsbetten, denen ein Schwebstoffilter der Klasse S vorgeschaltet war, bestanden in Strömungsrichtung aus:

- a) 2 Betten DSM11 zur Abscheidung von I₂;
- b) 2 Betten AC6120 zur Abscheidung von leicht abscheidbaren Iodverbindungen (z. B. CH₃I);
- c) 7 Betten 207B (KI) zur Abscheidung von schwerer abscheidbaren Iodverbindungen.

Daten der Sorbentien DSM11 und AC6120 finden sich in der Literatur /10, 11/. Die Aktivkohle 207B (KI) war dieselbe wie die in Tab. 3 angegebene.

Das elementare Iod war mit 131 I markiert. Der minimal nachweisbare Durchlaßgrad betrug ca. 10^{-5} %.

Die Reproduzierbarkeit der Ergebnisse geht aus jeweils zwei Tests unter gleichen Bedingungen bei den Aktivkohlen 207B (KI) und 207B (TEDA) hervor. Die Abb. 1 und 2 enthalten den Durchlaßgrad als Funktion der Bettiefe. Es läßt sich jeweils ein steiler und flacher Teil der Durchlaßkurve unterscheiden. (Bei 207B (KI) ist in Test 1 der flache Teil nicht deutlich ausgeprägt.) Der steile Teil kann I₂ zugeschrieben werden; der flache Teil weitgehend anderen, schwerer abscheidbaren Iodverbindungen, die in geringen Anteilen als Verunreinigungen vorhanden sind oder im Testbett gebildet werden.

Sowohl im steilen Teil der Durchlaßkurven als auch im flachen Teil sind jeweils deutliche Unterschiede zwischen Test 1 und 2 festzustellen. Die Unterschiede im steilen Teil der Durchlaßkurven können zumindest teilweise auf Leckage der flachen Teilbetten (Bettiefe: 1,25 cm) zurückgeführt werden. Es ist jedoch zu erwähnen, daß Unregelmäßigkeiten wie bei 207B (TEDA) in Test 2 nur am Anfang der Untersuchungen auftraten.

Berechnet aus den ersten drei Teilbetten ergaben sich in den genannten Tests folgende mittlere K-Werte und Standardabweichungen derselben:

- a) Aktivkohle 207B (KI):
 - Test 1: $K = 60 \pm 9 \text{ s}^{-1}$;
 - Test 2: K = $67 + 14 \text{ s}^{-1}$.
- b) Aktivkohle 207B (TEDA): Test 1: K = $63 \pm 7 \text{ s}^{-1}$; Test 2: K = $56 \pm 18 \text{ s}^{-1}$.

In den ersten Tests lagen die Standardabweichungen der mittleren K-Werte jeweils unter 10 s⁻¹ und somit nicht höher als in vergleichbaren, d. h. etwa gleich hohe K-Werte liefernden Tests mit CH_3I /12/.

Die relativ großen Unterschiede im flachen Teil der Durchlaßkurven reflektieren das stark schwankende Auftreten von anderen Iodverbindungen als I_2 in geringen Anteilen.

Einzelheiten zur Durchführung und Auswertung der Tests können der Literatur entnommen werden /1,12/.

Nummer	Bezeichnung	Grund- material	Korngröße ^{a)} [mesh]	Imprägnans ^{b)}	Lieferant
1	207B (KI)	Steinkohle	8 - 12	KI	Sutcliffe Speakman
2	207B (TEDA)	Steinkohle	8 - 12	TEDA	Sutcliffe Speakman
3	Kiteg II	Kokosnuß- schale	8 - 16	KI + tertiäres Amin	Nuclear Consulting Services
4	Radshield 25	Kokosnuß- schale	8 - 16	tertiäres Amin	Charcoal Engineering
5	208C (KI)	Kokosnuß- schale	8 - 12	KI	Sutcliffe Speakman
6	208C (TEDA)	Kokosnuß- schale	8 - 12	TEDA	Sutcliffe Speakman
7	BJN 4712	Holzkohle	≈ 14	KI	Degussa
8	Radshield 26	Steinkohle	8 - 16	tertiäres Amin	Charcoal Engineering
9	207B	Steinkohle	8 - 12		Sutcliffe Speakman
10	208C	Kokosnuß- schale	8 - 12	_	Sutcliffe Speakman

