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Abstract 

Matehing Problems in Pulse Power Radial Transmission Lines 

In this report we study the power transfer from a generator along a coaxial trans
mission line followed by a radial transmission line into a load, which in our 
application is a pseudo-spark plasma of about one millimeter diameter and about 
15 cm in length. First the theoretical background based on transmission line 
theory is described. Then numerical results are presented. The main conclusion 
is that when matehing the pulse power generator to the pseudo-spark plasma, the 
effect of the impedance transformation caused by the radial transmission line has 
to be taken into account. The conditions to obtain an optimal match are described. 

Zusammenfassung 

Anpassungsprobleme beim Transfer von gepulster Leistung über Radialleitungen 

In diesem Bericht beschreiben wir den Leistungstransport von einem Generator über 
eine Koaxialleitung mit anschließender Radialleitung in eine Last, die für unsere 
Anwendung ein Pseudofunkenplasma von etwa ein Millimeter Durchmesser und etwa 15 cm 
Länge ist. Zunächst wird der theoretische Hintergrund erläutert, der auf der Lei-· 
tungstheorie aufbaut. Dann werden die numerischen Ergebnisse dargestellt. Der wich
tigste Schluß ist, daß bei der Anpassung eines Pulsleistungsgenerators an ein Pseu
dofunkenplasma die Impedanztransformation durch die Radialleitung berücksichtigt 
werden muß. Die Bedingungen, unter denen man optimale Anpassung erhält, werden be
schrieben. 
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1. Introduction 

In several applications, like z-pinch 1), plasma-focus 2), pseudo-spark 
3

) and 
ion beam diedes 4), a short pulse of high electromagnetic power has to be trans
ferred from a generatorvia a transmission line to a load consisting of a high 
density plasma. Matehing problems can occur if the pulse time is short or if the 
power has to be transferred into a very small volume. Techniques developed in 
microwave theory are appropriate to describe thesephenomena, and to offer solutions 

in order to minimize mismatches. 

In this report we study the power transfer from a generator along a coaxial 
transmission line followed by a radial transmission line into a load, which for 
our application is a pseudo-spark of about a millimeter diameter and about 15 cm 
in length. (Fig. 1) A radial transmission line simply consists of two parallel 
circular discs, in which the power flow is in the radial direction (from the outer 

radius to the inne~ one, in our case). 

I radial t transmission line 

diode 

pulse forming line inner conductor outer conductor lucite window 

coaxial transmission line 

Fig. 1: Typical pulse power transmission line 
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The transfer properties for electromagnetic waves along the radial lineare fre
quency dependent, whereas the coaxial line is non-dispersive. As a consequence, 
the effect of the radial line has tobe taken into account in detail, if its 
radial extent is no langer much smaller than the wavelength. 

In the case of our pseudo-spark diode the pulse duration is on the order of 100 ns. 
The transmission line is filled with water. Hence, the wavelength of the funda
mental frequency component of the pulse is about 6.6 m, which still is large 

.compared to the dimensions of our radial line (about 30 cm diameter). Therefore, 
no severe reflections are expected for the main part of the pulse, as long as the 
impedance of the load is matched tothat of the coaxial transmission line. How
ever, for the high frequency components of the pulse (like 50 M~z) distortions 
will occur. 

The high power pulsed diodes can be classified into surface diodes and filament 
diodes. In the first class the electromagnetic wave energy is transferred to the 
plasma along a ring-shaped surface of some cm diameter. In the second class (z
pinch, pseudo-spark) this energy transfer occurs into a cylindrical filament 
having a length of some cm and a diameter ranging from mm to ~m. It is of great 
interest how much the electromagnetic wave energy can be concentrated before con
version into kinetiv energy of the plasma. The radial line analysis gives an ans
wer about the efficiency of this extreme energy compression. 

Another application of this work will be in the evaluation of experiments. Vol
tage and current are measured with pick-ups as a function of time in the trans
mission line. Using these data and the transfer properties of the lines, the 
voltage and current can be calculated at the location of the diode. 

