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In-pile vapor pressure measurements on uo 2 and (U,Pu)o 2 

Abstract 

The Effective-Equation-of-State (EEOS) experiments investigated 

the saturation vapor pressures CPsat) of ultra pure uo 2, reactor 

grade U02, and reactor grade (U.77 Pu.23)02 using newly developed 

in-pile heating techniques. Emphasis was put on the precise deter­

mination of the fuel enthalpy (± 3%) and avoidance of sample con­

tamination, e.g. from adsorbed water vapor. For enthalpies be­

tween 2150 and 3700 kJ/kg (about 4700 to 8500 K) vapor pressures 

from 1.3 to 54 MPa were measured. The Psat-h curves of all three 

fuel types were identical within the experimental uncertainties. 

An assessment of a11 published Psat-h measurements showed that 

the p-h saturation curve of uo 2 appears now well established by 

the EEOS and the CEA in-pile data. Using an estimate for the heat 

capacity of liquid uo 2 , the in-pile results were also compared to 

earlier Psat-T measurements. The assessments lead to proposal of 

the following relations: 

log(PsatiMPa) = 23.7989(+.1505)-29605.5 K/T-4.75783•log(T/K) 

(I) 

(h-h298)/(kJ/kg) = -221.15 + .5533 T/K - 1.0945·1o-5(T/K)2 

(II) 

Relation I, which includes a factor-of-2 uncertainty band, covers 

all Psat-T equilibrium evaporation measurements. Relation I 

yields 3817 K for the normal boiling point, 415.4 kJ/mol for the 

corresponding heat of vaporization, and 1.90 MPa for the vapor 

pressure at 5000 K. Relations I and II, which represent a para­

metric form of the Psat-h curve (T = parameter), also give a good 

description of the EEOS and CEA in-pile data. Thus the proposed 

equations allow a consistent representation of both Psat-T and 

Psat-h measurements, they are sufficiently precise for CDA ana­

lyses and cover the whole range of interest (3120-8500 K, 

1400-3700 kJ/kg). Relations I and II arealso proposed for 

typical LMFBR (U,Pu) mixed oxides. 



In-pile Dampfdruckmessungen an U02 and (U,Pu)02 

Zusammenfassung 

Die Effektive Equation-of-State (EEOS) Experimente untersuchten 

den Sättigungsdampfdruck (Psat) von hochreinem U02, reaktorty­

pischem uo 2 und reaktortypischem (U.77Pu.23)o 2 mittels neu ent­

wickelter in-pile Techniken. Besonderer Wert wurde auf eine ge­

naue Bestimmung der Brennstoffenthalpie (±3%) und die Vermeidung 

von Probenkontamination, z.B. durch adsorbierten Wasserdampf, 

gelegt. 

Für Enthalpien zwischen 2150 und 3700 kJ/kg (etwa 4700 bis 8500 

K) wurden Dampfdrücke von 1.3 bis 54 MPa gemessen. Die Psat-Kur­

ven aller drei Brennstoffe waren identisch innerhalb der Meßge­

nauigkeiten. Eine Bewertung aller veröffentlichten Psat-h-Mes­

sungen zeigte, daß die p-h-Sättigungskurve nun durch die EEOS und 

CEA in-pile Daten recht genau festliegt. Mittels einer Abschät­

zung für die Wärmekapazität von flüssigem uo 2 wurden die in-pile 

Resultate auch mit früheren Psat-T-Messungen verglichen. Die Be­

wertungen führten zu folgenden Vorschlägen: 

log(PsatiMPa) = 23.7989(+.1505)-29605.5 K/T-4.75783·log(T/K) 

(I) 

(h-h2g8)/(kJ/kg) = -221.15 + .5533 T/K- 1.0945·1o-5·(T/K)2 

(I I) 

Gleichung I, die ein Faktor-2-Unsicherheitsband enthält, deckt 

alle Psat-T-Gleichgewichtsverdampfungsexperimente ab. Gleichung I 

ergibt 3817 K für den Siedepunkt, 415.4 kJ/mol für die entspre­

chende Verdampfungswärme und 1.90 MPa für den Dampfdruck bei 

5000 K. Gleichungen I und II, die eine parametrische Form der 

Psat-h-Kurve darstellen (T = Parameter), beschreiben auch die 

EEOS und CEA in-pile Daten recht gut. Die vorgeschlagenen Glei­

chungen erlauben somit eine konsistente Beschreibung von Ysat-T­

und Psat-h-Messungen, sie sind hinreichend genau für CDA-Analysen 

und decken den gesamten interessierenden Bereich ab (3120-8500 K, 

1400-3700 kJ/kg). Gleichungen I und II werden ebenso für typische 

LMFBR (U,Pu)-Mischoxide vorgeschlagen. 
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I. THE RESEARCH GOAL 

I.1 EOS Data Required for CDA Calculations 

Much attention has been given in LMFBR safety research to detailed 

mechanistic calculations of Core Disruptive Accidents (CDA's). The 

result of main interest is the mechanical energy release - ofter 

termed excursion yield - which is defined as the mechanical work 

done on the pressure vessel. This mechanical work results from 

the motion of hot core materials, which in turn depends on ~quation 

of-State (EOS) data of core constituents. 

In CDA calculations basically two types of mesh cell situations 

are encountered (Fig. I.1): 

1. The mesh cell is completely filled with liquids. 

2. The mesh cell contains free volume which can be filled with 

vapor. 

In the first case, the pressure in the cell is dominated by the 

most compressible fluid present, which is normally sodium. Any 

pressure from expanding liquid fuel is largely relieved by com­

pressing the sodium in the cell. Thus the pressure determining 

material data for liquid filled cells are 

a) the thermal expansion coefficient of the fuel a=1/v· (3v/3T) 

which determines the sodium volume decrease, 

and 

b) the sodium compressibility ß=-1/v· (3v/3P) which links the 

volume decrease with the corresponding pressure increase. 

Liquid phase pressures of the fuel have virtually no influence 

on calculated excursion yields /I.1/. 

In the case of a liquid/vapor mixed phase mesh cell, the prevailing 

fuel vapor pressure in the free cell volume can be saturated or 

undersaturated, depending on the vaporization kinetics. Refling, 
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et al. /I.2/ showed that the rnaxirnurn possible evaporation rate is 

alrnost always one to two orders of rnagnitude larger than the net 

evaporation rate encountered during the core expansion. It is 

therefore justified to assurne therrnodynarnic equilibriurn between 

liquid fuel and fuel vapor. Thus it is the fuel saturation vapor 

pressure which deterrnines the pressure in a vapor/liquid rnesh 

cell. The vapor pressures of sodium or stainless steel can g~nerally 

be neglected during the expansion phase because the time for signi­

ficant energy transfer from the heated fuel is too small. 

So, the most important material data for core disassembly and 

expansion calculations are: 

- the sodiurn compressibility (1000 - 1500 K), 

- the thermal expansion coefficient of liquid fuel (3000 - 6000 K), 

and 

- the saturation vapor pressure of the fuel (3000 - 6000 K). 

Whereas the sodium compressibility is quite well known, a need 

exists for the liquid fuel data. 

Fuel vapor pressure data are further required for the interpretation 

and analysis of many nuclear safety experiments in which liquid fuel 

is generated, e.g. the transient heating experiments on single pins 

underway in the CABRI reactor at Caderache, France. 

I.2 Required Measurement Brecision 

The necessary effort to be put in an experimental program depends 

strongly on the required precision of the measured data. Since, 

only intuitive feelings about the required vapor pressure precision 

existed ~ often a factor of two - a quantitative estimate was attempted 

/I.3/. 
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The quantity of main interest in core disassembly calculations 

is the excursion yield Y . Uncertainties in the calculated yield 

arise from the uncertainty in the vapor pressure as well as from 

other accident variables like reactivity ramp rate ~' Doppler 

coefficient D, etc. The total yield uncertainty oY can be written 

as: 

oY aY ay aY 
= a ' o P sat + F 5 ~ + aD · 8 D + . . . terms from other 

Psat s variables (I . 1 ) 

Sensitivity studies show that the dominant term in Eq. ( 1.1) is that 

from the ramp rate uncertainty o~ /1.4,5/. Obviously, the term from 

vapor pressure uncertainties should be some fraction "a" of this 

dominant term: 

aY . op 
ap sat sat 

= ay . s r 
a d~ us (I • 2) 

Choosing a = .5 and evaluating the partial differentials from 

existing sensitivity studies on calculated excursion yields /1.1,4-9/ 

leads to the conclusion that the fuel vapor pressure should be known 

within a factor of 2 to 4, depending on how well the ramp rate of 

the considered accident is known. Due to the exponential relation­

ship between pressure and energy t.r1e acceptable pressure uncertain­

ties translate into very small acceptable uncertainties in energy. 

Table 1.1 sum~arizes the acce~table uncertainties. 
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Table I.1: Acceptable Uncertainties In Pressure-Energy 

J.Vleasurements 

Precision level 

Ramp rate uncertainty 

range r,/ r, 
0 

Acceptable pressure 
uncertainty factor p/p 

0 

acceptable energy 
uncertainty 

I II 

. 66 to 1 . 5 • 83 to 1 . 2 

4 2 

+ .06 +.03 

Table I.1 shows that vapor pressure measurements on nuclear fuels 

must have a very precise energy determination in order to be useful 

for CDA yield calculations. An energy uncertainty close to + 3% 

should be the goal for EOS measurements. 

I.3 Selection of Heating Method 

When comparing the different feasible heating methods for nuclear 

fuels, namely laser, electron beam, and nuclear heating, it appears 

that in-pile fission heating provides the most promising approach 

to the determination of p-h relations of nuclear fuels. The reasons 

are twofold: 

· Heating method and heating time are CDA typical, 

Questions about the applicability of the results to reactor 

accident analysis - like in laser heating methods-

do not exist. Futhermore, unknown or not well understood pressure 

phenomena will be included empirically in the measurements. 

The technique can be extended in a relatively easy way to irradiated 

(U,Pu) mixed-oxide, which is the fuel of ultimate interest for 

CDA analyses. 
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Examples for unclear pressure phenomena are release kinetics of 

non-fuel species like fission gases, and the pressure interaction 

between fuel vapor species and non-fuel vapor species. 

In-pile EOS experiments appear therefore as the most direct and 

reliable way to the desired p-h information on nuclear fuels. 
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II. EEOS EXPERIMENT TECHNIQUE 

II.1. Experiment Concept 

The basic concept used in the EEOS experirnents was developed in 

the first Equation-of-State series done at Sandia National Labara­

taries /II.1/. A fuel sarnple, contained in a closed volurne, is 

fission heated during a reactor power excursion to rnelt and partially 

vaporize the fuel. The pressure history p(t) in the pressure cell 

is rneasured dynarnically during the transient. The time dependent 

enthalpy h(t) is derived frorn an in-pile calorirneter and associated 

calculations. The correlation of p(t) with h(t) yields the section 

of the p(h)-curve in the respective energy interval, not just a 

single point on this curve. 

The pressure cell assernbly, shown in Fig. II.1, is used to rneasure 

the transient fuel pressure p(t). The powdered fuel sarnple fills a 

volurne bounded by a zircalloy crucible and a zircalloy piston. The 

force acting on the crucible is coupled to the diaphragrn of the 

pressure transducer via an alurninurn adapter. 

The calorirneter (Fig. II.2) ,which contains a sarnple of the sarne 

test fuel, provides an absolute and independent rneasurernent of the 

fuel energy deposition. The calorirneter body is instrurnented with 

one central and four circurnferential therrnocouples. The rneasured 

calorirneter energy is used in the evaluation of the energy deposition 

into the pressure cell fuel. Differences in neutron flux incident on 

pressure cell and calorirneter fuel are accounted for by a fission 

product inventory analysis after the ACRR irradiation (Section II.5). 

Due to the intense neutron and garnrna fields during a reactor pulse, 

radiation noise is induced on pressure and ternperature signals. 

These noise signals were accounted for by irradiating each EEOS 

assernbly twice: first without, then with fuel. 
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11.2 Hardware Design 

The hardware in each EEOS experiment consists of three major com­

ponents: 

1. the pressure cell assembly (Figure II.1), 

2. the calorimeter assembly (Figure 11.2), and 

3. the containment and filter structure (Figure 11.3). 

11.2.1 Pressure cell 

The two basic requirements for a meaningfull transient measurement 

of saturation vapor pressures are sufficiently short response time 

of the pressure sensor and pressure equilibrium in the test volume. 

The pressure transducer used in the EEOS experiments (KAMAN Model 

KP-1911) has a responsetime of 25 microseconds. A theoretical study 

of the transducer response (Section I1I.1) showed that the coupling 

of the aluminum adapter and the zircalloy crucible to the mernbrane 

does not lengthen the response time noticeably. The pressure measuring 

system is therefore adequate for resolving pressure excursions which 

last several milliseconds. 

With respect to pressure equilibrium in the measuring volume, 

hydrodynamic calculations /II.2/ showed that pressure gradients 

decay very fast compared to the pressure excursion time, and that 

therefore, a uniform pressure should exist throughout the test 

volume at any given time+). This pressure should be equal to the 

equilibriurn vapor pressure of the fuel section with the highest 

internal energy. 

The pressure cell design shown in Figure II.1 is the result of an 

extensive in-pile testing and evaluation program. The main design 

features are as follows: 

+)The speed of sound in liquid uo
2 

is of the order of lrnm/lJS. The 
fuel sample volume is 2.3 rnm thlck with a diarneter of 10.3 rnm. 
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The pressure generated during a reactor transient acts on the 

zircalloy crucible which in turn pushes the aluminum adapter up­

wards against the pressure transducer membrane. By means of a 

central circular protrusion the adapter loads a precisely defined 

area of the transducer membrane. The same adapter is used for the 

calibration of the transducer in a hydraulic press. 

The piston and the inner crucible walls are slightly tapered (not 

shown in Fig. II.1). By this means, the gap thickness between piston 

and crucible can be zero if there is no fuel powder left on the 

crucible walls. If there should be some adhered fuel powder, crucible 

and piston cannot jam (as has been found to happen with a cylindrical 
! 

piston) since they move slightly away from each other during the 

pressure measurement. The gap increase due to the movement of the 

transducer membrane is less than .01 mm, because of the steep 

tapering angle (3.6 degrees). 

The piston-crucible gap is oriented away from the pressure transducer 

in order to protect the transducer membrane from hot gases which might 

escape from the crucible. I t was found that tempera·ture gradients 

across the transducer membrane can seriously distort the pressure 

signal by causing membrane buckling. 

The aluminum shim underneath the crucible is manufactured specifically 

for each pressure cell assembly as the last part in order to remove 

slack in the system from fabrication tolerances. This also minimizes 

the free space in the pressure vessel where liquid fuel could escape 

to during an experiment. 

The cadmium filter flattens the energy deposition profiles in the 

test fuel significantly by shadowing the hot corners of the cylindri­

cal sample. Height and thickness of the cadmium filter was chosen 

such that the peak-to-average ratio of the fission energy deposition 

in the sample is minimized (Section III.3). 
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The pressure cell contained about 1 g of powdered fuel. The 

fuel density was close to 50% of the theoretical density, which 

is typical for the fuel smear density in a voided LMFBR core. 

II.2.2 Calorimeter 

The first in-pile equation-of-state measurements on nuclear fuels 

were published in 1977 /II.1/. From the refined computer analysis 

of these experiments /II.3/, it became clear that the determina­

tion of the energy deposition into the test fuel is the crucial 

step in obtaining precise pressure-energy data. Since a factor 

of two is roughly the precision which is desired for the fuel 

vapor pressure in CDA codes (Section I.2), the energy deposition 

in EOS experiments should be determined within + 3%. Due to the 

complex phenomena involved, there is little hope that this level 

of accuracy can be obtained by computer analysis of experimental 

raw data. Therefore, an in-pile calorimeter was designed for an 

absolute and high-precision measurement of the energy deposition 

into the EEOS test fuel. 

The calorimeter consists of the fuel containing calorimeter body, 

which is attached with a ceramic insulator rod to the vessel lid. 

The guide pins allow evacuation of the calorimeter in a vacuum 

systeminan open configuration and closing in situ. (Section IV.2). 

The main design features of the calorimeter assernbly are as follows: 

- calorimeter body 

. high strength aluminum (Alloy 5086) 

· maximum design pressure 80 MPa 

· proof-tested in hydrostatic facility 

- masses 

· calorimeter body Sg 

· test fuel powder .Sg 

- fuel energy deposition up to 3000 kJ/kg 

- temperature increase of Al body up to 500 K 

- thermocouples on Al body: 
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· one central, .25 mm diameter 

· four circumferential, .12 mm diameter 

· all sheathed, ungrounded junction 

installed along approximate isotherms to minimize quenching 

of body by TC leads 

vacuum environment for Al body, below 10- 3 Pa initially 

cadmium filter 

. 2mm thick 

· extended axially to shield complete fuel sample. 

The principle of the energy deposition measurement using the 

calorimeter, the uncertainties in the energy measurement and the 

calorimeter test program were described earlier in a seperate report 

/II.4/. 

II.2.3 Containment 

The calorimeter and the pressure cell are installed in two independent 

completely sealed radiological canisters (Fig. II.3). Both canisters 

were overpressurized to .2 MPa He and leak tested. On the outside 

of each canister polyethylene moderator can be attached for partial 

or full thermalization of the ACRR neutron flux. A lead shield con­

sisting of six rings, 37 mm thick, surrounded the containment in 

order to reduce the gamma heating of the calorimeter body. With the 

lead rings· installed, the gamma heating of the calorimeter could be 

reduced to about 10% of the fission heating. Space and reactivity 

considerations prohibited the use of a thicker lead shield. The 

instrumentation signals are passed out of the primary and secondary 

Containment canisters via hermetically sealed connectors. 
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II.3 Data Acquisition 

On-line signals from the following instrumentation were recorded 

during an experiment: 

- pressure transducer valtage 

- two fission chambers currents from 

· in-core position, and 

· reactor pool 

- five thermocouple voltages from the calorimeter. 

Since the signal height as well as the time scale of interest 

varied by orders of magnitude during the experiment, some of the 

signals were multiplexed, amplified with different gains and/or 

sampled with different frequencies. A total of 18 data channels 

were recorded in each shot. 

A block diagram of the ACRR Data Aquisition System is given in 

Fig. II.4. As shown, the data may be recorded on FM type recorders 

(26 channels of data), displayed on a viscorder oscillograph, and 

digitized by high speed analog to digital converters in the Data 

Acquisition and Display System (DADS) terminal. The system contains 

provisions for complete calibration of the instrumentation after 

loading the test equipment into the core. Pressure transducer 

electronics, thermocouple reference junctions, and reactor power 

instrumentation are located at the reactor and are connected to 

the data acquisition by a permanent cable bus. 

The DADS terminal is shown schematically in Figure II.S. The 

terminal is built araund an HP9845 desk top calculator with 449 K 

bytes of memory. Analog input is via eight high speed ADC channels 

with a maximum sampling rate of 400 kHz. Each input may be multi­

plexed 2 or 4 times for sampling rates less than or equal to 40 kHz. 