Tab. 3: Daten der untersuchten Aktivkohlen

a) 8 - 12 mesh: BS 410 /13/; 8 - 16 mesh: ASTM D2862 /14/;
≈ 14 mesh: Stäbchendurchmesser 1,2 mm

b) bei Kiteg II und BJN 4712 noch weitere Imprägnantien; -: kein Imprägnans

- 8 -

Tab. 4: Testparameter

Parameter	Einheit	Wert
Temperatur	°c	30 bzw. 130
relative Feuchte ^{a)}	. %	98 - 100 bzw. 2
lineare Luftgeschwindigkeit	cm/s	50
Bettiefe ^{b)}	cm	25
Verweilzeit	S	0,5
Vorströmzeit ^{c)}	h	<u>></u> 16 bzw. 1
Einleitzeit	h	1
Nachströmzeit	h	2 bzw. 168
I ₂ -Konzentration	mg/m ³	1

a) 98 - 100 % bei 30 ^oC; 2 % bei 130 ^oC (Taupunkt: 30 ^oC)

- b) 10 Betten einer Tiefe von 2,5 cm; erste 2 Betten in Teilbetten einer Tiefe von 1,25 cm unterteilt; Bettdurchmesser jeweils 2,5 cm; Reihenfolge der Betten wie bei der Alterung im KKW (Abmessungen der (ganzen) Betten ebenfalls für nachgeschaltete Sicherheitsbetten geltend)
- c) ≥16 h bei 30 °C; 1 h bei 130 °C (entsprechend Testtemperatur; in 4 Tests zusätzlich vorher 4 h bei 180 °C; vgl. Tab. 5)

Kohle- klasse b)	Temperatur	Nachström-	Kohle- nummer b)	Testdurchführung ^{c)}		
KTU33C	[⁰ C]	[h]	runner	O Monate ^d)	12 Monate ^{d)}	
	30	2	1-4 5-8	+ +	- - -	
imprägnierte	30	168	1-4 5-8	+ +	e) + +	
Kohle	120	2	1-4 5-8	+ +	-	
	130	168	1-4 5-8	+ +	+ -	
	30	2	9,10	÷	-	
nicht- imprägnierte		168	9,10	+	-	
Kohle	130	2	9,10	+	-	
		168	9,10	+	-	

a) weitere Parameter: siehe Tab. 4

b) vgl. Tab. 3

c) +: ja; -: nein

d) Alterungszeit in der Anlagenraumabluft eines DWR (ca. 30 ^OC, 40 % r.F., 50 cm/s)

e) ebenfalls nach Vorerhitzen (4 h, 180 $^{\circ}$ C, <1 % r.F., 50 cm/s)

a) weitere Parameter: s. Tab. 4

- 11 -

Abb. 2 ^{a)}

a) weitere Parameter: s. Tab. 4

5. Ergebnisse

In diesem Kapitel werden die Ergebnisse der Untersuchungen zur Abscheidung von 131 I, beaufschlagt als I₂, an den in Tab. 3 aufgeführten imprägnierten und nichtimprägnierten Aktivkohlen unter den in Tab. 4 verzeichneten Bedingungen wiedergegeben. Wie erwähnt, wurden teilweise auch Messungen mit Aktivkohlen durchgeführt, die während 12 Monaten in der Anlagenraumabluft eines DWR gealtert worden waren. Die Alterung ist im folgenden jeweils ausdrücklich vermerkt, d. h. ohne diesen Vermerk beziehen sich die Ergebnisse auf neue Aktivkohlen (vgl. Tab. 5). Zunächst wird auf den Durchlaßgrad für ¹³¹I eingegangen, dann auf die chemische Form des die Testbetten penetrierenden ¹³¹I.

