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Unsicherheitsanalysen mit Anwendungen bei Unfallfolgenab­
schätzungen 

Kurzfassung 

Seit der Publikation der US-Reaktor-Sicherheitsstudie WASH~1400 
hat das Interesse an probabilistischen Risikountersuchungen und 
Unfallfolgenrechnungen für kerntechnische Anlagen stark zuge­
nommen. Methoden wurden entwickelt und angewandt, um Unsicher­
heiten der zugrundeliegenden Modelle quantifizieren und bewer­
ten zu können. Forschung und Entwicklung werden motiviert durch 
die Tatsache, daß Industrie und Genehmigungsbehörden probabilis­
tische Risikountersuchungen und Unfallfolgenrechnungen zunehmend 
im Rahmen von vergleichenden Studien und Entscheidungsfindungs­
prozessen einsetzen. 

Der vorliegende Bericht gibt einen Überblick über die wesentlichen 
Methoden zur Durchführung von Sensitivitäts- und Unsicherheits­
analysen. 

Erste Anwendungen der Methoden auf ein Teilmodell des Unfallfolgen­
modells UFOMOD (KfK) werden präsentiert und die wichtigsten Para­
meter mit Hilfe von Sensitivitäts-/Unsicherheitsbetrachtungen für 
weitere Unsicherheitsanalysen identifiziert. 

Diese Arbeit entstand in Kooperation mit der GRS (Garching) inner­
halb des EG-Projekts CEC-MARIA. 

Abstract 

Since the publication of the US-Reactor Safety Study WASH-1400 there 
has been an increasing interest to develop and apply methods which 
allow to quantify the uncertainty inherent in probabilistic risk 
assessments (PRAs) and accident consequence assessments (ACAs) for 
installations of the nuclear fuel cycle. Research and development 
in this area is forced by the fact that PRA and ACA are more and 
more used for comparative, decicive and fact finding studies ini­
tiated by industry and regulatory commissions. 

This report summarzies and reviews some of the main methods and 
gives some hints to do sensitivity and uncertainty analyses. 

Some first investigations aiming at the application of the method 
mentioned above to a submodel of the ACA-code UFOMOD (KfK) are 
presented. Sensitivity analyses and some uncertainty studies an 
important submodel of UFOMOD are carried out to identify the 
relevant parameters for subsequent uncertainty calculations. 

This work was performed within the scope of the CEC-contract on 
"Methods for Assessing the Radiological Impact of Accidents" 
(CEC-MARIA) . 
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1. Introduction 

Probabilistic risk assessment (PRA) techniques have been be­

coming widerspread in the nuclear community since the completion 

of the US-Reactor Safety Study /1/ (WASH-1400) in 1975. In this 

study as well as in the German Risk Study /2/,/3/ conservative 

assumptions regarding the choice of input parameter values of 

calculational models have been made to eliminate to a certain 

degree the subject of uncertainty. By taking each of several para­

meters at its resoective conservative limit, the results of the 

calculations have been considered to envelop all results ex-

pected to occur on a realistic or best estimate basis. 

The increasing application of PRA within industry and the regu­

latory process requires turning away from conservative modelling 

to get realistic results for comparative and fact finding studies, 

which have been performed e~g. in the USA: ZION, LIMERICK, INDIAN 

POINT;, in the UK: SIZEWELL; .andin West Germany: GERMAN RISK 

STUDY, RISK ORIENTED ANALYSIS OF THE SNR-300. 

The exact role of PRA in the design and licensing processes is 

presently not clear, but there are several indicators that natio­

nal governments and the:European Community fund R&D activities in 

this area. 

Risk studies for installations of the nuclear fuel cycle have 

been carried out to quantify and compare accident consequences 

and their frequencies. The most important steps of a probabili­

stic risk assessment (PRA) procedure are shown in Figure 1-1. 

A serious aspect of a PRA is the assessment of accident con­

sequences. For this purpose models and computer codes have 

been developed. Their structure results from the sequence of 

effects and is therefore nearly· identical in all codes. For 

example the accident consequence model UFOMOD of the German 

Risk Study consists of the following main components: 
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· atmospheric dispersion and deposition submodel 

. protective action submodel 

• dosimetr.ic submodel 

· health effects submodel 

The flow scheme of the consequence model and its submodels is 

given in Figure 1-2. 

ATHOSPHERIC CISPERSION 

AllO OEPOSIT'GN SUB'lCfEL OOSIMETRY SL'B~'<OOEL 
HEALTH EFFECTS 

SUBMC1:'El 

Amdent Release Extenl of 

~ ~~ 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I PROTEC TIVE ACTION SUBMODEL 

Figure 1-2: Flow schematic of the consequence 

model and its submodels 

(from BAYER et al /4/) 

Due to its definition risk is composed of the two quantities 

consequences and expected frequencies. 

Both quantities are linked with a certain degree of uncer­

tainty, which results from the difficulty to predict very 

rare events and the imponderables associated with the be­

haviour of radioactive material after its release into the 

environment up to the impact on human health, respectively. 
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Therefore, the uncertainties of the input data and rnodel 

pararneters have to be propagated through an accident con­

sequence rnodel to quantify their influence on the output 

variables of interest. 

With the application of PRA in decisive procedures, the uncer­

tainty of the calculational results becornes a rnost irnportant 

question. For this reason rnathernatical tools rnust be developed, 

tested and chosen for the estirnation of the confidence in the 

different PRA results. The investigations perforrned within 

proj ect 6 of the CEC-MARIA prograrnrne ('1~) are restricted 

to rnethods suited for uncertainty analysis of accident conse­

quence calculations within the scope of risk studies for in­

stallations of the nuclear fuel cycle. 

*) CEC-MARIA: "Hethods for Assessing the Radiological Impact 
of Accidents"within the CEC Radiation Protec­
tion Research Programme 
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2. ~roblem Formulation 

An uncertainty analysis of the model predictions is a systematic 

procedure to quantify by means of mathematical statistics the 

imponderables in the results. The determination of the sources 

and the extent of uncertainties encompasses aspects of model 

development, analysis, data collection, and Simulation. 

The probabilistic accident consequence assessment(ACA) itself is in 

essence the propagation of the uncertainties associated with 

random variables through mathematical models, which describe the 

environmental processes. The random variables characterize the 

stochastic behaviour of the real world, e.g. changing wind direc­

tion and wind velocity. The formulas describing the various models 

(.a:tmospheric dispersion up to the health effects) contain para-

meters with fixed values, which stem from experiments or more de­

tailed calculations. These parameters are not varied within an ACA 

despite their variability in reality (e.g. dispersion and deposi­

tion parameters, transfer coefficients, dose conversion factors 

or risk coefficients) . The choice of these parameter values rnay 

be "conservative" or ·"best-estimate". 

This basic procedure of a probabilistic analysis may be illustrated 

by the following example. ClassicaL "deterministic" dose calcula­

tions presume one well-defined atmospheric dispersion condition 

to calculate activity concentrations in the air and on ground 

surface. The input for the dose model consists of fixed values 

for e.g. wind velocity and dispersion category, as output, one 

single dose value is predicted for a given distance from the source. 

This often leads to the common misconception, that this single 

output value is "the" value to be expected under a given set of 

exposure conditions pretending an accuracy which does not exist. 

In contrast to this, probabilistic dose calculations are perfor­

med for a large number of measured real atmospheric dispersion 
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conditions, each of them linked with the probability of 

occurence. Consequently, not one single value results but 

a frequency distribution of dose values which best represent 

the perpetual variability in the environment. 

In general, the results of an ACA (e.g. nurober of health effects 

and the corresponding expected frequencies) are presented in the 

form of complementary cumulative distribution functions ~ccdf's). 

These frequency distributions demonstrate how the accident conse­

quences depend on the various environmental conditions, which may 

exist with a certain probability during and after the radioactive 

release. 

Due to imprecisions of the fixed parameter values in the accident 

consequence model and the modelling itself,the results of an 

ACA are uncertain as well. In addition, the random input variables 

may be erroneous due to errors in measurements or derived predic­

tions. 

There aredifferent sources of uncertainty: (1) modelling 

uncertainties, (2) completeness uncertainties, (3) uncertain­

ties in parameter values and input variables. 

Modelling uncertainties may exist in the mathematical formulation 

of environmental and health phenomena because of the complexity 

of e.g. atmospheric dispersion, food chain bioaccumulation and 

human dosimetry. Inadequate descriptions of these processes may 

cause an undue estimation of probabilities and consequences. 

Completeness uncertainties may result from the fact, that the 

contributions to risk have not been considered comprehensively. 

This may be caused by insufficient knowledge of the relevant 

processes or the inability of the analysts to recognize un­

foreseeable events. 
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Both types of uncertainty defy the quantification by presently 

available methodologies. Only qualitative assessments have been 

performed till now to show the influence on the final results of 

a PRA /5/. However this does not mean, that these uncertainties 

are considered tö be of minor significance; on the contrary, the 

development of mathematical tools to quantify their influence on 

output accuracy is an important task of future investigations. 

The uncertainties in parameter values and input variables can be 

devided into two classes (HOFER/KRZYKACZ /6/): 

- "statistical uncertainties" 

are inherent in the complex to be analyzed. They 

represent possible variability in the complex and are 

due to the fact that repeated realizations of the same 

complex may showdifferent outcomes. These uncertain­

ties are modelled by random variables in a probabilistic 

analysis of the complex. 

- "uncertainties in estimation" 

are inherent in the analysis of the complex. They re­

present possible variability in the analysis of the same 

realization of the complex and are due to inaccurate 

knowledge of model parameters. These uncertainties are 

modelled by random variation of the model parameters 

in a probabilistic uncertainty study of the analysis. 

The influence on the results of an accident consequence assessment 

is quite different for both classes. While the first class of un­

certainties (e.g. unknown weather conditions during release) leads 

actually to the desired results of the assessment (namely the 

distributions of consequences), the second class causes 

uncertainties in these results and is in general quantitatively 

expressed by (subjective) confidence intervals. 
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Unfortunately, in many probabilistic analyses, this difference 

is not regarded accurately, what leads to more or less erroneous in­

terpretations of the resul ts. On the other hand, i t is not always easy 

to separate the two concepts. The complexity of the calculations 

and interdependency of phenomena sometimes forces analysts to 

combine both uncertainties into one measure. 

Before going into some more details explaining probability con­

cepts a snört remark is given. 

* Remark 

The essential difference between 'statistical uncertainties' and 

'uncertainties in estimation' is that an enlargement of the data 

base may improve precision in the second concept but cannot 

affect the fundamental random variability, although a numerical 

assessment of that variability can be made more precise (tolerance/ 

confidence intervals). 

The distinction between these two concepts is important for 

decisionmaking because it indicates where, on the one hand, an 

increased effort in data gathering can improve the quality of 

decisionmaking by reducing uncertainty and, on the other hand, 

where it would be ineffective. 
0 

To sum up: 

The uncertainties that arise in accident consequence assessments 

(ACA's) are of three types: 

- uncertainties in parameter values, 

uncertainty in modelling, 

uncertainty in the degree of completeness. 

*' Remarks close with the sign 11 0 11 
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Having defined different classes and types of uncertainty the 

quantification of uncertainty (i.e. the use of measures of un­

certainty) is categorized by 

- the classical (frequentistic) statistical approach 

- the Bayesian (subjectivistic) approach. 

In the following section the basic probability concepts and 

their application to uncertainty analysis is introduced. 
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2.1 Some Discriminations in Probabilistic Uncertainty Analyses (+) 

What do we mean by 11 probabilistic 11 ? Briefly it says that our 

reasoning includes probability statements. Why are we interes­

ted in probability statements? Because we wish to express uncer­

tainty in numbers to enable comparisons and to finally base 

decisions on these comparisons. 

As far as our decisions are concerned, the question arises 

whether quantitatively equal uncertainties will always be 

equal from the qualitative point of view. A generally under­

standable and easily grasped example should explain this prob­

lern in detail. Later on, the relation to risk analyses will be 

pointed out. 

Let us assume we had a fair die. The chances of 11 6 11 to come 

up in a throw would be 1 in 6. However, if we had a die showing 

the same nurober on each side, we would either always, or never, 

throw a 11 6 11
• Let us assume this die were taken at random out of 

a box containing only dice which show the same nurober on each 

side, and for each of the numbers from 1 to 6 the box contained 

equally many dice. The chances of taking a die showing a 11 6" 

on each side would also be 1 in 6. If we cannot see the die 

so taken, i.e. if we always have to throw it blindly, would the 

uncertainty as to whether 11 6 11 comes up in a throw be of the 

same quality as that in the case of the fair die? Obviously not, 

since: 

With a die showing the 

same (unknown) nurober 

on each side 

- "6" will come up either 

always, or never. 

