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Testverfahren zur Entdeckung eines Materialverlustes in einer Folge von
Bilanzperioden

Zusammenfassung

Ein Workshop iliber realzeitnahe Bilanzierung wurde im KfK veranstaltet und
kam im Dezember 1982 zu einem vorldufigen Ende. Im Rahmen dieses Workshops
wurde eine Zahl sequentieller statistischer Tests vorgeschlagen, die in
einem Safeguards-Konzept mit realzeitnaher Bilanzierung herangezogen werden
konnen. In der vorliegenden Arbeit werden die erfolgversprechenden Tests
einer genaueren Untersuchung unterzogen. Die Analyse basiert auf dem chemi-
schen TrennprozeB einer 1000-Tonnen Modell-Wiederaufarbeitungsanlage.

Abstract

A workshop on Near-Real-Time Accountancy (NRTA) was held in KfK which came
to a preliminary end in December 1982. In the framework of this workshop a
number of sequential statistical test procedures were proposed which can be
used in the case of a NRTA based safeguards regime. In the report the most
promising test procedures are investigated. The analysis is based on the
chemical separation porcess of a large model reprocessing facility with

a throughput of 1000 tonnes per year.
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1. Introduction

At the end of an International Workshop on the Near-Real-Time Accountancy
Measure, which was organized by the Nuclear Materials Safeguards Project of
the Nuclear Research Center Karlsruhe (Gupta 1983) and whose members were
active from December 1980 until July 1982, it was agreed that several of the
more important statistical evaluation procedures should be analysed theore-
tically and numerically in order to arrive at concrete conclusions about their
usefulness in the connection considered here. In this report the results of
these analyses are laid down in major detail; a summary report has already
been presented at the ESARDA Symposium in Venice (Avenhaus, Beedgen,
Sellinschegg 1984).

The principle of material accountancy which is applied in the framework of
international nuclear material safeguards in partial fulfillment of the
Non-Proliferation Treaty may be described as follows: At the beginning of an
inventory period ( to,t1) the real or physical inventory I, of the material
balance area under consideration is measured. In the interval of time (to,t1)
the net transfers D1, i.e., the sum of the input minus the sum of the outputs
are measured, which yield together with IO the so-called book inventory BT =
IO+D1 at time t1, i.e., the amount of material which should be in the material
balance area. This book inventory is compared to the realinventory I, at time
t1, i.e., that amount of material which really is found in the area. If no
material was lost or diverted this assumption is called the null hypothesis
Ho’ and if there were no measurement errors, then the difference MUF1

(Material Unaccounted For)

MUF1 = B1—I1 = IO+D1—I1

is zero. If on the contrary the amount of material M1 was lost or diverted
this assumption is called the alternative hypothesis H1 - this differences
between book and real ending inventory were just M, . Since however random

and systematic measurement errors cannot be avoided, these two alternatives
are smoothed, and a test of significance has to be performed by means of
which it can be decided, whether a non-zero value of MUF1 can be explained by

measurement errors, or the alternative hypothesis has to be assumed to be




valid. This is done in such a way that a significance threshold s is chosen

and that, Ho resp. H1 is taken to be true if MUF1 is smaller resp. larger

then s. The value of this significance threshold is determined by means

of the false alarm probability o, i.e., the probability that H1 is taken

to be true when in fact H0 is true. A measure for the efficiency of this proce-
dure is the probability of detection 1-B, i.e. the probability that H1 taken

to be true when in fact H1 is true.

Two statements should be made at this point: First, a decision between H0
and H1 can be made only at the end of an inventory period. In a concrete
situation this may mean that this time is considered to be too long which
means that intermediate inventories become necessary. Second, in case of

large material balance areas the measurement errors may become so Targe,
that the probability of detecting a given loss or diversion is no longer
considered to be sufficient which led to the idea to improve this situa-
tion with the help of additional inventories. Both observations led to the
proposal to investigate sequences of inventory periods; the whole problem

area has become known under the name Near-Real-Time-Accountancy (NRTA).

Let us consider first the idea to improve the probability of detecting a Toss
or diversion by introducing intermediate inventories: Given the reference time
interval (to,tn) which is partitioned into the n inventory periods

(tgsty) 5 (Eyaty) 5 oens (t s t)
and given the n material balance test statistics MUF1, MUFZ, cees MUFn for
the n inventory periods which are defined as in the case of only one inven-
tory period. Then that test procedure is of interest which leads for a given
false alarm probability to the highest achievable probability of detection.

As pointed out in more detail in the third chapter of this report, the sta-
tistical theory provides a solution to this problem in form of the Lemma of
Neyman and Pearson. If one now assumes that losses or diversion of a given

total amount occur in such a way that the total probability of detection is




mimimized - this is called the guaranteed probability of detection - then
one is Ted to the test statistic

MUF1+MUF2+...+MUFn = IO+D1+"'+Dn_In’

which means that the optimal test procedure consists in testing the overal]
balance which means to ignore the intermediate inventories (Avenhaus and
Jaech 1981).

This result however, means that a decision is taken only at the end of the
reference time interval (to,tn). Therefore, we are confronted with a con-
flict situation: In the interest of a high probability of detection the ma-
terial balance test should be performed as late as possible. In the interest
of a short detection time, however, intermediate inventories should be taken
and the corresponding intermediate balances should be tested.

In addition, a mathematical difficulty has to be considered which, by the
way, plays no role in the determination of the Neyman-Pearson test. In two
subsequent material balance test statistics the intermediate inventory occurs
twice, namely as ending inventory of the first and as beginning inventory

of the second period. This and also the fact that there may exist persistent
systematic errors mean that these test statistics are correlated. One way
out of this difficulty, which will be described in the fifth chapter of this
report, is to use instead of the original MUF statistics linear combinations
of the form

MUFR1 = MUF1
MUFR2 = MUF2+a21.MUF1
MUFR3 = MUF3+a32.MUF2+a31.MUF1

where the coefficients aij are determined in such a way that the new statistics
MUFRi are uncorrelated. This way, which also has become known as the Kalman-
Filter approach, does not solve all problems connected with the correlations
as we will see.

Let us ignore for the moment the objective of a.high probability of detecting
a loss or diversion, and Tet us look for that test procedure which leads for




given lengths of the single inventory periods - which naturally have to be
agreed upon by all parties involved - to the shortest possible detection

time. In so doing a new problem arises: Since at the end of one inventory
period an eventual loss or diversion cannot be detected with certainty, one

has to take as the objective the expected detection time, i.e., the weighted
sum of all possible detection times with the appropriate probabilities. Now,
since these probabilities have to add to one, and since this is true only for
an infinite time horizon, we have to consider an infinite sequence of inventory
periods. This, in turn, has the consequence that for most test procedures - ex-
cept for the power-one-test which also will be discussed in this report - the
total false alarm probability becomes one and can therefore no longer be used
as a boundary condition, but must be replaced by the expected "detection" time
under HO, i.e., the expected time until a false alarm.

For this statistical decision problem - minimization of the expected detection
time under H1 for a given expected detection time under HO - there is no solu-
tion which would correspond to the Neyman-Pearson test. But even if there ex-
isted such a test we would not yet have solved all problems, because the total
probability of detection as another objective to be minimizied was ignored and
furthermore, because the infinite time horizon causes a conceptual difficulty:
In the interest of all parties of the Non-Proliferation Treaty the safeguards
authority should declare in regular intervals of time that in those material |
balance areas, in which the tests of the balances resulted in a confirmation
of the null hypothesis HO, in fact no material was lost or diverted. Such a
procedure however, in general is not in agreement with a test procedure which
in principle extends over an infinite time horizon.

As a way out of these difficulties in the last years a series of test proce-
dures were proposed which had been proven useful in other areas, e.g., quality
control. According to the agreement at the end of the before mentioned NRTA
workshop only a small number of those procedures were investigated and com-
pared (see Table 8.1 of this report). Since two of these procedures, the CUMUF-
test and the CUSUM or Page’s test, played a special role in the international
discussion and furthermore, since they have not yet been described in sufficient
detail in commonly used statistical textbooks, they are analyzed in some detail

in the fourth and sixth chapter of this report.




It should be mentioned here that it is not meaningful to use all these
procedures simultaneously - this has been proposed several times - since
in such a case the false alarm probability resp. the expected detection

time under H0 would get out of control.

Since all these problems are characterized by many parameters, only very

Timited analytical investigations are possible. Therefore, one had to look
for an appropriate model plant, a useful measurement model and reasonable
loss or diversion scenarios with the help of which numerical investigation

could be performed.

It turned out that the reference reprocessing plant developed by Kluth et al.
(1981) served the purpose of this study best. It is described in the seventh
chapter of this report, together with a measurement model and a set of loss

patterns.

Even though, it would have been meaningful, as outlined above, in those cases,
where the expected detection time is the objective, to use the expected de-
tection time under HO as a boundary condition, it was decided for several
technical reasons to use instead the total false alarm probability for the

reference time.

The results of the numerical investigations are collected in the 8 chapter of
this report, together with some conclusions drawn from these results. It should
be mentioned here, however, that no procedure turns out to be the very best
among all circumstances. Therefore, these results have to be presented to all
responsible practitioners in the governments and safequards authorities so

that they can evaluate their relative merits and take their decision, i.e.,

select an appropriate test procedure.
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2. Multiple Balance Model

Let us assume a discrete number of balance periods N={1,2,....,n,..... }
for a well defined class of material. For each period k€N we build the
difference between book and physical inventory, which is defined as

MUFk = Ik_1 + Dk - Ik , (2.1)
where Dk is defined as
Dk = Rk - Sk . (2.2)
In Egs. (2.1) and (2.2) we have the following meaning:
Ik—1: beginning inventory of period k
Ik : ending inventory of period k and beginning inventory of period k+1
Rk : increase to inventory during balance period k
Sk : decrease from inventory during balance period k.

We assume that Ik’ Rk and Sk are random variables that can be written as

+ SI (2.3)

Ik = E(I K

+ 71

AR

for keN. E(Ik) is the true value of inventory, ZIk is the random error
of measurements and SIk is the systematic measurement error. Furthermore,
we define

Ty = R =5, = E(T) +ZT + ST, (2.4)
for all k, where E(Tk) are the true values, ZTk the random measurement errors

and STk the systematic measurement errors.

A further assumption is that all measurement errors are distributed
normally with zero means and that all measurement errors are stochastically
independent.

The variances are defined as

Var(I,) = Var(zlL,) + Var(SI,) and (2.5)

k)
Var(Tk)

l

Var(ZTk) + Var(STk) (2.6)



for k € N.
For i,jeN we define the covariance of T, and Tj as

o55 * cov(Ti,Tj). (2.7)
The concept of multiple balances is primarily used for detection of possible
nuclear materials losses in a bulk handling facility. The detection has to be
timely and with a sufficient high probability. The true MUF, values are zero.
in the ideal situation of no losses and no measurement errors. In actual prac-
tice, however, nonzero MUFk‘s may occur for a number of reasons, e.g.

(a) measurement errors (b) Toss of material. Measurement errors are included
in our model by using the concept of random variables in determining the
materials balance. Given a sequence of nonzero MUF values we have to decide
whether the reason for nonzero values is due to measurement errors or loss. In
our case we use the theory of statistical hypotheses testing to decide at the
hand of a given sequence of MUF values whether the situation of no loss or
loss of nuclear material is given. Loss of material may occur in a variety

of pattern and we have to take into account that the contro?! authority has no
knowledge of the actual loss/diversion situation.

One essential part for designing statistical tests for nuclear materials ac-
counting data is their expected performance in detecting losses of such mater-
ial. Performance measures embody the concepts of loss-detection probability and
Toss-detection time. The performance of a special test has to be studied under
a variety of loss patterns, which have to be selected according to reasonable
assumptions. We try to analyse the performance of different test procedures for
selected loss patterns.

We assume two hypotheses for the mean values of the random variables
MUFk, keN. If there is no Toss/diversion of material all materials
balances have zero mean. This situation is described by the null hypothesis:

Hy © E(MUF,) =0 for all keN. (2.8)

)
A loss/diversion of material can take place in one or more balance periods.
Taking this into account, we formulate the alternative hypothesis:

Hy o E(MUF) =m >0 (2.9)

with mk > 0 for at least one k.