5.1 Durchlaßgrad für ¹³¹I

Zuerst seien die imprägnierten Aktivkohlen behandelt. In den Abb. A-1 bis A-28 (Anhang A) ist der jeweils ermittelte Durchlaßgrad als Funktion der Bettiefe bei verschiedenen Nachströmzeiten (2 bzw. 168 h) und Alterungszeiten (keine Alterung oder Alterung während 12 Monaten), jeweils bei 30 und 130 $^{\circ}$ C, dargestellt. Wie bei den schon aufgeführten Ergebnissen (Abb. 1 und 2) läßt sich meistens ein steiler Teil (Bettiefe < ca. 5 cm) und ein flacher Teil (Bettiefe >ca. 5 cm) der Durchlaßkurve unterscheiden. Wie bereits erwähnt, kann der steile Teil I₂ zugeschrieben werden, der flache Teil weitgehend anderen, schwerer abscheidbaren Iodverbindungen, die in geringen Anteilen als Verunreinigungen vorhanden sind oder im Testbett gebildet werden (vgl. Kap. 5.2).

Aus den Abb. A-1 bis A-28 geht hervor, daß sich das Nachströmen bei 30 ^OC nur im flachen Teil der Durchlaßkurve bemerkbar macht, bei 130 ^OC in beiden Teilen. Der Einfluß der Alterung ist bei 30 und 130 ^OC in beiden Teilen der Durchlaßkurve festzustellen.

Die Tab. 6 und 7 sowie die Abb. 3 bis 6 geben einen Überblick der bei verschiedenen Bettiefen, Alterungszeiten und Temperaturen gemessenen Durchlaßgrade (Nachströmzeit: 168 h). Es ist folgendes zu erkennen:

a) Temperatur von 30 ^OC (Tab. 6, Abb. 3,4):

Die bei verschiedenen Aktivkohlen gefundenen Durchlaßgrade unterschieden

sich nur in geringem Maße. Bei einer Alterungszeit von 12 Monaten waren die Durchlaßgrade etwa eine bis drei Größenordnungen höher als ohne Alterung. Bei einer Bettiefe von 25 cm (Verweilzeit: 0,5 s) betrugen die Durchlaßgrade bei den gealterten Aktivkohlen etwa 10⁻² %.

b) Temperatur von 130 ^oC (Tab. 7, Abb. 5,6): Die bei verschiedenen Aktivkohlen gefundenen Durchlaßgrade unterschieden sich stärker als bei 30 ^oC. Insbesondere bei 207B (TEDA) und Radshield 26 wurden relativ hohe Durchlaßgrade festgestellt (s. u.). Bei den gealterten Aktivkohlen waren die Unterschiede, soweit Werte vorliegen, jedoch relativ gering. Bei einer Alterungszeit von 12 Monaten waren die Durchlaßgrade wieder etwa bis drei Größenordnungen höher als ohne Alterung. Bei einer Bettiefe von 25 cm betrugen die Durchlaßgrade bei den gealterten Aktivkohlen etwa 10⁻² bis 10⁻¹ %.

Zu den bei 207B (TEDA) und Radshield 26 bei 130 ^OC im Neuzustand erzielten Durchlaßgraden ist zu vermerken, daß bei Wiederholung der Tests praktisch die gleichen Werte erhalten wurden. In Anbetracht dessen, daß bei 208C (TEDA) und Radshield 25 (gleiches Imprägnans, anderes Grundmaterial) nicht aus dem Rahmen fallende Ergebnisse erzielt wurden, sind die bei 207B (TEDA) und Radshield 26 gemessenen Werte nicht verständlich.

Der Einfluß eines zusätzlichen vierstündigen Vorerhitzens von gealterten Aktivkohlen auf 180 ^OC geht aus den Abb. A-29 bis A-32 hervor. Es ist praktisch keine Änderung des Durchlaßgrades zu erkennen, abgesehen von kleinen Bettiefen ($\leq 2,5$ cm), bei denen nach Vorerhitzen geringere Durchlaßgrade ermittelt wurden. Dieser Effekt ist auf Regenerierung der Aktivkohle zurückzuführen. Die Regenerierung war allerdings nicht vollständig, wie ein Vergleich mit den bei frischen Aktivkohlen erzielten Durchlaßgraden (Abb. A-1 bis A-4) zeigt.

