
KfK 3964
September 1985

Reuse of Software through
Generation of Partial Systems

F. J. Polster
Institut für Datenverarbeitung in der Technik

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Datenverarbeitung in der Technik

KfK 3964

Reuse of Software

through

Generation of Partial Systems

Franz J. Polster

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt
Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH

ISSN 0303-4003

Abstract:

One approach to

reuse of general

improving software productivity is the development and

software for a given application area to avoid

development of code.

system that supports

Frequently,

only a

for a particular application a partial

subset of the capabilities of a general

program system is sufficient.

The problern of constructing partial systems is addressed, where the

program of a partial system is obtained by selecting only those code

segments of the complete program that implement the capabilities needed.

A heuristic for determining fragments of a program system, which can

serve as the building blocks for the programs of partial systems, is

presented.

The notion of 11 B-program 11 is introduced: a B-program contains in addition

to the fragments themselves for each fragment substitute code and control

information specifying the set of partial systems the fragment is

relevant for. A representation of B-programs as a string is given, such

that generating a partial

selecting substrings.

A formal model for this

B-program is viewed as an

system consists in scanning this string and

type of program generation is developed: a

ordered tree with the substrings of the

complete program as its leaves and the fragments as its non-leaf

vertices; a 11 relevance 11 mapping indicates for each fragment vertex f

whether or not f is relevant for a particular partial system; a mapping

associates with each fragment its substitute. Generation of a partial

system is defined in terms of pre-order traversal of a subtree of the

B-program.

B-program reduction is dealt with: transformations for the elimination of

superfluous vertices are presented, the issue of uniqueness and the

problern of constructing a minimal reduced B-program are discussed.

Wiederverwendung von Software durch Erzeugung von Teilsystemen

Zusammenfassung:

Ein Ansatz zur ErhBhung der Software-Produktivität besteht in der

Vermeidung von Neuprogrammierung durch Entwicklung allgemeiner Software

für einen bestimmten Anwendungsbereich und deren wiederholte Verwendung.

Für eine gegebene Anwendung genügt häufig ein Teilsystem, das nur eine

Teilmenge der Fähigkeiten eines allgemeinen Programmsystems realisiert.

Das Problem der Konstruktion von Teilsystemen wird behandelt, wobei man

das Programm eines Teilsystems durch Auswahl nur der Programmteile des

vollständigen Programms erhält, die die benBtigten Fähigkeiten

implementieren. Ein heuristisches Verfahren zur Bestimmung von Fragmenten

eines Programmsystems, die als Bausteine für die Programme der

Teilsysteme dienen kBnnen, wird angegeben.

Der Begriff "B-Program" wird eingeführt: ein B-Programm enthält zu den

Fragmenten selbst für jedes Fragment einen Ersatz und eine Spezifikation

der Menge der Teilsysteme, für die das Fragment relevant ist. Eine

Ausprägung von B-Programmen in Form von Zeichenketten wird angeben, so

daß die Erzeugung eines Teilsystems im einmaligen Lesen dieses Strings

und der Auswahl von Teilstrings besteht.

Ein formales Modell für diese Art von Programmerzeugung wird entwickelt:

Ein B-Programm wird als ein geordneter Baum mit den Teilstrings des

vollständigen Programms als Blätter und den Fragmenten als innere Knoten

betrachtet; eine "Relevanz"-Abbildung gibt für jeden Fragment-Knoten f

an, ob f für ein bestimmtes Teilsystem relevant ist oder nicht; eine

Abbildung verknüpft mit jedem Fragment dessen Ersatz. Die Erzeugung eines

Teilsystems wird als ein Aufsuchen der Knoten eines Teilbaumes des

B-Programms in pre-order beschrieben.

Die Reduktion von B-Programmen wird behandelt: Transformationen zur Eli­

mination von überflüssigen Knoten werden angegeben, Eindeutigkeitsfragen

und das Problem der Konstruktion eines minimalen reduzierten B-Programms

werden diskutiert.

- I -

CONTENTS

1. Introduction

2. Program generation through code selection

2.1. Code selection at link-time .

2.2. Code selection at translate-time

2.3. Code selection before translate-time

3. Concepts for the generation of partial systems

3.1. Definitions, terminology

3.2. The fragment concept

3.3. Substitutes

4. B-programs, generation of partial systems

4.1. Determining fragmentations

4.2. Construction of B-programs, generation of partial systems

4.3. The set of partial systems

5. A formal model for the generation of partial systems

5.1. Abstract B-programs

5.2. Programgeneration

5.3. Reduced B-programs

5.4. Reducing B-programs

6. Conclusions

APPENDIX

1

9

10

11

11

13

13

15

21

23

23

30

35

37

37

41

45

53

62

65

REFERENCES . 68

- II -

Fig. 1: Program adaptation 3

Fig. 2: The example system DBMS 6

Fig. 3: Construction of executable code 10

Fig. 4: Version generation 12

Fig. 5: Fragments as lists of statements of a program unit 16

Fig. 6: Fragments of CASE-constructs 19

Fig. 7: Fragmentation of the example system DBMS 24

Fig. 8: The B-program of the example system 32

Fig. 9: The program of the partial system t_ins 34

Fig. 10: The ordered tree of the B-program of the example system 40

Fig. 11: The subtree relevant for partial system t_ins 43

Fig. 12: Reduction of a B-program via transformation 1 48

Fig. 13: Reduction of a B-program via transformation 2 48

Fig. 14: Application of transformations 1 and 3 55

Fig. 15: Application of transformations 2 and 3 56

Fig. 16: Merging of vertices in proof of theorem 3 58

Fig. 17: Reducing B-programs with reordering of vertices 61

Definition 1: 13

Definition 2: 14

Definition 3: 17

Definition 4: 38

Definition 5: 42

Definition 6: 45

Definition 7: 54

- 1 -

1. Introduction

Software productivity has become a critical problem: "the demand for new

software is increasing faster than our ability to supply it, using

traditional approaches" [5]; seealso [13] on this issue.

As pointed out in [5), [30) one approach to improving software

productivity is the reuse of software to avoid development of code. Reuse

of software entails th~ design and implementation of general software

systems, i.e. systems, which perform frequently used, common, and

repetitive data processing tasks (also called "reusable functional

collections" or "generic systems" [7]). Typical examples are operating

systems, compilers, database management systems, mathematical subroutine

packages.

By definition general software systems have to provide services for as

wide a spectrum of applications of the respective application area as

possible. Generality, however, cannot be accomplished without cost, such

systems necessarily tend to become comprehensive and complex program

systems, which often occupy a significant part of system resources and/or

bring about a reduction in efficiency.

For a particular application in general an often small subset of the

features provided by a program system P would suffice, so that the

immediate use of P is at best wasteful and uneconomical, at worst

impossible altogether, e.g. due to efficiency problems or limited

resources. In order to avoid or at least reduce these problems with

generalized software it is desirable to employ instead of a general

program system P "versions" of P that provide exactly those features of P

called for by the application at hand and consist only of the software

components of P supporting them:

• This is one of the motivations for "SYSGEN" options of operating

systems and research into families of operating systems [14], [15],

[19), [21].

• ~lary Shaw discusses in [20) the usefulness of and the benefits to be

gained from having available

contraction", i.e. a family

for a programming language a "language

of programmming languages produced by

successively factaring out groups of features of the language: it is

- 2 -

shown that this is a technique for improving compilation efficiency, in

particular, the sizes for the compilers corresponding to the

sublanguages of a contraction are smaller than the size of the complete

compiler implementing the full language.

• Similarly,

versions of

"dedication" of database management systems, i.e. use of

a database management system that provide only subsets of

the capabilities (in particular a subset of the operations of the user

interface) supported by the complete datdbase management system is

presented in [17] as a way to benefit from genera1 database packages

also in environments that do not allow the use of the complete database

management system due to memory restrictions, efficiency or economic

considerations.

This work addresses the problern of tailoring a given program system P to

the specific needs of an application through eliminating from P features

not used by that application. In the following this type of program

tailoring is referred to as program a d a p t a t i o n

It is assumed that (i) program system P is given as a string over some

alphabet and (ii) the versions of P can be characterized

" functionally, i.e. in form of a list of "algorithms" of P to be

supported by a version

" quantitatively in terms of the values of "system parameters".

We will rely on the intuitive notion of

" an a 1 g o r i t h m as a set of one or more pieces of code required

for the execution of some function provided by P

" a s y s t e m p a r a m e t e r of P as a substring of the program

of P that represents the value(s) or size of a data object (e.g. values

of variables, buffer sizes) of P and determines the degree, to which a

function of P can be executed.

For a database management system these may be figures like: the maximum

number of predicates in queries, the maximal record-length for

retrieval or update operations, an upper limit for the number of

records to be sorted, maximum number of concurrent transactions, the

size of the system buffer (cf. [17]).

Also, it is assumed that modifying system parameters, i.e. constants in

definitional or assignment statements of the program text, requires only

- 3 -

replacing the old value with a new one (programs written in common

programming languages have this property!).

This property, then, implies that substituting symbolic names, so-called

p 1 a c e h o 1 d e r s , for system parameters in the source programs of

versions of P, which support the same set of algorithms, results in

identical strings. In other words such a string with placeholders

represents instances of source programs with the same functional

characteristic.

Therefore, for the adaptation of a general program P we at least

conceptually start out with a program text including placeholders, called

the c o m p 1 e t e

steps (see fig. 1):

p r o g r a m of P, and perform the following two

• Selection of the parts of the complete program implementing the

algorithms required and their integration into the program of a

p a r t i a 1 s y s t e m of P.

• Replacement of the placeholders in the program of a partial system with

syntactically valid strings (e.g. constants). This yields the source

program of a version of P.

compLete program compLete system P
of P

s
i
election & j
ntegrat i on

program of a partiaL system
partiaL system

r epLacement j
source program vers i on
of a version

Fig. 1: Program adaptation

- 4 -

Notation:

The partial system providing all algorithms of P is called the

c o m p 1 e t e

The step of

(among other

s y s t e m (representing the set of instances of P).

producing source programs is referred to as "dimensioning"

things, typically dimensions of arrays are fixed here!).

Dimensioning is a simple task that can be implemented using e.g. a macro

processor [6], [12], [18).

The focus of this paper is on the production of partial systems, i.e.

program generation by means of code se1ection:

Section 2 shows that in general program adaptation entails generation of

source programsout of a B-program ("base program").

Section 3 introduces and investigates the properties of the constituents

of B-programs: fragments, substitutes, relevances.

Section 4 deals with the construction of B-programs: a heuristic for

obtaining the fragments for a given program system and an implementation

of the pertaining B-program as an expansion of the complete program is

presented. Generation of a partial system consists in the selection of

substrings of this extended program.

Section 5 formalizes these ideas and presents a theory of B-programs: a

B-program is viewed as an augmented erdered tree with the substrings of

the complete program as leaves and the fragments as non-leaf vertices;

generation of a partial system is defined in terms of pre-order traversal

of a subtree. This model provides the framework for proves about the

generation algorithm and a rigorous treatment of B-program "reduction",

i.e. the problern of constructing for a given B-program another B-program

with a smaller number of vertices and edges, which still represents the

same set of partial systems. The construction of a minimal reduced

B-program and the issue of uniqueness are addressed.

The reader is referred to the appendix for an explanation of the basic

concepts and notations of mathematics and computer science employed in

this text.

- 5 -

For demonstration purposes the program system of fig. 2 will be used

throughout this paper: it is called DBMS and sketches the implementation

of a database management system, providing a one-tuple database interface

with the six operations of table 1.

+=============+==+
I operation I semantics I

+=============+==+
I OPEN I acquire a lock on a relation; in order to access I

I I the tuples of a relation the relation must be I

I I locked by the application program I

+-------------+--+
I GLOSE I release a lock; at the end of a transaction all I

I I locks acquired (with OPEN) must be released by the I

I I application program I

+-------------+-----------------------------~------------------------+
I FIND I select a set of tuples of a relation satisfying a I

I I qualification, make them available in a QSS I

+-------------+--+
I GET I retrieve a tuple of a QSS I

+-------------+--+
I INSERT I insert a tuple into a relation I
+-------------+--+
I DELETE I delete a tuple from a relation I

+=============+==+

Table 1: The operations supported by the example system·DBMS

For the implementation of relations DBMS supports two storage structures

(cf. variables FILE_TYPE of program units INSERT and DELETE of fig. 2),

access paths are available in form of "sequential search", hashing or

inverted file techniques.

There are two techniques for accessing data (variable ACCESS_TYPE of

program unit GET): "sequential search" und "direct access" (employing

lists of tuple identifiers TID).

Table 2 delineates the implementation of the operations of table 1 with

the pertaining program fragments (statements, subroutine calls) in

angular brackets; the right-most column gives the names of the algorithms

of DBMS ('1' through '17 1
).