Hypothesis H1 means that we have a loss 1k of material during balance period k.
This Toss can be zero or positive, but at least in one balance period we have
a positive loss. In our considerations we are not restricted to a fixed number
of inventory periods.

The basic problem is to find test procedures that enable a decision between

HO and H1. The further problem is to find test procedures with a small proba-
bility of Type II error (decision for Hy if H1 is true, i.e. we have a loss

and we do not detect it). And an even further problem is to find test procedures

which indicate a lToss/diversion almost immediately after it has happened.

Finally, a few words about the role of statistical test procedures in interna-
tional safeguards: Some concern exists about the situation that a statisti-

cal test procedure leads to the decision of a loss/diversion of nuclear ma-
terials if in fact this is not the case, i.e. a false alarm has happened.

Before the inspector makes a final statement, follow-up procedures are undertaken.
Follow-up procedures can include e.g. controls of errors made while acquiring

the data. No generally accepted operational follow-up procedures exist at the
present time.

The statistical test procedures that are applied in this study assume that the
materials accounting data which are delivered by the plant operator are not falsi-
fied and an inspector verification procedure is not necessary. This is a very
important point, because under a general safeguards situation a verification

of operator's data has to be performed in some way.
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3. Properties of Neyman-Pearson Test Statistics

In this chapter we assume an arbitrary but fixed number of n balance periods,
j.e. |N| = n. This assumption is necessary for developing the Neyman-Pearson
test statistic (Lehmann 1959). The analysis in this part is only concerned
with detection probability of a loss not at all with detection time. This fact
has to be pointed out.

3.1 Neyman-Pearson-Test
The random vector MUF = (MUF,,MUF,,..... ,MUF )" (3.1)

has a multivariate normal distribution with variance covariance matrix Z.

In case of no loss/diversion we get corresponding to Eg. (2.8) the null
hypothesis

Hy @ E(MUF) = (0,0,0,.....,0)" (3.2)

In case of loss/diversion we consider a fixed quantity M, which is somehow
distributed among all n balance periods, i.e.

n
M= 3 m, . (3.3)

For the n-dimensional vector we write

M= (m1,m2,....,mn)' . (3.4)

Corresponding to Eq. (2.9) we get for the alternative hypothesis

Hy E(MUF) = M (3.5) |
with m, > 0 for all 1 =1,2,....,n and E
; !
z m. =M> 0.

i=1 !

For a fixed vector (m1,m2,....,mn)' HO and H1 are simple hypotheses,

i.e. both sets consist of only one element. This is an important assumption
to determine the best test for H0 against H1 according to the Temma of Neyman
and Pearson.

The Neyman-Pearson test is defined as

> k . accept H1

6

£y (muf) /£ (muf) (3.6)
< k . accept HO

-




In Eq. (3.6) muf, are realizations of MUFi for i=1,2,....,n and

muf = (muf1,muf2,....,mufn)'. fo(mgf) resp. f1(mgf) is the density
of MUF under hypotheses Hy resp. H, and o is the Type I error (false
alarm) probability.

After some calculations we get an equivalent expression for Eq. (3.6)

>‘ka' . accept H1
Mz muf (3.7)
< ku' , accept HO

Obviously the Neyman-Pearson test statistic M't™" MUF is a linear combina-

tion of the single MUFi variables.
The probability of Typ II error (no detection) for the Neyman-Pearson test
in our situation is

where ¢ is the standard normal distribution function and U its inverse.

- M Tw) | (3.8)

=0 "~

In Eq. (3.8) a special simple hypotheses is assumed. But there are

many loss/diversion patterns that split the amount M among the n balance
periods. We must assume that an inspector does not know which diversion
scenario a diverter will choose. But we know, that for each possible
diversion scenario a test statistic exists that leads to the highest
detection probability. Unfortunately we do not know its properties under

different scenarios.

We continue our analysis with the reasonable assumption that a divertor
Will choose the diversion strategy that has the lowest detection probabi-
Tity when the inspector uses Neyman-Pearson tests. Therefore, we have to
solve the optimization problem

min {1-Byp(M)} = min max {1-B(s,M)} (3.9)
M M S

where § is a test of size o for H0 against H1 and B(s,ﬂ) is the nondetection
probability of § under alternative hypotheses H1.

The optimization problem (3.9) is solved by the test
) > ka s accept H1
z  muf. (3.10)

<k, accept H0




which is the materials balance test for the whole time period. Furthermore,
it can be shown that (3.10) is a saddle point solution (Avenhaus, Jaech 1981),
i.e.

min max {1-B(s,M)} = max min{1-B(s,M)} (3.11)
Mo s M
=®(M—U1_)-
/ete *

It has to be pointed out that the test (3.10) leads to the highest
guaranteed detection probability taking all diversion strategies into
account.

The optimal loss/diversion pattern according to Eq. (3.11) is

L S (3.12)

with e' = (1,1,...,1) .

It is already mentioned that the Neyman-Pearson test statistics are

linear combinations of the single MUFi values. For the rest of this
chapter we are looking for the minimum variance unbiased linear es-

timate of the total amount of loss/diversion M (Jaech 1978). In addi-

tion to a choice between the null hypothesis and its alternative the
control authority may also require some statement as to the size of

the nonnull effect. To answer the question of the apparent magnitude

of the effect, the safequards authority needs at least point estimates;
tests of significance will not suffice to talk about further consequences.
The point estimate is given by

6= I
1=

1 a; “MUF, . (3.13)

The ai's are to be determined from

A

min  {var (0)} (3.14)

Biseenss @
1° > Ay

under the boundary condition

E(

n
a,*MUF.) = £ a.-m, =M, (3.15)
i i i - _

1 i=1 17

I o=




With the definitions

q; = mi/M for i = 1,2,.00.5N (3.16)
q' = (q1,q2, ..... ,qn) and
a' = (a1,a2, ..... ,an) | (3.17)

and using Lagrange's multiplier method we get as solution of the
optimization problem (3.14)

a=3x1'q/(q'-2"q) (3.18)

M2
= MR M/ (M 2T
So with
6 =a's MIF = M « Moz te MUF

T M M

we recognize that the minimum variance unbiased estimate is up to a constant

factor the Neyman-Pearson test statistic.

[t should be mentioned that Frick (1979) has determined the optimal guaranteed
probability of detection for the test statistic (3.13) taking into account all
Toss patterns with total loss M before the general test problem (3.1 and 3.2)

was solved with the help of the Neyman Pearson Lemma.

3.2 References:

R. Avenhaus, J.L. Jaech (1981), On Subdividing Material Balances in Time and/or

Space. Nucl. Mater. Manage. X, 24.

J.L. Jaech (1978), On Forming Linear Combinations of Accounting Data to detect
Constant Small Losses. Nucl. Mater. Manage. IV, 37-42.

E.L. Lehmann (1959), Testing Statistical Hypotheses. John Wiley and Sons, New York.

H. Frick (1979), On Application of Game Theory to a Problem of Testing Statistical
Hypothesis, Int. Journal of Game Theory, Vo. 8, 3, pp. 175-192.
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4, CUMUF Statistic

We know that in case of a finite number of balance periods the materials
balance test for the whole time period (3.10) is the inspector's saddle
point strategy. The test statistic in (3.10) is the cumulative sum of
the MUF realizations. The cumulative sum of random variables is a often
used procedure in statistics. Following these ideas we define the model
of cumulative MUF values:

(4.1)

CUMUF, = MUF,I + MUF, + .... + MUF

k 2 k

for all k N. In case of n balance periods the random variable CUMUFn is a
minimum variance Tinear unbiased estimate for the amount of loss if the Toss
happens according to the saddle point strategy.

The random variables CUMUF, in Eq. (4.1) have a normal distribution
but are stochastically dependent.

For the hypotheses in Egqs. (2.9) and (4.10) we get

H E(CUMUF 0 for all k N (4.2)

0° k)

and

H1 : E(CUMUFk) = My HOp+ T >0 (4.3)

with m, > 0 for at least one k .
For all k the random variable CUMUFk is an unbiased linear estimate for
the amount of loss/diversion in the first k balance periods. That means

1f a test for loss or no loss of material gives an alarm, the CUMUF statistic
can be used to get a quantitative idea about the amount of Tloss.

4.1 Truncated Sequential CUMUF Test

We define a sequential test procedure using the CUMUF statistic and give
the boundary condition for a truncation at the nth balance period.(Beedgen
1983a,b)

The reason for looking at sequential test procedures is that the materials

balance test for n balance periods is a fixed sample size test, that allows

a decision only at the end of balance period n, whether the loss/diversion takes

place in the first or last balance period. This fact causes problems with
the requirement of a timely detection in international safeguards.




A truncated test is considered because

limitation of the probability of Type I error (false alarm)
standard sequential tests can occasionally lead to very large sample sizes
the safeguards authorities are used to have definite inspection periods.

The truncated test can be described as a mixture of a sequential test and

a fixed sample size test.

The CUMUF statistic is considered because of its properties as a point
estimate. We now describe a sequential test with boundaries S and
truncation performed at the end of balance period n as follows :

at each observation k < n test

> S accept H1

< s, » take another sample (4.4a)

and at k = n , test

> S, accept H1

< S, s accept HO (4.4b)

where cumufi are realizations of the random variables CUMUFi. Fig. 4.1
illustrates the test procedure. To accept the hypothesis of no loss we

have to use the information of all n balance periods whereas the acceptance
of the hypothesis of loss can happen from period one to n.

For the false alarm probability a of the truncated sequential CUMUF test,

we get
1-q = ProbHO {CUMUF, < Sqpnnnn , CUMUF <5} (4.5)
and with the assumption that (CUMUF1, ..... ,CUMUFn) has a multivariate
normal distribution with covariance matrix I = (Yij) we get
1-a = 1 j1 T jn exp (- 1 x' T 'x) dx (4.6)
(Zn)n/zlL|1/2 o - 7L = 2 —
01U, _ o U,
= ;/2 172 f1 ?T. nf1 n exp (- %»§f I 'x) dx
(0?1 . -
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Example of the thresholds for the CUMUF test; as long as the CUMUFi
results are below the threshold line, H0 is accepted. The first CUMUFi

result that is above the line leads to the rejection of HO'
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with = var(CUMUF

Yk K
and V-0 = PHO {CUMUF| < s} 5 k=1,2,...,0.

For the probability of Type II error (nondetection) we get

01U1-a1 OnU1~oc 1
5" exp(= H{x-M) L7 (x-M))dx

-0 - OO

B M)

1
(a,M) =
CUMUF ‘%2 (2n)“/2|;__| 172
(4.7)

where o = (ul,...,an)' .

Using the sequential truncated CUMUF test, the inspector wants a
guaranteed detection probability for a loss/diversion of amount M
regardless the actual Toss/diversion scenario. Therefore, he wants
to solve the optimization problem

max  min(1-Be yp(eM) (4.8)
o M

where o obeys boundary condition Eq. (4.6) .

The solution of (4.8) exists and is

a = (0,0,...,0,0)" (4.9a)
for the inspector and
M= (0,...,0,M) (4.9b)

for the divertor if the condition U1_a E-M/Ynn is fulfilled. We sketch the proof
of (4. 9a,b) for the case n=2. We get for Eq. (4.7)

" o , , Upog, M /van Up =(my=my) /yas
Q1502 s \My,m,+m =z — f J
e . Xy o dx,
2; 2
exp (- X1tZeXaXz * Xz ) (4.10)
2(1-p%)
where o 1is correlation coefficient of CUMUF, and CUMUF,. From Eq. (4.10) it

follows immediately that for fixed M=m1+m2, o1 and o, the function B is strictly

decreasing in my s 0 <my < M, because U1 - m1/y11 is a strictly descreasing

.
function in M. Therefore, we get the result




min {1'3((d1,a2),(m1,M)} = 1'6((@1,@2)9(0,M))
m, 0,M=m1+m2 (4.11)

Equation (4.11) implies that if the inspector performs the truncated
sequential CUMUF test, a Toss of amount M will have the lowest detec-
tion probability if the whole quantity is lost during the second balance
period.

Next we need to solve

MmaXx {1'6((&1,@2),(0,M))}.

a1

We have

§
6@1

B((ulau2)n (OSM))

U, -Mfo,- U 2 2
- 1-0, 02" Uy, +expl- U “M/v22) | exp(Uaz/2).
¢ — P 2 ' =ay
1—02
\ U1—u1-p(U1-u2-M/Y22)], L /1 -p2
Vi-0” o100V 1-0,
V1-p?