Zu den bei den imprägnierten Aktivkohlen gewonnenen Ergebnissen ist insgesamt zu sagen, daß der in den RSK-Leitlinien angesetzte maximale Durchlaßgrad von 10^{-2} % bei den untersuchten Bedingungen überschritten werden kann, wenn die chemische Form des penetrierenden Radioiods (s. Kap. 5.2) nicht berücksichtigt wird. Es seien nun die zum Vergleich mit nichtimprägnierten Aktivkohlen (207B, 208C) durchgeführten Tests besprochen. Die Tab. 8 gibt einen Überblick der bei verschiedenen Bettiefen und Temperaturen gemessenen Durchlaßgrade (Nachströmzeit: 168 h). In den Abb. A-33 bis A-36 ist der Durchlaßgrad als Funktion der Betttiefe bei verschiedenen Nachströmzeiten (2 bzw. 168 h), jeweils bei 30 und 130 ^OC, angegeben.

Wie mit Imprägnans ist ohne Imprägnans jeweils ein steiler und flacher Teil der Durchlaßkurve zu erkennen. Es ist darüber hinaus folgendes ersichtlich (Nachströmzeit: 2 bzw.168 h):

- a) Temperatur von 30 ^OC (Abb. A-33, A-34): Im steilen Teil der Durchlaßkurve entsprachen die Durchlaßgrade den bei den entsprechenden imprägnierten Aktivkohlen ermittelten, im flachen Teil waren sie höher (vgl. Abb. A-1, A-2).
- b) Temperatur von 130 ^OC (Abb. A-35, A-36): Sowohl im steilen Teil der Durchlaßkurve als auch im flachen Teil entsprachen die Durchlaßgrade weitgehend den bei den entsprechenden imprägnierten Aktivkohlen ermittelten (vgl. Abb. A-9, A-10).

Es ist weiterhin zu erkennen, daß sich die bei 207B und 208C erhaltenen Ergebnisse praktisch nicht unterscheiden.

Insgesamt geht aus den Ergebnissen hervor, daß, in Übereinstimmung mit früheren Befunden, unter den vorliegenden Bedingungen die Abscheidung von elementarem ¹³¹I durch das Imprägnans nicht beeinflußt wird. Nichtelementares ¹³¹I dagegen wird bei hoher relativer Feuchte mit Imprägnans besser abgeschieden als ohne Imprägnans. (Aus diesem Grund werden bekanntlich Aktivkohlen imprägniert.) Die Ergebnisse bestätigen außerdem, daß unter den vorliegenden Bedingungen die Art des Grundmaterials nicht signifikant ist. Die oben geschilderte, bei den imprägnierten Aktivkohlen trotz verschiedener Grundmaterialien und Imprägnantien festgestellte relativ gute Übereinstimmung der Durchlaßgrade ist somit verständlich. <u>Tab. 6:</u> Durchlaßgrad verschiedener imprägnierter Aktivkohlen für 131 I als I₂ (vgl. Abb. 3 und 4)

Temperatur : 30 ^OC relative Feuchte : 98 - 100 % r. F. Nachströmzeit : 168 h weitere Parameter: s. Tab. 4

Kohle	Bettiefe	Verweilzeit	Durchlaßgrad [%] ^{a)}		
	[cm]	[s]	0 Monate ^{b)}	12 Monate ^{b)}	
207B (KI)	5	0,1	2,7 (-3)	7,0 (-2)	
	25	0,5	1,2 (-4)	1,4 (-2)	
207B (TEDA)	5	0,1	1,5 (-3)	3,2 (-1)	
	25	0,5	1,2 (-4)	1,2 (-2)	
Kiteg II	5	0,1	2,4 (-3)	9,2 (-2)	
	25	0,5	1,9 (-4)	1,1 (-2)	
Radshield 25	5	0,1	1,1 (-3)	2,6 (-1)	
	25	0,5	3,0 (-5)	2,8 (-2)	
208C (KI)	5	0,1	7,3 (-4)	1,1 (-1)	
	25	0,5	5,0 (-5)	5,4 (-3)	
208C (TEDA)	5	0,1	1,1 (-3)	4,0 (-1)	
	25	0,5	3,3 (-5)	6,8 (-3)	
BJN 4712	5	0,1	2,9 (-3)	2,0 (-1)	
	25	0,5	1,1 (-4)	1,0 (-2)	
Radshield 26	5	0,1	1,1 (-3)	1,8 (-2)	
	25	0,5	5,2 (-5)	3,9 (-3)	

a) 2,7 (-3) = 2,7 \cdot 10⁻³ usw.