PROGEDURE DBMS
lf (OP<l OR OP>6)

THEN return 'operatlon unknown'
GASE OP OF
-,-: OPEN

2: GLOSE
3: FIND
4: GET
5: INSERT
6: DELETE

END
END-

PROGEDURE OPEN
--oi>ENRF

PROGEDURE CLOSE
GLOSE RF
CLOSCI F OPEN-IF

END - END -

PROCEDURE FIND
USE INDEXES
evaluate INDEX TABLE
STRTGY -
return qss

END

PROGEDURE STRTGY
determine access-strategy and
set ACCESS TYPE

GASE ACCESS-TYPE OF
--,: bui ld seq.search qss

2: BEGIN
CASE FILE TYPE OF
--,: calcÜiate tTd

2:
RETRIEVE_TID_LIST

END
bui ld direct-access qss
END

END
END-

PROCEDURE GET
NEXt TUPLE:

END

CASE-ACGESS TYPE OF
-,-: NEXT_SEQ

2: NEXT_TID

END
IF (qua I iflcation is not satisfled)

THEN GO TO NEXT_TUPLE

PROCEDURE NEXT_SEQ
GASE FILE TYPE OF
-,; next-1 -

2: next-2
END -

END-

PROCEDURE NEXT TID
return next-tld of tid-llst

END

PROCEDURE RETRIEVE_TID_LIST

- 6 -

PACKAGE INDEXES
INDEX TABLE: ARRAY OF INTEGER END - ---

PROGEDURE OPEN_RF

GET

!Jill

PROGEDURE CLOSE_RF

END

PROGEDURE INSERT
GASE FILE TYPE OF
--,: INSERT 1

2: I NSERT-2
END -
INSERT TID

END -

PROCEDURE INSERT_1

END

PROCEDURE INSERT_2

END

PROGEDURE INSERT TID
USE INDEXES -

PROCEDURE OPEN IF -USE INDEXES

GET

END

PROCEDURE GLOSE IF -USE INDEXES .
END

PROCEDURE DELETE
CASE FILE TYPE OF
-,-: DELETE 1

2: DELETC2
END -
DELETE TID

END -

PROGEDURE DELETE_l

END

PROCEDURE DELETE_2

END

PROGEDURE DELETE TID
USE INDEXES -

Fig. 2: The example system DBMS

- 7 -

+===========+===+===========+
I operation I implementation I algorithm I
+===========+===+===========+
I OPEN I - lock relation <OPEN RF> I 1 I
I I - if inverted files exist for the relation, I I
I I acquire locks and update INDEX_TABLE I I

I I <OPEN IF> I 2 I

I I I I

+-----------+---+-----------+
I CLOSE I - release lock for relation <CLOSE RF> I 3 I

I I - if inverted files exist for the relation, I I

I I release locks and update INDEX_TABLE I I
I I <CLOSE IF> I 4 I
+-----------+---+-----------+
I FIND I - determine in INDEX TABLE the available I I

I I inverted files <evaluate INDEX_TABLE> I I

I I - determine access technique and create a I I

I I subset (QSS) for I I

I I sequential search <build seq.search qss> I 5 I

I I or I I

I I direct access employing: I I

I I hashing <calculate tid> I 6 I

I I TID-list via inverted file I I

I I <RETRIEVE TID LIST> I 7 I
+-----------+---+-----------+
I GET I - retrieve next tuple through: I I

I I sequential search <NEXT_SEQ> according to I I
I I storage structure 1 <next 1> or I 8 I

I I storage structure 2 <next 2> I 9 I

I I direct access wi th a TID-list <NEXT TID> I 10 I

I I - check, whether qualification is satisfied I 11 I

+-----------+---+-----------+
I INSERT I - insert a tuple according to storage I I

I I structure 1 <INSERT 1> or I 12 I

I I 2 <INSERT 2> I 13 I

I I determine in INDEX_TABLE the available in- I I

I I verted files and update them <INSERT TID> I 14 I

+-----------+---+-----------+
I DELETE I - delete a tuple according to storage I I

I I structure 1 <DELETE 1> or I 15 I

I I 2 <DELETE 2> I 16 I

I I determine in INDEX_TABLE the available in- I I

I I verted files and update them <DELETE_TID> I 17 I

+=====--=====+===============--=============--=================+===========+

Table 2: The algorithms of DBMS

- 8 -

A partial system of DBMS:

Let A be an application, e.g. a data entry program, requiring the DBMS

operation INSERT only. We assume that storage structure 1 is suited for

the rapid storage of tuples and therefore is used for the implementation

of the relations to be updated by A; since (i) there are no retrieval

operations to be supported and (ii) the maintenance of inverted files

slows down update operations, no inverted fileswill be employed for A.

Thus, algorithm 12 suffices for the implementation of operation INSERT

for such an application. Due to the semantics of the DBMS interface (see

table 1) A has to lock and unlock the relations to be accessed

(operations OPEN, GLOSE), for these purposes only algorithms 1 and 3

respectively are necessary for this application (and not algorithm 2 or

4). Access to system catalogues (the call to GET in OPEN_RF!) requires

algorithms 8 and 11.

The partial system of DBMS providing the operations OPEN, GLOSE and

INSERT with these five algorithms is referred to as t ins.

Remark: The program of partial system t ins is shown in fig. 9, section

4.2.

- 9 -

2. Program generation through code selection

The eventual goal of generating a version of a program system P is the

production of a load module implementing a subset of the capabilities

provided by P. (Executable code may be either a "load module", that runs

as a separate task, or a "linkable module", that is linked to other

software. For the purpese of this paper this distinction is without any

significance, and "load module" refers also to linkable modules!).

This section discusses techniques for code selection and justifies the

implicit assumption of section 1 that program adaptation by means of code

selection entails generation of source programs, unless we consider

language- or machine-specific techniques, as e.g. manipulation of object

modules.

We assume that executable code is constructed according to the general

scheme of fig. 3 (cf. e.g. [22]):

A source program is given as a set of program units (procedures,

functions, subroutines). A translator, e.g. a compiler, translates each

program unit into an object module with the translator control program

V COHP specifying (among other things) the program units to be

translated. A linker builds from the resulting object modules a load

module as specified by a linker control program V LINK.

With this scheme code selection can be clone

• at link-time

• at translate-time

• before translate-time

source­
program

CGMPILER

- 10 -

LINKER

Fig. 3: Construction of executable code

2.1. Code selection at link-time

Code selection at link-time can be achieved through modifying the linker

control program pertaining to the complete system: deleting an

INCLUDE-statement from the control program has the effect of removing the

specified object module (together with all modules referenced by this

module only). I.e. code selection and integration at link-time consists

of

• construction of a version-specific linker control program through

selection of the relevant statements of the linker control program of

the complete system

• initiation of a linker run

Code selection at link-time only, however, is in general not sufficient:

a) Mere removal of superfluous object modules will usually yield

not-fault-tolerant load modules: an attempt to execute a function that

is nt)t implemented by a load module buil t in this way may lead to

abnormal termination. In any case, the desired response, namely an

indication, e.g. viaareturn code, of 'function is not implemented'

cannot be achieved by simply deleting code from a load module. Rather,

"substitute code" performing this task must be provided and included

instead of removed object modules.

- 11 -

b) Code selection at link-time implies that the selectable unit is the

object module. This is too coarse a granularity, however: e.g. the

call of a module to a superfluous (and thus deleted) object module and

the code usually associated with a call (e.g. convertion of values to

be passedas actual parameters, checking and evaluating return codes)

cannot be removed in this way, if some other part of the module is

relevant.

c) Clearly, dimensioning cannot be achieved with this technique.

2.2. Code selection at translate-time

Code selection at translate-time can be achieved through modifying the

translator control program of the complete system, such that only

relevant object modules are produced.

Adaptation based on code selection at translate-time is more complex and

time-consuming than the technique of section 2.1: in addition to the

linker control program a version-specific translator control program has

to be generated and the linker run is preceded by a translator run.

Yet, nothing is gained despite this higher degree of complexity: since

each program unit corresponds to an object module the size of the

selectable unit is the same as above, thus, code selection at

translate-time does not solve any of the problems pointed out above.

2.3. Code selection before translate-time

According to section 2.1 the selectable unit being smaller than a program

unit or object module is a necessary condition for the generation of

partial systems without superfluous code. Code selection, thus, must take

place before translate-time, i.e. version generation entails generation

of source programs.

Since a source program can be considered a string of characters over some

alphabet, the selectable unit may be any substring of the complete

program, in particu1ar a single statement of a program unit or even part

of a statement. I.e. program adaptation can now be viewed as a general

text manipulation task, namely the selection of substrings of a given

- 12 -

string, the complete program.

Another advantage of this technique is that it can easily be extended to

implement the text replacement task of dimensioning.

These considerations suggest a scheme for version generation as displayed

in fig. 4:

• a component B - p r o g r a m ("base progr&m11
) comprises the

substrings of the complete program necessary for the generation of

partial systemstagether with their substitutes. It can be'viewed as a

representation of the set of versions of the complete system.

• a utility s e 1 e c t o r selects the strings of the B-program

relevant for the version to be generated, integrates them into the

program of a partial system and produces a source program by replacing

the placeholders. The source program is processed as described above

(fig. 3).

• A component V DES contains a description of the version to be

generated, it serves as the selector control program.

An implementation of program adaptation along these lines is described in

[18] .

The remainder of this paper investigates the problern of generating

partial systems, in particular the nature and structure of B-programs.

Fig. 4: Version generation

- 13 -

3. Concepts for the generation of partial systems

This section introduces the basic concepts for program adaptation, in

particular the constituents of B-programs.

3.1. Definitions, termino1ogy

Let T derrote the set of partial systems of program system P. As

postulated in section 2 a B-program contains the building blocks for the

programs of the partial systems of T. In particular, it must make

available the substrings of the complete program implementing the

algorithms of P that aretobe provided by thesepartial systems. Tothis

end the notion of f r a g m e n t is introduced. A formal definition is

developed in section 3.2, for the moment it is sufficient to think of a

fragment as a substring of the complete program.

Let F denote the set of fragments of P. With each fragment f e F

information as to whether or not f is relevant for a given partial system

t e T must be associated. The "relevance" of a fragment can forma1ly be

thought of as a mapping ofT into the set B:= {0, 1} of truth (11Boolean")

values:

DEFINITION 1:

Let f e F, g e F:

• The T --> B indicates whether or not a fragment f is

r e 1 e v a n t for t e T:
+-
1 0 f is not relevant for t

1 f is relevant for t
+-

pf is called the r e 1 e v an c e of f, pf(t) the r e 1 e v an c e

v a 1 u e of f for the partial system t.

f and g are said to have the s a m e

(cf. section E of appendix)

• A r e 1 e v a n c e e x p r e s s i o n is a relevance or a Boolean

expression with relevances as operands. The Boolean operators are

- 14 -

defiped for relevances in the obvious way, e.g.:

pf OR pg (t) := pf(t) OR pg(t)

Besides being a building block a fragment can also be viewed as a piece

of code that is deleted from the complete program for the construction of

some partial system. Therefore, as has been elaborated in section 2,

substitute code must be associated with each fragment and these pieces of

code must be components of a B-program, too.

Let r denote the set of strings over the alphabet of the programming

language the complete program (and thus the programs of the partial

systems!) are written in. We adopt the convention that the empty string,

denoted: NIL, is element of L (cf. e.g. [4]).

Since a substitute must be a string of L the association of fragments

with substitutes is expressed as a mapping F --> r:

DEFINITION 2:

The mapping o: F --> r associates with each fragment f the s u b s t i -

t u t e o(f) of f.

Note that due to NIL E L a substitute o(f) may be the empty string.

Remark: Definition 2 says that each fragment is assigned exactly one

substitute. As will be demonstrated in section 3.3, however, this does

not necessarily exclude the possibility of having n>l substitutes for a

given substring of the complete program!

- 15 -

3.2. The fragment concept

This section explores the nature and properties of fragments and presents

a formal definition of the fragment concept.

3.2.1. Fragment: program unit, sequence of statements

Fragments designate the parts of the complete program, which are required

as building blocks for the programs of the partial systems in T. As

discussed in section 2.1 it must be possible to have program units as

well as single statements of a program unit as building blocks.

Examples:

• For partial systems of DBMS that do not support operation INSERT the

program units INSERT, INSERT_1, INSERT_2, INSERT_TID arenot relevant;

therefore, in order to be able to construct such partial systems

fragments are required, which comprise these program units and the

relevances of which evaluate to 0 for such partial systems.

• Fig. 5 gives a more detailed presentation of program unit INSERT:

Partial systems of DB~IS for applications, which apply operation INSERT

only to a subset of the storage structures supported by DBMS and/or do

not require the maintenance of inverted files (cf. partial system

t_ins), execute just a subset of the groups of statements marked with

1, 2 and 3 at the left in fig. 5. In order tobe able to provide

partial systems without dead code with respect to such applications, a

fragment must be defined for each of these parts of program unit

INSERT.

