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ABSTRACT 

Aerosol samples consisting of fission products and elements of light water 

reactor structural materials were collected during simulating in a Iabaratory 

scale the heat-up phase of a core melt accident. The aerosol particles were 

formed in a steam atmosphere at temperatures between 1200 and 1900 °C of the 

melting charge. The investigation of the samples by use of X-ray photoelectron 

spectroscopy (XPS) permitted the chemical speciation of the detected aerosol 

constituents silver, cadmium, indium, tellurium, iodine, and cesium. 

A comparison of the eiemental analysis results obtained from XPS with those 

achieved from electron probe X-ray micro analysis (EPXMA) revealed 

that aerosol particle surface and aerosol particle bulk are principally composed 

of the same elements and that these compositions vary with release 

temperature. In addition, quantitative differences between the composition of 

surface and bulk have only been observed for those aerosol samples which were 

collected at higher melting charge temperatures. 

In order to obtain direct information on chemical species below the surface 

selected samples were argon ion bombarded. Changes in composition and 

chemistry were monitared by XPS, and the results were interpreted in light of 

the effects, which were observed when appropriate standard samples were 

sputtered. 

XPS- und EPXMA-Untersuchung und chemische Speziation von Aerosolproben aus 

L WR Kernschmelzexperimenten 

ZUSAMMENFASSUNG 

Während der Simulation eines Kernschmelzunfalls eines Leichtwasserreaktors im 

Labormaßstab wurden Aerosolproben der freigesetzten Materialien gesammelt. 

Die Aerosolpartikel wurden in einer Wasserdampfatmosphäre gebildet, wobei die 

Temperatur des Schmelzgutes von 1200 1900 °C variierte. Dieser 

Temperaturbereich entspricht der Aufheizphase eines Kernschmelzunfalls. Die 

Untersuchung der Aerosolproben durch Röntgenphotoelektron-Spektroskopie 

(XPS) erlaubte die chemische Charakterisierung der Aerosolbestandteile Silber, 

Cadmium, Indium, Tellur, Iod und Cäsium. 



Ein Vergleich der Elementanalyse aus XPS-Messungen mit den Resultaten der 

Elektronenstrahl-Röntgenmikroanalyse (EPXMA) zeigte, daß Oberfläche und 

"Bulk" der Aerosolteilchen prinzipiell aus den gleichen Elementen 

zusammengesetzt sind und daß diese Zusammensetzungen mit der 

Freisetzungstemperatur variieren. Zusätzlich wurden quantitative Unterschiede 

zwischen Oberfläche und "Bulk" nur bei solchen Aerosolproben beobachtet, die 

bei höheren Schmelzguttemperaturen gesammelt wurden. 

Um direkte Informationen über chemische Spezies unter der durch XPS 

untersuchbaren Oberflächenschicht zu erhalten, wurden ausgewählte Proben 

durch Argonionenbeschuß oberflächlich abgetragen. Änderungen in 

Zusammensetzung und Chemie der Proben wurden anhand von XPS-Spektren 

verfolgt. Die Ergebnisse wurden interpretiert unter Berücksichtigung von 

Effekten, die sich beim Sputtern geeigneter Standardproben ergaben. 
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INTRODUCTION 

Considerations an the accident risks of nuclear power plants normally include the 

discussion of a highly improbable event: the meltdown of the reactor core which 

might occur after a loss-of-coolant accident with subsequent failure of the 

emergency core cooling system (1). The core mettdown will be accompanied by 

the release of various core constituents, i.e. fission and activation products and 

inactive structural materials. This release will take place in either gaseaus form 

(e.g. noble gases) or as aerosol particles, which result from vaporization and 

recondensation of part of the core constituents (2). 

Knowledge about the composition of the aerosols and especially the chemical 

speciation of their constituents is important in order to estimate the hazard 

potential caused by a hypothetical L WR core meltdown. In this context elements 

of radiological importance (e.g. iodine and cesium) are of special interest. 

X-ray photoelectron spectroscopy (XPS) is an analytical technique, which allows 

eiemental analysis and also chemical speciation, the latter being a consequence 

of varying chemical shifts of the photoelectron and Auger electron kinetic 

energies of different compounds of the same element (3,4,5). Furthermore, the 

information depth of XPS is only a few nanometers, making it sensitive to the 

outermost sample surface layer. XPS has been widely applied to the investigation 

of aerosol samples of different origin (5b, 6-11) making use of the possibility of 

chemical speciation, which is only of limited availability by other methods. 

Electron probe X-ray micro analysis (EPXMA), in contrast, collects information 

from a region of about one micrometer thickness and can, therefore, be used to 

perform an eiemental bulk analysis of the sample (12,13). Depending an the 

instrumentation it has the feature of investigating single aerosol particles of a 

size in the micrometer range (8) or to perform an integral eiemental analysis of 

aerosol samples. 

The present work shows the results of the investigation of a series of aerosol 

samples generated in separate core melting experiments (14,15,16). The surface 

chemistry was determined by XPS, and the bulk composition was evaluated from 

EPXMA measurements. Aerosols provide a relatively !arge surface compared to 

their volume, which increases the importance of surface effects during their 

formation. Ta reveal these di fferences the results of XPS and EPXMA were 

compared. 
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In an additional attempt to overcome the Iack of depth information when using 

XPS, selected aerosol samples were argon ion bombarded to evaluate depth 

profiles of these samples. The profiles were campered with EPXMA results, too. 

The XPS spectra of aerosol particle surfaces after ion bombardment were 

evaluated under consideration of possible compositional and chemical changes, 

which might be introduced by the sputtering process. 

EXPERIMENT AL 

Details of equipment and experimental procedure for the simulation of a L WR 

core mettdown in a Iabaratory scale have been described elsewhere (14,15,16). 

The aerosol sarnples investigated in the present work were produced in a special 

run using inactive materials to avoid radioactive contamination of the XPS and 

EPXMA spectrometers. The composition of the starting material and the 

experimental conditions are sumrnarized in Table l. 

Aerosol particles were collected on eight glass fiber filters (collection area '::: 63 

cm 2). The filters were charged subsequently for 150 seconds each over the 

temperature range given in Table l. Table 2 lists the collected amount, melting 

charge temperature, and optical appearance of each aerosol fraction. The 

changes in color could not be attributed to chemical changes of the aerosol 

material, but were correlated with the collected amounts and thus with the 

thicknesses of the aerosol particle layers. Aerosol fraction no. 4 has been 

inadvertently charged too low during the mettdown experiment. This sample was 

included only to maintain the time sequence but its spectra were not evaluated 

further. The aerosol particles of the last fraction were collected at the end of 

the heating process, when the temperature inside the crucible already decreased. 

