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Testverfahren zur Entdeckung eines Materialverlustes in einer Folge von 
Bilanzperioden 

Zusammenfassung 

Ein Workshop über realzeitnahe Bilanzierung wurde im KfK veranstaltet und 
kam im Dezember 1982 zu einem vorläufigen Ende. Im Rahmen dieses Workshops 
wurde eine Zahl sequentieller statistischer Tests vorgeschlagen, die in 
einem Safeguards-Konzept mit realzeitnaher Bilanzierung herangezogen werden 
können. In der vorliegenden Arbeit werden die erfolgversprechenden Tests 
einer genaueren Untersuchung unterzogen. Die Analyse basiert auf dem chemi
schen Trennprozeß einer 1000-Tonnen Modell-Wiederaufarbeitungsanlage. 

Abstract 

A workshop on Near-Real-Time Accountancy (NRTA) was held in KfK which came 
to a preliminary end in December 1982. In the framework of this workshop a 
number of sequential statistical test procedures were proposed which can be 
used in the case of a NRTA based safeguards regime. In the report the most 
promising test procedures are investigated. The ana1ysis is based on the 
chemical separation porcess of a large model reprocessing facility with 
a throughput of 1000 tonnes per year. 
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1. Introduction 

At the end of an International Workshop on the Near-Real-Time Accountancy 
Measure, which was organized by the Nuclear Materials Safeguards Project of 
the Nuclear Research Center Karlsruhe (Gupta 1983) and whose members were 
active from December 1980 until July 1982, it was agreed that several of the 
more important statistical evaluation procedures should be analysed theore
tically and numerically in order to arrive at concrete conclusions about their 
usefulness in the connection considered here. In this report the results of 
these analyses are laid down in major detail; a summary report has already 
been presented at the ESARDA Symposium in Venice (Avenhaus, Beedgen, 
Sellinschegg 1984). 

The principle of material accountancy which is applied in the framewerk of 
international nuclear material safeguards in partial fulfillment of the 
Non-Proliferation Treaty may be described as follows: At the beginning of an 
inventory period ( t

0
,t1) the real or physical inventory I

0 
of the material 

balance area under consideration is measured. In the interval of time (t
0
,t1) 

the net transfers 01, i.e., the sum of the inputminus the sum of the outputs 
are measured, which yield tagether with 1

0 
the so-called book inventory B1 = 

I0 +D 1 at time t 1, i.e., the amount of material which should be in the material 
balance area. This book inventory is compared to the realinventory 11 at time 
t 1, i .e., that amount of material which really is found in the area. If no 
material was lost or diverted this assumption is called the null hypothesis 
H0 , and if there were no measurement errors, then the difference MUF 1 
(~aterial ~naccounted for) 

is zero. If on the contrary the amount of material M1 was lost or diverted 
this assumption is called the alternative hypothesis H1 - this differences 
between book and real ending inventory were just M1. Since however random 
and systematic measurement errors cannot be avoided, these two alternatives 
are smoothed, and a test of significance has to be performed by means of 
which it can be decided, whether a non-zero value of MUF 1 can be explained by 

measurement errors, or the .alternative hypothesis has to be assumed to be 
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valid. This is done in such a way that a significance threshold s is chosen 

and that, H
0 

resp. H1 is taken to be true if MUF1 is smaller resp. larger 
then s. The value of this significance threshold is determined by means 
of the false alarm probability a, i.e., the probability that H1 is taken 
to be true when in fact H

0 
is true. A measure for the efficiency of this proce

dure is the probability of detection 1-ß, i.e. the probability that H1 taken 

to be true when in fact H1 is true. 

Two statements should be made at this point: First, a decision between H0 
and H1 can be made only at the end of an inventory period. In a concrete 
situation this may mean that this time is considered to be too 1ong which 

means that intermediate inventories become necessary. Second, in case of 
large material balance areas the measurement errors may become so large, 
that the probability of detecting a given loss or diversion is no 1onger 

considered to be sufficient which led to the idea to improve this situa

tion with the help of additional inventories. Both observations led to the 
proposal to investigate sequences of inventory periods; the whole problern 

area has become known under the name Near-Real-Time-Accountancy (NRTA). 

Let us consider first the idea to improve the probability of detecting a loss 
or diversion by introducing intermediate inventories: Given the reference time 
interval (t

0
,tn) which is partitioned into the n inventory periods 

and given the n material balance test statistics MUF 1, MUF2, ... , MUFn for 
the n inventory periods which are defined as in the case of only one inven
tory period. Then that test procedure is of interest which leads for a given 
false alarm probability to the highest achievab1e probability of detection. 

As pointed out in more detail in the third chapter of this report, the sta

tistical theory provides a solution to this problern in form of the Lemma of 
Neyman and Pearson. If one now assumes that losses or diversion of a given 

total amount occur in such a way that the total probabi1ity of detection is 
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mimimized - this is called the guaranteed probability of detection - then 
one is led to the test statistic 

which means that the optimal test procedure consists in testing the overall 
balance which means to ignore the intermediate inventories (Avenhaus and 
Jaech 1981). 

This result however, means that a decision is taken only at the end of the 
reference time interval (t

0
,tn). Therefore, we are confronted with a con

flict situation: In the interest of a high probability of detection the ma
terial balance test should be performed as late as possible. In the interest 
of a short detection time, however, intermediate inventories should be taken 
and the corresponding intermediate balances should be tested. 

In addition, a mathematical difficulty has to be considered which, by the 

way, plays no role in the determination of the Neyman-Pearson test. In two 
subsequent material balance test statistics the intermediate inventory occurs 
twice, namely as ending inventory of the first and as beginning inventory 
of the second period. This and also the fact that there may exist persistent 

systematic errors mean that these test statistics are correlated. One way 
out of this difficulty, which will be described in the fifth chapter of this 

report, is to use instead of the original MUF statistics linear combinations 
of the form 

MUFR1 MUF 1 
MUFR2 = MUF2+a21 .MUF1 
MUFR3 = MUF3+a32 .MUF2+a31 .MUF1 

where the coefficients a .. are determined in such a way that the new stati stics 
1 J 

MUFR; are uncorrelated. This way, which also has become known as the Kalman-
Filter approach, does not solve all problems connected with the corre1ations 
as we will see. 

Let us ignore for the moment the objective of a high probability of detecting 

a loss or diversion, and let us look for that test procedure which leads for 
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given lengths of the single inventory periods - which naturally have to be 

agreed upon by all parties involved - to the shortest possible detection 
time. In so doing a new problern arises: Since at the end of one inventory 
period an eventual loss or diversion cannot be detected with certainty, one 

has to take as the objective the expected detection time, i.e., the weighted 

sum of all possible detection times with the appropriate probabilities. Now, 
since these probabilities have to add to one, and since this is true only for 
an infinite time horizon, we have to consider an infinite sequence .of inventory 
periods. This, in turn, has the consequence that for most test procedures - ex
cept for the power-one-test which also will be discussed in this report - the 
total false alarm probability becomes one and can therefore no longer be used 
as a boundary condition, but must be replaced by the expect~d 11 detection 11 time 
under H

0
, i.e., the expected time until a false alarm. 

For this statistical decision problern - minimization of the expected detection 
time under H1 for a given expected detection time under H

0 
- there is no solu

tion which would correspond to the Neyman-Pearson test. But even if there ex
isted such a test we would not yet have solved all problems, because the total 

probability of detection as another objective to be minimizied was ignored and 
furthermore, because the infinite time horizon causes a conceptual difficulty: 
In the interest of all parties of the Non-Proliferation Treaty the safeguards 
authority should declare in regular intervals of timethat in.those material 

balance areas, in which the tests of the balances resulted in a confirmation 
of the null hypothesis H

0
, in fact no material was lost or diverted. Such a 

procedure however, in general is not in agreement with a test procedure which 
in principle extends over an infinite time horizon. 

As a way out of these difficulties in the last years a series of test proce
dures were proposed which had been proven useful in other areas, e.g., quality 
control. According to the agreement at the end of the before mentioned NRTA 

work?hop only a small number of those procedures were investigated and com
pared (see Table 8.1 of this report). Since two of these procedures, the CUMUF
test and the CUSUM or Page•s test, played a special role in the international 

discussion and furthermore, since they have not yet been described in sufficient 

detail in commonly used statistical textbooks, they are analyzed in some detail 

in the fourth and sixth chapter of this report. 
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It should be mentioned here that it is not meaningful to use all these 
procedures simultaneously - this has been proposed several times - since 
in such a case the false alarm probability resp. the expected detection 

time under H would get out of control. 
0 

Since all these problems are characterized by many parameters, only very 

limited analytical investigations are possible. Therefore, one had to look 
for an appropriate model plant, a useful measurement model and reasonable 
loss or diversion seenarios with the help of which numerical investigation 
could be performed. 

It turned out that the reference reprocessing plant developed by Kluth et al. 
(1981) served the purpose of this study best. It is described in the seventh 
chapter of this report, tagether with a measurement model and a set of loss 
patterns. 

Even though, it would have been meaningful, as outlined above, in those cases, 
where the expected detection time is the objective, to use the expected de
tection time under H

0 
as a boundary condition, it was decided for several 

technical reasons to use instead the total false alarm probability for the 
reference time. 

The results of the numerical investigations are collected in the 8 chapter of 

this report, together with some conclusions drawn from these results. It should 
be mentioned here, however, that no procedure turns out to be the very best 
among all circumstances. Therefore, these results have to be presented to all 

responsible practitioners in the governments and safeguards authorities so 
that they can evaluate their relative merits and take their decision, i.e., 
select an appropriate test procedure. 
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2. Multiple Balance Model 

Let us assume a discrete number of balance periods N={1,2, .... ,n, ..... } 
for a well defined class of material. Foreach period kEN we build the 
difference between book and physical inventory, which is defined as 

(2.1) 

where Dk is defined as 

(2.2) 

In Eqs. (2.1) and (2.2) we have the following meaning: 

beginning inventory of period k 

ending inventory of period k and beginning inventory of period k+1 

increase to inventory during balance period k 

decrease from inventory during balance period k. 

We assume that Ik' Rk and Sk are random variables that can be written as 

(2.3) 

for kEN. E(Ik) is the true value of inventory, Zlk is the random error 
of measurements and Slk is the systematic measurement error. Furthermore, 
we define 

(2.4) 

for all k, where E(Tk) are the true values, ZTk the random measurement errors 
and STk the systematic measurement errors. 

A further assumption is that all measurement errors are distributed 
normally with zero means and that all measurement errors are stochastically 
independent. 

The variances are defined as 

Var(Ik) = Var(Zik) + Var(Sik) 

Var(Tk) = Var(ZTk) + Var(STk) 

and (2.5) 

(2.6) 
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for k E N. 

For i ,j E_N we defi ne the cova ri ance of Ti and T j as 

aij = cov(Ti,Tj). (2. 7) 

The concept of multiple balances is primarily used for detection of possible 

nuclear materials lasses in a bulk handling facility. The detection has tobe 
timely and with a sufficient high probability. The true MUFk values are zero 
in the ideal situation of no lasses and no measurement errors. In actual prac

tice, however, nonzero MUFk 1 S may occur for a number of reasons, e.g. 
(a) measurement errors (b) loss of material. Measurement errors are included 
in our model by using the concept of random variables in determining the 
materials balance. Given a sequence of nonzero MUF values we have to decide 
whether the reason for nonzero values is due to measurement errors or loss. In 

our case we use the theory of statistical hypotheses testing to decide at the 
hand of a given sequence of MUF values whether the situation of no loss or 
loss of nuclear material is given. Loss of material may occur in a variety 
of pattern and we have to take into account that the control authority has no 
knowledge of the actual loss/diversion situation. 

One essential part for designing statistical tests for nuclear materials ac
counting data is their expected performance in detecting lasses of such mater
ial. Performance measures embody the concepts of loss-detection probability and 
loss-detection time. The performance of a special test has to be studied under 

a variety of loss patterns, which have to be selected according to reasonable 
assumptions. We try to analyse the performance of different test procedures for 
selected loss patterns. 

We assume two hypotheses for the mean values of the random variables 

MUFk, kEN. If there is no loss/diversion of material all materials 
balances have zero mean. This situation is described by the null hypothesis: 

H0 : E(MUFk) = 0 for all kEN. (2.8) 

A loss/diversion of material can take place in one or more balance periods. 

Taking this into account, we formulate the alternative hypothesis: 

(2.9) 

with mk > 0 for at least one k. 
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Hypothesis H1 means that we have a loss lk of material during balance period k. 

This loss can be zero or positive, but at least in one balance period we have 
a positive loss. In our considerations we arenot restricted to a fixed number 
of inventory periods. 

The basic problern is to find test procedures that enable a decision between 
H0 and H1. The further problern is to find test procedures with a small proba
bility of Type II error (decision for H0 if H1 is true, i.e. we have a loss 
and we do not detect it). And an even further problern is to find test procedures 

which indicate a loss/diversion almost immediately after it has happened. 