U,]_ 'QU - 1 2 2
> oofl— %2701, -1+exp[=~7(U1_a “M/v22) | exp{Uoy/2)-
Vl—pz 2

and the value in brackets is greater or equal zero if U, _, > M/y2, what
means that B is increasing for oy in this case. Therefore,

max {1-B((oy,02),(0,M))} = 1-8((0,0),(0,M)) (4.12)

oy

i U1-a i-M/Yzz'
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We conclude that for the two-dimensional case the solution of the optimization
problem (4.8) leads to the materials balance test (3.10).

The proof for the case n > 2 can be accomplished by the method of mathematical
induction. Eq. (4.9a) describes the materials balance test for the whole time
period and we already know that this test does not meet the requirement of
timeliness. As a consequence, we calculate the test thresholds that

= o¥ s k= 1,2,...05n (4.13)

in Eq. (4.6) is fulfilled. Now, we give the final description of the
truncated sequential CUMUF test:

at each observation k < n test

K > oy Vg , accept H,
JE Ty (4.14a)
< 9 U1_a* s take another sample
and at k=n, test
. > o Upgx | accept H,
M (4.14b)
<oy Up_x s accept Hy

For this test the loss/diversion scenario in Eq. (4.9b) Teads to the
Towest detection probability. That means an inspector has a Tower
boundary for the detection capabilities of this test. A reason for
selecting the false alarm probabilities according Eq. (4.13) is that
in this situation it is comfortable to get a desired overall false
alarm probability by simulation.

A consequence of Eq. (4.8) is the fact that it is possible for the
truncated CUMUF test to calculate guaranteed detection probabilities
for a certain amount of loss no matter what the diversion pattern
might be. That is a very attractive ability from the inspector point
of view,
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5. The Independence Transformation

Whereas in the case of the Neyman-Pearson Test, i.e. that test which
maximizes the probability of detection for a finite series of balance
periods and a given total false alarm probabi]ity, the stochastic de-
pendency of the MUF variables did not cause any analytical problems,

it does so in the case of sequential test procedures. Therefore, it
iS.a natural idea, to transform the original MUF variables into un-
correlated - and consequently, because of their normality independent -

random variables,

This idea was formulated for the first time by K.B. Stewart (1958) who
started, however, with a different motivation. Later, R. Avenhaus and

H. Frick (1977) used this independency transformation in order to deter-
mine the guaranteed probability of detection for a finite number of
balance periods and a given false alarm probability.

In 1977, D.H. Pike and G.W. Morrison presented this Kalman Filter approach
which turned out to be exactly the same as Stewart's approach. D.J. Pike,
A.J. Wood and coworkers (1980) finally interpreted it in terms of condi-

tional expectations.

In this chapter, three approaches to the independence transformation are
presented: Stewart's approach, diagonalization of the covariance matrix of
the MUF-vector, and the use of conditional expectations. The equivalent

to the latter one, namely the Kalman Filter approach, is not presented here
because of its completely different terminology. In addition, only the most
simple sequential test procedure based on the independently transformed
MUF's will be discussed. Their use in connection with further test proce-
dures will be the subject of different chapters of this paper.




5.1 Stewart's Starting Inventory

K.B. Stewart started as follows: Let us assume that the inspector has accept-
ed the null hypothesis (no loss or diversion of material) at the end of the
first balance period. Then the question arises how to choose the initial
inventory for the subsequent period. It would be natural to take the value

of the real inventory, Il. Since, however, the variances of the real invento-
ry, var(Il), and of the book inventory, var(Bl), may be very different the
inspector better will take a linear combination of both inventories and give

that inventory the more weight, the smaller its variance is.
According to this procedure, the starting inventory of a second period is

176 ¢ By A (1—c2) Iy (5-1)

and its variance is in the case, that all inventories and flow measurements

are uncorrelated, given by

var(s,) = cg-var(B)) + (1-c,)%evar(1}) . (5-2)

The weighting factor ¢, is determined in such a way that the variance

2
var(Sl) is minimized. This leads to the following determinant for Cot

& var(s)) = 2-[c,-var(B,)-(1-c,)-var(I;)] = 0 , (5-3)

c
which gives
var(1,) var(l;)

o i . (5-4)
Var(Il)+var‘(Bl) VaP(MUFl)

N =

R

The variance of the optimal starting inventory S1 is given by the relation

S G- : (5-5)

var(S;) var(Il) var(Bl)

which is smaller than both variances of Il and Blz Even if one of the two

inventories has a much larger variance than the other, it is useful in the




sense of a small variance, to take it into account, with a small weighting

factor, naturally.

The covariance of MUF1 and the new material balance test statistic MUFRél)

for the second period, defined by

(1) _¢* _ .
MUFRS') = ST+ D, - T, (5-6)
is given by
cov(MUF,, MUFR(EDY = cov(T 4B, c%eB +(1-C¥).1,+D,-1,) =
1° 2 o 1”72 "1 2771 72 2

*)

= cov(Bl, c2-81+(1—c2) I) =

* *
= cz-var(Bl)—(l—cz)ovar(Il) =0 (5-7)

because of the determinant (5-3) for c; whidy means that MUF, and MUFR, are

independent because of our normality assumptions.
Let us now consider n inventory periods with
MUF1 = 11_1+D1—I1, i=1,2,... n. (5-8)

In analogy to (5-1) we define the starting inventory S; for the i-th

inventory period as

i=1,2,... 1, (5-9)

where the transformed book inventory BRi of the i-th inventory period is

given by

BR, = S, 4D, 1 =1,2,..., n,

t
loe)

BR, (5-10)
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The transformed MUF variables then are given by

(1) . N -
orr{t) = s w0 - L, i = 1,2,
morR{t) = o (5-11)

For these transformed variables one obtains, as one can see immediately,

the following recursive relation:

MUF

(1)
MUFR} ;s

MUFRgl)

i

comurRE) ML, = 2,0 (5-12)

The optimal values of the weighting factors .o i =2,..., N,
are determined as before:

d
Eowe var(S,) = 2 [c]+](var(S] )rvar(D))-(1-c, j)var(l:)] =0,
(5-13)
which Teads to
var(I.)
Ciap = Y i=1,2,... e,
var(Dj)+var(Ii)+var(Si_1)
N (5-14a)
and furthermore, to
L .1 L L i=1,2,... n. (5-14b)
var(Si) var(l.) var(51_1)+var(Di)

*
From relation (5-14a) we see that the optimal weighting factors c; can be
determined by a continued fraction development, using the recursive relation
(5-14b) for the optimal starting inventories S:, i=20,1,2, .




Again, two subsequent MUFR(I)'S are uncorrelated which means that all

MUFRgl), i=1,...,n, are uncorrelated: We have with (5-12) and (5-13)

(1) (1) _
coy(MUFRi , MUFR1+1 =

L) Daor )

n

cov (MUFR! MuFR{

*
C,
> T+l

*
cov(S,_;+0.-1., C1+1(Si—1+Di'Ii)+11+D1+1'Ii+1) =

*
COV(S; 1404715 €y (5441 #0 ) (1-C4 ) 0y =

* ®

= CLppe(var(Sy _q)+var(D, )'(1'Ci+1)’var<11) =

=0 (5-15)

. ( :
which means again that the MUFR\l)'S are independent because of our normality
assumptions.

For later purposes, we determine explicitly the coefficients c; and c;. From
(5-14a) and (5-14b) we get
% var(Il) var(Il)

C2 = = . N (5—14&')
var(IO)+var(Dl)+var(Il) var(MUFl)

and furthermore,

o | var(IZ) _

var(D2)+var(12)+ I T

var(MUFl)-var(IZ)
= . (5-14a")

var(MUFl)-var(MUFZ-)—var(Il)2

So far, we have assumed that all inventories and flow measurements are

mutually uncorrelated. If we assume that inventories and flow measurements




within one inventory period are correlated, but that inventories and flow
measurements of different periods are uncorrelated, then we get results
in analogy to those given above: if we determine the starting inventories

1) variables

such that their variances are minimal, then the resulting MUFR(
are uncorrelated and thus, independent. If, however, inventories and flow
measurements of different inventory periods are correlated - which may
happen in practice, if, e.g., measurement instruments are not recalibrat-
ed after each period, then the starting inventory with minimal variance

does not lead any more to uncorrelated MUF variables.

5.2 Diagonalization of the covariance matrix

Whereas Stewart's original intention was to construct starting inventories
with minimal variance, and uncorrelated transformed MUFR's were a by-product,
we now directly try to determine transformed MUFR's which are uncorrelated

for any covariance structure of the original MUF's.

We define new material balance test statistics by the following Tlinear

transformations:

2)

(2) _
MUFR1 = MUF1
(2) _
MUFR2 = aZI'MUFl + MUF2
(2) _ .
MUFR3 = ag; MUFl + a3, MUF2 + MUF3
'(2)_ . .
MUFRi = a].1 MUF1 + a5 MUF2 + ...+ MUFi
en(2) ,
MUFRn = anl-MUFl A MUF2 + ...+ MUFn s (5-16)

and we want to determine the coefficients of the transformation in such a

way that the transformed MUFR's are uncorrelated:

cov(MUFR{2) | myrr(?)

1. Yy =0fori Ay (5-17)




The set (5-17) of equations consists of %-n-(n—l) linear independent
equations, this is just the number of coefficients to be determined.
If we compare (5-16) with (5-12), assuming that we will get the same trans-
formed variables, i.e., MUFRgl) = MUFR&Z), i=1,2,... n, then we get

%17 %
and for i > 3

* * * *
351 % CtCi_1tCip e <y
* * *
42 T G-17C-2n %2 o
: *
3 ,i-1 7" C2 - (5-18)

For the purpose of illustration, we determine the first three coefficients.
With the notation

var(MUF,) = of, i =1,2,...,

COV(MUF,, MUFs) = o, = pyje0505, iA] (5-19)

we get

72

a :—-p. -
21 12 94

P12°137P23 93

43p = —Et;?"_'__" EE
12
P1oPo2=P o
a.. = 12723713 73 (5-18")
31 0
1—012 1

Furtherniore, we get

) = a5e(Lp%y) < b = var(MUF (5-20a)

)

N~~~

var(MUFR




and also

2
(Pp2 P 190 7)
) = ooe(lupla- 23 127137 2 e MR, (5-20b)
3 (1073 ? 3 3

=015

var(MUFRgZ)

2)

which means that both the variances of MUFR%Z) and MUFRg are smaller

than those of MUF2 and MUF3. In fact, it can be shown generally that among
all linear transformations of the form (5-16) the coefficients a5 which
satisfy the conditions (5-17) minimize the variances of the transformed

variables as we will see in the next section. In our example, we get from

the conditions

b, var(a21-MUF1 + MUF,) =0

I
(@]

SEEI var(a31-MUF1 + a32-MUF2 + MUF3)
3

(5-21)

1
(@]

var(a31-MUF1 + a32-MUF2 + MUF3)

again exactly the coefficients (5-18).

In the special case considered before,

cov(MUFl, MUFZ) = - var(Il)
cov(MUFz, MUF3) = - var(IZ)
cov(MUFl, MUF3) =0

we get from (5-18")




. var(MUF, )evar(l,)

33, = - =
(var(I1 -var(MUFl)Avar(MUFZ)
var(I,)evar(l

. - (1;) 2<2>
(var(Il)) —var(MUFl)-var(MUFz)

The comparison with formulae (5-14a') and (5-14a") gives

* o % _ I3 b3 _
Cp = 891» C3 = 839, C3°Cy = a3y

which is not surprising.