The size of the aerosol particles generated for the present work was not 

determined. It was concluded from other, similar core melting experiments that 

the size rangewas about 0.1 to 1 11m (15). 

Elements and compounds, which were needed for standard measurements, were 

bought in highest purity commercially available from E. Merck AG, Darmstadt 

and Aldrich-Chemie GmbH & Co. KG, Steinheim and used without additional 

purification. Powder standerd samples were measured as powder pellets of 

10 mm diameter, which were produced at a pressure of 10' N mm-
2

, 

Aerosol samples were introduced into the spectrometers as small sections of the 

original glass fiber filters. These sections and also the standard samples were 

sticked to appropriate probes by use of adhesive silver paint. 
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Table 1: Conditions for Sample Generation 

Simulated core: 90 g U02 including fission products a): 

Cs: 3. 7 10-l wt% (Cs2co3, Csi)b) 

I: 3.5 10-2 wt % (Csi)b) 

Ag: 8.3 10-3 wt% (metal)b) 

Cd: 1.3 10-2 wt% (metal)b) 

Te: 7.0 10-2 wt% (metal)b) 

In: 

51 g Zircaloy (98.5 wt% Zr; 1.5 wt% Sn) 

100 g stainless steel 

4.4 g neutron absorber (80 wt % Ag; 15 wt % In; 

5 wt% Cd) 

Atmosphere: steam; 130 °C; 2 bar 

Tempersture range: 1200 °C- 1900 °C 

a) Amounts corresponding to a burn-up of 44.000 MWd/t uranium; all other 

fission products contained in adequate amounts were not detected by any of 

our methods and, therefore, left off the table. 

b) Chemical form in the simulated fuel. 
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Table 2: Characteristic Parameters of Aerosol Fractions 

No. Melting Charge Collected Optical 

Tempereture [ °C Ja) Amount [ mg] Appearance 

1 1275 125 grey-brown 

2 1480 78 bright brown 

3 1630 llO brown 

4 1720 7.4 b) 

5 1810 113 brown 

6 1900 185 dark brown 

7 1900 371 black 

8 1700 217 black 

.. -~-~------· 

a) Tempereture at the midpoint of the charging interval 

b) Filter was irregularly charged; large part remained completely uneavered 
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XPS spectra were recorded in a Vacuum Generators ESCALAB 5 electron 

spectrometer at a base pressure of 1o-9 mbar. Electrons were excited using 
' 

unmonochromatized magnesium and aluminium K a radiation, and electron 

kinetic energies were measured with a hemispherical analyzer operated in the 

constant analyzer energy (CAE) mode. Overview spectra were recorded with a 

CAE of 50 eV, while eiemental scans in the regions of main photo and Auger 

peaks were recorded with a CAE of 20 eV. The resolution of the spectrometer at 

20 eV analyzer energy was determined for the 4 f photopeaks of a cleaned gold 

sample to be 1.2 eV full width at half maximum (FWHM). Binding energies and 

kinetic energies of the aerosol constituents are given relative to the 3ds/2 

photopeak of the silver component (binding energy of Ag 3d5/2 taken as that of 

the metal = 368.2 eV) or relative to the carbon 1s photopeak of the surface 

contamination (C 1s = 285.0 eV). Binding energies and kinetic energies of 

standard samples are referenced to the Au 4 h /2 = 84.0 eV (17). Photopeak 

intensities were determined from the peak areas after subtraction of the KoG 3,4 

X-ray satellites (spacing and intensity relative to the main peak taken from Ref. 

5a) and were corrected for calculated photoionization cross sections (18). 

Photopeaks, which were composed of several components or which showed 

significant overlap, were evaluated by means of a curve synthesis program after 

subtraction of the K a 3,4 X-ray satellites and the background of inelastically 

scattered electrons. The intensity of the background as a function of peak 

position and kinetic energy was determined using a mathematical formalism 

described in Ref. 19. The resulting difference spectrum was approximated by 

varying within reasonable Iimits kinetic energy positions, heights, and peak 

widths of an appropriate number of Gaussian peaks until the synthesized 

spectrum matched the difference spectrum with minimum rms deviation. 

Argon ion bombardment of the samples was performed by sputtering the whole 

sample area with 5 keV Ar+ ions, and XPS spectra were recorded after various 

sputtering times. The sputtering conditions were characterized by sputtering an 

anodically oxidized tantalum foil, where the same current density as applied to 

the aerosol samples yielded a sputtering rate of about 0.4 nm per minute. 

EPXMA was performed in an International Scientific Instruments SMSM 1 

scanning electron microscope with a lateral resolution of the secondary electron 

image of 0.1 11m. X-rays were excited on a sample area of about 3 mm 2 using 

25 keV electrons, and X-ray energies were determined over an energy range of 1 

to 10 keV using an energy dispersive spectrometer (Kevex 1-LX 7000 Si(Li) 
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detector), which was attached to the scanning electron microscope. The energy 

resolution of the Si(Li) detector for X-rays between 3.0 and 5.5 keV was found to 

be 150 eV FWHM. Peak areas were determined for the main X-ray transition of 

each element observable in the given energy range (K CJ. 1 2 and LCJ. 1 2' 
' ' 

respectively). LCJ. 1,2 peak intensities were corrected for different primary 

ionization rates using correction factors, which were calculated for pure 

elements relative to silver (cf. discussion). 

RESUL TS AND DISCUSSION 

1. Eiemental surface and bulk analyses 

Figures 1 and 2 show XPS spectra measured for the aerosol samples no. 3 and 

no. 6 at melting charge temperatures of 1630 °C and 1900 °C, respectively. The 

surfaces of the eight aerosol sample fractions are composed of the elements 

silver, cadmium, indium, tellurium, iodine, cesium, oxygen, and carbon, the 

latter resulting from a surface contamination of the particles with carbon 

containing adsorbates (20,21). The composition changes markedly with melting 

charge temperature (cf. Fig. 6). There are no other elements detectable besides 

those listed above, except for sample no. 4, where in addition to the aerosol 

constituents silicon 2p and 2s photopeaks are observed, which must be attributed 

to the silicon constituent of the supporting glass fiber filter, visible due to the 

very low coverage of this filter (cf. experimental section). 