2. Properties of transmission lines 

2.1 From Maxwells equations to the principal transmission line modes 

In this chapter weshall outline the theoretical background behind the formulas of 
the transmission line theory. S,6,?,S) This will facilitate the discussion about the 

applicability of the theory and the importance of the approximations made. The macros-
copic Maxwell s equations form the basis for the following: 

rot E 
d . ± 

div(sE) 0 = -TI (~H); = 

± ()~ (sE); div(~R) 
(1) 

rot H = = 0 
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t and Rare the electric and magnetic fields. 

are the (2) 

total permittivity and permeability of the material filling the transmission 
line, now assumed tobe space and time independent. The influence of free 

charges and currents inside this material is neglected. The boundary condi
tions at the metalic surfaces of the transmission lines are taken to be those 
of an ideal conductor, thus dissipative effects are neglected. 

For any time dependence of an electromagnetic pulse one can make a Fourier 
analysis: 

E( t) 1 
00 • 

f -;r ( ) eJwt d'·' = 2n tf,w w 
-oo 

(3) 

with the complex Fourier transform Ef(w) 
00 

= J E(t) e-jwt dt, and (4) 
-oo 

similarly for the magnetic field. 

Inserting this into (1) yields Maxwells equations for the Fourier transforms, that 
is for the frequency components 

of the pulse: 

rot Ef = - jw!JHf 

rot Rf = jwE Ef 

div Ef = 0 

div H = 0 f 

( 5) 

(6) 

In the following we drop the subscripts fand w for simplicity, and study the 
properties of a single Fourier components (equ. 5) only. 

Combing equ. (6) one can uncouple the electric and magnetic fields, and obtains 

the wa ve equa ti ons: 

v2E + k
2E = o; v2H" + k2H = o 

k
2 = E~w2 

(7) 

(8) 

In case either the electric or the magnetic field is known, the other can be ob
ta i ned from ( 1) by time integration. 
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In order to obtain solutions for the spatial dependence of the fields, the geometry 

of the boundary has tobe specified. Analytica-1 solutions can be obtained, if the 
geometry possesses some kind of symmetry. The symmetry properties of the coaxial 
and the radial line can be exploited most effectively in cylindrical coordinates 
r,~,z, as shown in Figs. 2,3. 

Fig. 2: Coordinates in coaxial line 

..... 
A 

"' "' 

~+ 
I' 

~ 
- ~ "'I-

" ['-. 
I'-. 

"' I'. 

Fig. 3: Coordinates in radial line (left: top view, right side view) 

In cylindrical Coordinates equ. 6 look like: 

1 3E2 3E~ 
= - jw~Hr' 

_!_ 3H2 _ 3H~ = 
jwsEr, r3<j)-az r 3~ az 

3E 3E aH r 3Hz r z 
jw~H~, jwsE~, (9) F ar- = az- ar- = 

1 3(rE~) 1 3Er 
- jw~H2 , 

a ( rH~) 1 aHr 
jwsE

2
• 

-
~rar-= - -r-ar = r ar r ar 
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The general solutions of these equations for the boundary conditions of Figs. 2,3 
consists of series of characteristic modes: E-modes, and H-modes - which are de
rivable from a single component of E or H in the direction of propagation of the 
wave - or transverse electromagnetic TEM-modes, which only have field components 
perpendicular to the direction of propagation. 

