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Abstract 

Fault tree analysis Ls a well known technique used for problems of 

system reliability. The subject of this paper is twofold: 

- Some recent methodological developments of fault tree analysis 

will be discussed, 

- Limits of fault tree analysis and a criterion for admissibility 

of structure functions will be given. 

It will be shown that there are interesting relations to switching 

theory and to stochastic processes. 

An introduction to some basic concepts and techniques of fault tree 

analysis will be given. We note that a fault tree can be defined 

as a directed graph. If we assume only two possible states per 

vertex, we obtain a Boolean function (structure function) which 

is equivalent to a combinational circuit. Such a system has the same 

configuration during its whole life. It is possible to evaluate un­

availability and expected number of failures. 

If we have, however, a system with a phased mission, its relevant 

configurations may change during consecutive periods (called phases). 

Systems which have to perform phased missions are, for instance, 

reactors with core cooling (during various phases of an accident) 

and fault tolerant aerospace computing systems (during various 

phases of a flight). Reliability and performance analysis requires 

the use of a (generalized) multistate structure function and the 

concept of association. It is possible to evaluate unavailability. 

It is interesting to have here a criterion which can show the 

admissibility of phased structure functions for these systems. This 

is based on algebraic properties of functional dependence which 

again has strong relations to switching theory and to system ana­

lysis. 



METHODEN DER FEHLERBAUMANALYSE UND IHRE GRENZEN 

Zusanunenfassung 

Die Fehlerbaumanalyse ist eine bekannte Technik, die für Probleme der 

Systemzuverlässigkeit Verwendung findet. In der vorliegenden Arbeit 

werden zwei Themen behandelt: 

- Einige neue methodische Entwicklungen der Fehlerbaumanalyse werden 

diskutiert. 

- Grenzen der Fehlerbaumanalyse und e~n Kriterium für die Zulässigkeit 

von Strukturfunktionen werden gezeigt. 

Es stellt sich dabei he-raus, daß interessante Beziehungen zur Schaltalgebra 

und zu stochastischen Prozessen bestehen. 

Eine Einführung einiger grundlegender Begriffe und Techniken der Fehlerbaum­

analyse wird gegeben. Wir stellen fest, daß e~n Fehlerbaum als ein gerichteter 

Graph definiert werden kann. Nehmen wir an, daß jede Ecke des Graphen in nur 

zwei Zuständen sein kann, so erhalten wir eine Boole'sche Funktion (Struktur­

funktion), die zu einem Schaltnetz äquivalent ist. Ein solches System hat 

dieselbe Konfiguration in seinem ganzen Leben. Es ist möglich, die Nichtver­

fügbarkeit und die erwartete Zahl der Ausfälle zu berechnen. 

Haben wir jedoch ein System, das eine in Phasen aufgeteilte Mission ausführen 

soll, so können sich die Konfigurationen für aufeinanderfolgende Abschnitte 

der Mission ändern. Diese Abschnitte werden als Phasen bezeichnet. Systeme, 

die in Phasen aufgeteilte Missionen ausführen müssen, sind z.B. folgende: 

Reaktoren mit Notkühlung (während verschiedenen Phasen eines Reaktorunfalls) 

sowie fehlertolerante Rechnersysteme für Flugzeuge (während verschiedenen 

Phasen eines Fluges). Die Analyse der Zuverlässigkeit und Leistungsfähigkeit 

erfordert die Verwendung einer (verallgemeinerten) Strukturfunktion mit 

mehrwertiger Logik sowie ein Verlassen des Bereichs der stochastischen Un­

abhängigkeit. 

Es ist interessant, hier e~n Kriterium zu haben, das die Zulässigkeit der 

Strukturfunktion für diese Systeme zeigen kann. Es basiert auf algebraischen 

Eigenschaften der "funktionalen Abhängigkeit", die wiederum stark mit Schalt­

algebra und Systemanalyse verbunden sind. 
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1. Boolean Concepts of Fault Trees 

A general introduction to fault tree analysis is given. Basic concepts of fault tree 

representation are introduced and relations to switching theory emphasized. The pro­

babilistic evaluation of coherent systems is discussed. This is an application of 

alternating renewal processes. It is possible to use for evaluation minimal cuts, 

expansion, or modular decomposition. For decomposition, interesting relations to 

switching theory exist. 

1 .1. Definition and Representation of a Fault Tree 

The subject of this chapter is a general introduction, to fault tree analysis. The 

purpose of this analysis is twofold: 

a) a systematic identification of all possible failure combinations which lead to a 

defined (undesired) event, i.e. system failure, 

b) the evaluation of reliability and safety of a system (e.g. un,availabUity, unre­

liability, expected number of failures). 

We shall not be concearned here with fault tree construction wh,ich, l.S a very l.mpor­

tant step for modelling. 

1.2 Definition of a Fault Tree 

Although the term 'fault tree 1 is often used in a rather wide sense it seems prefer­

able to us to concentrate on the following definition: 

Definition 

A fault tree 1.s a finite directed graph without (directed) circuits. Each, vertex may 

be in one of several states. For each vertex a. function, is given which specifies its 

state in terms of the states of its predecessors. The states of th,ose vertices with­

out predecessors are considered the independentvariables of the fault tree /1/, /2/, 

Some general properties of a fault tree: 

1. The vertices without predecessors are the in,puts to th,e fault tree, representing 

the components. We are interested in the state of every oth,er vertex, but in parti­

cular with the state of one vertex without successors, an output vertex which we 

identify with the state of the system as a wh,o1e. l'h,e graphic;:~,1 terrn 1vertex 1 here 

is roughly synonymaus with 'item' and generally denotes an,y 1evel in. the system, 

whether a component, sub-system or the who1e system. 

2 · We mostly specialize to only two sta,tes per ve:rte:x;. 'L'his makes aU, of the fun,c­

tions Boolean functions. We call one of th,e two states 'fun,ctioning 1 , 'fa1se 1 0:17 0~ 
and the other 'failed', 'true' or 1. 
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A ciy 
xl ){2 ){1 X 2 

&)\ 
/ \ cAJ 

Q 
X 

A few concepts related to Boolean functions 

OR, disjunction 
X 1 v X 2 (1.2-1) 

ANO, con junction 
xl x2 11.1-2) 

NOT, complement 
Xl (1.2-J) 

1. Coverage: A Boolean function ~ 1 (~) is said to cover ~ 2 (~), denoted ~ 1 (~) ~ ~ 2 (~), 
if ~ 1 assumes the value 1 whenever ~ 2 does. 

2. Equivalence: If ~ 1 2 ~ 2 and ~ 2 2 ~ 1 , <P
1 

and <P 2 are equivalent. 
n 

3. Boolean monomial: A product term (monomial) ~s a conjunction IT 

able x. complemented and uncomplemented. 
~ ---

4. Sum of products: A disjunction of Boolean monamials 

1 
V 

j=1 

n. 
J 

rr 
i=1 

x .. 
~J 

is called a sum of products (sop) or polynomial. 

i=1 
x. with no vari­
~ 

(1.2-4) 

5. Implicant: An implicant p. of <P(x) is a monomial which is covered by <P(_x). 
J -

6. Prime implicant: A prime implicant p. of <P(x) is an implicant which ceases to be 
J -

an implicant if one variable is deleted from p .. 
J 

Example: pj = x
1
x

2 
is a prime implicant of the polynomial <P(x) x

1
x2 + x

1
x2 + x 2x3 , 

but neither x
1 

nor x
2 

alone implies <P(~). 

7. Base: A base of <P(x) is a sop which is equivalent to <P(x) where all monamials are 

prime implicants. 

8. Irredundant base: A base which ceases to be a base if one prime implicant ~s de­

leted. 

Remark: An irredundant base may be written 

<P(x) 
1 
V 

j = 1 
p. 

J 

where 1 is the number of prime implicants ~n the base, and p. 
J 

cant, given as 

(1.2-5) 

. h . th . . 1' 
~s t e J pr~me ~mp ~-
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n. 
J 

p . = II X. • ( 1 • 2-6) 
J i=1 1.] 

9. Prime implicate: A dual set of concepts, leading to conjunctions of pr1.me impli-

cates. Th,is will, ~qt ~e d~v~lqp~d in, d,~ta,U but t1S~d if ~ec~ssa.ry L3L, L4L • 

Note, that our definition of a two-state fault tree is equivalent to a combina­

tional circuit with one output. 

The no-circuit condition in the graph is equivalent to the condition that the cur­

rent output of a switching circuit is entirely determined by current inputs, with­

out memory of previous inputs or internal states. 

Also the more general case of manyvalued logic and logic trees is included in 

this definition. 

1.3 Boolean Approach 

Structure function 

We introduce the concept of structure function which is of central importance to 

fault tree analysis. It can be seen that it is closely related to the concept of 

switching function. We assume a system S, which has n components which can be 1.n two 

states (functioning, failed), Also the system S can be in two states, either func­

tioning or failed. The components are the vertices without predecessors of our fault 

tree definition. The function which specifies the state of a vertex in terms of its 

predecessors is a Boolean function (AND, OR, NOT). The states of the top vertex can 

be given by a structure function (see 1.2)/2/. 

Definition of structure function 

Let x 1 , x 2 , ••• , xn be Boolean variables which can assume the values 0,1, where 

x. 
1. 

The assumption that 

~. 0 if component i is 

( 1 if component i is 

functioning 

failed. 

corresponds to failure is used throughout this paper and 1.s 

useful for fault tree analysis. The Boolean variable x. indicates the state of com-
1. 

Ponent i., wher·eas the state vector x - (x x x ) 1.'nd1.' cates the state of the - 1' 2' ... , n 
system. 

The Boolean function ~(x 1 , x
2

, ••• , xn) is called structure function and determines 

completely the state of a system S in terms of the state-vectors: 

l 
0 if 

X ) = 
0 

1 if 

system S 1.s functioning 

system S 1.s failed. 

Remark: The structure function 1.s equivalent to a switching function representing a 

combinational circuit. 
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Gorobinational switching function 

A combinational switching function lS a mapplng f:Bn+B where B = {0,1} and Bn denotes 

the set of 2n binary n-tuples. A switching function specifies for every input combi­

nation (x
1

, x
2

, ••• , xn) an output value y f(x
1

, x2 , ... , xn). 

Representation 

For a fault tree and a combinational circuit stanclard componen,ts, called gates can 

be used. E.g. AND, OR, NOT are such gates. 

10. Coherent systems: A system S representecl by a structu~e fun,ct~on, ~ is c~l~ed 

coherent iff the following conditions hold: 

(1) If x < z then ~(x) < ~(z) where x < z m,eans xi .:::_ yi foX' every ;~.,, an,d xi < Yi for 

at least one i. 

(2) ~(1) = 1 and ~(0) = 0 . 

Note: An informal rephrasing of (1), (2) is: 

(1) If a system S is functioning no transition of a component from a failed state to 

functioning can cause a system failure. 

(2) If all components of S are failed (functioning) the system lS failed (functioning). 

Example: w(~) = x 1 ~2 + ~ 1 x 2 is not coherent. 