~) see HOFER/KRZYKACZ /7/ 

With a fair die 

- anyone of the numbers 1 to 6 

will be equally possible. 
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- The statement "there is a 

probability of 1/6 for '6' 

to appear in a throw" does 

not make any sense here in 

its classical interpretation. 

We could, however, (e.g. af­

ter evaluation of a sample 

from the box) claim that we 

are (1/6·100)% confident to 

always throw a "6" with the 

die at hand. 

The result varies stochasti­

cally from throw to throw. 

- Here, we can say that there 

is a probability of 1/6 for 

"6" to appear in a throw. 

Even the closest inspection 

of the fair die will not 

change this value. 

This obvious qualitative difference in the uncertainty to be 

quantified and modelled probabilistically has consequences for 

the choice of the probability concept. There are two customary 

concepts: 

A) "Probability" in its interpretation as limit of relative 

frequency (frequentistic concept) . 

B) "Probability" in its interpreation as degree of belief (sub­

jectivistic concept) . 

Let us consider these concepts in a familiar framewerk and intro­

duce some essential discriminations with respect to quantification 

basis: 

To estimate the probability of a specified random experiment to 

result in a certain event, the experiment is repeated many (n-) 

times. If the event occurs in exactly m i 0 repetitions, the 
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relativ~ frequency rn/n serves as an estirnate of the probability 

in its interpretation A (i.e. as an estirnate of the lirnit of 

rn/n for n-+oo) . 

This estirnate rnay be supplernented by confidence intervals at 

specific confidence levels. In statistics, the confidence level 

is knwon as the probability of a randorn sarnple to supply a range 

(confidence interval at the specified level) containing the 

appropr'iate value of the unknown probability. Given a confidence 

interval at a confidence level of e.g. 90%, based on sarnple 

evidence, the degree of belief is 90% that it contains the un­

known probabili ty value, al though i.t deterrninistically ei ther 

does or does not. This degree of belief is an exarnple of the 

probability interpretation B. 

In this specific case, the confidence level or the confidence 

interval, are derived frorn sarnple evidence. However, lacking ran­

dorn experirnents under the specified conditions, they can also 

be based on randorn experirnents conducted under other conditions 

cornbined with expertise and experience (expe~t judgrnent) , or 

even solely on expert judgrnent. In such cases the confidence 

interval (resp. confidence level) is, however, to be called 

"subjective". 

In the case of deterrninistic quantities like constants (e.g. 

the nurnber of the unfair die above) and functional laws (fixed 

functional relationships) , the uncertainty due to inaccurate 

knowledge can only be quantified through probability interpre­

tation B. 

It is not only confidence intervals and confidence levels (for 

a probability value of interpretation A) that can be based on 

expert judgrnent, but also the estirnate of the probability value 

as such. Consequently the estirnate is a subjective estirnate 

which, of course, has to satisfy the axiorns of probability theory. 
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The attribute "subjective" is to say that the estimate is based 

on expert judgment rather than sample evidence ("objective" 

estimate). 

To provide a better survey, these discriminations are illustrated 

schematically in Fig. 2.1-1. 

type of 
uncertainty 

probability 
concept 

basis of 
probability 
quantifi-
cation 

name of 
probability 
value 

uncertainty 
to be modelled 
probabilistically 

possible inaccurate knowledge 
stochastic of deterministic 
variation quantities 

frequentistic subjectivistic 

~ ~ 
sample expert sample expert 

evidence judgment evidence judgment 

I 
(objective) subjective (objective) subjective 

confidence confidence 
estimate estimate Ievei Ievei 

Figure 2.1-1 Some discriminations in probabilistic uncertain­

ty analyses (see HOFER/KRZYKACZ /7/ ) 

Uncertainty analyses generally have to cope with numerous 

quantities that are subject to uncertainty of the one and I or 

the other type. Thus, without a consistent discrimination al­

ready in the course of the analysis, it would not be possible 

to identify the resulting combined effect of the uncertainties 

of either type. However, the latter is indispensable for a 

meaningful interpretation of the analysis result~ and as such,is 

essential for the decision-making process based on it. The ne­

cessity of a consistent discrimination becomes most obvious in 
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the case of risk studies. There, the uncertainty due to possible 

stochastic variation is of prime interest since it is one of 

the two components of the risk to be investigated. On the other 

hand, the uncertainty due to inaccurate knowledge of determi­

nistic quantities in the risk computation entails that many 

alternative computational results have to be regarded as possib­

ly correct values of the risk to be quantified. Although improved 

knowledge of these quantities and the associated narrowing down 

of their ranges of uncertainty leads to more realism in the quan­

titative assessment of the risk, it will not change the risk as 

such. It is thus obvious that probabilistic uncertaintyanalyses 

of risk assessments only deal with the uncertainty due to inaccu­

rate knowledge of constants and fixed functional relationships 

of the computational assessment procedure. Therefore they can 

only work on the basis of the subjective probability concept 

(i.e. with subjective probabilities). That this need not be 

synonymaus with the sole use of expert judgment follows from the 

second level of discrimination in Fig. 2.1-1. However, various 

reasons often prevent the supply of sample evidence as a quanti­

fication basis for subjective probabilities. 

Of course, subjective estimates are probabilities in the mathe­

matical sense and can be treated according to the rules of pro­

bability theory only if they comply with the axioms of this 

theory. While it may frequently be easy to check for this con­

dition there are situations where dependences complicate matters 

de FINETTI /8/, NAU /9/. However, compliance with the axioms is 

not yet an indication of good quality. Numerous publications 

(KAHNEMAN/'I'VERSKY/10/, JUNGERMANN/de ZEEUW /11/ as well as contri­

butions and quotations contained therein) deal with the typical 

causes of bias in subjective estimates. The scope of the litera­

ture undoubtedly reflects their significance for many important 

applications. At the same time, however, it clearly demonstrates 

how necessary it is to ear-mark probability values based on ex­

pert judgment rather than sample evidence. It seems that many 

disputes, such as e.g. in ABRAMSON /12/ could be avoided if the 
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disGriminations in Fig. 2.1-1 were observed by all those 

interested in probabilistiG analyses and partiGularly in 

risk assessments. 

The disGriminations in Fig. 2.1-1 have the following Gonse­

quenGes for the presentation and interpretation of the re­

sults of probabilistiG analyses: 

- DisGrimination with respeGt to type of unGertainty 

On the one hand there is a probability distribution of the 

quantity of interest (aGGident GonsequenGes of a speGifiG 

type, for instanGe) beGause of the possible stoGhastiG vari­

ation and its probabilistiG modelling in the frequentistiG 

probability GonGept. 

On the other hand there is a family of distributions and asso­

Giated degrees of belief. This is due to the inaGGurate 

knowledge of deterministiG quantities in the computation of 

the distribution and its probabilistic modelling in the sub­

jeGtivistic probability conGept. 

Figure 2.1-2 is to illustrate this in more detail. In this 

figure z1 , z2 and z3 are input quantities of a computational 

risk assessment (life time of a Gomponent of a technical safe­

ty system etc.) .They are subject to possible stochastic varia­

tion. The computation may account for this stochastic variation 

via Monte Carlo simulation using z
1 

. ,z
2 

. ,z
3 

.,i=1,2, .•. ,n as 
,1 ,1 ,1 

realizations from the associated random laws (frequentistic 

GonGept) obtained in n Monte Carlo runs. 
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Figure 2.1-2 Schematic of the relation between the resulting 

ccfd of a PRA and the outcome of the supplemen­

ting uncertainty analysis 

(see HOFER/KRZYKACZ /7 I ) 
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On the other hand, P
1 

and P2 stand för inaccurately known deter­

ministic quantities of the computational assessment procedure. 

P1 may be the parameter of the random law modelling the stoch­

astic Variation of the component life time above while P2 may 

represent a fixed but inaccurately known functional relationship 

between the input quantities z1 ,z 2 and z3 and the outcome (acci­

dent consequences, for instance). The outcomes of all n Monte 

Carlo r~ns are generally presented in form of a ccfd (complemen­

tary cumulative frequency distribution - see column 3 of Fig. 

2.1-2)giving the expected frequency per ,year (ordinate) of acci­

dents with consequence magnitude ~x under the condition that 

the specific value p
1 

and relationship p 2 used for P 1 and P2 in 

all n Monte Carlo runs are correct. 

Quite frequently risk assessments end here with the condition 

above stated only implicitly. Exactly this condition and the 

thereby expressed uncertainty about the appropriateness of the 

computationally obtained ccfd are the starting point of a supple­

menting uncertainty analysis. While the set of possibly correct 

pairs (p
1

,p
2

) in the twodimensional parameter space may be very 

large there are generally subsets of clearly differing degree of 

belief. To see the corresponding alternative ccfds in proper 

perspective the uncertainty analysis too is therefore performed 

probabilistically, employing the subjectivistic probability con­

cept. This enables the analysist to utilize the well established 

rules and methods from probability calculus to arrive in a 

logically consistent way at degrees of belief for the alter­

native ccfds. So, for the purpose of the uncertainty analysis 

of the risk assessment P
1 

and P
2 

too will be seen as random 

variables, and m realizations p
1 

. , p
2 

. , j=1, 2, ... , 11 may be 
I J I J 

obtained from the corresponding random laws (now expressing 

degrees of belief). The corresponding n conditional ccfds 

(column 4 of Fig. 2.1-2) may be obtained by repeating the 

computational risk assessment procedure for these m pairs of 

parameter values. In the end there will be n expected fre-
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quenciesF.(x/P 1=p 1 .,P 2=p2 .), j=1,2, ... ,nat given conse-J ,J ,J 
quence magnitude x. The degree of belief for the correct ex-

,.J 

pected frequency F(x) to be below a given value F may be de-

rived from their empirical distribution (indicated in column 

5 of Fig. 2~ 1-2). 

- Discriminations with respect to quantification basis. 

Should a decisive measure of expert judgment have entered 

the quantifications in both probability concepts above we 

may only speak of subjective confidence levels (respecti­

vely intervals and limits) and any ccfd obtained from these 

quantifications and serving as result (point "value'') of the 

risk assessment is to be called a subjective estimate of the 

correct ccfd. 

Keep in mind: the discrimination of probability concepts is an 

important task to avoid serious ambiguities and misunderstan­

dings. If necessary further clarifications concerning this 

subject will be given in the text. 
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2.2 Key Problems 

Some aspects of PRA have been described which show the 

necessity to do an uncertainty analysis. 

Before starting the uncertainty analysis for accident conse­

quence models some absolutely necessary tasks for evaluating 

uncertainties in a PRA (see /5/, vol. 2, p. 2-36 and 2-37) 

will be pointed out: 

1. Determine level of analysistobe performed. Uncer­

tainty analyses can be performed either qualitatively 

or quantitatively. It is usually preferable to quanti­

fy uncertainties, but the selection of the analysis 

level depends on the objectives of the PRA, what is 

feasible for a particular risk assessment, and the 

preference of the analyst. 

2. Select treatment and depth of anqlysis for the uncer­

tainties to be included. 

3. Identify sources of uncertainty. 

4. Decide on statistical framework. Decide where to use 

classical and/or Bayesian methods. 

5. (Optionally) perform sensitivity analysis. Before per­

forming an uncertainty analysis, the analyst may wish 

to evaluate sensitivities to obtain some insight into 

what is important in controlling the output of the 

risk analyses. This process can help in deciding what 

should be included in an uncertainty analysis. 

6. Estimate input uncertainties. 

7. Propagateinput uncertainties through risk analyses. 
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8. Combine intermediate uncertainties. 

9. Display uncertainties in risk results. 

Remark: 

It should be noted that an uncertainty analysis cannot be per­

formed simply by following the tasks listed above step by step. 

Some iteration among steps is likely to be needed, and in some 

cases it may not be possible to perform each step completely. 

0 
From these tasks the first steps can be extracted: 

In the problern definition phase some preliminary decisions must 

be made: 

decisions on the aim of the sensitivity and uncertainty 

analysis, 

- definition of input parameters and output (response) , 

- ranges and probability distributions {if possible) for 

input parameters, collection of data. 

With other words the following questions must be answered: 

- What is the definition of responses? 

- Which and how many input parameters do you have, especially 

those which have some inherent uncertainty? 

- Which input parameters can be combined,omitted from further 

considerations, or are correlated? 

- Is there statistical information about the input parametersJ 

Then some key problems can be formulated: 

1) Which set of input values should be used to run the accident 

analysis code to generate analytical functions that approximate 

the output data (i.e. accident consequences)? 
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2) Which are the suitable fitting functions for the approxi­

mation of these output data? 

3) How can the probability distributions of the output 

and their dependence on the distributions of the input 

parameters be estimated ? 