Finally, a few words about the role of statistical test procedures in interna
tional safeguards: Some concern exists about the situation that a statisti
cal test procedure leads to the decision of a loss/diversion of nuclear ma
terials if in fact this is not the case, i.e. a false alarm has happened. 

Before the inspector makes a final statement, follow-up procedures are undertaken. 
Follow-up procedures can include e.g. controls of errors made while acquiring 
the data. No generally accepted operational follow-up procedures exist at the 
present time. 

The statistical test procedures that are applied in this study assume that the 
materials accounting data which are delivered by the plant operator are not falsi
fied and an inspector verification procedure is not necessary. This is a very 
important point, because under a general safeguards situation a verification 
of operator's data has to be performed in some way. 
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3. Properties of Neyman-Pearson Test Statistics 

In this chapter we assume an arbitrary but fixed number of n balance periods, 

i.e. !NI = n. This assumption is necessary for developing the Neyman-Pearson 

test statistic (Lehmann 1959). The analysis in this part is only concerned 
with detection probability of a loss not at all with detection time. This fact 

has to be pointed out. 

3.1 Neyman-Pearson-Test 

The random vector MUF = (MUF1,MUF2, ..... ,MUFn)' ( 3. 1 ) 

has a multivariate normal distribution with variance covariance matrix ~· 

In case of no loss/diversion we get corresponding to Eq. (2.8) the null 
hypothesis 

H0 : E(MUF) = (0,0,0, ..... ,0)' (3.2) 

In case of loss/diversion we consider a fixed quantity M, which is somehow 
distributed among all n balance periods, i.e. 

n 
M = L: m. 

i = 1 1 

For the n-dimensional vector we write 

Corresponding to Eq. (2.9) we get for the alternative hypothesis 

E(MUF) = M - -

with m. > 0 for all 
1 -

n 
L: m.=t~>O. 

i = 1 1 

1,2, .... ,nand 

(3.3) 

(3.4) 

(3.5) 

Fora fixed vector (m1,m2, .... ,mn)' H0 and H1 aresimple hypotheses, 
i.e. both sets consist of only one element. This is an important assumption 
to determine the best test for Ho against H1 according to the lemma of Neyman 
and Pearson. 

The Neyman-Pearson test is defined as 

> k accept H1 a 

f 1 (muf)/f0(muf) (3.6) 

< k accept Ho - a 
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In Eq. (3.6) muf; are realizations of MUFi for i=1,2, .... ,n and 
muf = (muf1,muf2, .... ,mufn) 1

• f 0(muf) resp. f 1(muf) is the density 
of MUF under hypotheses H0 resp. H1 and a is the Type I error (false 
alarm) probability. 

After some calculations we get an equivalent expression for Eq. (3.6) 

> k I 

. a ' 

< k I 

- a ' 

accept H1 
( 3. 7) 

accept H0 
Obviously the Neyman-Pearson test statistic M1I- 1 MUF is a linear combina

tion of the single MUF; variables. 

The probability of Typ II error (no detection) for the Neyrnan-Pearson test 
in our situation is 

(3.8) 

where ~ is the standard normal distribution function and U its inverse. 

In Eq. (3.8) a special simple hypotheses is assurned. But there are 
many loss/diversion patternsthat split the amount M arnong the n balance 
periods. We must assume that an inspector does not know which diversion 
scenario a diverter will choose. But we know, that for each possible 
diversion scenario a test statistic exists that leads to the highest 
detection probability. Unfortunately we do not know its properties under 
different scenarios. 

We continue our analysis with the reasonable assurnption that a divertor 
will choose the diversion strategy that has the lowest detection probabi

lity when the inspector uses Neyman-Pearson tests. Therefore, we have to 
solve the optimization problern 

min {1-ßNP(~)} = rnin rnax {1-ß(o.~)} 
M M o 

(3.9) 

where o is a test of size a for H0 against H1 and ß(o,~) is the nondetection 
probability of o under alternative hypotheses H1. 

The optimization problern (3.9) is solved by the test 

n 
E 

i = 1 
muf. 

1 

accept H1 

accept H0 

(3.10) 
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which is the materials balance test for the whole time period. Furthermore, 
it can be shown that (3.10) is a saddle point solution (Avenhaus, Jaech 1981), 

i.e. 

min max {1-ß(o,~)} 
M o 

= max min{1-ß(o,M)} 
o M -

M 
= <I>(-- u1 ) 

le~e -a 

(3.11) 

It has tobe pointed out that the test (3.10) leads to the highest 
guaranteed detection probability taking all diversion strategies into 
account. 

The optimal loss/diversion pattern according to Eq. (3.11) is 

* M M 
L,e (3.12) 

e 1 ·L,· e 

wi th e 1 = ( 1 , 1 , ... , 1 ) . 

It is already mentioned that the Neyman-Pearson test statistics are 
linear combinations of the single MUF; values. For the rest of this 
chapter we are looking for the minimum variance unbiased linear es-
timate of the total amount of loss/diversion M (Jaech 1978). In addi-
tion to a choice between the null hypothesis and its alternative the 
control authority may also require some statement as to the size of 

the nonnull effect. To answer the question of the apparent magnitude 
of the effect, the safeguards authority needs at least point estimates; 
tests of significance will not suffice to talk about further consequences. 
The point estimate is given by 

n 
0 = ~ a. ·MUF. 

i = 1 1 1 

The a. 1 s 
1 

are to be determined from 
A 

mi n {var ( 8)} 

under the boundary condition 

n 
E ( ~ 

i = 1 
a. ·MUF.) 

1 1 

n 
~ 

i =1 
a. ·m. 

1 1 

(3.13) 

(3.14) 

(3.15) 
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With the definitions 

for = 1,2, .... ,n 

and 

and using Lagrange 1 s multiplier method we get as solution of the 
optimization problern (3.14) 

1 -1 M I (l = M ~ ._ 
M2 

MI -1 
~ ~) 

= M -1 M I (W ~-1~) • L: -

So with 

e = a 1 
• MUF = 

M 
• ~~ ·~- 1 • MUF 

W ~- 1 M 

(3.16) 

(3.17) 

(3.18) 

we recognize that the minimum variance unbiased estimate is up to a constant 
factor the Neyman-Pearson test statistic. 

It should be mentioned that Frick (1979) has determined the optimal guaranteed 
probability of detection for the test statistic (3.13) taking into account all 
loss patterns with total loss M before the general test problern (3.1 and 3.2) 
was solved with the heip of the Neyman Pearson Lemma. 

3. 2 References: 

R. Avenhaus, J.L. Jaech (1981), On Subdividing Material Balances in Time andlor 
Space. Nucl. Mater. Manage. X, 24. 

J.L. Jaech (1978), On Forming Linear Combinations of Accounting Data to detect 
Constant Small Lasses. Nucl. Mater. Manage. IV, 37-42. 

E.L. Lehmann (1959), Testing Statistical Hypotheses. John Wiley and Sons, New York. 

H. Frick (1979), On Application of Game Theory to a Problem of Testing Statistical 
Hypothesis, Int. Journal of Game Theory, Vo. 8, 3, pp. 175-192. 
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4. CUMUF Statistic 

We know that in case of a finite number of balance periods the materials 
balance test for the whole time period (3.10) is the inspector's saddle 

point strategy. The test statistic in (3.10) is the cumulative sum of 
the MUF realizations. The cumulative sum of random variables is a often 
used procedure in statistics. Following these ideas we define the model 

of cumulative MUF values: 

CUMUFk = MUF 1 + MUF2 + .... + MUFk ( 4. 1 ) 

for all k N. In case of n balance periods the random variable CUMUFn is a 
minimum variance linear unbiased estimate for the amount of loss if the loss 
happens according to the saddle point strategy. 

The random variables CUMUFk in Eq. (4.1) have anormal distribution 
but are stochastically dependent. 

For the hypotheses in Eqs. (2.9) and (4.10) we get 

Ho E(CUMUFk) = 0 for all k N (4.2) 

and 

H1 E(CUMUFk) = m1+m2+ .. +mk ~ 0 ( 4. 3) 

with mk > 0 for at least one k . 

For all k the random variable CUMUFk is an unbiased linear estimate for 
the amount of loss/diversion in the first k balance periods. That means 
if a test for loss or no loss of material gives an alarm, the CUMUF statistic 

can be used to get a quantitative idea about the amount of loss. 

4.1 Truncated Sequential CUMUF Test 

We define a sequential test procedure using the CUMUF statistic and give 

the boundary condition for a truncation at the nth balance period.(Beedgen 
1983a,b) 

The reason for looking at sequential test procedures is that the materials 

balance test for n balance periods is a fixed sample size test, that allows 

a decision only at the end of balance period n, whether the loss/diversion takes 

place in the first or last balance period. This fact causes problems with 

the requil'ement of a timely detection in international safeguards. 
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A truncated test is considered because 

- limitation of the probability of Type I error (false alarm) 
standard sequential tests can occasionally lead to very large sample sizes 

- the safeguards authorities are used to have definite inspection periods. 

The truncated test can be described as a mixture of a sequential test and 
a fixed sample size test. 

The CUMUF statistic is considered because of its properties as a point 

estimate. We now describe a sequential test with boundaries sk and 
truncation performed at the end of balance period n as follows : 

at each observation k < n test 

k > sk , accept H1 
L: muf. 

i =1 1 

~ sk ' 
take another sample (4.4a) 

and at k = n , test 

> sn ' 
accept H1 n 

L: muf. 
i =1 1 

< s - n , accept H0 (4.4b) 

where cumuf; are realizations of the random variables CUMUF;. Fig. 4.1 
illustrates the test procedure. To accept the hypothesis of no loss we 

have to use the information of all n balance periods whereas the acceptance 
of the hypothesis of loss can happen from period one to n. 

For the false alarm probability a of the truncated sequential CUMUF test, 
we get 

1-a = ProbH {CUMUF1 < s1, ..... , CUMUF < s } 
0 

- n- n (4.5) 

and with the assumption that (CUMUF1, ..... ,CUMUFn) has a multivariate 
normal distribution with covariance matrix r = (y .. ) we get 

= lJ 
s1 sn 
J J exp (- 1 x• r- 1 x) dx 7- = -

1 -a = --
1
--=:-----.--."' 

(2n)n/21rl1/2 
(4.6) 

-00 

0 u1 n -a 
n ( 1 • -1 ) d J exp - - x L ~ x 2- -

-00 
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with ykk = var(CUMUFk) 

and 1-ak = PH {CUMUFk ~ sk} , k=1,2, ... ,n. 
0 

For the probability of Type II error (nondetection) we get 

1 = --__:,.".---:;--,..",. 
(2n)n/21LI1/2 -00 

( 4. 7) 

Using the sequential truncated CUMUF test, the inspector wants a 
guaranteed detection probability for a loss/diversion of amount M 
regardless the actual loss/diversion scenario. Therefore, he wants 

to solve the optimization problern 

max min(1-ßcUMUF(~.~)) , 
~ M 

(4.8) 

where ~ obeys boundary condition Eq. (4.6) . 

The solution of (4.8) exists and is 

~ = (O,O, ... ,O,a)' (4.9a) 

for the inspector and 

~ = (0, .•• ,O,M) (4.9b) 

for the divertor if the condition u1_a ~ M/ynn is fulfilled. We sketch the proof 
of (4. 9a,b) for the case n=2. We get for Eq. (4.7) 

exp (- xi•2pxlxz + Xz 2
) 

2 ( 1-p 2 ) 

u1-az -(m1-m2)/yzz 
f 

(4.10) 

where p is correlation coefficient of CUMUF 1 and CUMUF2. From Eq. (4.10) it 

follows immediately that for fixed M=m1+m2, a1 and az the function ß is strictly 

decreasing in m
1 

, 0 ~ m1 ~ M , because u1_a
1 

- m1/y 11 is a strictly descreasing 

function in m1. Therefore, we get the result 



-18-

tnin {1-ß((a 1 ,a2 ),(tn1'M)} 1-ß((al,az),(O,M)) 
m1 0 ,M=m1 +tn2 (4.11) 

Equation (4.11) implies that if the inspector performs the truncated 
sequential CUMUF test, a loss of amount M will have the lowest detec
tion probability if the whole quantity is lost during the second balance 
period. 

Next we need to solve 

max {1-ß((ai,az),(O,M))}. 
a1 

We have 

q, 1-a 1 

2

1-az 
[
u -pU ] 

~ 

and the value in brackets is greater or equal zero if u1_a ~ M/yz 2 what 

tneans that ß is increasing for a1 in this case. Therefore, 

max {1-ß((a1 ,a2 ),(0,M))} = 1-ß((O,a),(O,M)) (4.12) 
a1 
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We conclude that for the two-dimensional case the solution of the optimization 

Problem (4.8) leads to the materials balance test (3.10). 