Figures 3 and 4 show the corresponding EPXMA spectra of the samples no. 3 and 

no. 6, respectively. The spectra were recorded by exciting a fairly large sample 

area ( ~3 mm 2) to yield an integral composition of the whole aerosol fraction and 

not that of single particles. This was due to the intention of obtaining 

comparable results for EPXMA and XPS, the latter y ielding spectra from an 

excited area of about 50 mm 2 • 

In comparison to the XPS spectra significant differences are observed by 

EPXMA. Besides those elements, which were already detected by XPS, some of 

the aerosol samples (nos. 2-5) exhibit characteristic X-ray peaks from the glass 

fiber filter support. This is due to the much !arger information depth of EPXMA 

and to the relatively poorer coverage of these samples compared to the others 

(cf. Table 2). Fig. 3 a shows the overall spectrum of sample no. 3. For 

comparison, Fig. 3 b shows the spectrum recorded for a clean, uncharged glass 
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fiber filter showing the elements Al, Si, K, Ca, Ba, and Zn. The peaks of the glass 

fiber filter material are scaled to approximately the same height in both spectra. 

Fig. 4, in contrast, shows hardly any signals attributable to the support. Another 

difference in comparison to XPS results is the presence of characteristic X-ray 

lines of the transition metals iron, manganese, and chromium, which are 

observed in most of the samples, and which originate from the release of small 

amounts of the stainless steel component of the structural materials (cf. 

Table 1). Iran is not detected in the first sample only while manganese and 

chrornium are observed in the sarnples nos. 3 to 7 and nos. 4 to 6, respectively. 

The relative intensities of their X-ray lines are in each case comparable to what 

is shown in Figures 3 and 4. 

A general Iimitation in EPXMA is the difficulty of measuring elements with 

atornic numbers less than 11 (sodium; E(K a) = 1040 eV) (13). This prevents us 

from a comparison of data of those elements with XPS data, which is especially 

important for oxygen (E(K o:) = 525 eV) and carbon (E(K a) = 277 eV). 

2. Camparisan of surface and bulk composition 

A comparison of XPS and EPXMA spectra going beyond a qualitative eiemental 

analysis, needs reliable procedures to convert experimental eiemental signal 

intensities into (relative) eiemental concentrations. In principle, such procedures 

exist for both techniques, XPS (6,22,23,24) and EPXMA (12,13). However, 

depending an the analytical problern under consideration certain limitations have 

to be taken into account. 

In XPS, the photoelectron peak intensity of an element in a thick, homogeneaus 

sample can be approximated by (23): 

(1) 

where I is the measured intensity of the photoelectron peak, N is the number of 

atoms per cmJ, o is the photoionization cross section of the photoelectron 

transition of interest, T is the transrnission of the spectrometer, which is a 

function of the kinetic energy of the electrons (in the present case Ta: E-1/2 

(25)), and A. is the inelastic mean free path, which again is a function of kinetic 

energy (taken as A. a: E1/2, according to Ref. 26). Making use of the energy 

independence of the product T • A. , the relative atomic concentrations of two 
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elements A and B in the same thick, homogeneaus sample are derived as follows: 

= (2) 

Eqs. 1 and 2 do not take into account any anisotropy of the angular distribution 

of photoelectron emission. In addition, if concentration gradients exist in the 

probed sample layer, the experimentally observed signal in~.ensities depend on 

the concentration profile of each element. The presence of any adsorptive 

contamination layer will introduce additional inaccuracy, if the photoelectron 

peaks, which are used for the determination of intensity I, differ in kinetic 

energy (23). 

The applicability of Eq. 2 was tested using two compound standards, cesium 

iodide and silver iodide, which were selected since they cover the kinetic energy 

range of the XPS spectra of the aerosol constituents. The standards were 

measured several times, using a freshly prepared pellet for each measurement. 

The peak intensities of the surface contaminations carbon and oxygen were in 

each case less than 5 % of the I 3d5/2 peak intensiy. The stoichiometric ratios 

were calculated from the averaged intensities of the spin-orbit split 3d peaks. 

The o-values for the 3 d Ievels were taken from the Scofield calculations (18). 

The measurements yielded atomic ratios (cation to anion) of 1.00 ± 0.04 (Csl) and 

1.03 ± 0.03 (Agl). These results agreed reasonably weil with the expected 

stoichiometric coefficient of each of the two compounds. Therefore, the signal 

intensities of the major photoelectron peaks of each element in the aerosol 

samples were normalized to the corresponding o -values thus yielding relative 

atomic concentrations. Any other corrections, e.g. regarding concentration 

gradients, were not attempted due to the complexity of the aerosol samples. It 

will be shown lateron that, in part, such gradients exist, which consequently will 

falsify the results of the quantification. 

The standard procedure for the quantitative evaluation of EPXMA spectra is 

based on the so-called ZAF (atomic number, absorption, fluorescence) 

correction, which consists of the comparison of the X-ray signal intensities of 

the sample and of (normally elemental) standards. The observed intensity ratio of 

sample and standard of each element has to be corrected for three effects 

(12,13d): 
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Differences in the retardation of the incoming electrons and in the 

backscattering factors of standard and sample (atomic number correction). 

Differences in the absorption of primarily excited X-rays in standard and 

sample (absorption correction). 

Differences in the excitation of secondary fluorescence processes in 

standard and sample (fluorescence correction). 

However, this procedure is strictly applicable only to solid samples of dimensions 

"infinite" in comparison to the volume analyzed by the primary electron beam. If 

the analysis is applied to single small particles of a diameter of a few 

micrometers or less, the actual volumes of the particles are influencing the 

sample signal intensities, and will, in principle, Iead to a reduction of signal 

intensity with decreasing particle size (27 ,28). The same will hold of course, if 

the sample consists of a film thinner than the in-depth extension of the 

excitation volume of the primary electron beam. In both cases, the sample 

dimensions have to be known as an additional correction parameter. 