OLIVI /13/ made an important remark: 

Approximation procedures to model the system output cannot be 

used to interpret the system internal mechanisms producing the 

output. Even if the modelling might synthesize a quite complex 

Situation ·in a mathematical relationship, any attached physical 

interpretation could be misleading. It has to be remernbered that 

an approximative model (for instance response surface model) 

provides a purely descriptive reduction of the data and should 

be used very carefully to make any inference about the physical 

behaviour of the underlying system. 
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3. Design, Sensitivity, Uncertainty 

Some key problems and necessary tasks have been defined as 

an inevitable framewerk for sensitivity and uncertainty 

analysis. 

Following IMAN/HELTON /14/, large accident consequence 

models su,::;h as UFOMOD are too complex to permit a simple 

examination of uncertainty in its entirety. Thereforeit 

seemsnecessary to use some carefully designed proCedure 

to determine the impact of individual submodels of the 

ACA, and then to study the impact of uncertainty on the 

entire accident consequence model under consideration. 

As it has been indicated in Chap. 2.1 it is convenient 

to think of the ACA computer model as a function of para­

meters some of which 

- are uncertain subject to possible stochastic variation, 

and/or 

- are representing fixed but inaccurately known functional 

relationships between input quantities and output of the 

code because of 

insufficient knowledge of physical processes, 

model simplifications, 

lack of da ta , 

etc. 

Examples from accident consequence assessments are the 

weather data at the time of release on one hand and the dry 

deposition velocities (as model constants) and plume rise 

relationship on the other. 

The second class of input quantities are called in the 

following ,'!uncertain parameters" and their uncertainty is 

described by subjective probability distributions. 
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Uncertainty analysis can be defined to be the deterrnination 

of the variation or irnprecision in the output of the code 

that results frorn the collective variation in the uncertain 

input pararneters. Surnrnarizing and displaying. the uncertainty 

is a serious task since there are rnany quetions of potential 

interest characterizing the output behaviour. 

A convenient tool for providing answers to these questions 

is the estimated curnrnulative distribution function of the 

output. 

Sensitivity analysis is closely related to uncertainty 

analysis. The irnportance of sensitivity analysis lies in the 

guidance it provides with respect to the identification of the 

irnportant contributors to uncertainty in output. Sensitivity 

analysis can be defined to be the deterrnination of the change in 

the 1 response 1 of an ACA-code to changes in uncertain input 

pararneters. Thus, sensitivity analysis can be used to identify 

the rnain contributors to the variation or irnpreciaion in the 

OUtput. 

Remark: (see HOFER/KRZYKACZ /7/): 

Some analysts prefer to restriet therns~ves to sensitivity 

analysis without rnodelling uncertainties probabilistically, 

However, unless all cornbinations of the various alternatives 

are investigated in the course of the analysis they will 

have little to say roout the cornbined influence of the un­

certainties on the output of the cornputational rnodel. For 

complex cornputational rnodels it is often not even possible 

to deliberately select a wors~or ·nearly worst) case para­

meter cornbination and if the analysis is to be restricted 

to a few combinations what is the rational for their choice? 
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It seems unrealistic to weight all conceivable alternatives 

alike if there are good reasons to prefer some to others. 

The models to which uncertainty and sensitivity analyses 

are applied (e.g. ACA-code UFOMOD) are often large, complex 

and longrunning. 

Therefore, it is reasonable to have a plan for selection 

of the specific input parameter values to run the original 

ACA-code. The aim is to get informative statements on sensi­

tivity and uncertainty with a nurober of necessary AC.A-code 

runs as least as possible. 

Such plans (strategies) for the selection of sets of input 

parameters values are called experimental designs. 

There are various studies treating sensitivity/uncertainty 

problems within PRA for nuclear power plants (e.g.: compare 

the papers of MAZUMDAR et al /15 j, j16j, STECK et al j17/, 

/16/, MARSHALLetal /19/, /20/.) 

In the meantime some of the methods have been refined 

and generalized, some new methods have been developed. 

Which of the various concepts and methods seems best suited 

for application in accident consequence modelling depends 

on the information available, the objective of the analysis, 

the cost of the analysis and last but not least on the 

decision maker. 

This chapter will give some hints on sensitivity/uncertainty 

analysis methods without claiming to be complete. The methods 

which have been (will be) used for sensitivity/uncertainty 

analyses of the ACA-code UFOMOD will be given a little bit 

more detailed. 
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To facilitate understanding, methods and concepts are 

reviewed without going into deep formal and detailed 

descriptions. The interested reader is refered to the 

Appendix and the References. 
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3.1 Design 

As already indicated, in studying sensitivity/uncertainty there 

is an urgent need to have suitable plans (designs) for input 

parameter value selection before starting longrunning and cast­

intensive ACA-code runs. 

Designs embrace instructions 

- how much ACA code runs are necessary and 

- which runs (depending on specific values of uncertain 

input parameters) have to be selected 

to get informative sensitivity and uncertainty results. 

There are many ways to perform such a design, changing the un­

certain input parameters one at a time, up to all at a time. 

In a one-at-a-time~esign each uncertain input parameter is varied 

seperately within its range, all other parameters are fixed at 

their nominal value (usually 50%-fractiles), thus quantifying the 

relative effect on the model output. If two (or four) values other 

than themoosen nominal value are used, then the total number of 

points in this design is 2m+1 (resp. 4m+1) form uncertain input 

parameters. 

This method is an easy but somewhat doubtful oourseto treat sensi­

tivity/uncertainty: Wrong conclusions may be drawn if the uncertain 

input parameters are not independent or if interactions between 

these pararreters are suspected. 

In these cases more sophisticated designs should be used. 

A factorial design utilizes two or more fixed values (i.e. levels) 

to represent each parameter under consideration. Thus, if there are 

m uncertain input parameters and if two levels are used for each 

parameter, then there exist 2m possible combinations of the m para­

meters while 3m combinations are possible with three levels, or 

in general rm combinations are possible with r levels. 
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Factarial designs are used 

to check the effect of many input parameters in a limited 

range, 

. to check whether certain input parameters influence on effects 

of other parameters (i.e. interactions between parameters), 

. to determine in some code runs, which parameters have to be 

investigated successively for further considerations. 

To get an impression of the nurober of runs necessary to do a two 

(three) ievel m-factorial see Table 3.1 .1 - 1 .below: 

m 2m 3m 

3 8 27 

4 16 81 

5 32 243 

6 64 729 

7 128 2,187 

8 256 6,561 

9 712 19,683 

10 1024 59,049 

Table 3.1.1-1: Nurober of Runs in Two- and Three-level m-Factor 

Factarials 

An advantage of both design methods is that the results can be saved 

and used as a basis for the construction of fitted response surfaces. 

The nurober of computer runs necessary to do these designs become 

quite large even for a small nurober of input parameters. That may 

be a problern if the ACA-codes are long-running. 

But there are some features in .the context of factorial designs 

(e.g. central composite designs factorials with resolution R or 

fractional factorials) that allows for a reduction in the nurober 

of input pararoter combinations. 
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In fractional factorial designs only soroe fraction of the total 

nurober of input pararoeter corobinations is used. 

That is, for each of the ro pararoeters at r = 2 levels soroe fraction 

(1/2)k, k ~ro, of the total nurober of input pararoters corobinations 

is used. The nurober of required runs of the ACA-code would equal 

the nurober of input pararoeter corobinations. 

Following IMAN/HELTON /14/, as k (the degree of fractionation) in­

creases, the effects of soroe individual uncertain input pararoeters 

cannot be estiroated because of confounding with interactions 

aroong input pararoeters. Thus, the selection of the degree of frac­

tionation andinput pararoeter corobinations roust be done with great 

care, keeping in roind which pararoeter effects and interactions are 

of greatestinterest. 

Fora roore detailed discussion see BOX/HUNTER/HUNTER /21/, OLIVI /13/, 

MAZUMDAR/15/. 

Factarial designs possibly roay not give a global representation of 

the uncertain input pararoeters, because they laytoo rouch erophasis 

on the endpoints of the pararoeter ranges (i.e. they do not ade­

quately represent the roiddle of the ranges) . 

Possible alternatives to the previous roentioned designs are Latin 

hypercube saropling (LHS) and the tolerance liroit design (TLD) using 

randoro sampling techniques. 

The LHS-technique, as originally described in McKAY/CONOVER/BECKMAN 

/22/, operates in the following roanner: n·different values froro each 

of the ro uncertain input pararoeters are selected. The range of each 

pararoter is divided into n nonoverlapping intervals on the basis of 

equal width or equal probability. One value froro each interval is 

selected at randoro. For intervals based on equal probability, randoro 

sampling roeans saropling without replaceroent and randoro with respect 
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to the probability density in the interval. The n values thus 

obtained for parameter P1 are paired in a random manner (equally 

likely combinations) with the n values of P 2 . These n pairs are 

combinedin a random manner with the n values of P 3 to form n 

triplets,and so on, until n m-tupels are formed. 

McKAY/CONOVER/BECKMAN /22/ did the input value selections inde­

pendently for each input parameter so that the input selections 

are uncorrelated. IMAN/CONOVER /23/ have extended the sampling to 

include cases were the inputs are correlated. 

We will not give here a complete description of the LHS-method 

(for details see McKAY/CONOVER/BECKMAN /22/, IMAN/HELTON/CAMPBELL 

/24/, j25j, IMAN/CONOVER /26/, IMAN/HELTON /27/; some catchwords 

are sketched in the Appendix) . 

Following ALPERT/HELTON j28J it can be summarized, that the LHS­

design 

- uses input from any multivariate structure and can be modified 

to incorporate correlations between uncertain input parameters, 

- the entire range of each input parameter is utilized, which is 

important if there are thresholds or discontinuities in output, 

- directly produces estimates of output distribution functions, 

- permits a variety of sensitivity analysis techniques (e.g. step­

wise regression, partial correlation), 

- does not require extensive modification of the ACA-model under 

analysis, 

- is constructed to make efficient use of the nurober of ACA-code 

runs required. 

For applications in sensitivity/uncertainty analysis the nurober 

of code runs using LHS should be greater than the nurober of un­

certain input parameters. 
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The LHS-design has been described roughly as a type of stratified 

Monte-Carlo sampling providing estimates for the output distribu­

tions with an adequate number of code runs. 

The tolerance limit approach is a method of direct Monte-Carlo­

sampling, which 

- gives an estimation of the output distributions and 

- provides "upper limits 11 (so-called upper statistical tolerance 

limits) for the output distributions 

with a relative small number of necessary ACA-code runs to get 

reasonable results. 

Tolerance limits give the degree of precision (confidence) that 

the probabilityjconsequence predictions lie within the indicated 

range and are effected by the nature and extend of the available 

data. 

To be a little bit more precise: 

A tolerance confidence interval for a random variable X, at confi­

dence level y and for a tolerance coefficient a (a,y E (o,1)), is 

a random interval such that the probability is y that the interval 

selected at random covers at least a specified proportion a E(o,1) 

of the distribution G(x) of X. 

The endpoints of this random interval are called upper (lower) 

'a, y)-tolerance limi ts. The simplest case of such tolerance limi ts 

can be determined from ordered samples. They do not require any 

distributional assumptions on the function G(x) ;it therefore will be 

called distribution-free tolerance limits. 

A Monte-Carlo-simulation of the uncertain input parameters is per­

formed according to their subjective probability distributions, 

for instance with sample size n = 59 and a=0.95, y=0.95. 
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Then a run of the ACA-code is performed for each of the 59 input 

data sets. The resulting 59 values of the output concerned may be 

regarded as a random sample ( X , •.. , X ) from a certain distri-
, 1 59 

bution G (G is the unknown distribution of the output resulting 

from the input parameters) ;several output quantities may be con­

sidered simultaneously. 

Then the (0.95, 0.95)-tolerance limit, L, is 

L = X . = max ( X , ... ,X ) 
J 59 

59 

It maybe interpreted in the following way: 

95 % of the mass of the distribution of output X lie below the 

tolerance limit L with probability at least 0.95, or when the tole­

rance limit L is already determined: we are at least 95 % confident 

that 95 % of the distribution of the output X lie below the calcu­

lated value L. 

The nurober n = 59 is justified by the theory of order statistics 

to get a distribution-free (0.95, 0.95)-tolerance limit (for details 

see Appendix) . 

Remark: 

For use of tolerance-limit design in sensitivity analysis the 

nurober of ACA-runs should be greater than the nurober of uncertain 

input parameters ; for use in uncertainty analysis the nurober may 

be less than the nurober of input parameters. 

0 
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3.2 Sensitivity 

A large nurober of uncertain input parameters could potentially 

be selected from accident consequence models (e.g. like UFOMOD 

(KfK) and MARC (NRPB) for the purpose of evaluating the uncertain­

ties in radioactivity concentrations, organ doses, and health 

effects. 