The proof for the case n > 2 can be accomplished by the method of mathematical 
induction. Eq. (4.9a) describes the materials balance test for the whole time 
period and we already know that this test does not meet the requirement of 
timeliness. As a consequence, we calculate the test thresholds that 

, k = 1,2, ... ,n , (4.13) 

in Eq. (4.6) is fulfilled. Now, we give the final description of the 

truncated sequential CUMUF test: 

at each observation k < n test 

k 
z: muf. 

i=1 l 

and at k=n, test 

n 
z: mufi 

i = 1 

accept H1 
( 4. 14a) 

take another sample 

accept H1 
(4.14b) 

accept H0 

For this test the loss/diversion scenario in Eq. (4.9b) leads to the 
lowest detection probability. That means an inspector has a lower 

bou~dary for the detection capabilities of this test. A reason for 

selecting the false alarm probabilities according Eq. (4.13) isthat 
in this situation it is comfortable to get a desired overall false 
alarm probability by simulation. 

A consequence of Eq. (4.8) is the fact that it is possible for the 
truncated CUMUF test to calculate guaranteed detection probabilities 

for a certain amount of loss no matter what the diversion pattern 

might be. That is a very attractive ability from the inspector point 
of view. 
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5. The Independence Transformation 

Whereas in the case of the Neyman-Pearson Test, i.e. that test which 

maximizes the probability of detection for a finite series of balance 

periods and a given total false alarm probability, the stochastic de

pendency of the MUF variables did not cause any analytical problems, 

it does so in the case of sequential test procedures. Therefore, it 

is a natural idea, to transform the original MUF variables into un

correlated - and consequently, because of their normality independent -
random variables. 

This idea was formulated for the firsttime by K.B. Stewart (1958) who 

started, however, with a different motivation. Later, R. Avenhaus and 

H. Frick (1977) used this independency transformation in order to deter

mine the guaranteed probability of detection for a finite number of 
balance periods and a given false alarm probability. 

In 1977, D.H. Pike and G.W. Morrison presented this Kalman Filterapproach 

which turned out to be exactly the same as Stewart's approach. D.J. Pike, 

A.J. Wood and coworkers (1980) finally interpreted it in terms of condi
tional expectations. 

In this chapter, three approaches to the independence transformation are 
presented: Stewart's approach, diagonalization of the covariance matrix of 

the MUF-vector, and the use of conditional expectations. The equivalent 

to the 1 a tter one, name ly the Ka lman Filter approach, i s not presented here 

because of its completely different terminology. In addition, only the most 

simple sequential test procedure based on the independently transformed 

MUF's will be discussed. Their use in connection with further test proce

dures will be the subject of different chapters of this paper. 
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5.1 Stewart's Starting Inventory 

K.B. Stewart startedas follows: Let us assume that the inspector has accept

ed the null hypothesis (no loss or diversion of material) at the end of the 

first balance period. Then the question arises how to choose the initial 
inventory for the subsequent period. It would be natural to take the value 

of the real i nventory, I 1. Si nce, however, the vari ances of the rea 1 i nvento

ry, var(I 1), and of the book inventory, var(B1), may be very different the 

inspector better will take a linear combination of both inventories and give 

that inventory the more weight, the smaller its variance is. 

According to this procedure, the starting inventory of a second period is 

(5-l) 

and its variance is in the case, that all inventories and flow measurements 

are uncorrelated, given by 

(5-2) 

The weighting factor c2 is determined in such a way that the variance 

var(S 1) is minimized. This leads to the following determinant for c2: 

d a var( sl) 0 ' (5-3) 
c 

which gives 

(5-4) 
var( I 1 )+var( B1) 

The variance of the optimal starting inventory S~ is given by the relation 

(5-5) 

which is smaller than both variances of r1 and B
1

: Even if one of the two 

inventories has a much larger variance than the other, it is useful in the 
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sense of a small variance, to take it into account, with a small weighting 

factor, naturally. 

The covariance of MUF 1 and the new material balance test statistic MUFR~l) 
for the second period, defined by 

(5-6) 

is given by 

(5-7) 

* because of the determinant (5-3) for c 2 whidl means that MUF 1 and MUFR2 are 

independent because of our normality assumptions. 

Let us now consider n inventory periods with 

MUF. = I . 1+0.- I . , 
1 1 - 1 1 

= 1,2, ... n . (5-8) 

In analogy to (5-1) we define the starting inventory s. 1 for the i-th 
1-

inventory period as 

1,2, ... n, (5-9) 

I 
0 

where the transfonned book inventory ßR. of the i-th inventory period is 
l 

given by 

BR. 
1 

ßR. 
1 

s. 1+0., 
1- 1 

1,2, ... , n, 

(5-10) 
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The transformed MUF variables then are given by 

MUFR( 1) S. 1 + D.- I., 
1 1 - 1 1 

1,2 , ... 

MUFRi l) = I~UF 1 (5-11) 

For these transformed variables one obtains, as one can see immediately, 

the following recursive relation: 

MUFR(l) 
1 

MUF 1 , 

MUFR( 1) = c.·MUFR( 1
1) + MUF., 

1 1 1 - 1 

The optimal values of the weighting factors c., 
1 

are determined as before: 

2, ... ,n 

2, ... , n, 

d d var( S
1
.) 

ci+l 
2·rc .. (var(S. 1)+var(D.))-(1-C. 1)var(I.)J 

L'1+1 1- 1 1+ 1· 

which leads to 

var(I;) 
1,2, ... n-1, 

and furthermore, to 

1 1 1 
--~*- = --- + --* 
var(S;) var(I;) var(S;_ 1)+var(D1) 

1,2, ... n. 

(5-12) 

0 , 

(5-13) 

(5-14a) 

(5-14b) 

* From relation (5-14a) we see that the optimal weighting factors C; can be 

determined by a continued fraction development, using the recursive relation 
* (5-14b) for the optimal starting inventories S., i = 0,1,2, .... 
l 
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Again, two subsequent MUFR( 1)•s are uncorrelated which means that all 

MUFRp), i = 1, ... ,n, are uncorrelated: Wehave with (5-12) and (5-13) 

cov(MUFR~ 1 ) MUFR~ 1 ) = 
1 ' 1+ 1 

= cov(MUFR( 1), c~ 1 ·MUFR~ 1 )+MUF. 
1

) = 
1 1+ 1 1+ 

* cov(S. 1+0.-I., c. 1(S. 1+0.-I.)+I.+O. 1-r. 1) 
1- 1 1 1+ 1- 1 1 1 1+ 1+ 

* * = cov(S. 1+0.-l., c. 1(S. 1+0.)+(1-c. 1)·1. = 
1- 1 1 1+ 1+ 1 1+ 1 

* * = c . 1• ( v a r ( S . 1 ) + v a r ( 0 . ) - ( 1-c . 1 ) • v a r ( I . ) = 
1+ 1- 1 1+ 1 

::: 0 (5-15) 

which means again that the MUFR( 1)•s are independent because of our normality 

assumptions. 

* * For later purposes, we determine explicitly the coefficients c 2 and c 3. From 

(5-14a) and (5-14b) we get 

* var(I 1) 
c2 = ---------

var(I0)+var(01)+var(I1) 

and furthermore, 

var(I 1) 

var(f~UF 1) 

var(02)+var(I 2)+ 1 + 1 
var(B 1) var(I 1) 

var(MUF 1)·var(I 2) 

var(MUF 1)·var(MUFl)-var(I 1)2 

(5-14a') 

(5-14a") 

So far, we have assumed that all inventories and flow measurements are 

mutually uncorrelated. If we assume that inventories and flow measurements 
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within one inventory period are correlated, butthat inventories and flow 

measurements of different periods are uncorrelated, then we get results 

in analogy to those given above: if we determine the starting inventories 

such that their variances areminimal, then the resulting MUFR(l) variables 

are uncorrelated and thus, independent. If, however, inventories and flow 

measurements of different inventory periods are correlated - which may 

happen in practice, if, e.g., measurement instruments are not recalibrat

ed after each period, then the starting inventory with minimal variance 

does not lead any more to uncorrelated MUF variables. 

5.2 Diagonalization of the covariance matrix 

Whereas Stewart's original intention was to construct starting inventories 

with minimal variance, and uncorrelated transformed MUFR's were a by-product, 

we now directly try to determine transformed MUFR's which are uncorrelated 

for any covariance structure of the original MUF's. 

We define new material balance test statistics by the following linear 

trans forma ti ons: 

MUFR( 2) 
1 

MUFR( 2) 
2 

MUFR( 2) 
3 

MUFR( 2) 
l 

MUFR( 2) 
n 

MUF1 

a21 .MuF1 + MUF2 

a31 -MUF1 + a32 ·MUF2 + MUF3 

(5-16) 

and we want to determine the coefficients of the transformation in such a 

way that the transformed MUFR's are uncorrelated: 

cov(MUFR( 2), MUFR( 2)) 
l J 

Ofol" lj (5-17) 
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The set (5-17) of equations consists of i·n·(n-1) linear independent 

equations, this is just the number of coefficients to be determined. 

If we compare (5-16) with (5-12), assuming that we will get the same trans-

d (1) (2) . h forme variables, i .e., MUFR. = MUFR. , 1 = 1,2, ... n, t en we get 
1 1 

* a21 c2 

and for > 3 

* * * * ai 1 Ci •Ci -l'Ci -2' .... C2 

* * * ai2 ci-1.ci-2' · .c2 

* a. . 1 
1 , 1- c2 (5-18) 

For the purpose of illustration, we determine the first three coefficients. 

With the notation 

we get 

var(MUF.) 
1 

2 o;, i = 1,2, ... , 

cov(MUF
1
., MUFJ.) = o .. = p .. •o.o., irfj 

1J 1J 1 J 

o2 
a21 - p 12. 

01 

0 12°13-p23 03 
a32 = -·2 o2 l-pl2 

0 12°23-0 13 03 
a31 --z---. 

1-p 12 01 

Furthermore, we get 

var( MUFR~ 2)) 

(5-19) 

(5-18') 

(5-20a) 



and also 

-28-

2 
( 0 23- 0 12°13) 

2 ) 
l-p 12 

(5-20b) 

which means that both the variances of MUFR~ 2 ) and MUFR~ 2 ) are smaller 

than those of MUF2 and MUF3. In fact, it can be shown generally that among 

all linear transformations of the form (5-16) the coefficients aij' which 
satisfy the conditions (5-17) minimize the variances of the transformed 

variables as we will see in the next section. In our example, we get from 

the conditions 

(5-21) 

again exactly the coefficients (5-18). 

In the special case considered before, 

cov(MUF1, MUF2) - var(I 1) 

cov(MUF2 , MUF3) var( r2) 

cov(MUF1, MUF3) 0 

we get from (5-18') 



var(I 1) 
a21 = var(MOF1) 
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The comparison with formulae (5-14a 1
) and (5-14a 11

) gives 

which is not surprising. 

In the following section we will present a statistical interpretation of 
the diagonalization of the covariance matrix of the MUF., i = 1,2, ... ,n, 

. * 1 
i.e., of the transformation coefficients c; resp. aij in terms of (partial) 
regression coefficients, and we will see that the MUF~ 2 ) have a minimum 
variance among all traosformed MUF 1s of the form (5-16). It should be mention
ed, however, that this interpretation is based on the normality of the MUF; 

variables, whereas Stewart 1s approach and also the diagonalization of the 
covariance matrix did not require such an assumption. 

5.3 Conditional expectations 

Quite generally, let us consider a {p+q)-dimensional random vextor X, which 
is normally distributed with expectation vector and covariance matrix 

(5-22) 

We partition this p+q-dimensional random vector into the p-dimensional random 
vector x(l) and into the q-dimensional random vector x( 2): 

~ =(ig~) . (5-23) 
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Accordingly, we partition the covariance matrix g in the following form 

(5-24) 

where the submatrices gll' g12 , g21 = gi2 and g22 are given by the relations 

(5-25) 

We consider the following linear transformation: 

y(1) x(l) lp Q x(l) 
- -

y :::. 
y(2) = 

x(2)_~ .~-l.x(l) 
:::: 

-1 X ( 2) 
-h2~ll ~p - =12 =11 -

(5-26) 

where ~p and ~q are unity matrices with ranks p and q. 

According to Anderson (1957), p. 23 the two random vectors 1( 1) and 1( 2) 
are uncorrelated, 

(5-27) 

and therefore, because of our normality assumptions, also independent. 