Convention:

Throughout this paper program lines pertaining to a fragment are marked

with the name of that fragment in one or several columns at the left of

the program text. E. g. the lines of code of fig. 5 w ith the name "1" (in

the right column) form fragment 1.

name of
fragment

I
I
I D1 I
ID21
I

I
I
I
I
I 1 I
I 1 I
I 1 I
I
I
I 21
I 21
I 21
I
I
I 31
I 31
I 31
I
I
I
I E1 I
I E1 I
IE21
IE21
I

900:

930:

990:

- 16 -

PROCEDURE INSERT

S RET: INTEGER
Z-RET: INTEGER
(TYPE: INTEGER

determine storage structure employed and
set variable FILE TYPE
GASE FILE TYPE OF-
-1-: BEGIN -

I* insert: storage structure 1 */
INSERT_1(. . ,S_RET)
li (S_RET II O) THEN GO TO 930
END

2: BEGIN
I* insert: storage structure 2 */

END

INSERT_2(...... ,S_RET)
li (S_RET # 0) THEN GO TO 930
END

/* update inverted fi I es
INSERT_TID(..... ,Z_RET)
_L[(Z_RET # O) THEN GO TO 990

I* REGULAR EXIT */
GO TO 999
serror-action
GO TO 999
zerror-action
GO TO 999

*I

I 999: RETURN
I END

Fig. 5: Fragments as lists of statements of a program unit

The introduction of a fragment may necessitate the definition of

additional, so-called "derived" fragments:

• the statements of fig. 5 marked E2 can be executed only, if those of

fragment 3 are included in INSERT. Therefore in order to avoid

unreachable code fragment E2 is required as a consequence of

introducing fragment 3.

Similarly the statements marked E1 can be executed only, if those of

fragment 1 and/or 2 are included, which leads to the introduction of a

fragment E1.

• Since variable Z RET (S_RET) is referenced only by statements of

fragment 3 (fragments 1 and 2), fragment D2 (Dl) with definitional

statements is introduced as indicated in fig. 5 in order to avoid

partial systems with unreferenced program variables.

- 17 -

3.2.2. A formal definition

Fragments 1, 2 and 3 of fig. 5 are necessary for the generation of

partial systems that support only a subset of the algorithms available in

DBMS for the implementation of operation INSERT, for partial systems not

realizing this operation at all a program unit INSERT is superfluous and

should be omitted altogether.

To this end one might try to define additional fragments such that INSERT

is completely "covered" with fragments and the relevances of these

fragments evaluate to 0, when program unit INSERT is not relevant. This

approach, however, is "unnatural", in that several fragments have tobe

processed in order to omit a single syntactic construct that forms a

contiguous piece of text. Another flaw is that the substitute for a

fragment becomes dependent on the partial system: e.g. for fragment 2 of

fig. 5 the substitutes would be

• code producing a return code for partial systems that realize operation

INSERT only with algorithm 12 (cf. fig. 9)

• the empty string NIL for partial systems without operation INSERT.

One way to avoid these difficulties is to allow fragments to comprise

besides substrings of the complete program also fragments.

Then, in our example a fragment (represented by the empty left column of

fig. 5) can be defined that contains fragments 1, 2, 3, Dl, D2, El and E2

tagether with all the substrings of program unit INSERT not comprised by

one of these fragments.

This is the rationale for the following definition:

DEFINITION 3:

• A f r a g m

ments f.#f;
1.

of f, f the

" A fragment

e n t f is a not empty list of strings q E E and frag-

the fragments f. are called the subfrag m e n t s
1.

e n c 1 o s i n g

g is called to be

fragment for each f ..
1.

n e s t e d in f if and only if g is a

subfragment of f or g is nested in a subfragment of f.

The "semantics" of a fragment can informally be described as follows:

" If fragment f is not relevant for a partial system, then for the

generation of the program of that partial system f tagether with all

- 18 -

fragments nested in f and the strings comprised by them are replaced

with o(f).

• Otherwise, the substrings comprised by f become part of the program of

the partial system, the subfragments of f are processed in the same way

as f.

According to the first statement fragments nested in a fragment that is

not relevant for t E T do not contribute in any way to the program of t,

i.e. they are implicitly assumed to be not relevant for t. This can be

formally written as:

With g E F nested in f pf(t)=O implies pg(t)=O for each t E T.

Often, however, strenger statements hold: the relevance of the fragment

comprising program unit INSERT is equal to p
1

OR p
2

, since for the

implementation of the INSERT operation at least either fragment 1 or 2

must be provided!

Convention:

In this paper the name of a subfragment x of a fragment with the name f

is the string 'f.x'

- 19 -

3.2.3. Fragment: part of statement

For the fragmentation of language constructs involving a list it is often

useful to have a part of that list available for the construction of

partial systems.

statements:

Typical examples are CASE-constructs and definitional

Execution of a CASE-construct consists in the execution of at most one

out of several alternatives, therefore alternatives of CASE-constructs

are "natural" candidates for fragments of a program system.

Fig. 6a depicts the general structure of a CASE-construct with n

alternatives. The purpose of the IF-statement is to guarantee that the

evaluation of the GASE-expression expr yields a legal value (cf.

GASE-statement of PASCAL [10]).

A Straightforward (and always viable) fragmentation of a CASE-construct

consists of fragments for each of its alternatives, i.e. the n substrings

action-i, form a fragment each. In fig. 5 e.g. this leads to the

fragments 1 and 2.

If, however, the substitutes for all alternatives are identical - a quite

common situation in practice -, one can also proceed as follows, cf. fig.

6b:

JL (expr is out of range)
THEN error-action

CASE expr or-
label-1 action-1
label-2 action-2

Iabei-n
END

a)

action-n

I o 11 I
10121 ..
IOinl
IOI
11 I
121

In I

JL (expr is out of range)
THEN error-action

CASE expr or-
1 a be 1-1,
label-2,

labe 1-n,
label-0
I a beI -1
label-2

Iabei-n
END

b)

subst
action-1
act i on-2

I f I I
I I I I

action-n

Fig. 6: Fragments of CASE-constructs

a) For 1~i~n the string 1 label-i action-i 1 the i-th alternative,

- 20 -

forms fragment i with the empty string as substitute: o(i)=NIL.

b) In order to have the check for legal values of expr independent of the

partial systems a fragment 0 with the subfragments O.i, l~i~n, is

introduced. The common substitute subst is the only string of this

fragment.

c) For l~i~n the relevance of a subfragment O.i is the "negation" of the

relevance of fragment i, i.e. ~pi:

Po .(t) := ~p.(t) = < .].].

+-
1 0 : p.(t)=l

].

+-

1 : p.(t)=O
].

Fragment 0 is relevant if and only if one of its subfragments is

relevant:

Po :: OR~=l Po.i
d) The empty string NIL is the substitute for fragment 0 as well as its

subfragments:

o(O) = o(O.i) :=NIL l~i~n

For CASE-constructs with a large number of alternatives this kind of

fragmentation is superior to the general approach:

• if alternative i is not relevant, the statements action-i w i t h

label label-i are omitted without replacement (substitute is NIL!),

i.e. the CASE-construct is "shortened" for such partial systems; also,

duplication of the substitute subst is avoided.

• the CASE-construct becomes more "readable" in that it is immediately

evident from the program text, which alternative is not implemented for

a given partial system.

Notice that the strings comprised by fragment 0 and its subfragments are

not substrings of the complete program! Also, 'label-0' is introduced

as a "dummy" label in order to keep the fragmentation simple: otherwise,

the commas of the label-list of fragment 0 would have to form separate

fragments with rather complicated relevance expressions!

Remark: The fragments of program unit DBMS in fig. 7 are derived

following this technique (see also fig. 9 for the program unit DBMS of

partial system t ins).

- 21 -

Fragments comprising a part of a program statement may also arise when

several data objects with different relevances are declared in a single

definitional statement. Le~ e.g. the declarations of fig. 5 be written as

the single statement

S_RET,Z_RET,F_TYPE: INTEGER

Then, fragments D1 and D2 would be the substrings 1 S_RET, 1 and 1 Z_RET, 1

respectively.

Note that if all variables must be comprised by different fragments it is

helpful to add (in analogy to the dummy label above) a "dummy" variable

to the list of program variables in order to keep the fragmentation

simple.

3.3. Substitutes

3.3.1. Definition of substitute code

Substitutes specify the actions of a partial system, when it is called to

perform a function of the complete system that it is not intended to

implement. In other words, the assignment of substitute code to fragments

is an act of programming and is therefore .the responsibility and the task

of the system designer or programmer.

There may be some rules of the thumb, e.g. the substitutes for derived

fragments such as fragments E1 and E2 of fig. 5 will usually be the empty

string. In general, however, this task cannot be automated. Consider e.g.

the INSERT operation of the example system and its implementation in fig.

5:

• It is sufficient and reasonable to assign fragments 1 and 2 substitute

code with the only effect of producing a return code indicating

"storage structure not accessible", say (cf. figures 8 and 9).

• In contrast, the substitute for fragment 3 (cf. o(8.3) of fig. 8)

depends on the envisaged use of partial systems:

NIL is the right choice, when it is guaranteed (as e.g. in "dedicated

systems 11 [17]), that partial systems of DBMS without algorithm 14, i.e.

lacking the capability of maintaining inverted lists, will never be

called to insert tuples into relations that are implemented using

- 22 -

inverted files.

Otherwise o(3) must be code that "undoes" the insertion of the tuple

into the storage structure (the effects of fragment 1 or 2,

respectively) and generates an appropriate return code.

• In general there are several alternatives for the implementation of a

substitute:

The empty string as the substitute for program unit INSERT implies that

for partial systems not supporting operation INSERT the call to INSERT

in program unit DB~1S must be replaced by a substitute indicating

"operation not implemented", say (cf. figures 8 and 9).

As an alternative the substitute for program unit INSERT could be a

program unit with this task as its only purpose. A drawback of this

approach is that the substitute is a program unit with the same name

(and calling interface!) as program unit INSERT of the complete

program: this complicates the manipulation and maintenance of the

software system, e.g. the substitute program unit must be element of a

separate "substitute library",

A third option one might consider for the implementation of partial

systems without operation INSERT is to replace both fragments 1 and 2

with their respective substitutes instead of completely replacing

program unit INSERT. The problern here is that one cannot distinguish

between the indication of "operation not implemented" and the

indication of "operation only partially implemented"!.

3.3.2. Number of substitutes per substring

According to definition 2 a fragment is associated with exactly one

substitute, in particular, the substitute of a fragment is independent of

the partial systems. If for some reason the substitute of a substring q

depends on the partial system and, thus, it should be necessary to

provide for this string n>1 substitutes s 1
, ... '

achieved by means of nested fragments as follows:

n
s ' this can be

Define n fragments f 1
, f 2 , ... , fn, suchthat fi+ 1 is the only element of

f i .
, 1. e. (cf. section D of appendix)

fl=<f2>, f2=<f3>, ... , fn-1=<fn>

and set

- 23 -

4. B-programs, generation of partial systems

With the concepts and techniques of the previous sections we now study

the nature of B-programs and the process of generating a partial system

(cf. figures 1 and 4). The problern of determining a set of fragments, a

"fragmentation", is addressed and a heuristic procedure is presented. A

representation of a B-program as an expansion of the complete program and

the generation of partial systems is sketched. The informal discussion of

this section provides the rationale for the abstract definition and

formal treatment of "generation of partial systems" of section 5.

4.1. Determining fragmentations

Since a partial system should contain only relevant parts of the complete

system, in particular no unreachable executable statements or

declarations of unreferenced data objects (e.g. variables, arrays), the

method of this section for identifying fragments is based on the ideas

and techniques discussed in section 3 and relies heavily on flow analysis

[9] of the complete program.

We use the following terminology:

• Often it will be the case that certain capabilities, i.e. algorithms,

of the complete system are indispensable in that they must be provided

by any partial system: an algorithm that is irrelevant for some partial

system is called an 11optional algorithm 11
•

• We say that a fragment (with executable code) is e x e c u t e d , if

at least one statement of the fragment is executed.

The method consists of four steps (as to the examples we assume that the

program text of the example system is organized in lines as shown in fig.

7, also it is assumed that all algorithms are optional):

STEP 1:

For each program unit u of the program system define a fragment

comprising u.

Explanations:

• Step 1 provides the means to select subsets of the program units of the

1 I
1 I
1 I
1 I
1 I
1 I o 11 I
1 I o 121
1 I o 131
1 I o 141
110151
110161
11 o I
1 I o I
1 11 I
1 121
1 I 3 I
1141
1 151
1 161
1 I
1 I
21
21
211 I
21
31
31
31
31
31
31
41
41
41
t1j
41
411 I
41
4121
412111
412121
412121
412121
4121
4121
41
41
41
51
51
51
51
511 I
511 I
51
5121
5121
51
5131
5131
51
61
61
61
611 I
61
6121
61
61
71
71
71

- 24 -

PROCEDURE DBMS

lf (OP<1 OR OP>61
THEN return operation

CASE OP OF
-1-, -

2,
3,
4,
5,
6,
O: return 'operation not

implemented'
1 :
2:
3:
4:
5:
6:

END
END-

OPEN
GLOSE
FIND
GET
INSERT
DELETE

PROCEDURE OPEN
OPEN RF
OPEN-IF

END -
PROCEDURE FIND
---u"SEINDEXES

evaluate INDEX TABLE
STRTGY -
return qss

END
PROCEDURE STRTGY

determine access-strategy
set ACCESS TYPE

GASE ACCESS-TYPE OF ----"1: - -
bui ld seq.search qss

2: BEGIN
CASE FILE TYPE OF
-,-: calculatetTd

2:

unknown'

and

RETRIEVE_TID_LIST

END
bui ld direct-access qss
END

END
END-
PROCEDURE GET

NEXT TUPLE:
CASE-ACCESS TYPE OF
-1-: ... -:-.