We follow IMAN/HELTON/CAMPBELL /24/,/25/ that due to the possibly 

significant expense of running accident consequence models and 

the often much greater expense of collecting appropriate data for 

use as model input, a reduction of problern complexity is indis­

pensable. 

Therefore it is important to have efficient techniques to examine 

and assess the influence of model input on model output. The bene­

fits of such undertaking include: 

- an indication whether the model operates as intended, 

- an identification of unimportant uncertain input parameters or 

unnecessary model complexity, 

- an assessment of relative input parameter importance for guidance 

in data collection by determination of some measures of dependence 

between the specific output and input parameters. (These measures 

of dependence serve to rank the input parameters according to 

their degree of importance for the output considered ) . 

By intensive variational studies, model deficiencies can be detected 

and subsequently corrected. If an (accident consequence) model sur­

vives a vigorous sensitivity analysis,its credibility as a relevant 

forecasting tool is increased (see McKAY/BOLSTAD/WHITEMAN /29/) . 

In Chap. 2.2 the pnnciples of sensitivity/uncertainty investigations 

are mentioned: partition of the study in some procedure steps to get 

insight into models and methods on submodel basis. 
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Corresponding to the commonly justified practice 'to start somewhere' 

one may try to study the effects of varying a single uncertain in­

put parameter at a time only as a prelude to the study of varying 

several factors simultaneously. 

Therefore, follwing MAZUMDAR et al /16/, the one-at-a-time design 

is favoured as the simplest way to get some sort of visual apprecia­

tion of the input - output dependency. 

E.g., each input is evaluated at its nominal value (50%-fractile), 

then at its Min., 10%-fractile, 90%-fractile, Max. This necessitates 

(4m+1) runs, which would be impractically if the number of uncertain 

input parameters is large and the ACA-code is complex and long­

running. The information from the one-at-a-time-design can be used 

to rank the input parameters as to their effect on the output. 

Ranking can be done due to an importance-criterion, which measures 

the distance of the target values resulting from the two cases 

input parameter is at one of its four levels, 

input parameter is at its 50%-fractile level. 

Large values of the distance measure indicate a marked effect 

whereas small values indicate little or no effect on the output 

(for details see Appendix) . 

The determination of the most important input parameters by using 

factorial designs is done in the context of trying to find those 

input parameters that should be taken into account in constructing 

an approximation function (response surface) for the ACA-code. 

Following MAZUMDAR et al/15/, the coefficients of the approximation 

function can be taken as measures of the sensitivity of the computer 

code to the terms in the fitted expression. If these terms represen­

ting the input parameters (or some suitable functions thereof) have 

been suitably scaled or standardized (being divided by their respec­

tive standard deviations) the values of the respective coefficients 

in the fitted expression will provide a ranking of the importance of 

the uncertain input parameters and of combinations thereof. 
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McKAY et al /22/ and IMAN/CONOVER j30jsuggested that Latin 

hypercube sampling may be used to conduct sensitivity analysis. 

Following DOWNING et al /31/, the LHS-method of Iman/Conover uses 

partial rank correlation analysis to indicate the sensitivity of 

the output of each of the uncertain input parameters. The method 

operates with ranks to reduce the influence of extreme observations 

on the calculations and to give a better measure of the strength of 

the nonlinear relationship between an uncertain input parameter and 

output. Therefore using ranks means measuring of monotonicity rather 

than linearity as is done with raw data. 

Partial rank correlation is a measure of correlation between two 

variables removing the effect of the other variables. Partial rank 

correlations with absolute value near 1 indicate strong monotonic 

relationships. These can be used to indicate which inputs have a 

strong monotonic effect on the output. (See the computer-code 

described in IMAN/SHORTENCARIER/JOHNSON /32/). 

A drawback of this technique is that the ranking makes it difficult 

to distinguish between the relative sensitivity of two input para­

meters when the response is a plane with no interaction but the 

rate of increase in one direction is markedly greater than the rate 

of ihcrease in the other. Those two input parameters would appear 

to have equal sensitivities with regard to the output when indeed 

they are different. When either random sampling or Latin hypercube 

sampling is used, the partial rank correlation will reflect the true 

sensitivities with regard to the input parameter's effect on the 

output. The approach may be run on the raw data as well as the 

ranked data and compared. Large discrepancies between the two 

analysis might indicate departures from linearity. If the partial 

rank correlation is high while the partial correlation is low this 

would indicate a nonlinear relationship between the input and output. 
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Remark: 

Following IMAN/HELTON/CAMPBELL /24/,/25/, once a set of potentially 

important uncertain input parameters is selected by some of the 

above mentioned 'screening techniques', it is desired to select a 

'best set' of important input parameters by using regression 

techniques to fit a response surface for the model output. That is, 

those input parameters should be selected that predict well both 

for the input parameter vector from which the surfaces was con­

structed and for additional input vectors selected from the ranges 

of the uncertain input parameters. Examples of such regression 

techniques are stepwise regression and rank regression. These methods 

are very well described in HELTON/IMAN/BROWN j33j. 0 

In the tolerance limit approach,Monte-Carlo sampling is used to 

get n input parameter v€ctors;a corresponding nurober of ACA code 

runs are performed which give estimates of the unknown output 

distribution. 

The parameter ranking indicating the input parameter importance 

on output is done in a way similar to the Latin hypercube sampling 

method. 

The rankings of the uncertain parameters are derived from measures 

of correlation between output distribution and each of the uncertain 

input parameters at selected argument values. While partial correla­

tion coefficients are generally preferred as indicators of the 

degree of linear relationship, partial rank correlation coeffi­

cents are able to handle nonlinearity and measure monotonic rela­

tionships between output and each input parameter (for details see 

HOFER/KRZYKACZ I -7 I. 

It should be noted that the parameter ranking are dependent upon 

the uncertainty quantification as well as the probabilistic 

modelling given by the submodel experts. They may be considered 

adequate if all uncertainties not quantified may be neglected. 
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Each of the procedures has its merits and limitations. Without 

going into a judging discussion the following guidelines may be 

appropriate: 

- Reduce entire model complexity by starting on submodel basis. 

- Invoke engineering skill to reduce the nurober of uncertain input 

parameters requiring further considerations. Use group screening 

techniques or the simple one-at-a-time-design to get a prelimi­

nary sensitivity analysis. 

- Use suitable and cost-effective design methods in consideration 

of 

• distributional aspects 

• ~nterdependencies of input parameters 

to identify and rank sensitive uncertain input parameters. 

Which method is the best for your purpose depends on the concrete 

problern you have. 

Remark: 

We only mention other sensitivity methods which are seen by some 

authors as an alternative to statistical design techniques like 

LHS. The so-called differential sensitivity approach is based on 

a Taylor series expansion and the associated partial derivatives. 

The results are dependent on the assumption of linearity. (For 

discussion see DOWNING/GARDNER/HOFFMAN /31/, HARPER/GUPTA /34/ 

and IMAN/HELTON /14/) .A rigorous method for sensitivity is the 

so-called adjoint method using differential equations. These 

equations yield exact sensitivities. But it is difficult to 

obtain the adjoint equations and in practice the nonlinear aspects 

are usually ignored (see OBLOW I 35j and THOMAS I 36j). 

0 
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3.3 Uncertaint:l_ 

Various possible ways of uncertainty propagation through complex 

computational models, differing in computational effort and quality 

of results are at disposal. In practical problems the choice will 

depend upon the 

- complexity of the computational modeltobe investigated, 

- desired quality of the final uncertainty statements, 

- means (CPU-time etc.) at hand. 

Therefore different methods may be applied for different parts of 

a computational risk assessment procedure. 

The general problern is how 

- to achieve uncertainty propagation from input to output, 

- to quantify output uncertainty. 

The output quantity, say Y, is a function, say h, of the uncertain 

input parameters P1 , •. ,Pm 

which is not known explicitely and usually is described only by 

the ACA-code. 

The output quantity itself is an uncertain (random) variable which 

has an ''uncertainty distribution", which depends on the ACA-code 

and the distributions of the uncertain input parameters. 

Example 

An accident consequence model is applied to compute the probabili­

ties that radioactivity concentrations, organ doses or nurober of 

health effects exceed a certain quantity. 
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In the atmospheric dispersion submodel of an ACA-code the uncertain 

input parameters are radioactive plume rise due to thermal energies, 

time~dependent turbulence of the atmosphere, depletion of the 

radioactive plume as a result of dry and wet deposition etc. 

0 

Various methods have been developed to treat and propagate un­

certainty in PRA or ACA. 

Following the PRA-Procedures Guide /5/ there is a classification 

in 

- integration methods and 

- various techniques based on moments ("moment matching"). 

The former methods include 

- analytical integration, 

- numerical integration (discrete probability distribution 

method), 

- Monte-Carlo-simulation, 

while the latter include 

- the method of moments, 

- Taylor expansion approximation, 

- response surface approximation. 
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3.3.1 Bird's Eye View on Methods 

The analytical integration presumes the joint probability density 

function of the uncertain input parameters to be konwn. The integra­

tion of this function leads to an analytical expression for the 

probability density function of the output variable, if the input­

output function or an approximating equivalent is known. 

In the discrete probability distribution method the input uncer­

tainties are characterized by a discrete probability distribution 

of input values. Suppose the output y is a function of the input 

parameters p 1 , ... ,pm. 

Let pi 1 , ... ,pik denote a set of discrete values of pi and let 

si 1 , ... ,sik be the probabilities associated with these values 

suchthat Epij = 1. The discrete probability distribution is 

defined as the set 

i = 1, .•. ,m 

that approximates the pi-continuous probability density function. 

The corresponding discrete probability distribution for the model 

output y is given by the set: 

y ) 
r1, ... ,rm 

where 

tr
1 

r is the product of the probabilities associated 
, ••• ' rn 

with the p.-values, if the p. are independent, 
l l 

and 

Y is functionally related to the p.-values by the 
r 1 , ••• ,rm 1 

given function h. 
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If the number, m, of the input parameters is large or the function 

h is complicated then this approach becomes computationally burden-

some. 

For details see KAPLAN/APOSTOLAKIB /37/ or AHMED et al /38/. 

Then another approach becomes more feasible. 

Under the Monte-Carlo-technique, sets of uncertain input parameters 

are sarnpled randomly from their assumed joint probability distri­

bution and the modruoutput is determined at these input values. 

This yields a set of random outputs which can then be analyzed 

by statistical methods. For example, estimates of moments or 

percentiles of the output distribution can be obtained. 

Monte-Carlo-techniques can be used to run the actual model. The 

aim is to obtain an empirical distribution of the output, to ob­

tain moments of the output, and to get statements about the pre­

cision of the results (confidence statements). 

Remark: 

The motivation to mention confidence arguments under the head­

line 'Monte-Carlo-sampling' is the following: 

Bydirect Monte-Carlo-sarnpling, sensitivity and confidence considera­

tions can be cornbined effectively (see HOFER et al /39/). 

0 

Moment methods are applicable when sufficient information is 

available to generate estimates of the first few moments of the 

uncertain input parameters. This information is used to generate 

estimates of the corresponding moments for the output quantity. 

Unfortunately, sufficient information is usually not available to 

define the joint probability density function of the input para­

meters and therefore difficulties arise to get estimates of the 

first few moments of the output. 
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The Taylor expansion rnethod can be used if there are rnore 

cornplex dependencies of the output y to the input pararneters 

(p1 , ... ,prn). This rnethod provides a good procedure to approxi-

rnate the rnean and variance of output, by expanding the input­

output function y = h(p1 , ... ,prn) about a nominal point up to 

the second derivative. However, in cases where h is highly non­

linear, higher-order expansions will be needed. 

To construct a response surface rnodel, the p rnost irnportant 

input prararneters selected frorn the rn original uncertain input 

pararneters rnust be fit to sorne approxirnation function, usually 

a second order polynornial, that adequately describes the unknown 

input-output function h. The existence of strongnonlinearities 

can cause the second order polynornials to be inadequate for a 

valid uncertainty analysis unless they are expanded to include 

higher-order terms. 

It should be noted that the ability of a response surface to re­

present well a complex computer code could possibly be improved 

by using a representation other than polynomial functions. 

For details, critizisrns of these methods and some ways out of 

the limitations and possible extensions we refer to MAZUMDAR 

et al /15/, DOWNING et al /31/. 

Rernark: 

We discussed rnethods for evaluating function uncertainty when 

the argurnent uncertainties are expressed as distributions. If 

data based estimates of function argurnents are available, sorne 

of the classical statistical methods for estimating output 

sarnpling distributions can be used e~g.: the'bootstrap'-, the 

Taylor series-, the 'jackknife'-rnethod; we refer to the PRA­

Procedures Guide /5/ Chap. 12.4.3.3 and in rnore detail to 

EASTERLING /40/. 
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3.3.2 Confidence Considerations 

Statements about output uncertainties are statements about 

"output. uncertainty distributions". 