In the following section we will present a statistical interpretation of
the diagona]ization of the covariance matrix of the MUFi, i=1,2,...,n,
i.e., of the.transformation coefficients c: resp. aij in terms of (partial)
regression coefficients, and we will see that the MUng)
variance among all transformed MUF's of the form (5-16). It should be mention-
ed, however, that this interpretation is based on the normality of the MUF
variables, whereas Stewart's approach and also the diagonalization of the

covariance matrix did not require such an assumption.

have a minimum

5.3 Conditional expectations

Quite generally, let us consider a (p+g)-dimensional random vextor X, which
is normally distributed with expectation vector and covariance matrix

E(X) = 0, cov(X) = E(XeX"') = ¢ . (5-22)

We partition this p+g-dimensional random vector into the p-dimensional random
L) and into the q-dimensional random vector ﬁ(z):

v(1)
X ={ (2) | | (5-23)

vector'x(




Accordingly, we partition the covariance matrix ¢ in the following form

e

11 Z12
I = (5-24)

21 k2

[[ine]

where the submatrices Liys Z9ps Loy © §i2 and Lo, are given by the relations

;11 = COV(KI)’ ;12 = COV(Xl, l(_z')9 222 = COV(XZ)( (5__25)
We consider the following linear transformation:

Ip

(]

(5-26)

[~<
]
1t

i

(2)_. -l (It -1 ) (2)
Xi-gype2y° X 219511 Lp] | X

i

where I _ and Lq are unity matrices with ranks p and q.

According to Anderson (1957), p. 23 the two random vectorsll<1) and_x(z)

are uncorrelated,

cov(y{1), y(8)y = g | | (5-27)

and therefore, because of our norma]ity assumptions, also independent.

(2) _ (@),

Furthermore, we consider the conditional distribution of ﬁ(l), given X

It is again a normal distribution (see, e.g. Anderson (1957),
p.28, eq. (5)) the expected value and variance of which are

E(X(Z)}x<l)) c porep tay(1) (5-28)

_ _ -1 . -
= Epp7logtLy1oLyn T Lpoa (6-29)

Because of (5-28), the matrix
-1
£21°%11

is called the matriz of (partial) regression coefficients of K(l) on X(Z).




If we consider in (5-28) x(z) again as the random variable X(Z), then we

see with (5-26) and (5-27), that the random vectors

X(l) and X(Z)'E(X(l)L)_(_(Z)) = l(z)_glz.éﬁ.l(l) (5_30)

are uncorrelated and therefore independent. The second random variable,
as a linear combination of normally distributed random variables, is
again normally distributed with expected vector zero and variance

1

(2) g i1y . IS TS i
var(X*0-Eyp0 21 1°X00) = Loy - B1ptIintIn = Ein.p (5-31)

In addition, it can be shown (Anderson (1957), p. 32) that among all
Tinear combinations Q-K(Z) that linear combination which minimizes the
variance of the random variable

1 2
1yt

9

I

is just given by the linear combination

2 1,,(2
x(2) 1'5( )

ur>

= Lpthy

The numerical calculation of the transformation, i.e. of the (partial)
regression coefficients may be achieved with the help of some general
formulae given by Anderson (1957) on page 34ff: Let

x =] x(? (5-32)

be a normally distributed random vector, where 5(1) is of Py components,

X‘Z) of p, components, and.l(a) of p; components. Then we have

E(X(l)m(z), 2(-(3)) = E(_)S(l)|z(_(3)) + §—12.3'§.£%.3°(_)_(_(2) - E(_)S(z)l_)s(?’)))’

(5-33)

where L10.3 and Lop.3 are given by
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- -1
L12.3 = L2 = Ly3°I33°L3) (5-33a)

_ oL -
L2p.3 = Lpp = Ip3°I33°I3p (5-33b)

In particular, one obtains for p1=p,p2=1,p3=p-q—1, the components

%4 ,q+loq+2,...,p %, qtloq+2,. .. ,p

igeatl,ep T %3equ2, . p T T oy s
(5-34)
i, =1,...,0,
%150 7 %j
6. = o
11 1

For p1=p2=p3=1 we obtain

e @y g xGYx(Dy 4 %821 (42 g (x(2) (D)) | (5340

E(X(?),X(l))= 3%3 x(2) (5-34b)

Let us apply these general results to our concrete problem. Under the null
hypothesis Ho the MUFi—variab1es have zero expectation values, therefore
the transformed variables

(3) - - , -
MUFRS®) = MUF, - E(MUF, [MUF,...MUF, ) (5-35)

are independent of the MUF£3)...MUF$§%. Since, however, the transformed
ft

he original variables, the MUFR$3>
3). Furthermore, since these

variables are linear combinations o
are also independent of the MUFR$§%...MUFR§
properties hold also for random variables with non-zero expectations, the
transformed variables, defined according to (5-30) for MUF variables with
zero expectations, are also independent if the MUFi have non-zero expecta-
tions. Finally, because of the minimum variance property of the random




variables

(1)_ -1,(2) C_
Xi (212211 )i , 1=1,2,...n,

which we mentioned before, we know that the MUFR$3) have a minimum variance

among all transformed MUF's of the form

]

[=%)
=
[t
T
—_

il
et
3

MUFi-

-
—-
e

(&)

in formulae (5-21) we showed for the purpose of illustration for i=1 and 2
that the variances of the MUF$3) are smaller than those of the MUF . .

If we apply the general formulae (5-33) resp. (5-34) to the problem of the
determination of the coefficients €53 of the transformation (5-16), we get

the recursive relations (Sellinschegg, 1982)

. %j.1....3-1 i 04, d+lei....j ] 04 §o1e1...i-2 - |
" Oii-l..,.j—l 9541,541+i....5  %i-1,i-1-1...3-1 i-1,§

Or in a somewhat different notation,

L 9ij-1...5-1 i i-j-1 99, d4ke1. .. j+k-1 cag, o for gei
W 93301, .5-1 k=21 Ogak,jtkel....jeke1  IHGI
where
a;; =1 . (5-36)

As before, we determine explicitly the first transformation coefficients.
We have with (5-34b)

MUFS3S) - MUF, - E(MUF,[MUF,) = MUF, - —i2 .uuF
2 2 21MUFy 2 7 MR
1
where
92 cov(MUFl,MUFZ) .
2~ var(MUF,) - 21
91 1

and furthermore, with (5-34a),
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(3) _ i ;
MUF3 = MUF3 E(MUF3|MUF1,MUF2) =
932-1
= MUF3 - E(MUF3|MUF1)- Sop. 1 -(MUF2 - E(MUF2|MUF1)) =
g g o (¢)
_ 31 32-1 12 32-1
= (- —+ . )-MUFy - —=—— - MUF, + MUF,
°11 %221 %22 922-1
where
cov(MUFl, MUF ;)
cov(MUFl,MUFz)
O9p.1 = var(MUF,) - Var(MUF )
and therefore,
] 931 . 935.1 . 910 - COV(MUFl,MUF3) .
2 2 - var(MUFl)
11 %2.1 %22
) cov(MUFl,MUFZ)-cov(MUFz,MUF3) i
var(MUF, ) var(MUF, ) -cov(MUF, ,MUF,)®
1 2 1 2
"4
932.1 var(MUFl)cov(MUFz,MUFB)—cov(MUFl,MUF3)
032'1 var(MUFISVar(MUFZ)—cov(MUFl,MUFZ)
= a

32

in accordance with relations (5-18').

b
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5.4 Test procedures based on the single transformed MUF's

Let us assume now that the inspector obtains sequentially the observed
data mufl, mufz,...,mufn, and that he has to decide whether or not material
has been lost or diverted. This means that he has to perform a statistical

test with the two hypothesis

H, @ E(MUF

n
1
m
—
=
[y
s
>
~
il
o

1)
(5-37)

]
=

Hp o E(MUF,)

1
If he decides on the basis of the single MUFi or the single transformed

MUFi, which from now on we will call MUFRi, then he has to determine an

acceptance region for each MUFi resp. MUFRi, i.e., a region for an observed

muf1 resp. mufri which leads to the rejection of the alternative hypothesis

H
1

Naturally we assume under the alternative hypothesis H1

E(MUF.) > 0 for i =1...n. (5-37")

Therefore a one-sided test procedure seems to be reasonable. This means that
the acceptance regions for the single test, now based on the MUFRi, are given

by the sets
{mufri : mufri 5.k1}- , 1 =1...n . (5-38)

The significance thresholds ki are determined with the help of the single

false alarm probabilities o given by

k.
L, = prob{MUFR,<k./H} = ¢(————), i =1l....n, (5-39)
! /var(MUFR{Y

where ¢ is the normal distribution function, which leads to

k, = MvaerUFR15-Ul_a', i=1...n, (5-39")
i

where U is the inverse of ¢; the variances of the transformed MUF variables

are
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var(MUFRi) = var(S:_1)+var(Di)+var(Ii) , (5-39")

where the variances var(S:) are given by equations (5-14a and b).

The overall false alarm probability « is given by the relation
l-a = prob{MUFRlikl/\.../\MUFRnikanO} . (5-40)

Because of the independence of the MUFRi, i=1...n, we get

1prob{MUFRiiki|Ho}

l-a =

1

==

or, with (5-39) simply

lw = 1 (l-ay) . (5-41)

n = 3

i=1

Pragmatically, the inspector will fix the value of the overall false alarm
probability and take the same values for the single false alarm probabilities,

l-a. ='VIa , 1i=1...n,

i

thus we get for the significance thresholds

k; = ARFMUFR,)U =, i =1l...n . (5-39")

The single probabilities 1-81 of detection are given by the relations
B, = Prob{MUFR.<k.[H;} , i =1...n , (5-42)
or with (5-39")

E(MUFR,)

B,:(b(_—————-—————u _),'i—l...n
! /Var(MUFR.) nvi-a

According to (5-16), the expected values E(MUFRi) are given by the
relations

(5-42")
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E(MUFRl) = M1
E(MUFRZ) = a21-M1 + M2
) n=1
E(MUFRn) = 1§1ani-Mi + Mn (5-43a)

or by the recursive relation derived from (5-12),

E(MUFR,) = M

1) =M%

E(MUFR) = ci-E(MUFR, ) + M., i =2, ..n, (5-43b)

1)

where the relation between c: and 3 is given by (5-18). The overall
probability of detection 1-g then is given by

n
1-g = 1- 1 g, (5-44)
i=1
In the special case n = 2 we obtain with (5-19)
M M 0 M

1 1 2 12 1
g = oy - o)elUpg - — - oot —7 " o) -

1 l—pl2 2 ].-p12 1

Let us compare this total probability of detection with that based on the
original MUF data. The single probabilities of detection 1—%1, i=1,2, és
functions of the single false alarm probabilities 31 are given by the
relations

=

v ~ 1 B
ST C RIS S I R I3 (5-45)

The overall detection probability 1-§ and faise alarm probability o
are given by

M p M

1-% = 1- M S N |
b=l B(Ulﬂ-'&'l o’ U]_—Ez 1 Zz g, v 1- 2 oy’ P12)

P12 -

P12
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a=B(Uy v, Uy vyopas)
1 ay 1 %y 12
where
h k

fdty [dt, exp(-

-0 -0

B(h,k,q) = !

2NY1-p

is the biavariate normal distribution.

2

Between 31, 32 and o we have the relations (Avenhaus 1979)

1-a > (1-d;)(1-d,)

(1-8;) (1-6,) > 1-a>1-d;-d

172

Between § and %1, i=1,2, we have the relations

for

Now we have for p12<0 and 31=32 the relations

l-w = (Ta)2e(1-m)?, L .2

therefore

_ PO
B = 8132\"’1’[};2 ’

p1270
p12<0
P10
p1250
-7, 9 92

. . . Y
however, we do not arrive at a relation between g and B.

(t7i-2pt,-t,+t
2057 et

(5-46b)

21 (5-46c)

(5-47a)

(5-47b)

We see, even though the variances of the transformed MUF's are smaller than

those of the original ones, we cannot decide analytically that the test which




is based on the transformed MUF's, leads to a smaller overall probability
of detection. Our numerical studies, however, will demonstrate that
in all classes considered this is true, indeed, for a wide class of

parameter values.

So far, we have considered a one-sided test procedure for the transformed
MUF variables. Since the transformation coefficients aij’ however, are

not necessarily positive, we can get negative expected transformed MUF-
values for the alternative hypothesis H1 which means that we should use

a two sided test, i.e. a test the acceptance regions of which are given by

the sets

{mufriz _ki < mufr, < kj} ,i=1...n . (5-48)

In this case, the significance thresholds ki are given by the relations

k; = /var(MUFRifTUI_ai/Z . (5-49)

The overall false alarm probability is again given by (5-41) thus we get,
if we put all the single false alarm probabilities the same,
_ 1 n. 1 n
1-a1/2 = 1- ?~(l— vI-a) = ?(l+ V1-0,)
The single probabilities of detection are

E(MUFR;) E(MUFR, )
1-g. = o

= -, e ——
/var(MUFR15 oy var ;

and the overall probability of detection is again given by formula (5-44).