NEXT_SEQ

2:
NEXT_TID

END
IF (qua I ifikation is not satisfied)

THEN GO TO NEXT_TUPLE
END
PROCEDURE NEXT_SEQ

CASE FILE TYPE OF ----"1: - -

2:

END
END-

next_1

next_2

PROCEDURE NEXT TID
return next tid of

END
tid-list

1
1
1
1
1
2
3
4
5
6
7
8
8
9

10
11
12
13
14
15
15
16
16
17
18
19
19
19
19
19
19
20
20
20
20
20
21
22
23
24
25
25
25
26
26
27
27
27
28
28
28
28
29
29
30
31
31
32
33
33
34
35
35
35
36
37
38
39
39
40
40
40

Fig. 7: Fragmentation of the example system DBMS

81
81
8
8 11
8
8 21
8
8 31
8
9
9
9 1 I
9

10
10
10
1 o 11 I
101
10121
101
10131
101
111
11 I
11 I
111
11 I
121
121
121
131
131
131
13 I
1 31
131
141
11~ I
141
11~ 1
151
151
151
161
161
161
171
171
171
181
181
181
191
191
191
191
201
201
201
201
21 I
211
21 I
221
22111
221

- 25 -

PROGEDURE INSERT
GASE FILE TYPE OF
--1: -

2:

END

INSERT_1

INSERT_2

INSERT TID
END -
PROGEDURE GLOSE

GLOSE RF
GLOSCI F

END -
PROGEDURE DELETE

GASE FILE TYPE OF
--1: -

2:

END

DELETE_1

DELETE_2

DELETE TI D
END -
PROGEDURE OPEN_RF

GET

END
PROGEDURE GLOSE_RF

END
PROGEDURE OPEN IF

USE INDEXES-

GET

END
PROGEDURE GLOSE IF

USE INDEXES -

END
PROGEDURE INSERT_1

END
PROGEDURE INSERT_2

END
PROGEDURE DELETE_1

END
PROGEDURE DELETE_2

END
PROGEDURE INSERT TID

USE INDEXES -

END
PROGEDURE DELETE TID

USE INDEXES -

END
PROGEDURE RETRIEVE_TID_LIST

END
PACKAGE INDEXES

INDEX TABLE: ARRAY OF INTEGER
END -

41
41
41
42
43
44
45
46
47
48
48
49
50
51
51
51
52
53
54
55
56
57
58
58
58
58
58
59
59
59
60
60
60
60
60
60
61
61
61
61
62
62
62
63
63
63
64
64
64
65
65
65
66
66
66
66
67
67
67
67
68
68
68
69
70
71

Fig. 7: Fragmentation of the example system DBMS (continued)

- 26 -

complete program (cf. section 3.2.1). Program units local to other

program units give rise to nested fragments.

If we apply this rule to the example system we obtain the fragments 1

through 22 as shown in fig. 7.

• Identification of these fragments requires only a syntactical analysis

of the complete program and, thus, is amenable to automation.

STEP 2:

For each fragment with statements that (i) implement an optional algo­

rithm or (ii) the execution of which leads to the execution of an option­

al algorithm define subfragments comprising these statements.

Explanations:

• With step 1 the program units of the complete program are available as

building blocks for partial systems. The purpese of this step is to

make available as building blocks parts of program units that either

implement or invoke directly or indirectly an optional algorithm (cf.

section 2.1b).

• This is a recursive process in that it may be necessary to apply step 2

to fragments defined according to this step. Examples:

a) Fragment 4 of step 1 (program unit STRTGY, fig. 7) contains code

implementing algorithms 5 and 6 and a call to program unit

RETRIEVE TID_LIST, which implements algorithm 7. When STRTGY is invoked

control is transferred to exactly one of the alternatives of the

"outer" GASE-statement, thus, at first subfragments 1 and 2 of fragment

4 are introduced, where fragment 4.2 comprises the code of algorithm 6

and the call to program unit RETRIEVE TID LIST. Since with each

execution of fragment 4.2 exactly one of these pieces of code is

executed, step 2 must be applied also to fragment 4.2 yielding

fragments 4.2.1 and 4.2.2.

b) Execution of any alternative of the GASE-statement of fragrnent 1

leads to the execution of at least one algorithm supporting the

respective operation, thus step 2 is applied to fragment 1 and yields

the subfragments 1.1 through 1.6.

Remark: Since the substitutes of these alternatives are identical the

technique of section 3.2.3, fig. 6b, is employed!

• Obviously, in-depth knowledge of the internal design of the system and

the "meaning" of program statements is indispensable for this step,

- 27 -

syntactical analysis of the complete program alone is insufficient: in

general not every CASE-construct of the complete program gives rise to

the definition of fragments and, vice versa, a fragment is not

necessarily associated with a branch statement.

For instance, the fact that the call to OPEN IF of fragment 2 (see fig.

7) is superfluous, if there are no inverted files to be locked - this

is the reason for introducing fragment 2.1! - cannot be deduced from

syntactical properties. Rather, knowledge of the tasks performed by

program unit OPEN_IF (cf. section 1, tab1e 2) is required.

G In general the set of subfragments of a fragment f introduced due to

step 2 contains subsets X(f), suchthat with the execution of f exactly

one fragment of X(f) is executed. Fragments with this property are

called X - f r a g m e n t s of f, the other subfragments introduced

in this step are called 0 - f r a g m e n t s

The sets of X-fragments of the example system:

X(l) = { 1.1 1.2 1.3 1.4 1.5 1.6 }
' ' '

X(4) = { 4.1 4.2 } X(4.2) = { 4.2.1 4.2.2 }
'

X(5) = { 5.1 5.2 } X(6) = { 6.1 6.2 }

X(8) = { 8.1 8.2 } X(lO) = { 10.1 ,10.2 }

The 0-fragments: 2.1 , 5.3 , 8.3 , 9.1 , 10.3

STEP 3:

For each fragment f with statements that can be executed only when

subfragments

statements.

STEP 4:

of f are executed define fragments comprising these

a) For each fragment f with declarations of data objects that are

referenced only by statements of subfragments of f define fragments

comprising these declarations.

b) For each global data object define a fragment comprising its

declaration.

Explanations:

• As has been elaborated in section 3.2.1 in order to obtain partial

systems without superfluous code in general after the definition of

0- and X-fragments additional derived fragments must be introduced.

- 28 -

Step 3 completes the fragmentation of executable code, in step 4

fragmentation of definitional statements is done. Examples:

In fig. 5 application of steps 3 and 4 yielded fragments El, E2 and Dl,

D2, respectively. In fig. 7 step 4 leads to fragment 22.1 with the

declaration of the global data object INDEX TABLE.

• After introducing a fragment due to step 3 the condition for applying

this rule may be satisfied by other statements such that fragments

comprising them must be defined, i.e. step 3 is in general an iterative

process. This is true also for step 4, if definitional statements

reference other definitional statements as e.g. type-declarations or

separate specifications of initial values (e.g. DATA-statement of

FORTRAN).

• Steps 3 and 4 require only flow analysis of the complete program.

Program analysers (see e.g. [1]), thus, can at least aid in determining

derived fragments.

Remarks:

a) Clearly, the crucial point is the definition of X- and 0-fragments in

step 2, with these fragments the optional algorithms of the complete

system and,

specified.

thus, to a large extent the set of partial systems are

b) The fragments available with steps 1 and 2 can be viewed as an

"initial solution" for a fragmentation, which is iterative1y refined

in steps 3 and 4. This refinement process is based on flow and

syntactical analysis of the complete program only, semantic properties

are not taken into account here. It, therefore, leads to a "finest"

fragmentation for a given set of X- and 0-fragments in that any

additional decomposition of the fragments constructed does not

increase the set of partial systems.

c) In general this method will 1ead to superfluous fragments: e.g.

fragment E1 of fig. 5 is superfluous in that whenever the fragment

comprising program unit INSERT (fragment 8 of fig. 7) is relevant,

also the code of fragment E1 must be relevant and vice versa; the

reader easily verifies that the same is true for fragment D1. In other

words program unit INSERT and its subfragments E1, D1 have the same

relevances (i.e. we have p
8

:pD
1
:pE

1
) such that fragments E1 and D1 can

be deleted from F without altering (in particular without reducing)

- 29 -

the set of partial systems.

This observation leads to the investigation in section 5 of techniques

for reducing B-programs, i.e. the elimination of superfluous

fragments.

d) Since this method works "top-down" there can be no "overlapping"

fragments, i.e. a substring of the complete program that is element of

a certain fragment cannot be element of any other fragment. Also, each

fragment has at most one enclosing fragment.

e) For this method in order to lead to partial systems without

unreachable code it is necessary that each fragment satisfies the

following m a x i m a 1 i t y property:

Let s be an executable statement and p~s or s~p a substring of the

complete program. A fragment f comprising p must also include s, if

the execution of s necessarily implies the execution of any statement

of p and s is not already comprised by a fragment nested in a fragment

enclosing f (cf. definition 3).

Therefore, determination of a fragment comprising a sequence of

executable statements p of the complete program entails finding a

maximal list of statements that are comprised by the same fragment (or

no fragment at all) and include p such that flow of control occurs

into the list only to the first statement and once the first statement

is executed, all statements in the list are executed sequentially.

Program analysers as e.g. RXVP80 [2] or BRNANL [28] that provide

information on the "basic blocks" [9] of program systems can aid in

determining such maximal lists of statements.

- 30 -

4.2. Construction of B-programs, generation of partial systems

A B-program must meet at least the following requirements:

1) It must in some form contain the complete program of P, since it must

be possible to generate the original complete system.

2) It must include a description of the fragmentation of P: as has been

demonstrated above a fragmentation cannot be deduced from the complete

program as such.

3) It must be possible to determine for each partial system t and

fragment f the relevance value pf(t) and substitute o(f).

We assume, that the relevances and substitutes are given:

• as has been discussed in section 3.3 definition of substitutes is the

responsibility of the system designers and/or programmers.

• the topic of constructing the relevances is beyend the scope of this

paper and is dealt with elsewhere (chapter 4 of [16]; [29]; seealso

section4.3).

For the construction of a B-program requirement 1 suggests to start out

from the complete program of P and expand it by adding for each fragment

f a description of the substring comprised by f, its relevance pf and its

substitute o(f). With the method of section 4.1 defining fragments and

expanding the complete program can be combined and done as follows:

Definition of a fragment f comprising a substring q of the complete

program with relevance pf and substitute o(f) entails the replacement of

q with the string

[Pf o(f) q]

called a b 1 0 c k ' where special symbols and indicate

"begin-of-block" and "end-of-block" respectively. (Additional delimitors

may be necessary to separate the three components of a bleck, this purely

syntactical aspect can be neglected for the purpese of this discussion!)

Since the method of section 4.1 produces only nested and no overlapping

fragments definition of a subfragment f' of f comprising a string q' with

- 31 -

q = q 1 ~q' ~q2 leads to the replacement of q' with the string

pf' o(f') q']

such that after introducing f and f' the resulting expanded text contains

instead of q the string

[Pf o(f) ql [Pf' o(f') q'] q2]

Note that "nested blocks" correspond to nested fragments!

From definition 3 and section 4.1 it fol1ows that a B-program constructed

in this way

• is a sequence of blocks, where the third component of a bleck, the

"fragment component", itself may be a sequence of (i) substrings of the

complete program and (ii) blocks

• contains the complete program in form of substrings

• any substring of the complete program appears in the B-program at most

once, i.e. duplication of code does not occur.

Example: Fig. 8 displays the structure of the B-program for the example

system constructed along these lines with the fragmentation of fig. 7:

the complete program is partitioned into 71 substrings qi, 1~i~71, where

q, represents the concatenation of the lines of fig. 7 with the integer i
1

at the right margin.

The process of generating the program of a partial system t, can, then,

in principle be thought of as selecting and concatenating substrings of a

B-program:

Starting with the first bleck the blocks of the B-program are evaluated

as follows: the relevance value o~ the fragment is determined. In case

the fragment is not relevant for t the substitute component of this bleck

is appended to the program text produced so far (the empty string is

assumed as the initial value of the programtobe generated); otherwise

the fragment component is "processed":

• if it is a substring of the complete program, this string is appended

to the program text generated so far

• if it is a list of substrings and blocks the substrings are appended to

the program text generated so far, blocks are evaluated, i.e. for each

of these blocks as just described the relevance value is determined,

... , etc.