We now try to characterize output uncertainty. 

As the outcome of the quantification of input uncertainties 

and their propagation through the code using the methods of 

the calculus of probability, families of (complementary) fre­

quency distributions are obtained, each of which must be re­

garded as possibly the correct one. A range could be specified 

therefore in a (damage-scale-frequency)-diagram in which the 

correct frequency distribution lies with, for example, a certainty 

of 95 %. This would be a global subjective 95 % confidence inter­

val. 

It is also possible 1however1 to specify subjective confidence 

intervals, which can be described as "local", on straight lines 

parallel to the frequency-axis or darnage axis. This form of re­

presentation of the influence of input uncertainties is entirely 

adequate for the purposes of the complementary frequency distri­

butions and was adopted in the GERMAN RISK STUDY (DRS) 121,131 
and BAYER et al 141. Often one-sided uncertainty intervals are 

used which give upper (lower) uncertainty bounds (subjective con­

fidence limits). 

Let us paraphrase the problern a little bit more formally correspon­

ding to Chap. 2.1. 

Following HOFERIKRZYKACZ 17 1 a.nd I 41 I we state that in the case of PRA' s 

or ACA's the interest focusses on complementary cummulative distri­

butions F(x), with F(x} the probability of the annual accident 
~ . 

consequences to exceed x. Let P be the vector of uncerta1n para-
.... 

meters of the computationmrisk assessment procedure and k(p) 

their joint subjective probabilüy density function (pdf); 
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- ~ 
then F(xl~)is also assigned a subjective pdf. The uncertainty of 

ccdf's is customarily investigated locally, at fixed argument 
- .31. 

values x, which means that the distributed quantity F(xi'P) is 

investigated. The computational model of the ACA transforms the 
. . ... - ~ 
JOlnt pdf k(p) into the distribution G(F(xiP)) with its 95% 

fractile F~:= F95 (x) usually serving as a quantitative measure 

of the output uncertainty (i.e. as an estimate of the resulting 

local (at x) upper 95 % confidence limit for the distribution 

to be assessed) . 

F>tc satisfies: 

G(F~): =Prob tt: F(xl~) f F""' ~ = 0,95. 

"Prob" stands for subjective probability ("probability" inter­

preted as degree of belief). 

I 90 (x): = (F 5 (x), :F95 (x)), on the other hand, may serve as an 

estimate of the resulting local symmetric 90 % confidence interval. 

To narrow down the r 90 (x) for a given power plant and site is thus 

required to reduce the inaccuracy in the knowledge of the deter-
. . . ~ ~ ~1) - -'>. ~ 

m1n1st1c items P while for given P=p the ccdf F (x\P = p) may 

only be changed via modifications to the plant or to the relevant 

site characteristics. 

The ideal procedure to get confidence bands would be to simulate 

the output ccdf by Monte-Carlo-simulation of the input parameter 

distributions and running the ACA-code. The results would be 

estimates of the output distribution and some estimates of its 

quantiles. 

In general, this way is impossible because ACA-codes are long­

running and Monte-Carlo-simulation requires a lot of runs to get 

sufficient results. 

1 ) ...... ...::.. ...l. ...!!. 
P = p means: p is a realization of the random vector P. 
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Therefore now the modified problern is to construct confidence 

bands for the output quantity by using design methods and their 

results, which require only a restricted (small) nurober of ACA­

code runs. 
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3.3.3 Hints on Uncertainty Evaluation Procedures Based on 

Special Designs 

Let us indicate here some procedure steps to get uncertainty 

statements by using the designs mentioned in Chap. 3.1. 

1. One-At-A-Time-, (Fractional) Factorial-, LHS-Design 

The distribution function for the output cannot be estimated 

directly from the'set of output values resulting from input 

based on the two first mentioned designs since the selection 

procedure used with the input'values is not random. 

Therefore it is necessary to tise a response surface replace­

ment for the ACA-model and to use Monte-Carlo simulation with 

the response surface to estimate a distribution function and 

its quantiles for the output. This will lead in general only 

to approximate confidence intervals, because the output is 

usually non-normally distributed. 

2. Tolerance Limit-Design 

W i t h o u t using an ACA-code approximation: 

Determination of a certain estimation of the desired output 

quantiles (for instance: 95%-quantile). 

The results are distribution-free confidence intervals (example: 

for the 95 %-quantile) of the output distribution with con­

fidence level, for example, 95 %. These bands are called one­

sided (95 %, 95 %)-tolerance intervals for the output distribution. 
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1.1 One-At-A-Time Design 

The construction of an interpolating response surface is as 

follows. 

Two cases: 

a) For each input parameter two values are chosen (usually 10%­

and 90%-quantile) and the reference case (all input parameters 

are at their nominal value), i.e. there are (2p + 1) ACA-code 

runs. (p.::.. m is nurober of important input parameters) . 

Elementary geometric considerations (right and left-sided 

difference quotients) lead to an interpolating response surface 

which is continuous (but in general not differentiable) and 

linear within each quadrant. 

b) For each input parameter four values are chosen (usually 

Min,10%-quantile,90%-quantile, Max) and the reference case, 

which give 4p + 1 ACA-code runs (see Chap. 4 and Appendix). 

Similar geometric considerations as in case 1a) lead to an 

interpolatingresponse surface which is segmentwise continuous 

(i.g. not differentiable) and segmentwise linear (1 quadrant = 
.4 segmen ts) . 

Remark: 

In case 1b) the code approximation is more precise than in 1a), 

because there are more difference quotients. 

There is a need to do some adequacy checks, i.e. the response 

surface should not underestimate the ACA-code in those parts 

of the input parameter space which contribute to the (90%, 95%, 99%)­

quantiles of the output. 



-47-

1.2 (Fractiona~ Factarial Design 

Usually you have to construct a response surface which is linear 

in the parameters or in terms of parameters (functions of input 

parameters). The unknown coefficients of the response surface 

have to be estimated by the method of least squares. 

But be careful, the ''fractionizing" forces dropping or including 

of parameter terms into the response surface equation (for details 

see MAZUMDAR et al /15/, /16/ and VAURIO/MUELLER /42/). 

Often linear or polynomial response surfaces are used,built up 

by the input parameters or transformations of them. But it is 

possible that these functions may not be controllable outside the 

design poihts. 

1.3 Latin Hypercube-Sampling Design 

Due to the probabilistic nature of LHS, it is possible to estimate 

the distribution function and the variance for the particular out­

put under consideration directly from the model output associated 

with the LHS-sample. Quantiles of the output distributions can also 

be obtained and approximate confidence intervals be determined. 

(see McKAY/CONOVER/BECKMAN j22j and IMAN/CONOVER j30j). 

Remark: 

The distribution function for the output could also be estimated 

indirectly by fitting a response surface to the model input-output 

based on LHS and then proceeding as with factorial designs. 

Linear and polynomial terms or transforms of input parameters form 

the response surface function. ResponEe sUrface construction can be 

initiated by using stepwise regression to build a model based on 

a linear combination of the independent input parameters. If some 

indicators reveal the existence of nonlinear relationships, then 
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some approach other than linear regression on raw data should 

be considered for response surface construction (regression on 

ranks) . 
0 

IMAN/HELTON/CAMPBELL /24/, j25/ give an excellent overview on 

LHS and its properties. 

2. Tolerance-Limit Design 

Here it is possible to get uncertainty statements, so-called 

tolerance-lirnits, about the output quantity without using a 

response surface. 

Performing a TL-design to get a a.1QO%-upper statistical tole­

rance limit with confidence level y·100% gives an output sample 

(a,y) = (0.95,0.95) 

from the unknown output distribution. Then the (0,95, 0.95)-tole­

rance limit is 

(see Chap. 2.1) 

(-oo, Y( 59 )) is an 95%-confidence interval for the 95%-quantile 

of the output distribution, i.e. the interval is a kind of'upper 

estimator' for the 95%-uncertainty band which we are interested in. 

This type of design has been used for uncertainty studies to treat 

the German atmospheric dispersion model of UFOMOD, and the MARe­

submodels (atrnosph. dispersion, food chain) in the United Kingdom. 

(For details see HOFER/KRZYKACZ /7/) 
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3.3.4 Display of Results 

Following IMAN/HELTON /27/, there exists a nurober of ways 

in which sensitivity and uncertainty may be displayed at 

various stages in an ACA or PRA. 

Parametrie studies for sensitivity show the results of 

varying one or a few parameters at a time; however it is 

hard to investigate the relative effects of a large nurober 

of variables with this technique. 

Many sensitivity analysis methods involvegenerating partial 

derivatives or regression coefficients for dependent para­

meters of interest. In turn, various normalizations provide 

inside into relative parameter importance. Further for analy­

ses based on stepwise regression, R2 values and the order 

in which individual parameters enter a regression model pro­

vide insight with respect to variable importance. Ordinary 

and partial .correlation coefficients and fractional contri~ 

bution to variance can also be used to indicate parameter im~ 

portance. 

To display uncertainty, one of the simplest ways is to present 

a range of possible values. Such a range may result from a pro­

pagation of ranges obtained from assessments of expert opinion 

for a nurober of individual independent parameters. Similarly, 

if distributions are given for the independent parameters, then 

distributions can be estimated for the outcome quantities. When 

the quantity of interest is itself a distribution, this results 

in a family of distributions. 

However, it must be recognized that the quality of such distri­

butions depends on the quality of the distributions which we 

propagated. Confidence intervals of the output distribution can 

also be given. 
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In the German Risk Study /2/,/3/ as in various other studies 

the method of displaying the uncertainties in the results of 

an ACA or PRA has been to present a series of complementary 

cumulative distribution functions. These different ccdf's 

could represent, for instance, the best estimate and an upper 

and lower bound. 
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Fig. 3.3.4-1 Local subjective confidence interval for 

"early fatalities"(applied to the reference 

curve and "smoothed") /2/ 
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Figure 3. 3. 4-1 shows as a typical resul t a reference curve (E) 

for "early fatalities", determined with the "best-estimate" 

values for the input parameters. The lower (upper) broken 

line is the 5% (95%)-confidence curve; i.e. for a fixed 

nurober of health effects it denotes the range of expected 

frequencies in which, with 90%-confidence, the expected 

frequency (per year of accidents) of exceeding this nurober 

of effects lies (see GERMAN RISK STUDY /2/, /3/). (The 

totality of the local subjective confidence intervals has 

been joined by a smoothed trend-curve.) 
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3.4 Conclusions 

We have sketched to a certain extent some of the rationale, the 

connections and tools when doing sensitivity and uncertainty studies. 

We follow DOWNii.\IG et al /31/ that the methodology for performing sensi­

tivity and uncertainty analysisfor complicated computer codes is 

still under development. Many of the methods in use today are 

based on computer codes and have been used successfully on proba­

bilistic risk assessment in nuclear safety, and related areas. 

One way is to follow the route of~reening uncertain input parame­

ters, fitting a response-surface model to the output,varying only 

the "important" parameters from the screening, then calculating 

the moments of this response model (either exactly or using Monte 

Carlo or Latin hypercube sampling method to obtain sample estimates), 

and fitting an output distribution. The pitfalls in this approach 

are several. The uncertainty that we selected the most important 

input parameters especially when interactions cannot be neglected, 

is a major problern in this approach. After selecting the important 

parameters and fitting a response surface to the output varying 

only these variables, one must ask this question: What is the 

cumulative effect on the output for those variables that were held 

fixed? This cumulative effect may be large when working 

with a computer code containing several hundred parameters input. 

The fitting of a response-surface model is not as Straightforward 

as many contributors to the literature lead us to believe. rt is 

still very much on an art; with highly nonlinear functional forms, 

the second-order response-surface model may not be an acceptable 

approximation except over a very limited range. In addition there 

is always the question of what is an acceptable fit to the output. 

Finally, if we accept the response-surface model as representative 

of the output, then we can use it to obtain the first four moments 

and fit a distribution to it. 
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In contrast to the preceding course of action is the method 

to use a tolerance limit approach (MAZUMDAR et al /15/, Chap. 4.2 

and HOFER/KRZYKACZ /7/) or the LHS-method. IMAN/CONOVER /30/ 

used the Latin hypercube sampling methodology to obtain an esti­

mate of theccdf of the output. The Latin hypercube sampling allows 

a representative sample of the input variables to be selected and 

in this way yields a more complete description of the model be­

havior. Using the empirical ccdf ,one can then obtain estimates 

of the percentile points of the output. This methodology is 

Straightforward and does not suffer the pitfalls mentioned earlier. 

It can be used to screen input parameters, in the sense of forming 

a hierarchy of most important to least important, and no para­

meters need be dropped from the analysis. Moreover, the use of 

Latin hypercube sampling and partial rank order correlation can 

uncover strong monotonic (highly nonlinear) relationships better 

than standard techniques. 