Now, we shall leave the general treatment, which can be carried through for more 
complicated pulse power transmission lines (see Fig. 1) only with involved com
puter codes. In the following, we neglect the influence of geometrical discon
tinuities like the spark switch or the lucite window. Also we shall neglect 
the excitation of higher order modes and shall take into account the fundamental 
modes only, both inside the coaxial and inside the radial line. This can be justi
fied as follows. At the end of the charging up of the pulse forming line the field 
inside the line can be taken as stationary, that is purely electrostatic, having 
only radial electric field components.When the spark switch closes only those modes 
in the coaxial transmission line will be excited with large amplitudes, which couple 
well to this Er-field and to the rotationally symmetric magnetic field H~ caused by 
the current flowing now along the inner conductor of the coaxial transmission line. 
This turnsouttobe the single principal ,rotationallysymmetric TEM-mode, having as 
non-vanishing field components only Er and H~. In turn, the azimuthal magnetic field 
H~ of this mode only couples well to the magnetic field H~ of the principal mode of 
the radial transmission line (see Fig. 4). The transition region between coaxial 
and radial line can only be treated with complicated computer codes, and will be 
neglected in the following. 

r 

Ez,H~ 

---ti---1 ... z 
radialline 

~·--'----------L---~ 
H ~·Er transition region 

TEM - wave in coaxial Une 

Fig. 4: Field configurations of the principal modes in the coaxial and radial 
transmission lines 
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2.2 The principal mode of the coaxial line 

The principal mode of the coaxial line (see Fig. 4) is characterized by 

From (7) follows the wave like behaviour in the z-direction: 

and the transverse variation of the fields is according to (9): 

Hence: 

= 
1 ej(wt±kz) 

0 
2nr 

aH 
- ___j_ = jwE:E oz r 

I
0 
/] j(wt±kz) 

-- - lJ _e __ _ + 7"C: -
LTI E: r 

( 1 0) 

( 11 ) 

(12) 

( 13) 

where 1
0 

is the total current flowing along the inner (or outer) conductor. 
The characteristic impedance of the coaxial line is defined as the ratio of 
valtage V between inner and outer conductor (radius a,b) to current: 

b 
=V = Ja1Er1 dr = _1 ;J!:,n_!?_ 

Zo T I 2n E a (14) 

If I+ is the current flowing in the positive z-direction, and I that flowing 
in the negative z-direction, the general solution can be written using equ. (13), 

(14) as: 

I(z) 
V(z) 

= (I+ + I_) coskz - j(I+ - I_) sinkz 
= Z

0
(I+- I ) coskz- jZ (I +I ) sinkz, 

- 0 + 

where a time dependence ejwt is understood. 

( 15) 

In case the valtage v1 and the current I1 are known at a position z1, they can be 

calculated at any other position z from 



V(z) = v 1 cos~+jZ0 I 1 sin~; 
V 

I(z) = I 1 cos~+jzl sin~ 
0 
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which follows directly from equ. (15). 

(16) 

Most often, only the impedance Z = V/I is of importance, since in a wave both 
valtage and current scale with the same amplitude factor: 

Z(z) = V(z) _ z z 1 cos~+jZ0 sin~ 
1TZT - o" Z0cos~+jZ 1 sin~; 

2.3 The principal mode of the radial line 

( 17) 

This modealso only has two non-vanishing field components, namely E
2 

and H~, 

whereas 

= H = 0 0; r 

From equ. (9) follows: 

1 8EZ 

JWil ar-' 

( 18) 

and from ( 7) : (19) 

(20) 

The solution of (20) are the Bessel functions of the first kind of order 0, J
0 

and Y
0

. 

As for the coaxial line (equ. 13), also for the radial line the fields can be 
written as travelling waves (+ sign: travels radially inward) 

V . t 
= ~ [J (kr)±jY (kr)]eJw 

u 0 0 
( 21) 

b is the distance between the discs of the radial line and V
0
the valtage amplitude. 

The general solution written in the standing wave form with the time dependence 
ejwt understood then can be written with complex constants A,B as: 
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V ( r) = AJ ( k r) + B Y ( k r) 
0 0 (22) 

jZ
0
(r)I(r) = AJ 1(kr) + BY 1(kr) 

with the characteristic impedance 

( 23) 

the total current I(r) = -2nr H~(r), and the valtage V(r) = E
2
(r)·b (the sign con

vention is chosensuch that a positive current flows radially outward). Again, 
valtage and current at any position r can be calculated if they are known at 
other positions, e.g. v1 = V(r1) and 12 = I(r2). 