Each ADC channel has an associated 32768 word external memory. The 

calculator may read the external ADC memories, perform limited 

computation, display the data, store data on a cartridge disc or 

transmit the data to the central DADS computer. The central DADS 

computer provides additional computational capability along with 

digital magnetic tape data storage and a better graphics platter. 
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II.4 The ACRR 

The Annular Core Research Reactor (ACRR) is a pool-type reactor, 

using cylindrical Beo-uo
2 

fuel elements. The most prominent feature 

which distinguishes this reactor from many others is the large 

(23-cm inside diameter), dry irradiation space in the center of 

the core. The annulus-shaped core is formed by single fuel elements, 

arranged in a hexagonal grid around the central cavity. The core is 

located in an open pool 3.0 meters in diameter and 8.5 meters deep. 

The top of the core is approximately 6 meters below the surface of 

the pool water, which affords more than adequate radiation shielding. 

Access to the central irradiation cavity is by a nominally 25-cm 

diameter loading tube which extends vertically upward from the center 

of the core. Neutron streaming up to loading tube is prevented by a 

shield plug which, except for special experiments, is in place during 

operation of the reactor. 

The ACRR fuel section is about 35 mm in diameter by 0.52 mm in length. 

The fuel is contained in a fluted niobium liner and sealed in an 

0.5 mm thick smooth stainless steel cladding. The flutes in the liner 

maintain helium filled insulating gaps between the fuel and liner, 

and between the liner and the clad. At the ends of the fuel stack 

are short BeO reflector-insulators followed by the end pieces. The 

overall length of the fuel element is 0.74 m. 

The operational characteristics for pulse and steady-state mode 

are summerized in Table II.1o Most important for the EEOS experiments 

is the large pulse fluence which allows filtering of neutrons to 

obtain very flat energy deposition profiles. 

Table II.2 gives an idea about the absolute energy deposition 

capabilities in the ACRR. 
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Table II.1 ACRR Central Cavity Radiation Levels for Routine 

Maximum Operations 

(at Cavity Horizontal and Vertical Centerline) /II.5/ 

Steady-State Operation 

Power 2.0 MW 

Neutron Flux ( >3 MeV) 2.0 X 1012 2 . 
njcm /sec 

(>10 keV) 2.4 X 1013 n/cm2jsec 

(total) 4. 1 X 1013 njcm2/sec 

Gamma Dose Rate 2. 2 X 104 rad/sec 

Pulse Operation 

Reactivity 3.00 

Energy Yield 310 MJ 

Neutron Fluence ( >3 MeV) 3 . 1 X 1014 n/cm2 

(>10 keV) 3.7 X 1015 n/cm 2 

(total) 6.4 X 1015 njcm 2 

Gamma Dose 3.4 X 106 rad 

Table II.2 Calculated ACRR Core Capabilities for Single Pins 

Fuel 
Enrichment 

Poly 
Thickness 

(inch) 

Released Reactor 
Energy 

(MJ) 

A. Configurations to achieve 3000 J/g: 

1 2% 

1 2% 

1/4" 

3/4" 

B. Maximum Energy Deposition: 

20% 3/4" 

93% 3/4" 

300 

1 75 

300 

300 

Energy Deposited 
in Test Pin 

(J/g) 

3000 

3000 

6850 

16000 
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The data in Table II.2 were essentially confirmed in the EEOS 

experiments, for instance experiment EEOS-05 had the following 

neutronic configuration: 

- 15% fuel enrichment 

- 3/8 inch poly 

- 300 MJ reactor energy release 

3700 J/g total energy deposition in the test fuel. 

II.5 Data Evaluation 

The data evaluation scheme of EEOS experiments is outlined in 

Fig. II.6. The data evaluation consists of three steps: 

1. on-line data aquisition, 

2. fission product inventory analysis of pressure cell and 

calorimeter, and 

3. numerical data analysis, using codes described in Section V. 

To measure the radiation noise signals on pressure transpucer 

voltage, fission chamber current, and calorimeter temperatures, 

the on-line data aquisition is first performed for a background 

experiment which contains no fuelo Then the same data are re­

corded for a fueled experiment. 

After unloading the fueled pressure cell and calorimeter from the 

containments (Fig. II.3), the fission product inventory in both 

cells is measured in a gamma counting facility, using the 1.6 MeV 

line of the fission product La-140. This analysis, which is des­

cribed in more detail in Section III.5, yields the ratio in the 

number of fission events in both cells. 
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The third step in data evaluation comprises two parts: 

determination of pressure and deterrnination of energy. 

The time dependent net pressure is simply the difference 

of the pressure transducer readings with and without fuel, 

including a correction in the time scales to synchronize the 

reactor pulses. The energy evaluation starts with calculation 

of the total net fission energy deposition into the calorimeter 

fuel, using the measured thermocouple traces of background and 

experiment shot. Multiplication of this total (time integrated) 

energy with the ratio of fissions, gives the absolute total 

fission energy deposition into the pressure cell fuel. From this 

total value, the time dependent energy deposition of the pressure 

cell fuel is derived using the fission chamber signal i(t). (The 

relevant equations are given in Section V.) Finally, the correla­

tion of time dependent net pressure with calculated enthalpy yields 

the desired pressure-enthalpy curve. 

It should be emphasized, that the described transient technique 

results in a continuous measurement of a certain section of the 

p-h curve, not in just a single point on this curve. 
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III. EVALUATION OF EEOS TECHNIQUE 

Chapter II gave a brief outline of the EEOS technique as used 

in the vapor pressure measurements on liquid reactor fuels. 

However, there were quite a nurober of experimental and theoreti­

cal investigations necessary to design proper functioning equip­

ment. To document this work, and to demonstrate the presently 

existing understanding of the physical phenomena involved, this 

ehapter discusses in more detail some important aspects of the 

EEOS technique. 

III.1 Pressure Transducer Dynamics 

In the EEOS pressure cell (Fig. II.1) the fuel vapor pressure acts 

on the pressure transducer by moving the Zr crucible and the Al 

adapter upwards against the transducer membrane. For proper pressure 

measurement it must be assured that the coupling of these additional 

masses to the transducer does not deteriorate the time response of 

the pressure transducer. A detailed analysis of the dynamic behaviour 

of the modified transducer was therefore performed /111.1/. 

The dynamic response of the modified transducer system was evaluated 

in three steps: 

1. Find the transfer function of the bare pressure transducer from 

available shock tube data. 

2. Construct from this the transfer function of the modified system, 

including the additional masses. 

3. Calculate the dynamic response of the modified system to typical 

EOS-pressure excursions using the transfer function found in 

step 2. 
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III.1 .1 Bare Pressure Transducer 

The transfer function G of a linear system having lumped and 

constant parameters is defined as /III.2/: 

G _ ;e{output} 
- .,t { input} (III.1) 

where .~·. is the Laplace operator. For the bare pressure transducer 

system, input and output signals are known from shock tube experiments 

/III.3/. Figure III.1 shows the reetangular shock tube pressure and 

Figure III.2 the response of the 5000 psi-pressure-transducer. In 

order to calculate G, it is necessary to obtain an analytical fit 

of the response. 

The response closely resembles a damped frequency bea·t, which results 

from the Superposition of two damped oscillations having slightly 

different natural frequencies. The Fourier analysis of the output 

signal shows indeed two dominant peaks at v
1 

= 35.4 kHz and 

v 2 = 42.6 kHz (Figure III.3). It should therefore be possible to 

describe the transducer mathematically by two coupled differential 

equations of second order. (MX + Bx + kx = F(t), with x = membrane 

displacement, M = mass, B = friction constant, k =spring constant, 

F = force.) 

From the exponential decrease of the output signal maxima in Figure 

III.2 (~e-bt) the damping factor b can be derived. The smaller 

transducer ampli tudes during the first bea·t ( t = . 9 to 1 . ms) indicate 

that the transducer oscillation is not yet fully developed during this 

first .1 ms, possibly due to the finite rise time of the shock tube 

signal. Therefore, only the exponential decrease at times greater 

than 1.0 ms was fitted. Use of b, v
1 

and v
2 

results in the analyti­

cal fit function depicted in Figure III.4. Comparison with Figure 

III.2 shows that this function represents the measured signal quite 

well for times greater than 1.00 ms. Especially noteworthy is the 

good agreement of the absolute pressure amplitudes which are not 

used in finding the fit parameter b. Insertion of this fit function 

and of the shock tube step function into Equation III.1 yields the 

required expression for the transfer function G of the bare pressure 

transducer. 
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III.1 .2 Modified Pressure Transducer 

The bare pressure transducer is modified in the EEOS experiments 

by coupling additional masses to the transducer membrane (about 10 g). 

The transfer function of this modified system G+ was found by re­

placing the oscillating mass in the bare transducer transfer function 

G by: 

M+ -- R M . 

where M = osciallating mass of bare pressure transducer = .6 ± .2 g 

R = ratio of oscillating masses in bare and modified transducer 

Due to the uncertainty in M, the oscillating mass ratio of interest 

for the EEOS experiment design is 5 to 20. In the above approach 

it is assumed that the modified system is also a linear system of 

second order (M+x + Bx + kx = F(t)). 

III.1.3 Dynamics of The Modified System 

The dynamic response of the modified system p t(t) to a specified 
ou 

input pressure p. (t) was calculated in three steps. 
1n 

1. Find the Laplace transformation of p. (t) 
ln 

2. Multiply P. (s) with the transfer function G+. This yields the 
ln 

Laplace transformation of the response P t ( s) 
ou 

P t(s) = G+(s) . P. (s) 
OU ln 

3. Backtransform Pout(s) to find the response Pout(t) 
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The reponse of the modified system was calculated for several 

input pressures, e.g. step function of Fig. III.1 (p(t)=2.45 ~IP.a), 

an expanential pressure increase typical far the first EEOS-series, 

and a pressure increase with a 10 times faster characteristic rise 
time. 

Figure III.5 shaws as example the calculated respanse ta a 2.45 MPa 

pressure step (R=10). Camparisan with Fig. III.2 shaws that adding 
masses ta the transducer membrane has twa effects: 

- the ascillatian frequency decreases, and 
- the damping is reduced. 

Withaut an initial pressure step at t=O anly very minar ascillations 
accur. Far the twa investigated expanential pressure rises, the cal­

culated respanse was practically identical with the input pressure. 

Even far the extremely fast pressure rise, which corresponded ta 
about 20 MPa in 5 ms anly minor ascillations occured. This means 

that the madified system shauld still have a sufficiently short 
response time and an adequate damping for resalving the transient 

pressure in EEOS experiments carrectly. 

III.2 Pressure Oell Develapment 

The first in-pile test (AORR Shot 1057) - which used the initial 
design with upwards maving piston, revealed that liquid fuel ex­

truded from the crucible during the prompt reactor pulse. This 

caused ane-sided heating of the pressure transducer membrane and 
an early distartion of the pressure signal. Both the magnitude 

and the frequency af the abserved disturbance cauld be explained 

by transient heat conduction thraugh the transducer membrane and 

assaciated buckling, caused by the different thermal expansion in 

the membrane. X-ray phatographs canfirmed that significant amaunts 
af liquid fuel had escaped from the crucible. 
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As a consequence, the pressure cell design was changed to an 

inverted crucible (Figure 11.1) and the gap between piston and 

crucible was made as small as possible (about .05 mm). In this 

geometry, any extruding fuel would be directed away from the 

temperature sensitive transducer, instead of towards it as in the 

initial design. However, in the next experiment (ACRR Shot 1227), 

piston and crucible did not separate. It is believed that some fuel 

powder adhered to the crucible wall, and when the cell was closed 

in the UHV-system, a tight fractional bond was created in the narrow 

gap between crucible and piston. 

In order to overcome this problem, the cylindrical piston was 

replaced by a tapered one. The advantage here is that the gap 

thickness can be zero indeed, if there is no fuel powder on the 

crucible walls. If there should be some fuel powder, crucible and 

piston cannot jam since they move slightly away from each other 

during the pressure measurement. The gap increase due to the move­

ment of the transducer membrane is less than .01 mm, because of 

the steep tapering angle (3.6°). Using this design in Shot 1264 

resulted in a pressure signal which was free of disturbances and 

had the expected timing and shape as well. 

111.3 Calorimeter Development 

The initial calorimeter designwas tested in 11 in-pile experiments. 

The main design improvements involved 

a. Reduction of heat losses along the ceramic support rod. 

b. The improvement of the calorimeter seal (plug at the bottarn 

of the aluminium body). 

c. The addition of a cadmium filter to lower the total energy 

deposition. 

d. Evaluation of gamma heating and thermocouple performance. 
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The heat losses were reduced by machining the ceramic support 

rod as thin as possible, without jeopardizing its mechanical strength. 

The calorimeter seal failed initially at energy depositions around 

2000 kJ/kg uo
2

. Metallographie examinations revealed that the metal­

metal seal was not gas-tight. Escaping hot fuel vapor could there­

for erode the seal, once fuel vapor was generated. By replacing the 

aluminium plug with a zirconium plug, the sealing torque on the plug 

could be increased to values which resulted in a gas-tight seal. 

Such an improved calorimeter body was pressure tested in a hydrosta­

tic facility, where it withstood internal pressures of up to 80 MPa. 

The addition of a cadmium filter assures that pressures generated 

in the calorimeter body do not exceed this pressure limit. 

Compared to the fission energy deposition, the gamma heating of the 

calorimeter is a 10 percent effect. Since the goal in the energy 

measurement is a total uncertainty of ~ 3 percent, gamma-heating 

must be evaluated carefully. The total gamma heating is composed 

of a prompt part and a delayed part. The dominant contributors to 

the prompt gamma heating are the prompt gammas from core fissions. 

The delayed gamma heating is due to the decay of core fission pro~ 

ducts. Several experiments were performed in the ACRR t.o reliably 

measure prompt and delayed gamma heating of the calorimeter. 

The first measurement of the gamma heating of the alumium body 

(ACRR shot 1088) gave uncertain and conflicting results, with 

respect to magnitude and ratio of prompt and delayed gamma heating 

contrihutions. It was therefore decided to measure the basic re­

sponse of thermocouples to the ACRR gamma field (Shot 1134). Next, 

the problern of thermocouples connectors was investigated (Shot 

1135). These connectors are mounted in the top lid of the inner 

and outer canister to bring the thermocouple signals out of the 

EEOS package. Due to the gamma flux gradients in the ACRR core and 

due to the non-symmetric gamma heating of the container lids, axial 

and radial temperature gradients develop in the connectors, leading 

to spurious thermocouple voltages. (These hermetically sealed 
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PTO-connectors do not contain thermocouple alloy pins.) The connec­

tor effects were investigated by comparing the signals from thermo-

couples which were installed with and without connectors (ACRR 

Shots 1135, 1151). Furthermore, an error signalwas measured across 

inner plus outer connector, such that it represents the sum of the 

spurious signals from inner and outer connectors for the particular 

connector pins. It was found, however, that this error signal is 

not representative for all pins in the 18-pin connector, obviously 

different temperature gradients exist along different connector pins. 

The investigations showed, however, that the thermocouple deviations 

from these spurious signals can be accounted for on the basic of the 

following findings: 

a. The thermocouple deviations from connector effects are consistent 

from shot to shot. 

b. Their magnitude is acceptable during the first 25 seconds (about 

+ 1 • 5 K) • 

c. The true calorimeter temperature (as measured without connectors) 

is within + 1 K of the mean of all five thermocouples with 

connectors. 

Also, to minimize effects in the upper connector, the lead shielding 

was extended upwards. 

The improved calorimeter performed satisfactorily at 3000 J/g uo
2 

energy deposition (ACRR Shots 1227 and 1264) which increased the 

calorimeter temp~erature by about 320 K. The temperature readings of 

the five thermocouples generally agree within ~ 3K, once thermal 

equilibrium is established between fuel and calorimeter body. 
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III.4 Energy deposition calculations 

The energy analysis program (described in Chapter IV) and the 

optimization of cadmium filters for the pressure cell, require 

information about the fission energy distribution within the fuel 

sample. Such energy deposition calculations for EEOS samples re­

quire very good spatial resolution because: 

a, The cadm'ium ring around the fuel sample casts sharp shadows 

in the neutron flux distribution. 

b. Energy deposition differences in the EOS sample are only 5 to 

10 percent. 

c. There are large dimensional differences between the driving core 

and the EEOS fuel sample (meters compared to centimeters). 

First calculations using a S-16 version of TWOTRAN did not quite 

reach the desired resolution in energy deposition results /III.4/. 

A complementary method was then developed to check and extrend the 

TWOTRAN results /III.5/. This methods uses the cylindrical neutron 

source, which is calculated with TWOTRAN for the ACRR cavity, as 

input. Then it evaluates the distribution of neutron absorptions 

in the EEOS fuel by integrating over all possible neutron paths 

through the fuel. Neutron scattering in the fuel is neglected, be­

cause in EEOS fuel, fission events are much more probable than 

scattering events. The calculations result in a detailed two-dimen­

sional r-z energy distribution for the EEOS sample. 

The main modelling assumptions of the PATH code are: 

- The EEOS fuel geometry ls that of a homogeneaus cylinder. 

The neutron flux in the ACRR cavity is assumed to be homogeneaus 

and isotropic in the absence of fuel. The justification of this 

hypothesis comes from the fact that neutrons in the central cavity 

have been scattered many times in the pool water. 
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- The EEOS fuel only absorbs neutrons and doesn not scatter them 

(the greater the fuel enrichment, the better this approximation). 

Thus the accuracy of the calculation is better for highly enriched 

fuel, but it is still sufficient for the 15% enriched EEOS fuel. 

- The neutrons created by fission inside the fuel do not contribute 

to the energy profile, they escape to the reactor pool. 

The method was first used to study the energy deposition into the 

EEOS pressure cell fuel. (50% dense uo
2 

powder, 15% enrichment, 

2.3 mm high, 10.3 mm diameter). Figure III.5 shows a contour plot 

of the calculated radial and axial energy distribution in this 

sample. The energy distribution is normalized to the volumetric 

average energy in the sample. The resulting ratio of peak-to-mini­

mum energy deposition (pm) is 1 .17. 

For the purpose of the precise energy evaluation, it is desirable to 

make the energy deposition in the pressure cell as uniform as possible. 

One good means is to cool the hot corners of the fuel sample by 

surrounding it with a suitable neutron absorber, e.g. cadmium. The 

PATH code was therefore used to find height and thickness of that 

cadmium filter which would minimize pm. The optimum cadmium filter 

turned out tobe .2 mm thick (which is practically black for thermal 

neutrons) and 15.2 mm high. The pm- ratio for this filter design 

is 1.064 (Figure III.7). The corresponding peak-to-average ratio 

is pa = 1 .040. These numbers compare very well with the earlier 

TVilOTRAN result of pm = 1.07 +.02 and pa = 1.05 + .02 /III.4,6/, 

calculated for a similar filter design. 

The above given results refer to the initial fuel powder geometry. 

As the fuel sample is melted and partially vaporized during the 

reactor transient, its geometry changes due to pressure gradients. 