b) Alterungszeit

<u>Tab. 7:</u> Durchlaßgrad verschiedener imprägnierter Aktivkohlen für 131 I als I₂ (vgl. Abb. 5 und 6)

Temperatur : 130 ^OC relative Feuchte : 2 % Nachströmzeit : 168 h weitere Parameter: s. Tab. 4

Kohle	Bettiefe	Verweilzeit	Durchlaβgrad [%] ^{a)}	
	[cm]	[S]	0 Monate"	12 Monate ^{-,}
207B (KI)	5 25	0,1 0,5	3,0 (-3) 1,9 (-4)	1,0 (+1) 7,8 (-3)
207B (TEDA)	5 25	0,1 0,5	3,8 (-1) 3,7 (-3)	1,2 (+1) 4,3 (-2)
Kiteg II	5 25	0,1 0,5	4,3 (-2) 4,4 (-4)	
Radshield 25	5 25	0,1 0,5	5,2 (-3) 3,5 (-4)	6,0 (0) 1,2 (-1)
208C (KI)	5 25	0,1 0,5	5,8 (-3) 8,4 (-4)	
208C (TEDA)	5 25	0,1 0,5	4,1 (-3) 3,4 (-4)	
BJN 4712	5 25	0,1 0,5	9,9 (-4) 4,9 (-4)	_
Radshield 26	5 25	0,1 0,5	5,9 (-1) 3,4 (-2)	

a) $3,0(-3) = 3,0 \cdot 10^{-3}$ usw.

b) Alterungszeit

^{— :} keine belastbaren Ergebnisse erzielt bzw. kein Test durchgeführt (vgl. Tab. 5)

Durchlaßgrad verschiedener imprägnierter Aktivkohlen für ¹³¹I als I₂ bei verschiedenen Bettiefen und Alterungszeiten

Abb. 3

Durchlaßgrad verschiedener imprägnierter Aktivkohlen für 131 I als I $_2$ bei verschiedenen Bettiefen und Alterungszeiten

Durchlaßgrad verschiedener imprägnierter Aktivkohlen für $^{131}\mathrm{I}$ als I_2 bei verschiedenen Bettiefen und Alterungszeiten

Durchlaßgrad verschiedener imprägnierter Aktivkohlen für 131 I als I $_2$ bei verschiedenen Bettiefen (keine Alterung)

Abb. 6

a) bei gealterter Aktivkohle Kiteg II keine belastbaren Ergebnisse erzielt <u>Tab. 8:</u> Durchlaßgrad verschiedener nichtimprägnierter Aktivkohlen für $^{131}\mathrm{I}$ als I_2

Temperatur	:	30 bzw. 130 ⁰ C	
relative Feuchte	:	98 - 100 bzw. 2 %	
Nachströmzeit	:	168 h	
weitere Parameter	:	s. Tab. 4	

Kohle	Bettiefe	Verweilzeit	Durchlaßgr	ad [%] a)
	[cm]	[s]	30 ^O C	130 ^o C
207B	5	0,1	6,1 (-2)	3,9 (-3)
	25	0,5	4,9 (-2)	< 1,0 (-4)
208C	5	0,1	2,9 (-2)	3,0 (-2)
	25	0,5	2,4 (-2)	2,8 (-4)

a) 6,1 (-2) = 6,1 \cdot 10⁻² usw.

5.2 Chemische Form des penetrierenden ¹³¹I

Wie in Kap. 4 beschrieben, bestanden die den Testbetten nachgeschalteten Sicherheitsbetten aus verschiedenen Sorbentien, um eine Unterscheidung der die Testbetten durchdringenden Iodverbindungen zu ermöglichen. Den Sicherheitsbetten war außerdem ein Schwebstoffilter vorgeschaltet. Da an den Schweb-131 stoffiltern in keinem Fall signifikante I-Mengen festgestellt wurden, werden diese im folgenden nicht berücksichtigt.

Zunächst sei auf die bei den imprägnierten Aktivkohlen erzielten Ergebnisse eingegangen. In den Abb. B-1 bis B-8 (Anhang B) ist für die Aktivkohlen 1 bis 4 die Verteilung des ¹³¹I auf die Test- und Sicherheitsbetten bei verschiedenen Alterungszeiten (O oder 12 Monate) und Temperaturen (30 oder 130 ^OC) der Testbetten angegeben (Nachströmzeit: 168 h). Der Effekt der Alterung ist klar erkenntlich: Bei den gealterten Aktivkohlen wurden viel höhere Anteile des ¹³¹I an den Testbetten 2 bis 10 und an den Sicherheitsbetten gefunden.