As has been shown before, the glass fiber filters of the aerosol samples have not 

been charged equally (cf. Table 2). With regard to the foregoing comments it 

would be difficult to perform a standard ZAF correction, because the dimensions 

of the probed aerosol material differ from sample to sample and are, in addition, 

not known. However, an at least semiquantitative comparison of the 

concentrations of the main constituents of aerosol surface and bulk would be 

desirable. Therefore, the X-ray LoG 1 2 signal intensities of these elements were 
' determined from the spectra. These experimental signal intensities were then 

corrected for different primary ionization rates to yield relative atomic 

concentrations using relative correction factors, which were calculated for pure 

elements according to Refs. 12 and 13a from the following equation: 

Iq = k Rq v q Aq -1 wq (E 0 Ec,q -1 - 1)1.67 (3) 

In this formula Iq is the primary X-ray intensity of element q, A is the atomic 

weight, w is the fluorescence yield, E0 is the primary energy of the ionizing 

electrons, and Ec,q is the minimum "critical" energy of an electron to perform 

ionization in the given shell. The proportionality constant k is assumed to depend 

on the respective shell but not an atomic number. The electron backscattering 
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coefficient R was taken to be identical for all six elements, which can be 

verified in Ref. 13e, where the actual R values differ t:y only 2 %. The detection 

probability v of the Si(Li) detector can be taken as urity in the energy range of 

interest (3.0 keV to 5.5 keV). 

Table 3 lists the values used for the calculations, the calculated relative 

intensities of the L <X 1,2 transitions (IAg,rel = 1), and the resulting correction 

factors, by which the experimental L <X 1 2 peak intensiti 3s were multiplied. 
' 

The reliability of this approach was tested for thic:< samples by measuring 

EPXMA spectra of pure silver iodide and cesium iodide pellets and by 

determining from these spectra the apparent stoichiomntry when the calculated 

relative sensitivity factors (Table 3) were used. Their characteristic X-ray lines 

cover the energy range of interest and the spectra, for that reason, allow to 

conclude on the influences of absorption and secondary fluorescence, which are 

neglected in this approach and which should cause deviations from the correct 

results if their relative contributions vary significantly from element to element 

and depending on the element combination. 

The determination of the L <X1,2 signal intensities frnm the spectra of the 

standards and of the aerosol samples was further complicated due to significant 

overlap of the multiple X-ray emission lines of different 3lements in the covered 

energy range (3.0 to 5.5 keV). The contribution of each Element to the complex 

sample spectra was determined by using the shapes of sin<le element spectra and 

varying their heights until the measured spectrum was rep'oduced with sufficient 

accuracy. The peak shapes were obtained from eiemental 3amples or from simple 

compounds (e.g. Agi). 

Fig. 5 illustrates the analysis procedure of the EPXMA spectra of the standard 

samples silver iodide and cesium iodide. The bremsstrahlung background was 

taken as a straight line. Fig. 5 a shows the spectrum of silver iodide. Both L 

series are represented by four Gaussian peaks each cornsponding to the four 

observable, partly unresolved components of the L series of each element. The 

vertical bars indicate the peak heights h of the L <X1 2 components. The peak 
' height as a measure for the element concentration is apprc ximately proportional 

to the peak area since the resolution of the detector is al most constant in the 

given energy range. The stoichiometry of this sample was calculated to be 0.97 

by using the correction factors determined from Eq. 3. 
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Ag 

Cd 

In 

Te 

Cs 
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Values Used for Calculation in Equation 3, Calculated Relative 

Intensities Iq,rel of L a1,2 Transitions and Correction Factars 

Oq,rel)-1 

Aq Wq Ec [keV] Iq,rel Clq,rel)-1 
(Ref. 13 b) (R~f. 13 c) 

107.9 0.047 3.350 1.00 1.00 

112.4 0.050 3.537 0.92 1.09 

114.8 0.054 3.730 0.88 1.14 

127.6 0.068 4.341 0.73 1.37 

126.9 0.073 4.558 0.72 1.39 

132.9 0.084 5.011 0.65 1.54 
---------------

E0 = 25 keV; Iq,rel = Iq • I Ag -1 
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Fig. 5 b shows the EPXMA spectrum of cesium iodide. The overlap of the cesium 

and iodine peak is significant. The result of the best fit procedure is shown in 

addition. The Gaussian peaks show the relative contributions and intensities of 

the iodine and cesium peaks in the original spectrum. In this case the 

stoichiometry was calculated to be 1.01. 

The accuracy of this procedure applied to the two standard compounds was 

reasonable. Therefore, the same approach was used for the evaluation of the 

aerosol sample EPXMA spectra. However, it must be stated that the accuracy of 

this process decreases if the relative concentration of a given element is small 

or if a !arger number of components is present. In fact, the accuracy of the best 

fit procedure should be limiting the achievable averaU accuracy. We, therefore, 

believe that the results, which will be shown in the following section, are 

accurate to within 10 rel.-% for major components, but may differ from the real 

value by up to 50 rel.-% for minor components. 

Fig. 6 summarizes the results of both described quantification procedures for the 

aerosol particle surface composition (upper diagram, from XPS measurements) 

and the aerosol particle bulk composition (lower diagram, from EPXMA 

measurements). The two diagrams include only those. elements which could be 

detected by both techniques. Therefore, oxygen and carbon are not included in 

the upper part of the figure, even though both elements are present in significant 

amounts in the XPS spectra. One hundred atomic percent are thus represented by 

the sum of the atomic concentrations of the elements silver, cadmium, indium, 

iodine, tellurium, and cesium. 

It can be seen from both diagrams that the composition of the aerosol particles 

as a function of melting charge temperature is governed by the volatilities of the 

elements. Highly volatile elements (cadmium from the neutron absorber, cesium 

and iodine as fission products) appear at lower temperatures, while less volatile 

elements (silver and indium from the neutron absorber) require higher 

temperatures for their release. The appearance of small amounts of indium 

already at relatively low melting charge temperatures is somewhat puzzling due 

to the low vapor pressure of indium meta! at these temperatures. The general 

release behavior is similar in both diagrams. Differences arise for tellurium, 

which was not detected in the EPXMA spectra, and for the transition metals 

iron, chromium and manganese, which, vice versa, could not be detected in XPS 

spectra. This may be due to real di fferences in surface and bulk composition for 

these elements (which turned out to be the case for tellurium, see later). 

However, it has tobe taken into account that the relative eiemental sensitivities 

as a function of atomic number Z show a different behavior in XPS and EPXMA, 
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respectively. At comparable photoelectron kinetic energies and characteristic 

X-ray energies, respectively, and if concentration gradients are absent, the 

element of higher atomic number Z is detected with !arger probability in XPS 

while in EPXMA the element of lower Z is favored, especially if different 

electron shells are involved. This is shown in Table 4 for the example of 

chromium compared to tellurium. The relative sensitivities in XPS are taken to 

be identical to the relative photoionization cross sections (18) of the main 

photopeaks. Those of EPXMA were calculated using Eq. 3 and taking the values 

from Ref. 13 and a primary excitation energy of 25 keV. lt can be expected from 

a comparison of the values in Table 4 and from the small amounts of iron, 

chromium, and manganese in the EPXMA spectra that these elements' cannot be 

detected by XPS because their concentration will be below the detection Iimit of 

this technique unless a surface enrichment has taken place. In turn, the absence 

of XPS signals of iron, chromium, and manganese Ieads to the conclusion that 

these elements are bulk components rather than surface constituents. Based an 

similar considerations it can be estimated using Eq. 3 that iron, chromium, and 

manganese in total contribute to no more than about one atomic percent to the 

total composition. Therefore, they are not included in the lower diagram of 

Fig. 6. 