These changes in fuel geometry make the energy deposition profile 

time-dependent. Since this quantity enters the energy evaluatio~, 

the PATH energy deposition calculations were also performed for 

various compacted fuel geometries. 
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Only the results for an extreme limit of fuel movement are presented 

here: the full radial and axial compaction of the powder to a density 

of 8 g/cm3 (Fig. III.8). It is seen that even in this case the peak­

to-minimum ratio of energy deposition increases only to pm = 1 .073 

(it was 1 .064 for the powder). 

However, there is ample experimental and theoretical information, 

showing that it is highly unlikely during EEOS experiment to have such 

a compacted fuel geometry for significant fractions of the power 

excursion. Rather, the fuel is violently moved throughout the avail­

able volume and thus a near-uniform fuel density distribution should 

exist for most of the experiment time. 

Therefore the energy deposition results for the powder geometry with 

optimum cadmium filter are used in the data evaluation for the pressu­

rization time. 

III.5 Ratio of Fissions 

The ratio in the number of fissions induced in the pressure cell fuel 

and the calorimeter fuel, is needed to calculate the absolute energy 

deposition into the pressure cell. The ratio of fissions was deduced 

in the following way. 

III.5.1 Fission Product Inventory Analyis 

After irradiation of the EEOS package in the ACRR, the number of 

fissions in the two fuel samples was measured using the 140Ba- 140La 

fission product inventory analysis. 
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The fission product decay chain of importance is 

(fission yield) 
3. 7 140 Ba 0.3 2.3 ..... 0.0 

140 La 
16s 66s 12.8d 40.22h 

(half life) (stable) 

Essentially all of the 140xe and 140cs will decay into 140Ba 

within a very short time, compared with the 140Ba half-life, 

after irradiation. Thus, after several hours a p~rent-daughter 

decay relationship between 
140

Ba and 14°La is established~ Solving 

the radioactive decay equations in the usual way gives an equation 

for the number of 140Ba isotopes produced in the irradiation as 

f t . f t t. d 1 40 t' 't ( R f II 1 unc 10n o measuremen 1me an La-ac lVl y see e.g. e . - , 

p.208). The disintegration rate of 140La is measured with a gamma 

ray spectrometer. Once the number of 140Ba atoms is known for time 

t=O,the number of fission events follows from the 140Ba fission 

yield. 

The fission product inventory analysis is performed for the pressure 

celQ and the calorimeter with identical fuel-counter distance. 

III.5.2 Gamma Self Shielding 

The gamma counting technique must take into account that the material 

distribution between the gamma source (fuel) and the counter is not 

identical for the case of pressure cell and calorimeter. This gives 

rise to different gamma self shielding in the two cells which was 

accounted for by two measures: 

1. Addition of compensating shims to the more transparent 

calorimeter (2 mm Zr and 14.6 mm Al). These shims balance 

the Zr crucible and the thick aluminium base of the pressure 

cell. Counting direction is through the base of the calorimeter 

and pressure cell (Fig. III.9). 
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2. An analytieal eorreetion of remaining small differenees in 

gamma absorption, e.g. from the different fuel geometries 

in both eells, was performed using the Monte Carlo photon 

transport eode PABST /III.7/. 

The PABST eode (Photon Absorption Effieieney Study) ealeulates 

the uneollided flux at a point due to an isotropie volumetrie 

photon souree. The eombinatorial geometry paekage from the MORSE 

eode is used to model the problern in three dimensions. Gamma-ray 

eross seetions from the QAD-CG eode are used in the PABST eode. 

The PABST eode randomly ehooses a start loeation from a uniform 

Volumetrie souree region defined by two eoaxial eylinders (axis 

parallel to z-axis). The deteetor loeation is either a point de­

teetor or an area deteetor, in whieh ease the deteetor point is 

randomly ehoosen on the deteetor disk (Figure III.9). The eombina­

torial geornetry package from the MORSE eode ealeulates the nurnber 

of mean free paths frorn the start loeation to the deteetor loeation. 

X-ray photographs of irradiated pressure and ealorimeter eells 

always showed that the initially powdered fuel eoated the erueible 

walls as thin dense uniform layer at frozen fuel. Therefore the 

fuel region was modelled as a layer of 100% dense uo
2 

on the inter­

nal erueible walls. Typieal layer thiekness was .43 mm on the 

pressure eell walls and .17 mm on the ealorimeter walls. 

Figure III.10 summarizes the main PABST results for 

a) a plain ealorimeter without additional shims, 

b) a ealorimeter with shims (as shown in the left part of Fig. III.9) 

and the hexagonal hole in the ealorimeter seal filled with a 

Zr plug, and finally 

c) a plain pressure eell, as shown in the right part of Fig. III.9. 

For a given gamma flux from the fuel region, about 30% more gammas 

reaeh the deteetor in the ease of the unshielded ealorimeter than 

in the ease of pressure eell. When shims are added to the ealorimeter, 
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such that the thickness of Zr and Al layers in both arrangements 

are identical and the hole in the calorimeter seal is plugged, 

the calculated detector count rates become very similar. The still 

slightly lower transparency of the pressure cell is due to the 

thicker fuel crust and the stainless steel set screw, which has no 

Counterpart in the calorimeter. Averaged over the active detector 

area, which ranges from 5.5 to 26.25 mm radius, the ratio of the 

gamma fluxes is .989. This factor was used to correct the ratio of 

fissions deduced from the above described fission product inventory 

analysis. 

III.5.3 Uncertainties In The Ratio of Fissions 

In the determination of the ratio of fissions, a number of uncer­

tainties normally associated with the determination of absolute 

fission numbers do cancel, e.g. 

- the absolute detector efficiency for 1.6 MeV photons, 

- the decay probability of 140La for the 1.6 MeV decay path, and 

- the cumulative fission yield for 140Ba. 

The remaining dominant uncertainty in the ratio of fissions stems 

from the counters~atistics. With one exception (EEOS-09) the 

statistical counting uncertainty was between .8 and 1 .2%. 
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FIGURE III.9 5et-up for Gamma Counting of Irradiated Calori­

meter ( left) and Pressure Cell (right). The Zr 

and Al shims in front of the calorimeter compensate 

the Zr crucible and thick aluminium base of the 

pressure cell. 
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0 active detector area so radius [mm] 

FIGURE III.1D Calculated Gamma Flux at the Detector using the Monte 

Carlo Gamma Transport Code PABST. The plain calorimeter 

transmitts significantly more gammas than the plain 

pressure cell.The calorimeter modified with shims and 

sealhole plug(Fig.III.9 )yields a 1.1% higher count 

rate than the pressure cell.The measured ratio of fis­

sions using the set-up of Fig.III.9 was corrected by 

this 1.1%. 
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IV TEST PREPARATION 

IV.1 Cantamination Control 

It has become clear from other in-pile experiments (e.g. the 

VIPER tests) that measured fuel or fission product pressures 

can be totally masked by contaminations. (Any substance giving 

rise to an additional non-fuel pressure during the experiment 

must be considered a contaminant) . The control of contamination 

is therefore a necessary prerequisite for vapor pressure measure­

ments on nuclear fuels. 

For the design of a material cleaning and handling procedure, 

various aspects of the initially rather obscure phenomenon of 

"contamination" were investigated in detail /IV.1/. The following 

findings are important for the control of contamination in EEOS 

experiments: 

Only a few 10-S g of volatile materials are tolerable in the 

present EEOS experiment design. 

- The dominant transfer mechanisms for contaminant substances are 

direct contact, physical absorption of gases or vapors, and 

deposition of aerosols from the ambient atmosphere. 

- Direct contact contamination mainly results from a variety of 

human contaminations, e.g. a single fingerprint can transfer 

10-4 g of volatile materials. 

- Important for contamination by physisorbtion are those molecules 

which have a high heat of physisorption and whose critical tempera­

ture is above 300 K, because these molecules are capable of multi­

layer adsorption during the experiment preparation. Most important 

are water and polar hydrocarbons which can have relatively high 

abundances in laoo'rat_ary air. 

- The exposure of surfaces to normal laboratory air results in de­

position of solid or liquid aerosols due to sedimentation 'and 

movement of the suspending atmosphere itself. Liquid aerosols 

spread into thin films spontaneously and solid aerosols can be 

bound wi th forces which are orders of magni tude greater than the 

corresponding gravitational force on the aerosol. 
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Based on these findings appropriate cleaning procedures and 

facilities were designed for the EEOS experiments. 

IV.2 Glove Box Facility 

An ultra clean Glove Box Facility was designed, built, and used 

for assembly of the EEOS test packages. The facility consists 

of two main subsystems: the glove box and the attached ultra-

high vacuum (UHV) system. Figure IV.1 depicts the outlay of the 

glove box. The components in the lower left serve to maintain a 

high-purity argon atmosphere within the glove box. Water and oxygen 

partial pressures are maintained at a few ppm. The other components 

are used for: 

evacuating the pass-through; running a particulate vacuum cleaner 

in the box (parts in lower right of Figure) 

- filling and pressure testing the inner containment canister with 

helium (parts in upper right of Figure) , 

- evacuating and filling the ultra-violet-light cleaning chamber 

(top of Figure), and 

- bleeding gases into the UHV system (left middle part of Figure) 

The UV-cleaning chamber allows cleaning of cell parts from physically 

absorbed hydrocarbon contamination. 

Figure IV.2 shows the UHV-system, which is designed to allow 

- bakeout of the open pressure cell to remove residual water, 

- sealing of the pressure cell in situ, 

- evacuation and sealing of the calorimeter, 

- analysis of atmospheres during bakeout and 

- analysis of post-test atmospheres in the pressure cells. 
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The attached mass spectrometer is an important tool for the 

contamination control in the EEOS experiments. The system has 

been automated to provide computerized control of the mass 

analyzer and reduction of the measured ion intensities to absolute 

partial pressures. 

Important design aspects of the system are: 

oil free pumping by using a combination of absorption and ion 

pumps, 

reliable operation since there is :aomechanical wear, 

- no exhaust during operation, and 

- safe against loss of power. 

The system was designed to allow als6. irradiated fuel work. 

IV.3 Preparation Routes 

IV.3.1 Pressure Cell And Calorimeter Components 

The pressure cell components are all fabricated from metals, 

the parts must first be cleaned and then processed under con­

trolled conditions. 

Table IV.1 shows anticipated contamination substances tagether 

with the cleaning steps used for their removal. Cleaning is de­

signed to take place in three different environments with in­

creasing degree of cleanlines. Thus contamination from intermediate 

processing steps or from previous insufficient cleaning can be 

cornpensated for at the next level of cleaning. Because physically 

adsorbed multilayers of water and volatile hydrocarbons are expected 

to be major causes for contamination, the two last cleaning steps 

ernphasize removal of these molecules. 



Table IV.1: Summary of Cleaning Steps for EEOS Pressure Cell Components 

Centamination Source and 
Expected Centaminations 

1. Contact contamination: 

class 

- gross hydrocarbons A 
- inorganic salts B 
- particulates C 

2. Airborne contamination: 
- particulates D 
- water E 
- film hydrocarbons F 

Primary Cleaning 

Mechanical cleaning 
in water-ethanol, 
affected class: B,C 

Ultrasonic cleaning 
in triclorethylene, 
affected: A,F 

Ultrasonic cleaning 
in water-ethanol, 
affected: B,C,D 

UV-ozone cleaning 
affected: A,F 

Secondary Cleaning 
( combined wi th 
storage) 

UV-ozone cleaning 
supported by active 
adsorbents for water 
and hydrocarbons 

affected contami­
nants: E,F 

Final Cleaning 

heating in UHV­
system to about 
500 K 

affected conta- : 
minant : E 

+>­
\..0 
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After primary and secondary cleaning of the individual cell 

components, the top and bottom halves of the EEOS-cells were 

assembled in the glove box described above. The preassmebled 

cell was then stored in the UV-ozone box, which is located within 

the glove box. Eventual hydrocarbon contamination from preassembly 

should be removed by the UV-ozone cleaning process which was active 

during storage. The preassembled cell was only removed from the 

storage environment shortly before fuel loading. 

Although the pressure build-up from contaminants does not adversely 

affect the calorimeter performance, the calorimeter parts were 

cleaned the same way as the pressure cell components, in order 

to avoid system and cross-contaminations. 

IV.3.2 Fuel 

While the pressure cell components are significantly contaminated 

in the as-received state and must be cleaned to the desired clean­

liness level, the fuel must be kept in its as-received state 

throughout the processing. Care was taken to 

avoid contact contamination during handling by using only tools 

with clean hard surfaces like glass, metals or ceramics, 

- avoid contamination from working atmospheres (physisorption, 

particulates) by keeping water and hydrocarbon vapor concentra­

tions below 10 ppm in the glove box atmosphere. 

Any water vapor that may have been adsorbed on the fuel powder 

nevertheless, should probably have been released in the final 

vacuum bakeout of the loaded pressure cell. 

The ultra-pure uo
2 

was already received in the powdered state, 

the pellets of reactor grade uo 2 and (U,Pu)o2 were crushed with 

a stainless steel pestel and mostar under high purity argon. 
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IV.4 Fuel Characterization 

The experiments described in this report utilized 

1. ultra pure oo2 powder in experiments EEOS-04 and 05, 

2. reactor grade 00 2 in experiments EEOS-06 and 07, and 

3. reactor grade (O,Pu)o
2 

in experiments EEOS-08 and 09. 

The ultra-pure 002 powder was specially fabricated at Los Alamos 

National Labaratory (LANL) to be as free as possible of impurities. 

Table IV.2 lists the most important impurity levels as determined 

at LANL and other relevant fuel specifications. 

Immediately after fabrication the oo
2 

was sealed under high-purity 

argon in a thoroughly cleaned stainless steel container and trans­

ferred into the clean glovebox at SNL, described above. 

Table IV.2 Specifications of High Purity Oranium Dioxide Powder 

0/0 ratio 2.01 + .005 Impurity contents: 
Mg < 10 ppm 

0-234 . 11 atom % Si 1 5 ppm 
0-235 15.00 atom % V <25 ppm 
0-236 . 1 3 atom % Fe <15 ppm 
0-238 84.76 atom $1-

0 Cu 1 3 ppm 

10-6 
Zn <25 ppm 

mean powder 4 . m Sr <40 ppm 
particle size Mo <25 ppm 

Bi 1 5 ppm 
H20 100+50 ppm 
c 5+"2 ppm 
Cl <5 ppm 
F 8+2 ppm 
p <5 ppm 
s 20+2 ppm 
N 19+"2 ppm 
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The reactor grade uo 2 stems from fuel pins originally fabricated 

for Sandia's Prompt Burst Energetics (PBE) program by LANL. A 

spare pin from that program was disassembled and pellets used for 

experiments EEOS-06 and 07. The fuel specifications are summarized 

in Table IV.3 

The reactor grade mixed-oxide pellets were also fabricated at 

LANL following processes used for previous reactor test fuel 

fabrication. The results of various fuel examinations are presented 

in Table IV. 4. 

Both reactor grade fuel types had a relatively high oxygen-to­

metal ratio. However, thermodynamic calculations show that the 

total pressure in equilibrium with uo 2+x or (U,Pu)o2+x is in­

sensitive to changes of x at the very high temperatures probed 

in the EEOS experiments. This results from the fact that the 

oxygen potential of the condensed phase 6G02 (x,T) becomes 

rather independent of x at such high temperatures. All other 

thermodynamic quantities which influence equilibrium partial 

pressures (see e.g. Equations 15-17 in Ref. I.3) do not depend 

on the stoichiometry of the condensed oxide. 

Table IV.3 Specifications of Reactor Grade Uranium Dioxide Pellets 

0/U ratio 2.08 Impurity contents: 
Mg 3 ppm 

U-234 .093 atom % Si 2 ppm 
U-235 14.23 atom % V < 30 ppm 
U-236 .086 atom % Fe 2 ppm 
U-238 85.59 atom % Cu < 1 ppm 

Zn < 30 ppm 
Sr < 45 ppm 
Mo < 30 ppm 
Bi ppm 
H20 ppm 
c ppm 
Cl ppm 
F ppm 
p <115 ppm 
s ppm 
N ppm 
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Table IV. 4 Specifications of Reactor Grade (U,Pu)o2 Pellets 

0/(U+Pu) 2.09 Impurity contents: 
Mg < 3 ppm 

Pu-238 .075 atom % Si 25 ppm 
Pu-239 87.00 atom % V < 5 ppm 
Pu-240 11.55 atom % Fe 95 ppm 
Pu-241 1 . 1 6 atom % Cu 25 ppm 
Pu-242 . 211 atom % Zn < 10 ppm 
Pu/ (U+Pu) 26,85 weight % Sr < 5 ppm 

Mo < 10 ppm 
Bi < 1 ppm 
H20 370 ppm 
c 170 ppm 
Cl 5 ppm 
F < 5 ppm 
p 6 ppm 
s 770 ppm 
N 5 ppm 



trJ 
:><: 
'ü 
(D 

t-1 
I-'· 
8 
(D 
!::) 
rt 

trJ 
..0 
~ 
I-'· 
'ü 
8 
(D 
!::) 
rt 

'l 
'-1 
GJ 
c 
::0 
fTl 

H 
c:::: . 
---" 

GJ 
f-' 
0 
c 
m 

(IJ 

0 
X 

-!) 

0 
t-j 

c 
< 
I 

() 
f-' 
(D 

PJ 
!::) 
I-'· 
!::) 

t.O 

PJ 
!::) 
Q_, 

:r:; 
Ul 
Ul 
(D 

fr 
f-' 
'< 
0 
1-h 

trJ 
trJ 
0 
(/) 

IN2SUPPLY~ 

INTO 
UHV 

SYSTEM 

MAIN Ar 
SUPPlY 

Q PASS THROUGH TO 
UHV SYSTEM 

HOT EXHAUST 

OVERPRESSURE 
SENSOR 

0-35 0-200 

I I 1><1 I (TC 
psi psi 

1------ He SUPPL Y 

r---i><:l--E------------------ 02 SUPPlY 

psi 

uv 
CHAMBER 

HOT EXHAUST 

MAGNEHEUC 

NOMENCLA TURE 

t><l MANUAl VACUUM VALVE 

llo-olll MANUAL HIGH PRESS. VALVE 

~ filEEDlE V Al VE 

~-·· SOlENOID VALVE 

N CHECK VALVE 

DSJ OVERPRESSURE REliEF VALVE 

~ PARTICULA TE FILTER 

0 MECHANICAL PRESS. GAUGE 

@ THERMOCOUPLE GAUGE 

@ ION GAUGE 

(]1 
.f:>. 



C/1 
(0 
PJ 
I-' 
f-'­
~ 
~ 

1-Ij 
H 
Gl 
c 
§:1 
H 
<: . 
N 

c 
:r: 
c:::: 
I 

Ul 
'< 
Ul 
c-t-

0 m 
Hi 3 

t-lj --!) 