Aus der Verteilung des 131 I auf die Sicherheitsbetten geht folgendes hervor: a) Temperatur von 30 $^{\circ}$ C (Abb. B-1 bis B-4):

Das ¹³¹I wurde vollständig durch die Sicherheitsbetten zurückgehalten. Bei den frischen Aktivkohlen wurde das ¹³¹I nur an AC6120 gefunden. Bei den gealterten Aktivkohlen wurde das meiste ¹³¹I wieder an AC6120 festgestellt. Kein oder relativ wenig ¹³¹I wurde an DSM11 gemessen.

b) Temperatur von 130 ^OC (Abb. B-5 bis B-8): Meistens, insbesondere bei den gealterten Aktivkohlen, wurde das ¹³¹I nicht vollständig durch die Sicherheitsbetten zurückgehalten. Bei den frischen Aktivkohlen wurde das ¹³¹I in starkem Maße durch AC6120 abgeschieden, abgesehen von dem Fall, in dem die Testbetten aus 207B (TEDA) bestanden. Bei den gealterten Aktivkohlen war das ¹³¹I ziemlich gleichmäßig auf AC6120 und nachfolgendes 207B (KI) verteilt. Es wurde wieder kein oder relativ wenig ¹³¹I an DSM11 gemessen.

Bei den Aktivkohlen 5 bis 8 wurde eine analoge Verteilung des ¹³¹I auf die Test- und Sicherheitsbetten ermittelt (nicht wiedergegeben).

Aus der Verteilung des 131 I auf DSM11 ist zu schließen, daß praktisch kein 131 I in elementarer Form die Testbetten durchdrang. Elementares 131 I wäre

weitgehend am ersten DSM11-Bett abgeschieden worden, d. h. es hätte sich eine ungleichmäßige Verteilung des ¹³¹I auf DSM11 ergeben. (Die kleinen Mengen des ¹³¹I, die an DSM11 gefunden wurden, sind auf die Abscheidung von organischem ¹³¹I zurückzuführen.) Der Schluß, daß praktisch kein elementares ¹³¹I die Testbetten durchdrang,ist in Obereinstimmung mit der oben besprochenen Form der Durchlaßkurven.

Aus dem genannten Befund folgt, daß der in den RSK-Leitlinien angesetzte maximale Durchlaßgrad von 10^{-2} % bei den untersuchten Bedingungen eindeutig nicht überschritten wird, wenn die chemische Form des penetrierenden Radioiods berücksichtigt wird.

Die Verteilung des ¹³¹I auf AC6120 und nachfolgendes 207B (KI) zeigt, daß bei 30 $^{\circ}$ C das ¹³¹I weitgehend als CH₃I oder in ähnlichen, leicht abscheidbaren Formen auftrat. Bei 130 $^{\circ}$ C trat das ¹³¹I in stärker penetrierenden Formen auf. Die Natur dieser Formen ist nicht bekannt.

Es seien nun die bei den nichtimprägnierten Aktivkohlen (207B, 208C) erzielten Ergebnisse erwähnt. In den Abb. B-9 und B-10 ist die Verteilung des 131 I auf die Test- und Sicherheitsbetten bei 30 und 130 ^OC dargestellt (Nachströmzeit: 168 h). Bei 30 ^OC war der Anteil des 131 I auf den hintern Testbetten und auf den Sicherheitsbetten höher als in den entsprechenden Tests mit imprägnierter Aktivkohle. Bei 130 ^OC war dagegen praktisch kein Unterschied zu den Tests mit imprägnierter Aktivkohle festzustellen. Der Befund bei 30 ^OC beruht auf der bereits erwähnten geringen Abscheidung von nichtelementarem 131 I bei hoher relativer Feuchte.

Aus der Verteilung des 131 I auf DSM11 ist zu schließen, daß wie bei den entsprechenden imprägnierten Aktivkohlen praktisch kein 131 I in elementarer Form die Testbetten durchdrang.