If one defines: 

C(r1 ,r2) = J 1 (kr2)Y
0
(kr1) - v1(kr2)J

0
(kr1) [hence C(r,r) = 2/(nkr)J (24 ) 

c(r1,r2) = Y
0
(kr2)J

1
(kr1) - J

0
(kr

2
)Y

1
(kr

1
) 

S(r1,r2) = Y
1
(kr2)J1(kr 1)-J

1
(kr2)Y

1
(kr

1
) 

s(r1 ,r2) = Y
0
(kr2)J

0
(kr

1
)-J

0
(kr

2
)Y

0
(kr

1
) 

Then: 

V ( r) = [V 1 C( r , r 2 ) + j Z 
0 

( r 
2 

) I 2 s ( r , r 
1 

) ] I C ( r 
1 

, r 
2 

) 

Z
0
(r)I(r) = [Z

0
(r

2
)I 2 c(r,r1) + jV1S(r,r

2
)1 /C(r1,r2) 

(25) 

(26) 

From equ. (26) immediately follows how the impedance Z changes along the radial 
1 ine from a radius r1 to a radius r: 

Z( r) 
= V(r) . Z(r) _ Z(r1)c(r,r1)+jZ0 (r1)s(r,r1) 

ITrT ' Z
0

(r) - Z
0
(r1)c(r,r1)+jZ(r1)s(r,r1) ( 27) 

Jhis is formally rather similar to the transfer properties of the coaxial line 
(equ.17). However, for the coaxial line the impedance Z is independent of z, if 

z1 is chosentobe equal to Z
0

. For the radial line the impedance Z(r) always 
depends on the radius r, since Clc and Sls. 

The time averaged power flow along the radial line can be calculated from the 
Poynting vector: 

S = i Re(E x H*) = ( 28) 
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In case there is a wave of voltage amplitude V+ travelling radially outward, 
and another one of amplitude V travelling radially inward the result is: 

v: - v: 
s = ( 29) 

. Tikrb2 

Then the total power flowing through the cylinder surface at a radius r is 

2TI b v2 - v2 

J J S r dz d ~ = 2 ,fi_ + kb - , ( 30) 
o o r~ 

which is independent of r. This means, that in a homogeneaus radial line the 
waves given by equ. 21 travel without reflection, although the ratio of electric 
to magnetic field or the impedance does change. 

2.4 Impedance of the radial line at very small radius 

The characteristic impedance of the radial line scales as 1/r (23). At first 
glance this suggests that it would be very difficult to transferpower to 
a load located at a very small radius. However, when analyzing the problern 
more carefully, one has to study how the total impedance Z(r) scales as a 
function of the radius r. If the impedance at the outer radius r1 is known, 
from equ. (27,24,25) one obtains in the limit of very small radius r: 

Z(r) = 
"' kb . /JJ ~ ln(kr) 

-J I E C::TI 
( 27a) 

r-+0 

Thus the radial line impedance only has a logarithmic singularity at r=O. 
Matehing a low impedance load located at a very small radius to a radial 
transmission line will not be possible without reflections. However, the 
amount of reflections might be tolerable as long as power efficiency aspects 
do not play a dominant role. 

3. Matehing a pulse power transmission line to the load 

The next step is to represent the pulse power transmission line of Fig. 1, 2 
by a simple network. In this concept, the transition region between coaxial 
and radial line is neglected. We assume, that the total current flowing e.g. 
on the inner conductor of the coaxial line continues to flow radially on 
the radial line. Similarly, we assume that the voltage matches continuously 
from the coaxial to the radial line. In a similar manner discontinuities along 
the coaxial or the radial lines can be treated, e.g. if the dielectric changes 
its s from water to air. 
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Consider the following example in Fig. 5. 