" UpLg2)
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6. Cumulative Sum Tests

Cumulative sum tests, or shortly CUSUM tests, which play an important role
in quality control, are constructed in the following way: One assumes that

a given null hypothesis, e.g. a production plan, is correct. As long as

the test, which is repeated sequentially in regular time distances, confirms
this null hypothesis, the test is continued. If, however, the null hypothe-
sis is rejected, the test stops (and with it, e.g., the production).

These tests serve the purpose that the system to be observed is not inter-
fered with as long as the null hypothesis is maintained, however, that a
deviation from this hypothesis is to be detected as soon as possible.
Therefore, the criteria for these tests are no longer false alarm and
detection probabilities, but average run lengths, i.e. average time
distances between rejections of the null hypothesis.

In order to illustrate these ideas, first a simple sequential test procedure
for independent variables is discussed. Thereafter, CUSUM tests for identical-
1y and independently distributed variables, and finally CUSUM tests for
identically distributed variables with a special covariance structure are
considered. In both cases, general properties will be analyzed, and integral
equations for average run lengths will be established.

In the ninth chapter, we will present numerical results for CUSUM tests
which are based on the original material balance test statistics

MUFi, i=l...n, as well as on the independently transformed statistics
MUFRi, i=1...n, which we introduced in the foregoing chapter. For an
analytical treatment the former ones are better suited, since the indepen-
dence transformation leads to variables which are no longer identically
distributed therefore, the integral equation does not hold any more, and
one has to use simulation methods. From the efficiency point of view,
however, it is much better to use the transformed variables.




6.1 Simple sequential test for independently and identically normally

distributed random variables

Given the independently and identically normally distributed random variables
Xl’ X2,... . Let the null hypothesis Ho be

Hot X non(u, 62), 1 =1,2 (6-1)

O -' O) o 3 H yr v 3

and let the alternative hypothesis H1 be

le There exists a point T in time such that
X; v n(u, o0), =1,2,... 71
i UO’ 0!’ [Y A »
2 . (6'2)
Xi " n(ul, 01), io= 1, t+l, ...,
After the i-th observation X, it is decided
Ho is not rejected, if xi < s,
HO is rejected, if X, > S, i=1,2,... . (6-3)
The significance threshold 1is connected with the single false alarm
probability via
S-uo
-0 = of ) . (6-4)
%

Since, however, in principle an infinite number of single tests can be per-
formed, the total false alarm probability is equal to one, i.e. not a
reasonable criterion for the determination of s. Instead, the ruwn length RL,
i.e., the number of observations until the rejection of Ho’ is taken, the
distribution under HO of which is given by

i-1

probO(Rin) = g+(1l-a) , 1 =1,2,... , (6-5)

and the expected value ARLO of which is given by

.7, iy 2] ;
ARL, = 1Z11 prob (RL=i) = ~ (6-6)

the value of which we now use for the determination of s.
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Under Hl’ the single probabilities of detection 1-g are given by

Bi-u -0 U
1-g = ¢ (00 Loy (6-7)
[¢)
1
i.e. the run length distribution is
proby (RL=1) = (1-g)-8' ', (6-8)
and therefore its expected value
fee) . 1
ARL, = throbl(RL:l) = T (6-9)

i=1

In case of the CUSUM test procedure which will be treated in the following,
the corresponding relations can no longer be given explicitly.

6.2 Definition of CUSUM tests and general properties

Given the independently and identically distributed random variables X., X

1’
Let the two hypotheses HO and H1 be
HO: Xi’ i=1,2,..., are identically distributed with distribution
function Fo (6-10a)
le There exists a point v in time such that Xl""xi—l are identically
distributed with distribution function FO and that XT, XT+1, ... are
identically distributed with distribution function Fi- (6-10b)

The CUSUM test procedure for this problem is given by
Definition 6.1 (Page 1954, 1955)

Given the test problem (6-10). With Yi = xi—k, i=1,2,..., and

n
sio= ) Yoo 58 =0 (6-11)

the null hypothesis HO is rejected if

Dy



s! - min s;>h,h >0 . (6-12)
0<i<n -
k is called reference value, h decision value. D

The CUSUM test procedure, as defined abdve, can be formulated alternative-

1y, as can be proven easily:

Theorem 6.2
Let us define the sequence Sn of random variables by the following recursive

relation

S_ = max(0, Sn_1+Yn), n=1,2,..., S =0 (6-13)

and let us decide that Ho is rejected after the n-th observation, if

Sy > h, h >0 . (6-14)

Then H0 is rejected after n observations if HO is rejected after n observa-
tions with the test procedure given by Definition 6.1. []

In the following we introduce some characteristic quantities of the CUSUM

test (see Figure 6.1),

h |
o
e single test sequence
I

les— single test
| g ““'1

!
|
|

i o
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Figure 6.1: Observations, single tests and single test sequences for
CUSUM tests
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Definition 6.3

A single test is a sequence of observations which starts with So=z, C<z<h,
and which ends at the lower (0) or at the upper (h) limit. In the extreme
case the single test may consist of one single observation.

A single test sequence is a sequence of single tests, which starts with
So=z, 0<z<h, and which ends at the upper limit (h). []

Quite generally we characterize CUSUM test by their run lengths:

Definition 6.4

The run length RL of a CUSUM test is given by
RL = min{ne N :Snih} . (6-15)

The mass function of the run length of a CUSUM test, which starts at

SO=SO=2, is written as
p,(2) = prob(RL=n|So=z) . (6-16)

The expected (or average) run length RL, i.e. the number of observations of

a single test sequence, which starts at SO:z, is written as

L(z) = z 1-pi(z) ; (6-17)

furthermore,

L(0) = ARL (6-17")

is the expected run length of a single test sequence which starts at SO=O.

Finally, we call

P(z) = prob(O<Si<h for i=1...n-1 5,70, n=1,2,...[5,%2)

the probability that a single test, which starts at Sozz, ends below zero,




and we call N(z) the expected number of observations of a single test.

Relations between these quantities gives

Theorem 6.5

The quantities L(z), P(z) and N(z), which were introduced in Definition 6.4,
fulfill the relations

L(0) = -0 (6-18)
L(z) = N(z) + L(0)-P(z) . (6-19)

Scetch of the proof

1) The probability that - if we start at SO=0 - exactly s single tests are
performed, is

0y Lo(1-p(0)), s =1,2,...

Therefore the expected number of single tests is

p0)S " Lo1-p(0)) = L
15 (0) (1-P(0)) T-P{0Y

e~ 8

S

Since the expected number of observations of a single test is just
N(0), we get (6-18).

2) If we start at Sp72s L(z) is given by the expected number N(z) of
observations of the first single test, if the first single test ends
at h, multiplied with its probability, plus the expected number of
observations of the first single test and the number of observations
of a sequence of tests which starts at zero, if the first single test

ends at zero, multiplied with its probability:

L(z)

N(z)-(1-P(2)) + (N(z) + L(0))-(1-P(z)) =
N(z) + L(O)-P(z) . [:]
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6.3 CUSUM tests for independent continuous random variables

In order to determine integral equations for the average run lengths for
independently and continuously distributed random variables, we first
determine recursive integral equations for the mass function of the run
length RL:

Theorem 6.6

Let f(x) and F(x) be density and distribution function of the independently
and continuously distributed random variables Xi,1=1,2,... . Then there

is the following recursive integral equation for the mass function pn(z) of
the run length RL of the CUSUM test which starts at SO=Sé=z:

h
P (2) = p,_1(0)-F(k-z)+ jpn_l(z)-f(y+k—z)dy for n=2,3,...

° (6-20)
Py(z) = 1-F(h-z+k)

Proof

Let us consider all cases which are possible for the first step of the test,
see Table 6.1:

Table 6.1: Possiblie cases for the first step of a CUSUM test

Tabservation New value of the test Result
statistic (score)
x<k-z 0 test is continued
k-z<x<h+k-z z+x-k test is continued
x>h+k-z h rejection of Ho

According to this table we have
prob(X<k-z) = F(k-z)
prob(x<X<x+dx|k-z<x<h+k-z) = f(x)dx

prob(X>h+k-z) = 1-F(h+k-z)
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The probability that the run length RL of the test is n>l, is according
to the Total Probability Theorem given by

P,(2) = prob(RL=n|z) =
= prob(RL=n|X<k-z)-prob(X<k-z) +
h+k-z
+ [ prob(RL=n|x<X<x+dx|k-z<x<h+k-z) @
k-z B

® prob(x<X<x+dx|h-z<x<h+k-z)dx +
+ prob(RL=n|X>h+k-z)-prob(X>h+k-z)

Now we have according to this table
prob(RL=n[Xik-z)=pn_1(0) ,
prob(RL=n|x<xix+dx|h—z<x<h+k—z)=pn_1(z+x—k) ,

prob(RL=n|X>h+k-2z)=0,
therefore

h+k-z
Pa(2)5P 1 (0)-F(koz) + [ by (zeck)-F)dx

which completes the proof with the transformation y=z+x-k. L_J

With the help of this Theorem we prove
Theorem 6.7

Let f(x) and F(x) be density and distribution function of the independently
and continuously distributed random variables Xi,i=1,2,... . Then the follow-
ing integral equation holds for the expected run length L(z) of the CUSUM
test, which starts at SO=Sé=z:

h

L(z)=L(0)«F(k-2)+ [L(y)-f(y-z+k)dy . (6-21)
0
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Proof

Because of

He~18

Pp(z) =1

n=1

we get immediately with (6-20)

0o

L(z) = nzln-pn(Z) =

o0

1+ | (n-1)-p (2) =
n=2

I

o h+k-z

1+ ] (n-1)-[p,_1(0)-F(k-2)+ [ p__ (z+x-k)-f(x)dx] =
n=2 k-z

h+k-z
1+L(0)-F(k-2)+ [ L(z+x-k)-f(x)dx =
k-z

h

1+L(0) - F(k-2)+ [L(y)-f(y-z+k)dy . (]
0]

]

For the sake of completeness, we present similar formulae for P(z) and
N(z) without proof:

Theorem 6.8

For the quantities P(z) and N{z) we have

k-z-h h
P(z) = F(k-z)+ jzf(x)-P(z+x—k)dx = [f(y+k-2)-P(y)dy (6-22)
k-z 0
h-z-k h
N(z) = 1+ [ f(x)-N(z+x-h)dx = 1+ [f(y-k-2)N(y)dy . (6-23)
k-z 0
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Let us consider now the special case that the random variables X1,1=1,2,..

are independently and normally distributed:

i
—
A

H_: Xi v~ n(p ,02) for i

0 0

Hy X von(upe®) for i = ohl, L. (6-24)
The question arises how to fix the values of the reference and decision values
k and h. We answer this question by considering the analogy between CUSUM and
Sequential probability Ratio (SPR) tests (Lehmann 1959).

In case of the CUSUM test a single test of the single test sequence can be
jnterpreted as a SPR test in that sense, that the test procedure is continued

as long as the observations Si are between the limits 0 and h,

0 < Z(xj—k) < h
i

In case of the SPR test we have to continue the test procedure as Tong as we

. 2
have for given ¢“, Holu=po and H1:u=u1,
T u+u1 2
K X, - 2 K, = 9 .k, v=0,1
o~ 151( i 7)< Ky K T Ny

Furthermore, we have approximately

(11 1-(11
k ~ k ~
0 _ao b 1 ao 3
i.e., for a1<<1
|~ —
%

where o, and a; are the error probabilities first and second kind.

This means, that we get for the single CUSUM test the same relations as for
the SPR test, if with

we identify




1
k=5 «(ugtuy), h =K = - “1?“0 . 1n(1-P(0)) . (6-25)

It should be mentioned, however, that the probability P(0) does not give
any information about the frequency of false alarms.

6.4 CUSUM tests for material balance test statistics

So far, we have considered CUSUM test procedures for independently and
identically distributed random variables. We can apply them to our material
balance test statistics MUFi, i=1,2,..., if we perform the independence
transformation (5-11) or (5-16) and divide the transformed variables by

their standard deviations. This way, we can formulate at least an integral
equation for the average run length under the null hypothesis Ho' It is not
possible, however, to proceed in the same way in order to determine the average
run length under the alternative hypothesis H1 even if we assume constant loss
or diversion since the transformed variables have different expected values.