Both approaches offer different insights to the input-output 

relationships of the computer code. Few studies exist that indicate 

the superiority of one approach over the other. 

In general, it appears that uncertainty analysis requires a good 

approximation to the code over the complete set of possible input 

values. Response-surface approximations are designed to be local 

in nature and, therefore, do not perform well in uncertainty ana­

lysis. They are more suited to situations where local behavior of 

the code is of interest. Sensitivity analysis is a good example 

of this type of application. In some applications qualitative in­

formations about the relationship of Y to the inputs is all that 

is required. In such cases, the approximations provided by fitting 

a response surface to Y is adequate. More work needs to be done 

in assessing the strengths and waaknesses of the two approaches 

in the areas of sensitivity and uncertainty analysis. 
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4. Some Applications of Methods to the Atmospheric 

Dispersion and Deposition Submodel of UFOMOD (*) 

Within the framewerk of the CEC-MARIA programme some 

sensitivity and uncertainty studies were carried out at GRS 

and KfK. 

It was suggested to 

- investigate the specifics of probabilistic uncertainty ana­

lyses of accident consequence models for nuclear power 

plants and to suggest practical approaches; 

- investigate the relevant characteristics of important 

submodels of the accident consequence model and to utilize 

the gained insights for the probabilistic uncertainty pro­

pagation through these submodels; 

- perform exemplificative probabilistic uncertainty analyses 

for some ready-to-run submodels after an a priori compila­

tion of relevant uncertain parameters (including typefica­

tion and quantification) was set up together with the model 

experts. 

Before going into sophisticated methodological treatments and 

expensive computer runs some work was done to decide on 

the level of sensitivity and uncertainty analyses: Operating 

on submodels or on the complete models. 

(*): see FISCHERIEHRHARDT 1431, FISCHERIEHRHARDTIMEDER 1441 
and HOFER IKRZYKACZ I 7 I, HOFER et al I 391 
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• Operating on submodels 

Generally the accident consequence model exhibits a structure 

suggesting the uncertainty analysis to operate on individual 

submodels. To this end the data transfered between the sub­

models is to be identified. The analysis is to propagate the 

uncertainties through the respective submodel to the output 

to others, thereby proceeding from submodel to submodel. This 

way the selection of the propagation procedures may take account 

of the individual Submodel characteristics (number of relevant 

uncertain parameters, running time, specific functional rela­

tionship between uncertain parameters and output to other sub­

models etc.). 

- Advantages: 

Submodels without relevant uncertain parameters need only be 

run once; 

submodels that need relatively little CPU-time per run but 

are subject to numerous and severe uncertainties may receive 

treatment with methods selected with emphasis on accuracy; 

CPU-intensive submodels with, however, only few relevant un­

certain parameters may permit elaborate treatment with res­

pect to these parameters; 

knowledge of the functional submodel characteristics may 

enter the formulation of the propagation expression; 

in effect, insights may be gained comparable to those from 

a number of accident consequence model runs larger than the 

nurober that could possibly ever be afforded with the full 

model; 

subsequent changes in the probabilistic modelling of the 

parameter uncertainties (within limits, however) may be 

taken into account at relatively low cost. 
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- Disadvantages: 

Inaccuracy of the propagation procedures chosen for the 

various submodels (especially beyond the design points) 

is difficult to quantify; 

CPU-time needed for the analysis is strongly dependent 

on the nurober of relevant uncertain parameters in CPU­

intensive submodels with output uncertainties of overall 

importance; 

discontinuities with respect to the uncertain parameters 

may be hard to take care of properly; 

correlations between relevant uncertain parameters of 

different submodels require specific attention; 

overall sensitivity analysis (individual contributions 

to the resulting combined uncertainty in the consequences) 

w.illhave to be performed in submodel steps. 

• Operating on the complete model 

Here the propagation procedure is selected with respect to 

the complete accident consequence model and its characteris­

tics. The resulting uncertainties in the conditional ccdf 

of the consequences (given an accidental release of a specific 

category and at a specific site) are the immediate objective 

of the uncertainty propagation. 

- Advantagesof a response surface approach for the complete 

model: 

knowledge of consequence model characteristics may enter the 

response surface formulation; 

no merging ·into seenarios at submodel interfaces; 

no isolation of submodels necessary (data storage at submodel 

interfaces may, however, be recommendable to reduce CPU-time); 

overall sensitivity analysis is a by-product; 

changes in the probabilistic modelling of the parameter 

uncertainties (within limits, however) may be taken into 

account at relatively low cost. 
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- Disadvantages 

CPU-time (~ nurober of conSquence model runs) is strongly 

dependent on the nurober of relevant uncertain parameters 

and terms in the response surface (data'storage at sub­

rnedel interfaces may help to reduce CPU-time dependent on the 

experimental design) ; 

extrapolation beyond the design points is not encouraged; 

discontinuities with respect to the uncertain parameters 

are hard to take care of properly; 

measure of accuracy of the uncertainty analysis is proble­

matic (check of adequacy of the response surface) . 

For the following reasons it was decided to start to operate 

on submodels: 

- the large number of uncertain parameters may profitably be 

reduced already on the submodel level, 

- the insights gained from the analysis of the submodels will 

be most useful for the analysis of complete accident conse­

quence models, 

- various alternative analysis techniques may be explored with­

in a restricted computer budget. 

The following procedure steps have been adopted: 

- the objectives of investigation were defined. 

- relevant uncertain parameters were identified and typefied 

and data collection was done in discussion with submodel ex­

perts; 

- a compilation of these parameters was set up by the experts 

including uncertainty quantification and probabilistic mo­

delling as well as indication of correlations between the 

quantified uncertainties: 

for preliminary 'important parameter' selection and sen-

sitivity analysis anone-at-a-time-design was used; 
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. on the other hand, in the tolerance-limit design, both un­

certainties and sensitivity were evaluated for the atmospheric 

dispersion submodel. 
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4 .1 The Atmoseheric Dis:eersion and De;eosi tion Submodel and i ts 

Parameters 

4.1.1 General Descri;etion 

As a consequence of an accident in an installation of the nuc1ear 

fuel cycle, there is a certain probability that radioactive mate­

rial is released into the atomsphere from the containment or the 

exhaust air stack. The radioactive plume travels away from the 

source of emission according to the actual wind direction and ve­

locity. In general the radionuclide concentrations in air decrease 

continuously in the course of this movement, mainly due to turbu­

lence in the atomosphere, dry deposition and washaut by preci­

pitation, if any. 

The atomospheric dispersion and deposition submodel of UFOMOD is 

based on the 'Gaussion diffusion model', which has been modified 

and extended to avoid completely unrealistic results under real 

release conditions. A detailed description of the model is given 

in GERMAN RISK STUDY /3/, the most important characteristics are 

summarized in the following condensed description. 

A general view of the phenomena considered in the model and a 

schematic view of its structure are shown in Figs. 4.1.1-1 and 

4.1.1-2. The basic formula for the calculation of ground level 

concentrations CA at the receiving point P (x,y,O) under the as­

sumption of total reflection at the earth's surface is given by 

CA(x,y,O,heff) = 

2 )} A [- c:: heff (4.1.1.1) = · exp + 
TI cr (x) cr (x) u 2cr 2 

y z y z 
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~ctivity release rate of the source 
horizontal and vertical dispersion 

parameters respectively 

mean wind speed 

effective height of emission 

The dispersion parameters a (x) and a (x) are expressed by the 
y z 

following power functions 

p 
a (x) = a . X y (4.1.1.2) y Yo 

a (x) = a . xPz (4.1.1.3) z z 
0 

The coefficients Oz
0

, Pz and oYo' py are determined by approxima­

tion of equation (4.1.1.1) to concentration values resulting from 

tracer experiments carried out at KfK /3/. They are dependent on 

roughness length, which was found in the neighbourhood of KfK 

tobe Z = 1,5 m (roughness grade III). 
0 

Corresponding to the mixing height concept, in which a barrier 

layer stops turbulent exchange at greater heights, the vertical 

dispersion parameter is kept constant on reaching the value, 

oz,max• This value is linked with the mixing height hm by the 

expression 

a = z,max h = 0.8 . h 
m m (4.1.1.4) 
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The radioactive material may leave a nuclear facility in one 

of several ways, e.g. from a stack or leaking from the face of 

the building. In the case of a stack release, the source is 

effectively an isolated point and has negligible influence on 

the dispersion process. Radioactivity ernerging from the building 

however, may be swept down into a turbulent building wake where 

it will be diluted before it travels further downwind. This in­

creased dilution is taken into account as follows: 

c . u 
A 

A = 

= [TI·O (x) •O (x)+C·Fl - 1 ·exp y z .1 

J 

with F representative building area flowed to 

heff < 20 m 

c = when 

heff > 20 m 

(4.1.1.5) 

The effective emission height heff in the equations (4.1.1.1) 

and (4.1.1.5) consists of the geometric release height h and 
0 

the increase in height 6h caused by a buoyant, rising plume: 

(4.1.1.6) 

As the only reason for plume rise, a release of thermal energy 

is considered; the possibility of a high upward momentum is 

neglected. To calculate 6h, the following modified BRIGG 1 s 

formulas are used: 
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for dispersion categories A to D: 

F*·x
2 

) 
-3 u 

1 
3 - D 

A 
(4.1.1.7) 

for dispersion categories E and F: 

where 

= 

F'* = 

Q 

u 

s 

X 

- D 
A 

quantity to correct plume rise 

(area source instead of point source) 

[ 

1, 6 for A to D 

2,9 for E,F 

(4.1.1.8) 

8.84 [ m4f1:3J ·Q emission coefficient 

heat content released with the activity 

plume {MWJ 

mean wind speed 

stability parameter 

distance from point of release 

For further details see /3/. 

To determine the mean wind speed u, the wind profile 

(4.1.1.9) 
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is averaged over the effective height of ernission heff" 

u == 

where 

u(heff) 

u 
0 

p 

0 

u(z)dz = (4.1.1.10) 

wind speed at the effective ernission 

height heff 

wind speed at anernorneter height h 
0 

wind profile exponent 

If u is calculated less than 1 rn/s, then the value 1 rn/s is 

used. 

During the dispersion process, aerosols and iodine are rernoved 

frorn the atornsphere by dry deposition ("fallout") or in the 

case of precipitation by wet deposition ("washout"). To calcu­

late dry deposition, the so-called "source depletion" rnodel is 

applied, which assumesproportionality between depositionrate 

and instantaneous air concentration near ground surface. This 

ratio is called the deposition velocity vd. The activity in­

ventory of the plurne is reduced by the arnount deposited. 

Wet deposition is rnodelled by the washaut coefficient A and 

treated sirnilar to dry deposition. The cornponent of activity 

rernaining in the plurne is 

f w = e 
-A6t (4.1.1.11) 

where 6t gives the duration of rain. Noble gases are neither 

wet nor dry deposited. 



-~-

Themeteorological data used to calculate the radioactivity 

concentrations of the air and the contamination of the soil, 

namely wind speed, diffusion category and information about 

precipitation, are adapted at hourly intervals to the measured 

real weather patterns. The meteorological parameters measured 

on the site are assumed to have the same values over all distan­

ces at the same time. This is done for 115 weather sequences 

whose starting times are equidistantly shifted (three days plus 

five hours difference) over the time span of one year. 

A straight line transport of the exhaust air plume is assumed. 

This model of straight line diffusion is applied up to a distance 

of 540 km. The area enclosed by this circle is roughly correspon­

dent to the area of Central Europe. 

4.1.2 Parameter Values and Their Distribution 

The above mentioned equations (4.1.1.1) to (4.1 .1.11) represent 

the mathematicalformulation offue atmosphericdispersion and de­

position submodel of UFOMOD. They contain various input quanti­

ties, whose actual values are uncertain (i.e. not known exactly) 

due to 

- insufficient knowledge of physical processes 

- model simplifications 

- lack of data base etc. 
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In T.able 4. 1 • 2-1 ( a) (b) the parameters, their current values 

used in UFOMOD/B3 and the assigned distribution function with 

the characteristic quantities minimum, 10%-, 50%-, 90%-fractile 

and maximum are listed. The distributions express our judgment 

of the lack of precision in the 'best estimate' of a parameter's 

value as input to UFOMOD. They do not represent actual variabili­

ty in the data. Furthermore, for the present exercise, the choice 

of source term parameters is based on the assumption of release 

category FK2 oftheGerman Risk Study /3/. 

The following explanatory remarks refer to the choice of parameter 

values and their variations: 

Ex,elanator;:t Remarks to Tables 4. 1 . 2-1 ( a) (b) 

1. The thermal energy Q is released in three subsequent puffs 

each of one hour duration due to the UFOMOD modelling of 

release category FK2. 