11. Minimal cuts: In a coherent system all prime implicants p. can be represented 
J 

with uncomplemented variables and are called minimal cuts. (Similarly, all prime 

implicates can be represented with umcomplemented variables and are called minimal 

paths). Let M = {K
1

,K
2

, ... ,K
1

} be a set of components of a coherent system S. A sub­

set C?6 of S such that S is failed if all components K. belanging to 4ff are failed is 
l 

called a cut. A cut is minimal if it has no proper subsets which are also cuts. It 

is called minimal cut CC.· • 
J 

12. Representation of coherent systems: Every irredundant sop representation of a 

structure function is a union of prime implicants. If the structure function is cohe­

rent, the representation by prime implicants greatly simplifies. We quote a theorem 

which leads to this simplification. 

Theorem: A coherent structure function ~(x) can be represented as a sop 

1 
W(x) = 6 

j=1 
p. 

J 
(1.3-1) 

of prime implicants, where this representation is unique and can be written using 

the concept of min cuts 

<P(x) 
1 
6 n x. 

j=1 K.s~ 
l J 

l 

where K.~ are the components belanging to ~. ,x. the 
l J . J l 

the states (functioning, failed) of the components, 

(1.3-2) 

Bool,ean variables describing 
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Note, that there is only one (minimal) cover, and there are only 'essential' prime 

implicants which may not be replaced by any other prime implicants. 

Remark: The concept of coherence may be generalized to cases where mor than two sta­

tes are possible. Even then the coherent structure functions give a considerable 

simplification as has been shown in /5/. 

1.4 Search for Min Cuts 

There are various approaches to find all min cuts. It will be sufficient to describe 

one algorithm in detail /6/. 

Top-down-algorithm (Fussel's Algorithm) 

Assurne a fault tree which is given by A (vertex without successor), A. (vertices 
0 ~ 

with successors and predecessors, gates), xk (vertices without predecessors, indepen-

dent variables). Note: The programming contains further details which arenot shown 

here. 

Step 0 Start at top A . 
0 

Step 

Step 2 

Step 3 

Search for predecessors of A.(i=1,2, ..• ) 
~ 1 2 

Define predecessors-of A.: (A., A.) pred 
~ ~ ~ 

If A. 
~ 

If A. 
~ 

1 2 is an OR gate, we get A. + A. A., 
~1 ~2 ~ 

~s an AND gate, we get A. A. A .. 
1 2 ~ ~ ~ 

Rename A., A. 
~ ~ 

Multiply out all identified terms to obtain 

A. 
~ 

a sum of products. If the sum of products contains 

still gates (A.) goto 1, else goto 4. 
~ 

Step 4 Simplify the sum of products expression, drop repeated 

variables, make absorptions. 

Example 

leads to the following 

min cut representation 

3 
~ pJ. = x

1
x2 + x

1
x4 + x 2x3 

j=1 

This algorithm may be improved for systems with a high number of min cuts, e.g. by 

taking into account subtrees which have no replicated vertices. 

Bottom-up-algorithm 

This algorithm is due to Bennetts /7/ and has been improved by Nakashima /8, 9/. 

It begins with primary events (vertices without predecessors) and works upward to 

the top event. This algoxithm is based on the principle of discarding redundant terms 

from a sop form to yield a reduced form. The impxoved bottom up algorithm can re­

duce the work needed fox discarding xedundant terms. 
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1.5 Noncoherent case 

If a system is noncoherent, the approach using min cuts (min paths) has to be re­

placed by a search for prime implicants. Many methods have been proposed, mainly in 

relation to switching theory. We will give one of these methods which makes no use 

of minterms /10/. 

Nelson's algorithm 

Fis already available as a polynomial (sop), which is in generalnot yet an ex­

pression with prime implicants, 
-Step 1 Complement F, and obta.in F (applying De Morgan's rules). Expand F into a sop 

- Drop zero products (x~ 0) ' repeated literals (xx = x), make absorptions 
-

(x + xy = x). The result ~s <I> . 
Step 2 Complement ~. and obtain ~ (applying De Morgan's rules). Expand ~ into a sop. 

- Drop zero products, repeated literals, make absorptions. 

The result is Ep., the sumofall prime implicants, and only of prime implicants. 
~ 

Example: F is available as polynomial. 

Step 1 F = x
1
x

2 
+ x2x

3
x

4 
+ x

3
x

4 
Complement F and obtain. F 

-
Expand and simplify: <I> = x1x2x4 

Step 2 Complement ~ and obtain <I> = (x1 

Expand and simplify: Epi = x1x2 

+ x1x3 + x2x3 

+ x2 + ~4)(x1 + x3)(x2 + x3) 

+ x1x3 + x2x3 + x3x4 

This algorithm can be improved in various ways, e.g. by factaring the Boolean ex­

pressions during the two steps. 

2. Probabilistic Evaluation 

2.1 Basic Concepts and Notations 

We describe the behavior of a compon.ent wh.ich, c,an, be in, a finite number of states, 

preferably in two states: up (:eunctioning) or down (faited). 

We describe the states by indicator variables. Th,ere is a on,e-one-relation between 

indicator variables and Boolean variables (see e.g. Barlow /2/). 

Thus we get for an indicator variable xl(t) the following realizations: 

, ( ) 1 . f . . down . x. t = 
0 

~ component ~ ~s at t~me t 
~ up 

(2.1-1) 

We describe the behavior of a repairable component by an alternating renewal process. 

Later on, it will be shown, how a system, given by a structure function, can also 

be represented using alternating ren.ewal processes for components. 
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Availability and Reliability 

We introduce a few basic quantities for reliability. 

Life time distribution 

Assurne a component which may be modeled by a life time distribution F(t): 

F(t) = P {T ~ t}, 

where the r.v. T is the component's life time. 

Reliability 

We introduce the reliability of a component R(t) as 

R(t) = 1 - F(t) 

Note: 

- For t 

For t 

o, a component LS up with probability 1. 

oo, a component Ls down with probability 1. 

It is sometimes convenient to use an interval reliability (see sect. 3.3). 

Availability 

We introduce the availability of a. component A(t) 

A(t) = P {~'(t) = 0}, 

L.e. the probability that a component is up at time t. 

Unavailability 

Ä(t) = P {x'(t) = 1}, 

L.e. the probability that a component is down at time t. Clearly 

A(t) + Ä(t) = 1 

(2.1-2) 

(2.1-3) 

(2, 1-4) 

(2.1-5) 

To obtain non-trivial statements on availability and other ~uantities related a few 

concepts of renewal theory are required. 

2.2 Renewal Processes 

Renewal theory deals with independent identically distributed (i. i.d.) random van­

ables, and with the number of renewals /2/, /11/, /12/. 

Assurne a sequence of r.v. T
0

, T
1

, T2, •••• which may be represented as life times. 

Upon failure replacement is clone in a negligible time. Let N(t) be the number of 

renewals in the interval (O,t) and let 

Definition 

s = 
n 

n 
L: 

i=o 
T. (2.2-1) 

L 

Let T , T , T2 , ... be nonnegative independent r.v. with a cumulative distribution 
0 1 

function 

for T 
0 

forT. 
L 

(i > 1) . 
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Then the sequence of the r.v. {T.; i > 0} (or equivalently {S.; i > 0}) defines a 
L L 

renewal process. 

Note: The process {N(t); t ~ 0} is known as renewal counting process. Its relation 

to a renewal process is due to the equivalence: 

{N (t) n} (2. 2-2) 

A few concepts related to renewal processes 

1. Ordinary renewal process: If FA(t) = F(t), the process will be called ordinary. 

2. Stationary renewal process: If the relation 

with 

t 
1 F (t) = -A u 

f (1-F(x))dx 

u 

0 

E(T.) < oo 
L 

(f;or i 

holds, the process is called stationary. 

1,2,3, .. ) 

3. Renewal function: The expected number of renewals in the interval (O,t), 

H(t) = E(N(t)) 

Ls called renewal function. Note that 
00 

H(t) = E k~P{N(t) = k} 
k;,1 

If H(t) has a derivative, 

h(t) = dH(t) 
dt 

1s called renewal density. It always e~ists for our purposes. 

(2.2-3) 

(2.2-4) 

(2.2-5) 

(2.2-6) 

4. Evaluation of a renewal function: H(t) may be defined by an integral equation of 

renewal type or by an infinite series of convolutions which are needed for P{N(t)~k}. 

It is convenient to evaluate H(t) in the Laplace domain. For ordinary renewal pro-

cesses we get 

H*(s) = 
F*(s) 
1-sF,~(s) 

where * refers to the Laplace transform .• 

Poisson process 

(2.2-7) 

Fora sequence, where all T. are i.i.d. with F(t) = 1-e-.\t we get a Poisson process, 
L 

where \ is a fixed parameter. For the rene.wal function we get 

H(t) = \t. (2.2-8) 

It is also interesting to note the relation to other definitions of the Poisson 

process /2/. For the renewal counting process related to the Poisson process we 

note: {N(t) - N(t ) ; t > t } constitutes a, Ma.rk.ow· process. 
0 0 

We also note: 

Mt = Nt - Nt - ;\t 
0 

Ls both a Markow process a.nd a M;a.rt~nga.le /13/. 

(2,2-9) 
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Superposition of processes 

Assurne there are m independent components which fail at random times, where the 

failed components are repaired instantaneously. Assurne that each single component 

generates a renewal process. The failures of all m components may be again modeled 

by a stochastic process (a point process) which is in general no longer a renewal 

process. HoHever, we may note for the superposition of Poisson processes: 

If there are m Poisson processes (with mean values u. (i = 1,2, ... ,m)), then the 
1. 

renewal function for the superposition of m Poisson processes H (t) (expected number 
s 

of all renewals in (O,t)) may be given: 
m 

H (t) z:: H.(t) 
s i=1 1. 

h r H (t) h 1 f ' f t,_, 1..th Po1.'sson process, u1.'th w e e . 1.s t e renewa unct1.on or qe w 1. 

H. (t) 
1. 

t 

u. 
1. 

This 1.s relevant for a series system. 

2.3 Alternating Renewal Processes 

(2.2-11) 

(2.2-12) 

We consider a component wh,ich ca,n be in, one of two sta,tes, up and down, but is no 

langer repaired instantaneously /2/, /11/, /12/. Thus we have this realization: 

up 

down 

Initially it 1.s up and remains for a. time. u
1

, then it goes down and remains down for 

a time D
1 

etc. 

The time intervals 

T. ~ (U. + D.) 
1. 1. l. 

i = 1,2,3, ..• (2.3.-1) 

are assurned to be mutua,1ly independen.t. 

1,2,3, ... ) be distribu,ted with F(t), Let u. (i 1. 
let D. (i 1. 1,2,3, ... ) be distributed with G(t), and 

(U. + D.) (i = 1,2,3,, .. ) be distributed with FT(t) 1. 1. 
let T. -1. (i = 1,2,3, ... ). 

Then the sequence of r.v. {T.; i > 1} defines an alternating renewal process, where 1. 