Surprisingly enough it is possible to formulate integral equations for the
average run lengths under the null as well as under the alternative hypothe-
sis of constant loss or diversion, if one performs a CUSUM test with the help
of the original material balance test statistics MUFi, i=1,2,... . Generally,
this is possible for various kinds of stochastic processes, namely so-called
ARMA and MA processes (see, e.g., Montgomery and Johnson (1976)). In the
following, we will derive those equations for our specific purposes.

Theorem 6.8

Let us consider the independently and identically distributed random variables
Di with distribution functions FD and densities fD and the independently

and identically distributed random variables Ii’ i=1,2,... with distribution
functions FI and densities fI, and let us consider the CUSUM test, defined

by (6—13) and (6-14), based on the test statistics

Sn vz max(O,Sn_1+Yn), n=1,2,..., S =5 s (6'13)

where the random variables Yn are defined by




AREETS SUPEZ IS SE N U (6-26)

with reference value k and decision value h.

Then the probability pl(z) that the test is finished after one observation
I
0

if it starts with So=so, =] z=SO+1O, is given by

o’
pl(z) = 1—FD_I(h+k-z) , (6-27a)
where Fp-p is the distribution function of the random variable D-I.

Furthermore, the probability pn(z), that the test is finished after n obser-
vations if it starts at z=so+10, satisfies the recursive integral equation

P0(2) = [Py (X)-Fy-zocrk) £y () +
(6-27b)

+ ?Pn_l(x)’fD(X-Z+k)°(FI(X)—FI(x-h))dx, n=2,3,...

Finally, the average run length L(z) of a test which starts at z=so+1'O

satisfies the integral equation

L(z) = 1+ ?L(x)-FD(-z+x+k)f1(x)dx +

o (6-28)
+ JL(x) - fp(x+z=k)« (F (x)~F {x-h))dx

-0

Proof

According to eqs. (6-13) and (6-26) we have

P1(sys1g): prob(Sl>h|So=so,Io:10) =

prob(So+Y1>h|So=so,Io=1O) =

prob(Dl—Il+iO+so—k>h) =

1~FD_I(h+k—(SO+iO)
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Furthermore, we have
pn(so,io):= prob(Skfh/«Sn>h|So=so,Io=iO for l<k<n) =

=_£Pn_1(0,il)'PPOb(Sle/\115J1§j1+d11|SO=50,10=10)d11 +

o N .
+ Il:jpn_l(sl,11)-prob(slislf§l+dslA115}1§j1+di1!50=50,10=10)d5i]d11=
-0 fo}

=_£Dn_1(0,11)-prob(31§Q\115}1§j1+d11|So=so,Io=i0) ®

o h @ prob(i,<Ij<ij+dij)diy +
+ [ fpn_l(sldl)-prob(slf§1§§l+dsl|115}1i11+d11|50=50,10=10)(x
-0 0

® prob(11§}15j1+dil)dsi]di1 =
= fpn_l(O,il)-prob(D1+sO+io-11—kiQ)-fI(il)dil +

= h
+ [ IPyoy(5q011)-prob(sy<Dy+sobio-iy-kesyrdsy)efry(iy)dsyJdiy =
— 0

=_£pn_1(0,11)-FD(—50—10+11+k)-fI(11)d11 *

@ h
+_£L.épn_l(sl,il)‘fD(Sl—So—io+11+k)-f11(11)dsi]dil =

= pn(so+1o)
With so+io=z and the transformation sl+il=x in the second integral we get

Pp(2) =_an_1(i)-FD(-z+i+k)-fI(i)di +

[ee] h
- [ [Ppoq () Fp(x-2+k) - [f (x=sq)ds ] dx
=00 0

which leads immediately to (6-27b).
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Finally, we get

[ee]

L(z) = 1+ § (n-1)+p (2) =
n=2
= 1+nzz(n—l)'Llipn_l(x)FD(—z+x+k)-f1(x)dx +
—_ipn_l(x)-fD(x—z+k)-(FI(x—h)—FI(x))dg] =
= 1+_£L(x)-FD(—z+x+k)-f1(x)dx—_£L(x)-fD(x—z+k)(FI(x-h)—FI(x))dx
which completes the proof. [:]
Let us consider the special case that the random variables In,n=1,2,... are

degenerated, i.e., that their observations give zero with probability one:

0 x<0
FI(x) = for
1 x>0 .

Then we get from (6-28)

1+4L(0)«F(-z+k)+ ?L(x)fD(x—z+k)dx—?L(x)fD(x—z+k)dx =
h

L(z)

x-z+k )dx

I

0

h
14L(0) < F(-z+k)+ fL(x)fD(

0

in accordance with (6-21); this is reasonable since under this assumption
the random variables Yn, n=1,2,..., defined by (6-26), are independent.

The application of Theorem 6.18 to our material balance test statistics
MUFi,1=1,2,... and the test problem defined by (6-10a) and (6-10b) is obvious:
Under the null hypothesis H0 we assume

E(Dy) = E(L;) = 0 for i=1,2,...

Under the alternative hypothesis H1 - constant Toss or diversion y - we assume

E(D;) = u, E(I;) = 0 for i=1,2,...
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In some cases it is necessary to take into account persistent systematic
errors which are of random origin. Also for these cases one can establish
integral equations for the average run lengths of the CUSUM test:

Theorem 6.9

Let us consider the independently and identically distributed random variables
D;, the independently and identically distributed random variables Ij=i=1,2,...
and the independently distributed random variable E with density fe. Let us
consider the CUSUM test, defined by eqs. (6-13) and (6-14), based on the

test statistics

Sn:: max(O,Sn_1+Yn), n=1,2,..., So=so, (6-13)
where the random variables Yn are defined by

Yn:: In_1+Dn"In+E‘k, n‘:]-)zs"', (6-29)

with reference value k and decision value h.

Then the probability pEl(z;k) that the CUSUM test with reference value k is
finished after one observation if it starts with So=so,lo=io,z:so+io, is

given by

pep(z3k) = 1-Fp_p,glhrk-2) (6-30a)

where Fy ; -(x) is the distribution function of the random variable D-I+E.

Furthermore, the probability pEn(z;k) that the CUSUM test with reference

value k is finished after n observations, if it starts at z=so+1o, is given

by

Pe,(Z3k) = fpn(z;k—e)-fE(e)de, (6-30b)
where pn(z;k~e) is the probability that the CUSUM test with reference
value k-e for the random variables Yn given by (6-29) which do not contain

the random variable E, is finished after n observations.




Finally, the average run length LE(z;k) of a CUSUM test with reference value
k, which starts at z=so+io, is given by

Le(z3k) = fL(z;k~e)fE(e)de,

=00

where L(z;k-e) is the average run length of the CUSUM test with reference
value k-e for the random variables Yn given by (6-29) which do not contain

the random variable E.
Proof

According to (6-13) and (6-29) we have

prob(51>h[SO=sO,Io=1

pEl(so’io;k)): o)

prob(So+Y1>h|SO=SO,IO=1O)

prob(Dl—Il+E+10+so-k>h) =

= 1-F h+k-(s +1_)).

D—I+E( 0 0

Furthermore, we have

Pep(z3k):= prob(Skih/\Sn>h|So+Io=z for l<k<n) =

=_£prob($k§h,«Sn>h|e§£§g+de,so+10=z for 1<k<n)-fc(e)de =

f an(z;k—e)-fE(e)de .

The last part of the Theorem follows immediately from the definition of

Le(z3k). L]
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7. Reference Facility, Measurement Model and Losspatterns

We consider the process of the chemical extraction of plutonium in a refer-
ence reprocessing plant with a throughput of 1000 tons heavy metal per year
which has been described by Kluth at al. (1981), and where for the sake of
simplicity the chemical extraction is separated into five process areas:

Head-end, first, second and third plutonium cycle and plutonium concentration.

7.1 Reference Facility and Measurement Model

The following analysis is based on a very simple process and measurement
model. The process inventory is collected in five process units which
correspond to the five areas mentioned above. Transfers are made in form
of transfer units: There are three input batches, two Pu product batches
and one waste batch per working day. The process is stationary which means
that the inventory in the five areas is constant, and that there are no
unmeasured losses. The working year consists of 200 working days, one in-
ventory period consists of five working days. In section 8.2.2 a reference
time interval of 60 inventory periods i.e. 300 working days is considered.
A11 these source data are collected in Table 7.1 .

The measurement model may be described as follows: In case of the inventory

we assume that the measurements of the different inventory units are mutually

independent, and that the systematic errors cancel in the balance statistics
since it is assumed that the measurement procedures are not recalibrated
during the reference time. In case of the transfer measurements we take into
account random and systematic errors. Again we assume that the systematic
errors are constant during the whole inventory period. The relative standard
deviations of all types of measurements are collected in Table 7.2.

The variance of one inventory determination then is the sum of the variances
of the measurements of the five inventory units. The variance of the sum of
all transfer measurements for one inventory period generally is

var(input) + var(product) + var(waste) =

3
"G (nyeofy + njeogy)s




Table 7.1: Data of the Reference Reprocessing Plant (after Kluth et al (1981))

Heavy metal throughput (t/yr) 1000
Pu-throughput (t/yr) 10
Working days per year 200
Length of an inventory period (working days) 5
Reference time (working days) 300
Input

Number of input batches per working day

Pu content of one batch (Kg) 16.73
Product

Number of product batches per working day 2
Pu content of one batch (kg) 25
Waste

Number of waste batches per working day
Pu content of one batch (kg) 0.2

Inventory (kg Pu)

Headend 196.5
Ist Pu-cycle 7.6
2nd Pu-cycle ‘ 50.
3rd Pu-cycle 134.

Pu-concentration 62.5




where Ny is the number of transfers of the k-class (input, product, waste)
during one inventory period, and o;k and cgk are the (absolute) variances
of the random and of the systematic errors of the single measurement of
the k-th class. Therefore, the variance of the material balance test statis-
tic for the i-th inventory period is

3
z

var(MUFi) = 2.var(inventory) +
k=1

(nk~oik + ni-ozk), i=1,2,0..

The covariance between two subsequent material balance test statistics is
equal to the negative variance of the intermediate inventory plus the vari-
ance of the systematic errors; the covariance between two ﬁateria] balance
test statistics, which do not follow each other immediately, is equal to
the variance of the systematic errors alone.

A11 these variances and covariances are collected in Table 7.3, in addition
the variance of the material balance test statistic is given for the total
reference time of 300 working days. The large value of this variance is
caused by the persistent systematic errors. If one assumed, e.g., that all
measurements would be recalibrated after each inventory period, and that
the systematic errors of the inventory measurements could be neglected,
then one would obtain a standard deviation of only 20.8 kg Pu for the

whole reference time.

7.2 Loés Pattern

Since as mentioned earlier, for an arbitrary number of inventory periods
there exists no uniformly accepted optimization criterion, and since there-
fore one cannot determine pessimistic Toss or diversion scenarios, so-called
loss patterns were agreed upon which are collected in Table 7.4. In the first
group A, losses occur in 40 periods, namely without interruption starting
with the first (A1) eleventh (A2) and twentyfirst (A3) period. In the second
group (B) the losses occur on two series & six periods namely from the 10th
to the 15th and from the 35th to the 4oth (B1) and 10 respectively 20 periods
Tater (B2 and B3). In the Tast group (C) the Tosses occur in eigth periods,

namely every fifth period, starting with the first (C1), 11th (C2) and 21st (C3)

period.




Table 7.%a:

of the Random Measurement Errors

Plutonium Inventory and Relative Standard Deviation

Process unit

Pu-inventory (kg)

of random error

Relative standard deviation

Headend

Ist Pu-cycle
2nd Pu-cycle
3rd Pu-cycle

Pu-concentration

196.5

7.6
50.
134.