4 3 2 ' 1 

coaxial line __ .....,..,._ __ . radial lines ---1---_.., 

voltage generator Ioad impedance 

Fig. 5: Network representing the pulse power transmission lines of Fig. 1 ,2; 
E = dielectric constant; voltage generator, coaxial and radial lines are 
assumed to be lossless. 

In this case we assume that the load impedance is known at position 1 (e.g. at 
the inner bore radius of a pseudo spark chamber) for a certain frequency or as 
a function of frequency. Then using equ. (27) and equ. (17) the impedance Z at 
the position 4 (voltage generator or measuring probe) can also be calculated 

for a certain frequency or as a function of frequency. 

From general transmission line theory the ratio of the power incident (P;) at 
position 4 to that reflected (Pr) due to the impedance mismatch is given for 

a fixed frequency by: 

') 

ai p Z-Z L. 
with Z = load impedance as caluclated e.g. 

r 0 ( 31) 
~ = Z+L position 4, and 

1 0 

z = characteristic impedance of the coaxial l i ne. 
0 

In general, the valtage measured at position 4 can be fitted quite well to a 

sin 2 - function: 

V(t) 
for 0 < t < T 
else 

~ = n/T (32) 
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This function can readily be Fourier - analyzed 

V(t) = 
V • T oo 

~2n- ! [ ] dw 
0 

(33) 

[ ] = {coswt sinwT + sinwt (1-coswT)} 

•{ 1' 1 1 } 
wT T 2(2w-wT) - l(ln+wT) 

Since now for each frequency the impedance Z(w) is known at position 4, also the 
corresponding current can be calculated: 

I (w) = V(w) /Z(w) (34) 

Then according to equ. 16 and 26 the valtage and curr~nt can be calculated along 
the transmission line for each frequency. Finally, these are summed up again to 
yield the valtage and current as a function of time at any position along the 
line. 

Now for a given pulse power transmission line one can .vary the load impedance in 
order to find its optimum value to minimize mismatches. This in turn might be 
used to optimize the diode (load) design such, that most of the incident power 
is transferred to the diode. In case the diode impedance is known, from the 
valtage estimated or measured at position 4 the valtage and current at the diode 
can be predicted. 

Another application of the methods described above would be to start from the 
measured valtage V(r1 ~t) and current I(r2,t) signals, obtained at positions r1 
and r2 as a function of time. These can be Fourier-analyzed numerically, and thus 
valtage and current at the position of the diode can be calculated. This method 
will be more accurate then that using simple lumped circuit theory, describing 
the lines by a few capacitances and inductances. 
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4. Pulse power transfer along a transmission line to a pseudo-spark pinch 
- Numerical results -

4.1 The reference geometry 

The calculations to be discussed below were done for the reference geometry 

shown in Fig. 6. The valtage generator is located at the open end of the 3 Ohrn

eoaxial line and delivers a pulse 

V(t) 
(sin2 ~t) • Volt 

{ 0 else 
for 0 < t < T = 100 ns 

= 

In the calculations this pulse is followed along the line both as a function of 
time and of space. The length of the coaxial line was chosen such that the pulse 
travel time from the generator to the load is 110 ns. The load is assumed tobe 
localized at a diameter of 3 mm in the pseudo-spark diode. 

The transition region between the coaxial and the radial line is neglected in 
the calculations. 

4.2 Reflections along the line 

In Fig. 7 the travel time of the pulse from the generator to the load was 150 ns. 
The load impedance was real and its value 4 Ohm. All graphs are plottedas a 
function of time. Voltage, current and power is evaluated at four positions along 

the line (refer to Fig. 6 for identification). The sign convention was chosen 
such that a negative power means power flow from the generator to the load, that 
is radially inward along the radial line. 

The sin 2nt/T - valtage pulse (4) at the generator is easily identified. The 
corresponding current and power pulses between 0 and 100 ns correspond directly 
to the 3 Ohm impedance of the coaxial line. 