P {T. < t} 1. 

t 
f f(x) G(t-x)dx. 
0 

(2.3-2) 
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A few concepts related to alternating renewal processes 

1. Ordinary renewal process: The definition already refers to the ordinary process. 

2. Mean values (u, d): 

(a) u = E(U.) 
1 

(b) d = E(D.) 
1 

(i 1 '2, ... ) (2.3-3) 

(c) u+d E (T.) 
1 

3. Renewal function: We get for the mean number of failures H(t) (assuming an up 

state for t=O): 

* H (s) 
* F (s) (2.3-4) 

* * 1-f (s) g (s) 

Relation to Point Processes 

It is interesting to note that the abovementioned renewal processes are special cases 

of point processes. A point process over the half line[ü,oo) can be viewed as follows: 

(a) as a sequence of nonnegative r.v.: T
0

,T
1

,T
2

, .... 

(b) as an associated counting process Nt where 

n if ts[Tn,Tn+ 1) 
Nt 

00 if t=lim T = 00 

n 

(2.3-5) 

seealso (2.2-2) (renewal counting process). The Poisson process is a well known 

e:x:ample for a point process. (2.2-9) which relates the counting process Nt, the 

intensity \ and the martingale Mt 1s very useful (see Bremaud /24/ and section 4). 

A,vailability of a Component 

We now obtain a few relations of Availability and alternating renewal processes. 

Assurne a component which is in an up state for t=O. The time u
1 

to the first failure 

is distributedas FA(t) = 1-FA(t). The times Ui (i>1) (referring to operation) are 

distributed as F(t) = 1-F(t) and the times D. are all distributed as G(t) (see Fig. 3 
1 

a.nd (2. 3-1)). Then we obtain for the availability A( t) the following formulas: 

t 
A(t) FA(t) + f F(t-x)dH(x) (2.3-6) 

0 
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Example: For an alternating renewal process where up and down times are exponentially 

distributed, we get 

A( t) 

Asymptotic behavior 

= p 
A+p 

p - (\+p) t 
+ -- e A+p 

As applications of the key renewal theorem we get the following relations (see 

(2.2-3), (2.3-10): 

(a) lim H( t) 
lim h( t) u+d t t+oo t+oo 

(2.3-7) 

(The same holds ~( t)' 
'V 

for h ( t)) . 

(b) lim (H( t+x) - H(t)) 
X 

X > 0 = d for all 
t+oo u+ 

(2.3-8) 

(c) lim A( t) u 
u+d t+oo 

(2.3-9) 

An interpretation of renewal function and density 

For the application of renewal function and density to fault tree evaluation the 

following notation is convenient. It is possible to understand the expected nurober 

of failures (repairs) of a component 1 of a system as follows: 

E (Number of failures in (O,t) for component i) 

E (Number of repairs m (0, t) for component i) 

'V 
corresponding to H(t), H(t) respectively. Moreover: 

01 
w. (t)dt P{component i fails in (t, t+dt)} 

l 

where w? 1(t) is the failure intensity, 
l 

10 
w. (t)dt = P{component i is repaired 1n (t,t+dt)} 

l 

10 where w. ( t) is the repair intensity. 
l 

Similarly, 

w~ 1 
(t) is the failure intensity of the system, w!

0
(t) the repair intensity. 

Note 

(2.3-10) 

(2.3-11) 

(2.3-12) 

(2.3-13) 

1. The failure intensity-notation replaces for the rest for this representation the 

usual h(t). 

2. The failure intensity rnay be easily generalized to a transition rate for a finite 

number of states /5/, /14/. 
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3. Assurne that up tirnes and down times are exponentially distributed. Then we get 

"A.A.(t) 
1 1 

(2.3-14) 
10 -w. (t) = JJ.A.(t) 
1 1 1 

where "A.,(JJ.) is the failure rate (repair rate) of 1. 
1 1 

2.4 Stochastic Modeling of a System 

Basedon 2.1-2.3 we now introduce concepts which are useful for reliability evalua­

tions of systems. We assume a coherent system (C,~) with n components /12/. 

Alternating renewal process 

1. Component i is replaced at failure (not instantaneously) 
. 1 h 1 d . . 01 ( ) nat1ng renewa process, w ere renewa ens1t1es are wi t , 

thus generating an alter­

w~0(t) (i = 1,2, ... ,n). 
1 

2. Fora stationary process we have ((2.3-11),(2.3-9)): 

01 10 w. = VJ. = A./u. = 1/(u. + d.) 1 1 1 1 1 1 
(2.4-1) 

3. We assurne that components i,j (i # j) are statistically independent and that 

w? 1 ( t) 
1 w? 1 ( t) 

J 
(dt) 2 o(dt) 

w? 1 ( t) 10 (dt) 2 
= o(dt) w. ( t) 1 J 

where o(u) is the Landau symbol, 

f(u) = o(u) iff lim f(u) 
u-+0 u 

for i I j (2.4-2) 

(2.4-3) 

i.e. for a function f we get 

0 (2.4-4) 

Thus it is possible to exclude that two failures or one failure and one repa1r occur 

at 'the same time'. 

4. Of course, a coherent systemwill in general not follow a renewal process. 

Unavailability 

The state X'(t) of the system can be expressed 1n terms of component states, 
s 

X1(t), ... ,X~(t): 

X~(t) = tP(X1(t), ... ,X~(t)) (2.4-5) 

It follows that unavailability Ä (t) of the system at time t is given as 
s 

Ä
8
(t) = E(X~(t)) = h(Ä

1
(t), ... ,Än(t)) (2.4-6) 

where h is the 'reliability function' of system (C,tP), 1.e. the (point-) unavailabi­

lity at timet /2/, /15/. 

Lirniting unavailability 

Let u .. represent the 1 th up time for component j with distribution F. (mean u.), J1 J J and D .• represent the 1 th down time for component j with distribution G. (mean d.), ]1 
for 1,2, ... ,n, 

J J 
J = 1 = 1,2,3, ... . 
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Since h is multilinear in its arguments, the stationary unavailability A
8 

is, for 

nonlattice distributions of F.' G.' 

d1 d J J 

A = h( n ) 
s u1+d1 ' ... ' u +d n n 

For AND and OR-gates we get as unavailability: 

1. AND-gate 

Ä (t) 
s P{X'(t)• 

1 
X'(t) = 1} = Ä (t) 

2 1 Ä2(t) 

A d/ (u 1 +d 1) • d2/(u2+d2) s 

2. OR-gate 

Ä
8
(t) = P{1-(1-x;(t))(1-X2(t)) = 1} 

A
8 

= 1 - u
1
/(u

1
+d

1
) • u2/(u2+d 2) 

Failure intensity 

(2.4-7) 

(2.4-8) 

(2.4-9) 

(2.4-10) 

( 2. 4-11) 

The evaluation of failure intensity of a system is related to assumptions (2.4-1)­

(2.4-3) and to the concept of a critical component. 

Critical component 

A coherent system is in a state where component J is critical iff for the structure 

function <P 

<P( 1 . , x) - <P ( 0. , x) = 1 
J- J-

(2.4-12) 

holds, where (1 .,x) = (x
1
,x

2
, ... ,x. 

1
,1,x. 

1
, ... ,x ), similarly (O.,x). The system 

J - J- J+ n J -
fails, if component j fails. The state of the system is adjacent to system failure. 

The probability, that a systern is in a state where component j is critical, may be 

given as 

I. = P{<P(1. ,x) - <P(O. ,x) = 1} 
J J - J -

(2.4-13) 

We get with the reliability function h(E), 

h(E) (2.4-14) p . h ( 1 . , p) - ( 1-p . ) h ( 0 . , E) 
J J - J J 

Cl h(E) 
-=-"-- = h( 1., p) - h(O., p) 
a P• J- J-

J 

I. 
J 

(2.4-15) 

This is also known as Birnbaum's importance measure which may be used for sensiti-

vity analysis. But here it is of central relevance for evaluation of our fault trees. 

A fundamental relation 

The following theorem shows a fundamental relation between the failure intensity of 

a system and its compone.nts /15/, 



Theorem 

If a system is coherent, we get 
n 

wo 1 ( t) 
s 

where I. ( t) 
1. 

c 
2: I. (t) 

i= 1 1. 

Clh(Ä(t)) 

aÄ. ( t) 
1. 

- 14 -

(2.4-16) 

and the summation has to be taken over all states 1. (1 < i < n ) in which the fai­
- c 

lure of a component is critical. 

Proof: Since I.(t) may be represented as the probability that the system is in a 
1. 

state where component i is critical, the probability that a system failure in 

( 01 t,t+dt) is caused by a failure of component i, is given as I.(t)w. (t)dt where 
1. 1. 

w~ 1 (1) = P{component i fails in (t,t+dt)} (2.3-27). The simultaneaus occurrence of 
01 two component failures may be regarded assmall compared to w. (t)dt (2.4-2). 
1. 

Thus the probability for any system failure in (t,t+dt) is 

w
01

(t)dt 
s 

Note: It is important to note that only w? 1(t) (rather than w~ 0 (t)) will be needed 
1. 1. 

for coherent systems. For the noncoherent case, we will also have a dependence on 
10 

w. (t). This can be generalized to the multivalued case (see Barlow /5/, Murchland 
1. 

/14/). 

Examples 

1. AND-gate 

Note, that for an AND-gate components 1. 

sors of this gate. 

1,2 are critical. They arealso predeces-

w~ 1 (t) = Ä2 (t) w~ 1 (t) + A1(t) w~ 1 (t) 

2. OR-gate 

Note, that for an OR-gate components i = 1,2 are critical. 

W01(t) ( -()) 01() ( -()) 01() s = 1 - A2 t w 1 t + 1 - A 1 t w 2 t 

3. 

(2.4-17) 

(2.4-18) 

For a fault tree without replications the two abovementioned relations are suffi­

cient to evaluate w01 (t) in terms of all predecessors. Only a recursive procedure, 
s 

applying the theorem for all gates is needed. However, for trees with replications, 

we ~eed further considerations. 
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3. Evaluation with Min Cuts and Min Paths 

3.1 Basic Concepts 

Consider a coherent system which ca.n be represented using, min cuts 'tf. or min paths 
J ·9k· We denote by xi an indicator variable (see (2.1-1) and use the notations: 

n 
Product: rr x! (3.1-1) 

i=1 
]. 

n 
Coproduct: Il x! 1 - rr ( 1-x!) (3.1-2) 

i=1 
]. 

i=1 
]. 

(3.1-1) and (3.1-2) is related to Boolean products and Boolean sum respectively. 

For the reliability function h(E) (2.4-7) we may write: 

m 1 
E( TI IJ x!) 

k= 1 • cz,; ]. J.E:o/k 
E ( U TI x!) 

• • lP ]. ]=1 l.E{j. 
J 

(3.1-3) 

where 8'k_, (~) refers to m1n paths (min cuts). 

Note that this is related to two major forms for a Boolean expressions: The sum of 

products form (r.h.s.) and the product of sums form (l.h.s.) which are equivalent. 

If there J.s a coherent structure, we get in general the following bounds 

m 
TI 

k=1 

1 
l1 p. <' h(p) < u 

]. - - -
is.5k j=1 

p. 
]. 

(3.1-4) 

However, for noncoherent structures, the bounds will not hold in general /2/. 