62.5

0.005
0.005
0.005

Table 7.2b: Transfer Measurements and Relative Standard Deviations
of Random and Systematic Errors
Number of Concent of Rel. std. dev. Rel. std. dev.
Transfer | batches per| one batch of random errors of systematic errors
working day| (kg Pu)
Input 3 16.73 0.01 0.01
Product 2 25 0.002 0.002
Waste 1 0.2 0.25 0.25




Table 7.3: Variances of Inventory, Throughput, Single Material Balance
and Total Material Balance Test Statistic

Variance of the inventory

(196.5x0.01)2+(7.6x0.01)2+(50x0.005)2+(134x0.005)2+(62.5x0.005)2
4.476 = (2.116)2 (kg2Pu)

var(1)

Variance of transfers for one inventory period (; 5 working days)

var(input, random) + var(input, syst) = .
15x(16.73x0.01)2+152x(16.73x0.01)2 = 6.72

var(input)

var(product) = var(prod, random) + var(prod, syst) =
10x(25x0.002)2+102x(25x0.002)2 = 0.275

1)

var(waste) = var(waste, random) + var(waste, syst) =

5x(0.2x0.25)2+52%(0.2x0.25)2 = 0,074

Variance of the material balance test statistic for one inventory period

var(MUF) = 2x4.76+6.72+0,275+0.074 = 16.02 = 4.0022 (kg? Pu)

Covariance between two material balance test statistics
- 4,476+6.3+0.25+0.0625 =

cov(MUF,, MUF.) = = 2.135 [i-3] = 1
, J for
6.3+0.25+0.0625 = 6.613 RENEY!
cov(MUFi, MUFJ) 0.1332 li-3] =1
Var(MOF.) = for
i 0.413 li-3]>1.

Variance of the balance for the reference time

60
var( = MUF,) = 2x4.476+60x(0.42+0.025+0.0125) +
i=1
+602x(6.30+0.25+0.0625) = (154.38)2 kg2 Pu




Table 7.4: Loss Patterns for the Analysis of Sequential Test Procedures

for 60 Inventory periods, Total Loss M (kg Pu) .

Loss Pattern Loss of Amount in Periods
A1 1,2,350c0cne. ,39,40
M
A2 70 11,12,13,. .0 ,49,50
A3 21,22,23,..... ,59,60
B1 10-15 and 35-40
B2 %"7 20-25 and 45-50
B3 30-35 and 55-60
C1 16,171,000 nee ,31,36
c2 %1 11,16,21,..... 41,46
C3 21,26,31,..... ,b1,b6




7.3 Reference

M. Kluth, H. Haug, M. Schmieder (1981)

Konzept zur verfahrenstechnischen Auslegung einer 1000 Jahrestonnen
PUREX-Referenzanlage mit Basisdaten flir eine SpaltstofffluBkontrolle,
Report of the Nuclear Research Center Karlsruhe, KfK 3204.




8. Numerical Results

In the following we present some numerical calculations, based on the
reference plant and on the loss patterns described in the foregoing
chapter, in order to illustrate the efficiencies of various decision pro-
cedures discussed in the foregoing chapters. Before, we collect the
quantitative rules of those procedures which will be used subsequently.

8.1 Test procedures

Six test procedures have been selected out of the many ones which have been
described before. The first three procedures are based on the original MUF
variables, given by (2-1); the remaining ones are based on the transformed
variables, given by (5-16). In Table 9.1 these six test procedures are

collected, and some information is given in which way the resulting proba-

bilities of detection for various loss patterns can be evaluated.

We will denote the observations of random variables by corresponding small
letters, i.e., the observations of MUF, MUFR, T by muf, mufr, t etc.

8.1.1 Neyman-Pearson test

For a given loss pattern MY = (M "Mn) the Neyman-Pearson test statistic

12
is given by, see (3-7),

1

T1:= M-z

-MUF, (8-1)
and the test procedure is

j’>k : reject H
a 0

=

1~
3
=
=

1~<k : reject Hl’
—
where z is the covariance matrix of the random vector

MUF' = (MUF , MUF )

10

and where the significance threshold k(1 is determined with the help of the




false alarm probability «.

The worst case loss pattern, i.e., that pattern which leads to the lowest

possible probability of detection has in our case the form
M, =M ' (8-3)
M) =M, = ... =M

n-1’°

the Neyman-Pearson test statistic for this worst case pattern is

n
T,.i= ] MUF. = Il+T1+..+Tn—In+1. (8-4)

8.1.2 Truncated sequential test

The test statistic of the truncated sequential test after the i-th inventory

period is, see (4-1),

1
T, . := CUMUF,:= Z MUF, = Ip#Tp+.. T, -1, ), i=l..n (8-5)

2, i1 1‘
and the test procedure is

Sy reject HO

cumufi for i<n (8-6a)
<85t no decision

"»s 1 reject H

n 0
cumufn (8-6b)

isn . reject H1

The significance thresholds Sio i=1,...,n, are determined in such a way
that for each single test the same single false alarm probability is given,
and furthermore, that the overall false alarm probability does not exceed

a given value.




8.1.3 Onesided CUSUM test for MUFi, i=1,.

The test statistic of the truncated sequential test after the i-th
inventory period is, see (6-12),

i 1
Z MUF-k)- min ] (MUF;-k), (8-7)
j=1 0<l<i g=1 9

T3, =

and the test procedure is

>h : reject Ho
ts i for i<n (8-8a)
<h @ no decision
C>h : reject HO
t3,n (8-8b)

<h : reject H1

The parameters h and k are determined in such a way that the overall false
alarm probability for n inventory periods does not exceed a given value

and furthermore, that a constant loss is detected with as high a probability
as possible.

In our case, we have chosen k = 0.

8.1.4 Twosided test for MUFRi, i=1,.

Here, the test statistics are, see (5-16),

T MUFRi =

J

MUF,, a., =1, (8-9)

4,1’ 1 4y 3 i

0~y =

where the a;y are determined by the recursive relations (5-36), and the

test procedure is




>Cc. @ reject H
|mufr, | ! © for i<n (8-10a)
<¢c; 1 no decision
CC reject HO
{mufrn| (8-10b)

)
{ icn . reject H1

where the significance thresholds ci,i=1,...,n, are determined in the same
way as for the truncated sequential test.

8.1.5 Twosided CUSUM test for MUFRi, i=1,...,n

The test statistic of the twosided CUSUM test after the i-th period is,
see, e.g., Nadler and Robbins (1971),

1
(MUFRJ k) - min' .z (MUFRj-k) (8-11)
1 0<1<i j=1

—
+
1

H M—*-

J

] i
max J (MUFRj+k) z MUFR +k)
0<1<i j=1 j=1

—
i

and the test procedure is

>h : reject H0
te . for i<n (8-12a)

<h : no decision;

>h : reject H1

or t (8-12b)
<h : reject H1

the parameters h and k>0 are determined analoguously to
the onesided CUSUM test for MUFi, i=1,..




8.1.6 Power One Test

This test uses a test statistic which is similar to that of the truncated
sequential test; it differs insofar as it uses the transformed and standardized
material balance test statistics

J
i MUFR, : kzlajk'MUFk
Te, 1= § —L——= ] , (8-13)
¢ Jj=1 /var(MUFRJ) J=

1 /]
var(kzlajkMUFk)

where the a;y are determined by the recursive relations (5-36). The test

procedure is

>bi . reject H0

lt6’]'| (8-14a)
<b; : no decision,
>bn : reject HO
[tg nl | (8-14b)
5bn : reject H1
where the significance thresholds bi are given by
1
be = ((i+m)-(-2-Ina*In(E +1))%, m>0, (8-15)

and where the parameter a is the total false alarm probability for the infinite
sequence of tests and m controls the distribution of false alarms over time.

In fact, this test has the property that even for an infinite sequence of
observations the false alarm probability may be smaller than one whereas
for the alternative hypothesis of a constant loss the null hypothesis is

rejected with probability one (therefore the name of the test).




Observation
Test

MUFi, i=1,...,n

MUFRi, i=1l,...,n

Neyman-
Pearson
Test

Guaranteed probability of detection and pessimistic
loss pattern can be determined analytically
(Avenhaus and Jaech 1981).Test statistic is overall
balance for the whole time period.

Test procedure (9-2).

(Gives no new information compared to the Neyman-
Pearson test based on the MUFi.)

Single Tests

Probability of detection can be determined only
with simulation methods. So far, this procedure has
not been used by anybody.

Guaranteed probability of detection and pessimistic
loss pattern can be determined (Avenhaus and Frick
1975). Probability of detection for special loss
patterns can be determined numerically (Laude 1983).
Test procedure (9-10).

CUMUF Test

Guaranteed probability of detection and pessi-
mistic loss pattern can be determined analytically
(Beedgen 1983).

Test procedure (9-6).

Use of normalized variables leads to Power One test
(Robbins and Siegmund 1969). Probability of detection
for finite time horizon can be determined only with
simulation methods. (Sellinschegg)

Test procedure (9-14).

CUSUM Test

For the no loss and the constant loss case inte-
gral equations for the probabilities of detection
after the i-th period and for the average run
length can be formulated and solved numerically.

! Test procedure (9-8).

For the no loss case integral equations for the
probability of detection after the i-th period and
for the average run length can be formulated and
solved numerically.

Test procedure (9-12).

Table 8.1: Selected test procedures for the Near Real Time Accountancy, based on the material balance test statistics
MUF., (2-1), and on the transformed statistics MUFRi, (5-16), and possibilities for determining their
efflciencies - probability of detection or average run length - for various loss patterns.




8.2 Examples

According to Table 7.3 the standard deviation for the material balance test
statistic for one inventory period is

Yvar(MUF) = ¢ = 4 (kg Pu) ;

the major part of this is caused by the errors of the inventory determina-
tion and of the systematic errors of the input measurements.

The probability of detection 1-f for one inventory period is given by the
formula (see, e.g. Avenhaus 1977)

M - U

1-B = ¢l ol
Nar(MOF) "o

where M is the amount to be diverted, o the false alarm probability, ¢ the
normal distribution function and U its inverse.

By use of appropriate tables of the normal distribution function (see, e.g.,
Abramovitz and Stegun 1972) one finds immediately that 4-3.3 = 13.2 kg Pu
have to be diverted in order that for a false alarm probability o = 0.05
one gets a detection probability 1-B = 0.95. If a detection probability

1-B = 0.50 is satisfying, then only 1.8 kg Pu have to be diverted.

8.2.1 Two Balance Periods

Let us consider first the Neyman-Pearson test for the worst loss pattern from
the safeqguards authority's point of view. According to (3.12) it is given by
(M1,M2) = (M/2,M/2), and according to (3.11) the guaranteed probability of
detection is

M

0$+2p010,+03

- U

* ——
1-Byp = ¢[ 1-0
With 01 = 0, = o we get for o = 0.05

1-Byp = |t
EBNP = ¢(m - 1.65] R
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i.e. we get a probability of detection 1-B = 0.95 for a Toss

M=3.30 = 19.89 (kg Pu)

a comparatively smaller amount than for one balance period.

In the following we consider only two procedures out of the remaining five
we listed in section 8.1; the reason for this is the fact that those proce-
dures which are not considered now display their special properties only
for many periods.

In case of the independently transformed test statistics MUFRi the test
procedure described in section 5.4 leads with oy = 62 = 03 p12 = p, according
to page 5-17 to the following expression for the probability of detection
M M,- oM
1-p = 1-¢[u1_a - —l}-¢[u1_a - —?-——1-]
L 2 ge/l-p?

the overall false alarm probability o is given by
f=a = (1-a1)-(1-a2).

In Table 8.2 numerical values of 1-B are given for
1-ay = 1-02 = V1-0 = /0.95 = 0.975

and for the two cases

M1 = M2 = M2 and M1 =0, M2 = M.

Note:
In section 8.1 we described a two-sided test procedure, whereas here
we used a one-sided procedure. The reason is that M1 is greater or
equal to zero and M2~p°M1 is also greater or equal to zero for all
interesting cases thus, the two-sided procedure is not reasonable
here. For many periods the situation is different since there the
transformation frequently leads to E(MUFR;) < 0 even if E(MUFi) > 0,

For the CUMUF procedure we get the following formular for the false
alarm probability a and the detection probability 1-B:



f-a = L(-U1-ot1’ 1_0L2:Q)
M M
- 1. 2 . .
B =1 —a U1‘0L]_’ BTZ 1'0L2’pJ ’

here, L(h,k,p) is according to Abramovitz and Stegun (1972) defined by

(P A ” O 2
Lh,k,p) = — S dt, s dt, expl|- . (t5-2 t,t, +t5)
R A B R U A E R R R

and o and o%, are given as

of = var(MUF1), 0%, = var(MUF +MUF2).