1-i 0 
(0 1-j 

I 
PJ tJj 
Ul PJ 
Ul X' 
(0 (0 

5- g 
I-' rt 
(0 -
0, 

t:Ij 
t-lj < r; PJ 
(0 (} 

Ul ~ 
Ul PJ 
~ rt 
r; f-'-
(0 0 

~ 
0 
(0 PJ 
I-' ~ 
I-' 0, 

PJ f-'· 
~ ~ 
Po 

Ul 
() f-'-
PJ rt 
I-' ~ 
0 
r; 
f-'· 
8 
(0 

rt 
(0 

1-i 

N 2 SUPPL Y -{><:l-----1 

BAKE OUT 
TC 

CONTROL 

HOT EXHAUST 

0 ... 800 TORR 
10-1 ... 10-5 

BAKE OUT I I i I I 
HEATER 1 I I I ~ 

COILS 

ION 
PUMPS 

UTIMASS 
SPECTROMETER 

I?OPPET 
VALVE 

ROTARY PUSH-PUll 
MANIPULATOR WRENCH 

PASS THROUGH Q 
INTO 

GlOVE BOX 

TEST GASES FOR 
UTI CAliBRA TION 

REFill UNE 
FROM GLOVE BOX 

(J1 
(J1 



- 56 -

V. ANALYSIS PROGRAMS 

This ehapter deseribes the analysis of the measured raw data whieh 

eonsist of pressure transdueer voltages, fission ehamber eurrents 

and thermoeouple voltages. 

The eode ealled REAP (Reaetor Energy Analysis Program) performs 

three main tasks (see Fig. II.6): 

1. evaluation of the total net enthalpy deposition into the 

ealorimeter fuel, 

2. derivation of the time dependent enthalpy in the pressure 

eell fuel, and 

3. ealeulation of the time dependent net pressure. 

V.1 Energy Equation 

The energy balanee for a eontrol volume is expressed for the 

present eonditions as 

8T 
TI= 

where 

T 

t 

c p 
p 

q 
X 

V 

h 

k 

= 
= 
= 
= 
= 
= 
= 
= 

8 ( vh ) + 8 ( k . 8 T )] 
P 8x 8x 8x (V. 1 ) 

temperature of control volume ( K) 

time ( s) 

speeifie heat of fuel (J/kgK) 

fuel density ( kg/m3 ) 

volumetrie energy deposition rate (W/m3 ) 

eoordinate (m) 

fuel veloeity (m/s) 

speeifie enthalpy of fuel (J/kg) 

thermaleonduetivity (W/mK) 

The first term in Eq. V.1 describes volumetriepower generation 

in the eontrol volume due to fission, gamma and beta heating. 

The second term deseribes energy transport by flowing liquid fuel, 
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which is only included in the pressure cell model, not in the 

calorimeter model. The third term describes heat conduction into 

the control volume. Terms for kinetic energy, potential energy 

and thermal expansion of fuel are neglected. Equation V.1 is 

solved in the calorimeter model and the pressure cell model. 

V.2 Calorimeter Model 

The calorimeter model uses Eq. V.1 to deduce the fission energy 

deposition into the fuel sample from the measured calorimeter 

temperature as function of time. Table V.1 summarizes the energy 

transfer terms Q~ which are modeled in REAP for the various calori-
-l 

meter components and which enter on the right side of Eq. V.1. 

In Q~, the superscript j denotes the calorimeter component (fuel, 
l 

calorimeter body, etc.) and the subscript i the energy transfer 

mode (fission heating, conduction, etc.). The modeling equations 

for the individual energy transfer terms Q~ are given in the 
l 

following sections. 

V.2.1 Fission Heating 

f 
The fission power of the calorimeter fuel sample, Qfis is written 

as: 

where 

f 
Qf. (t) 

lS 
(V. 2) 

i = fission chamber current measured during the ACRR 

pulse (A) 

c = neutranie coupling factor of calorimeter fuel (kW/kg A) 
f m = mass of calorimeter fuel (kg) 

rrhe coupling factor c is ini tially not known, i t represents the 

fundamental constant describing fuel fission heating. Its value 

is determined from a calculated fit of the measured calorimeter 

temperatures. 



Energy Transfer Q~ I Model Equation 
l 

_;Calorimeter Fission Solid 

I 
Gamma Beta Gaseous 

Component Material Heating Heating Heating Conduction Conduct. Radiation 

Fuel ~ uo2 , (U ,Pu) o2 
f Qf j 

Qfis y Qsc 

Eq. V. 2 Eq. V. 4 Eq. V. 8 

Calorimeter Qcb Qf j j j 

Body Al+Zr y s Qsc Qgc Qrad 

Eq. V. 3 Eq. V.7 Eq. V. 8 Eq. V. 9 Eq. V. 10 

Support Machinable Qrod Qj 
Rod Ce rarnie y SC 

Eq. V. 5 Eq. V. 8 

Calorimeter ' j Case Al Qcs j j 
y Qsc Qgc Qrad 

I Eq. V. 6 Eq. V. 8 Eq. V. 9 Eq. V. 10 

Table V.1 Summary of Energy Transfer Processes Ql Model.led in the Calorimeter Calculations. 

I 

! 

Vl 
CD 
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V.2.2 Gamma Heating 

All calorirneter cornponents are heated by the intense garnma 

radiation during an ACRR pulse. Even with the lead shield 

(Fig, II.3) typical garnma heating arnounted to 30 to 40 K. 

The garnrna heating was rneasured for each EEOS experirnent by 

irradiating an ernpty(not fueled)calorirneter. 

V.2.2.1 Calorirneter Body 

The garnrna heating power of the calorirneter body, Qc:, in ACRR 

shot K is calculated frorn the relation 

where 

(V. 3) 

E~~ = garnma heating of the ernpty calorimeter body frorn 

prompt core garnmas as rneasured in the background shot, 

(J) 

iK(t)= fission charnber current rneasured in shot K (A) 

IK = total fission charnber charge in shot K (As) 

= 
CQ 

J iK(t)dt 
0 

IBG = fission charnber charge in the background shot (As) 
<X) 

= I 
0 

r(t) = average garnma decay power of core fission products 

(MeV/s/fission) 

G = average garnma decay energy of core fission products 
00 

= f r(t)dt = 6 ±1 MeV/fission 
0 

m~b = rnass of calorirneter body in shot j (kg) 
J 
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The first term on the right side of Eq. V.3 represents the prompt 

fission gammas from the core. The second term describes the delayed 

gamma heating from the decay of core fission products. The formula­

tion in Eq. V.3 uses the fact that prompt and delayed decay energies 

are about equal (both 6 + 1 MeV/fission) and it also assumes that 

all fissions occur at the time of the prompt pulse. 

V.2.2.2 Ca~orimeter fuel 

The gamma heating of calorimeter fuel cannot be measured direct!Ly 

because of the simultaneaus fission energy release in the fuel 

sample. The gamma heating of uo
2 

was therefore determined indirectly 

in one background shot, using lead as a simulant for fuel. Camparisan 

of the calorimeter temperature rise with and without lead allows the 

mean energy of the incident gamma flux to be determined from the 

known gamma energy absorption coefficients of lead and aluminium. 

Knowing this mean gamma energy (1.66 MeV), the gamma heating power 

of uo2 can be evaluated from the measured gamma heating of aluminum, 

0 cb. 
y • 

Q~ (t) 

where 

f 
= 0 cb (t). m 

y cb 
m 

uo
2 

()J/p)1.66 

Al 
()J/p)1.66 

Q~b = gamma heating of calorimeter body (Eq. V.3) (W) 

f cb 
m ,m = mass of calorimeter fuel and calorimeter body, 

respectively, (kg) 

energy absorption coefficient of substance i for 
2 1.66 MeV gammas (m /kg) (taken from literature) 

(V. 4) 
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For the ratio gamma absorbtion coefficients in Eq. V.4 a value 

of 1.351 was used. 

V.2.2.3 Ceramic support rod 

The gamma heating of the ceramic support rod was calculated 

from the measured gamma heating of the calorimeter body, Q~b, 
using a relation analogeaus to Eq. V.4: 

0 cb(t) 
y 

rod m . -~. 
rod 

(~/p) 1.66 

cb 
(~/p) 1.66 

(V. 5) 
m 

Since the atomic numbers of the ceramic rod constituents (O,Si,Mg, 

Al) are all close to that of aluminum, which is the main body 

material, the ratio of gamma mass absorption coefficients in Eq. V.5 

was set to 1.0. 

V.2.2.4 Calorimeter case 

The gamma heating of the calorimeter case, which is fabricated from 

aluminum, was evaluated from 

where 

m es 
== 

cb m = 
<Pcs/<Pcb = 

0 cs(t) 
y 

mass of 

= 0 cb ( t) 
y 

mcs C 
mcb ' ~cb 

calorimeter case (kg) 

mass of calorimeter body, (kg) 

ratio of gamma flux incident on 

that of calorimeter body 

(V. 6) 

calorimeter case to 
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Using the known gamma attenuation coefficient for 1.66 MeV in 

Al the gamma flux ratiowas estimated to 1 .02. 

V.2.3 Beta Heating 

An additional delayed energy deposition into the calorimeter 

comes from beta decay of the fission products in the calorirncter 

fuel. The rate of energy deposition from beta decays is 

where 

f 
Ef. lS 

efis · Pabs (V. 7) 

f 
Ef. =total fission energy deposited in the calorimeter 

lS 
fuel (J) 

Jco Qf, (t) dt 
flS 

0 

~ energy release per fission = 167 MeV/fission 

= beta decay power per fission (MeV/s/fission) 

= absorption probability for beta particles in the 

ca lor imete r body. · 

The fission heating power of the calorirneter fuel sample Qff' is 
lS 

given in Eq. V.2. The beta decay power was taken from the literature. 

The absorption probability for electrons was set to 1.00. 

V.2.4 Solid Conduction 

REAP treats one-dimensional solid conduction from fuel to calorirneter 

case (via calorimeter body and ceramic rod) , and from the calorimeter 

body to the calorimeter case via therrnocouples. For a given time step, 

conduction is considered to be in steady state with the following 

energy transport rate: 



where 

L'IT -L:R. 
i l 
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with R. 
l 

= 
L, 

l 

k.A. 
l l 

L'IT = temperature difference between node points (K) 

(V. 8) 

L. = conduction length for material layer i between the node 
l 

points (m) 

k. = thermal conductivity of material layer i (W/m•K) 
l 

Ai = conduction cross section of material layer i (m2 ) 

V.2.5 Gaseaus Conduction 

The calorimeter is evacuated during test assembly and therefore 

the heat losses due to gaseous conduction from the calorimeter body 

to the calorimeter case should be negli~ible compared to solid con­

duction lasses. However, since between evacuation and actual test 

generally several days passed, if could not always be avoided that 

minor traces of helium leaked from the inner container (filled 

with 1 bar He) into the calorimeter. Under these circumstances gase­

aus conduction (and possibly convection) became a noticable heat 

lass path. These lasses were modeled using the relation 

where 

a = 
h = gc 

= 
L'IT = 

a·h ·L'IT(t) gc 

empirical conductivity factor 

heat transfer coefficient of helium (W/K) 

kHe"A/L 

(V. 9) 

temperature difference between heated calorimeter 

body and cold calorimeter case (K) 
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The unknown conductivity factor a is evaluated from the measured 

cooling curve of the calorimeter body. a turned out to be in the 

range of .1 to .5 indicating that the helium pressure in the 

calorimeter vessel was of the order of several Pa. 

V.2.6 Radiation Heat Transfer 

The net radiative energy exchange between two opaque surfaces of 

different temperatures T
1 

and T2 is given by: 

where 

Q = A . ::cad 

A = area of radiation exchange (m2 ) 

o = Stefan-Boltzmann constant 

E wavelength-independent (gray) emissivity of 

the emitting surface 

(V.10) 

Equation V.10 was used with EA
1

=0.1 tQ treat radiative heat 

transfer between the calorimeter body and the calorimeter case. 

V.2.7 Summary of Calorimeter Energy Evaluation 

The equations presented above for the energy transfer modes Q~ 
l 

contain two unknowns, the neutranie coupling factor c in Eq. V.2, 

and the effective heat transfer factor a in Eq.V.9. Both can be 

evaluated from the measured cooling curve of the calorimeter be­

cause the coupling factor mainly determines the vertical position 

of the cooling curve and the heat transfer ~actor determines 

the slope of the curve. REAP uses a least squares method to find 

that combination of coupling factor and heat transfer factor, 

which produces optimum agreement between measured and calculated 

cooling curves. The method yields a unique solution for c apd a 
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because neutranie energy deposition and heat lasses are seperated 

in time. There is only a small heat loss during the neutranie heating 

and no neutranie heating late in time when heat lasses become 

significant. 

The relative importance of the energy transfer modes discussed 

above, is illustrated in Table V.2 which shows calculated tempera­

ture changes of the calorimeter body due to each of the energy 

transfer modes modeled. 

Table V.2 Temperature Change of the Calorimeter Body Due to 

Various Energy Transfer Modes (REAP calculation for 

EEOS-07, time is 10 s after reactor pulse) 

Energy Transfer Mode Temperature Change Percent of 
at 10 s (K) Fission Heating 

Fission heating 304.0 100.0 

Gamma heating 31 .0 10.2 

Beta heating 6.5 2. 1 

Solid conduction -13.8 -4.5 

Gaseous conduction -25.0 -8.2 

Radiation -0.5 - . 16 

Table V.2 demonstrates that the measured calorimeter response is 

clearly dominated by fission heating of the fuel. Gamma heating 

and gaseaus conduction are both smaller by about one order of 

magni tude. Beta heating and solid conduction a:rrtount to a few 

percent of the fission heating, radiation heat transfer is insigni­

ficant. 

V.3 Pressure Cell ~odel 

The pressure cell model solves the energy balance (Eq.V.1 ) for 

the fuel and for the adjacent zirconium crucible. The energy 

transfer processes included in the modeling are summarized in 

':2able V. 3. 
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Table V.3 Summary of Energy Transfer Processes Modeled in The 

Pressure Cell Calculations 

Pressure Cell Material Fission Gamma Conduction 
Component Heating Heating 

Fuel uo'l 
f Qf Qf 0 fis ""' y c 

(U,Pu)o2 
Eq. V. 12 Eq. V. 13 Eq. V. 8 

Crucible Zr 0
cr 
y 0

cr 
c 

i Eq. V. 1 4 Eq. v. 8 

V.3.1 Fission Heating 

Convec-. · 

tion 

Qf 
conv 

Eq. V. 
17 

The fission power released at time t in a fuel volume element dV at 
. -+ locatlon r, having the fuel density p can in general be expressed as: 

-+ cal 
qf. (r,t)=hf. 

f 
m pc 

pc -+ -+ c (r,t)·i(t)·p(r,t) 
lS lS CO 

(Term: I 

where: 

II III 

J 
-+ 

t=O r 

IV 

= fission power per unit volume (W/m
3

) 

= total specific fission energy deposition in the 

calorimeter fuel (J/kg), as calculated from the 

integration of Eq. V.2: 

f1 J Qff' (t)dt 
m lS 

cal 

n /n = ratio of number of fissions in the pressure cell 
pc c 

fuel to that in the calorimeter fuel as measured 

with fission product inventory analysis 

(V.11) 
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f 
m = total mass of pressure cell fuel sample (kg) pc 

cpc = space and time dependent neutranie coupling factor of 

pressure cell fuel (W/kgA) 

i = time dependent current of fission chamber (A) , is a 

measure for the reactor power 

There are four terms on the right hand side of Eq. V.11. 

The products of these terms have the following physical meaning: 

I x II = total specific fission energy deposition in the 

pressure cell fuel (J/kg) , as deduced from the 

calorimeter measurement (Term I) and the fission 

product analysis (term II) 

I x II x III = total absolute fission energy deposition in the 

pressure cell fuel sample (J) 

IV = fission power density in dV (W/m3 )/ total absolut 

fission energy deposition in the pressure cell 

fuel (J) . 

I x II x III x IV = fission power density in volume element dV 

(W/m3 ) 

For the energy analysis of the pressure cell fuel it was assumed 
+ 

that the fuel density p(r,t) is constant in time and space and that 

its value is equal to the initial fuel smear density in the fuel 

crucible (about 5300 kg/m3 ). This important assumption is based on 

a number of experimental and theoretical informations, which uni­

quely show that the liquid fuel is violently agitated by existing 

pressure gradients and should therefore be distributed rather 

homogeneously throughout the EEOS crucible volume during energy 

deposition times. An experimental indication for this is e.g. the 

fact that after EEOS experiments the fuel was always coating the 

crucible walls as a high density layer of uniform thickness. Obvious­

ly there was no gravity driven draining of liquid fuel. The most 

probable way for the formation of such a uniform fuel crust appears 

to be the slow freezing of a contineously moving vapor/liquid 

mixture. 
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It also should be noted that in the EEOS experiments, the pressure 

cell fuel maintained the initial homogeneaus powder density for 

roughly 50% of the total experiment time, until the melt temperature 

was reached. 

A constant fuel density implies that the coupling factor c pc in 

Eq. V.11 is independent of time, it therefore suffices to estimate 

its space dependence. From the PATH results shown in Fig. III.7 a 

volumetric average was calculated and used as the one-dimensional 

coupling factorc pc(x}. With constant fuel density and time indepen­

dent coupling factor the absolut fission energy deposition rate 

into the volume element dV of area A and thickness dx becomes 

f 
0 tis (x,t) = 

= 

qf. (x,t) ·dV 
lS 

hcal 
n 
~ . 

fis n c 
m 

(Watt) 

f pc 
dx i t c X 

pc X 00 

e 
(V.12) 

J cpc(x)dx J i(t)dt 

x=O 0 

Eq. V.12 is used in REAP to evaluate the fission energy deposition 

into pressure cell fuel nodes. 

V.3.2 Gamma Heating 

The gamma heating of the pressure cell fuel is very close to that 

of the calorimeter fuel because gamma sbielding from the 

pressure cell crucible and from the calorimeter body are 

a) small in magnitude (a few percent of the incident gamma flux) and 

b) canceling each other to a large degree. 
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The gamma heating of a pressure cell fuel node I is therefore 

evaluated by scaling Eq. V.4 with the ratio of fuel masses: 

where 

I m pc 
-r 
m 

Qf(t) = gamma heating of calorimeter fuel as given 
'( 

in Eq. V.4, (W) 

= mass of pressure cell fuel node I (kg) 

f 
m = total mass of calorimeter fuel (kg) 

(V.13) 

The gamma heating of the zircalloy crucible node K is calculated 

from the measured gu.mma hcating of the calorimeter body using 

an analogeaus equation: 

where 

Qcr,K(t) 
'( 

= Qcb ( t) 
'( 

K 
m pc 

· cb 
m 

Q0 b(t) = gamma heating of calorimeter body (W) 
'( 

K m = mass of crucible node K (kg) pc 

cb m = mass of calorimeter body (kg) 

V.3.3 Conduction 

Conduction in the pressure cell fuel and crucible is modeled 

(V.14) 

with the equation given for the calorimeter calculation (Eq. V.8). 
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V.3.4 Convection 

As already discussed in Section V.3.1 the liquid pressure cell 

fuel moves within the crucible volume during the reactor pulse. 

Therefore a term for convective energy transport must be included 
d in the modeling, which is expressed in Eq. V.1 as p 3X (vh). 

The velocity v represents a mean fuel velocity component vertical 

to the crucible wall. It is assumed that each liquid fuel node 

exchanges energy with the neighboring nodes by exchanging liquid 

with the velocity v. 