Since the coaxial line is not perfectly matched to the radial one, and further 
there are impedance mismatches due to transitions in gap spacing and in the di
electric constant E, and also the load also is not perfectly matched to the radial 
line, there occur wave reflections because of these impedance mismatches. The main 
reflection occurs at the load. The corresponding current pulse arrives back at 
the generator after 300 ns total travel time. Clearly, at that time the valtage 
at the generator position remains zero, since this is required from the input 
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data. All of the power arriving at the generator is reflected (power travelling 
outward equals that travelling in~ard, the sum is zero), and then travels back 
again towards the load. All of the power losses occur at the load, because gene
rator and lines were assumed tobe lossless in this model. 

Comparing the voltage and current at the four positions along the line, it is 
clear that the transformations caused by the radial line have a large influence on 
the power transfer. Notice especially the voltage enhancement of about 1.5 at 
the transition from coaxial to radial line (3). 

4.3 Matehing the load to the transmission lines 

Fig. 8 shows the main pulse at the position of the load for various load im
pedances which are assumed to be purely ohmic. The best power match between load 
and transmission lines is achieved if the load impedance is about 5 Ohm. For this 
case 27% of the incident power is reflected due to the impedance mismatch. This 
value is obtained by integrating the power in Fig. 8 as a function of time and 
then comparing this result to the power delivered from the generator. In case of 
a 3 Ohm load impedance, the reflected power increases to 30%. The effect of the 
impedance transformation of the radial line is clearly demonstrated, since other
wise there would be a perfect match without any reflections for a 3 Ohm load 
connected to a 3 Ohmtransmission line. The ratio of reflected power to incident 
power evaluated from Fig. 8 is plotted as a function of the load impedance in 
Fig. 9 (single circles). 

This ratiowas calculated also for a fixed frequency of 5 MHz, which is about 
the main Fourier-component in the 100 ns - pulse. The results are shown in Fig. 9 
by the solid curves. Parameter of these curves is the imaginary part of the im
pedance (the sign convention of the impedance corresponds to that of the power 
flow; a negative imaginary part corresponds to inductive loading, a positive one 
to capacitive loading). There is very good agreement between the results obtained 
from the pulse calculations and those obtained for 5 MHz fixed frequency (compare 
single circles with curve labeled 0). The conclusion isthat indeed most of the 
properties of the power transfer from generator to load can be estimated from the 
properties of the main Fourier component of the pulse. 

The dielectric constant of the diodematerial (between positions (1) and (2) in 
Fig. 6)was changed for the 5 MHz, fixed frequency calculation between Er = 1 and 

Er= 81. This causes changes of less then 0.1% in the reflected power, as is ex
pected from the relation between wavelength (60 m and 6.6 m) to diode radius 
( 2. 5 cm) • 
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The ra~o of reflected to incident power was calculated also for the fixed 
frequency of 50 MHz (Fig. 10). In this case for a purely ohrnie load of more 
then 8 Ohm over 90% of the incoming power is reflected. 

From Fig. 9 one can conclude, that an optimal match between transmission lines 
and load should be obtained for a load having about an impedance of (- 3,5) Ohm 
at 5 MHz. This was modelled by a capacity of- 4.7 nF shunted to a real resistance 
of- 11 Ohm at the position of the load (r = 1.5 mm!). The result of the corres
ponding pulse transformation at the load position is shown in Fig. 11 (curve 11 radial, 
(-3,5) 11

), which for comparison also shows the pulse for a purely ohrnie load of 
3 Ohms (curve 11 radial (-3,0) 11

). Also given is the case of no radial line assuming 
only a coaxial line of 3 Ohmsand a load of 3 Ohms (curve 11 Coaxial 11 (-3,0)). For 
this latter case the pulse is transformed unchanged with no reflections from the 
generator to the load, as is expected from theory. The transformation caused by 
the radial line broadens the pulse and yields an asymmetric pulse shape; further 
~he pulse rise time is decreased. Compared to this latter case the capacitive 
shunt causes a valtage enhancement of about a factor of two across the load. 
About 83% of the power is either dissipated in the 11 Ohm resistance or stored 
in the 4.7 nF capacitance until the time 11 204 ns 11

• Thereafter about 13% of the 
power is again reflected back towards the generator. 