Furthermore, we consider the conditional distribution of ~( 1 ), given ~( 2 ) = ~( 2 ). 
It is again anormal distribution (see, e.g. Anderson (1957), 
p.28, eq. (5)) the expected value and variance of which are 

E(~(2)_j~(l)) = g21"gii·~(1) (5-28) 

cov(~( 2 )1~( 1 )) = g22-g2fg1i·g12 =: g22•1 · (5-29) 

Because of (5-28), the matrix 

is called the mat~ix of (pa~tial) regression coefficients of x( 1) on x( 2). 
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If we consider in (5-28) ~( 2 } again as the random variable ~( 2 ), then we 

see with (5-26) and (5-27), that the random vectors 

(5-30) 

are uncorrelated and therefore independent. The second random variable, 
as a linear combination of normally distributed random variables, is 
again normally distributed with expected vector zero and variance 

(5-31) 

In addition, it can be shown (Anderson (1957), p. 32) that among all 
linear combinations ~·~( 2 ) that linear combination which minimizes the 
variance of the random variable 

is just given by the linear combination 

The numerical calculation of the transformation, i.e. of 
regression coefficients may be achieved with the help of 
formulae given by Anderson (1957) on page 34ff: Let 

the (partial) 
some general 

(5-32) 

be a normally distributed random vector, where ~( 1 ) is of p1 components, 
x( 2) of p2 components, and x( 3) of p3 components. Then we have 

E(X(1) ~~(2)' ~(3)) = E(~(l) ~~(3)) + h2·3·~2~·3·(~(2) - E(~(2) ~~(3))), 

(5-33) 

where ~ 12 • 3 and g22 •3 are given by 
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In particular, one obtains for p1=p,p 2=1,p3=p-q-1, the components 

a. 1 2 •a. 1 2 l,q+ •q+ , ... ,p J,q+ •q+ , ... ,p 
crij•q+1, ... ,p = crij•q+2, ... ,p- a 1 1 2 q+ 'q+ • q+ ' ... , p 

i,j = 1, ... ,q, 

a .. 
11 

2 
= a. 

1 

E(X(3)1X(2)x(l))= E(X(3)1X(1))+ a32·~ ·(X(2)_E(X(2)1X(1))) 
0 22·1 

(5-33a) 

(5-33b) 

(5-34) 

(5-34a) 

(5-34b) 

Let us apply these general results to our concrete problem. Under the null 
hypothesis H the MUF.-variables have zero expectation values, therefore 

0 1 
the transformed variables 

(5-35) 

are independent of the MUFf 3) ... MUF~=f· Since, however, the transformed 
variables arelinear combinations of the original variables, the MUFR~ 3 ) 
arealso independent of the MUFR~=i· .. MUFRi 3). Furthermore, since these 
properties hold also for random variables with non-zero expectations, the 
transformed variables, defined according to (5-30) for MUF variables with 

zero expectations, arealso independent if the MUF; have non-zero expecta
tions. Finally, because of the minimum variance property of the random 
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variables 

i = 1,2, ... n, 

which we mentioned before, we know that the MUFR~ 3 ) have a minimum variance 

among all transformed MUF's of the form 

i -1 
MUF. - L a .. · MUF. 

1 j=1 1J J 
i = 1 ... n 

in formulae (5-21) we showed for the purpose of illustration for i=1 and 2 

that the variances of the MUF~ 3 ) are smaller than those of the MUF;· 

If we apply the general formulae (5-33) resp. (5-34) to the problern of the 

determination of the coefficients c .. of the transformation (5-16), we get 
1J 

the recursive relations (Sellinschegg, 1982) 

0 .. 1 . 1 1J ..... J- 0 i,j+l·i .... j 0 . . 1 1 . 2 1,1- .... 1-a .. 
1 J 0 .. 1 . 1 JJ 0 •••• J- 0 j+1,j+1·i .... j 

• a. 1 . 
0 i-1,i-1·1. .. j-1 1

- ,J 

or in a somewhat different notation, 

a .. 
1 J 

where 

a .. = 1 

" 

0 .. 1 . 1 1 J. . .. J-
0 .. 1 . 1 JJ. . .. J-

i -j-1 0 \ i ,j+k·l. .. j+k-1 
L ·aj+k,j 

k=l 0 j+k,j+k·l. ... j+k+l 
for j <i 

(5-36) 

As before, we determine explicitly the first transformation coefficients. 
We have with (5-34b) 

where 

0 12 cov(MUF1,MUF2) 
-2- = var(MOF1) == - a21 
01 

a nd furthermore, with (5-34a), 
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cov(MUF1, MUF3) 
o32·1 = cov(MUFz,MUF3) - var(MOF1) 

cov(MUF1,MUF2) 
0 22·1 = var(MUF2) - var(MUF~ 

and therefore, 

cov(MUF1,MUF2)·cov(MUF2,MUF3) 

var(MUF1)·var(MUF2)-cov(MUF1,MUF2)2 = 

o32 . 1 var(MUF1)cov(MUF2 ,MUF3)-cov(MUF1,MUF3) 
- -z--- = var(MUF1)var(MUF2)-cov(MUF1,MUF2) 

0 22·1 

in accordance with relations (5-18'). 
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5.4 Test procedures based on the single transformed MUF's 

Let us assume now that the inspector obtains sequentially the observed 

data muf1, muf2, ... ,mufn, and that he has to decide whether or not material 

has been lost or diverted. This means that he has to perform a statistical 
test with the two hypothesis 

E(MUF.) 
1 M.' 1 

(5-37) 
i = 1 ... n . 

If he decides on the basis 

MUF., which from now on we 
1 

of the single MUF. or the single transformed 
1 

will call MUFR., then he has to determine an 
1 

acceptance region for each MUF. 
1 

resp. ~1UFR., i .e., a region for an observed 
1 

mufi resp. mufri which leads to the rejection of the alternative hypothesis 

Hl. 

Naturally we assume under the alternative hypothesis H1 

E(MUF.) > 0 for i = l ... n . 
1 -

(5-37') 

Therefore a one-sided test procedure seems to be reasonable. This means that 

the acceptance regions for the single test, now based on the MUFR., are given 
1 

by the sets 

{mufr; : mufr; _::. k;} , i = 1. .. n . (5-38) 

The significance thresholds k. are determined with the help of the single 
1 

false alarm probabilities a., given by 
1 

k. 
1-a. = prob{MUFR.<k./H} = ,!>( 1 

), i = l. ... n, 
1 1

-
1 0 /var(t~OFR.) 

1 

where <P is the normal distribution function, which leads to 

k. 
1 

/var(MOFR. )-U
1 

, 
1 -a; 1 ... n, 

(5-39) 

(5-39') 

where U is the inverse of <P; the variances of the transformed MUF variables 
are 
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* var(MUFR.) = var(S. 1)+var(D.)+var(I.) 
1 1 - 1 1 

(5-39") 

* where the variances var(S.) are given by equations (5-14a and b). 
1 

The overall false alarm probability a is given by the relation 

(5-40) 

Because of the independence of the MUFR;, i = 1 ... n, we get 

n 
1-a = rr prob{MUFR.<k. jH } 

. 1 1- 1 0 
1= 

or, with (5-39) simply 

n 
1-a = rr ( 1-a . ) 

i=1 1 
(5-41) 

Pragmatically, the inspector will fix the value of the overall false alarm 
probability and take the same values for the single false alarm probabilities, 

1-a i = n;r:a , i = 1 ... n, 

thus we get for the significance thresholds 

k. = lvar(MUFR. )·U rr-- , i = 1. .. n 1 1 n ,, 1 -a 

The single probabilities 1-ß. of detection are given by the relations 
1 

ß. = prob{MUFR.<k. jH 1 l 
1 1 1 

= 1 ... n 

or wi th ( 5 -39" ) 

(5-39") 

(5-42) 

E (MUFR;) 
ß . = ·~ ( - u rr-.;-) , 

1 /var( MUFR;) n. -cx 
1. .. n (5-42') 

According to (5-16), the expected values E(MUFR.) are given by the 
1 

relations 
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n=1 
E(MUFR ) = I a ·M. + M 

n i= 1 n; 1 n 
(5-43a) 

or by the recursive relation derived from (5-12), 

= 2, ... n, (5-43b) 

* where the relation between c. and a .. is given by (5-18). The overall 
1 1 J 

probability of detection 1-ß then is given by 

1- ß 
n 

1- n ß· 
i = 1 1 

In the special case n 2 we obtain with (5-19) 

1-ß 

(5-44) 

Let us compare this total probability of detection with that based on the 

original MUF data. The single probabilities of detection 1-ß;, i=l,2, as 

functions of the single false alarm probabilities ~i are given by the 

re 1 at i ons 

= 1,2 ( 5-45) 

The overall detection probability 1-ß and false alarm probability o: 

are given by 

1-8 = M 
, ul "' - 1 M2 pl2 Ml 

1-B(U "' - - --y -+ -:----2 . p 12) l-a1 o1 -a2 1-p12 02 l-p 12 01 

(5-46a) 
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(5-46b) 

where 

h k 

1 B(h ,k ,q) = ----

2nh-T 
-oo 

is the biavariate normal distribution. 

Between "' "' and a we have the relations (Avenhaus 1979) a1, a2 

1-~ > "' "' ( 1-a1) ( 1-a2) Pl2~0 (5-47a) 

for 
(1-~1)( 1 -~2) ~ 1-a>1-6: -6: - 1 2 p 12-~0 

"' "' Between ß and s., i=1,2, we have the relations 
1 

(5-47b) 

for 

"' "' Now we have for p 12 <0 and a1=a 2 the relations 

1-('( 2 "' 2 (/1-a) <(1-a) 1 
, --.:---T 

1-p 12 

therefore 

however, we do not arrive at a relation between ß and ß. 

We see, even though the variances of the transformed MUF 1 s are smaller than 

those of the original ones, we cannot decide analytically that the test which 
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is based on the transformed MUF's, leads to a smaller overall probability 

of detection. Our numerical studies, however, will demonstrate that 

in all classes considered this is true, indeed, for a wide class of 

parameter values. 

So far, we have considered a one-sided test procedure for the transformed 

MUF variables. Since the transformation coefficients aij' however, are 
not necessarily positive, we can get negative expected transformed MUF

values for the alternative hypothesis H1 which means that we should use 

a two sided test, i.e. a test the acceptance regions of which are given by 
the sets 

{mufr.: -k. < mufr. < k.} 
1 1 1 1 

= 1 ... n (5-48) 

In this case, the significance thresholds k. are given by the relations 
1 

ki = lvar(MDFRi )-U 1_a./ 2 . 
1 

(5-49) 

The overall false alarm probability is again given by (5-41) thus we get, 

if we put all the single false alarm probabilities the same, 

1 n. 1 n 
1-a;f2 = 1- z• (1- vh} = -z( 1+ ll-a) 

The single probabilities of detection are 

1-ß. 
1 

E(MUFR.) 
1> ( 1 

/var(MUFR.) 
1 

E(MUFR.) 
1 u )-1>(- - u ) 

l-a;/ 2 /var(MOFR.) l-a/ 2 
1 

and the overall probability of detection is again given by formula (5-44). 

5. 5 References 

T.W. Anderson (1957), An Introduction to Multivariate Statistical Analysis, 

John Wiley and Sons, New York. 

R. Avenhaus and H. Frick (1977), Game Theoretical Treatment of Material 

Accountability Problems. International Journal of Game Theory, 

Vol. 5, Iss. 2/3, pp. 117-135. 



-40-

R. Avenhaus (1979), Significance Thresholds of One-sided Tests 

forMeans of Bivariate Normally Distributed Variables. 

Communications in Statistics, Vol. A 8, No. 3, pp. 223-235. 

D.H. Pike and G.W. Morrison (1979), Enhancement of Loss Detection Capability 

Using a Combination of the Kalman Filter/Linear Smoother and 

Controllable Unit Accounting Approach. Proceedings of the 20th Annual 

INMM Meeting, Albuquerque, New Mexico, July 16-19, 1979. 

D.J. Pike, A.J. Woods, and D.M. Rose (1980), A Critical Appraisal of the 

Use of Estimators for the Detection of Loss in Nuclear Material 

Accountancy. Technical Report 1/80/07, University of Reading, U.K. 

K.B. Stewart (1958), A New Weighted Estimate. Technometries 12, pp. 247-258. 

0. Sellinschegg (1982), A Statistic Sensitive to Deviations from Zero-Loss 

Conditions in a Sequence of Material Balances, Nuc.Mater.Manage., 

Vol. XI, Number 4, pp. 48-59. 



-41-

6. Cumulative Sum Tests 

Cumulative sum tests, or shortly CUSUM tests, which play an important role 

in quality control, are constructed in the following way: One assumes that 

a given null hypothesis, e.g. a production plan, is correct. As long as 

the test, which is repeated sequentially in regular time distances, confirms 

this null hypothesis, the test is continued. lf, however, the null hypothe

sis is rejected, the test stops (and with it, e.g., the production). 

These tests serve the purpose that the system to be observed is not inter
fered with as long as the null hypothesis is maintained, however, that a 

deviation from this hypothesis is to be detected as soon as possible. 