The effective velocity v was estimated in two steps: 

1 • The one-dimensional momentum equation for incompressible flow 

in the form of Eq. V.15 was solved for the simple case of a 

uniform but time dependent pressure gradient Clp(t)/Clx in the 

fuel region. 

dV dV 1 
Clt + V dX + p 

Clp 1 
dX ( t) - p 

where 

V 

X 

= fuel velocity (m/s) 

= coordinate (m) 

= density (kg/m3
) 

= effective fuel viscosity (Pa.s) 

(V. 15) 

The result for v , the maximum fuel velocity in the center of 
0 

the fuel region is: 

dv 
0 

dt 
=· 8~eff . v + Q . ~(t) 

p L2 o p Clx 
(V.16) 
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L = thickness of fuel region (in 1-dim. model), 

C = fit parameter, introduced to describe slip between 

driving vapor pressure and liquid fuel empirically. 

The first term in Eq. V.16 describes the slowing down of the fuel 

movement due to friction within the fuel and with the crucible walls. 

The second term represents fuel acceleration due to pressure gradients 

in the fuel. The pressure gradient can be calculated for each time 

of the experiment from the known energy gradient in the fuel and the 

iteratively determined p(h) relation. 

2. Eq. V.16 was used as theoretical basis for fitting the pressure 

decay measured in the experiment. The free fit parameters ~eff 

and C are evaluated from the agreement of measured and calculated 

pressure decay, as shown e.g. in Fig. VI.13. 

The described semi-empirical approach for the evaluation of conductive 

heat losses relies on the experimental fact that the backside of the 

pressure pulse is mainly determined by the convective heat losses. 

The two other terms in Eq. V.1, namely fission heating and conduction, 

are much smaller during these times. Fig. vr.15 shows e.g. that the 

prompt pulse heating is finished roughly at the time of peak pressure. 

In summary the model equation for the convective energy transport 

in the liquid fuel node I is 

f,I 't) (hi+1_hi)-(hi-hi-1) Q I = p A V conv' o 
(V.17) 

where 

p = fuel density (kgjm3 ) 

A = fuel node cross section (m2) 

V = effective 
0 

fuel velocity for convective energy 

transport (m/ s) , evaluated by integrating Eq. V. 16 

h j = specific enthalpy of fuel in node j (J/kg) 



The convective model was extended for description of the ex-

periments EEOS-08 and EEOS-09 in which some melting of the zircalloy 

walls occurreä. Due to the high coupling factor of the plutonium 

containing test sample, liquid fuel came into direct contact with 

the crucible walls. In the other experiments a fuel crust developed 

very shortly after the first fuel melting, shielding the walls against 

high heat fluxes. The heat of melting of Zr (266 kJ/kg) and its 

subsequent heating in a Zr/fuel mixture provides a fast acting and 

effective internal heat sink, because there is no need for trans­

porting energy out of the closed system. 

The heat loss from liquid fuel to solid Zr was described using an 

empirical Stagnation Heat Flux correlation for fluids impacting 

an ablating solid /V.1/. The conduction heat transfer to the molten 

Zr was estimated with an equation analogeous to Eq. V.8. 

V.S Error Assessment 

In the following error assessment it was assumed that the individual 

errors are statistically independent and that the standard deviations 

may therefore be added according to Eq. V.19. 

For many of the quantities i entering the error analysis, there 

was not enough statistically significant information to define a 

true standard deviation 0 .• In these cases the value used for 0. 
l l 

represents a rough estimate for the 70% confidence interval. 

V.5.1 Enthalpy Evaluation 

The enthalpy of the pressure cell fuel in a node at location x and 

at time t results practically completely from fission heating. 

Gamma heating during the prompt pulse is only about 1% of the 

fission heating and can therefore be neglected in the error assess­

ment. 



- 73 

The accumulated fission energy deposition into a pressure cell 

fuel node at location x and time t follows from Eq. V. 12: 

t 

n J i(t)dt 
cpc(x)dx pc hcal ~ f 0 (V.18) hf. (x,t) = . m 

lS fis n pc X CO 

where 

c e 
J J cpc(x)dx i(t)dt 

x=O 0 

A = B c D E F 

A total specific enthalpy content in pc fuel node at 

time t, (kJ/kg) 

B = total specific enthalpy of calorimeter fuel, (kJ/kg) 

C ratio of number of fissions induced in pressure cell fuel 

and calorimeter fuel, resp. 

D = total mass of pressure cell fuel, (kg) 

E ratio of fission energy deposition into pressure cell 

fuel at node x to that into total pressure cell fuel 

(fraction in space) 

F ratio of fission energy deposition delivered at time t 

to the total energy delivered by ACRR pulse (fraction 

in time) 

The standard deviation in A then follows from 

1/2 
(V.19) 

The individual standard deviations (s.d.) are as follows: 

1 • 
= 

0 
_92 

cp 

ft 2 2] 1/2 
~~) + (o~i) 

relative s.d. of the heat capacity of calorimeter body, 

made from aluminum = 1% 

relative s.d. of measured calorimeter temperature increase 



2 . 

3. 

0 c 
c 

0 
CO 

n 
CO 

0 ss 
f ss 

The 

was 

OD 
D = 
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1/2 

= relative s.d. in number of 1.6 MeVcounts n 
CO 

in fission product inventory analysis =1% 

7 51, 
• 0 

measured 

= relative s.d. of calculated gammaself shielding correction 

factor (value was .989) = .5% 

uncertainty in the total mass of the pressure cell fuel 

at the most 

1 51, • 0 

4. The relative coupling factor c pc (x) varied in the calculations 

from .982 at x=O to 1.025 at x=.8 nun. From the energy deposition 

studies described in Section III.4 these values may have un­

certainties of + .02, so that 

= 2% 

5. In the energy analysis it is assumed that the fission chamber 

current is proportional to the reactor power. There is no 

obvious reason for a deviation between actual reactor power 

and i(t) on the millisecond time scale, hence 

= 0. 

With these individual standard deviations the result for the enthalpy 

is 

= 2.60%. 
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To account somewhat for possible addional errors, e.g. from the 

1-dimensional modeling of (small) heat lasses, the total standard 

deviation in the enthalpy values was set to + 3%. 

In experiments EEOS-08 and 09 also some Zr melting was modeled. 

The uncertainty in the fuel enthalpy from this process was estimated 

to another + 3%, giving a total error of + 4.2%. 

This rather small value is only possible due to two quite precise 

measurements: that of the calorimeter temperature and that of the 

ratio of fissions in calorimeter and pressure cell. The other im­

portant fact keeping crA small, is the flat energy deposition pro­

file in the pc fuel sample. 

V.4.2 Pressure Evaluation 

The pressure transducers were calibrated with a hydraulic press 

by loading the transducer membrane via a simulant piston and an 

original aluminum adapter (see Fig. II.1) and measuring the output 

voltage. The p-V characteristic was reproducible within about 

+ .3MPa. 

During the EEOS tests it was realized that the particular position 

of the transducer cables within the 8 m deep ACRR central cavity, 

could cause a random zero shift in the transducer output, corresponding 

to about + .25 MPa. This effect is thought to be due to slight 

changes in the cable capacitance, which is sensed by the high frequency 

signal conditioning electronics. 

In the calculation of the net pressure, the time scale of the ex­

periment shot had to be corrected to that of the background shot, 

in order to perform the necessary substration. The uncertainty in 

the time scale adjustment may have caused addional errors in the 

net pressure of about +~1 MPa. 
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To account for other possible deviations between measured and 

actual pressure, a somewhat more conservative error bound of 

± .5 MPa was used in defining the error band in the final p-h 

curves (e.g Fig. VI.12). 
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VI. TEST RESULTS 

VI.1 Test Matrix 

The following tests were conducted within the EEOS program: 

two experiments using ultra pure uo2 powder, 

two experiments using powder prepared from reactor grade uo2 
pellets, and 

two experiments using powder from reactor grade (U,Pu)o2 pellets. 

Two tests of each type were performed to check the reproducibility 

of the results, The vapor pressure from ultra pure uo2 was thought 

to serve as a baseline against which the vapor pressure from other 

fuels could be compared. The reactor grade uo2 was investigated to 

see if the typical impurities which are present from the fabrication 

process in nuclear fuels would contribute noticeably to the vapor 

pressure of pure uo 2 . The two experiments on reactor-grade (U,Pu) 

mixed-oxide were intended to compare its saturation vapor pressure 

with that of reactor typical uo2 . If they were identical the much 

more extensive vapor pressure data basis of uo2 could be used for 

the mixed oxides also. 

VI.2 Discussion of Tests 

In this section examples of measured signals, results of data 

analysis, and individual events of the six EEOS experiments are 

discussed. 

VI.2.1 Experiment EEOS-04 

The fuel in EEOS-04 was ultrapure uo2 (see Section IV.4). Since 
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EEOS-04 was the first seoping experiment and in view of the large 

uneertainties in measured p-h-relations (see Fig. VII.4 ) a rela­

tively low energy input was ehoosen. 

In the baekground shot, the ealorimeter eontained a lead sample 

to measure the garnrna heating of fuel, whieh is very elose to that 

of lead. 

The ealorimeter temperatures measured in the baekground shot and 

the fueled experiment are shown in Fig.VI.1. The temperature rise 

in the baekground shot eonsists of the prompt garnrna heating at the 

time of the reaeto~ pulse (.3s) and the subsequent delayed gamma 

heating from deeaying eore fission produets. The eooling of the 

fueled ealorimeter was signifieantly larger than expeeted. It is 

probably due to helium gas ~~1ieh leaked from the inner eannister 

into the evaeuated ealorimeter ease. Eaeh point along the eurves 

marks the average temperature of the five thermoeouples at the re­

speetive time. 

The measured average temperature points are eompared to the ealeu­

lated temperature eurves in Fig, VI.2. The mean deviation of 

measured and ealeulated temperatures in the experiment shot is 

.74 K (t~4s), using 1.539.107 kW/kg A and .438 ior the neutranie 

eoupling faetor in Eq. V.2 and the eonduetivity faetor a in Eq. V.9, 

respeetively. 

The reaetor pulse was monitared with a fission ehamber in the 

ACRR eore. (A seeond fission eharnber was installed in the reaetor 

pool for redundaney.) The fission ehamber signalwas multiplexed 

and reeorded with different amplifier gains and sampling frequeneies. 

Fig. VI.3 shows the prompt reaetor pulse (low gain, 40 kHz) and 

Fig. VI.4 the pulse tail (high gain, .4 kHz). For the data analysis 

REAP eornbines both data sets into one file, eorreets for zero shifts 

and perform3 a smoothing proeedure. Fig. VI.S gives an example for 

the resulting fission eharnber signal. 
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The pressure signals of background and experiment shot (Fig. VI.6) 

are processed by adjusting both pulses to the same zero time, 

smoothing both pressure signals and calculating the difference, 

which gives the net pressure signal p(t) required for the data 

analysis (marked line in Fig. VI.6). In experiment EEOS-04 the 

pressure transducer was prestressed to 2 MPa by an unintended 

small mismatch in fabrication tolerances. The vapor pressurewas 

therefore only recorded after it exceeded 2 MPa and had separated 

the piston from the crucible. 

The measured pressure-enthalpy relation is depicted in Fig. V.7. 

Due to the relatively low energy input and the prestressed trans­

ducer, only the pressure range from about 2.5 to 8 MPa was covered 

in EEOS-04. The 1-o error limits are estimated to + 3% in enthalpy 

and .5 MPa in pressure, giving the shaded band in Fig. V.7. 

VI.2.2 Experiment EEOS-05 

The fuel in experiment EEOS-05 was again pure uo 2 to check reproduci­

bility of the EEOS-04 results. A larger reactor pulse was choosen to 

increase energy deposition and to cover a larger part of the satura­

tion vapor pressure curve. On the other hand the calorimeter was 

shielded with more cadmium than in EEOS-04 to avoid overpressurization 

of the calorirrteter body, therefore the calorimeter reached about the 

same temperature maximum as in EEOS-04 (Fig. VI.8). The measured 

average temperatures could be fitted by REAP calculations to within 

.53K (Fig. VI.9). The energy analysis yielded the following results 

for the calorimeter fuel sample (at 2 sec): 

fission energy deposition 

gamma heating 

beta heating 

2642.5 kJ/kg 

39.4 kJ/kg 

31.4 kJ/kg . 
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The second step in the data analysis is calculation of the space 

and time dependent enthalpy of the pressure cell fuel using the 

model described in Section V.3. Fig. VI.10 shows the results 

obtained for EEOS-05: 

- Heat losses from the solid powder (up.to times about .30865s) are 

very small. 

After fuel melting convection of liquid fuel noticeably increases 

the heat transfer to the cold zirconium wall, as can be seen from 

the much flatter slope dh/dx in the cooled region of the fuel for 

t>.30865 s. 

- The peak energy node migrates inwards as the cooling front proceeds, 

but there remains an unquenched adiabatically heated core of 

liquid fuel for ·all of the energy deposition period. 

- Maximum fuel enthalpy in EEOS-05 was 3337.+100 kJ/kg, which 

corresponds to about 7500K. 

The third step in data analysis is evaluation of the net pressure 

and its correlation with the calculated peak enthalpy as function 

of time. The pressure signal of the background and of the experiment 

shot is shown in Fig. VI.11. The measured net pressure reached 

33 MPa. The correlation of the front part of the pressure pulse 

with the peak enthalpy values of the heat-up phase (Fig. VI.10) 

yields the pressure-enthalpy curve shown in Fig.VI.12. 

In the final p-h curve, the pressure information is essentially 

the result of a simple pressure substraction, whereas the enthalpy 

information involves an energy deposition and transfer model. The 

energy deposition part of the model is mainly based on the calori­

meter and the fission product inventory results (hcf~l and n /n - 1s pc c 
in Eq. V.12). The energy transfer part of the model is dominated 

by liquid fuel motion and evaluation of the governing quantity 

v
0 

(Eq. V.17) is again basedonexperimental information, namely 

the backpart of the pressure pulse. Fig. VI.13 shows that the 

pressure cell model quite nicely describes the measured pressure 

decay. It should be noted that the heat transfer only determines 

where along an adiabatic line in Fig.VI.10 the peak energy node is 

located. Heat losses were never so severe that the total fuel sample 

was quenched (for t<.3200s), 
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Another result lending confidence to the energy evaluation came 

from the pressure signal in EEOS-05 (Fig. VI.14). Expansion of 

the solid fuel powder caused a pressure signal before any vapor 

was generated. This pressure should decay at the moment of first 

fuel melting. The observed pressure collapse coincides indeed 
' 

with the calculated time of first fuel melting (= time when the 

first fuel node reaches 1115 J/g). The data indicate that the 

energy evaluation is correct within + 5% or better. 

Fig.VI.15, which compares the time relation between fission chamber 

current and pressure transducer voltage, demonstrates the nearly 

adiabatic nature of the EEOS-experiments by the fact that the pressure 

does increase for almost the full duration of the prompt energy de­

position. At the time of the peak pressure the energy deposition rate 

was only few percent of the maximum heating rate. Since at this time 

the energy deposition and loss rates should be equal, it can be 

estimated from Eq. V.12 that the he&tt losses must have been around 

10 kW at .32s. Fig. VI.15 further demonstrates that significant 

loss of liquid fuel from the crucible can be excluded. 

VI.2.3 Experiment EEOS-06 

Experiment EEOS-06 utilized fuel powder which was prepared from 

conventionally fabricated uo2 pellets. The known impurity contents 

are given in section IV.4. 

The measured calörimeter temperatues are presented in Fig. VI.16. 

The temperature decay is much slower than in EEOS-04 and -05 and 

close to the theoretically expected cooling curve of the calorimeter. 

Probably much less helium leaked into the evacuated calorimeter 

in the case of EEOS-06. 

The measured average temperatures are compared to the calculated 

calorimeter temperatures in Fig. VI,17. The calorimeter energy data 

resulted in the pressure cell enthalpies shown in Fig. VI.18. The 

pressure cell fuel reached a maximum enthalpy of 3163+95 kJ/kg. 
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The corresponding maximum net pressure amounted to 19.6 MPa 

(Fig.VI.19). In experiment EEOS-06 a very sudden pressure excursion 

started at .3165 seconds (Fig. VI.20). The pressure transducer 

signal exhibited a short oscillation and then stabilized at a 

rather constant pressure before following the advancing pressure 

excursion in the test volume. The most probable cause for this 

event is a slight pressure seat of the piston in the crucible. 

The piston got loose at about 3 MPa internal pressure. From there­

on the piston was free to move, as indicated by the damped oscilla­

tion. (The very fast osciallation was not fully resolved by the 

40 kHz sampling rate). 

The pressure-enthalpy curve of experiment EEOS-06 is depicted in 

Fig. VI.21. It should be emphasized that only the part of the curve 

above about 3.5 ~Wa represents a saturation vapor pressure measure­

ment, the lower pressures are the result of a delayed piston ex­

cursion. 

VI.2.4 Experiment EEOS-07 

The fuel in experiment EEOS-07 was aga~n powder prepared from 

reactor-grade uo2 pellets. 

The measured calorimeter temperatures in Fig. VI.22 indicate rather 

large temperature gradients in the calorimeter body during the 

first seconds. Especially the central thermocouple registers high 

temperatures. The markers in Fig.VI.22 again represent the average 

temperature of all thermocouples at a given time. These average 

temperatures are compared to the REAP calculations in Fig. VI.23, 

the mean deviation being .56 K (for t>Ss). 
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The calculated enthalpies of the pressure cell fuel are plotted 

in Fig. VI.24. The fuel reached 3038 + 92 kJ/kg or about 6500 K. 

The measured pressure signal of background and experiment shot 

can be seen from Fig. VI.25. The experiment shot exhibited a very 

early oscillation event the cause of which became not clear. At 

this time about 1/4 of the prompt reactor pulse has passed. There 

is practically no net pressure increase during the following 5 ms, 

although a significant energy deposition occurs during this time 

intervall, raising the fuel enthalpy to about 2000 kJ/kg. The 

piston seems tobe bonded to the crucible up to about .311 seconds, 

then shortly attains a constant value and finally follows the full 

pressure excursion up to 15.8 MPa of net pressure. 

The pressure-enthalpy curve measured in experiment EEOS-07 is shown 

in Fig. VI.26. Only the pressures above 1.3 MPa represent true vapor 

pressure data. 

VI.2.5 Experiment EEOS-08 

The test sample was fuel powder prepared from commercially fabricated 

(U,Pu) mixed-oxide pellets. The fissionable Pu-content was 20.3% of 

(U+Pu) , the uranium was depleted. 

The calorimeter temperatures measured with and without test fuel 

are plotted in Fig. VI.27 and the comparison with calculated tempera­

tures is presented in Fig. VI.28. The energy deposition in EEOS-08 

was somewhat higher then expected, leading to roughly 400 K tempera­

ture increase in the calorimeter. 

The measureC'. pressure is shown in Fig. VI. 1 9 tagether wi th the small 

background signah. Early in the experiment there is again a pressure 

jump of about 1 MPa. Thereafter the pressure transducer monitors a 

smooth exponentially increasing transient up to 54 MPa where the 

amplifier saturated. 
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The energy analysis for the pressure cell fuel revealed that 

in this experirnent - contrary to the previously described tests -

sorne rnelting of the zircalloy curcible occurred. The reason is 

the significantly increased coupling factor of the plutoniurn con­

taining fuel, which prevents freezing of liquid fuel on the cold 

crucible walls and leads to a large heat flux into the zircalloy. 