Fig. 12 shows the case of a large mismatch which for the pseudo-spark chamber 
would be relevant before the plasma channel is established. The valtage is en
hanced by a factor of 2 compared to that at the generator, which is typical for 
a standing wave pattern. 

The curves in Fig. 13 were calculated for a real part of the impedance of -3 Ohm. 
The imaginary part of the impedance was varied. Comparing to the curve for zero 
imaginary part, it is evident, that an additional inductive loading in series to 
the ohrnie load increases the mismatch, as is expected from Fig. 9. The current 
is delayed with respect to the voltage. It has been estimated, that a pinched 
plasma of 1.5 mm radius and 10 cm length would represent an inductance of about 
78 nH. For this case 44% of the incident power is reflected. On the contrary an 
additional capacitive loading in series to the ohrnie load (at the position of 
the load!) would improve the match. In this calculation it was assumed that this 
reactive load scales proportional to the frequency (curve 11 +160nW) and at 5 MHz 
it has a reactance of (-3,5) Ohm. Probably this cannot be realized technically. 
Nevertheless this case is reported, since it would yield the best obtainable 
match with all of the incident power absorbed in the load after the time 11 200 ns 11

• 
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Next in Fig. 14 the position of the load is chosentobe at an even smaller radius 
on the radial line, namely at 0.15 mm. The reference curve for the load at 1.5 mm 
with (-3,0) - load is also shown. Going to the smaller radius the fraction of re
flected power increases from 30% to 43% for a purely ohrnie load. A pinch of 0.15 mm 
radius and 10 cm length has about an internal inductance of 120 nH, which was assumed 
to be in series to the -3 Ohm real part of the load for the other curve shown. For 
this case the fraction of reflected power is 57%. 

Finally, also the pulse duration was varied. In order to study the influence of the 
high frequency components a pulse duration of 10 ns was chosen. Two curves are shown 
(Fig. 15), for a (-3,0) Ohm load, and for a (-3,0) Ohmload with a -78 nH series in
ductance. The pulse travel time along the line from generator to load was taken to 
be 11 ns. Only 9,4% of the incoming power is absorbed in the purely ohrnie load in 
the main pulse until the time "22 ns". In the case of the additional series inductive 
load of -78 nH the match is improved such that now 15% of the power is absorbed until 
the time "18 ns" . Clearly, for the high frequency components the influence of the im
pedance transformation caused by the radial line becomes very large. This is because 
the extent of the radial line (15 cm) is comparable to the wave length (67 cm) of the 
main Fourier- component of the pulse 50 MHz (see also Fig. 10). 

5. Conclusions 

The pulse power transfer from a generator to a load along a coaxial line followed 
by a radial line was described using transmission line theory. A pulse having a 
sin 2nt/T - shape at the generatorwas traced numerically both as a function of time 
and of space as it travels from the generator to the load. From the results it can 
be concluded that 

1) The impedance transformation caused by the radial line cannot be neglected when 
searching for an optimal match between a generator and a pseudo-spark diode. 

A valtage enhancement of a factor 1.5 can occur at the transition from coaxial 
to radial line (Fig. 7). 

2) For the reference geometry (Fig. 6, 3 Ohm coaxial line) and a purely ohrnie load 
the optimal mateh is achieved with a 5 Ohm diode, causing still 27% of power 
reflection (Fig. 8, Fig. 9, pulse width = 100 ns). 