- 32 -

pl NIL q1 [pl.O NIL [pl.O.l NIL q2] [pl.0. 2 NIL q3] [pl.0. 3 NIL q4]

[Pl.0.4 NIL qS] [pl.O.S NIL q6] [P1.0.6 NIL q7] q8]

[pl.l NIL q9] [p1 . 2 NIL q10] [p1. 3 NIL qll]

P1.4 NIL ql2] [P1.5 NIL ql3] [P1.6 NIL ql4] qlS]

P2 NIL ql6 [P2.1 NIL ql7] ql8] [P3 NIL ql9]

P4 NIL q20 P4.1 NIL q21] q22

P4.2 NIL q23 [P4.2.1 NIL q24] [P4.2.2 NIL q25] q26] q27]

Ps NIL q28 Ps.l o(S.l) q29] q30 [Ps.2 o(S. 2) q31] q32

Ps.3 NIL q33] q34]

p6 NIL q35 P6.1 o(6 .l) q36] q37 [P6.2 o(6 · 2) q38 q39] [P7 NIL q40]

Ps NIL q41 Ps.l o(S.l) q42] q43 [P8.2 o(S. 2) q44 q45

P8.3 NIL q46] q47] [Pg NIL q48 [P9.1 NIL q49] qSO]

P10 NIL qSl [P10.1 NIL q52] q53 [P10.2 NIL q54] qSS

Pl0.3 NIL q56] q57] [p11 NIL q58] [p12 NIL q59] [p13 NIL q60

P14 NIL q61] [P15 NIL q62] [P16 NIL q63] [P17 NIL q64]

P18 NIL q65] [P19 NIL q66] [P20 NIL q67] [P21 NIL q68]

P22 NIL q69 P22.1 NIL q70] q71]

o(S.l)=o(5.2):= return 'illegal access-type'
o(6.l)=o(6.2)=o(8.l)=o(8.2):= return 'storage structure not accessible 1

Fig. 8: The B-program of the example system

Note that due to the one-to-one correspondence of fragments and blocks

the order of

• the fragments without enclosing fragment

• the components of each fragment

determines the order, in which the substrings of the complete program are

concatenated to form the programs of the partial systems. I.e. being a

list (and not just a simple set!) is an essential property of a fragment

(see definition 3)!

Example:

Fig. 9

applying

- 33 -

shows the program of partial system t_ins. It is the result of

this procedure to the B-program of fig. 8, when the following

relevance values, and only these, are equal to 1 for t=t ins:

pl(t), P1.0(t), P1.0.3(t), P1.0.4(t), P1.0.6(t), P1.1(t), P1.2(t),

P1.5(t), Pz(t), Ps(t), Ps.1(t), Ps.3(t), p6(t), P6.1(t),

p8(t), P8.1(t), Pg(t), p11(t), p12(t), p15(t) .

A detailed presentation of the implementation of B-programs as an

expansion of the complete program and the pertaining algorithm for the

generation of partial systems is given in [18].

1 I
1 I
1 I
1 I
1 I
**
110131
110141
**
110161
1 I o I
11 o I
1 11 I
1121
**
1 151
**
1 I
1 I
21
21
**
21
51
51
51
51
511 I
511 I
51
**
51
5131
5131
5i
61
61
61
611 I
61
**
61
61
81
81
BI
811 I
BI
**
81
**
81
91
91
**
91

11 I
11 I
11 I
11 I
11 I
121
121
121
151
151
151

- 34 -

PROGEDURE DBMS

lf (OP<1 OR OP>6)
THEN return operation unknown'

GASE OP OF

3,
4,

6,
0: return 'operation not

implemented'
1: OPEN
2: GLOSE

5: INSERT

END
END-
PROGEDURE OPEN

OPEN_RF

END
PROGEDURE GET

NEXT TUPLE:
GASE-AGGESS TYPE OF
-1-: ... -:-.

END

NEXT_SEQ

2: ...•...
return 'i 1 legal access-type'

END
IF (qua I ifikation ls not satlsfied)

THEN GO TO NEXT_TUPLE

PROGEDURE NEXT SEQ
GASE FILE TYPE OF ---,--:- - -

next_1
2:

return 'storage structure not accessible'
END

END-
PROGEDURE INSERT

GASE FILE TYPE OF
--1: -

INSERT_1
2:

return 'storage structure not accessible'

END
PROGEDURE GLOSE

CLOSE_RF

END
PROCEDURE OPEN RF -

GET

END
PROGEDURE GLOSE RF -

END
PROGEDURE INSERT_1

END

Fig. 9: The program of the partial system t_ins
(**: marks substitute code, within program units only!)

- 35 -

4.~. The set of partial systems

From the preceding sections it can be seen that in general not any

arbitrary subset of the set F of fragments of a program system can be

used to build a "correct" partial system. Rather, interdependencies among

fr~gments reflecting e.g. the flow of control must be observed. Consider

the following examples from section 3, fig. 5:

a) The fact that (i) execution of fragment 3 may lead to the execution of

fragment E2 and (ii) the statements of E2 make sense only tagether

with those of fragment 3 implies the equality of the respective

relevances: p3:pEZ

b) Similarly, flow analysis decrees, that whenever one of the

alternatives of the GASE-statement of fig. 5 is part of a partial

system also fragment El must be incorporated:

PEl :: pl OR Pz·
c) Analogously, the relevances of fragments Dl and D2 satisfy

Pnz=P3
d) From b) and c) follows Pn 1=pEl

In [29]

graph,

the notion of "fragment system", basically a directed acyclic

is introduced as a formal model of such interdependencies among

relevances:

• it is shown that there exists a minimal subset C c F of fragments such

that for each f E F there is a subset C(f) E C with

pf :: ORgEC(f) Pg
• the elements of C are a subset of the X- and 0-fragments, they are

called "characteristic" fragments

• an algorithm for the construction of C(f) for f E F-C, i.e. a

representation of relevences in terms of relevances of characteristic

fragments, is given.

Thus,

element

with n=ICI
n 'r(t)EB,

each partial system t E T can be represented by an

where the components of 1:(t) are the values of the

characteristic fragments.

In general, however, the reverse does not hold: correct partial systems

have to satisfy a set of constraints of the form

- 36 -

OR p (t)=1 ==> OR p (t)=1
gEC1 g gEC2 g

OR p : OR p
gEC1 g gEC2 g

with Cl,C2 ~ C, such that the set T of partial systems of a program

system can be thought of as a subset of Bn.

In (29] it is shown that such constraints can be mechanically derived

from the fragment system. However, constraints may also reflect semantic

properties of the program system (cf. section 4.1, remark c), as the

following example shows.

Example:

From the description of the DB~!S user-interface in section 1 it follows

that each version of DB~!S supporting operation OPEN must also provide

operation GLOSE. This implies that any version implementing algorithm 1

must also include algorithm 3, which can be formally expressed as the

constraint p
11

= p
12

- 37 -

5. A formal model for the generation of partial systems

We now present a formalization of the ideas developed more or less

intuitively up to this point:

A B-program from above is viewed as a particular instance of an augmented

tree, an ''abstract B-program", and generation of partial systems is

defined in terms of preorder tree-traversal. This provides the groundwork

for the formal treatment of one aspect of B-program construction, namely

B-program reduction, i.e. simplification of B-programs through

elimination of superfluous fragments.

5.1. Abstract B-programs

As above F denotes the set of fragments, Q ~ E be the set of substrings

of the program system. According to definition 3 a fragment f E F is a

list of substrings and fragments, i.e. (cf. section D of appendix)

f = < f[1], f[2],

with either f[i] E F or f[i] E Q.
... ' f[n] > n~1

The nesting of fragments and the association of substrings with fragments

can be expressed as a relation S on the set F+Q:

S = { (f,g) I f E F, g E F+Q, g is element of f }.

The method of section 4 produces fragmentations such that (cf. section

4.1, remark d)

• each fragment has at most one enclosing fragment

• each substring of the complete program, i.e. each element of Q, is

element of at most one fragment.

Therefore, if there are k fragments f 1 , ... , fk without an enclosing

fragment, the graph (F+Q,S) is a set of k erdered trees with these k

fragments as roots. Adding to F the "pseudo-fragment" r:=< f
1

, ... , fk >

(this list is a fragment according to definition 31) yields a single

erdered tree (cf. section Hof appendix) with

• the substrings of the program system as the leaves

• the pseudo-fragment r as its root

• the fragments as the other non-leaf vertices.

- 38 -

A B-program of section 4,

"abstract B-program":

thus, can be viewed as an instance of an

DEFINITION 4:

T be the set of partial systems of a program system, E be the set of

strings over the alphabet of the programming language the program is

written in. Let F, Q and E be not empty sets with Q c E and F~'<'Q=~;

s c pxp be a relation on P:=F+Q, 0 and p be mappings o: F --> E and p:

TXF --> B.

(P,S,o,p) is called an a b s t r a c t

and B3 are satisfied:

B - p r o g r a m , if Bl, B2

Bl: (P,S) is an erdered tree with the elements of Q as its leaves

B2: (f,g) E s, g E F, p(t,f)=O ==> p(t,g) = 0

B3: root r of (P,S) satisfies: p(t,r) = 1 for each t E T and

o(r) = NIL

Remark: Due to F c P property Bl implies that S is a relation on FXP!

As explained above the B-programs of section 4 can be interpreted as

erdered trees, i.e. they satisfy property Bl.

The mapping p represents the set of relevances of a B-program:

p(t,f) := pf(t)

B2 is the property of nested fragments of section 3.2.2!

B3 gives the definitions of the relevance and substitute of the

pseudo-fragment: these values are needed for the formal definition of

program generation below. Notice that o(r), since r is always relevant,

can be any arbitrary value.

B3 does not imply that a partial system necessarily contains code of the

complete system. It is possible that all successors of the root of (P,S)

are fragments and that these are not relevant for a particular partial

system. Then, this partial system is composed only of the substitutes of

the successors of the root.

In particular, definition 4 accommodates the extreme case of the empty

string as program of a partial system!

The B-programs of section 4 are special cases of abstract B-programs:

• Definition 4 allows for fragments f and g of a B-program with

p(t,f) = ~p(t,g) for all t E T, i.e. the relevance of f may be the

- 39 -

negation of that of g: pf = ~pg.
Such an equation can express the fact that the complete system provides

capabilities, which cannot coexist in a running system (cf.

"restrictive characteristics" in [8]). I.e. an abstract B-program can

be a representation of the set of partial systems for rather

"' h " 1.n omogeneous software systems that cannot be modeled as fragment

systems, relevances, thus, can be more complicated than the Boolean

expressions of section 4.3

• In section 4 due to step 1 the successors of the root are always

fragments, whereas the root of an abstract B-program can have as

successors elements of F as well as Q!

• The set Q of definition 4 is just a not empty set of strings, without

further restrictions. In particular, it may contain elements

representing identical strings or strings with common substrings: in

the terminology of section 4 this means that a substring of the

complete program may appear as element of more than one fragment, i.e.

for the implementation of a B-program code may be duplicated.

Example:

Fig. 10 shows the ordered tree (F+Q,S) of the abstract B-program based on

the fragmentation of fig. 7:

• rectangles represent the elements of F, i.e. the fragments; circles

stand for the elements of Q,

program.

i.e. the substrings of the complete

• the name of a leaf representing the substring qi is the index i, the

name of a non-leaf vertex is the name of the corresponding fragment.

The name of the pseudo fragment is "DBNS".

(Due to the different graphical representation of leaf and non-leaf

vertices no ambiguity can arise from the fact that in the examples of

this paper the name of a fragment and the index of a substring can be

identicall)

• the left-to-right ordering of the successors of a vertex f in fig. 10

depicts the order ~ defined on the successor set SUCC(f) (cf. section H

of appendix) .

DBMS
I

'"%j
I-'·

()Q

1-'
0 ..
t-3
::r
(1)

0
t;
0..
(1)
t;
(1)

0..

rt
t;
(1)
(1)

0
I-tl

rt
::r - - - - - -(1) I I I 1 I I ~ I ~

0
t:O
I

'0
t;
0

()Q
t;
Ql
8

0
H'l

rt
::r
(1)

(1)

~
Ql
8
'0
I-'
(1)

{/]

'<
{/]

rt
(1)
8

- 41 -

5.2. Programgeneration

It is easy to verify that what in section 4.2 has informally been

described as generation of partial systems can be perceived as a

traversal of the ordered tree of an abstract B-program:

Algorithm GPS (generation of partial systems):

Input : B-program BP=(P,S,o,p), t E T

Output: The program text PROG=GPS(t,BP) of the partial system t

Hethod:

with

Remark:

r be the root of (P,S)
PROG = NIL
EVAL(t,r)

PROCEDURE EVAL(t,x)
IF (x E F)

END

THEN /* evaluate non-leaf vertex */
IF (p(t,x)=O)

THEN PROG = PROG ~ o(x)
ELSE FOR I=l TO ISUCC(x)l

DO
EVAL(t,x[I])
END

ELSE /* evaluate leaf
PROG = PROG II X

It is the concatenation operations of this algorithm that requires E and

Q of a B-program tobe sets of string-valued objects. Note, however, that

for algorithm GPS Q ~ E is no preconditionl

Generation of a partial system consists of the "evaluation" of a subset

of the vertices of the B-program, where e v a 1 u a t i o n of a vertex

x fort E T, denoted P(t,x), is defined as follows:
+-

P(t,x)
1 determine p(t,x)

:= <
I PROG = PROG ~ X

+-

X E F

X E Q

- 42 -

DEFINITION 5:

• Let BP=(P,S,o,p) be a B-program, P=F+Q, r the root of (P,S) and t E T.