The heating and rnelting of zircalloy provides an effective internal 

heat sink because there is no need to transport the energy out of 

the fuel volurne. The initially relatively cold liquid zircalloy 

rnixes with the rnoving hot fuel and quickly attains a temperature 

close to the instantaneous fuel ternperature. The modeling equations 

for this process are described in Section V.3. The addional un­

certainties from this part of the energy evaluation were estimated 

to + 3%, giving a statistied total uncertainty of 4,2% in 

fuel enthalpy. 

The pressure-enthalpy curve resulting from correlation of net pressure 

and peak fuel enthalpy is shown in Fig. VI.30. 

,VI.2.6 Experiment EEOS-09 

In EEOS-09 cornrnercially fabricated (U,Pu) mixed-oxide was used 

as test fuel. The reactor pulse was choosen somewhat smaller than 

in EEOS-08, giving about 50 K less heating of the calorimeter 

(Fig. VI.31). 

The pressure signal in experirnent EEOS~09 (Fig. VI.32) showed a 

smooth increase up to about 26 MPa, then at .3106 s a sudden break 

in the slope and about .6 ms later again a sharp increase in pressure. 

It is thought that at .3106 s sorne liquid fuel extruded between the 

piston and the crucible and that after filling the available free 

volurne ou~side the crucible (which was kept as small as possible) 

the transducer again monitared the pressure increase in the fuel 

sarnple. The increase is much steeper at this time because of the 

increased enthalpy of the fuel. 

Experiment EEOS-09 was only evaluated up to 26 MPa. The resulting 

pressure-enthalpy relation is shown in Fig. VI.33. 
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Calorimet<:r Temperatures Ir1 EEOS-04 

Measured Data 
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FIGURE VI .1 
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Calorimeter Temperatures In EEOS-04 

Measured Average and Calculated Data 
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Fission Chamber Signals in EEOS-04 
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FIGURE VI. 3 
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Fission Cl'1aill_l)er Signals Ir1 EEOS-04 
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Fission Chamber Signals in EEOS-04 
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Pressure Signals in EEOS-04 
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Pressure-Enthalpy Measurement 
EEOS-Experiment 04 
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Calorimeter Temperatures In EEOS-05 
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Calorimeter Temperatures In EEOS-05 

Measured Average and Calculated Data 
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Fuel Enthalpy in EEOS-05 
Data of Heat-up Phase 
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Pressure Signals in EEOS-05 
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Pressure-Enthalpy Measurement 
EEOS-Experiment 05 
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Pressure Signals in EEOS-05 
Measured And Calculated Data 
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Pressure Signals in EEOS-05 

3.0,-----------------r-------~--------------~ 
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EEOS-Experiment 05 
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Calorirneter Ternperatures In EEOS-06 

Measured Data 
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Calorimeter Temperatures In EEOS-06 

Measured Average and Calculated Data 
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Fuel Enthalpy in EEOS-06 
Data of Heat-up Phase 
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. ' . ' ' --·---·············-----···-----------·------------·-----··················--·------------·-----·--· 
0. 3:10 9 8 : : : : : : 

0.3:0998 

0.0 0.1 

rpc= 1.4910 
enmax=2406.7 

0.2 0.3 0.4 

Distance x 
0.5 

mn1 
0.6 0.7 0.8 
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Press11re Signals in EEOS-06 
Measured And Calculated Data 

-------------;------·-------.--·-----------;--- _Q ______ ;--------------:--------------:----·-----·--· 
0 I I I > I 

I I I I I I 

I I I I I I 

I I I I I I 

0 I I I I I 

0 I I I I I 

0 I I I I I 

I I > I I o 

I t I I I 

I I > I I . ' ' ' ' 
I o I I I . . ' ' ' ' . ' ,· . 
I o I I o 

I o I I < 

I o I I I 

I I o I 0 

I o I I o 

I I I I I . ' ' . 
I I t o I 

~ - ~ ~ - - - - - - - - - ., - - - " - • - - - - - - - -,- - - - - - - - - - - - - - - - - - - - - - - - - - - 1 - - " - - - - - - - " - -." - - - - " - - - - - - - -.- - - - - - - - " " - - - -

q 

I I I I -.... ---..... ~ ... - ...... - - - -·· -- . " -.. -- - . . ..... " ---.. - ....... -- - .. - - - . - .. -- -

5.0 -----·-------:--------------:---------- ---:-------------:----------- --:---- -·-------:-------------· 
0 0 I 0 I I 

I I I I I I 

I I I I I 0 

I I I I I 0 

0 I I I I I 

I I I I I I 

I 0 I > I I 

I I I I I 0 

I 0 I 0 I t . ' ' ' ' . 
I 0 I I I t 

0 I I I I I 

I I I I I I 

t I I I I I 

0 I I I I I 

I I I I I 0 

t 1 I I I I 

' ' ' ' . ' 

--o--o~o--o~o : : : : 0.0 ------------- .. -·------------,--------------,.-------------,------------- ... ----····--··-··----···----·-· 

o = meosured net signal 
o = calculated signal 

0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.36 

Time (Seconds) 

_ FIGURE VI.19 
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Pressure-Enthalpy Measurement 
EEOS-Experiment 06 

D Error Limits EEOS-06 
·••r••··•••••••·•••••·•r••·••••••··• ••··•• 

r---------------------~ : : . . . . . . . . . . 
' ' ' . --------------------.----------- --------,--------------------.--------------------.--·-··············· 
' ' . ' 
' . ' ' ' . . . 
' . . . 
' ' ' ' . ' ' ' . ' ' ' 
' ' ' ' . ' ' ' . ' ' ' . . . -·-----------------·-----------··------·-- ----- ----- ----·-------------------·-------------------

id~-------: ________ : _________ : --~~--------~ 
- - - - - - • - - - - • - • - - - - ~ - - - - - - - - - - - - - - - - - - - .J - - - - - - - - - - - - - - - - - - - .J - - - - - -·- .! - - - -·- ~ - - - - .J - - - - - - - " - • - - - - - - - - -. ' ' - ~ - . ' . ' ' . 

' ' ' , ... '. . 
- • - • - - - - - - - - - - - - - - - .., - - • - - - - - - • - - - - - - - - - .., - - - - - - • - - - - - •• - - • - - .., - - - 1 --- - - -.- -"- - •• - - - ... - - - " - - - - ~ ••••••••• ~ . . . 
---~----~-~--------: ................... : ................... ~:::.:: --~~:.:.:: ........ ~--------~---······· . . . . . . . . . 

' ' . ·,. . . . ' ............ -...... ·, ................... ·, ................... ~ -.- . .. . ~ -~~ ........... ·, .................. . . . . . . . . . . . . 
. • . . • . • . . • • . • • • • - •• ~ .••...••....••.•••• : . • • • • ••••••. . ,! ; ! ; ~ ·,! r '· •• •••••••••••••• ~ ••• - •••••••••••• - •• . . . . . . . . . . . . 

' ' '' '•, ' ................... : .... -.............. : .... -.-.-. ~.; ·,· ...... ·, .................. :. -................ . . . . . . . . . . . . . . . . . 
I I o t I' I I I -.... - ............. ,· ....... -... - ....... ,· ....... ~ . . ........... ,· ................... ,· ..... -...... - ..... -
: : :::- ·.::::::-· : : . ' . . . . . . . . 
' ' ... ' ' . . . . 
' ' . ' . . ' . . . . ... ' ' ' 

. - ........ - .. - ... --: .... - .... - .... - .... :.-.- '!; - '!:.- ..... : ... - ........... --.-:- .. -.- ... - ........ . 

' ' ' ' 
' ' ' ' 
' ' ' ' ' ' ' . 
' ' ' . : : ,',' ,',~' : : 
' ' . . . . ' ' . . . 
' ' . ' ' ' 

' ', ' ' 
: ,',' ',' : ; 
' ' ' ; ' . . ' . . . . . 
' , '' '' . . 
: ',',' '," ' . 

1d4--------.---------: ~·:~:~:~:--~: ------~:------~ 
. - . -...... -- . -. -- .. ~ . -. - -- - -... -... - ~ ..... - - . : ~ ·. ~ ~ ~ ._ --... - --~ -.. - - ........ -. - ~ .. ~ - . - ---. -. -.... - -.. -

' ' ". '" ' ' 
I t I< I< I 

' ' . . . ' ' 
•• - - - ••••••• - •••• - -I'" • - • - •• - - - - - - ••• - - •• I'" - • ~ - .. - • ~ • 4 - • - - •• - - -,. •••••• - •• - - •• - •• - - • ,. •••••••• - ••••••••• -

: : > .<< : : 
< I 0 I I I I ...... - .... - ....... , ............. -..... , ...... - . -~- ~ ......... --. --....... -.... ~ . , . ~ . -.. -. -......... . 
' ' . . ' ' 
' ' ' ' ' ' . . ' ~ ' ' 

................... ; .................... ; ..... ' .. -',.!:1·,·········:----················:---·······-········· 
' ' ' '.' ' ' . . . 

5*10-1 : . . . . . : : 

1400.0 1800.0 2200.0 2600.0 3000.0 3400.0 

Specific Enthalpy H-~98 kJ/kg 

FIGURE VI.21 
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Calorirneter Temperatures In EEOS-07 

Measured Data 

650.0""'"1""""'---~---~---~---~----..., 

' ' 

600.0 
... H H H 'H H H H H U H H H UH U~---wi t-h-fu_e_l_l 

' . 

. . . 
550.0 ................ ~ ................... :·1%-------------~-------------------~-------------------

l I I o 

I I I I 

I I I I 

I 0 I I 

' . ' . . . ' . 
' ' . . . . . ,..-..... 

~ 
·r-i 

. . . . . . . . . . . . . . . 
l> 500.0 

....--4 
(1) 

~ 
-.....__; 

0 (1) 
0) H 
a::: ::; 
.J ..;..) 0... 

450.0 
• • ' t . . .............. ' ................... ' ....................................... ~ .................. . 

(I) (1j (I) ...... H 0 
(1) 

:z: ~ u 
(I) s 0::: 
:::> 
t..... 

400.0 . ' ' ' • ~ • • - - - - - • - - • - - - - r - • - - - - - - - - - • - - • • • • - t - - - - · · - - - - • • - - - - - - · ; - - - - - - - • • • - · - - · - - · - : - - · • - - - - - - - · - - · - - - -

z (1) 0::: w ~ ~ 

~ 

M 
0 
(I) 
l/} 
(I) ' ' 
0::: z 
I 

350.0 ..... -........... ~ ........ -. -... -.............. - ......... ' ...................................... . 

ID 
0 

' 
'<!' 
(I) 
0) -
~ 

u w 
0 

'<!' 

.................. , ................... , ................. , 300.0 without fuel , ... 
. . . . . . 

l/} 
w 
:::> ..... 

. . . 
' . ' 
' ' ' ' . ' 
' ' ' ' . ' 

'm 
C\1 

(0 
0 

2 50' 0 -+-.,..........,.~......,-...;...· .....,........,.._,........,.-;...· .....,.........,.-,......-,.-j-' -,--.,.---,---r--r--r-.,..........,.---r--1 

0.0 5.0 10.0 15.0 20.0 25.0 
!'... ..... Time (Seconds) 

FIGURE VI. 22 
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Calorirneter Ternperatures In EEOS-07 

Measured Average and Calculated Data 

650.0,-------~------------------~------~------~ 

600 .0 _ HH H H H H :HH H HH HH , HHHHH H I with fuel IHH H 
. . 
: ~r : 

+ -t- ~ 
~~ ~ ~ 

+ : : : 
550.0- .................. ~ ................... :·1%· ............ ~ ................... ~ .................. . 

I I o o . . . . . . 
' . . 
' . . . . . . . . 

"--..., 

~ 
•...-l 
p. 

.---1 
Q) 

500.0- ................... f ................... f ................... ~ ................... ~ ............ ······ 
o I I I 

o I I I . ' ' ' 

~ . ' ' ' 
o I I o 

o I o I 

"--"" ' ' . ' ' . . . 
' ' . . . ' ' . 
' ' ' ' 

0 Q) ' ' ' . 
0 0 I o 

0 < I I 

,m H 
I ;j Ia: 

_] -+-> Q_ 

450.0- .................. ; ................... ; ................... ; ................... ; ................. .. 

({) ro ({) 

Ia H 
Q) 

:c 
~ u 

({) s Iet:: 
/:::) 

u.. z Q) et::: 

400.0- . . . ··--------------··;·------------------;-------------------;------------------·;------------- -----. . . . . . . . . . . . w ~ ~ 
. . . 
' ' ' . . ' 

~ 

Ln 
. ' ' . ' ' 
' ' ' 0 ' ' ' ro ' ' ' 

Ln 
ro 
et::: z 
0-< 

' ' ' 
' ' ' 
' ' ' . ' -- - - - - . -- - .. - . - - - - ~ - - .. -- - - - . - - - - - -- . - ~ -. ---- -- -- - - - - - - - - - ~ .. - - - .. - - - - - - - - - - - - ~ - - - - - - - - - - -- - - - . - . -
' ' ' ' 350.0-

I 
CD 
0 
I 

I I I I 

' ' ' 

: -~: ~ ~A~ ~~~~~=u 

'<t' 
ro 
(J) ..... 
~ 

u w 
Cl 

Ln 

300.0-
' ' 
' ' ---------------···;-------------------;-------------------

without fuel I H 

Cl 
w 
3: 

r-. 
~ 
t0 

~ ..... ..... 

250.0~~~~~~~~~~~,~~~-r-,~~~~-~~~~~~ 

5.0 10.0 15.0 20.0 

Time (Seconds) 
0.0 25.0 

..... FIGURE 
g VI. 23 

coupl. factor = 1.359*10
7 

cond. factor = 0.100 
deviation (K) = 0.56 Q_ 

----------------------------------------~ 
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Fuel Enthalpy in EEOS-07 
Data of Heat-up Phase 

3500.0~------------------------------------~----~--~ 

0.3:1149 

2000.0 .... . ' . . ········------·------------·------------·-----------··------------·····-·-····· - ........ . 

0.3:1049 

t5oo.o~--~--~--~--2~~.~~:o.~Q4~.9L .. ~-~----~~~-~--~-.~--~--~--~--~--~--~:--~--~--~--~--~~--~:-~--~-~--~--~--~--:~---. . ' . ' 
I I I I 

0 I I 0 

I o I t 

0.3:0898 . . . 

1000.0 
I I I I I 

· o·.3:o7 9'8 · .. · · ·: · .... · · · .. · ·:· · · · · · · · · · · ·: .... · .. · · · · ·:-- .... · .. · · · · · .... · .. ·-- ··· · · .. · · · · · . . . . --...._,__ 
: : : : : : : \ 
0 0 I I I I 0 

I I I I < I I 

' . ' ' ' ' . 
I I I I t I I 

I I I I I I t 

I I I I t I t 

' . . . ' . . 
I I 0 I I t 

I I I t I 

500.0 0 I I t 

--------··················----------·····----------·······--·--··----------···------·······-------·· 

0.3:0498 

0.0 0.1 0.2 0.:3 0.4 0.5 0.6 0.7 0.8 

Distance x rnn1 
· ~ FIGURE 
~ VI. 24 
_] 
!L 

rpc= 1.4370 
enmax=2404.0 
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Pressure Signals in EEOS-07 

25.0---------sl"'""""""'-----,.-------...... 

measured data I ow gain, 40 kHz 

20.0 ~-------------- --------------- ----------------------------------------------------------------

15.0 ·······················································~h········· 
' \ 

10.0 -------------------------------- ------------- -------------------·--------------- ------------ ----

5.0 -------------------------- ----- -------- ------------------------:---------------------------------

0.30 0.31 0.32 0.33 

Time (Seconds) 

FIGURE VI.25 

L -------------------------------------------------~ 
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Pressure-Enthalpy 1feasur·en1er1t 
EEOS-Experin1ent 07 

D Error Lirnits EEOS-07 

. . . . ---·····-···-·······,····················,·················--·,··-·--······-·····--,----------------
' ' ' ' ' ' ' . 
t ' • • . ' . . . ' . . 
' ' . ' 
' ' ' . ' . ' . 
' ' . . 
' ' ' . 
' ' ' . 

1d4-------~: ------~:------~:--~~~--------4 
--------------------'--------------------'--------------- --·-'·· -·--·-- •••• .! _______ • __________________ _ 

' ' ' . . . , ' 
' ' ' ' ' ' ' ''' . -----------·-·---··-.-----·-·------------.--------------------.-."- .. --,-.----------,----- ------------. . '' ' 
' ' ' 

- - • - •. - . - . - - - - . - - .. : .. - - . - - . - - - - - - .. - - . ~ - - - - - - .. - - - . - - - - - .. ::,: ! ·_ - -- ~ : ~ ._ ·_ - - - - - . - - - : - - - - - - - - - - - -

' ' ' 
' ' ' ' ' . . ... . . . ' 

--------.--.--------:--.---.-.---.---.---:--.-----.- ..... : ... : . '-: --:-: _._ .... --.-.- .. ·:· ....... ----.---.--
' ' ' 
' ' ' . . . . . .. 

-------------·····-:--······-----------:--------·---.-'-.-'·,· -,•'-,!r·····-···-------:··-··········------
' ' ' 
' ' ' 
' ' ' 
' ' ' . ' .. ' . '. ' -. -... - - - -... - - - - . - ~ - . - - - - .. -. -- -- - .. - . : - - ... - - . ·,. . . . - ~ -.- -•' --- . - -- - - .. -.. - . - . - : - .. -- --- - - - . - ..... -

' ' ' ' ' . 
' ' ' 
' ' ' . ' . . ' ... ''. ' ' -·---------------·-,·-····--··-·······--,···· ... --- .. - ············,·········-··········, .................. . . ' ' '' ''. . . 
' ' ' ' ' . 
' ' ' . ' ' . ' ' ' . . . ' . . ' ' . ' 
• • 1. • • 

••• - •• - •• - - • - ••• - - - ~ • - - - - - • - - - - - • - • i ':. ,- - ~ ~ .-'·. ·' •. - • - - - • - • - - - - - . - - - . - - - - - . - - • - - - • - - - .. 