2. The wind speed data u
0 

(see Equ. 4.1.1 .9) are measured values, 

taken from hourly reco~ded weather data on magnetic tape. Their 
uncertainty is taken into account by 

u == (1 + 0.1 *r) u
0 

+ 0.5 * r 

The quantity r is an uncertain parameter uniformlY distributed 

between -1 and +1. 

3. The effective plume height heff = h
0 

+ 6h is given by the 

geometric height of the source h
0 

and the plume rise 6h. The 

geometrical height of the source h
0 

is uncertain due to the 

unknown location of the failure of the Containment. 

4. The quantities fPR and DA to describe plume rise have been 

chosen according to expert judgment, as well as the atmos­

pheric dilution parameter c
1 

in Equ. 4.1 • 1. 5) . 
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5. The mixing height h for the diffusion categories A to 
m 

F are valid for roughness length 1.5 m (roughness grade III). 

6. The uncertainty of the horizontal and vertical dispersion 

parameters was assigned to the parameter o and o respec-yo zo 
tively (see Equs. 4.1.1.2 and 4.1.1.3) 

7. Dry and wet deposition parameters are specified for iodine 

and aerosols. The 50%-fractiles of the washout-coefficients 

stem from reference /5/. 

8. There is a certain correlation, in uncertainty between the ele­

ments xi of the following parameter groups Gr (r=1 , ... ,5): 

G 2 = [X 1 4 ' • • • ' X 1 91 

G4 = (x32 ,x34 ,x36 ,x38J 

G5 = [x33 ,x35 ,x37 ,x39j 

mixing height for diffusion categories 

A to F 

horizontal dispersion parameters for 

diffusion categories A to F 

vertical dispersion parameters for 

diffusion categories A to F 

dry and wet deposition parameters 

for iodine 

dry and wet deposition parameters 

for aerosols 

The correlation coefficient within each group G (r=1, ... ,5) has r 

been assumed to be k = 0.5. Parameter uncertainties of different 

groups are not assumed correlated. 
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9. The lognormal distributions have been truncated at their 10%­

and 90%-fractiles. 

A variate X is lognormally distributed if y = log X has a 

normal distribution N(~,o) where ~ = log m and m = 50%-fractile 

of the distribution of X. 

Symbolized by L: ~,o 

10. HOFER/KRZYKACZ /71 used essentially the same distribution list 

of Tables 4.1.2-1 (a) (b) with some slight changes. 



r--

Number of 
variable 

1 Q 

2 r 

3 h(Q) 

4 fPR(A-B) 

5 fPR(E-F) 

6 D(A) 

7 C(l) 

8 h ..... 
9 

10 
11 
12 
13 

Best estimate 50% 
List of para- or current val- Mini- percent- Maxi- Type of dis-
meters Unit ue in UFOMOD mum 10% iles 90% mum tribution 

thermal energy [MWh] 12.5 0.84 1.3 4.2 11.5 16.8 lognormal 
released in (truncated) 
three hours 

quantity to 0 -1 -0.80 0 0.80 1 uniform 
describe er-
ror in wind 
speed 

height of fll!7 10 0 5 10 20 30 lognormal 
source 

factor to DC=A,B 1.6 1.1 1.2 1.6 2.0 2.1 
describe C,D 
plume rise 

uniform for different 
DC DC=E,F 2.9 1.65 1.9 2.9 3.9 4.15 

quantity to [m7 45 7.5 10 20 30 32.5 uniform 
correct 
plume rise 

atmospheric 1.5 0.25 0.5 1.5 2.5 2.75 
dilution uniform 
parameters 
for lee-eddies 
of reactor 
building 

mixing height DC=A 2500 1000 1200 2000 2800 3000 
for category DC=B 1875 750 900 1500 2100 2250 
A-F and rough- [rrJ DC=C 1250 500 600 1000 1400 1500 uniform 
ness-length DC=D 1250 350 420 700 980 1050 
> 1 m DC=E 1250 200 240 400 560 600 

DC=F 1250 125 150 250 350 375 

Table lf.1'.2-l(a): Atmospheric dispersion submode1 parameters for uncertainty 
(DC = diffusion category A, B, C, D, E, F) 

Not es 

Note No. 1, 9 
Note No. 10 

Note No. 2 

Note No. 3, 4 

Note No. 4 

Note No. 4 

Note No. 5, 8 

...... 
0 

I 



Number of 
variable 

14 ayo 
15 
16 
17 
18 
19 

20 a:r" 
21 
22 
23 
24 
25 

26 p 
27 
28 
29 
30 
31 

v(d) 

32 
33 

A 

34 
35 

36 
37 

38 
39 

Best esti-
mate or cur-

List of para- rent value Mini- Maxi- Type of 
m.eters Unit in UFO}IOD mum 10% 50% 90% mum distribution 

horizontal DC=A 0.65 0.325 0.4 0.65 LOS 1.3 
dispersion DC=B 0.65 0.325 0.4 0.65 1.05 1.3 
parameter for DC=C 0.43 0.215 0.265 0.43 0.7 0.~6 lognormal 
different DC DC=D 0.34 0.17 0.21 0.34 0.56 0.68 (truncat:ed) 

DC=E 0.34 0.17 0.21 0.34 0.56 0.68 
DC=F 0.34 0.17 0.21 0.34 0.56 0.68 

vert:ic:al dis- DC=A 0.039 0.0195 0.024 0.039 0.065 0.078 
persion para- DC=B 0.020 0.010 0.0125 0.020 0.033 0.04 
meter for DC=C 0.052 0.026 0.032 0.052 0.086 0.104 lognormal 
different: DC DC=D 0.100 0.05 0.061 0.100 0.165 0.2 (truncated) 

DC=E 0.66 0.33 0.4 0.66 1.05 1.32 
DC=F 1.30 0.65 0.8 1.30 2.15 2.6 

wind profile .DC=A 0.07 
exponent for DC=B 0.13 
different DC DC=C 0.21 -SO% -40% u=ent +40% +50% uniform 

DC=D 0.34 !values 
DC=E 0.44 
DC=F 0.44 

dry deposition 
veloc:ity [m/s} 

iodine 0.01 -4 0.002 0.01 0.05 0.84 1.2·10_5 lognormal 
aerosols 0.001 2.5·10 0.0004 0.002 0.01 0.165 

washout-c:oef-
fic:ient for 
precipitat:ion 
rates [1/s] 

0-lmm/s iodine 3.7·10-5 5·10-7 8.4-10=~ -5 -4 3.5·10-3 4.2·10_5 :t.l •10 -4 
aeroso1s 2.9·10-5 4.2·10-7 6.8·10 3.4·10 l. 7·10 2.9·10-3 

1-3mm/s iodine 1 .• 1·10-4 1.35·10-6 2.1·10-5 1.06·10-4 5.3-10-4 8.5·10-3 
lognormal 

.. erosols 1.22·10-4 1.4 ·10-6 2.3·1o_5 1.17•10-4 5.85·10-4 1 ·10-2 

-4 -6 4.6·10-5 2.31·10-4 -3 1.9·10-2 >3mm/s iodine 2.37·10_4 2.7 ·10_6 1.16·10_3 
aerosols 3.4 ·1o 4 ·lo 6.6·10-5 3.29·10-4 1.65·10 2.5·10-2 

--

Table '1:1.2-l(b): Atmospheric: dispersion submodel parameters for uncertainty analysis 

(DC = diffusion cat:egory A, B, C, D, E, F) 

Not es 

Note No.6, 
8,9 
10 

Note No.6, 
8,9 
10 

--l 

Note No.7, 
8 

NoteNo.7, 
8 



-72-

4.2 Main Results of the One-At-A-Time-Design 

In Chap. 4.1.2 a list of 39 uncertain input parameters has been 

presented, which have certain effects on the output in the 

atmospheric dispersion and deposition submodel (UFOMOD). 

The aim was to reduce the number of relevant input parameters 

to the most sensitive ones, say 14 out of 39. This was done 

by the one-at-a-time-design due to a certain distance criterion 

(see Appendix) . The number fourteen is motivated by the fact 

that in certain design cases the number of computer runs of the 

ACA-codes resulting from 10-15 uncertain input parameters can 

still be managed within time and cost limits. 

157 UFOMOD runs have been performed, each based on a set of 115 

weather sequences. The evaluation of the resulting concentration 

fields in the air and on ground surface have been restricted to 

the mean values under the centerline of the plume, i.e. 157 con­

centration values each averaged over 115 weather situations. 

To perform sensitivity and uncertainty analysis, the two nuclides 

( 1 ) iodine-1 31 

(2) caesium-137 

(T 1/ 2 = 8d) 

(T 1/ 2 = 1.2·10
4 

d = 30 y) 

have been chosen as representatives for isotopes with short and 

long radioactive half-lifes. They are also important contribu­

tors to early (1) and latent cancer (2) fatalities. Additionally 

the influence of different depositions veloeitles for iodine 

and aerosols can be investigated. 

The resulting concentration fields in the plume, in the air 

and on ground surface up to 540 km from the site have been 

analyzed with respect to the variability of the mean concen­

tration values at the four distance intervals: 
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0.2 km . 0.5 km 

0.8 km 1 • 2 km 

8 km 12 km 

80 km . 120 km . 

representative for the microscale and near, mean and far distances. 

In the following a series of tables are listed which give the 14 

most important input variables for each of the 24 combinations 

(nuclide, distance, concentration type}: 

Nuclides: · Iodine • 131 

· Caesium . 137 

Distances: 0.2 km . 0.5 km .... 

0.8 km .. 1 . 2 km 

8 km . 12 km 

80 km . 120 km . 

Concentration ·plume 

types: •air near ground (1-m-height) 

•ground surface 

A complete and detailed phenomenological interpretation of 

all results is neither the aim of this report nor a meaning­

ful task, because the one-at-a-time design does not allow 

quantitative conclusions with respect to the overall impor­

tance of each parameter. For this reason, the most remark­

able findings of the results will be shortly and qualitative­

ly discussed and interpreted exemplarily for 

- iodine concentration in air, 1m above ground surface 

(Tables 4.2-1.2(a)-(d) and 4.2-3(a)} 

- iodine concentration on ground surface 

(Tables 4.2-1.3(a}-(d) and 4.2-3(b)) 

- caesium concentration on ground surface 

(Tables 4. 2-2.3 (a}- (d) and 4. 2-3 (e)} 
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1. The maximurn relative deviations of meanair concentrations occur 

in close vicinity to the sites. This is due to the fact that 

FK2 releases contain thermal energy which causes plume rise. 

Therefore variation of the thermal energy Q has a very strong 

influence on the air concentrations near ground surface; this 

influence decreases with growing distance, since after termina­

tion of plume rise, the radioactive material is transported 

back to the lower regions of the atrnosphere by diffusion (see 

Fig. 4.1.1-1). The parameter Q is the most important one up 

to the second distance band (0.8km 7 1.2km). In the third 

distance band (8km 7 12km) it causes smaller deviations (rank 

15 for iodine and rank 12 for caesium). 

2. The maximumrelative deviation of meanground concentrations is 

much higher than for the air concentration, especially in 

distances up to some 10 km. This is due to the variation 

of the dry and wet deposition parameters,which are most im­

portant in this distance range. Since in all calculations, 

the mean concentration under the centerline plume, averaged 

over 115 weather sequences, is considered, dry deposition 

has rank 1 (wet deposition occurs with lower frequency). 

With increasing distance form the site, the Variation of 

deposition parameters leads to smaller deviations of ground 

concentrations due to the source depletion. At distances 

beyond 100 km, the dispersion parameters 0 are responsible y 
for the highest deviations. 

3. The effect of parameters describing the influence of the 

reactor building on plume behaviour is relatively small. 

Only fPR and DA appear up to 1 km within the 14 most im­

portant parameters. All other quantities (h
0
,c

1
) have 

minor influence on uncertainty of mean concentration values. 
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4. Variation of the mixing height gives significant contri­

butions only at far distances (> 50km) , where the de­

viations are small anyhow. This is due to the modeling 

of vertical dispersion, which stops at h (see Fig. 4.1.1-1). m 
At distances beyond some 10 km, the vertical Gaussian profile 

has changed and a constant axial concentration results. Con­

sequently, the concentration dependent on the mixing height 

and 0 . 
y 

5. Due to the model characteristic described in point ~ above, 

the influence of the dispersion parameters 0 and 0 is depen-y z 
dent on the distance range considered. At far distances, the 

concentrations are only a function of 0 . In close vicinity 
y 

to the site, 0 is responsible for activity concentrations z 
above and on ground surface in particular when plume rise 

occurs. 

6. The results show, that beyond some kilometers, variations 

of the air and ground concentrations of iodine and caesium 

higher than 20% are caused by variations of the same 10 

parameters of 0y ,vd and A. This result simplifies the future 

uncertainty analyses. 