1

In order to determine the correletion p between MUF1 and MUF1+MUF2, we have
to go back to the error model. According to (2.3) we have

15 20 5
MUF, = I,+ I (ZE.,+SE)- © (ZP.+SP)- © (ZW.+SW)-I
i [ i . i . i 2
i=1 i=1 i=1
30 20 10

(ZP1+SP)-'Z (ZN1+SW)—I3,

MUF2 12+'Z (ZE1.+SE)-'E1 x

i=1 i

where E,P and W refer to input, product and waste respectively. Therefore,
the covariance of MUF1 and MUF1+MUF2 is

cov(MUF1,MUF1+MUF2)=
= var(I1)+15-var(ZE)+15-30-var(SE)+10-var(ZP)+
+ 10-20-var(SP)+5-var(ZW)+5-10-var(SW).

With the data of Table 7.3 we get

cov(MUF1,MUF1+MUF2) = 18.07
and with

VVar(MUF15 = 4, /VaP(MUF1+MUF27’= 6.03
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finally the correlation coefficient

cov(MUF1,MUF1+MUF2)

p = = 0.751 .

From

/var(MUF1)~/var(MUF1+MUF2)

the table for the bivariate normal distribution we get for o = 0.05

1"'(!,1 = 1"’0&2 = 0.968

In Table 8.2 numerical values of 1-B are given for the two cases

Some

-M =M - -
M1—M2—-—2—,and M1—0, M2—Mo

observations should be mentioned:

Naturally for the loss pattern (0,M) the probability of detection for
the Neyman-Pearson test is Targer than 0.999.

In case of the independently transformed test statistics one has a
comparativily strong dependence on the loss pattern.

The CUMUF test is "robust" against various loss patterns. According
to chapter 4 the probability of detection for the loss pattern (0,M)
is the guaranteed probability of detection, i.e., for M = 19.89 it
cannot be smaller than the value given in the Table.




Table 8.2: Probability of

detection for two balance periods

and various test procedures; total false alarm

probability o =

0.05, total Toss M = 19.89

Test procedure Probability of detection
Neyman-Pearson Test for 0.95
pessimistic loss pattern (%-, M)

Independently transformed

test statistic; 0.88
Toss pattern (g-,-%)

Independently transformed

test statistics: 0.999
Toss pattern (0,M)

CUMUF test - 0.936
Toss pattern (?-, ?)

CUMUF test 0.926
Toss pattern (0,M)




8.2.2 60 Balance Periods

In the following we consider the case of 60 balance periods of 5 operating
days each which corresponds to a operation time of 1,5 years. For the sta-
tistical tests a total false alarm probability of 5% is assumed and we con-
sider only the case that no measurement device is recalibrated, i.e. con-

stant systematic errors.

Taking the criteria detection probability and timeliness of detection into

account we do not have yet an optimal loss or detection strategy. Therefore,
we assume a set of plausible loss patterns, which are described in Tab. 7.4.
We assume a loss during 40 balance periods, but this loss may occur somehow

during 60 periods.

In group A of our Toss patterns we have a constant loss during 40 balance
periods beginning with the first (A1), eleventh (A2) and twentyfirst (A3)
period. In group B the Toss occurs in two 6 period blocks ranging from

10 to 15 and 35 to 40 (B1), so to 25 and 45 to 50 (B2) and 30 to 35 and
55 to 60 (B3).

In group C we consider a discrete loss in 8 balance periods every fifth
period beginning with period 1(L1), 11(12) and 21(C3).

In Tables 8.3-8.3 the probabilities of detecting a Joss not Jater than after
the 60th balance are presented for different total amounts of losses.

The comparison of there three tables shows that the total amount of Toss has
no influence on the structure of the detection probabilities for the different
test procedures and loss patterns. Therefore, it is sufficient to discuss

Tab. 8.5.

In the first row the optimal achievable detection probabilities (for the Neyman-
Pearson-test) are presented under the assumption that we know the actual loss
pattern. It is obvious that those tests (T4,T5,T6) which use the transformed
values of the MUF series (MUFRi) lead to considerably higher detection pro-
babilities than those tests (T,,T,) which use the original values. The test

T3 leads to higher detection probabilities for all loss patterns except A1.




The test T5 is the best one for all loss patterns and the detection proba-

biTities are close to the maximum achievable ones. The test T4 gives better
results than T6 only for the B patterns since T4 is based on the individual
MUFR's and thus more sensitive for abrupt Tosses.

Additionally to the described 9 loss pattern the very important loss pattern
of a continuous constant loss in each balance period was considered.

Table 8.3: Probability of detection for various test procedures
and the loss pattern given in Table 8.1, M=30 kg Pu

1 2 3 4 5 6
AT .973 .084 .075 .134 . 764 .324
Az .921 .053 .075 .104 .547 .457
A3 .973 .051 .075 122 .889 .708
BT  .999 .063 .075 . 586 913 .521
B2  .998 .055 .075 .746 .963 ‘ 716
B3  .999 .053 .075 .814 .978 .704
C1  .999 .063 .075 .194 .831 424
C2  .999 .054 .075 .198 487 .380
€3 .999 .052 .075 .245 .875 .699

—f

x Neyman-Pearson test for specific loss pattern

T2: Truncated Sequential CUMUF

T3: Onesided CUSUM Test of MUFi; i=1,2,...

T4: Twosided test of MUFRi, i=1,2,...

Tg:  Twosided CUSUM Test of MUFR., i=1,2,...

T6: Sequential twosided test of Power One for MUFRi, 1=1,2,000
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Table 8.4: Probability of detection for various test procedures
and the loss pattern given in Table 8.1, M=40 kg Pu

T1 T, T3 T4 T5 T6
A1 .999 .096 .085 .233 .962 .569
A2 .992 .060 .085 .159 .812 .710
A3 .999 .057 .085 197 .992 .931
B1 .999 .078 .085 912 .999 .834
B2 .999 . 062 .085 .982 .999 .935
B3  .999 . 059 .085 .994 .999 .934
c1  .999 .078 .085 .346 .982 .699
C2 .999 . 061 . 085 .376 775 .614
€3 .999 .056 . 085 .487 .988 .926

T1: Neyman-Pearson test for specific loss pattern
T2: Truncated Sequential CUMUF

T3: Onesided CUSUM Test of MUFi; i=1,2,...

T4: Twosided test of MUFRi, i=1,2,...

T5: Twosided CUSUM Test of MUFRi, i=1,2,...

T

6 Sequential twosided test of Power One for MUFRi, i=1,2,...




Table 8.5: Probability of detection for various test procedures
and the loss pattern given in Table 8.1, M=50 kg Pu

T1 T, T3 T4 T5 T6
At .999 17 .094 .390 .998 .792
A2 .999 . 066 .094 .245 .957 .892
A3 .999 . 060 .094 .31 .999 .994
BT  .999 .094 .094 .996 .999 .979
B2 .999 .065 .094 .999 .999 .995
B3 .999 .059 .094 .999 .999 .994
ct  .999 .094 .094 .554 .999 .895
c2  .999 . 064 .094 .620 .945 .813
c3  .999 .056 .094 .769 .999 .991

T1: Neyman-Pearson test for specific Toss pattern
o Truncated Sequential CUMUF
3 Onesided CUSUM Test of MUFi; i=1,2,...

T
T

T4: Twosided test of MUFRi, i=1,2,...

T5: Twosided CUSUM Test of MUFRi, i=1,25...
T

6 Sequential twosided test of Power One for MUFRi, i=1,2,...




The constant loss case is very similar to the Toss pattern with the lowest
guaranted detection probability (worst case loss pattern). In Table 8.6 the
detection probabilities for two values of total loss are presented. In this
case we recognize that tests T2 and T3 are superior to T4 to T6' T3 is al-
most as good as the Neyman-Pearson-test. In Figure 8.1 the detection proba-
bilities of the truncated sequential CUMUF test are compared with optimal
values of the Neyman-Pearson test where a loss pattern with minimal guaran-
teed detection probability is assumed, the difference in the values is al-
ways Tess than 10%; this recommends the truncated sequantial CUMUF as a
possible test procedure.

Table 8.6: Probability of detection for various test procedures and
saddlepoint loss pattern according to Eq. (3.12)

M

Kg Pu T1 T2 T3 T4 Te T6
50 .093 .085 .093 .049 .053 .052
500 .945 .903 .944 219 .264 .496

In the following we discuss the question of timeliness of detection of losses.
Until now we have not considered this question at all. However, it was necessary
to discuss the overall probability of detection since this criteria nevertheless
will be very important.

A reasonable and in quality control frequently used criterion is the average
run Tength of the test until the rejection of the null hypothesis. For a finite
sequence of periods it used only if the overall Probability of detection is
nearby one. Table 8.7 gives some examples. It indicates that in those cases
where a comparison of different tests is possible, no major differences can

be observed.




DETECTION PROBABILITY

The test Ty is better than Ts and Ty is better than Ty and Tg for pattern B
just as the overall probability of detection. For the loss pattern B it can
be concluded than on the overage 10-14 balance periods after the first loss

occured it will be detected.
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Figure 8.1 : Detection probabilities for the Neyman-Pearson test and

truncated sequential CUMUF test where the loss pattern
with minimal guaranteed detection probability is assumed.




Table 8.7: Average Run Length for test procedures T4, T5 T
> 6
and Toss patterns given in Table 8.1, M=50 kg Pu .

Probability of detection greater than .99 is given.

T, T, Tg
A1 - 49,54 -
A2 - - -
A3 - 31.50  34.41
B 14,46 14.16 -
B2 22,03 23.32  24.01
B3  31.62 33.08  34.17
C1 - 47.15 -
c2 - - -
c3 - 29.48  32.36

The best information about the timeliness of the detection of any loss is
given by the run length distribution, i.e. the development of the probabi-
lities of detection with time. Figures 8.2 - 8.4 present some examples for
tests T5 and T6.

Figure 8.2 shows that for Toss pattern A1, in which the Toss occurs right

~at the beginning of the evaluation period both tests are not able to indicaze
the Toss up that period in which the Toss is terminated. But afterwards both
tests are indicating the loss with a high detection probability. This indicates
that an extension of the loss over all the considered balance periods would
not be detected with a reasonable probability. When the loss does not occur
at the beginning of the evaluation period, the it is indicated immediately

by both test pkocedures, see loss patterns A2 and A3. Furthermore, we find
that T6 does detect the beginning of a loss pattern with a slightly better
detection probability than T5. But after a few periods Te becomes more sen-
sitive.
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Development of detection probabilities {run length distribution)

Figure 8.3 :

50 kg

for tests T5 and T6 and loss pattern B; M
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Figure 8.3 shows that loss patterns B represent an abrupt loss which is
detected immediately after its occurence. The translation of the time

axis does not give any new information. Finally, the comparison of Figures
8.2 and 8.4 indicates that loss patterns C are only a special form of
continuous loss.

Summarizing the analysis for the considered test procedures it can be shown,
that an optimum test procedure with a maximum achievable detection probability
for all possible loss patterns does not exist. It is evident that at Teast

two different types of loss patterns have to be considered. Firstly, patterns
in which a constant loss occurs in each balance period and secondly, such
patterns in which a Toss occurs in some but not in all balance periods under
consideration. For the first type of patterns the test procedures based on

the cumulative sum of the MUF values show the best detection probabilities.
The statistics for these tests can be calculated without knowing the variance -
covariance structure. This information is necessary if we want to make any
statistical inference. For the truncated sequential CUMUF test it has to

be mentionend that a guaranteed detection probability for all possible

loss patterns can be calculated.

For the second type of loss patterns test procedures based on the transformed
MUF values show the best detection probabilities. It has to be mentioned that
for calculating these statistics the exact variance - covariance structure

of the MUF values has to be known. The question of "robustness" of the test
procedures based on the transformed MUF's against changes in the variance co-
variance structure has to be further investigated.

Thus, our analysis shows that with a combination of two test, one based on
cumulative sum of MUF's and another one based on transformed MUF's, most of
the considered loss patterns can be covered with sufficient high detection
probability and in short detection time. For two tests, the development of
false alarms can be kept under control; e.g. with the help of Bonferoni's
inequality.
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