The time to failure for a Coherent System 

Let ti be the time to failure of the i-th component (i=1,2 ... ,n), and T~(t) 

the time to failure of a coherent system (C,~) with structure function ~. 

We give now a result which is related to (3.1-3) but not based on Boolean 

variables. 

Theorem: If (C,4) is a coherent system with minimal paths ~ (k=1,2, ... ,m) 

and minimal cuts~ (j=1,2, ... ,1). 
J 

Then 

max 
1 <k<m 

min 
isq: 

t. 
]. 

min 
1 _:_j.::_l 

max 
iE~ 

J 

t. 
]. 

(3.1-5) 

Proof: A coherent system fails when the firstminimal cut~. fails . A parallel 
J 

structure fails when the last component i of this cut~. fails. (A similar ar­
J 

gument holds for minimal paths). 
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(3.1-5) 1s of interest for methodological considerations (see section 4.1 on 

systems evolution). 

3.2 Inclusion - Exclusion - Principle 

It is convenient to have a procedure to evaluate complex fault trees, where (3.1-3) 

would be impractical. In general, an exact evaluation is not feasible. But it is 

possible to obtain bounds for unavailability, failure intensity etc. as will be dis­

cussed in sect. 3.3 . 

Now the inclusion-exclusion-principle (Poincare's theorem) will be given. 

In a discrete probability space (i.e. with countable elementary events) we get the 

following theorem: 

Theorem: Let A
1

, A
2

, 

n 
P{U 

i=1 
A.} 

1 

n 
l: P{A.} -

i=1 1 

A be events. Then we get 
ll· 

l: P{Ai Aj} + ••• + (-1)n- 1P{A
1 

A2 ... An} 
i <j 

(3. 2-1) 

This 1s a theorem which applies to events contained in a discrete probability space. 

Then it also applies to indicator variables and to events such as 'min cut failed'. 
n 

Moreover, Poincare's theorem can be restated for expectations E( U A.). As a corol­
i=1 1 

lary we note: 

Corollary: 

n 

n 
We get upper (lower) bounds for P{U 

i=1 
n 

P{U A.} < l: P{A.} 
i=1 J i=1 1 

n n 
p {U A.} > l: P{A.} - l: P{A. A.} 

i=1 J i=1 1 
i<j 1 J 

Relation to combinatorics 

A.}: 
J 

(3.2-2) 

The inclusion-exclusion principle 1s related to a fundamental enumeration procedure. 

This can be shown by the following relation: 

•• 0 ' 
a be real numbers. Then 

n 

n 
( 1-a 1 ) ( 1-a

2
) ... ( 1-a ) = 1 - l; 

n i=1 
a. + 

1 
l: 

i<j 
(3.2-3) 

Proof: Induction. This theorem illustrates the relation between co-product and 1n­

clusion exclusion. 

3.3 Evaluation with Bounds 

Usua1ly, the exact formula of inc~u.sion excl,usion needs a large amount of computa­

tion. Therefore, bounds are required. This will be demonstrated for a fault tree 

represented by min cuts, where all components are repairable. The usefulness of 

bounds and/or approximations will be discussed. 
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For evaluation the following steps are required: 

Algorithm 

Step Search, for m,in cu.ts (by top dOW'PJ or· 'Pot.tom. up ~lgorit:.nm) 

Step 2 Bring the Boolean polynomial (min cuts) into a disjoint form (using the in­

clusion exclusion principle). 

Step 3 Evaluate unavailability and failure intensity as a function of life and repair 

distribution (e.g. with mean uptime u, mean downtime d) 

Fora detailed presentation see Nakashima /8/ and Olmos, Wolf /18/. 

Simple systems 

Parallel system 

Let C be the event that 'parallel system ~ is down'. ~ has n components and is re­

presented by an AND-gate (se~ 3.1-4): 

A(t) = P{C} 

As application of 

w01(t) 
n 

= Ä( t) l: 
i=1 

For the stationary 

01 
w 

n 
A l: 1 

i=1 di 

rr Ä.(t) 
iE: ltf' 1. 

theorem (2.4-16) 

w? 1(t) 
1. 

Ä. < t) 
1. 

state, we get 

where w? 1 
1. 

1/(u. + d.) 
1. 1. 

Ä./d .. 
1. 1. 

Series system 

(3.3-1) 

we get: 

(3.3-2) 

(3.3-3) 

Let T be the event that 'series systemJ" is down'. 8' is represented by an OR-gate, 

A(t) = P{T} = 1 - .I1~1-A.(t)) 
l.Ev 1. 

n 
(1-Ä(t)) 

i=1 1-Ä.(t) 
1. 

For the stationary state we get 

01 
w 

where w? 1 
1. 

n 
( 1-Ä) 

1/(u.+d.) = A./u. 
1. 1. 1. 1. 

Note a~so relation to simple trees. We obtain the following relations as 

a consequence of theorem (3.2-1) and (3.2-2). 

(3.3-4) 

(3. 3-5) 

(3. 3-6) 
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Theorem 

We assume a coherent fault tree with min cut representation. Let the K. be indepen-
1 

dent and let C. be the event 'the min cut~€· fails 1 (j = 1, •.• ,m). Upper bounds 
J - J 

and lower bounds for unavailability A (t) are: 
s 

m 
(a) Ä (t) < E P{C.} 

s j=1 J 

m m-1 m 
(b) Ä ( t) > EP{C.}- E E P{ cj ck} s j = 1 J j = 1 k=j+1 

(3. 3-7) 

(3.3-8) 

where C j C j is the event 1 intersec tion of ff j and ff k fails' (where all repl icated var­

iables occur only once). 

Note: For the r.h.s. of (3.3-8) the maximum difference from the exact value for Ä (t) 
s 

m-1 m 
1S E E P{CJ.Ck}' provided we have a coherent system. 

j=1 k=j+1 

Theorem 

Let K. be independent and in a stationary 
1 

state. Then we get for w~ 1 these relations: 
01 

w Upper bounds and lower bounds for failure intensity 

(a) 

(b) 

where w01 
s 

01 w 
s 

m 
< E P{ C.} E -1 

J
'=1 J . ;,pd. 18(<:1, 1 

m 
E 

j=1 

J 

P{C.} E 
J isf;'. 

J 

m-1 
1 
-- E 
d. . 1 

1 J= 

1 I (u. +d.) 
1 1 

Ä. /d. 
1 1 

for all 1. 

are: 
s 

(3. 3-9) 

(3.3-10) 

01 
Note: For the r.h.s. of (3.3-9) the maximum difference from the exact for w is 

s 
given by the second term of the r.h.s. of (3.3-10). 

Expected nurober of failures 

In the stationary state, we get for the expected nurober of failures in the interval 

(0' t) 

wo 1 ( t) 
t 

01 01 ! w dt' t •w s s s 
(3. 3-11) 

() 

This 1S 

wo1 Ct) "\. 
m 

t I; J?{ c.} & 1 
s ....... 

j =01 J i~~. 9,. 
" J ;1, 

(3 0 3-12) 
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Unreliability 

For the unreliability of a repairable system we need a few events to relate it to 

other concepts already introduced: 

S(t) = {the system is up at time t} 

Nc(t, t+T) = {no system transition from up to down in (t, t+T) I the system 1s up at t} 

Ni(t, t+T) = {i system transitions from up to down in (t, t+T)} 

We define the unreliability R(t, t+T): 

R
8
(t, t+T) = 1 - P{N (t, t+T) I S(t)} = P{N (t, t+T)} (3.3-13) 

0 c 

i.e. the probability that there are more than zero transitions from up to down in 

(t, t+T) conditional on the system being up at t. Note that this differs from the 

usual definition of unreliability. There exists no analytical method for calculating 

the unreliability for general coherent systems with repairable components /19/, /15/. 

However, us1ng w01 and A a bound may be given. 
s s 

Theorem 

For system unreliability R (t, t+T), conditional on the system being up at timet, 
s 

a bound is: 
- 01 
R (t, t+T) < w (t, t+T) I A (t) s - s s (3. 3-14) 

Proof: Due to (3.3-13) we obtain 
00 00 

R (t, t+<) = 1- P{N (t, t+T)Is(t)} z:; P{N.(t, t+T)\s(t)} < z:; iP{N.(t, t+T)\s(t)} 
s 0 i=1 1 -i=1 1 

Next we add to the r.h.s. the expected number of failures, conditional on S(t). By 

a suitable multiplication we get, using the total law of probability 

00 

L; iP { N . ( t , t +T) } 
i=1 1 

w01 (t,t+T) 
s 

A (t) 
s 

An interesting special case is this: 

- 01 R (T) = R (O,T) ~ w (T), s s - s 

( see ( 2. 2-5)) . 

(3.3-15) 

wh,en all components are inta.ct a.t t=O. We give an application of this theorem: 

Fora parallel system with n components (j=1, ... , n) we get ((3.3-3), (3.3-14) for 

th,e stationary state: 

n d. n 
R < t , t +<) ~ , rr _1_ ( z; -1-) 

8 
j=1 uj i=1 di 

(3.3-16) 
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where u. mean time between failures, 
J 

d. mean time to repair. 
J 

Note: 

1. If T ~s large compared to max d., system availability is high and the unreliability 
. 1 ~ 
1= ' ••• 'u 

to be calculated is rather accurate. 

2. A similar formula holds for the more general case of a coherent system. 

A few limitations to fault tree analysis 

In relation to system reliability a few remarks on the limits of fault tree analysis 

are in order. They have been observed by various authors /19/, /15/, /20/. 

There has been a lang debate on the applicability of Kinetic Tree Theory which 

is due to Vesely /21/. It is claimed that kinetic tree theory can evaluate system 

reliability by analytical means \vhere 

where 

t 
P{no system failure in (O,t)}= exp(-f A (x)dx) 

0 
0 

A (x)dx = P {system fails in (x, x+dx) I it was up at x} 
0 

It has been shown by verious authors /19/, /15/ /20/ that (3.3-17) is only 

correct iff 

A ( t) 
0 

A ( t) 

where 

A(t)dt = P {system fails in (t, t+dt) I it never failed before t}. 

It can be shown that this condition is not valid in general. E.g. 

1. If components are nonrepairable, (3.3-19) holds. 

2. If components are repairable and in series, (3.3-19) also holds. 

(3.3-19) 

(3.3-20) 

(3.3-21) 

(3. 3-22) 

3. It can be shown that for a parallel system of 2 components, where the life times 

and the repair times are i.i.d. and exponential, two basically different results 

are obtained: 

a) If we evaluate reliabilities on the basis of Veselys formalism or 

b) if we evaluate reliabilities on the basis of a Markow process. 

This counterexample (due to /15/) demonstrates that this method does not hold ~n 

general. 

It can be shown that for the aysmptotic case this difference vanishes. Moreover, we 

get for reasonable values of t a good approximation for reliability. /20/ has 

discussed in detail the assumptions required for this evaluation. 

Much more serious limitations for fault tree analysis arise if events are no langer 

statistically independent. To discuss the available methods would be beyond the 

scope of this lecture. See Barlow /2/. 
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Increasing failure rate 

If materials, components or subsystems wear out with time, the class of 

distribution (survival functions) where the failure rate is increasing 

(IFR) is evidently of special interest. Ignoring the possibility of 

"infant mortality" this is usually a strong and natural assumption. 