The subtree (Pt,St) of (P,S) with

Pt:= { p I p E P, p=r or there is x E PRED(p) with p(t,x)=1 }

st := s~·:cp txp t)

is called the subtree of BP r e 1 e v an t for t.

denotes the set of successors of vertex x with respect to

SUCCt(x) := SUCC(x)*Pt

Example: Figure 11 depicts the subtree relevant fort ins.

The following statements are an immediate consequence of property 82:

e x E Pt*F and p(t,x)=O ==> x is a leaf of (Pt,St) (i.e. SUCCt(x)=~)

• x is a leaf of (Pt,St) ==> (x E Pt*F and p(t,x)=O) or x E Q

THEORE~f 1:

For the generation of a partial system t algorithm GPS evaluates exactly

the vertices of the relevant subtree (Pt,St). Tothis end (Pt,St) is

traversed in preorder.

Proof:

The first part of this theorem follows immediately from the remarks to

definition 5 and algorithm GPS.

As to the order of visiting the vertices of the tree observe that

algorithm GPS evaluates

• root r as the first vertex

• immediately after evaluation of any non-leaf vertex x of (Pt,St), i.e.

of x with ISUCCt(x)I>O, the successors of x are evaluated in the order

~ defined on SUCC(x) (cf. section Hof appendix!).

This sequence of evaluations can formally be described as:

PREORDER(t,r)

with

OBMS

"'j
f-'·

OQ .
......
...... ..

;l
(1)

rn
~ o-
rt
1-f
(1) I I r;~ 12.11 r;~ t?R-115. 11 (qfi\ 15. 21 (:,.?\ 15.31 (:,.,;'\I I I I 22 (1)

1-f
(1)
1-'
(1)

<:
ll>

I I _j I I I ~ :::1
rt (...)

Hl
0
1-f

'0 I I ~rs:-n~~r!1n~ 11' 10 ll>
1-f
rt
f-'·
ll>
1-'

rn
'<:
rn
rt
(1)

a
rt

I
f-'·
:::1
rn

(We assume that for n<m

- 44 -

PROCEDURE PREORDER(t,x)
P(t,x)
FOR I=l TO ISUCCt(x)l

DO

END
END

PREORDER(t,x[i])

FOR I = m TO n DO statements END

is equivalent to the empty statement, i.e. 'statements' is not executed!)

This is the definition of traversal of erdered trees in preorder (cf.

e.g. [3], [11], [23)).

0

Notation:

<BP denotes the order induced on the vertices of a B-program BP=(P,S,o,p)

by preorder traversal of (P,S), i.e.:

x <BP y <==> traversing (P,S) in preorder vertex x is visited before

vertex y.

Remark: The order ~ defined on the successor sets (cf. section H of

appendix) is embodied in <BP in the following sense:

x E SUCC(k), y E SUCC(k), x ~ y ==> X <BP Y

It follows immediately from theorem 1 that for each t E T the string

GPS(t,BP) is the concatenation of

• the leaves q E Q of (Pt,St)

• the substitutes of the vertices f E F that are leaves of (Pt,St).

Furthermore, with xl,x2,x3 E r (remember NIL E E!):

• q1 ,q2 E Q~'<Pt, q1 <BP q2 ==> GPS(t,BP) = x 1 II q1 II x2 II q2 II x3

• q E Q*Pt' f E F is leaf of (Pt,St)' q <BP f

==> GPS(t,BP) =

==>

II x2 II o c o II x3

I. e.' the order in which the substrings of the complete program and

substitutes are concatenated is implicitly given with the abstract

B-program, thus the program text of a partial system is unambiguously

determined with the set of relevant fragments:

- 45 -

Corollary:

A partial system t E T is uniquely determined with the set

F t : = { f I f E F' p (t' f)=l }

5.3. Reduced B-programs

It has been pointed out that constructing fragmentations according to the

scheme of section 4 can lead to fragments that are required whenever

their enclosing fragments are required and that such fragments can be

omitted without altering the set T of partial systems (section 4.1c). In

terms of abstract B-programs: an abstract B-program with a smaller number

of vertices can be employed for the generation of the same set of partial

systems.

DEFINITION 6:

Let BP=(P,S,o,p) and BP'=(P' ,s' ,o' ,p') be two B-programs. BP' is a

r e d u c e d B-program with respect to BP if conditions Rl and R2 are

satisfied:

Rl: IP' I < IPI
R2: GPS(t,BP) = GPS(t,BP') holds foreacht E T.

We present three operations on B-programs for transforming a given

B-program BP into a reduced B-program BP'.

These "transformations" explicitly refer to the order ~ defined on the

successor sets of BP and BP' in terms of the index mappings v and v' of

BP and BP', respectively (cf. section Hof appendix).

In the following SUCC(f) and PRED(f) denote the successors and

predecessors of a vertex f with respect to the ordered tree of B-program

BP (and not that of BP' !).

- 46 -

TRANSFORHATIÖN 1:

Let BP=(P,S,o,p) be a B-program, P=F+Q, and f,g t F with

Tl.l:

T1.2:

BP' :=(P' ,S' ,o' ,p') with P'=F'+Q' is derived from BP as follows (cf. fig.

12):

F' := F - {f,g} + {f'} with f' -.g

s' := s - {(x,y) I (x,y)e:S, x=f

+ {(f',x)lxe:P, x~g, (f,x)e:S

For each t e: T:
+-
I p(t,x) X E F' -{f'}

p'(t,x) := <
p(t,f) X = f'

+-

With m=ISUCC(g)l and n=ISUCC(f)l:
+-
! v(x)
I v(f)

v'(x) :=< v(x)
I v(x)+v(g)-1
I v(x)+m
+-

F, Q' := Q

or x=g } - {(x,f) I xe:PRED(f) }

or (g,x)e:S } + {(x,f')lxe:PRED(f) }

+-
I o(x) X E F'-{f'}

o' (x) := <
o(f) X =

+-

XE P'-(SUCC(f)+SUCC(g)+{f'})
X= f 1

x e: SUCC(f), v(x)<v(g)
x e: SUCC(g)
x e: SUCC(f), v(x)>v(g)

f'

Explanation: Two vertices f and g are merged into a new vertex f' such

that the successors of fand g, i.e. the vertices SUCC(f)+SUCC(g)-{g},

become the sucessors of f', see fig. 12. Notice that f' is the only

predecessor in (P' ,S') for each of these vertices and that the other

vertices and edges remain unchanged. The graph (P' ,S'), thus, forms a

tree again.

Due to the definition of v' the order of the vertices relative to each

other remains unchanged, in particular:

Remark:

+-
1 f[i]

f' (i] = < g(i+1-v(g)]
f[i+l-m]

+-

1:5i:5v (g) -1
v(g):Si:Sv(g)+m-1

v(g)+m:Si:::;m+n-1

It was pointed out in section 5.1 that for the B-programs of section 4

the successors of the root are always fragments. Application of this

transformation with f as the root of (P,S) may yield a B-program BP' with

an element of Q' as successor of the root of (P' ,S')!

- 47 -

TRANSFOR~!ATION 2:

Let BP=(P,S,o,p) be a B-program, P=F+Q, and f,g,h e F with

T2.1: f,g e SUCC(h)

T2.2: v(f)+1=v(g)

T2.3: pf : Pg

BP' :=(P' ,S' ,a' ,p') with P'=F'+Q' is derived from BP as follows (cf. fig.

13):

F' := F- {f,g,h} + {f' ,h'} with f' ,h' -.e F, Q1 := Q

S' := S- {(x,y) ICx,y) eS, x=f or x=g or x=h}- {(x,h)lxePRED(h)}

+ {(f 1 ,x)lx e P, (f,x) eS or (g,x) eS}

+ { (h 1
, x) I x e P, (h, x) e S, x~ f, x~ g } + { (h 1

, f 1
) }

+ {(x,h 1)lx e PRED(h) }

For each t e T:

p'(t,x) := <

+-
1 p(t,x)

p(t,h)
I p(t,f)
+-

With n=ISUCC(f)l:

V
1 (x) :=<

+-
Xe F'-{f' ,h'} I o(x)
x=h' o'(x):= < o(h) :
x=f' o(f)~o(g):

+-

+-

x e F'-{f' ,h'}
x=h'
x=f'

1 v(x)
I v(f)
I v(h)

x e P 1 -(SUCC(h)+SUCC(g)+{f 1 ,h 1
})

X= f 1

+-

v(x)
v(x)+n
v(x)-1

X= h 1

x e SUCC(h), v(x)<v(f)
x e SUCC(g)
x e SUCC(h), v(x)>v(g)

Explanation: Two neighboring vertices f and g with predecessor h are

merged into a new verte.x f 1 such that the successors of f and g, i. e. the

vertices SUCC(f)+SUCC(g) become the successors of f 1
, see fig. 13. Notice

that f 1 is the only predecessor in (P 1 ,S 1
) for each of these vertices and

that the other vertices and edges remain unchanged (up to renaming). The

graph (P 1 ,S 1
), thus, is a tree again.

Due to the definition of v 1 the order of the vertices relative to each

other remains unchanged. In particular, the successors of f 1 and h 1 in

(P 1 ,S 1
) areorderedas follows (m=ISUCC(g)l):

+-
1 f [i]

f 1 (i] = <
g[i-n]

+-

1~i~n

n+1~i~m+n

+-
1 h [i]

h 1 [i] = < f 1

h [i+1]
+-

1~i~v(f)-1

i=v (f)
v(f)+1~i~ISUCC(h)l-1

- 48 -

==>

Fig. 12: Reduction of a B-program via transformation 1

==>

T t---1---~T
1 Tf

1
Tg 2

---------- _____ l_____ ----------

Fig. 13: Reduction of a B-program via transformation 2

- 49 -

TRANSFORMATION 3:

Let BP=(P,S,o,p) be a B-program, P=F+Q, and f e: F and u,v e: Q with

T3.1: u,v e: SUCC(f)

T3.2: ~(u)+1=~(v)

BP' :=(P' ,S' ,o' ,p') with P'=F'+Q' is derived from BP as follows:

F' := F - {f} + {f'} with f' "'E F

Q' := Q - {u,v} + {q} with q = ullv

s' := s - {(x,f) I X E PRED(f) } - {(f,x) I X E SUCC(f) }

+ {(x,f')l X E PRED(f) }

+ {(f' ,q)} + {(f',x)l XE P, x e: SUCC(f), x~u, x~v }

For each t e: T:

+-
1 p(t,x)

p'(t,x) :=<
p(t,f)

+-

~' (x) := <

+-
I
I

I
+-

XE F'-{f'}

X= f'

~(x) X E
~(u) X =
~(f) X =
~(x) X E

~(x)-1 X E

+-
1 o(x)

o'(x) :=<
0 (f)

+-

P'-(SUCC(f)+{q,f'})
q
f'
SUCC(f), ~(x)<~(u)
SUCC(f), ~(x)>~(v)

xe:F'-{f'}

X= f 1

Explanation:

1 e a v e s

In analogy to transformation 2 here two neighboring

with a common predecessor are merged into a single new leaf

vertex the only predecessor of which is the predecessor of the leaves

being merged. Since the other vertices and edges remain unchanged (up to

renaming), the graph (P' ,S') is a tree again.

The successors of f' in (P' ,S') areorderedas follows:

+-
1 f[i]

f'[i]=< q
f[i+1]

+-

1=:;is~(u)-1

i=~(u)
~(u)+1:s;i=:;ISUCC(f)l-1

- 50 -

Remark: From the definitions of v' it follows immediately, that these

transformations are order-preserving, i.e. we have:

pl,p2 E P*P', P1 <BP P2 ==> P1 <BP' P2

THEOREH 2:

Let BP'=(P' ,S',a' ,p') be the result of applying one of the three

transformationstoB-program BP=(P,S,a,p). Then:

a) BP' is a B-program and

b) BP' is a reduced B-program with respect to BP.

Proof:

a) As has been pointed out with each transformation (P' ,S') is an erdered

tree, i.e. Bl holds for BP'.

Due to the definitions of p' and a' BP' satisfies also properties B2 and

B3. Thus, BP' is a B-program.

b) Each transformation replaces two vertices with a single new vertex,

i. e. I P' I= I P 1-1. The remainder of this proof shows for each

transformation that GPS(t,BP)=GPS(t,BP') holds for each t E T. (The

notatiön is the one used with the specification of the respective

transformationl)

bl) transformation 1:

Because of theorem 1 it is suf~icient to show that the result of

EVAL(t,f) (GPS applied to BP) is identical to EVAL(t,f') (GPS applied to

BP'), i.e. the strings appended to PROGare identical.

Due to T1.2 there are two cases to be considered:

Case 1: p'(t,f')=p(t,f)=p(t,g)=O

Because of a(f)=a'(f') nothing is tobe shown here.