: '' ., .. ' '' : : 
' ' ' 
' ' ' 
' ' ' 
' ' ' . ' . . ' . 
' ' . 
' ' ' ' ' . 
' ' ' 
' ' ' 
' ' ' . ' ' . . 1.. . . 
• ',', ',','j','. ' • 

100~-------:~· --~:~:~:-~:.:~:;.~: _______ : ________ : ______ ~ . . ~ ' . . ' . ' ' . 
---- -- ------------ -~ - - -- -- - - .:.: ~: . - -:.:: ~; ~ :-:- ------- -- - - -- ----~ --- - - - - - - - -- - - -- --~ - - - - - - --------- - .. -

• ' ' ••• 1 • • . . .... ,. . ' 
••••••••••••••••••• f' •••••••• ·'- J- ·'- J. ~-I-- -. -. • • • • --- ... -- -,.. • • -- -.-- -. - ... -- - r ---- ••.• -- ••• --- ••• 

: : : : : : : : : : ~ : : : 
-----.-----------.- .. -.---- .. -~ --- .. ··--.----------- .. --.---.---.---.-.-.- .. ----.-- .. -.-.--.- .. ---.-. ''. '. ' . . : ,·,·,· .. ·.· . : : 
- - .. - - - . - . - - - - - - . -. ::~ ';: .- .. : ~ ~ .- •.. ! -:. ! - .• •• 1 : - -:- - - + • - - • - •• - •• - • - - ~ •••• - •••••••• - - ••••• - • :- ••• - •• - • - • - •••• - - - • 

' ' ''•,' ..... '. ' ' ' 

&101~~~~::~:::~::::~:::~:::~:::~:::~:~::~:~:~~~-T:~~~~:~~~~ 
1400.0 1800.0 2200.0 2600.0 3000.0 3400.0 

Specific Enthalpy H-~98 kJ/kg 

FIGURE VI. 26 
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Calorimeter Temperatures In EEOS-08 

Measured Data 

800.0 ; 0 hhh h • 0 0hhhh hU.hh h h hhhhl with fuel lh U 0 

750.0 

700.0 

~--········;· ................... : ................... ; ................... ; ................. .. r. ; ,, : : rr . . . 
············f··············----~.~-1%'""'""'"'""••;.......... : ................ .. 

. • 0 • • -
"2' 650.0 . ' ' ' ················t••···············••r··•················r···················r················••• 

' ' ' ' ' . . ' 
I I 0 I 

·r-1 
t> 

r--1 

' ' . . 
I I I I 

I I I I 

' . ' . 
' ' . ' 

(J) 

ö 600.0 
I I I t 

o I o I -----------,. .. ----~ -------------. -----~ ------------. -----. ~ -. ----. --------. -. -~ . --- .. --. -. -. - ------
' ' . ' 
I I 0 I 

0 I 0 I 

' ' . . 
I I 0 I 

I I 0 ~ 

I I I I 

(1) ' I o t 

' ' ' . 
H 

N ~ 
550.0 

. . ' .. - .... ~ -.. -..... ~ ................... ~ .................... ~ ...................................... . 

I cn H 
a::: <I) 
_J 
Q_ s (f) 

18 
500.0 ' ' ' ' ··················r···················r···················r···················r··················· 

' ' ' ' ' . ' ' . ' ' ' . ' ' ' 
' ' ' ' . ' ' ' 
1 I I I 

::..:: ~ u... 

I~ 
450.0 

I I I I . . ' 
I I I I -... -. --.. -.. -.... ~ ----... -.... --..... } -... ------.... -----} . -.. -----... --.. --. ; -----... - . ---------
I I I I 

I 0 I I 

I I I I ...... 1 I o I ...... I I I I 

ro 

I~ z ..... 
I 

(]J 

~ 

400.0 u u uUu u u uuUU u uui u uu u uuul without fuel I u 

lJ") 
CD 
CJ) 
...... 

350.0 
0 I I I 

················••r•••················r·••··············••r···············-···r··················· 
' ' ' . 
I 0 I I 

: : : : . . 
~ 

z 
a::: ....., 

"" 
~ : : : : 
.. ---. --------. ---~ --------- ---------- ~ ------------------- ~ ------------------- ~ -----------. -------300.0 

N I I I I 

' ' ' ' 
()::: 
::::> 

I I I I . ' ' . 
I I I 0 

:X: 0 I I I 

1-o : : : : 
lJ") 
lJ") 

i i i i 2 50 . 0 L....!..~'"""="'===='-==o!... ............ ...I...""",.......J,.,........_...i.-.I.-..I.._.!-....1--J.......I.==ob.. ............ ...I...""",-J.. ............ 

0 
lJ") 0.0 5.0 10.0 15.0 20.0 25.0 
8 Time (Seconds) 

FIGURE VI.27 
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Calorirneter Temperatures In EEOS-08 

Measured Average and Calculated Data 

850.0 ----~--~---~-----------

800.0 ........................................................ ·1 .... _w_i t_h_fu_. e_l.._....~l m u 

' ' ' 
750.0 ·:..j.:·· ···········:··················· ···················t···················t··················· 

' ' 
' ' 
' ' 
' ' 
' ' 

700.0 . ················;···················:·r%········· .... ;-·········· .. 

' ' 

650.0 
I I 0 I 

~ ~ .. ~ • ~ - • - - • • • • • • • r • • • • • • • • • • • • • • • • • • • r • • • • • • • • • • • • • • • • • • • r • • • • • • • • • • • • • • • • • • • r • • • • • • • • • • • • • • • " " • • 
I I 0 I 

I 0 I I 

I I I I . ' . ' 
0 I 0 I 
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Pressure Signals in EEOS-08 
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Pressure-Enthalpy Measurement 
EEOS-Experiment 08 , (U,Pu)-Oxide 
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Calorimeter Temperatures In EEOS-09 
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Pressure Signals in EEOS-09 
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· Pressure-Enthalpy Measurement 
EEOS-Experiment 09 , (U,Pu)-Oxide 
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VII. COMPARISON OF RESULTS 

VII.1 EEOS-Tests 

The results for uranium oxides are surnrnarized in Figure VII.1, those 

for (U,Pu) mixed-oxide in Fig. VII.2, and all six EEOS tests in 

Fig. VII.3. The measured saturation vapor pressures agree within 

the experimental uncertainties, leading to the following conclusions: 

1. The EEOS technique seems to yield reproducible results because 

the three experiment pairs 04/05, 06/07 and 08/09 gave 

practically identical p-h curves. 

2. The pressures from pure and reactor grade uo2 arenot noticeably 

different under the present experiment conditions. 

3. The plutonium content araund 23% does not change noticeably the 

measured saturation vapor pressure from that of uo 2 . 

The first of the above points indicates, that the experimental 

method and the data evaluation adequately treats the physical phenomena 

which are important in closed-volume in-pile measurements of the 

saturation vapor pressure. The important processes are: 

- motian af liquid fuel after melting of fuel, 

- changes in neutranie energy depasition due to changing fuel 

distributian, and 

- heat tran:sfer to surrounding walls. 

In E~OS experiments, motian af fuel was minimized by filling all 

of the test valurne with fuel pawder, passible changes in neutranie 

energy deposition were kept small through the use of cadmium filters 

(compare Figs. III.6 and III.7), and the heat transfer to the walls 

was evaluated from the measured pressure decay. 
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The second points is a not immediatly obvious experimental result 

since reactor grade uo2 contains a nurober of fabrication impurities 

which should have a significant potential for additional pressures 

in EEOS experiments. The mostprominent candidate is carbon which 

can be oxidized in liquid fuel to thermally very stable CO: 

(VI I . 1 ) 

Law-of-Mass-Action calculations yield for the CO-pressure in a fixed 

volume which is partly filled with carbon contaminated fuel: 

Pco = 

with 

where 

K·X c 

(-1 - ~1 ) /RT 
Ps PT 

Pco = equilibrium partial pressure of CO 

x = initial carbon mol fraction in fuel (before CO 
c 

formation) 

= 6.75·10- 4 for 30 wppm c in uo2 

P - reference pressure = 1 atm ref-
MU02= mole weight of uo 2 = .270 kg/mole 

p
8 

= smear density of fuel in test volume = 5300 kg/m
3 

in 

EEOS experiments 

PT = fuel density at temperature T 

R = gas constant 

T = ternperature 

~Gf(CO) = free enthalpy of formation of CO 

~Go2 = oxygen potential of fuel 

(VII.2) 

(VII.3) 
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The second term in the denominator of Eq. VII.2 describes the 

change of free volume in the fixed test volume due to the thermal 

expansion of the liquid fuel. Typical pressures calculated for 

EEOS conditions and a carbon impurity content of 30 wppm in the 

fuel are given in Table VII.1. The tendency in Pco with increasing 

temperatures is towards even higher pressures. The addition of 

several MPa CO pressure to the fuel vapor pressure should have been 

easily detectable in the experiments, so that two possibilities 

remain: 

a) the equilibrium in CO-formation was not attained because of 

kinetic restrictions, or 

b) equilibrium was obtained but the CO molecules were not released 

from the liquid fuel to the vapor phase. 

Table VII.1 Calculated equilibrium pressures in an EEOS pressure 

cell from 30 wppm carbon impurity in the test fuel 

T(K) 

3200 

4000 

5000 

h-h298(kJ/kg) 

1 43 7 

1825 

2310 

Pco (MPa) 

.52 

1 . 10 

1 • 90 

The first possibility appears quite unlikely because CO formation 

in the liquid fuel just requires electron transfer from a U-0 bond 

into a C-0 bond. This process is certainly much faster than the 

transfer of complete UO molecules from the liquid into the gas 
X 

phase, a process which is obviously detected in the EEOS experiments 

as pressure increase. The formation of isolated CO molecules in the 

liquid fuel due to electron transfer does not by itself result in an 

additional pressure(8o is in solution). Only when the CO (or any 

other gaseaus impurity) moves into the gas phase and in this way 

increases here the particle density above that of fuel vapor, can 

the transducer membrane sense an increase in the macroscopic pressure. 

There is information from experiments on fission gas release kinetics 

from malten fuel (VIPER, SILENE), indicating that this process re­

quires milliseconds, which is of the same order of magnitude as the 
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time"at molten state" in EEOS experiments. It appears therefore, 

that in EEOS experiments a significant pressure contribution from 

impurities is supressed by the limited release kinetics of gases 

from the liquid fuel, or in other words by the velocity with 

which gaseous impurities like CO leave the state of solution in 

liquid fuel. 

VII.2 Earlier p-h Measurements 

The EEOS results for uo2 are compared in Fig. VII.4 with three 

earlier pressure-enthalpy measurements. 

1 • Re i l 1 9 7 7 : 

The very first in-pile EEOS measurements on nuclear fuels were 

published in Ref. II.1. The theoretical analysis determined an 

upper and a lower bound for the pressure-enthalpy curve. The 

upper pressure bound was obtained by correlating the volumetric 

average energy of the fuel sample with the pressure-time signal 

and the lower pressure bound resulted from the use of the peak 

energy in the fuel. In the original data evaluation the necessary 

neutronic energy deposition profile was calculated for the solid 

disk geometry using a S-4 version of TWOTRAN. These constant energy 

deposition data of the disk sample were then used for analysis of 

the whole experiment. 

Subsequent modeling efforts using an interactive system of the 

hydrodynamics code CSQ II and the neutron transport code TWOTRAN 

(in S-8 version) which allows recalculation of the neutronic energy 

deposition as the liquid fuel changes its geometry, showed however 

that the fuel probably attained a more compacted configuration 
I 

after melting /VII.1/. In this case the peak energies would 

have been about 20% higher than in the original energy evaluation, 

shifting the right hand line in Fig. VII.4 to higher enthalpy values. 

Another insight from the above mentioned CSQ-TWOTRAN calculations 

was, that the peak energy is governing the vapor pressure in the 

test volume. Fuel regions with less energy are not boiling, they 
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exist in a compressed liquid state. In view of these results the 

band given in Fig. VII.2 is overly conservative. It is sufficient 

to restriet the energy analysis to evaluation of the peak energy 

in the fuel (right hand side bound in Fig. VII.4). If a cornpacted 

geornetry was attained in the liquid state, as indicated by rnodeling 

calculations, this peak energy curve would have to be shifted to 

higher energies. 

2. Bensan 1977: 

Also in 1977, pressures frorn electron-beam heated fuel sarnples were 

published /VII.2/. 

Figure VII.5 gives a schernatic sketch of the experimental setup. 
A 25 wm thick layer of uo 2. 08powder is confined between two rnoveable 

graphite pistons. After the sarnple is heated to a desired internal 

energy in about 1 w.s, the evolving vapor accelerates the pistons 

in opposite directions. The piston motion is followed for the next 

5 to 20 Ws by recording the time dependent width of their shadows. 

A fast infrared pyrometer measures the total temperature rise in 

a graphite dosimeter plate. 

The energy deposition in the liquid oxide sample is evaluated from 

the measured graphite temperature increase and a theoretical extra­
polation to the uo2 sample location with the help of an electron 

transport code. The total uncertainty associated with this energy 

evaluation was estimated to i 5%. 

For the vapor pressure evaluation, the expansion of the liquid-vapor 

fuel mixture is treated as isobaric. In an isobaric expansion, the 

internal pressure acting on the moveable piston can be evaluated 

from the measured piston location x(t), using the simple equation 
of motion: 
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(VII.4) 

.. 
The acceleration x is found as the slope of the approxirnately linear 
" x(t)-plot. The resulting pressure is then correlated to the calcu-

lated peak energy deposited in the condensed sarnple prior to its 

expansion. The p-U data obtained this way are plotted in Figure VII.4. 

With respect to the isobaric pressure evaluation rnodel the following 

cornrnent is necessary. Volurne expansion in the REBA experirnents arnounted 

to 25 to 70 tirnes the initial volurne V , depending on the specific 
0 

experirnent. For such large expansion ratios, noticeable cooling of 

the liquid phase should occur due to vapor production. This in turn 

would result in a vapor pressure drop and a non-isobaric expansion 

of the liquid-vapor rnixture. The rnagnitude of this effect was estirnated 

by calculating the liquid internal energy UL as a function of the 

expansion ratio V/V . Figure VII.6 shows UL (V/V) for initial inter-
o 0 

nal energies U which were deposited in REBA experirnents, if a Harwell 
0 

EOS for uo2 is used /VII.3/. 

Quenching of the liquid phase during expansion becornes increasingly 

severe with increasing initial energy deposition U because the vapor 
0 

density increases exponentially with liquid internal energy. The 

circles in Figure VII.6 indicate the V/V ratio up to which the ex­o 
pansion was followed in the respective REBA experirnent. The pressure 

ratios of initial to final vapor pressure p /p = p(U )/p(UL) are given 
0 0 

for these points. The dashed line for U
0

=1860 J/g is obtained when 

the low vapor pressures of the Harwell EOS are replaced by the higher 

pressures evaluated in the REBA experirnents thernselves. The two lines 

for U =1860 J/g can be regarded as reasonable upper and lower bound 
0 

for the true UL(V/V
0

) curve. 

Considering the large pressure drop ratios p /p, it is difficult to 
0 

envision that the constant pressures seen in the REBA experirnents 

are due to fuel vapor pressure alone. An additional unknown pressure 

source, which increased in time, should have balanced the decaying 

fuel vapor pressure. Therefore the rneasured pressures should be con­

sidered an upper pressure bound for the true saturation vapor pressure 

of uo2 . 
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3. Limonetal 1981: 

In this in-pile technique, a thin U02 disk is fission heated in a 

tungsten tube containing Ar gas at a gi ven pressure / VII. 4/. The 

tube contains a pressure transducer and a condenser plate, the 

temperature of which can be monitared with a fast thermocouple 

(Fig. VII.7). Typical heating times in the pulsed Silene reactor 

are 10 ms. For a p(h) measurement, the following data are taken: 

capsule pressure p(t), relative reactor power P(t), and after irra­

diation the total number of fissions in the sample. The data evalu~­

tion identifies the point in time where a sudden pressure rise indi­

cates fuel boiling; at that time the fuel vapor pressure equals the 

Argon gas pressure as recorded by the transducer shortly before on­

set of boiling. 

Evaluation of the corresponding fuel average energy follows in prin­

ciple Eq. V.it. The total energy deposition (described by the first 

three terms in Eq. V.11) is in the CEA technique obtained by multi­

plying the measured total number of fissions in the sample with a 

previously determined value for the energy per fission of 170 MeV/ 

fission. The fission rate in the fuel is assumed to be proportional 

to the reactor power, which is equivalent with using a constant coup­

ling factor C and fuel density p in Eq. V.11. C and p then cancel. 

Theresulting data points are shown in Figure VII,4. 

Evaluation of the boiling pressure is very precise since the small 

changes in the initial fill gas pressure due to gas heating are 

measured on-line. Evaluation of the corresponding boiling energy 

depends somewhat on the def ini tion of "boiling-onset". Other 

uncertainties in the energy evaluation come from two assumptions 

namely 

equilization of the energy in the boiling fuel zone with the volu­

metric average energy, and 

- use of a constant coupling factor over the whole duration of the 

experiment, although the sample can expand significantly after 

onset of fuel boiling, giving rise to increased energy deposition 

during the rest of the pulse. 
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It appears that the two assumptions are more appropriate at high 

than at low energy depositions. In high energy experiments, high 

temperatures and relatively long heating times cause the hottest 

fuel node, where boiling begins, to migrate inwards away from the 

cooled surface. The boiling node energy is then probably not much 

above the average fuel energy. Also in high energy experiments, 

boiling begins only late in the prompt pulse, so that most of the 

prompt energy is deposited in the fuel disk configuration and only 

the pulse tail in the dispersed fuel geometry. 

However in low energy experiments both assumptions can lead to 

noticable deviations between actual and calculated boiling energy. 

Since the two assumptions have a canceling tendency, a precise 

estimate of the net energy deviation would require additional neu­

tranie and heat-transfer calculations. If one decides to apply 

information from the ACRR experiments to include fuel dispersal 

and heat losses in the low energy CEA tests, it is found that 

the actual energy of the boiling zone may have been of the order 

of 10% higher than in the original energy evaluation (points at 

.18 and .61 MPa). For the high energy tests the deviations are 

expected to be significantly smaller because of the above given 

reasons and because the energy deposition profile was much flatter 

due to thinner and less enriched fuel samples. 

The presented assessment of the existing p-h data shows, that de­

spite the large data scatter in Fig. VII.4, there is quite some 

evidence that the saturation line of uo 2 is located in the vicinity 

of the CEA and SNL/KfK results. 



- 126 -

VII.3 Earlier p-T Measurements 

VII.3.1 Donversion of In-Pile Data 

The p-h data measured in EEOS experiments, can be transformed 

into the p-T format using the relation 

where 

T 

hT - h298 = J 
298 

c (T) dT p (VII. 5) 

hT = specific enthalpy at temperature T, (kJ/kg) 

h 298 = specific enthalpy at reference temperature 

298 K, (kJ/kg) 

c = specific heat, (kJ/kg K) 
p 

Since in EEOS experiments the fuel state changes along the saturation 

line, Eq. VII.S should actually contain (3b/3T) instead of 
sat 

c = p ( ahj 3T) P. However i t was shown /II. 1 , VII. 5/ that for 

heat capacity along the saturation line is practically identical 

with Cp up to temperatures well above 6000 K. 

Heat capacity data for liquid oo 2 and gaseaus 0-0 molecules are 

summarized in Fig. VII.8. The assessment by Fink, Chasanov and 

Leibowitz/ VII.5/ yielded a constant c value and the shaded 1-cr-
p 

uncertainty band. The data by Fischer/ VII.6/ result from Signifi-

cant Liquid Structure modeling of liquid oo2 , and the curve by 

Hoch/ VII. 7/ from a fit of measured liquid oo2 enthalpies, using 

a spetific heat expression which was able to describe high tempera­

ture heat capacity data of many liquid metals and of liquid Al 2o3 . 