A component with life time distribution F(t) (2.1-2) has the IFR-property 

if 

\(t) f ( t) 
1-F(t) ' 

t > 0 (3. 3-16) 

1s increasing. A more general concept 1s this: A component has increasing 

failure rate average (IFRA) if 

~ 1\ ( t) 
t 

t f A,(u)du 
0 

lS increasing. 

1 tln (1-F(t)) (3.3-17) 

We are not considering here the closely related DFR-concept. Birnbaum /25/ 

and Barlow /2/ discussed many properties of IFR, DFR and IFRA, DFRA -

distributions. 

The IFR - property may be related to convexity: 

Theorem: A life time distribution (F(t)) is IFR iff the cumulative failure 

rate 

A(t) = - log F(t) (3.3-18) 

ls convex in the interval where it is defined. 

We recall that a convex function 1s 

- necessary continuous and has 

- at every point a left- and right-derivative which are nondecreasing, 

Let us make a more general statement related to (3.3-18). 

We state the following theorem: 

A life time distribution (F(t)) is IFRA iff the cumulative failure rate 

1\(t) is convex and passes through the origin. 

A few examples will illustrate these criteria. 
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F { t ) f ( t) FIt ) 

' 
I '"""'---

Q t t t 

lLJL 
0 Q t 0 t 

tt_ t:/ 
D a t 0 t 0 t 

A(t) A(t) 
.... 

0 ll t 0 t 0 t t 

(a) (b) (c) 

Note: 

(a) J\(t) is convex in [o,a) : IFR 

(b) J\(t) ~s conve~ but rnakes a jurnp at 0 : not IFR 

(c) J\(t) is convex and passes through the origin: IFR and IFRA. 
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Closure properties 

We assume components with exponential survival functions (constant failure 

rates :\ 1 ,\ 2 ), 

For a series system we obtain: 

F C t) 

Thus A is also constant. 
s 

However, for a parallel system (\ 1 #\ 2 ) we obtain: 

F( t) 

\ ( t) 
p 

Here, A (t) is 1n general not constant. It is not IFR either. 
p 

But for the IFRA-property of survival function we may state: 

Theorem: A system with a coherent structure function having components with 

IFRA-survival-functions has itself a IFRA survival function. 

Example: \ (t) of (3.3-21) is IFRA. 
p 

It can be seen 1n sect. 4.1 that the IFRA property 1s also related to point 

processes. 

4. Evolution of a Coherent System 

The question 1s as follows: If a coherent system has alternating renewal 

processes at the component level, what can be said regarding the evolution 

of the system? Evidently the following holds: 

- Unavailability and failure intensity can be evaluated. 

The alternating renewal processes are a special type of point 

processes and of Markov renewal processes (see also sect. 2.3). 

(3.3-19) 

(3. 3-20) 

(3.3-21) 

Three approaches are possible: use of stopping times, distributions of phase 

type, Markov renewal processes. 
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4.1 Times to failure and stopping times 

The basic idea is very simple: Consider two components in ser1es with 

random life times T
1

, T
2

. Then this system fails at the time 

T1, = inf(T
1

,T
2
). 

Consider also two components 1n parallel with random life times T1,T2 . 

Then this system fails at the time 

T* = sup(T
1

,T
2

) 

It is evidently possible to use the relations (4.1-1), (4.1-2) to obtain 

Statementsfora coherent system (C,~). 

As a stochastic concept, the ~topping time T is required. The stopping time 

1s based on the understanding that at time t > 0 it is known whether an 

event (component failure) occurred or not. 

Def. Let F be a collection of events, representing the known information 
t 

at timet. (Ft is also called a a-field of events). Ft is typically the 

collection of events generated by one or more stochastic processes up to 

time t. Now let {F ,t > 0} be a family of such information collections. 
t -

We shall always assume that {Ft} is increasing, i.e. that no forgetting 

1s allowed: 

F CF 
~ s - t 

s < t => 

here {Ft' t > 0} is called a history. 

With this concept we may define the stopping time. 

Def. Let {Ft} be a history and T be a possible random variable. Then T is 

called a Ft-stopping time iff the event {T < t} can be characterized by 

{T ..2_ t} C Ft , t > 0 

1.e. it is known at time t whether or not T has occurred. 

A few properties of stopping times 

A process Xt is called "adapted" to {Ft, t > 0} if for every t, Xt 1s 

completely determined by F . 
t 

1. Theorem: Let xt be a right-continuous IR.-va.lued d t d F process a ap e to t' 

and c a given real number. Define T as follows: 

(4.1-1) 

(4.1-2) 

(4.1-3) 

(4.1-4) 
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+oo if this set is empty 

Then T is a F - stopping time. 
t 

(4.1-5) 

Proof: See Bremaud /24/. We note that Tunder conditions (4.1-5) is a "first 

passage time". An important special case of a first passage time will be used 

~n sect. 4.2 (phase type distributions). 

2. Relation of two stopping times: If T
1

,T 2 are Ft- stopping times, then 

are also F - stopping times. 
-- t 

Note thatA (~ is here not the conjunction (disjunction) but a useful 

symbol for inf(sup), corresponding to series (parallel) systems life 

time. We can obtain (4.1-6) considering 

{T) < t} U {T
2 

< t} 

(4.1-6) 

(4.1-7) 

The relation (4.1-6) may be generalized as follows: Let T. (i=1,2, ... ,m) 
~ 

stopping times. Then 

supT. . ~ 
1<~<m 

= inf T. 
1<i<m ~ 

~s also a stopping time. (Bremaud /24/). 

Combining these relations we obtain the following theorem: 

(4.1-8) 

(4.1-9) 

Theorem: Let (C,~) be a coherent structure where T
1

, ... ,Tn are stopping 

times (life times). Then T~, 

T~ inf sup 
1_2j_::_l iEr~ 

J 

1s also a stopping time. 

T. 
~ 

(4.1-10) 
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Here Cß· is a minimal cut and 1 is the number of minimal cuts of (C,~). 
J 

This theorem follows from formulas (4.1-8), (4.1-9) and from equation 

(3.1-5), (See also Greenwood /26/). 

Thus our question regarding the time to system failure has been answered. 

It is interesting to know also the kind of stochastic process which des­

cribes this system. 

Point Processes 

It 1s possible to define point processes as a sequence of stopping times. 

We can make (with (4.1-10)) the following statement. 

If on the component level we have point processes (renewal processes are 

a special type of point processes) 

then on the system level (for a coherent system (C,~)) we also have a 

point process. 

These considerations are due to Arjas /27/ and Greenwood /26/. But this 

is not the place to discuss this in detail. 

Now let us make a few remarks how to construct such a point process. 

It 1s possible to characterize a point process as follows: 

where 

t 

Nt - J A ds 
0 s 

Nt is the counting process associated to apoint process 

(2.3-5), 
t 

J A dt 
0 s 

is a compensator (integral of the intensity) 

of a point process, 

Mt 1s a martingale. 

(4.1-11) 

This is called decomposition of a point process (see eg. Doob /13/, Bremaud 

/24/). Example: Fora Poisson-process we have: 

M = N - At 
t t 

(2.2-9) 

A few remarks on point processes 

1. Basedon the decomposition which has been sketched (see (4.1-11)) it is 

possible to do some considerations which come very close to the IFRA-proper­

ties of systems (see also closure property (3.3-21). 
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This has been discussed in detail by Arjas /27/ and Greenwood /26/. 

We will learn more about certain closure properties of distributions 

in the next section. 

2. Using a "marked point process" we can forrnalize the considerations 

we already rnentioned referring to a coherent system (Greenwood /26/). 

Note that the point process approach uses classical methods such as 

irnbedded Markow chains, imbedded Markow processes and semi-Markow 

processes (see König, Stoyan /28/, Cox and Miller /29/). It is some­

times perferable to use methods which are specific to point processes. 

3. It has been shown by various anthors (Arndt, Franken /30/, Jansen /31/) 

that point processes can be applied for repair. This analysis has been 

generalized to dependent cornponents but without associated variables. 

It is important to note that these considerations are strongly related 

to queuing theory and that they can cover a wide region where fault tree 

analysis alone is no langer useful. 

4.2 Phase type distribution 

There is also a second method which can be related to system reliability. 

This is an algorithmic approach and can be referred to 

- computational probability 

- matrix geometric methods and to 

- phasetype distributions (PR-distributions). 

It is due to M. Neuts /32/ and his school. 

For instance, it could be shown that PR-distributions are very useful for 

many problems in queuing theory /32/. We only recall that queuing processes 

are a special type of point processes and Markow renew·al processes. They 

may be used, for a nurober of problems in reliability, e.g. related to repair­

men and to computers. 

General properties 

It has been shown (see Neuts /32/) that the class of PR-distributions ~s 

closed under some Operations, e,g. under 
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- finite mixtures of PR-distributions 

- convolutions 

formation of maxima and minima 

- construction of coherent systems. 

Clearly, under these operations with PR-distributions, the resulting distri­

butions are still of phase type, and moreover, it is possible to construct 

representations of PR-distributions. This is a very interesting development 

in the region of applied and computational probability. Let us note a few 

basic concepts. 

Definition and some basic properties 

We consider a Markow process 

{Xt' 0 < t < oo} 

with a finite number of states labeled 1, ... ,m+1. Wehave 

p .. (s,t) = P{Xt(w) 
~J 

j jx (w) = i} 
s 

We may write with (4.2-2) a special case of the Chapman-Kolmogorow-equation 

characterzing a Markow process. A stochastic process is said to have sta­

tionary transition probabilities if for each pair ij the transition proba­

bility p .. (s,t) depents only on t-s. This is sufficient for the following 
~J 

discussion. We may '"rite the Chapman-Kolmogorow equation: 

with 

~ p .. (s)p.k(t-s) 
. ~J J 
J 

p .. (t) > 0, ~ p .. (t) = 1 
~J - . ~J 

J 

With suitable continuity assumptions we have: 

lim p .. ( t) 
t-+0 ~J 

0 

i=j 

for 

(4.2-1) 

(4.2-2) 

(4.2-3) 

(4.2-4) 

(4. 2-5) 

Assuming that p .. (t) has a derivative p .. '(t) for all t > 0 and that (4.2-5) 
~J ~J 

holds we may obtain the following relations: 
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1-p .. (t) 
~~ q. = lim -----

~ t+O t 
- p!.(O) 

~~ 

q .. = lim 
~J t+O 

p .. (t) 
~J = p!. (0) 

t ~J 

(4.2-6) 

(4.2-7) 

Theserelations can be used to define the "infinitesimal generators" q., q .. 
~ ~J 

of a Markow process. 

Let Q be the matrix (q .. ], where we use q .. := -q. as diagonal elements. From 
~J ~~ ~ 

(4.2-3) we obtain the backward equation 

p!k(t) = L q .. p.k(t) 
~ • ~J J 

J 

The q .. determine the p .. (t) uniquely. 
~J ~J 

This system may be also written in matrix form 

p' ( t) Q P(t) 

where Q is the infinitesimal generator. 