Case 2: p'(t,f')=p(t,f)=p(t,g)=l

Utilizing the definition of f' and Tl.l EVAL(t,f') and EVAL(t,f) are

equivalent to the sequences of statements of the left and right columns,

respectively (with n:=ISUCC(f)l, m:=ISUCC(g)l):

- 51 -

EVAL(t,f 1
): I EVAL(t,f):

----------------------------+----------------------------
FOR I=l TO v(g)-1 I FOR I=l TO v(g)-1
DO I DO'

EVAL(t' f I [I])
END

FOR I=v(g) TO v(g)+m-1
DO

EVAL(t' f I [I])
END

FOR I=v(g)+m TO m+n-1
DO

EVAL (t' f I [I])
END

I EVAL(t,f[I])
I END
I
I
I
I EVAL(t,g)
I
I
I FOR I=v(g)+l TO n
I DO
I EVAL(t,f[I])
I END

With the explanation to transformation 1 it is Straightforward to see

that

• the first and last iteration statements of both columns respectively

are equivalent

• the second iteration statement of the left column (EVAL(t;f 1
)) is

equivalent to

FOR I=1 TO m
DO

EVAL(t ,g[I])
END

which in turn is equivalent to EVAL(t,g) of the right column.

This concludes the proof of the theorem for transformation 1.

b2) transformation 2:

In analogy to b1) it must be shown that EVAL(t,h) (for BP) and EVAL(t,h 1
)

(for BP 1
) are identical. Because of T2.2 and with the explanations

concerning the successors of h it is sufficient to proof that execution

of the sequence

EVAL(t,f)

EVAL(t,g)

is equivalent to the execution of EVAL(t,f 1
):

Case 1: p 1 (t,f 1)=p(t,f)=p(t,g)=O

Here, because of a 1 (f 1)=a(f)~a(g) nothing is tobe shown.

Case 2: p 1 (t,f 1)=p(t,f)=p(t,g)=l

With the explanations concerning the successors of f 1 in (P 1 ,8 1
) the

- 52 -

equivalence follows in analogy to bl) directly from the definition of

EVAL.

b3) transformation 3:

Because of o'(f')=o(f) and q = u~v EVAL(t,f) (GPS applied to BP) and

EVAL(t,f') (GPS applied to BP') are equivalent and the theorem holds also

for transformation 3.

0

- 53 -

5.4. Reducing B-programs

For various reasons it is desirable to reduce a B-program as much as

possible:

• Section 4 sketches the implementation of abstract B-programs as

expansions of complete programs. Obviously, the smaller the number of

fragments of the complete program and, thus, the number of blocks of

the corresponding B-program, the less additions (delimitors,

relevances, substitute code) are made to the complete program and the

easier it is to read and understand the B-program. This is an important

aspect, when maintenance of the program system must be clone by

programmers in terms of editing (the respective substrings of) the

B-program.

• Implementations of abstract B-programs based on data structures

commonly used to represent directed graphs (see e.g. [3]) may store the

strings of the leaves (i.e. the elements of Q) and the substitutes of

fragment vertices in files. For obvious reasons, the number of files

should be as small as possible.

• Reducing a B-program is a means to speed up the process of generating

partial systems:

Generation of a partial system t E T out of a B-program BP=(P,S,o,p)

involves evaluation of the vertices of the relevant subtree (Pt,St).

Evaluation of a vertex (cf. section 5.2) implies (i) determining the

relevance value and locating its successors and/or (ii) looking up and

appending a piece of code (substitute code or a substring of the

complete program). Clearly, the length of the texttobe generated is

given with t and the cost (in time) of appending as such is not a

function of the number of vertices. However, the task of ''looking up a

piece of code" is performed for each leaf of the relevant subtree of t.

Since this can be a time-consuming operation, it may e.g. involve

locating and accessing a file on disc, one should try to minimize the

number of vertices to be evaluated.

Note that for each partial system the relevant subtree of a B-program

BP', which is constructed from BP according to one of the trans­

formations 1 through 3, is either identical to the one of BP (up to

- 54 -

renaming) or contains at least one vertex less. In particular, with

these transformations the number of leaves can never increase.

Reducing B-programs by means of transformations 1-3 is a multistep

procedure as the following examples demonstrate.

Examples:

a) Figure 14a shows the subtree of an abstract B-program based on the

fragmentation of program unit INSERT in figure 5. According to section

4.1, remark c, fragments D1 and E1 have the same relevance as their

enclosing fragment 8 (program unit INSERT): p8:pD1:pE 1 . Therefore,

transformation 1 can be applied twice resulting in two vertices being

removed (figure 14b). Now it is possible to apply transformation 3

twice to eliminate another two vertices via merging leaves of vertex

8', which leads to the subtree of figure 14c.

b) The fact that STRTGY is invoked if and only if FIND is executed

implies p3:p 4 . Therefore, the B-program of figure 7 can be reduced by

means of transformation 2 (figure 15b) and transformation 3 (figure

15c).

Given a B-program it is natural to try to find a minimal reduced

B-program, i.e. a reduced B-program with a minimal number of vertices. We

can show that under the condition that only transformations 1-3 are

employed there is a unique minimal reduced B-program and that the order,

in which these transformations are applied for its construction, is

irrelevant.

Notation: We write: B~B', if B' is obtained from B-program B according

to transformation 1 or 2 or 3.

DEFINITION 7:

A list <B 1 ,B 2 , ... ,Bn> of B-programs is called a red u c t i o n

s e q u e n c e for B1 , if RS1 and RS2 hold:

RS1: B. 1~B. for 1<i~n
1- 1

RS2: Neither transformation 1 nor 2 nor 3 can be applied to B-program B
n

>,:j
1-'-

OQ

f
TflANSHJR-

I-' I I
MATICIN 1 > ~ -- I I I I I I I I I I I I

::>
"0
"0
I-'
1-'-
n
0>
rt
1-'-
0
::;! I I Ln

A) B> Ln
0
t-t,

rt
1-j

0>
::;!
Ul
t-t,

I
TflANSFClfl-0

1-j > 3
0> MATICllll 3
rt
1-'-
0
::;!
Ul

I-'

0>
::;!
0.

UJ I C)

>xj
......

OQ .
I 1--'

lJ1 ..
>
'0
'0
1--'
f-'·
(l
lll
rt
f-'·
0
::I

0
Hl

rt
I;
lll
::I
Cl!
Hl
0
I;
8
lll
rt
f-'·
0
::I
rn

N

lll
::I
p...

(.,) I

m I
I q

R)

TRANSFrJR­

======> NATION 2

8)

TRANSFrJR­

=====> NATION 3

Cl

lJ1
er-

- 57 -

THEOREM 3:

Let B be a B-program and

<B=Bl,l'

<B=B2,1'
two reduction sequences for B.

... '

... '

Then Bl,k and BZ,j are identical up to renaming, denoted: Bl,k~BZ,j' and

k=j.

Proof:

The proof is by induction on the number of vertices of B.

Inductive hypothesis: the statement of the theorem holds for B-programs

with n vertices, n~2.

Basis: n=2, this case is vacuous.

Inductive step:

Assurne the inductive hypothesis is true for B-programs with up to n

vertices.

B be a B-program with n+l vertices, let there be m~l pairs of vertices

that can be merged with one of the transformations, I.e. the reduction

sequences for B are

<B=Bl,l' Bl,2' >

<B=B l , B 2 , . . . > m, m,
where the B-programs B,

2
,

1,
l~i~m, have n vertices each such that the

inductive hypothesis holds for these B-programs.

If m=l the statement of the theorem holds also for B.

For m>l, without loss of generality, it is sufficient to show for the

reduction sequences

<Bl,l' B1,2' '.'' Bl,k>

<B2,1' B2,2' '' ., B2,j>
that B 1 ,k~B 2 ,j holds. Note that from this follows immediately k=j since

each transformation eliminates exactly one vertex!

Let (u 1 ,v1) be the pair of vertices merged by B~B 1 , 2 into vertex u 1 of

B1 , 2 and (u2 ,v2) the vertices merged by B~B 2 , 2 into vertex u2 of B2 , 2 .

- 58 -

Gase 1: {u 1 ,v 1 }?'~-{u2 ,v2 } = ~
There are reduction sequences

<B 1 2' B 1 3' " ' > , ,
<B2 2' B2 3' "' > , ,

suchthat B
1 2~B 1 3 , , merges the pair (u2 ,v2) and B 2 , 2~B 2 , 3 merges

the pair (u
1

,v
1
), and thus B1 3 ~B 2 3 (the transformations are , ,

order-preserving, see remark of section 5.3).

Gase 2: {u 1 ,v 1 }~'({u2 ,v2 } ~ ~

(1)

The situations to be considered are illustrated in fig. 16 (we

assume without loss of generality u
2
=v

1
):

(1), (2) and (3) show the situations that can arise when v
1

is a

successor of u1 (without loss of generality); (4) refers to the

situation, where these vertices are neighbors: they must be

either all leaves or all fragments (the latter is not shown).

For each of these situations there are reduction sequences

U1 U1

I V2 I I V1 l U1 V1 V2

(2) (3)

Fig. 16: Herging of vertices in proof of theorem 3

Since <B 1 2 , B1 3 , ... , B1 k> is a reduction sequence, , , ' due to the

B
1

> holds
,r1

induction hypothesis for any reduction sequence <B
1

,
2

, ... ,

Analogously, for any reduction sequence <B
2 2

,
'

... ,

- 59 -

Because of B 1 , 3 ~B 2 , 3 this implies B 1 ,r 1 ~B 2 ,r 2 , therefore: B 1 ,k~BZ,j and

k=j. This proves the statement of the theoremalso for m>1.

0

As an immediate consequence we have shown

Corollary:

Provided that only transformations 1, 2 and 3 are employed for reducing a

B-program B there exists exactly one (up to renaming) minimal reduced

B-program B . with respect to B. B . is obtained by applying these m1n m1n
transformations in any order.

Caveat:

Transformations 1-3 provide means for removing superfluous fragments,

which may be introduced with the method of section 4.1. We arenot aware

of other operations for B-program reduction that can forma11y be

specified in terms of B-programs only. This, however, is n o t meant to

say that there are no other techniques, which could lead to reduced

B-programs smaller than the minimal B-program B i of the corollary. m n
In fact, as the example below i11ustrates, since transformations 2 and 3

merge only vertices that are immediate neighbors it is possib1e to arrive

at smaller reduced B-programs, if changing the order of the vertices is

allowed. The order of the vertices of a B-program, however, determines

the order of the substrings of the complete program, see section 5.2.

I.e. not every arbitrary reordering of vertices is allowed. Rather, it

seems to be necessary to introduce the notion of 11permissible

reordering": intuitively, reordering vertices is permissible if and only

if the corresponding changes in the order of the substrings leave the

complete program semantically unchanged, i.e. program execution must not

be affected by rearranging the respective textual components of the

complete program:

• In general the order of separately compilable program units of a

program system is irrelevant and can be changed arbitrarily.

• Common programming languages allow to change the order of definitional

statements within a program unit without affecting program execution.

A precise definition of what constitutes a 11permissible reordering" seems

to be dependent on the programming language the complete program is

written in.

- 60 -

The following example demonstrates how reordering of vertices can be

employed for B-program reduction.

Example:

We assume that the erdering of the program units of the example system is

irrelevant. Then it is permissible to modify the erdered tree of figure

10 such that fragment 11 becomes the right neighbor of fragment 2. Note

that this corresponds to textually rearranging the program of fig. 7 such

that program unit OPEN_RF immediately succeeds program unit OPEN.

Then, because of p
2
:p

11
(this identity reflects the fact that whenever

OPEN is invoked also OPEN RF is executed and that OPEN is the only

program unit calling OPEN_RF) this B-program can further be reduced by

means of transformations 2 and 3.

Remarks:

• Reordering of vertices of B-program can be viewed as a fourth

transformation, which in essence consists only in defining a new

mapping v' without merging vertices, i.e. the erdered trees (P,S) and

(P' ,S') are isomorphic [3] I

• Such a "reordering-transformation" would entail a generalization of

definition 6:

Condition R2 could no longer be interpreted as postulating the equality

of the program texts GPS(t,BP) and GPS(t,BP'). Rather, it had to denote

the equivalence of the "behavior" of these two programs at run-time:

given the same input both programs·must produce identical results.

• If reordering is allowed for reducing B-programs, the extent to which

reduction is possible depends on the order, in which these four

transformations are applied. This is illustrated in fig. 17, where we

assume p
2
:p

3
:

- Immediate application of transformation 2 yields a reduced B-program

with 11 vertices that cannot be further reduced, fig. 17b.

- Reordering of vertices 2 and 3 first (fig. 17c), however, leads to

the B-program of fig. 17d, which can by means of transformation 3 be

reduced to a B-program with 10 vertices (fig. 17e).