Therefore, the criteria for these tests are no longer false alarm and 
detection probabilities, but average run lengths, i.e. averagetime 

distances between rejections of the null hypothesis. 

In order to illustrate these ideas, first a simple sequential test procedure 

for independent variables is discussed. Thereafter, CUSUM tests for identical

ly and independently distributed variables, and finally CUSUM tests for 

identically distributed variables with a special covariance structure are 

considered. In both cases, general properties will be analyzed, and integral 

equations for average run lengths will be established. 

In the ninth chapter, we will present numerical results for CUSUM tests 

which are based on the original material balance test statistics 

MUFi, i=l ... n, as well as on the independently transformed statistics 

MUFR;, i=l ... n, which we introduced in the foregoing chapter. For an 
analytical treatment the former ones are better suited, since the indepen

dence transformation leads to vat·iables which are no longer identically 

distributed therefore, the integral equation does not hold any more, and 

one has to use simulation methods. From the efficiency point of view, 

however, it is much better to use the transformed variables. 
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6.1 Simple sequential test for independently and identically normally 

distributed random variables 

Given the independently and identically normally distributed random variables 

X1, X2, .... Let the null hypothesis H
0 

be 

1, 2,". 

and let the alternative hypothesis H1 be 

H1: There exists a point T in time such that 

1,2, ... t-1, 

T, t+1, 

After the i-th observation x. it is decided 
l 

H
0 

is not rejected, if x. < s, 
1-

H 
0 

i s re je c te d , i f x i > s , i = 1 , 2 , . . . 

The significance thPeshold is connected with the single false alaPm 

pPobabi li ty via 

1-a 

(6-1) 

(6-2) 

(6-3) 

(6-4) 

Since, however, in principle an infinite number of single tests can be per

formed, the total false alarm probability is equal to one, i.e. not a 

reasonable criterion for the determination of s. Instead, the PW7 le11gth RL, 
i.e., the number of Observations until the rejection of H

0
, is taken, the 

distribution under H
0 

of which is given by 

prob
0

(RL=i) = a·(l-a)i- 1, i = 1,2, ... , 

and the expected value ARL of which is given by 
0 

ARL 
0 

~ . 1 
L l ·prob ( R L = i ) = -

i=1 ° a. 

the value of which we now use for the determination of s. 

( 6-5) 

( 6-6) 
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Under H1, the single probabilities of detection 1-ß are given by 

i.e. the run length distribution is 

i -1 prob1(RL=i) = (1-ß)·ß , 

and therefore its expected value 

00 

1 
T-ß 

(6-7) 

(6-8) 

(6-9) 

In case of the CUSUM test procedure which will be treated in the following, 

the corresponding relations can no langer be given explicitly. 

6.2 Definition of CUSUM tests and general properties 

Given the independently and identically distributed random variables x
1

, x
2

, ... 

Let the two hypotheses H
0 

and H1 be 

H
0

: X;, i=1,2, ... , are identically distributed with distribution 

function F (6-lOa) 
0 

H1: There exists a pointTintime suchthat x1, ... Xi-l are identically 

distributed with distribution function F
0 

and that XT, XT+l' are 
identically distributed with distribution function F1. (6-lOb) 

The CUSUM test procedure for this problem is given by 

Definition 6.1 (Page 1954, 1955) 

Given the test problem (6-10). With Y; X;-k, i=l,2, ... , and 

n 
s~ IY2 ,s~ o ( 6-11) 

k=l 

the null hypothesis H
0 

is rejected if 
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s ' - mi n s ~ > h , h > 0 
n O<i <n , 

(6-12) 

k is called reference vaZue, h decision vaZue. 0 
The CUSUM test procedure, as defined above, can be formulated alternative

ly, as can be proven easily: 

Theorem 6. 2 

Let us define the sequence Sn of random variables by the following recursive 
re l ati on 

(6-13) 

and let us decide that H
0 

is rejected after the n-th observation, if 

s > h, h > 0 
n (6-14) 

Then H
0 

is rejected after n Observations if H
0 

is rejected after n observa-

tions with the test procedure given by Definition 6.1. 0 

In the following we introduce some characteristic quantities of the CUSUM 

test (see Figure 6.1), 

Sn (o) 
h 

s '1 n g I e test sequence 
I 

I 
I 

s in g I e tes t ~ I obseT\-0 I 
0 I 0 

0 

0 I 0 0 I 0 

I 0 0 0 o I o 0 

0 (o) (o) (o) 

Figure 6.1: Observations, single tests and single test sequences for 
CUSUM tests 

I 
I 

.... I 
I 

0 I 
I 
I 
I 
I 
I 

n 
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Definition 6. 3 

A single test is a sequence of observations which starts with S =z, O<z<h, 
0 --

and which ends at the lower (0) or at the upper (h) limit. In the extreme 

case the single test may consist of one single observation. 

A single test sequence is a sequence of single tests, which starts with 

S
0

=z, O~z~h, and which ends at the upper limit (h). [] 

Quite generally we characterize CUSUM test by their run lengths: 

Definition 6. 4 

The run length RL of a CUSUM tes t i s g i ven by 

RL = min{nEIN:S >h} n-

The mass function of the run length of a CUSUM test, which starts at 
S =S'=z is written as 

0 0 ' 

(6-15) 

(6-16) 

The expected (or average) run length RL, i.e. the number of observations of 

a single test sequence, which starts at S =z, is written as 
0 

L(z) 

furthermore, 

cc 

I i·P·(Z) 
i = l 1 

L( 0) ARL 

(6-17) 

(6-17') 

is the expected run length of a single test sequence which starts at S
0

=0. 

F in a ll y, we ca 11 

P ( z ) = prob ( 0 <Si < h f o r i = 1. .. n - 1 Sn· 0 , n = 1 , 2 , .. . I S 
0 

= z ) 

the probability that a single test, which starts at S =z, ends below zero, 
0 
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and we call N(z) the expected number of observations of a single test. O 

Relations between these quantities gives 

Theorem 6. 5 

The quantities L(z), P(z) and N(z), which were introduced in Definition 6.4, 

fulfi 11 the re 1 ati ons 

L(O) ~ (6-18) 

L(z) N(z) + L(O)·P(z) (6-19) 

Scetch of the proof 

1) The probability that- if we startat S =0 - exactly s single tests are 
0 

performed, is 

P(O)s- 1.(1-P(O)), s = 1,2, ... 

Therefore the expected number of single tests is 

I S·P(O)s-l·(1-P(O)) 
s=l 

1 
1-P(O) 

Since the expected number of observations of a single test is just 

N ( 0) , we ge t ( 6-18) . 

2) If we startat S =z, L(z) is given by the expected number N(z) of 
0 

observations of the first single test, if the first single test ends 

at h, multiplied with its probability, plus the expected number of 

observations of the first single test and the number of observations 

of a sequence of tests which starts at zero, if the first single test 

ends at zero, multiplied with its probability: 

L(z) N(z)·(l-P(z)) + (N(z) + L(O))·(l-P(z)) 

N(z) + L(O)·P(z) 0 
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6.3 CUSUM tests for independent continuous random variables 

In order to determine integral equations for the average run lengths for 

independently and continuously distributed random variables, we first 

determine recursive integral equations for the mass function of the run 

length RL: 

Theorem 6.6 

Let f(x) and F(x) be density and distribution function of the independently 
and continuously distributed random variables X. ,i=1,2, .... Then there 

1 

is the following recursive integral equation for the mass function p (z) of 
n 

the run length RL of the CUSUM test which starts at S =S'=z: 
0 0 

Proof 

h 
Pn(z) Pn_ 1(0)·F(k-z)+ fpn_ 1(z)·f(y+k-z)dy for n=2,3, ... 

0 

1-F(h-z+k) 
( 6-20) 

Let us consider all cases which are possible for the first step of the test, 
see Table 6.1: 

Table 6.1: Possible cases for the first step of a CUSUM test 

Observation New value of the tes t 
s ta ti s ti c (score) 

x<k-z 0 -

k-Z<X<h+k-z z+x-k --
X>h+k-z h -

According to this table we have 

prob(X~k-z) = F(k-z) 

prob(x<X~x+dxlk-z<X<h+k-z) = f(x)dx 

prob(X>h+k-z) = 1-F(h+k-z) 

Result 

tes t i s conti nued 

tes t i s continued 

rejecti on of H
0 
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The probability that the run length RL of the test is n>l, is according 

to the Total Probability Theorem given by 

Pn(z) = prob(RL=nlz) = 

prob(RL=niX~k-z)·prob(X~k-z) + 

h+k-z 
+ f prob(RL=nlx<X~x+dxlk-z<X<h+k-z) ~ 

k-z 

® prob(x<X~x+dxJh-Z<X<h+k-z)dx + 

+ prob(RL=niX>h+k-z)·prob(X>h+k-z) 

Now we have according to this table 

prob(RL=niX~k-z)=pn-l(O) , 

prob(RL=nlx<X~x+dxlh-z<X<h+k-z)=pn-l(z+x-k) 

prob(RL=niX>h+k-z)=O, 
therefore 

h+k-z 
Pn(z)=pn_ 1(0)·F(k-z) + f p _1(z+x-k)·f(x)dx 

k-z n 

which completes the proof with the transformation y=z+x-k. 

With the help of this Theorem we prove 

Theorem 6. 7 

LJ 

Let f(x) and F(x) be density and distribution function of the independently 
and continuously distributed random variables X. ,i=l,2, .... Then the follow, 
ing integral equation holds for the expected run length L(z) of the CUSUM 
test, which starts at S =S'=z: 

0 0 

h 
L(z)=L(O)·F(k-z)+ fL(y)·f(y-z+k)dy 

0 

(6-21) 
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Proof 

Because of 
00 

we get immediately with (6-20) 

00 

L(z) = L n•p (z) = 
n=1 n 

00 

= 1+ L (n-1)·pn(z) = 
n=2 

oo h+k-z 
= 1+ L (n-l)·[Pn_1(0)·F(k-z)+ J pn_1(z+x-k)·f(x)dxJ = 

n=2 k-z 

h+k-z 
1+L(O)·F(k-z)+ J L(z+x-k)·f(x)dx = 

k-z 

h 
= 1+L(O)·F(k-z)+ fL(y)·f(y-z+k)dy 

0 

For the sake of completeness, we present similar formulae for P(z) and 
N(z) without proof: 

Theorem 6.8 

For the quantities P(z) and N(z) we have 

k-z-h h 
P(z) = F(k-z)+ J f(x)·P(z+x-k)dx = Jf(y+k-z)·P(y)dy 

k-z o 

h-z-k h 
N(z) = 1+ J f(x)·N(z+x-h)dx 1+ Jf(y-k-z)N(y)dy 

k-z o 

D 

(6-22) 

(6-23) 

0 



-50-

Let us consider now the special case that the random variables X; ,1=1,2, ... 

are independently and normally distributed: 

H . x. 2 for 1. • • T 'V n(11
0

,o ) = o· 1 

Hl: x. 2 for T+l, (6-24) 
1 

rv n(11 1,o ) .... 

The question arises how to fix the values of the reference and decision values 

k and h. We answer this question by considering the analogy between CUSUM and 

Sequential probability Ratio (SPR) tests (Lehmann 1959). 

In case of the CUSUM test a single test of the single test sequence can be 

interpreted as a SPR test in that sense, that the test procedure is continued 

as long as the observations s. are between the limits 0 and h, 
1 

0 < I(x.-k) < h 
. 1 
1 

In case of the SPR test we have to continue the test procedure as long as we 

have for given o2, H
0

:11=11
0 

and H1:11=11 1, 

T 11
0 

+11 1 
Ko < L (x.- -2-) < Kl' 

i = 1 1 

Furthermore, we have approximately 

1-a 1 

V = 0,1 

where a
0 

and a 1 are the error probabilities first and second kind. 

This means, that we get for the single CUSUM test the same relations as for 
the SPR tes t, if wi th 

('(
0 

1-P(O) 

we identify 



-51-

2 
- -

0
- • ln(1-P(O)) 

JJ1-JJo 
(6-25) 

It should be mentioned, however, that the probability P(O) does not give 

any information about the frequency of false alarms. 

6.4 CUSUM tests for material balance test statistics 

So far, we have considered CUSUM test procedures for independently and 

identically distributed random variables. We can apply them to our material 

balance test statistics MUF., i=1,2, ... , if we perform the independence 
1 

transformation (5-11) or (5-16) and divide the transformed variables by 

their standard deviatians. This way, we can formulate at least an integral 

equation for the average run length under the null hypothesis H
0

. It is not 

possible, however, ta proceed in the same way in arder ta determine the average 

run length under the alternative hypathesis H1 even if we assume constant lass 

ar diversion since the transformed variables have different expected values. 