Then we can write a solution 

p ( t) exp(Qt) 

where 
00 tn 

exp(Qt) L Qr 
r=O r! 

Remark: It can be shown that if the eigenvalues of Q are all distinct, 

we obtain (for(4.2-8)): 

P(t) = B[ 

where BC 1 = I 

with I identity matrix. (see Cox, Miller /29/). 

Infinitesimal generators 

We consider a Markow process with the states {1,2, ... , m+1} and the 

::i- n.f in,i tes ima,l ge.n.era,tor 

r 
_9_= 

0 

(4.2-8) 

(4.2-8) 

(4.2-8) 

( 4. 2-9) 

(4.2-10) 

(4. 2-11) 

(4.2-12) 
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whe~e the mxm ~ matrix r satisfies 

:\ .. < 0 
11 

for 1 < 1, < m 

:\ .. > 0 
1J 

we also have this relation: 

r e + ro = 0 

where e is a unit vector. Moreover, for t 0 we have 

and 

a e + a = 1 m+1 

which is equivalent to (4.2-4). 

We assume that all states 1, .. ,m are transient and that state m+1 

is absorbing. 

Theorem The probability distribution F of the time until absorption 

in the state m+1 corresponding to the initial probability vector (a.a 
1

) - m+ 
is given by 

F(x) = 1 - ~ exp(~x)·~ 

where r is the submatrix of the generator Q (4.2-12). 

Scetch of a proof: We refer to (4.2-8). With initial conditions 

(p
1 
(0), ... , Pm(O)) = a 

we obtain (due to (4.2-4)) the relation (4.2-15), 

(4.2-13) 

(4.2-14) 

(4.2-15) 

Definition: A probability distribution F on [O,oo) 1s a distribution of phase 

type (PR-distribution) iff it is the distribution of the time until absorption 

in a finite Markow process of the type defined in (4.2-12) (infinitesimal 

generators). The pair (~,~) is called representation of F. 

A few properties of PR-distributions 

1. Thes distributions have a jump of height am+
1 

at x = 0 

2. The laplace-Stieltjes transform F*(s) of F(x) is 

F*(s) = a + a(si - r)- 1r 0 

m+1 

3 · lhe n,oncentral moments IJi, of :F (x) are gwen by 

j..J! 
1 

i -i 
( -1 ) i ! (~ ~ ~) 

(4.2-16) 

(4.2-17) 
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Example: The Erlang distribution of order m (pdf) is: 

(pdf) is: 

f(x) 
A(A.x)m-1 e-Ax 

(m-1)! 

and has the following representation 

<~ •. 0 
with (1,0, ..• ,0) 

-;\,A 
-AA 

r = 
-AA 

-;\, 

where r 1S a mxm-matrix. 

Closure properties 

(4.2-18) 

(4.2-19) 

It has been indicated that PR-distributions are closed under certain operations. 

We discuss here: 

- convolution and 

- construction of coherent systems. 

Convolution 

Convolution may be used for addition of life lengths. If a failed component 

is replaced by a spare, the total accumulated life time is obtained by the 

addition of two life lengths. To express the distribution of the sum of two 

independent life times (where T
1 

has distribution F
1

, T
2 

distribution F
2

) 

and T1+T 2 distribution F) we use the convolution 

F (t) 
t 

f F2(t-x)d F2 (x) 
0 

Notation: If r 0 is an m-vector (4.2-13) and! an n-vector, wederrote 

by I ' 0.!?_0, h . 0 • 0 ", t e mxn matr1x ~! !• w1th elements rl.. ß., 
-- - 1 J 

< i :::._ m, < j 

Theorem: 

< n. 

If F(x) and G(x) are both continuons PR-distributions with representations 

(~,_!)) ' (!,[.2) 

of orders m and n respectively, 

(4.2-20) 
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then their convolution F*G(x) (see also (4.2-20)) is a PR-distribution 

with representation (y,~) given by 

r_ (~, ~+1 ·~) 

L 
0 

Proof: See Neuts /32/. It can be shown, us~ng the Laplace-Stieltjes­

transform of F and G (4.2-16) and the product corresponding to a con­

volution that (4.2-21) holds. 

Example: Convolution of Erlang distributions (both of degree 2), but 

with different failure rates A.(i=1,2) and A.(j = 1,2). (see (4.2-18)). 
. ~ J 

F*G(x) 

For F(x) we have representation 

(~,_!)) 

with r1 
= [ 

-A1 
A, l 

0 -A2 

I1 I_l 0 -,\1 A1 

and 
.9.1 0 -,\2 

0 0 0 0 

For G(x) we have representation (~,I_2 ). 

Thus F*G ~s represented by 

(r_,~) 

with 

-A1 

0 

L 

0 .!:_2 

0 

A2 

0 

I_l I_l 
0 Bo 

\1 0 0 

-,\2 \2 0 

-,\ 3 A3 

0 -A4 }!2 

(4.2-21) 

(4.2-22) 
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By a representation (see (4.2-20)) and by use of the convolution property 

of Erlang distributions we can indeed obtain the same matrix L (given in 

(4.2-22)). 

Repairable components 

The convolution theorem (4.2-21) may be also applied for a repairable 

component. We have the following structure for the generator of a Markow 

process: 

_!) f1 °B
0 

M (4.2-23) 

r2 ° A ,!::._2 

Without loss of generality, we may assume am+
1 

= ßn+
1 

= 0, If at time t the 

Markow process is in the set of states {1,2, ... ,m}, the point 1s covered by 

an interval with distribution F. A similar consideration holds for sojourns 

1n the set {m+1, .. , ,m+n}. Transitions between these sets are called rene-vmls. 

We obtain an alternating renewal process. 

Construction of coherent systems 

It is sufficient to consider for PR-distributions of life times T
1

, T
2 

the 

distribution of min (T
1

,T
2

) and max (T
1

,T
2

) (see also (4.1-17)). 

Kronecker Product 

If L and ~ are reetangular matrices of dimensions k
1
k 2 and k1k2, their 

Kronecker product.!: ® ~ is defined as the matrix of dimensions k
1
k; .k

2
kz 

written as follows: 

L @ M (4.2-24) 

Note that the r.h.s of (4.2-24) 1s written as a matrix of submatrices (in block 

partitioned form). 
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Now, for independent r.v. T
1

, T
2 

with PR-distributions a theorern will be 

statet. Let 

F (t) 
max F

1
(t) F2(t), and 

be distributions, corresponding to max(T
1

,T2) and min(T
1

,T2) respectively. 

Theorem 

(4.2-25) 

Let F
1
(t) and F2 (T) have representations (a,rl) and (ß,r 2 ) of orders rn and n 

respectively. 

(a) Then F (t) (4.2-25) has the representation (a,L) of order rnn + rn + n, max 
given by 

.!:J. ®! + !®.!:_2 

L 0 .!) 0 

0 0 

where I LS the unit matrix. 

(b) Similarly, F . (t) (4.2-25) has the representation (o,M) gLven by 
mLn 

M 

Remarks 

(4.2-26) 

(4.2-27) 

We will not go into the details of a proof. But let us note this: For a Markow 

matrix which is decornposable, a Kronecker product of two Markow matrices represents 

this decornposition (see Paz /33/). Fora proof of this theorem see Neuts /32/. 

The main step is there to show that I:_1 ®l + l®I:_2 cannot be singular. The 

infinitesimal generators I (see (4.2-12)) are nonsingu1ar matrices. 

Exarnples: 

Let us consider the two basic elernents of a coherent system. We assume systems 

with two cornponents where the life times are exponentially distributed, with 

A.1,A.2. 



(a) Series system 

F . ( t) = 
ffil.ll 

= 

(1-F
1
(t))(1-F2(t)) 

-0-l,+Az)t 
e 
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Fora PR-distribution we obtain the following representation (see (4.2-27)): 

(b) Parallel system 

For max (T
1

,T
2

) we obtain 

F (t) = F (t) F
2

(t) = (1-e-Alt)(1-e-Ä2 t) max 1 

With (4.2-26) we obtain as representation (y,L), where 

L 0 

0 0 

With (4.2-13) we obtain 

r. • e + r~ = 0 ( i = 1 '2) 
-I. -:I, 

For exponential distributions, we ha.ve 

-\. • 1 + ;\,. = 0 
l. l. 

( i = 1 , 2) 

The representation l.S of order mn + m + I\ 1•1+1+1 3. 

Finally 

L 0 

0 0 

The same result ma,y be a~so abta,~ned by a. tra,nsition ma,t:ri;x:, and a, t:ra,nsition 

diagram. This transition matrix is closely rela,ted to system :reliability. 
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Rem.arks: 

1. It is also possible to generalize this consideration to systems with 

repairable components. 

2. Neuts /32/ mentionend that this result ~s not yet of computational 

utility. 

4.3 Markow renewal process (MRP) 

The Markow renewal process (MRP) is a generalization of Marko\v processes 

and of renewal processes. It is one of the best known processes with non­

Markowian behavior. 

It is possible to evaluate for a system suitable measures of effectiveness 

(reliability, availability, maintainability) using Markow renewal processes 

(MRP). This can be done with techniques known partly from Markow processes. 

We discuss a few basic concepts, show relations to fault tree analysis and 

stopping times and mention a few techniques for evaluation. But also problems 

which are not suitable for fault tree analysis can be dealt woth MRP. 

Notations and assumptions: 

Suppose we have defined for each n s INI, a random variable taking values 

~n a finite set E and a random variable Tn taking values in J~ = [O,oo) such 

that 

0 = T
0 

_:::_ T
1 

_:::_ T
2 

< 

The set E (for our purpose a finite set) g~ves the possible states, T g~ves 
n 

the sojourn times (n = 0,1,2, •.. ). 

Def. The stochastic process Xt = {X , T ; n s INI } is called a Markow renewal 
n n 

process with state space E, provided that 

p {X + 1 = j ' T 1-T < t I X ' ...• X ; T ' .•. 'T } n n+ n o n o n 

= P{Xn+1 = J, T -T < tjX } n+1 n n 

for all n s INJ , J s E and t s IR+. 

Remark.: Markow renewal processes (MRP) are also closely related to semi­

Markow-processes. 

(4.3-1) 
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A few Properties 

We shall require that X is time homogeneous, i.e. for any i,j s E, t s 
t 

P{X 
1 

= j, T 
1 

- T < t\X = i} = Q(i,j,t) n+ n+ n- n 

to be independent of n. 

The family of probabilities (defined in (4.3-2)) 

IR + 

(4.3-2) 

Q = {Q(i,j,t) ; i,j s E, t s IR+} (4.3-3) 

Ls called a semi-Markow kernel (over E). 

Properties: Foreach pair (i,j) the function t + Q(i,j,t) has all properties 

of a distribution. But we note that 

P(i,j) = lim Q(i,j,t) (4.3-4) 
t+oo 

Ls generallynot equal to 1. Here the relations (4.3-5) hold: 

P(i,j) .:::._ 0, L: P(i,j) (4.3-5) 
jsE 

This means that P(i,j) are transition probabilities of a Markow chain. 