Besides the qualitative differences discussed before additional ones with regard 

to the absolute atomic fractions are observed. At lower temperatures the 

compositions of aerosol particle surface and bulk are fairly identical. At higher 

melting charge temperatures EPXMA spectra show a significant enrichment of 

silver in the aerosol bulk while the surface shows a !arger concentration of 

indium and cesium and the presence of iodine. These observations correspond to 

the enrichment of more volatile species an the aerosol particle surface. 

In order to confirm the results of the XPS/EPXMA comparison, selected aerosol 

samples have been argon ion bombarded, and the resulting new surface has been 

measured by XPS. The results of this procedure are shown in Figs. 7, 8, and 9 

corresponding to the aerosol samples 1, 3, and 6, respectively. The compositions 

of the aerosol sample surfaces resulting for various sputtering times are 

compared to the bulk composition of the same sample (from Fig. 6). 

The eiemental surface composition of sample no. 1 is nearly not changed 

independent of sputtering time (Fig. 7) and is weil comparable to what is 

observed for the bulk. In contrast, if aerosol sample no. 6, for which significant 

differences between surface and bulk have been observed, is sputtered, the 

composition as viewed by XPS is changed markedly (Fig. 9). The amounts of 
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Relative Eiemental Sensitivities Srel of Chromium and Tellurium in 

XPS and EPXMA 

XPS EPXMA 

photopeak Srel X-ray peak Srel 

(binding energy) (energy) 

2P3/2 1 Ke~. 1 2 1 
' ( ~580 eV) ( ~ 5410 eV) 

3d5/2 2.4 Le~. 1,2 0.2 

( ~'580 eV) ( ~ 3770 eV) 
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cesium, tellurium and cadmium are reduced heavily after one minute of ion 

bombardment indicating a surface enrichment of these elements. Parallel to the 

increasing sputtering time the contributions of the main constituents of this 

sample, indium and silver, also change their relative concentrations until a 

composition is reached, which is similar to that of the bulk. In both cases the 

sputtering experiments confirm the conclusions drawn from Fig. 6. 

However, contradictory observations are made for aerosoi sample no. 3 (Fig. 8). 

Without sputtering the surface composi.tion is almost identical to what is 

observed for the bulk. Sputtering Ieads to a depletion of cesium compared to all 

other constituents and thus to an apparent difference of the bulk composition as 

viewed by EPXMA and XPS combined with argon ion bombardment, respectively. 

However, we believe that this discrepancy can be explained by the actual sample 

composition and the effect of the sputtering process an it. 

According to Kelly (29) the sputtering process can be subdivided into three single 

processes: collisional sputtering, prompt thermal sputtering, and slow thermal 

sputtering. The latter two processes are described as a vaporization due to a 

shortly lived high temperature if1 the region of ion impact and as a vaporization 

of target elements at ambient temperature after bombardment induced 

decomposition, respectively. 8oth effects will increase the sputtering yield 

above its Ievel from pure collisional sputtering. As a criterion for the existence 

of prompt thermal sputtering a vapor pressure araund 100 atm at a temperature 

of 3000 to 4000 K was stated (29). As will be shown in the following sections 

cesium is present in the aerosol samples as hydroxide. Its thermodynamic data 

(30,31) fulfil the criterion given above. In addition, it can be expected that 

cesium hydroxide is decomposed by sputtering so that also contributions of slow 

thermal sputtering will be present. In view of these purely qualitative arguments 

we conclude that the experimentally observed relative decrease of the cesium 

concentration is due to preferential sputtering because of thermal sputtering 

effects and is not a feature of the sample in-depth composition. That the lass of 

cesium occurs as cesium hydroxide can be seen from the XPS spectra which show 

a parallel Jass of oxygen and cesium with increasing sputtering time. 

Unfortunately, a direct evidence from experimental data an the sputtering yields 

of cesium hydroxide or closely related compounds is not avaiblable, to our 

knowledge. 
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3. Chemical speciation 

Chemical speciation is based principally an the determination of the binding 

energy position of the main photopeak, of the kinetic energy of a selected Auger 

transition, and of the modified Auger parameter, which is defined as the sum of 

binding energy and kinetic energy of selected, normally predominant, photo- and 

Auger electron peaks, respectively (32). These three parameters are then 

compared to the corresponding ones of appropriate reference elements or 

compounds. Additional, complementary information can be achieved in the case 

of compounds, if the bonding partner(s) is (are) included in the data evaluation. 

3.1 General results 

The results of the chemical speciation of the major surface constituents of the 

aerosol samples have already been reported (20) as has the chemical speciation 

of iodine (21). These results are only summarized briefly to maintain a complete 

presentation and due to the need of these results in the following discussion. It 

has been shown, based an the spectral energies of the meta! components that 

silver is present as metal while the other elements cadmium, indium, tellurium, 

and cesium are found in oxidized states as either oxides (In, Te) or hydroxides 

(Cd, Cs). The well defined chemical state of silver and its presence in most of 

the samples allowed to use it as internal standard to correct the experimentally 

observed electron kinetic energies for charging of the samples (20,21). 