Surprisingly enough it is passible to farmulate integral equatians for the 

average run lengths under the null as well as under the alternative hypothe

sis of constant lass ar diversion, if one performs a CUSUM test with the help 

of the original material balance test statistics MUF., i=1,2, .... Generally, 
1 

this is possible far various kinds af stochastic processes, namely so-called 

ARMA and MA processes (see, e.g., Mantgomery and Johnson (1976)). In the 

follawing, we will derive those equatians for aur specific purposes. 

Theorem 6.8 

Let us consider the independently and identically distributed random variables 

Di with distribution functions F0 and densities f 0 and the independently 

and identically distributed random variables I., i=1,2, ... with distribution 
1 

functians F1 and densities f 1 , and let us cansider the CUSUM test, defined 

by (6-13) and (6-14), based on the test statistics 

(6-13) 

where the random variables Yn are defined by 
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Yn := I 1+0 -I -k, I =i , n- n n o o (6-26) 

with reference value k and decision value h. 

Then the probability p1(z) that the test is finished after one Observation 
if it starts with S =s , I =i , z=S

0
+i

0
, is given by 

0 0 0 0 

(6-27a) 

where F0_1 is the distribution function of the random variable D-I. 

Furthermore, the probability p (z), that the test is finished after n obsern 
vations if it starts at z=s +i , satisfies the recursive integral equation 

0 0 

Pn(z) = fpn_ 1(x)·F0(-z+x+k)·f1(x)dx + 
-oo 

(6-27b) 
00 

+ fpn_ 1(x)·f0(x-z+k)·(F1(x)-F1(x-h))dx, n=2,3, .... 
-oo 

Finally, the average run length L(z) of a test which starts at z=s +i 
0 0 

satisfies the integral equation 

00 

L(z) = 1+ fL(x)·F 0(-z+x+k)f1(x)dx + 
-oo 

00 

+ fL(x)·f0(x+z-k)·(F1(x)-F1(x-h))dx 
-oo 

Proof 

According to eqs. (6-13) and (6-26) we have 

p1(s
0

,i
0

):= prob(S 1>hiS
0

=s
0

,1
0

=i
0

) 

= prob(S
0

+Y 1>hiS
0

=s
0

,I
0

=i
0

) = 

= prob(D1-I 1+i
0

+s
0

-k>h) = 

= 1-F0_1(h+k-(S
0

+i
0

) 

(6-28) 
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Furthermore, we have 

00 

= fpn_
1
(o,i

1
)·prob(S

1
.2_0Ai 1.::_I 1.::_i 1+di 1JS

0
=s

0
,I

0
=i

0
)di 1 + 

-oo 

00 h 
+ J[ Jpn_ 1(s 1 ,i 1)·prob(s 1.::_s 1.2.s 1+ds{'il.2_1 1.2_i 1+di 1!s0 =s 0 ,I 0 =i 0 )dsJdi 1= 

-oo 0 
00 

= fpn_ 1(o,i 1)·prob(S1.2_0!i 1.2_I 1.::_i 1+di 1iS
0

=s 0 ,I 0 =i 0 ) Q) 
-oo 

00 

= fpn_ 1(o,i 1)·prob(D1+s
0

+i
0
-i 1-k.2_0)·f1(i 1)di 1 + 

-oo 

00 h 
+ J [ f p n _1 ( s 1 , i 1 ) • prob ( s 1.2. 01 + s 

0 
+ i 

0
- i 1- k .2. s 1 +d s 1 ) • f I1 ( i 1 ) d s iJ d i 1 = 

-oo 0 

00 

= fpn_ 1(o,i 1)·F0(-s
0
-i

0
+i 1+k)·f 1(i 1)di 1 + 

-oo 

= p (s +i ) n o o 

With s
0

+i
0

=z and the transformation s1+i 1=x in the second integral we get 

00 

Pn(z) = )Pn_ 1(i)·F0(-z+i+k)·f1(i)di + 
-oo 

00 h 
- J[Pn_ 1(x)·f0(x-z+k)·/f 11 (x-s 1)ds 1]dx 

-oo 0 

which leads immediately to (6-27b). 
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Finally, we get 
00 

L(z) = 1+ I (n-1)·Pn(z) 
n=2 

00 00 

1+ I (n-1)·[ fpn_ 1(x)F0(-z+x+k)·f1(x)dx + 
n=2 -oo 

fpn_ 1 (x)·f0 (x-z+k)·(F 1 (x-h)-F 1 (x))d~ 
-oo 

00 00 

= 1+ JL(x)·F0(-z+x+k)·f1(x)dx- /L(x)·f0(x-z+k)(F1(x-h)-F 1(x))dx 
-oo -oo 

which completes the proof. 

Let us consider the special case that the random variables In,n=1,2, ... are 
degenerated, i .e., that their observations give zero with probability one: 

{ 

0 X<O 
F1(x) = 

1 
for 

X>O 

Then we get from (6-28) 
00 00 

L(z) = 1+L(O)·F(-z+k)+ /L(x)f0(x-z+k)dx-/L(x)f0(x-z+k)dx = 
0 h 
h 

= l+L(O)·F(-z+k)+ jL(x)f0(x-z+k)dx 
0 

in accordance with (6-21); this is reasonable since under this assumption 

the random variables Yn' n=1,2, ... , defined by (6-26), are independent. 

The application of Theorem 6.18 to our material balance test statistics 
MUFi,i=l,2, ... and the test problem defined by (6-lOa) and (6-lOb) is obvious: 
Under the null hypothesis H

0 
we assume 

E(D.) = E(I.) = 0 for i=l,2, ... 
1 1 

0 

Under the alternative hypothesis H1 - constant loss or diversion ~ - we assume 

E(D;) = ~. E(I;) = 0 for i=l,2, ... 
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In some cases it is necessary to take into account persistent systematic 

errors which are of random origin. Also for these cases one can establish 

integral equations for the average run lengths of the CUSUM test: 

Theorem 6.9 

Let us consider the independently and identically distributed random variables 

Di, the independently and identically distributed random variables Ii=i=1,2, ... 

and the independently distributed random variable E with density fE. Let us 

consider the CUSUM test, defined by eqs. (6-13) and (6-14), based on the 

test statistics 

(6-13) 

where the random variables Yn are defined by 

(6-29) 

with reference value k and decision value h. 

Then the probability pE 1(z;k) that the CUSUM test with reference value k is 
finished after one Observation if it starts with S

0
=s

0
,I

0
=i

0
,z=s

0
+i

0
, is 

given by 

1-FD-I+E(h+k-z) (6-30a) 

where FD-I+E(x) is the distribution function of the random variable 0-I+E. 

Furthermore, the probability pEn(z;k) that the CUSUM test with reference 
value k is finished after n observations, if it starts at z=s

0
+i

0
, is given 

by 
00 

PEn(z;k) = fpn(z;k-e)·fE(e)de, 
-oo 

where p (z;k-e) is the probability that the CUSUM test with reference 
n 

(6-30b) 

value k-e for the random variables Yn given by (6-29) which do not contain 

the random variable E, is finished after n observations. 



-56-

Finally, the average run length LE(z;k) of a CUSUM test with reference value 
k, which starts at z=s

0
+i

0
, is given by 

00 

LE(z;k) = fL(z;k-e)fE(e)de, 
-oo 

where L(z;k-e) is the average run length of the CUSUM test with reference 

value k-e for the random variables Yn given by (6-29) which do not contain 
the random variable E. 

Proof 

According to (6-13) and (6-29) we have 

pE 1{s
0

,i
0

;k)):= prob(S 1>h!S
0

=s
0

,I
0

=i
0

) = 

= prob(S
0

+Y 1>h!S
0

=s
0

,I
0

=i
0

) 

= prob(D1-r 1+E+i
0

+s
0

-k>h) = 

= 1-FD-I+E(h+k-(s0 +i 0 )). 

Furthermore, we have 

PEn(z;k):= prob{Sk<hi\S >hiS +I =z for l<k<n) = - n o o -

00 

= fprob(Sk-2h/\Sn>hle~E~e+de,S0+I 0 =z for 1~k<n)·fE(e)de = 
-oo 

00 

= fpn(z;k-e)·fE(e)de 
- 00 

The last part of the Theorem follows immediately from the definition of 

LJ 
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7. Reference Facility, Measurement Model and Lasspatterns 

We consider the process of the chemical extraction of plutonium in a refer
ence reprocessing plant with a throughput of 1000 tons heavy meta1 per year 
which has been described by Kluthat al. (1981), and where for the sake of 
simplicity the chemical extraction is separated into five process areas: 
Head-end, first, second and third plutonium cycle and plutonium concentration. 

7.1 Reference Facility and Measurement Model 

The following analysis is based on a very simple process and measurement 
model. The process inventory is col1ected in five process units which 
correspond to the five areas mentioned above. Transfers are made in form 
of transfer units: There are three input batches, two Pu product batches 
and one waste batch per working day. The process is stationary which means 
that the inventory in the five areas is constant, and that there are no 
unmeasured lasses. The working year consists of 200 working days, one in
ventory period consists of five working days. In section 8.2.2 a reference 
time interval of 60 inventory periods i.e. 300 working days is considered. 
All these source data are collected in Table 7.1 • 

The measurement model may be described as follows: In case of the inventory 
we assume that the measurements of the different inventory units are mutually 
independent, and that the systematic errors cancel in the balance statistics 
since it is assumed that the measurement procedures arenot recalibrated 
during the reference time. In case of the transfer measurements we take into 
account random and systematic errors. Again we assume that the systematic 
errors are constant during the whole inventory period. The relative standard 
deviations of all types of measurements are collected in Table 7.2. 

The variance of one inventory determination then is the sum of the variances 
of the measurements of the five inventory units. The variance of the sum of 
all transfer measurements for one inventory period generally is 

var(input) + var(product) + var(waste) = 
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Table 7.1: Data of the Reference Reprocessing Plant (after Kluth et al (1981)) 

Heavy metal throughput (t/yr) 
Pu-throughput (t/yr) 
Working days per year 
Length of an inventory period (working days) 
Reference time (working days) 

Input 

Number of input batches per working day 
Pu content of one batch (Kg) 

Product 

Number of product batches per working day 
Pu content of one batch (kg) 

Waste 

Number of waste batches per working day 
Pu content of one batch (kg) 

Inventory (kg Pu) 

Headend 
Ist Pu-cycle 
2nd Pu-cyc1e 
3rd Pu-cycle 
Pu-concentration 

1000 
10 

200 

5. 

300 

3 

16.73 

2 

25 

0.2 

196.5 
7.6 

50. 
134. 
62.5 
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where nk is the number of transfers of the k-class (input, product, waste) 
during one inventory period, and o~k and o~k are the (absolute) variances 
of the random and of the systematic errors of the single measurement of 
the k-th class. Therefore, the variance of the material balance test statis
tic for the i-th inventory period is 

3 
= 2·var(inventory) + ~ (nk·o~k + nk·o~k)' i=1,2, .•.. 

k=1 

The covariance between two subsequent material balance test statistics is 
equal to the negative variance of the intermediate inventory plus the vari-

' ance of the systematic errors; the covariance between two material balance 
test statistics, which do not follow each other immediately, is equal to 
the variance of the systematic errors alone. 

All these variances and covariances are collected in Table 7.3, in addition 
the variance of the material ba1ance test statistic is given for the total 
reference time of 300 working days. The large value of this variance is 
caused by the persistent systematic errors. If one assumed, e.g., that all 
measurements would be recalibrated after each inventory period, and that 
the systematic errors of the inventory measurements could be neglected, 
then one would obtain a standard deviation of only 20.8 kg Pu for the 
whole reference time. 

7.2 Loss Pattern 

Since as mentioned earlier, for an arbitrary number of inventory periods 
there exists no uniformly accepted optimization criterion, and since there
fore one cannot determine pessimistic loss or diversion scenarios, so-called 
loss patterns were agreed upon which are co11ected in Table 7.4. In the first 
group A, losses occur in 40 periods, namely without interruption starting 
with the first (A1) eleventh (A2) and twentyfirst (A3) period. In the second 
group (B) the losses occur on two series a six periods namely from the 10th 
to the 15th and from the 35th to the 4oth (B1) and 10 respectively 20 periods 
later (B2 and B3). In the last group (C) the losses occur in eigth periods, 
namely every fifth period, starting with the first (C1), 11th (C2) and 21st (C3) 

period. 
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Table 7.2a: Plutonium Inventory and Relative Standard Deviation 

of the Random Measurement Errors 

Relative standard deviation 
Process unit Pu-inventory (kg) 

of random error 

Headend 196.5 0.01 

Ist Pu-cycle 7.6 0.01 

2nd Pu-cycle 50. 0.005 

3rd Pu-cycle 134. 0.005 

Pu-concentration 62.5 0.005 

Table 7.2b: Transfer Measurements and Relative Standard Deviations 
of Random and Systematic Errors 

Number of Concent of Rel. std. dev. Re1 • s td. dev. 
Transfer batches per one batch of random errors of systematic errors 

working day ( kg Pu) 

Input 3 16.73 0.01 0.01 

Product 2 25 0.002 0.002 

Waste 1 0.2 0.25 0.25 
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Table 7.3: Variances of Inventory, Throughput, Single Material Balance 
and Total Material Balance Test Statistic 

Variance of the inventory 

var(I) = (196.5x0.01) 2 +(7.6x0.01) 2 +(50x0.005) 2 +(134x0.005) 2 +(62.5x0.005) 2 

= 4.476 = (2.116) 2 (kg 2 Pu) 

A 

Variance of transfers for one inventory period (= 5 working days) 

var(input) = var(input, random) + var(input, syst) =. 