Characterization of a MRP 

A MRP can be completely characterized by 

(a) the initial distribution 

P(X = j) = JI. 
0 J 

j s E (4.3-6) 

(b) the semi-Markow kernel Q(t) 

(4.3-4) and (4.3-5). 

(Q(i,j,t)) (see (4.3-2)), with requirements 

Other characterizations are useful for evaluation: 

Distribution of sojourn times: For this distribution we define 

G(i,j, t) Q(i,j,t) 
: = --'--'-p ""T( L~. ,'--;j') .:..._ 

if p(i,j) # 0, otherwise we set Q(i,j,t)/p(i,j) 1. 

Thus, a MRP can be characterized as follows: 

(a') the initial distribution 

(b') a matrix of distributions G(i,j,t) 

(c') a transition matrix P(i,j) 

(4. 3-7) 
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Elumph 

s2 
2 0 

s1 s1 
1 1 

0 
1 

1 

A realization for a MRP \o7ith three states (j=O, 1, 2). 

(a') The initial distribution is 

Ih = 0, TI = 0 
0 

s2 
1 

s I n 

(b') In the present state ~. a randorn rnechanisrn "chooses" the next state J 

according to the transition rnatrix P(i,j), see (4.3-4). 

(c') For the present state i, a different randorn rnechanisrn "deterrnines" 

the sojourn time Si in this state according to the rnatrix of distri­
n 

butions G(i,j,t), see (4.2-7). 

Special cases 

It can be seen that Markow processes and renewal processes are special 

cases of MRP. 

1. If all T are equal to 1, we need only a transition rnatrix P(i,j). 
n 

Thus we have a Markow chain. 

2. If all T are exponentially distributed, we have a Markow process. 
n 

3. If the state space E consists of a single point, we have a renewal 

process. 

Markow renewal function 

In relation to the renewal function (see (2.2-4)) it is possible to introduce 

a Markow renewal function. 

Let j be fixed, and define S~, Si, ... as the successive Tn for which Xn=j. 
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(See also Fig.). Then Sj {SJ ; n s ~} is a (possibly delayed) renewal 
n 

process. The number of renew~ls during [O,t] of this renewal process is 

N .. (t). Now we obtain the conditional expected number of type j events 
~J . 

in [O,t] under the condition that this renewal process started w~th an 

event of type i at t = 0. 

H(i,j,t) = E(N .. (t) \X =i) 
~J 0 

This can be also related to a renewal density: 

h(i,j,t)6t = P{event of type j in (t,t+6t) \event of type i at t=O} 

It is important to note that the functions H(i,j,t) are Markow renewal 

functions, and the collection H = {H(i,j,•); i,jsE} is called a Markow 

renewal kernel. By an integral equation (Markow renewal equation) this 

can be related to the semi-Markow kernel. 

Result: It can be shown that a fault tree with components which are 

represented by alternating renewal processes can be represented as a 

whole using a Markow rene\val process. 

It is now evident that the Markow renewal functions H(i,j,t) (and their 

respective renewal densities h(i,j,t)) can be interpreted as expected 

nurober of failures/repairs (and their respective failure intensities/ 

repair intensities). See also (2.3-10) to (2.3-13). 

Analysis: 

Of course, for practical problems the evaluation of H (and Q) in the 

Laplace domain (similar to (2.2-7)) is preferable. For evaluation of 

a MRP various methods can be used. We name only a few: 

(a) The method of stages: The device of stages ~s a method of representing 

a non-exponentially distributed state by a combination of stages each 

of which is exponentially distributed. Any distribution with a rational 

Laplace transform can be represented exactly. Other distributions can 

be approximated. This has some relation to the method of phase type 

distributions (Cox /11/, Neuts /32/). 

(b) Supplementary variables: A sufficient number of supplementary variables 

is added to obtain a Markow process. This is direct, but may be cumber­

some for evaluation (Cox and Miller /29/). 

(4.3-8) 

(4.3-9) 
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(c) Inbedded Markow process: We consider a suitable discrete set of time 

points so that the new process is Markow at a series of time points. 

This involves some requirements. But it is especially useful for steady 

state results. (Cox and Miller /29/, König and Stoyan /28/). 

There are also other methods available which come frequently from queuing 

theory (König and Stoyan /28/, Gnedenko and Kowalenko /34/). 

Summary of section 4 

As a summary of all the stochastic processes mentioned we are givi,ng a table 

listing 

the type of process (also referring to sections of thi,s paper) 

- the type of component or ·system wh,ich can be modelled 

the distributions which may be used with, this process (li,fe time and 

repair time distributions) 

- a few topics belanging th, th,e required backgrqund including a reference 

- an estimated degree of difficulty. 

Similar tables may be found in Corazza /35/, and 1n R6nig, Stoyan /28/. 



stochastic process 
(section) 

renewal process 
(2. 2) 

alternating 
renewal process 

Markow 
process 

Markow renewal 
process 
(4.3) 

Point process 
(4 .1) 

phase type 
distributions 
(4. 2) 

can be u,sed for modellir1,g 

spare parts reservation 
with negligible repair time 

repairable components 
(without restriction of 
repair time) 

systems with arbitrary 
structure 
(practical limits for 
medium/large size systems) 

systems with arbitrary 
structure 
(practical limits for 
medium size systems) 

coherent structures 
(mostly for methodological 
considerations) 

coherent structures 
(for methodological 
consideration), very good 
for queuing processes 

distributions 

arbitrary 
(life time distr.) 

arbitrary life 
and repair time 

only 
exponential 

exponential 
failure distr., 
arbitrary 
repair distr. 

arbitrary 

PR-distribution 
e.g. Erlang-distr. 

background 

renewal 
theory 
Cox /11/ 

renewal 
theory 
Cox /11/ 

Laplace 
transform, 
eigenvalue 
problems 
Corazza /35/ 
Cox,Miller /29/ 
Kemeny,Snell /36/ 

Laplace-Stiltjes 
Trans form, 
Inversion, 
e.g. imbedded 
Markow chain 
Corazza /35/ 
Cinlar /37/ 

theory of 
point processes, 
stopping times 
Bremaud /24/ 

matrix 
analytic 
methods, 
Markow process 
Neuts /32/ 

degree of 
difficulty 

medium 

medium 

medium 

high 

very 
high 

high 

+:-
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5. Systems with Phased Mission 

5.1 Introdu,ction 

Until now we discussed systems which have the same configuaration during the 

whole life time. If we have, however, a system with a phased mission, its 

configurations may change during consecutive periods (caLled phases). Relia­

bility and performance analysis requires the use of a (generalized) multistate 

structure function and the concept of association (see Barlew /2/). 

It is possible to give bounds for unavailability. It is interesting to note 

that there is also a criterion showing the admissibility of phased structure 

functions for these systems. This can be based on some algebraic properties 

of the so called functional dependence (see Meyer /38/). 

It will be sufficient to consider here systems having two states for each 

component. Foremoregeneral information see Esary and Ziehms /39/, A. Pedar 

and V. Sarma /40/). 

5.2 Discussion of a phased mission 

We consider the system of Fig. g1ven as block diagram. It has different 

structures in the three phases of its mission (see /39/). 

phase 1 phase 2 phase 3 

Fig. 5.1 System with phased mission 

For this system we obtain as minimal cuts: 

Phase Minimal cuts 

{M,L} {M, S} 

2 {F}, {I:l,M}, {H,T}, {M,L} 

3 {F,M}, {H,M}, {I:l,T} 
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Simplification of a system 

A minimal cut in a phase can be deleted (without loss of information) if it 

contains a minimal cut of a later phase. This is similar to absorption. But 

it would not refer to deleting of a minimal cut regardless of time ordering. 

Thus we obtain the following reduced list ("after cancellation") of cut sets: 

Phase Cuts cancelled cuts 

{M,S} {M,L} 

2 {F} {M,L} {H,M} , {H,T} 

3 {F,M}, {H,M}, {H,T} no cancellation 

possible 

This can be also given as a simplified block diagramm: 

phase 1 phase 2 phase 3 

Fig. 5.2 Systemafter cancellation 

An equivalent representation is by a structure function ~. referring 
~ 

to phase i. 

Note: We write all variables ~i and structure functions for a success tree. 

Later on, we also introduce a corresponding fault tree. 

~i(i=1,2,3) refers to the success of component M ~n phase i. If for 

a phase j < i, M would be failed, it could not be successful in phase ~. 
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We obtain: 

We obtain as probability that this system is operative for the whole 

mission 

or 

p 
system 

n 
E { 11 

j=1 

n 
P{ TI 

j = 1 

<P . (x.) 
J -J 

(see Esary /39/). 

<P.(x.) 
J -J 

n 
1 } < TI 

. j= 1 

1 } 

E{<P.(x.) 
J -J 

1} 

This is an example for a "structure based" capability function, i.e. a 

function which can be related to structure functions <P. (see Meyer /38/). 
1 

Kernel of a Boolean mapp1ng 

Now we introduce some further considerations which can be used for a 

methodology of systems with phased missions. 

Let <P. be a Boolean mapping, from B to A: 
J 

<P. B -+ A 
J 

Then the kernel of <P. is the set M. of elements in B which <P. maps onto 1 
J J J 

in A. This can be written: 

M. 
J 

{pl <P.(p) = 1} 
J -

Example: The kernel M
1 

of <P1 is 

(5.2-1) 

(5.2-2) 

(5.2-3) 

(5.2-4) 

(5. 2-5) 
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Note: p refers to the variables of ~ .• 
J 

Application to our system: 

We obtain as kernels: 

By a Cartesian product of these kernels 

we obtain all success trajectories of our system. This can be rewritten: 

This Cartesian product can be also given as a tree, In this tree each 

path from left to right is a single term of the Cartesian product. 

Each term 1s a success trajectory. 

For example: 

M1 • F2 M2 • F3 H3 

is a success trajectory. But failure of M1 and S1 would lead to system 

failure, 

(5.2-6) 

(5.2-7) 
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F3H3 

F2 M 2 H 3M3 

H 3 T 3 
M1 F3 H 3 

F 2 L2 H3 M 3 

H3T 3 
Start 

F3H3 

F 2M2 H 3M3 

H3T3 
Sl 

F 3 H 3 

F2 L2 H3M3 
H3T3 

phase 1 phase 2 phase 3 

Fig. ~.3 lree for a system with phased missions 

( f'\/\/V\. success trajectory M1 • F2 M2 • F3 H3) 
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Cartesian product: 

Success tree and fault tree 

We may also use a success tree or a fault tree for representation of 

(5.2-1), (5.2-2) or (5.2-7). 

Here the symbols 

denote conjunction / disjunction of x
1

, x
2

. 

(5.2-8) 
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Success of System 

& 

Fig. 5. 4 Success tree with three phases 

Note: 

xke := cornponent k is intact in phase 1. 
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Undesired Event. 

phases 

Fig. 5 .5 Corresponding fault tree with three phases 

Note: 

xkl := component k failed in phase 1. 
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5,3 A, System which is not Structure Based 

By a simp~e restriction we may obtain a system which cannot be evaluated 

by a fault tree, We call such a system "not structure based". 