It is interesting to compare these results with the XPS spectra of oxygen of the 

different aerosol fractions. Fig. 10 shows four XPS spectra of the 0 1s 

photoelectron peak recorded for the aerosol samples nos. 1, 3, 6, and 7. The two 

arrows an top of the spectra indicate the approximate positions an the binding 

energy scale of oxide and hydroxide oxygen. The binding energy spacing between 

the two states has been taken from Iiterature (33-36) and from own 

measurements to be about 2 eV. The spectra indicate that the first and the third 

aerosol fraction consist mainly of hydroxides while the lower spectra 

(corresponding to the samples nos. 6 and 7) are representative for oxides. A 

comparison with the aerosol composition given in Fig. 6 (upper part) shows that 

the hydroxide components must be cadmium hydroxide (sample no. 1) and cesium 

hydroxide (sample no. 3), respectively. The small shoulder an the low binding 

energy side of the uppermost spectrum in Fig. 10 can in part be attributed to the 

smaller indium oxide contribution. 
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aerosol sample: 

no.1(1275°C) 

no.3 (1630°C) 

no.6 (1900°C) 

no.7 (1900°C) 

530 540 
binding energy [ eV] 

XPS 0 ls spectra of four aerosol samples collected at different 

melting charge temperatures. The arrows an top indicate the 

approximate binding energy positions of oxide and hydroxide 0 ls 

photopeaks. 
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At high melting charge temperatures where the aerosol particles are mainly 

composed of indium and silver, the oxide peaks originate essentially from indium 

oxide since silver has been proven to be present as metal (20). The asymmetry of 

the 0 1s peaks on the high binding energy side of the two lower spectra indicates 

the additional presence of some hydroxide in these samples. 

The chemical speciation of iodine has been evaluated from the spectral 

parameters of the aerosol sample with the highest iodine contents (no. 3) before 

and after sputtering of the sample with argon ions (21). It has been concluded 

that iodine is bound mainly to cesium but that a small amount is also bound to 

silver. 

The XPS results on chemical speciation presented above are strictly seen only 

valid for the aerosol particle surface region. This limitation can be overcome by 

using argon ion bombardment to remove surface near sample material and to 

provide a new surface for XPS measurements. However, sputtering is not 

necessarily an "inert" technique, and surface alterations under the influence of 

ion bombardment have to be taken into account. 

The following chapters describe the chemical changes observed for the samples 

nos. 1 and 6 after sputtering. While compositional changes have already been 

described in the context of the comparison of surface and bulk composition, 

chemical changes are discussed with regard to differences in surface and bulk 

chemistry of the aerosol particles. Possible changes induced by the argon ion 

bombardment were monitared by bombarding appropriate standard compounds 

under as far as possible identical conditions. 

3.2 Details of cadmium speciation 

Fig. 11 shows XPS spectra of sample no. 1 after inelastic background and X-ray 

satellite subtraction in the binding energy region of the Cd 3d and 0 ls 

photopeaks. The upper spectra correspond to the original surface composition 

(Fig. 11 a). The Cd 3d peaks are asymmetric with a tailing on the low binding 

energy side and can each be resolved into two components with about one eV 

spacing as shown by the four Gaussian peaks, which reproduce the total peak 

envelope. The asymmetry cannot originate from inhomogeneaus sample charging 

since indium and cesium exhibit 3d peaks of purely Gaussian shape. The 0 1s 

peak is clearly consisting of at least two contributing species. 
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Sputtering leads to significant changes in the peal< shapes of Cd 3d and 0 1s as 

shown in Fig. 11 b for the aerosol particle surface after 15 minutes sputtering. 

There are still two components but the relative intensities change drastically in 

both, the Cd 3d and the 0 1s spectra by favoring the low binding energy 

constituent relative to the second one. Further sputtering does not lead to 

additional changes in the XPS spectra. Table 5 summarizes the relevant energy 

values of cadmium and oxygen. The binding energy values correspond to the 

positions of the resolved Gaussian components of each peak. The energies of the 

unsputtered sample are given relative to the C 1s level of the surface 

contamination. Since sputtering led to a decrease of the C 1s signal intensity and 

obviously to a binding energy shift, the standard was believed not to be reliable 

any more. It was, therefore, arbitrarily assumed that the 0 1s peak at 529.2 eV 

binding energy would not change its position with sputtering, and binding 

energies were referenced to this level. For comparison, Table 5 includes the 

corresponding data of cadmium hydroxide and cadmium oxide, respectively. The 

data were evaluated from a cadmium oxide standard, which showed after 

introduction into the UHV system a surface, which consisted of almost equal 

contributions of cadmium oxide and hydroxide, as judged from the 0 1s peal<. 

Short sputtering led to an almost complete removal of the hydroxide, and 

subsequent data analysis yielded the values given for CdO in Table 5. These 

values and the corresponding spectra were then used for a spectra subtraction 

procedure applied to the original CdO standard surface spectra to determine the 

energetic parameters of Cd(OH)2• Both data sets agree reasonably with published 

Iiterature values (17 ,33,37). 

From the values given in Table 5 it must be concluded that the aerosol contains 

Cd(OH)2 and CdO. The molar ratio of both compounds (given in the last column 

of Table 5 and calculated from the peak areas of the Cd 3d Gaussian 

components) indicates that the surface consists mainly of cadmium hydroxide 

and only small contributions of its oxide. A dehydratization in the ultra-high 

vacuum (UHV) can be excluded since we do not observe increasing amounts of 

oxide with a prolonged stay of the sample in the UHV. 

Sputtering leads to a relative increase of the oxidic component as can be seen 

from both, the Cd 3d and 0 1s peaks. A steady state is reached already after 

four minutes of sputtering and is characterized by a molar ratio of CdO to 

Cd(OH)2 of about two, which can be calculated from the peal< areas of the Cd 3d 

single constituents and, in addition from the relative intensities of the oxide and 

hydroxide 0 1s peal<s. The latter case can only be taken as an estimate because 

of a contribution of indium oxide to the left oxidic peak. This may also explain 



Table 5: Spectral Parameters of Cadmium in Aerosol Sampie No. 1 after Various Sputtering 

Times and of Cadmium Hydroxide and Cadmium Oxide Standards 

Sampie Sputtering Binding Energy [ eV] Modified Auger CdO/ 
Time [min] Cd 3d5/2 0 1s Parameter [ eV ] Cd(OH)z 

cda) ob) 

Aerosole) 0 405.3 531.7 785.3 - 0.15 

404.1 529.2 

4 405.3 531.6 - - 2.1 

404.3 529.2d) 786.4 

15 405.3 531.4 - - 2.1 

404.3 529.2d) 

Cd(OH2)e) - 405.2 531.1 785.2 1041.9 

Cdoe) - 404.1 528.8 786.8 1044.6 

a) 

b) 

c) 

d) 

e) 

Defined as the sum of Cd 3d5/2 binding energy and Cd(M4N4,5N4,5) kinetic energy. 

Defined as the sum of 0 1s binding energy and O(KLL) kinetic energy. 

Binding energies of the unsputtered sample given relative to C 1s = 285.0 eV. 

Taken as internal standard for sputtered aerosol sample (cf. discussion). 