Since one should expect that the heat capacity of liquid oo2 approaches 

that of gaseaus 0-0 molecules with increasing temperature, the cp data 

of~Greenj VII.B/ arealso included in Fig. VII.8. The heavy dashed 

line was choosen as best estimate for the h-T conversion of the 

EEOS results. 
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In order to check the influence of the pre~ently existing uncer­

tainties in cp on the h-T transformation, Eq. VII.5 was evaluated 

with a constant c of .485 kJ/kg K, with the increasing, and with 
p 

the decreasing cp(T) function, marked "upper bound" and "lower 

bound" in Fig. VII.8. The corresponding p t-T curves from experi­sa 
ments EEOS-04 to -07 are plotted in Fig. VII.9 in the usual p-1/T 

format. The variation of c within the above given limits results 
p 

very roughly in a shift of + . 1 uni ts on the 1 o4 K /T temperature 

scale. 

For the comparison of the EEOS data with earlier pressure-tempera­

ture measurements, the EEOS results were transformed with the best­

estimate-cp shown in Fig. VII.8, which is given by 

(VII. 6) 

Also the CEA in-pile data were converted with this specific heat. 

VII.3.2 Camparisan of p-T Data 

Figure VII.10 compares the converted in-pile results with previous 

Rsat(T) measurements. The data can be divided into three subgroups: 

1 . ~tationary measurements from the uo2 melting temperature up to 

about 3500 K. 

2. Transient laser heating experiments from about 3500 to 5000 K. 

3. Xransient in-pile tests above 5000 K. 

In order to see if a consistent picture can be derived from the 

different experimental data, an assessment of the employed methods 

was attempted, 
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1. Stationary measurements (ANL 1972) 

In the ANL transpiration technique/ VII.9/ a weighted amount of 

uo2 is heated to the test temperature and an inert gas is passed 

over the sample (Fig. VII.11). This gas carries the vapor species 

into a cold tube were the uranium bearing molecules condense. 

After the experiment the total amount of uranium oxide collected 

in the tube is determined by wet chemistry. The total pressure of 

uranium bearing species in the carrier gas can then be calculated 

from the total uo2 amount condensed and the number of moles of 

carrier gas passed through the system. Carrier gas saturation - which 

is the basic requirement in this technique - seems to be given in 

the ANL tests, because the results obtained for solid uo2 agree with 

those of other techniques within the experimental uncertainties. The 

measurements cover temperatures from 2630 to 3450 K. 

Although the transpiration data extend only a few hundred degrees 

into the liquid range, these results are considered very valuable 

for the following reasons: 

The transpiration method is the 6nly technique which was used on 

solid and liquid uo 2 , it is benchmarked against the extensive 

data base existing for solid uo2 vapor pressures. 

- The stationary evaporation conditions yield true equilibrium data 

which are needed for CDA calculations, that is the vaporization 

process is driven by energy transfer from phonans and electrons to 

surface atoms. 

The experimental uncertainties are very small, about + 10% in p, 

+ 1% in T. 

Since the transpiration method is not of transient nature, material 

problems limited the measurements to temperatures below about 3500 K. 

Figure VII.10 shows that the linear extension of the transpiration 

data coincides quite nicely with the in-pile work above 5000 K. Since 

all three measurement methods (CEA in-pile, SNL-KfK in-pile and ANL 

transpiration) provided almost certainly conditions for pure equili-
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brium evaporation, the slope of the line connecting transpiration 

data and in-pile results, should represent the true heat of vapori­

zation of oo2 • It is obvious that all laser results (exept the LBL 

work) have significantly higher slopes. 

2. Laser experiments, 1974-1985 

Six different laser heating techniques were developed with the 

aim to measure the vapor pressure over liquid fuel samples. The 

data were published in References VII.10, VII.11, (KfK-INR 1974/76), 

VII.12, VII.13 (ITO 1974/77), VII.14 tLBL),VII.15 (KfK-INR 1978), 

VII.16 (ITO 1980), VII.17 (KfK-INR 1984) and VII.18 (ITU neutrals 

1985). The different methods developed up to 1981 were discussed 

extensively in /I. 3/, abrief review can be found in /VII.19/. 

For the discussion of the overall situation the laser techniques 

should be divided into two classes: 

1 . methods in which the laser generated vapor expands into a low 

pressure environment (vacuum or kPa range), 

and 

2. the boiling point technique (KfK-INR 1984 , Ref. VII.17) where 

vaporization proceeds against a high fill gas pressure in 

the test chamber. 

In experiments of the firstclass (References VII.10 to 16 and 

18) the pressure evaluation models have to describe complex gas 

dynamic expansion phenomena of vapor into a vacuum environment. 

The necessary theoretical basis is often only secured for simple 

atoms and important characteristics of 002 vapor have to be 

omitted, e.g. that oo 2 vapor is a multicomponent mixture of 0, 

UO, 00 2 , 00 3 and that the vapor molecules possess internal degrees 

of freedomin addition to the translational ones. The wide scatter 

amongthe various measurements demonstrates the difficulty of 

obtaining reliable pressure data. 
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All laser techniques use fast pyrometry for temperature measurement 

andin principle little uncertainty results from this, provided 

correct emissivi ties are used and optical absorption of the light 

emanating from the laser crater is indeed negligible as has been 

assumed in all pyrometer temperature measurements. Since this 

question was never addressed experimentally, e.g. by a transmission 

experiment on laser generated uo2 vapor clouds, uncertainties also 

enter from this side. An absorption of e.g. 30% would result in an 

apparen.t temperature which is 10% too low. 

Aside frorn experimental uncertainties, the more fundamental question 

arises if in a non-equilibrium experiment involving the rapid 

expansion of a laser generated vapor jet a true saturation vapor 

pressure can be determined at all. The saturation, pressure is a 

thermodynarnic equilibrium quantity which is defined in any given 

vapor-liquid system only for the conditions of absent macroscopic 

energy, momentum, mass or charge flow. However, a laser heating 

experiment involving the rapid expansion of a vapor jet is 

characterized by an intense flow in ea~h of these quantities. 

There is always some kind of theoretical model required to convert 

the experimental non-equilibrium information into a saturat.ion 

vapor pressure. 

This problern appears less urgent in case of the boiling point 

technique (KfK-INR 1984). Here the temperature is determined 

at which a uo
2 

vapor jet begins to develop against a preselected 

inert fill gas pressure /VII.17/. At this boiling temperature the 

uo2 vapor pressure is taken to be the fill gas pressure. Since 

the onset of vaporization is probed rather than properties of the 

expanding vapor je~ the pressure evaluat~on does not require 

the modeling of non-equilibrium expansion processes. 

The boiling point technique has also been successfully used to 

extend the existing vapor pressure data of a number of metals far into 

the liquid range /VII.20/. It is thus the only laser technique 
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which was benchmarked on other materials than uo
2

. The above 

mentioned problems of the pyrometric temperature measurement 

were appearantly overcome in the metal vapor pressure measure­

ments. All these facts lead to the conclusion that of all laser 

techniques the boiling point method provided the vapor pressure 

data which are most closely related to true saturation vapor 

pressures. 

Another approach that can be taken in the assessment of laser 

work - instead of investigating details of the various laser 

techniques - is to look for systematic differences between the 

laser data and those from the equilibrium methods (ANL transpira­

tion, CEA and EEOS in-pile techniques). The most obvious observa­

tion from Fig. VII.10 is the already mentioned difference in slope. 

The CLausius-Clapeyron Equation, which reads in the simple case 

of a one-component liquid/vapor equilibrium in the ideal gas 

approximation: 

d(ln p) = 
d(1/'l') 

(VII.7) 

shows that the log p - 1/T - slope is proportional to the heat 

of vaporization (hv-h~). R is the gas constant. 

There is no obvious reason why the thermodynamic propert7 h of 

liquid or gaseaus UO molecules should undergo sudden changes, 
X 

such that different slope factors result exactly in the temperatures 

region of the laser measurements. It appears more likely that the 

steep slope seen in all (except one) laser experiments results from 

either the optical absorption of thermal surface radiation in the 

vapor cloud or from the specific laser/liquid interaction. Laser 

evaporation appears to require more energy than equilibrium 

evaporation of uo
2

. Olstad and Olander /VII.21/ who investigated 

the laser e~Taporation of iron - a substance of known vapor pressure­

mention already in 1975 the emission of thermionic electrons and 

thermal ions. Once the electron and ion cloud in front of the sur­

face becomes so dense that it absorbes incoming laser light, a 

plasma layer forms, giving rise to the emission of energetic, 

multiply charged particles from the laser crater. 
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Recently the ITU group presented similar results for the 

vaporization process in their vacuum evaporation technique /VII.18/. 

The vapor jet contained more ions than neutral particles, even 
2+ uo2 was observed, the ion velocities exceeded the molecular flow 

velocities by a factor of 2.5, and electron temperatures at least 

an order of magnitude higher than the substrate temperature were 

measured. When the total particle flux (ions plus neutral particles) 

was used in the original rate of evaporation pressure evaluation 

/VII.13/ very high apparent pressures were deduced (Fig. VII.10, 

ITU 1974/77). When only the neutral particles in the vapor jet were 

considered in the pressure evaluation the curve termed "ITU neutrals 

1985" in Fig. VII.10 was obtained /VII.18/. Although this curve is 

of all laser results closest to the line connecting the equilibrium 

techniques (ANL, CEA, EEOS) 1 the measured properties of the vapor 

jet show that the evaporation process is strongly influenced by 

plasma processes and far away from an equilibrium evaporation. It 

is difficult to see why the fraction of neutral particles in a 

laser generated plasma jet should correspond to the equilibriurn 

saturation vapor pressure of the substrate. 

The conclusion drawn from these considerations is that the boiling 

point data /VII.17/ represent the laser results which are most 

closely related to saturation vapor pressures. 

3. In-pile experiments (1981, 1985) 

Above 5000 K the two sets of measurements agree quite well, both 

in absolute magnitude and slope of the vapor pressure curve. As des­

cribed above, there is reason to believe that the two CEA data 

points below 5000 K are too low in temperature. 

For both sets of measurement the conversion from enthalpy to tempera­

ture introduces uncertainties into the data presentation of Fig. 

VII.10. The c influence can be estimated with the help of Fig.VII.9. 
p 

Note that the 20 MPa pressure line intersects the EEOS-05 curve 

converted with the "lower bound for c 11 and with 11 C =.485 kJ/kg 11 

p p 
at a reciprocal temperature value of 1.35 and 1.50, respectively. 

Since the c used for h-T conversion is reasonably bounded by these 
p 

two c models (Fig. VII.8), c uncertainties should be restricted p p 
in Fig. VII.10 by the intervall 104/T=1.35 to 1.50 at the 20 MPa 

pressure line. 
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VII.4 Conclusions 

The above given discussion leads to the following best estimate 

for the p t-T saturation vapor pressure curve (T=3120-8500 K): sa 

log Psat = 23.7989(~.1505)-29605.5/T-4.75783•log T (VII. 8) 

This curve is shown in Fig. VII.12 tagether with an estimated un­

certainty band of a factor of two. The curve unites the following 

experiffiental information: 

Its slope and magnitude is within the experimental uncertainties 

of the ANL transpiration data. 
- The laser results most closely related to the saturation gressure 

of uo
2 

(KfK-INR boiling point technique) are completely represented 

when the measuring uncertainties are included. 

- The in-pile work above 5000 K is also well represented, especially 

the statistically well secured EEOS data between 3 and 20 ~Pa. 

- Presently existing_ cp uncertainties in the h-T transformation.of 
the EEOS results do not cause shifts outside of the factor-of-2 

band. 

The corresponding p t-h saturation vapor pressure curve is obtained 
sa. 

frorr Eq. VII.8 tagether with the following enthalpy-temperature 

equation: 

(VII. 9) 

This relation follows from Eqs. VII.5 and VII.6, using the ANL 
value for the liquidus enthalpy of uo2 /VII.5/: 

·rhe p-h fit function including the factor-of-2 band is compared 

in Fig. VII.13 with the pressure-enthalpy measurements discussed 

before. The bulk of the EEOS results is represented quite well by 

the fit function. The factor-of-2 band appears to slightly over-
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estimate the experimental EEOS uncertainties at high enthalpy 

values (compare e.g. to Fig. VI.12) but on the other hand it gains 

additional weight by inclusion of the high enthalpy CEA data 

points. At low enthalpy values the experimental errors are larger 

than the factor of two, but the validity of the proposed band 

appears defendable in light of the p-T measurements at low tempera­

tures. 

The recommended equations VII. 8 and VII. 9 give a consistent des­

cription of the most re.cent p -h and p t-T measurements on 
sat sa 

liquid U02 . The remaining uncertainty of about a factor of two in 

pressure can be considered sufficient for the purpose of CDA analysis 

( Chapter I) . 

Since no measurable vapor pressure differences could be detected be­

tween uo2 and (u. 77Pu. 23 )o2 in the EEOS tests, the same saturation 

vapor pressure curves are recommended for typical LMFBR mixed oxide 

fueJs. 

~quation VII.8 yields 3817 K for the normal boiling point Tbp' 

415.4 kJ/mol for the corresponding heat of vaporization 6Hbp' and 

1.90 MPa for the vapor pressure at 5000 K. Trouton's Rule states 

that the normal entropy of vaporization 6Sbp=6Hbp/Tbp ranges be­

tween about 70 and 110 J/K mol for all liquids exept He and H2 . 

The above uo 2 values yield 6Sbp=108.8 J/K mol, a rather high value. 

'I'wo conclusions may be drawn from this: 

1. Liquid uo 2 appears to have a relatively high degree of structure 

(clusters), comparable to that found in hydrogen-bonded liquids 

like water or methanol. 

2. A steeper vapor pressure curve, as indicated by some of the laser 

data, woulä result in an even higher 6Sb (6Hb increases, Tb p p p 
decreases). This would not be compatible with Trouton's Rule, 

i.e. the usually observed bonding in liquids. Therefore vapor 

pressure curves above the shaded band in Fig. VII.12 appear 

not likely. 

Considering the experimental information which has become available 

since 1978, the IWGFR recommendation for the Psat-T curve /VII.22/ 

appears somewhat high (about 6.4 MPa at 5000 K). 
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FIGURE VII.1 
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Pressure-Enthalpy Measurements 
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Pressure-Enthalpy Measurements 
' ' 

Liquid Uranium Oxides 
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Heat Capacity of Liquid U02 

And Gaseous U-0 Molecules 

Tmelt=31ZO K 
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EEOS-Results in p-1/T-Forrnat 

Influence of Specific Heat 
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Pressure-Temperature Measurements 

Liquid Uranium Oxide 
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P-T Measurements and Fit Function 
log p =23.7989(+/ -.1505)-29605.5/T-4.75783 *logT 
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FIGURE VII. 12 
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P-h Measurernents and Fit Function 
log p=23.7989(+/ -.1505)-29605.5/T-4.75783*logf 

h(T)-h(298)=-221.15+ .5533*T-1.0945*1 o-5*T 2 
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FIGURE VII. 13 
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VIII. SUMMARY 

1. The saturation vapor pressure of ultra-pure uo2 , reactor-grade 

uo2 and reactor-grade (u. 77 Pu. 23 )o2 were investigated using 

newly developed in-pile heating techniques. 

2. Emphasis was put on the precise determination of fuel enthalpy. 

Through the use of optimized cadmium filters, an in-pile calori­

meter, and gamma counting techniques the remaining enthalpy un­

certainty could be limited to about ± 3%. 

3. To avoid contamination of the fuel sample or the fuel crucible 

during test preparation, appropriate cleaning procedures and 

facilities were designed for the EEOS experiments. 

4. An analysis code called REAP (Reactor Energy Analysis Program) 

was written to evaluate measured raw data and to model energy 

transfer processes in the pressure cell and the calorimeter. 

5. For the six experiments EEOS-04 to EEOS-09 examples of measured 

signals, results of the data analysis,,and a discussion of special 

events were presented. 

For enthalpies between 2150 and 3700 kJ/kg, which corresponds 

roughly to 4700 and 8500 K, the measured vapor pressures varied 

from 1.3 to 54 MPa. 

6. No difference could be detected in the vapor pressure curve of 

all three fuel types, suggesting the following conclusions: 

- Typical fabrication impurities of reactor oxide fuels, like 

e.g. carbon, do not contribute noticeably to the vapor pressure 

of pure uo2 . Apparently most of the gaseous impurities remain 

dissolved in liquid fuel and do not separate into the vapor 

space within about 10 milliseconds. 
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- Typical LMFBR mixed (U,Pu) oxides have the same saturation 

vapor pressure as uo2 within the experimental uncertainties. 

Hence the extensive vapor pressure data base of uo
2 

should 

be applicable to (U,Pu)-oxide fuels also. 

7. The EEOS results for the pressure-enthalpy saturation curve were 

compared to earlier p-h measurements. Despite the rather large 

SC"'ltter in the data,the assessment provided evidence that the p-h 

saturation curve should be located in the vicinity of the EEOS 

results and the high-enthalpy CEA data points. 

8. Using an estimate for the heat capacity of liquid uo2 , the EEOS 

and CEA p-h results were converted to pressure-temperature points. 

Comparison with the existing p-T measurements revealed the 

following: 

- The slope of the saturation curve in the log p-1/T representation, 

which is related to the heat of vaporization of liquid uo2 , is 

very similar for all three measurement techniques in which pre­

sumably true vapor/liquid equilibriumexisted during the measure­

ments (EEOS and CEA in-pile tests above 5000 K, ANL transpiration 

data below 3500 K). 

- The pressure curves from laser induced vaporization experiments, 

which cover the intermediate temperature range from 3500 to 

5000 K, have slopes which are all(except one) noticeably higher 

than that of the equilibrium tests. This, together with recent 

experimental investigations on laser induced vaporization, 

suggests that the material removal processes under laser bom­

bardment may differ from thermal equilibrium evaporation. The 

latter process governs fuel vaporization in Core Disruptive 

Accidents. 

- Of the various laser techniques, the boiling point method /VII.17/ 

appears to yield the pressure data which are most closely related 

to saturation vapor pressures. 
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9. The assessrnent of the pressure-ternperature data showed that a 

functional fit, including a factor-of-2 uncertainty banQ, can 

be proposed for the p-T saturation vapor pressure curve of oo 2 . 

This band covers the transpiration results up to 3500 K, the 

laserboiling point data up to 4200 K, and the in-pile rneasurernents 

above 5000 K. 

10. A ternperature-enthalpy relation is presented which allows con­

version of the p-T saturation curve to the corresponding p-h 

saturation curve. The p-h curve is also in good agreernent with 

the EEOS and the high-enthalpy CEA data points. 

11. The given equations represent the first proposal for a consistent 

description of rneasured p t-h as well as p t-T data of liquid sa sa 
oo2 . The relations cover the whole range of interest and are 

sufficiently precise for CDA analysis purposes. 

12. Because no differences were detected in the saturation vapor 

pressure of oo2 and (o. 77 Pu_ 23 )o2 in the EEOS tests, the sarne 

p-h and p-T saturation lines are also proposed for typical LMFBR 

~nixedoxide fuels. 

13. No indications for critical point phenornena were observed over 

the investigated ternperature range (about 4700 to 8500 K). 
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