For the system of section 5.2. ( Fig. 5.3, success paths) we make the 

following restriction. 

Restriction: If in phase 1, the success path went over M1, then in phase 2, 

F2 M2 is no langer a part of the success path. But F2 L2 still remains. 

If in phase 1, the success path went over S1, then 1n phase 2, F2 M2 1s 

a part of the success path. 

Let us show a diagram for this situation. 



Start 

S1 

phase 1 
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F3H3 
J----H3M3 

H3 T 3 

F3H3 

/F2M2~H3M3 
H3T3 

~ F3H3 
F2L2~H3M3 

H3T3 

p has e 2 phase3 

Fig. 5.6 rree for a system with phased missions 

no 
success 

success 

(If a path goes over M1 and F2 M2 no success is obtained, but if a path 

goes over M1 and F2 12 success is obtained). 
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s 

X L2 X M1 
Fig. 5.7 A systern which is not structure based 

Discussion: 

We note 

no success 

but 1s a success. 

system state is 
path dependend 

phases 

Moreover, M1 rnay not be deleted, since then the success path 

would vanish. Here the Boolean structure is no langer valid to represent the 

situation. An equivalent staternent holds for a systern in terrns of failure. 

The top event cannot be defined by vertices which depend only on predecessors. 

Thus clearly our fault tree definition is violated. But rnethods developed 

for systerns which arenot structure based can be applied (see Meyer /38/). 
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5.4 A second System which is not Structure Based 

We assume a system which has a given task, e.g. as processor of a computer 

system (see also Schriefer et al. /41/, on a reliable microcomputer-based 

LMFBR protection system). An important requirement to this systemisthat 

its average throughput T over a aperiod T (utilization period) has to 
av 

be above a prespecified level. 

r--- ------.-- ---------,· 
1 System 1 

I I 
I I 
I ,.....-- processor 

I I 1 ._ 
I I I 0 

I ~" ... 
~ 

4 I 
.. 

... ..... 

I 
... processor 

I "" _. 3 I .... 

I 
,, I .. 

I . .__.. I 
I ~ processor I 
I 2 I I 

L----------------~ 

Fig. 5.8 Redundant Processor (Triplicated configuration) 

The states of the system (Fig. 5.8) are the following: 

State description throughput 

2 all processors fault free T 

1 1 processor faulty r/2 

0 2 or more processors faulty 0 
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The utilization period consists of n phases. It is e.g. required that the 

average throughput is 

T > 
av 

Exarnple 

T 

2 

Let n=3, T consist of 3 phases. One possible state trajectory is (2,1,2), 

where the general form is 

1\ 

2 

----------4--------- ----------

L---------~---------~----------~-----> 
0 2 3 t 

Fig. 5.9 Trajectory u (2,1,2) 

We obtain (from 3 phases): 

T av 

T 
1 

3 

(5.4-1) 

(5.4-2) 

It is possible to define the following accomplishment levels (a.) which are 
1 

related to values of T 
av 

accornplishment level a. 
1 

a2 

a1 

ao 

average throughput 

5 
T > - T av- 6 

5 > .:!:._ 
6 T > T av - 2 

T - > T 
2 av 
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Note that for the levels a2, a
1 

we have system success, while for a
0 

we have 

no system success (not sufficient throughput). To each combination of states 

(trajectory) an accomplishment level a. can be related, using a capability 
1. 

function y (u). 
s 

This is (partly) shown 1.n Table 5.4-1. 

States in phases 1,2,3 Values of 
y (u) s 

(2,2,2) a2 

(2,2,1) a2 
-----------------

(2,2,0) a1 

(2,1,2) a2 

-----------------
(2,1,1) a1 

(2,1,0) al 

. . 
. . . 

(0,0,2) a.o 
(0,0, 1) ao 

(0,0,0) ao 

1) see equ. (5.4-2) 

Table 5.4-1 Accomplishment levels 

T av 

5 
T > 6 T av -

-----------------------
5 T 

6 T > T > -
av - 2 

T > 5 T av -6 1) 

-----------------------
5 T 

6 T > T > -
av - 2 

. 

. 

T - > T 
2 av 
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Functional dependence 

We can- in analogy to the kernel of a Boolean mapp~ng, (5.2-5) - define 

the set of states which correspond to a given accomplishment level a .• 
~ 

Thus we obtain (inverting the capability function y (u)) the following 
s 

set: 

R 
-1 

ys (a2) 

{(2,2,2), (2,2,1), (2,1,2), (1,2,2)} 

The set R of elements u = (q1q2,q3) 

(or trajectories) is mapped by the capability function y
8

(u) on a 2 . 

Here we obtain an important conclusion. 

~ a state trajectory u (q
1

.q
2

,q
3

) belongs to the subset with a2 
and if we kno\v that q2 1, then we can infer that q

1 
f. 1. 

This follows from (5.4-2), (5.4-3) and Fig. 5.9, or from Table 5.4-1. 

This means: Knowledge of a state of this system at the end of a phase 

increases our knowlegde of the previous phase. Similar conderations 

will be made for a refined capability function y • 
s 

(5.4-3) 

(5.4-4) 



Refinement of capability function y 
s 
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It is frequently useful to have for different values of T different av 
accomplishment levels. This can be clone as follows: 

(q1,q2,q3) trajectory 

(2,2,2) 

oEf=S 
(2,2,1) fB= 

0 1 . 2 1 
(2,2,0) 

0~ 
(2,1,0) 

OCR~ 
(2,0,0) 

0~ 
(1,0,0) 

01 11 21 31 

(0,0,0) 
01 1 21 31 

Table 5.4.-2 A refined capability function y 
s 

T av 

T 

5 
6 T 

2 
J T 

T 

2 

T 

3 

T 

6 

0 

a. 
~ 

6 

5 

4 

3 

2 

1 

0 



t 
0 

T av 

a. 
~ 
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Possible trajectories 

We now present all possible trajectories in Table 5.4-3 with the corresponding 

T and a. (i=0,1, ... ,6). A representation using a tree would also be posible. 
av ~ 

However, due to T we will have operations which have (in cantrast to fault 
av 

trees!) an inherent memory. 

Functional dependence 

Recall that we can, ~n analogy to the kernel of a Boolean mapping (5.2-5) de­

fine the set of all states which correspond to a given accomplishment level 

a. (see Table 5.4-3). If a. is an accomplishment level, then the probability 
~ ~ 

that the system S performs at level a. is given 
~ 

P (a) = P({uly (u) = a}) = P(y- 1 (a)) (5.4-5) 
s s s 

The ~nverse image y- 1 (a) is referred to as trajectory set of a. 
s 

It evidently relates to the kernel (5.2-5). 

Example: T a=5 belongs the trajectory set: {(2,2,1), (2,1,2), (1,2,2)}. 

2 1 0 

2 1 0 2 1 0 2 1 

2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 2 1 0 

1 
5 2 5 2 1 2 1 1 5 2 1 2 1 1 1 1 1 2 1 1 1 1 1 
6 3 6 3 2 3 2 3 6 3 2 3 2 3 2 3 6 3 2 3 2 3 6 

6 5 4 5 4 3 4 3 2 5 4 3 4 3 2 3 2 1 4 3 2 3 2 1 

0 

2 1 0 

1 1 
3 6 0 

2 1 0 

Table 5.4-3 Passihle Trajectories 
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Now we give a nurober of examples which illustrate functional dependence 

(compare also (5.4-4)). 

States observed accomplishment additional knowledge 
level 

(q = 1 ) ;\ (a = 5) + (q1 = 2) 1\ (q2 = 2) 3 

(q3 = 0) 1\ (a = 4) + (q1 = 2) 1\ (q2 = 2) 

(q2 = 2) 1\ (q3 = 1 ) 1\ (a = 4) + (q1 = 1-) 

(q2 = 2) ;\ (q3 = 0) 1\ (a = 3) + (q1 = 1) 

(q2 = 1) 1\ (q3 = 1) 1\ (a = 3) + (q 1 = 1) 

(q2 = 1) 1\ (q3 = 0) 1\ (a = 2) + (q1 = 1) 

(q3 = 2) 1\ (a = 2) + (q1 = 0) 1\ (q2 = 0) 

(q3 = 1 ) 1\ (a = 1) + (q1 = 0) 1\ (q2 = 0) 

Table 5.4-4 Examples,for dependence 

Note: Different representations for functional dependence are also: 

1) 1\ (a 4) + 

(q
3 

= .0) 1\ (a 3) + 

All relations can be derived from Table 5.4-3. 

(5.4-6) 
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Probability of system performance at level a. 
1 

We are not only interested in availability or failure probability but in the 

probability that a system performs at level a, i.e. ps(a). Only if ys(u) 1s 

"structure based" (i.e. belongs to a system without functional dependence), 

we obtain for p (a) the expectation of the structure function (see (3.1-3)). 
s 

Assurne that the user is interested in a performance level, e.g. corresponding 

to the average throughput T , where the average is taken over a utilization 
av T 

period T. We identify system success with a specified minimum 'av' eg. 'av ~ 
2 

Then capability function is g1ven as 

1 
h 

1 if J T(u(t))dt 
T 

{ 
> -

h - 2 
0 

y (u) (5.4-7) 
s 

0 otherwise 

ys will generallynot admit a formulation which bases on a structure function. 

We can either find y by integration (5.4-7) or by summation (Table 5.4-3). 
s 

Theseoperations have an inherent memory (see also J.F. Meyer /38/). 

We come to the following conclusions: 

Result 1 

It could be shown that the inadmissibility of a Cartesian Product Representation 

1s equivalent to functional dependence. We recall that functional dependence 

can be defined as an increased knowledge on states which could not directly be 

observed. 

Result 2 

For systems with Functional Dependence methods of reliability analysis and 

performance analysis are required which clearly go beyond fault tree analysis. 

Conclusion 

We give in Table 5.4-5 some limits of fault tree analysis. For details the 

corresponding sections should be consulted. 



Fault Tree Analysis 

System represented 

by fault tree 

(section 1,2,3) 

on component 

level: 

alternating 

renewal process 

on system 

level: 

point process, MRP 

(section 4) 

system 

with phased 

mission 

(section 5.1, 5.2) 
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Connnents 

equivalent: 

combinational 

circuit 

(Weber I 42/) 

components 

- without repair 

- with repair 

- with inspection 

- with statistical 

dependence 

(see limitations 

for R , p. 20-21) . s 

fault tree 

representation 

possible 

(absence of 

functional 

dependence) 

Type of 
Limit 

LOGIC 

Other Methods Needed 

Sequential circuit: 

contradicts fault tree 

definition (p.1), 

probabilistic automata 

theory (Paz /33/). 

A system with time 

PROBA- sequence of events 

BILISTIC where average 

ALGE­

BRAIC 

amount of radioactive 

release has to be 

evaluated: 

no representation 

by fault tree possible, 

MRP with nonlinear 

cost functions. 

Systems with 

functional dependence: 

Result 1 and 2 of 

section 5.4, 

e.g. FTCS with 

capability function, 

use of stochastic 

processes or simulation 

(Heyer /38/). 

Table 5.4-5 Same Limits of Fault Tree Analysis 
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