Binding energies given relative to Au 4f? /2 = 84.0 eV. 

w 
0 
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why the binding energy of the left peak differs from that of 0 1s in CdO by 

0.4 eV. The right hydroxidic oxygen component is shifted to slightly lower 

binding energy after sputtering. Its binding energy is higher compared to what is 

expected for Cd(OH)z, but approaches this value with increasing sputtering time. 

We believe that this effect may be due to the presence of some adsorbed water 

whose 0 1s peak is in general observed at higher binding energy compared to 

hydroxide oxygen (34,35), but has not been discriminated from the latter in our 

experiments. Consequently, the actual value of the binding energy depends on 

the relative amounts of hydroxide and water. 

Mclntyre et al. (38) and T .J. Chuang et al. (39) have observed the conversion of 

Ni(OH)z into the oxide during ion bombardment. If this observation is of general 

significance, we cannot conclude quantitatively on the contributions of oxide and 

hydroxide below the original aerosol surface. However, the amount of hydroxide 

in the steady state corresponds to the minimum fraction of this compound in the 

aerosol bulk. Its contribution after sputtering is of considerable quantity so that 

the formation of a surface hydroxide resulting from the surface-near hydrolysis 

of preformed cadmium oxide containing particles can be ruled out. Both, 

Cd(OH)z and CdO must have been formed at an early stage of the aerosol 

particle formation process. 

In addition, the presence of !arge amounts of cadmium meta! can also be ruled 

out. Even though the Cd 3d binding energy of cadmium meta! is almost identical 

to that of cadmium hydroxide (17) the value of the modified Auger parameter 

and the ratio of the two resolved 0 1s peak components (oxide and hydroxide, 

respectively), the latter confirming the cadmium peak analysis based on the 

presence of CdO and Cd(OH)z alone, exclude the presence of !arge amounts of 

the meta!. Small amounts, however, will not be detectable in the complex 

mixture. 

3.3 Details of indium speciation 

Sputtering of aerosol sample no. 6 (and equally of no. 7) leads to a relative 

increase of the indium signal intensity (cf. Fig. 9), which is, however, not the 

only significant change. The indium M4 5N4 5N4 5 Auger transition whose shape 
' ' ' 

before sputtering indicates a single compound (indium oxide) shows with 

increasing sputtering time broadening of its two peaks CM4NN and M5NN, 

respectively), until after 10 minutes an almost unstructured M4,5N4,5N4,5 peak 

shape is achieved (cf. Fig. 12 a). Further sputtering did not lead to additional 
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X-ray induced In(M4,5N4,5N4,5) Auger transition of aerosol sample 

no. 6 after ten minutes sputtering. The overall curve (a) can be 

divided into two components, which are attributed to indium oxide 

(b) and to indium metal (c). 



- 33 -

changes. The multiplet can be resolved into two components, which are 

attributed to indium oxide and to indium meta! (Fig. 12 b and 12 c), respectively. 

That the indium 3d peak shapes and binding energies remain nearly unchanged 

(FWHM increased by about 15 %) can be understood, if the small difference in 

binding energy between indium meta! and indium oxides is considered. 

Sputtering of a pure indium(Ill)oxide sample revealed decomposition and the 

formation of a lower oxide, probably indium(I)oxide, but no complete reduction 

to indium meta!. We, therefore, conclude that indium meta! is really present in 

the aerosol bulk and that it contributes significantly to the total indium amount. 

Table 6 lists the binding ensrgies of the In 3d5/2 and the 0 1s photopeaks and the 

values of the modified Auger parameters of sample no. 6, of the standerd In203 

sample and of In203, In20, and In° from litersture (32). Besides the sputtering 

effects the data show that it will be fairly difficult to distinguish In203 and In20 

since the differences in spectral parameters are only small. The measured values 

of the indium modified Auger parameter of all unsputtered aerosol samples vary 

between 850.8 and 851.1 eV. For that reason, we have not been able to specify, 

which oxide has been formed. 

3.4 Details of tellurium speciation 

Fig. 13 a shows the XPS spectrum of sample no. 6 in the energy region of the 

tellurium 3d photopeaks. In the spectrum four separate peaks are observed. The 

leftmost peak belongs to silver (Ag 3P3/2). The other two main peaks are 

assigned to tellurium in tellurium dioxide based an the determination of the 

accurate binding energies, the peak intensity ratio and the spin-orbit coupling 

constant. The small peak between those two of tellurium dioxide, an the other 

hand, could in principle result from a photoelectron transition in either tellurium 

metal (Te 3d3/2) or chromium metal (Cr 2pl/2), if the approximate position of 

this peak and the detection of small amounts of chromium by EPXMA are taken 

into account. A clear discrimination between the two elements based an the 

spectra alone is not possible because the second peak of the Te 3d doublet or the 

chromium 2p doublet, respectively, is hidden under the silver 3P3/2 photopeak. 

Nevertheless, the peak position is closer to the value expected for tellurium 

meta! than for chromium metal. In addition, we da not have any indication for 

the presence of oxidized chromium, and the detection of chromium metal 

without that of chromium oxide does not seem very likely under the 



Table 6: 

Sampie 

Aerosol 

no. 6 

In2o 3 

standard 

In2o3e) 

In2oe) 

Ino e) 

- 34 -

Binding Energies of In 3d5/2 and 0 1s and Modified Auger Parameter 

a. (32) of Various Indium Containing Sampies 

Sputtering Binding Energy [ eV ] Cl. [eV] 
time [ m in] In 3d5/2 0 1s Ina) ob) 

0 444.3 530.0 850.8 

4 444.2 529.9 ~ 854.oc) 

~ 85l.oc) 

10 444.1 529.8 ~ 854.oc) 

~ 85l.oc) 

0 444.3 529.7 850.6 1041.8 

2.5 444.2 529.7 850. 7d) 1041.6 

180 444.2 529.7 851.1 d) 1041.9 

444.3 850.7 

444.3 851.1 

444.2 854.6 

a) Defined as the sum of In 3ds/2 binding energy and In CM4N4,5N4,5) kinetic 

energy 

b) 

c) 

d) 

e) 

Defined as the sum of 0 1s binding energy and O(KLL) kinetic energy 

Peaks not resolved, energy positions of M4N4,5N4,5 determined from 

multiplet analysis, cf. Fig. 12 

Only one M4,5N4,5N4,5 Auger transition observable, shape unchanged 

compared to the unsputtered sample 

Ref. 32, recalibrated relative to Au 4 f7 /2 = 84.0 eV 
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XPS spectra of aerosol sample no. 6 (melting charge temperature 