6. Zusammenfassung

Es wurden Untersuchungen zur Abscheidung von elementarem ¹³¹I (I₂) an verschiedenen kommerziellen Aktivkohlen unter simulierten Störfallbedingungen durchgeführt, vor allem um festzustellen, mit welchen Aktivkohlen ein Abscheidegrad von \geq 99,99 % am besten erreicht werden kann. Dieser Wert wird in den RSK-Leitlinien für Druckwasserreaktoren (DWR) für die Ringraumabluftfilter im Störfall gefordert.

Unter Bedingungen, die hinsichtlich der Bedingungen im Ringraum eines DWR während eines Auslegungsstörfalls als konservativ angesehen werden können (maximale Temperatur: 130 $^{\rm O}$ C), ergab sich bei verschiedenen frischen und gealterten kommerziellen Aktivkohlen kein entscheidender Unterschied in der Abscheidung von 131 I, beaufschlagt als I₂. In allen Fällen war das 131 I, das tiefe Aktivkohlebetten (25 cm entsprechend einer Verweilzeit von 0,5 s) durchdrang, in einer nichtelementaren Form. Es ist zu schließen, daß der geforderte Abscheidegrad von 99,99 % für elementares Radioiod mit verschiedenen nen Aktivkohlen gleichermaßen erreicht werden kann.

7. Literatur

- /1/ Wilhelm, J.G., Iodine Filters in Nuclear Installations, Commission of the European Communities, V/2110/83 (1982)
- /2/ Reaktorsicherheitskommission, RSK-Leitlinien für Druckwasserreaktoren, Gesellschaft für Reaktorsicherheit (1981)
- /3/ Deuber, H., Wilhelm, J.G., Retention of Elemental Radioiodine by Deep Bed Carbon Filters Under Accident Conditions, 17th DOE Nuclear Air Cleaning Conference, Denver, 2. - 5.8.1982, CONF-820833 (1983) 248
- /4/ Deuber, H., Abscheidung von elementarem ¹³¹I an Aktivkohlen unter extremen Bedingungen, KfK 3796 (to be published)
- /5/ Dillmann, H.-G., Pasler, H., Theoretical and Experimental Investigations Into the Filtration of the Atmosphere Within the Containments of Pressurized Water Reactors After Serious Reactor Accidents, 16th DOE Nuclear Air Cleaning Conference, San Diego, 20. - 23.10.1980, CONF-801038 (1981) 373
- /6/ Furrer, J. et al., Alterung und Vergiftung von Iod-Sorptionsmaterialien in Kernkraftwerken/ Aging and Poisoning of Iodine Filters in Nuclear Power Plants, Kerntechnik 18 (1976) 313
- /7/ Wilhelm, J.G. et al., Behavior of Gasketless Deep Bed Charcoal Filters for Radioiodine Removal in LWR Power Plants, 16th DOE Nuclear Air Cleaning Conference, San Diego, 20. - 23.10.1980, CONF-801038 (1981) 465
- /8/ Deuber, H., Gerlach, K., Untersuchungen zur Abscheidung von ¹³¹I durch ein Iodfilter eines Druckwasserreaktors, KfK 3594 (1983)
- /9/ Deuber, H., Gerlach, K., Untersuchungen zur Alterung von Aktivkohlen in der Abluft eines Druckwasserreaktors (DWR4), KfK 3711 (1984)

- /10/ Deuber, H., Wilhelm, J.G., Determination of the Physico-Chemical ¹³¹I Species in the Exhausts and Stack Effluent of a PWR Power Plant, 15th DOE Nuclear Air Cleaning Conference, Boston, 7. - 10.8.1978, CONF-780819 (1979) 446
- /11/ Deuber, H., Wilhelm, J.G., Occurrence of Penetrating Iodine Species in the Exhaust Air of PWR Power Plants, 16th DOE Nuclear Air Cleaning Conference, San Diego, 20. - 23.10.1980, CONF-801038 (1981) 1354
- /12/ Deuber, H., Gerlach, K., Parametrische Untersuchungen zur Abscheidung von Methyliodid an einer KI-imprägnierten Aktivkohle, KfK 3746 (1984)
- /13/ British Standard Institution, Specification for Test Sieves, BS 410 (1976)
- /14/ American Society for Testing and Materials, Standard Test Method for Particle Size Distribution of Granular Activated Carbon, ASTM D2862 (1970)

Die diesem Bericht zugrundeliegenden Arbeiten wurden mit Mitteln des Bundesministers des Inneren gefördert.