= 15x(16.73x0.01) 2 +15 2 x(16.73x0.01) 2 = 6.72 

var(product) = var(prod, random) + var(prod, syst) = 

= 10x(25x0.002) 2 +10 2 x(25x0.002) 2 = 0.275 

var(waste) = var(waste, random) + var(waste, syst) = 

= 5x(0.2x0.25) 2 +5 2 x(0.2x0.25) 2 = 0.074 

Variance of the material balance test statistic for one inventory period 

var(MUF) = 2x4.76+6.72+0.275+0.074 = 16.02 = 4.002 2 (kg 2 Pu) 

Covariance between two material balance test statistics 

4.476+6.3+0.25+0.0625 
cov(MUF., MUF.) = 

l J = 2. 135 1 ; - j I 

cov(MUF;, MUFj) = 

var(MÜF;) 

6.3+0.25+0.0625 = 6.613 

o. 1332 1 ; - j I = 1 
for 

0.413 li-jl>1. 

Variance of the balance for the reference time 

60 

for 

var( ~ MUF.) = 2x4.476+60x(0.42+0.025+0.0125) + 
i=1 1 

li-jl>1 

+60 2 x(6.30+0.25+0.0625) = (154.38) 2 kg 2 Pu 
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Table 7.4: Loss Patterns for the Analysis of Sequential Test Procedures 
for 60 Inventory periods, Total Loss M (kg Pu) . 

Loss Pattern Loss of Amount in Periods 

A1 1,2,3, ....... ,39,40 

A2 M 11,12,13, ..... ,49,50 40 
A3 21,22,23, ..... ,59,60 

81 10-15 and 35-40 

82 M 20-25 and 45-50 T2 
83 30-35 and 55-60 

C1 1 '6' 11 ' ...... '31 '36 

C2 M 11,16,21, ..... ,41,46 8 
C3 21 '26 '31 ' ..... '51 '56 
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8. Numerical Results 

In the following we present some numerical calculations, based on the 

reference plant and on the loss patterns described in the foregoing 

chapter, in order to illustrate the efficiencies of various decision pro

cedures discussed in the foregoing chapters. Before, we collect the 

quantitative rules of those procedures which will be used subsequently. 

8.1 Test procedures 

Six test procedures have been selected out of the many ones which have been 

described before. The first three procedures are based on the original MUF 

variables, given by (2-1); the remaining ones are based on the transformed 

variables, given by (5-16). In Table 9.1 these six test procedures are 

,collected, and some information is given in which way the resulting proba

bilities of detection for various loss patterns can be evaluated. 

We will denote the observations of random variables by corresponding small 

letters, i.e., the observations of MUF, MUFR, T by muf, mufr, t etc. 

8.1.1 Neyman-Pearson test 

For a given loss pattern ~~ 

is given by, see (3-7), 

and the test procedure is 

1 -1 
~ ·~ ·muf 

(M1, ... ,Mn) the Neyman-Pearson test statistic 

reject H 
0 

rejec t H1, 

(8-1) 

( 8-2) 

where ~ is the covariance matrix of the random vector 

and where the significance threshold k is determined with the help of the 
('( 
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false alarm probability a. 

The worst case loss pattern, i .e., that pattern which leads to the lowest 

possible probability of detection has in our case the form 

= t~ 1; n-

the Neyman-Pearson test statistic for this worst case pattern is 

T ·= lw' 

n 
L MUF. 

i = 1 

8.1.2 Truncated sequential test 

(8-3) 

(8-4) 

The test statistic of the truncated sequential test after the i-th inventory 

period is, see (4-1), 

and 

i 
T2,1' := CUMUF. := L MUF. 

1 . 1 1 
J= 

the tes t procedure i s 

{ 
>S. reject H

0 1 
cumuf. 

1 
<S. no deci s i on 
-1 

f''n reject H 
0 

cumuf 
n 

<S reject Hl - n 

( 8-5) 

for i<n ( 8-6a) 

( 8-6b) 

The significance thresholds s;, i=l, ... ,n, are determined in such a way 

that for each single test the same single false alarm probability is given, 

and furthermore, that the overall false alarm probability does not exceed 

a given value. 
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8.1.3 Onesided CUSUM test for MUF., i=l, ... ,n 
-----------------------1~--~~-

The test statistic of the truncated sequential test after the i-th 

inventory period is, see (6-12), 

i 1 
T3 . = L (MUF.-k)- min L (MUF.-k), 

,l j=l J Ü<l<i j=l J 
( 8-7) 

and the test procedure is 

f'" 
reject H

0 
t3 . for i<n 

• 1 
<h no decision 

(8-8a) 

I'" 
reject H

0 t 3,n 
<h reject H1 

(8-8b) 

The parameters h and k are determined in such a way that the overall false 

alarm probability for n inventory periods does not exceed a given value 

and furthermore, that a constant loss is detected with as high a probability 
as possible. 

In our case, we have chosen k = 0. 

8.1.4 Twosided test for MUFR., i=l, ... ,n 
----~--~~~~~~1~--~~-

Here, the test statistics are, see (5-16), 

i 
T4 1: = MUFR. = I a .... MUF . , 

' 1 j=l 1 J J 
a .. 

1 1 
::: 1, (8-9) 

where the a .. are determined by the recursive relations (5-36), and the 
1J 

test procedure is 
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lmufr; I Ci reject H
0 for i <n 

<C. no decision 
- 1 

(8-lOa) 

! >C n reject H
0 

Jmufrnl I 
l <C reject H1 , - n 

(8-lOb) 

where the significance thresho1ds ci'i=l, ... ,n, are determined in the same 

way as for the truncated sequentia1 test. 

8.1.5 Twosided CUSUM test for MUFR;, i=l, ... ,n 

The test statistic of the twosided CUSUM test after the i-th period is, 

see, e.g., Nad1er and Robbins (1971), 

i 1 + T5 . 
' 1 

L (MUFRj-k) - min L (MUFRj-k) 
j=l 0<1 <i j=l 

1 i 
T5- . = max L (MUFR .+k)- L (MUFR .+k), 

'
1 Ü<l<i j=l J j=l J 

and the test procedure i s 

f >h 
reject H

0 + 
t5 . or t5 . 

' 1 ' 1 
<h n o dec i s i on ; 

rh reject H 1 
t+ or t-
5,n 5,n 

<h reject H1 

for 

the parameters h and k.::_O are determined ana1oguous1y to 

the onesided CUSUM test for MUF., i=l, ... ,n. 
1 

( 8-11) 

i<n (8-12a) 

(8-12b) 
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8.1.6 Power One Test 

This test uses a test statistic which is similar to that of the truncated 

sequential test; it differs insofar as it uses the transformed and standardized 

material balance test statistics 

T6. 
'1 

i MUFRj 
.- I 

j=l /var(MUFRj) 

i 
I 

j=l 
(8-13) 

where the a .. are determined by the recursive relations (5-36). The test 
1J 

procedure i s 

reject H
0 

no decision, 

where the significance thresholds b. are given by 
1 

1 

b. = ((i+m)·(-2·lna+ln(i +1)?, m>O, 
1 m 

(8-14a) 

(8-14b) 

(8-15) 

and where the parameter a is the total false alarm probability fortheinfinite 
sequence of tests and m controls the distribution of false alarms over time. 

In fact, this test has the property that even for an infinite sequence of 

Observations the false alarm probability may be smaller than one whereas 

for the alternative hypothesis of a constant loss the null hypothesis is 

rejected with probability one (therefore the name of the test). 



--

~~I lvlUFi' i=1, ... ,n MUFR;, i=1, ... ,n i Test 
I --

I 

! 

'--

Guaranteed probability of detection and pessimistic (Gives no new information compared to the Neyman-
Neyman- loss pattern can be determined analytically Pearson test based on the MUFi.) 
Pearson (Avenhaus and Jaech 1981)-Test statistic is overall 

Test balance for the whole time period. 
Test procedure (9-2). 

I 

\ Probability of detection can be determined only Guaranteed probability of detection and pessimistic 
Single Tests with Simulation methods. So far, this procedure has loss pattern can be determined (Avenhaus and Frick 

not been used by anybody. 1975). Probability of detection for special loss 
patterns can be determined numerically (Laude 1983). 
Test procedure (9-10). 

Guaranteed probability of detection and pessi- Use of normalized variables leads to Power One test 
CUMUF Test mistic loss pattern can be determined analytically (Robbins and Siegmund 1969). Probability of detection 

( Beedgen 1983). for finite time horizon can be determined only with 
Test procedure (9-6). Simulation methods. (Sellinschegg) 

Test procedure (9-14). 

For the no loss and the constant loss case inte- For the no loss case integral equations for the 
gral equations for the probabilities of detection probability of detection after the i-th period and 

CUSUM Test after the i-th period and for the average run for the average run length can be formulated and 
length can be formulated and solved numerically. solved numerically. 

j Test procedure (9-8). i Test procedure (9-12). 

Table 8.1: Selected test procedures for the Near Real Time Accountancy, based on the material balance test statistics 
MUF., (2-1), and on the transformed statistics MUFR., (5-16), and possibilities for determining their 
efficiencies - probability of detection or average tun length - for various loss patterns. 

I 

()) 
CO 
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8.2 Examples 

According to Table 7.3 the standard deviation for the material balance test 
statistic for one inventory period is 

lvar(MUF) = o = 4 (kg Pu) ; 

the major part of this is caused by the errors of the inventory determina
tion and of the systematic errors of the input measurements. 

The probability of detection 1-ß for one inventory period is given by the 
formula (see, e.g. Avenhaus 1977) 

1-ß=ct> -U , ( M ) 
/var(MUF) 1-o: 

where M is the amount to be diverted, o: the false alarm probability, ct> the 
normal distribution function and U its inverse. 

By use of appropriate tables of the normal distribution function (see, e.g., 
Abramovitz and Stegun 1972) one finds immediately that 4·3.3 = 13.2 kg Pu 
have tobe diverted in orderthat for a false alarm probability o: = 0.05 
one gets a detection probability 1-ß = 0.95. If a detection probability 
1-ß = 0.50 is satisfying, then only 1.8 kg Pu have tobe diverted. 

8.2.1 Two Balance Periods 

Let us consider first the Neyman-Pearson test for the worst loss pattern from 
the safeguards authority's point of view. According to (3.12) it is given by 
(M1,M2) = (M/2,M/2), and according to (3.11) the guaranteed probability of 
detection is 

With o1 = o2 = o we get for o: = 0.05 
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i.e. we get a probability of detection 1-ß = 0.95 for a loss 

M = 3.30 = 19.89 (kg Pu) 

a comparatively smaller amount than for one balance period. 

In the following we consider only two procedures out of the remaining five 
we listed in section 8.1; the reason for this is the fact that those proce
dures which are not considered now display their special properties only 
for many periods. 

In case of the independently transformed test statistics MUFR; the test 
procedure described in section 5.4 leads with 01 = 02 = 01 P12 = p, according 
to page 5-17 to the following expression for the probability of detection 

1-ß=1-c~>[u1 -~]·c~>[u1 _Mz-pM1] 
-al 0 -a2 1 2 

0. 1-p 
the overall false alarm probability a is given by 

1-a = (1-al)·(1-a2). 

In Table 8.2 numerical values of 1-ß are given for 

1-al = 1-a2 = /1-a = /0.95 = 0.975 

and for the two cases 

Note: 

In section 8.1 we described a two-sided test procedure, whereas here 
we used a one-sided procedure. The reason is that M1 is greater or 
equal to zero and M2-p·M1 is also greater or equal to zero for all 
interesting cases thus, the two-sided procedure is not reasonable 
here. For many periods the situation is different since there the 
transformation frequently 1eads to E(MUFRi) < 0 even if E(MUF;) > 0. 