1900 °C); a) raw data with assignment of components given an top; 

b) curve synthesis using five Gaussian peaks to fit the experimental 

spectrum shown under a. The dotted line gives the resulting 

multiplet; c) comparison of original spectrum (after background and 

satellite subtraction) with the synthesized multipiet (smooth curve); 

d) spectrum of the same sample after one minute sputteri'ng showing 

the almost complete removal of tellurium dioxide. 
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experimental conditions during the formation of the aerosol samples. It has also 

been argued above (cf. Table 4) that the amount of chromium, detected by 

EPXMA, would be below the detection limit of XPS, if it is distributed 

homogeneously over the whole aerosol material. A detection would only be 

possible if an enrichment at the surface had occurred. The latter can be ruled 

out by sputtering the sample, which establishes the presence of the peak at about 

584 eV independent of sputtering time with almost unchanged intensity. We, 

therefore, favor the presence of tellurium rather than chromium meta!. 

Figs. 13 b and 13 c show the results of a curve synthesis of the spectrum after 

subtraction of background and of X-ray satellites. The figures show that the fit 

of the synthesized spectrum to the original data is very good (Fig. 13 c) if it is 

assumed that silver meta! and tellurium meta! and dioxide are the only species 

having photopeaks in this energy region and if the corresponding data (binding 

energies, relative peak intensities, spin orbit splitting) are used for the synthesis. 

The close agreement of original and synthesized spectra can be taken as 

additional evidence for the presence of tellurium meta!. 

Fig. 13 d shows the XPS spectrum of the same aerosol sample after one minute 

of argon ion bombardment. The peaks attributed to tellurium dioxide have almost 

disappeared while the resolved one of tellurium meta! is still present with an 

intensity comparable to the unsputtered surface. Since tellurium dioxide as a 

bulk compound is not decomposed to the meta! under ion bombardment (40,41) 

the observed behavior indicates that tellurium dioxide is only a surface 

component of the aerosols. As already stated, further sputtering does not Iead to 

changes of the tellurium meta! peak intensity. Taking into account the quick 

removal of tellurium dioxide it can be concluded that in fact the major amount 

of tellurium (integrated over the whole aerosol particle volume) is present as 

meta!. It shpuld also be noted that Teo2 has only been detected in two aerosol 

samples, but that the meta! has been observed in all aerosol samples except the 

first two ones. Its amount never exceeds about one atomic percent. 

Meta! tellurides have been discussed as possible chemical species for the release 

of tellurium (15,42,43). It can be expected that their Te 3d binding energies do 

not differ significantly from those of tellurium meta! and that, therefore, it will 

· be difficult to distinguish tellurides from tellurium meta! in XPS. 



- 37 -

Summary 

The results described in the foregoing discussion apply, due to the relatively low 

melting charge temperature, to the release behavior of volatile fission products 

and structural materials during the heat-up phase of a core meltdown accident. 

Consequently, the release of less volatile materials (e.g. steel constituents, 

uranium dioxide, Zircaloy constituents) is observed to a negligible extent, if at 

all. The release process is, therefore, only a section of the whole meltdown 

process. On the other hand, this has the important advantage to reduce possible 

spectral interferences, which otherwise could hamper a detailed analysis of the 

released elements. 

One of the important results of the comparison of surface and bulk composition 

is the fact that at high melting charge temperatures concentration gradients are 

observed, which are absent at low temperatures. These gradients can be 

correlated with the condensation temperatures of the vaporized materials. Due 

to the large differences in condensation temperatures of the participating 

elements or compounds, those elements with low volatility (Ag, In) condense first 

after leaving the volatilization zone and form some kind of aerosol nucleus, 

which afterwards provides a condensation surface for more volatile elements 

(Cd, Cs, I). It is interesting to note that the small differences in volatility of 

silver and indium are sufficient to form gradients of their in-depth 

concentrations. The absence of gradients at low melting charge temperatures 

can be understood in terms of similar volatilities of the major aerosol 

constituents and I or if a more or less continuous release and subsequent 

condensation of the observed elements takes place. 

The presence or absence of concentration gradients besides other effects 

described in the discussion will directly influence the accuracy of the results 

shown in Figs. 6 to 9. It has been shown, for exarnple, that tellurium dioxide is 

present at the aerosol particle surface as a very thin layer only. Therefore, its 

concentration will be overestimated in the upper diagram of Fig. 6 relative to 

the other constituents. It has been claimed for EPXMA that the relative 

concentrations of rnajor cornponents will be accurate to within ten relative 

percent while those of minor constituents rnay differ by fifty relative percent. 

Similar accuracies can be assumed for XPS results. 

Sputtering may also introduce quantitative changes. However, it could be 

concluded from the comparison of XPS and EPXMA results that these changes 
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Table 7: Chemical Speciation of Aerosol Constituents 

Element Chemical Speciation 

Ag metal; iodidea) 

Cd hydroxide; oxide 

In oxide; metalb) 

Te dioxidec); meta! 

cesium iodidea); silver iodidea) 

Cs hydroxide; iodidea) 

a) from Ref. 21 

b) no surface constituent; observable aftersputtering 

c) only present at the aerosol particle surface 
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are minor except for sample no. 3, where the expected high sputtering yield of 

cesium hydroxide led to significant compositional changes. 

Table 7 summarizes the results of the chemical speciation of the aerosol 

constituents, which was evaluated from XPS measurements. The combination of 

XPS with sputtering revealed in each case a steady state reached already after 

short sputtering times. The resulting, "new" surface can be assumed to be 

representative for the bull< composition. This allows to extend the results of 

XPS, which are primarily only valid for the probed surface-near volume, to the 

bull< of the samples. However, quantitative information an the chemical 

composition in cantrast to the eiemental one is uncertain after sputtering due to 

the possible induction of chemical changes (e.g. Cd(OH)z ~ CdO). 

It is beyond the scope of this paper to compare our results in detail to 

thermodynamic predictions concerning the chemical states of elements released 

during severe nuclear LWR core mettdown accidents (42,43,44). However, it can 

be stated that both approaches, the experimental and the theoretical one, show 

agreement for the chemical speciation of certain elements (e.g. cesium 

hydroxide, indium oxide) but differ for others, (e.g. tellurium dioxide). 

Acl<nowledgment: The authors thank Dr. H. Albrecht and Mr. H. Wild for the 

aerosol sample preparation and for helpful discussions. 
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