An der Durchführung und Auswertung der Messungen waren beteiligt: K. Bleier, H. Fischer, A. Ladanyi, W. Sellien, R. Sommerlatt und S. Winkler.

<u>Anhang A</u>

Durchlaßgrad für 131 I als I₂ (als Funktion der Bettiefe)

Daten der untersuchten Aktivkohlen: Tab. 3 Testparameter: Tab. 4

Abb. A-1 a)

a) 2 h: Test 1 (vgl. Abb. 1)

Abb. A-2 a)

a) 2 h: Test 1 (vgl. Abb. 2)

- 28 -

Durchlaßgrad von Kiteg II für ¹³¹I als I₂ bei verschiedenen Nachströmzeiten

Abb. A-3

Durchlaßgrad von Radshield 25 für ¹³¹I als I₂ bei verschiedenen Nachströmzeiten

Abb. A-4

Durchlaßgrad von 208C(KI) für ¹³¹I als I₂ bei verschiedenen Nachströmzeiten

Abb. A-5

Abb. A-6

Durchlaßgrad von BJN 4712 für ¹³¹I als I₂ bei verschiedenen Nachströmzeiten

Abb. A-7

Durchlaßgrad von Radshield 26 für ¹³¹I als I₂, bei verschiedenen Nachströmzeiten

Abb. A-8

Abb. A-9

Abb. A-10

Abb. A-11

Abb. A-12

Durchlaßgrad von 208C (TEDA) für $^{131}\mathrm{I}$ als I_2 bei verschiedenen Nachströmzeiten

Abb. A-14

Durchlaßgrad von BJN 4712 für ¹³¹I als I₂ bei verschiedenen Nachströmzeiten

Abb. A-15

Abb. A-16

Durchlaßgrad von 207B (KI) für $^{131}\!\mathrm{I}$ als I_2 bei verschiedenen Alterungszeiten

Abb. A-18

Durchlaßgrad von Radshield 25 für $^{131}\!\mathrm{I}$ als I_2 bei verschiedenen Alterungszeiten

Abb. A-20

Abb. A-21

bei verschiedenen Alterungszeiten

Abb. A-22

Abb. A-23

Durchlaßgrad von Radshield 26 für $^{131}\!\mathrm{I}$ als I_2 bei verschiedenen Alterungszeiten

Abb. A-24

Abb. A-25

Durchlaßgrad von 207B (TEDA) für $^{131}\!\mathrm{I}$ als I_2 bei verschiedenen Alterungszeiten

Abb. A-26

(keine Alterung)

Durchlaßgrad von Radshield 25 für $^{131}\!\mathrm{I}$ als I_2 bei verschiedenen Alterungszeiten

Abb. A-28

Durchlaßgrad von 207B (KI) für $^{131}\mathrm{I}$ als I_2 ohne und mit Vorerhitzen (4h, 180°C)

Abb. A-30

Abb. A-31

Abb. A-32

bei verschiedenen Nachströmzeiten

Abb. A-33

bei verschiedenen Nachströmzeiten

Abb. A-35

Abb. A-36

Anhang B

Verteilung des 131 I auf Test- und Sicherheitsbetten (131 I als I₂)

Sicherheitsbetten:

DSM11 : Abscheidung von I₂

AC6120 :Abscheidung von leicht abscheidbaren organischen Iodverbindungen (z. B. CH₃I)

207B (KI): Abscheidung von schwerer abscheidbaren Iodverbindungen

(Aus der Verteilung folgender Durchlaßgrad: Anhang A)

Abb. B-1

Abb. B-2

Abb. B-3

Abb. B-4

Abb. B-5

Abb. B-6

Verteilung des ^{131}I auf Test- und Sicherheitsbetten (keine Alterung; ^{131}I als I_2)

Abb. B-7

Abb. B-8

Abb. B-9

Verteilung des 131 I auf Test- und Sicherheitsbetten bei verschiedenen Temperaturen (131 I als I₂)

Abb. B-10