3) The match can apparently be improved by shunting a 4.7 nF capacitance parallel 
to a 11 Ohmdiode (at the position of the load, that is at 1.5 mm radius!) 
(Fig. 11). By this means the valtage across the load is enhanced about a factor 
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of 1.5 compared to the valtage at the generator. About 70% of the in
cident power is absorbed in the resistance, 13% is temporarely stored 
in the capacitance and then reflected back towards the generator. 

4) A nearly perfect match could be achieved if an impedance of (-3+j-5·f) Ohm 
5MHz 

could be realized for the load (f = frequency). 
5) The pulse power transfer for the 100 ns pulse width and the reference geometry 

(Fig. 6)is well described by the properties of the dominant 5 MHz-Fourier 
component, since its wavelength of 6.6 m is still large compared to the 15 cm 
extent of the radial line (Fig. 9). 

6) In the case of an ohrnie or capacitive load the pulse shape is broadened, the 
pulse rise time decreased, and the decay is langer than the built-up. (Fig. 11). 

7) In the case of a large mismatch between generator and load the valtage is en
hanced by a factor of 2 at the load (Fig. 12). 

8) An additional series inductance to anohmic load (as is inherent in a pinched 
plasma) deteriorates the match (Fig. 13). The current is delayed with respect 
to the voltage; the shape of the power pulse at the load deviates not much of 
that at the generator. 

9) If the pinch radius decreases from 1.5 mm to 0.15 mm for an ohrnie 3 Ohm load, 
the fraction of reflected power increases from 30% to 43% (Fig. 14). Taking the 
estimated inherent inductance of the 0.15 mm pinch into account (-160nH) this 
value is 57%. Thus it is clearly shown, that a large fraction of the in
cident power can indeed be transferred to a pinched plasma of very small 
radius located on the axis of a radial transmission line. This statement 
corresponds to the results of the theory that the total impedance of the 
radial line only has a logarithmic singularity on the axis (Chapter 2.4). 

10) The high frequency components of the pulse (e.g. 50 MHz) are mostly re
flected at the load (Fig. 10, Fig. 15). 

The numerical results are summarized in Table 1. 
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TABLE 1 

Summary of results from pulse power transformation along a coaxial and a radial 
line to a pseudo-spark diode 

reflected real part imaginary load 
eower of load part of load series para 11 el at pulse see 

1nc1dent impedance impedance inductance capacitance radius duration figure 
power at 5 MHz at 5 MHz 

(Ohm) (Ohm) (nH) (nF) (mm) (ns) 6 

0.99 -1000 0 0 0 1.5 100 12 

0. c:7 -5 0 0 0 1.5 100 8,9 

0.30 -3 0 0 0 1.5 100 8 ,9 

0.30 -3 +5 0 -4.7 1.5 100 11 

0 -3 +5 11 +160 11 0 1.5 100 13 

0.44 -3 -2.5 -78 0 1.5 100 13 

0. 54· -3 -5 -160 0 1.5 100 13 

'0.43 -3 0 0 0 0.15 100 14 

0.57 -3 -3.7 -120 0 0.15 100 14 

0.90 -3 0 0 0 1.5 10 15 

0.85 -3 -2.5 -78 0 1.5 10 15 
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(3) 

water (E = 81) 
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3684 

Fig. 6: Reference geometry for the calculations 
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Appendix 

Impedance transformation along a radial line 

The impedance transformation along a radial line is mathematically fully 
described by eq. 27. In this appendixweshall evaluate this impedance 
transformation for the special case, that the radial line is matched at 
a radius r 1 for a wave number k = ~ w (equ.8). This match is achieved 
if the impedance at r 1equals the characteristic impedance of the radial 
line: 

= ( A 1) 

Then, taking into account that the characteristic impedance scales in
versely proportional to the radius (equ. 23), the relation between the 
impedance at a radius r tothat at the radius r 1 is: 

= 
r 1 C(r~r 1 )+j s(r,r

1
) 

r- c(r,r1)+j S(r,r1) (A2) 

This relation is shown in Fig. 16 for a few values of kr 1 as a function 
of kr. 
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