For the CUMUF procedure we get the following formular for the false 
alarm probability a and the detection probability 1-ß: 
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1-a = L(-u 1 , -u1 ,p) 
-al -a2. 

here, L(h,k,p) is according to Abramovitz and Stegun (1972) defined by 

and crr and crfz are given as 

In order to determine the corre1etion p between MUF1 and MUF
1

+MUF2, we have 
togoback to the error model. According to (2.3) we have 

15 20 5 
= 11+ L (ZE.+SE)- L (ZP.+SP)- L (ZW.+SW)-12 

'1 1 '1 1 '1 1 1= 1= 1= 

30 20 10 
12+ L (ZE.+SE)- L (ZP.+SP)- L (ZW.+SW)-13, 

'1 1 '1 1 '1 1 1= 1= 1= 

where E,P and W refer to input, product and waste respectively. Therefore, 
the covariance of MUF1 and MUF1+MUF2 is 

cov(MUF1,MUF1+MUF2)= 

= var(I 1)+15·var(ZE)+15·30·var(SE)+10·var(ZP)+ 

+ 10·20·var(SP)+5·var(ZW)+5·10·var(SW). 

With the data of Table 7.3 we get 

cov(MUF1,MUF1+MUF2) = 18.07 

and with 
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finally the correlation coefficient 

= 0.751 . 

From the table for the bivariate normal distribution we get for a = 0.05 

1-al = 1-a2 = 0.968 

In Table 8.2 numerical values of 1-ß are given for the two cases 

Some observations should be mentioned: 

Naturally for the loss pattern (O,M) the probability of detection for 
the Neyman-Pearson test is larger than 0.999. 

In case of the independently transformed test statistics one has a 
comparativily strong dependence on the loss pattern. 

The CUMUF test is 11 robust 11 against various loss patterns. According 
to chapter 4 the probability of detection for the loss pattern (O,M) 
is the guaranteed probability of 9etection, i.e., forM= 19.89 it 
cannot be smaller than the value given in the Table. 
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Table 8.2: Probability of detection for two balance periods 
and various test procedures; total false alarm 
probability a = 0.05, total loss M = 19.89 

Test procedure Probability of detection 

Neyman-Pearson Test for 0.95 M M pessimistic loss pattern (z- ' z-) 

Independently transformed 
test statistic; 0.88 

loss pattern (~ , ~) 

Independently transformed 
test statistics; 0.999 
loss pattern (O,M) 

CUMUF test 0.936 M M loss pattern (z- ' z-) 

CUMUF test 0.926 
loss pattern ( 0 ,M) 
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8.2.2 60 Balance Periods 

In the following we consider the case of 60 balance periods of 5 operating 
days each which corresponds to a operationtime of 1,5 years. For the sta
tistical tests a total false alarm probability of 5% is assumed and we con
sider only the case that no measurement device is recalibrated, i.e. con

stant systematic errors. 

Taking the criteria detection probability and timeliness of detection into 
account we do not have yet an optimal loss or detection strategy. Therefore, 

we assume a set of plausible loss patterns, which are described in Tab. 7.4. 
We assume a loss during 40 balance periods, but this loss may occur somehow 

during 60 periods. 

In group A of our loss patterns we have a constant loss during 40 balance 

periods beginning with the first (A1), eleventh (A2) and twentyfirst (A3) 

period. In group B the loss occurs in two 6 period blocks ranging from 
10 to 15 and 35 to 40 (B1), so to 25 and 45 to 50 (B2) and 30 to 35 and 
55 to 60 (B3). 

In group C we consider a discrete loss in 8 balance periods every fifth 
period beginning with period 1(L1), 11(12) and 21(C3). 

In Tables 8.3-8.3 the probabilities of detecting a loss not later than after 
the 60th balance are presented for different total amounts of losses. 

The comparison of there three tables shows that the total amount of loss has 
no influence on the structure of the detection probabilities for the different 
test procedures and loss patterns. Therefore, it is sufficient to discuss 
Tab. 8.5. 

In the first row the optimal achievable detection probabilities (for the Neyman

Pearson-test) are presented under the assumption that we know the actual loss 
pattern. It is obvious that those tests (T4,T5,T6) which use the transformed 

values of the MUF series (MUFR;) lead to considerably higher detection pro

babilities than those tests (T2,T3) which use the original values. The test 

r3 leads to higher detection probabilities for all loss patterns except A1. 
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The test T5 is the best one for all loss patterns and the detection proba
bilities are close to the maximum achievable ones. The test T4 gives better 
results than T6 only for the 8 patterns since T4 is based on the individual 

MUFR 1 s and thus more sensitive for abrupt lasses. 

Additionally to the described 9 loss pattern the very important loss pattern 

of a continuous constant loss in each balance period was considered. 

Table 8.3: Probability of detection for various test procedures 
and the loss pattern given in Table 8.1, M=30 kg Pu 

A1 .973 .084 .075 . 134 

A2 .921 .053 .075 .1 04 

A3 .973 .051 .075 . 122 

81 .999 .063 .075 .586 

82 .998 .055 .075 . 746 

B3 .999 .053 .075 .814 

C1 .999 .063 .075 .194 

C2 .999 .054 .075 .198 

C3 .999 .052 .075 .245 

T1: Neyman-Pearson test for specific loss pattern 

T2: Truncated Sequential CUMUF 

T3: Onesided CUSUM Test of MUF;; i=1,2, ... 

T4: Twosided test of MUFR;, i=1,2, ... 

T5: Twosided CUSUM Test of MUFR;, i=1,2, ... 

.764 .324 

.547 .457 

.889 .708 

.913 .521 

.963 .716 

.978 .704 

.831 .424 

.487 .380 

.875 .699 

T6: Sequential twosided test of Power One for MUFR;, i=1,2, ..• 
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Table 8.4: Probability of detection for various test procedures 

and the loss pattern given in Table 8.1, M=40 kg Pu 

A1 .999 .096 .085 .233 

A2 .992 .060 .085 . 159 

A3 .999 .057 .085 .197 

B1 .999 .078 .085 .912 

B2 .999 .062 .085 .982 

B3 .999 .059 .085 .994 

C1 .999 .078 .085 .346 

C2 .999 . 061 .085 .376 

C3 .999 .056 . 085 .487 

T1: Neyman-Pearson test for specific loss pattern 

T2: Truncated Sequential CUMUF 

T3: Onesided CUSUM Test of MUFi; i=1,2, ... 

T4: Twosided test of MUFR;, i=1,2, ... 

T5: Twosided CUSUM Test of MUFR;, i=1,2, ... 

.962 .569 

.812 .710 

.992 .931 

.999 .834 

.999 .935 

.999 .934 

.982 .699 

.775 .614 

.988 .926 

T6: Sequential twosided test of Power One for MUFR;, i=1,2, ... 
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Table 8.5: Probability of detection for various test procedures 
and the loss pattern given in Table 8.1, M=50 kg Pu 

A1 .999 . 117 .094 .390 

A2 .999 .066 .094 .245 

A3 .999 .060 .094 . 311 

B1 .999 .094 .094 .996 

B2 .999 .065 .094 .999 

B3 .999 .059 .094 .999 

C1 .999 .094 .094 .554 

C2 .999 .064 .094 .620 

C3 .999 .056 .094 .769 

T1: Neyman-Pearson test for specific lass pattern 

T2: Truncated Sequential CUMUF 

T3: Onesided CUSUt~ Test of MUF;; i=1 ,2, ... 

T4: Twosided test of MUFR;, i=1,2, ... 

T5: Twosided CUSUM Test of MUFR;, i=1,2, ... 

.998 .792 

.957 .892 

.999 .994 

.999 .979 

.999 .995 

.999 .994 

.999 .895 

.945 .813 

.999 .991 

T6: Sequential twosided test of Power One for MUFR;, i=1,2, ... 
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The constant loss case is very similar to the loss pattern with the lowest 
guaranted detection probability (worst case loss pattern). In Table 8.6 the 
detection probabilities for two values of total loss are presented. In this 
case we recognize that tests T2 and T3 are superior to T4 to T6• T3 is al
most as good as the Neyman-Pearson-test. In Figure 8.1 the detection proba
bilities of the truncated sequential CUMUF test are compared with optimal 
values of the Neyman-Pearson test where a loss pattern with minimal guaran
teed detection probability is assumed, the difference in the values is al
ways less than 10%; this recommends the truncated sequantial CUMUF as a 
possible test procedure. 

Table 8.6: 

M 
Kg Pu T1 

50 .093 

500 .945 

Probability of detection for various test procedures and 
saddlepoint loss pattern according to Eq. (3.12) 

T2 T3 T4 T5 T6 

.085 .093 .049 .053 .052 

.903 .944 .219 .264 .496 

In the following we discuss the question of timeliness of detection of losses. 
Until now wehavenot considered this question at all. However, it was necessary 
to discuss the overa11 probability of detection since this criteria nevertheless 
will be very important. 

A reasonable and in quality control frequently used criterion is the average 
run length of the test until the rejection of the null hypothesis. For a finite 
sequence· of periods it used only if the overall Probability of detection is 
nearby one. Table 8.7 gives some examples. It indicates that in those cases 
where a comparison of different tests is possible, no major differences can 
be observed. 
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The test r
5 

is better than T6 and T4 is better than r 5 and T5 for pattern B 
just as the overall probability of detection. For the loss pattern B it can 
be concluded than on the overage 10-14 balance periods after the first loss 

occured it will be detected. 

1.0 

0.9 

0.8 

0.1 

0.6 

0.5 

O.lf 

0.3 

0.2 

0.1 

Figure 8.1 

NEYMRN-PERRSON 
~ 

\SEQ.CUMUF 

50 100 150 200 250 300 350 lfOO lf50 500 
RMOUNT OF LOSS (KG) 

Detection probabilities for the Neyman-Pearson test and 
truncated sequential CUMUF test where the loss pattern 
with minimal guaranteed detection probability is assumed. 
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Table 8.7: Average Run Length for test procedures T4, T5 T 
• 6 

and loss patterns given in Table 8.1, M=50 kg Pu 
Probability of detection greater than .99 is given. 

T4 Ts T6 

A1 49.54 

A2 

A3 31.50 34.41 

B1 14.46 14.16 

B2 22.03 23.32 24.01 

B3 31.62 33.08 34.17 

C1 47. 15 

C2 

C3 29.48 32.36 

The best information about the timeliness of the detection of any loss is 
given by the run length distribution, i.e. the development of the probabi
lities of detection with time. Figures 8.2 - 8.4 present some examples for 
tests T5 and r6. 

Figure 8.2 shows that for loss pattern A1, in which the loss occurs right 
. at the beginning of the evaluation period both tests are not able to indica~e 
the loss up that period in which the loss is terminated. But afterwards both 
tests are indicating the loss with a high detection probability. This indicates 
that an extension of the loss over all the considered balance periods would 
not be detected with a reasonable probability. When the loss does not occur 
at the beginning of the evaluation period, the it is indicated immediately 
by both test procedures, see loss patterns A2 and A3. Furthermore, we find 
that T6 does detect the beginning of a loss pattern with a slightly better 
detection probability than r5. But after a few periods T5 becomes more sen
sitive. 
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Figure 8.2 Development of detection probabilities (run length distribution) 

for tests T5 and T6 and loss pattern A; M = 50 kg 
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Figure 8.3 Development of detection probabilities (run length distribution) 

for tests T5 and T6 and loss pattern B; M = 50 kg 
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Development of detection probabilities (run length distribution) 

for tests T5 and T6 and loss pattern C; M = 50 kg 
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Figure 8.3 shows that loss patterns B represent an abrupt loss which is 
detected immediately after its occurence. The translation of the time 
axis does not give any new information. Finally, the comparison of Figures 
8.2 and 8.4 indicates that loss patterns C are only a special form of 
continuous loss. 

Summarizing the analysis for the considered test procedures it can be shown, 
that an optimum test procedure with a maximum achievable detection probability 
for all possible loss patterns does not exist. It is evident that at least 
two different types of loss patterns have to be considered. Firstly, patterns 
in which a constant loss occurs in each balance period and secondly, such 
patterns in which a loss occurs in some but not in all balance periods under 
consideration. For the first type of patterns the test procedures based on 
the cumulative sum of the MUF values show the best detection probabilities. 
The statistics for these tests can be calculated without knowing the variance -
covariance structure. This information is necessary if we want to make any 
statistical inference. For the truncated sequential CUMUF test it has to 
be mentionend that a guaranteed detection probability for all possible 
lass patterns can be calculated. 

For the second type of loss patterns test procedures based on the transformed 
MUF values show the best detection probabilities. It has to be mentioned that 
for calculating these statistics the exact variance - covariance structure 
of the MUF values has to be known. The question of 11 robustness 11 of the test 
procedures based on the transformed MUF's against changes in the variance co
variance structure has to be further investigated. 

Thus, our analysis shows that with a combination of two test, one based on 
cumulative sum of MUF's and another one based on transformed MUF's, most of 
the considered loss patterns can be covered with sufficient high detection 
probability and in short detection time. For two tests, the development of 
false alarms can be kept under control; e.g. with the help of Bonferoni.'s 
i nequa 1 i ty. 
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