• This example also demonstrates that, when reordering is allowed as a

fourth transformation, there may be reduction sequences, which do not

lead to a minimal reduced B-program. I.e. the order, in which these

four transformations are applied, is essential for the construction of

'"'1
1-'·

OQ

......
"-J ..
::0
CD
0..
r:::
0
1-'·
::1

OQ

td
I

'"0
>i
0

OQ
>i
Pl
8
Ul

:liE!
1-'·
rt
::r'

>i
CD
0
>i
0..
CD
>i
1-'·
::1

OQ

0 I
H'>

<:
CD
>i
rt
1-'·
0
CD
Ul

<Al

TRANSFClR-

===~>
l1RTIClN 2

RE­
====~>

CIROERJNG

(8)

(C)

TRANSFOR­

===~>
MRTIClN 2

(0)

TRANSFOR­

===~>
MATIClN 3

(El

0\

- 62 -

a minimal reduced B-programl

6. Conclusions

A special instance of reuse of software - construction of program systems

out of parts of an existing software system - has been dealt with. The

motivation for this work is the fact that for a particular application

frequently only a subset of the capabilities provided by program systems

as e.g. operating systems, compilers, database management systems,

business application packages, is relevant, i.e. that partial systems of

such general software systems are sufficient in many situations.

A formal model for the generation of partial systems of a software system

has been presented:

The notion of B-program, an augmented erdered tree, has been introduced

as a representation of the set of partial systems that can be generated.

It offers two types of building blocks for the program of a partial

system: substrings of the program of the software system and substitutes.

They are considered uniformly as strings over some alphabet.

Generation of partial systems has been defined in terms of traversing

this tree and concatenating strings associated with the vertices visited.

This model is a generalization of conditional compilation, preprocessing

techniques as e.g. the "compile-time operations" of [27] and various

mechanisms employed in "customizing systems" (see e.g. [24], [8]). Also,

a B-program can be viewed as a "metaprogram" in the sense of [25], [26],

i.e. a program, which "at once possesses several distinct implementations

and the processing of which results in the choice of just one possible

implementation and the production of a program module'' [26].

The idegs and concepts of this formal model have been tried and put to

work in a system for the generation of partial systems of a database

management system [17], [18]. Here, a generalpurpese macro processor has

been employed for the implementation of algorithm GPS and serves as the

selector utility (cf. section 2.3, fig. 4). Therefore, the blocks of

- 63 -

B-programs take the form of macro calls. A generation run has four steps:

1) it is checked, whether the partial system to be generated is a correct

one, i.e. whether the description passed to the generator (V_DES of

fig. 4) satisfies the constraints characterizing the set of partial

systems [29].

2) generation of job control programs (cf. section 2.3)

3) the actual generation of a source program

4) production of a load module: compilation and linking according to the

respective job control program generated in step 2.

This program generator exploits the fact that our model makes no specific

assumptions as to the nature of "code": in [18] it is shown that not only

step 3, but also the first two steps can be viewed as instances of the

problern of generating a partial system, consequently these subtasks, too,

are implemented using the selector utility. The program generator,

therefore, contains several B-programs: (1) a B-program representing the

constraints characterizing the set of partial systems; (2) a B-program

representing the set of control programs for the linker and translator

utilities each; (3) the B-program representing the set of partial systems

of the database management system itself.

We have presented a heuristic method for the systematic construction of a

B-program for a given software system. It has been demonstrated that this

task in principle cannot be automated, rather human interaction is

required. Subtasks amenable to computerization have been pointed out.

Future research should be in the area of computer-aided construction of

B-programs, tools supporting or even automating the following subtasks

should be developed:

• given a set of X- and 0-fragments derivation of a fragmentation for the

software system at hand based on an analysis of the syntactical

structure as well as data and control flow

• definition and administration of substitutes

• determination of fragments with identical releva~ces (cf. also [29])

• B-program reduction, i.e. construction of a minimal B-program

It would be interesting to see to which extent such tools become

language-dependent (remember e.g. that the task of B-program reduction is

independent of programming languages, if only transformations 1-3 are

employed!).

- 64 -

Also, research is needed to develop ways of ensuring that the partial

systems that can be generated from a given B-program are syntactically

and semantically correct: We suspect that with the method of section 4.1

for the determination of a fragmentation the syntactic correctness of

partial systems is a consequence of the syntactic correctness of the

complete program. As to semantic correctness, since partial systems are

composed of parts of an existing software system a "natural" approach

would be to try to reuse the efforts and means for the validation and

verification of the complete system (e.g. correctness proves, test

drivers, test data and results [1]).

Another problern is that of verifying that the partial systems that can be

generated are free of superfluous code.

Clearly, investigations along these lines entail a precise and formal

specification of the procedure of determining fragments.

- 65 -

APPENDIX

This section gives the basic definitions and notations used in this

paper.

Let M and N be sets:

A: The cardinality of M, denoted: IMI, is the nurober of elements in M.

~ denotes the e m p t y s e t , i. e . I ~ I =0 .

B: M*N denotes the intersection, M+N the union of M and N.

The Cartesian product of M and N is the set

MXN := { (m,n) I m E M, n E N }

C: A set R c MXN is called a (binary) relation between M and N ..

A p a r t i a 1 o r d e r on M is a relation R c MxM such that:
.. (x,x) E R for each X E M (R is reflexive)
.. (x,y) E R, (y,x) E R ==> x=y (R is antisymmetric)

• (x,y) E R, (y,z) E R ==> (x,z) E R (R is transitive)

D: With R an order on M a set L c M is called a 1 i s t , if for each

pair (x,y) E LXL either (x,y) E R or (y,x) E R. L[i] denotes the i-th

element of list L, L is written using angular brackets:

L = < 1[1], ... , L[i], ... >

E: A m a p p i n g f: M --> N is a relation f c MxN such that

(x,y) E f, (x,z) E f ==> y=z

Two mappings f: M --> N, g: M --> N are said to be e q u a 1 , de­

noted: f e g, if f(x)=g(x) holds for each x E M.

F:

G:

- 66 -

A d i r e c t e d g r a p h is a pair G=(H,R), where H is a set

and R a binary relation R c HxH. The elements of ~~ are called the

v e r t i c e s , the elements of R the e d g e s of G.

Let k,kl,k2 be vertices of a directed graph G=(H,R):

• The p r e d e c e s s o r s of k in G are the vertices of the set

PRED(k):

PRED(k) := { x I x E H, (x,k) E R }

• The s u c c e s s o r s of k in G are the vertices of the set

SUCC(k):

SUCC(k) := { X I X E ~~, (k,x) E R }

• A p a t h p from x to y is a list of n~2 vertices k., lSi;S;n, with
l.

(ki 'ki+l) E R for l;S;i;S;n -1 and k1=x, k =y. p is a c y c 1 e if x=y.
n

A t r e e is a directed graph T=(N,R) such that:

1. T has no cycles

2. there is exactly one vertex r E N with PRED(r)=~; r is the r o o t

of T

3. k E N, k~r ==> IPRED(k)l=l

4. for each vertex k E H, k~r there exists a path from r to k.

A vertex ·k E N without successors, i.e. ISUCC(k)I=O, is called a

1 e a f of T.

H: A tree T=(N,R) is an o r d e r e d

set SUCC(k) is a list.

t r e e , if for each k E H the

• We use the symbol :s; to denote the order defined an the vertices of

each of the successor sets, i.e.:

for each k E M and x E SUCC(k), y E SUCC(k) we have x;S;y or ySx

Remark: In general :s; is a partial order an H, because for

x E SUCC(k
1
), y E SUCC(k2) with k 1 ~k2 neither x;S;y nor ySx must hold!

• The i-th successor of k, i.e. the i-th element of list SUCC(k), is

denoted k[i], i.e. for x E SUCC(k), y E SUCC(k) with x=k[i], y=k[j]

we have: X :s; y <==> i ;S; j

• for k E N with predecessor k' v(k) denotes the i n d e x of k in

the list SUCC(k'): k = k' [v(k)]

Note that v is a mapping H --> { i I l;S;i;S;maxkEMISUCC(k)l }! It is

called the i n d e x m a p p i n g of the erdered tree.

- 67 -

• with k1 ,k2 E SUCC(k) vertex k
1

is the left neighbor of k2 and k2 the

right neighbor of k1 , if v(k1)+1=v(k2).

Note that only vertices with a common predecessor can be neighbors!

[1]

- 68 -

REFERENCES

Adrion, W.R.; et al.: Validation,

Computer Software. ACM Computing

p.159-192

Verification,

Surveys 14,2

and Testing of

(June 1982),

[2] Andrews, C.L.; DeHaan, W.R.: RXVP80: The Verification and Valida­

tion System for FORTRAN (RXVP80/FORTRAN) and COBOL (RXVP80/COBOL).

Proceedings: SOFTFAIR - a Conference on Software Development Tools,

Techniques and Alternatives. Arlington, VA, USA. July 25-28, 1983.

IEEE Comput. Soc. Press, p. 38-47

[3] Aho, A.V.; Hopcroft, J.E.; Ullman, J.D.: The Design and Analysis of

Computer Algorithms. Addison-Wesley Publishing Company, 1974

[4] Aho, A.V.; Ullman,

Compiling (vol. 1).

Jersey, 1972

J.D.: The Theory of Parsing, Translation and

Prentice-Hall, Inc. Englewood Cliffs, New

[5] Boehm, B.W.: Improving software productivity. Proc. IEEE COMPCON

81. Washington D.C., Sept. 15-17, 1981, p. 2

[6] Cole, A.J.: Macro Processors. Garnbridge University Press,

Cambridge, Great Britain, 1981

[7] Freeman, P.: Reusable Software Engineering: Concepts and Research

Directions. In: Freeman, P.; Wasserman, A.I. (ed.): Tutorial on

Software Design Techniques (4th edition), p. 63-76. IEEE Computer

Society Press, 1983

[8] Gordon, R.D.: The Modular Application Customizing System. IBM

Systems Journal 19,4(1980), p. 521-541

[9] Hecht, M.S.: Flow Analysis of Computer Programs. North Holland, New

York, 1977

[10] Jensen, K.; Wirth, N.: PASCAL User Manual And Report. 2nd ed.,

Springer Verlag. Berlin, 1978.

- 69 -

[11] Knuth, D.E.: The Art of Computer Programming, vol. 1.

Addison-Wesley Publishing Company, 1969

[12] Kernighan, B.W.; Plauger, P.J.: Software Tools. Addison-Wesley

Publishing Company, 1976.

[13] Musa, D.J. (ed.): Stimulating Software Engineering Progress - a

Report of the Software Engineering Planning Group. 'ACM Software

Engineering Notes 8,2 (Apr. 1983), p. 29-54

[14] Nehmer, J.: Betriebssysteme für Kleinrechner. Augewandte Infor­

matik, 1/77, p. 1-14

[15] Parnas, D.L.; Handze1, G.; Würges, H.: Design and Specification of

the ~linimal Subset of an Operating System Family. IEEE Transactions

on Software Engineering 2,4 (Dec. 1976) p. 301-307

[16) Polster, F.J.: Generierbare Datenbanksysteme. Doctoral Disserta­

tion, University of Karlsruhe, Fakultät für Informatik, Fed. Rep.

Germany, Dec. 1982. (In German, also available' as report KfK 3479,

Kernforschungszentrum Karlsruhe, Fed. Rep. Germany, Febr. 1983)

[17] Polster, F.J.: Dedication of general database software to specific

applications. Proceedings IEEE Computer Societies 7th International

Computer Software and Applications Conference (COMPSAC '83),

Chicago, Nov 7-11, 1983, p. 201-210

[18) Polster, F.J.: Adaptation of Program Systems Through Code Selec­

tion. Kernforschungszentrum Karlsruhe, Fed. Rep. Germany, Sept.

1983, submitted for pub1ication.

[19) Rüb, W.; Schrott, G.: Automatische Generierung problemangepaßter

Prozeßrechner-Betriebssysteme. Augewandte Informatik 1/80, p.7-17

[20] Shaw, M.: Reduction of Compilation Costs Through Language Contrac­

tion. CACM 17,5 (May 1974), p. 245-250

- 70 -

[21] Schrott, G.: Generation of dedicated realtime operating systems by

dialogue. Proc. IFAC/IFIP Workshop on Real Time Programming, p.

145-151. Eindhoven, Netherlands. June 1977

[22] Tannenbaum, A.S.: Structured Computer Organization. Prentice-Hall,

Inc. Englewood Cliffs, New Jersey, 1976

[23] Wirth, N.: Algorithmen und Datenstrukturen. B.G.Teubner, Stuttgart,

1979

[24] Winston, L.E.: A Novel Approach to Computer Application System

Design and Implementation. Hewlett-Packard Journal, April 1981, p.

13-18

[25] Flon, L.;

Practical

Cooprider, L.W.:

Reuse of Software.

Metaprogramming - Prospects for the

Technical report TR-112, Computer

Science Department, University of Southern California, Los Angeles,

1982

[26] Flon, L.; Raeder, G.: Metaprogramming - Language and Examples.

Technical report TR-113, Computer Science Department, University of

Southern California, Los Angeles, 1982

[27] PL/I Checkout and Optimizing Compilers: Language Reference Manual.

GC33-0009-3, IBM United Kingdom Laboratories, 1974

[28) Fosdick, L.D.: BRNANL, a FortranProgram to Identify BasicBlocks

in Fortran Programs. Report CU-CS-040-74, Department of Computer

Science, University of Colorado, Boulder. March 1974.

[29] Polster, F.J.: A Theory of Partial Systems. A translation of

chapter 4 of [16), submitted for publication.

[30] IEEE Transactions on Software Engineering, Special Issue on Soft­

ware Reusability, vol. 10, No. 5.