7. It must be pointed out, that the results of this sensi­

tivity study are valid only for the assumed release 

category FK2. This concerns especially all results in 

the vicinity of the sites up to 10 kilometers. Other 

releases, e.g. without or higher thermal energy or stack 

releases can lead to other sensitivities in this dis­

tance range. 
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To sum up: 

The most important parameters identified by the one-at-a­

time-design are: 

- released thermal energy; Q 

- dry deposition Velocities for iodine and aerosols; vd 

- washout-coefficients for iodine and aerosols for various 

rainfall rates; A 

horizontal and vertical dispersion parameters for various 

diffusion categories; 



RElEASE CATEGORY 

DISTANCE 

NUCUDE 

GONCENTRATION ClASS 

HEANING 

THERMAl ENERGY 

fl<2 

0.2 - 0.5• I<M 

IOD INE 

PlUHE 

VERTICAl DISPERSION DC=D 

VERTICAl DISPERSION DC=E 

VERTICAl DISPERSION DC=f 

VERTICAl DISPERSION DC=C 

HORIZONTAL DISPERSION DC=D 

VERTICAl DISPERSION DC=B 

VERTICAl DISPERSION DC=A 

PlUME RISE FACTOR DC=A,B,C,D 

HORIZONTAl DISPERSION DC=C 

HORIZONTAl DISPERSION DC=E 

HORIZONTAl DISPERSION DC=f 

HORIZONTAl DISPERSION DC=B 

HORIZONTAl DISPERSION DC=A 

PHYS.SYMBOl 

Q 

SIGZ(D) 

SIGZ(E) 

SIGZ(f) 

SIGZ(C) 

SIGY(D) 

SIGZ(B) 

SIGZ(A) 

FPR(A-D) 

SIGY(C) 

SIGY(E) 

SI GY( F) 

SIGY(B) 

SIGY(A) 

TABlE 'f.~-4.1(Q.) LIST Of 14MOST IMPORTANT VARIABlES 

VARIABlE 

X( 1) 

X(23) 

X(24) 

X(25) 

X(22) 

X( 17) 

X(21) 

X(20) 

X( 4) 

X(16) 

X(18) 

X(19) 

X(15) 

X(14) 

RElEASE CATEGORY 

DISTANGE 

NUCliDE 

GONCENTRATION ClASS 

MEANING 

FK2 

0.2 - 0.5 KM 

CA[SIUH 

PlUME 

PHYS.SYMBOl VARIABlE 
----------------------------------------------------------------

TIIERMAl ENERGY 

VERTICAl DISPERSION I>C=O 

V[RTICAl DISPERSION OC=[ 

VER11CAl DISPERSION OC=f 

VERTICAl DISPEHSION !>C=C 

HOH IZON r Al D I SPfi. HS I ON I>C= U 

YERTICAl DISP[RSION DC·B 

VLRTICAl DISPERSION DC-A 

PLUM[ RIS[ fACIOR DC·A,ß,C,D 

IIORIZONTAI. DISPfHSION OC·C 

IIORIZONTAL DISI'IRSION OC-r 

IIOR IZONTAL 0 I SPUlS I ON oc~ r 

liOHI.lONIAI. iliSI'IIlSION IJC·-U 

11011 I lON I Al ll I SI' I HS I ON nc· A 

Q 

SIGZ(O) 

SIG7(f) 

SIGl(F) 

SIGZ(C) 

SI GY( I)) 

SIGl(ß) 

SIGZ(A) 

I PR(A-0) 

SIGY(C) 

SI GY([) 

SIGY(I") 

SIGY(II) 

SIGY(A) 

IAßll /f,.2_-.2,1(o..)tiSI 01 Jli I~OSI IMI'OHIANI VAHIABilS 

X( 1) 

X(23) 

X(24) 

X(25) 

X(22) 

X( 11) 

X(21) 

X(20) 

X( 4) 

X( 16) 

X(18) 

X(19) 

X(15) 

X(14) 

-..j 
-..j 



RELEASE CATEGORY 

DISTANGE 

NUCLIDE 

CONCENTRAJION CLASS 

MEANING 

THERMAL ENERGY 

Ir"'""" . """ 
0.8 - 1.2 KM 

IOD INE 

PLUME 

HORIZONTAL DISPERSION DC=D 

HORIZONTAL DISPERSION DC=E 

HORIZONTAL DISPERSION DC=F 

HORIZONTAL DISPERSION DC=C 

HORIZONTAL DISPERSION DC=B 

HORIZONTAL DISPERSION DC=A 

VERTICAL DISPERSION DC=E 

VERTICAL DISPERSION DC=D 

VERTICAL DISPERSION DC=F 

VERTICAL DISPERSION DC=C 

VERTICAL DISPERSION DC=B 

VERTICAL DISPERSION DC=A 

PLUME RISE FACTOR DC=A,B,C,O 

PHYS.SYMBOl 

Q 

SIGY(O) 

SIGY(E) 

SIGY(f) 

SIGY(C) 

SIGY(B) 

SIGY(A) 

SIGZ(E) 

SIGZ(D) 

SIGZ(F) 

SIGZ(C) 

SIGZ(B) 

SIGZ(A) 

FPR(A-0) 

TABLE /1,1-A.1(.&-) LIST OF 14MOST IMPORTAIH VARIABLES 

VARIABLE 

X( 1) 

X( 17) 

X(18) 

X(19) 

X( 16) 

X(15) 

X(14) 

X(24) 

X(23) 

X(25) 

X(22) 

X(21) 

X(20) 

X( 4) 

RELEASE CATEGORY 

DISTANGE 

NUCLIOE 

GONCENTRATION CLASS 

MEANING 

THERMAL ENERGY 

fK2 

0.8 - 1.2 KM 

CAESIUM 

PLUME 

HORIZONTAL DISPERSION DC=D 

HORIZONTAL DISPERSION DC=E 

HORIZONTAL DISPERSION DC=F 

HORIZONTAL DISPERSION DC=C 

HORIZONTAL DISPERSION DC=B 

HORIZONTAL DISPERSION DC=A 

VERTICAL DISPERSION DC=E 

VERTICAL DISPERSION DC=D 

VERTICAL DISPERSION DC=F 

VERTICAL DISPERSION DC=C 

VERTICAL DISPERSION DC=B 

VERTICAL DISPERSION DC=A 

PLUME RISE FACTOR DC=A,B,C,D 

PHYS.SYMBOL 

Q 

SIGY(D) 

SIGY(E) 

SIGY(F) 

SIGY(C) 

SIGY(B) 

SIGY(A) 

SIGZ(E) 

SIGZ(O) 

SIGZ( F) 

SIGZ(C) 

SIGZ(B) 

SIGZ(A) 

FPR(A-0) 

TABLE l.f.l-l.1(4) USJ OF 14MOST IMPORTANT VARIABLES 

VARIABLE 

X( 1) 

X( 17) 

X(18) 

X(19) 

X(16) 

X(15) 

X(14) 

X(24) 

X(23) 

X(25) 

X(22) 

X(21) 

X(20) 

X( 4) 

---1 
CO 

I 



RElEASE CATEGORY 

DISTANCE 

NUCliDE 

GONCENTRATION ClASS 

fK2 

8.0 - 12.0 KM 

IOD INE 

PlUME 

MEANING PHYS.SYHBOl VARIABlE 

HORIZONTAl DISPERSION DC=E SIGY(E) X(18) 

HORIZONTAl DISPERSION DC=D SIGY(D) X(17) 

HORIZONTAl DISPERSION DC=f SIGY(F) X(19) 

HORIZONTA~ DISPERSION DC=C SIGY(C) X(16) 

HORIZONTAl DISPERSION DC=B SIGY(B) X( 15) 

HORIZONTAl DISPERSION DC=A SIGY(A) X(14) 

DRY DEPOSITION VElOCITY IODINE VD( 10) X(32) 

WASHOUT COEfFICIENT IODINE 0-lHM/S lAMB( 10,0-1) X(34) 

WASHOUT COHfiCIENT IODINE >3MM/S lAMB( 10,>3) X(38) 

WASHOUT COEffiCIENT IODINE 1-3MM/S lAMB ( I 0, 1 - 3 ) X ( 3 6 ) 

QUANTITY TO DESCRIBE ERRORR IN WIND SPEED R X( 2) 

MIXING HEIGHT DC=D HM(D) X( 11) 

Vf.RTICAL DISPERSION DC=E SIGZ(E) X(24) 

HIXING HEIGHT DC=C HM(C) X( 10) 

TABLE 'f) .. -~U (c) LIST Of 14 MOST IMPORTANT VARIABLES 

fK2 
r 

RElEASE CATEGORY 

DISTANCE 8.0 - 12.0 KM 

NUCliDE 

GONCENTRATION ClASS 

HEANING 

CAESIUM 

PlUME 

HORIZONTAl DISPERSION DC=E 

HORIZONTAl DISPERSION DC=D 

HORIZONTAl DISPERSION DC=f 

HORIZONTAl DISPERSION DC=C 

HORIZONTAl DISPERSION DC=B· 

HORIZONTAl DISPERSION DC=A 

DRY DEPOSITION VElOCITY AEROSOlS 

PHYS.SYHBOl VARIABlE 

SIGY(E) X(18) 

SIGY(D) X( 17). 

SI GY( F) X(19) 

SIGY(C) X(16) 

SIGY(B) X(15) 

SIGY(A) X( 14) 

VD(AE) X(33) 

QUANTITY TO DESCRIBE ERRORR IN WIND SPEED R X( 2) 

WASHOUT COEffiCIENT AEROSOlS 0-lMM/S lAMB(AE,0-1) X(35) 

WASHOUT COEfFICIENT AEROSOlS 1-3MM/S lAMB(AE,l-3) X(37) 

WASHOUT COEffiCIENT AEROSOLS >3MM/S LAMB(AE,>3) X( 39) 

MIXING HEIGHT DC=D HM(D) X( 11) 

THERMAL ENERGY Q X( 1) 

VERTICAL DISPERSION DC=E SIGZ(E) X(24) 

TABLE 11.1..- 2.'f(c) LIST Of 14 MOST IMPORTANT VARIABLES 

" CD 



RELEASE CATEGORY 

OISTANCE 

NUCLIOE 

CONCENTRATION CLASS 

MEANING 

fK2 

80.0 - 120.0 KM 

IOD INE 

PUJME 

HORIZONTAL DISPERSION DC=O 

HORIZONTAL DISPERSION DC=E 

HORIZONTAL DISPERSION DC=C 

HORIZONTAL DISPERSION DC=f 

HORIZONTAL DISPERSION OC=B 

HORIZONTAL DISPERSION DC=A 

MIXING HEIGHT DC=C 

MIXING HEIGHT OC=B 

MIXING HEIGHT DC=D 

-MIX I NG HElGilT DC=A 

MIXING HElGilT DC=E 

MIXING HEIGHT DC=f 

DRY DEPOSITION VELOCITY IODINE 

WASIIOUT COEffiCIENT IODINE 0-1MM/S 

PHYS.SYMBOL 

SIGY(D) 

SIGY(E) 

SIGY(C) 

S !GY( f) 

SJGY(B) 

SIGY(A) 

HM(C) 

HM(B) 

HM(D) 

HM(A) 

HM(E) 

HM(f) 

VD( 10) 

VARIABLE 

X( 17) 

X(18) 

X(16) 

X(19) 

X(15) 

X( 14) 

X( 10) 

X( 9) 

X( 11) 

X( 8) 

X(12) 

X(13) 

X(32) 

LAMB( 10,0-1) X(34) 

TABLE I{..'J.,- A.1(d.) LIST Of 14 MOST IMPORTANT VARIABLES 

RELEASE CATEGORY 

DISTANGE 

NUCLIDE 

CONCENTRATION CLASS 

MEANING 

FK2 

80.0 - 120.0 KM 

CAESIUM 

PLIWIE 

HORIZONTAL DISPERSION DC=D 

HORIZONTAL DISPERSION DC=E 

HORIZONTAL DISPERSION DC=C 

HORIZONTAL DISPERSION DC=f 

HORIZONTAL DISPERSION DC=B 

HORIZONTAL DISPERSION DC=A 

MIXING HEIGIH DC=C 

MIXING IIEIGHT DC=O 

MIXING IIEIGHT DC=B 

MIXING HElGilT DC=A 

MIXING HElGilT DC=f 

MIXING HElGilT DC=E 

DRY DEPOSITION VELOCITY AEROSOLS 

WASIIOUT COEFFJCIENT AEROSOLS 0-1MM/S 

PIIYS.SYMBOL 

SIGY(D) 

SIGY(E) 

SIGY(C) 

SIGY(f) 

SJGY(B) 

SIGY(A) 

HM(C) 

1-IM(D) 

IIM(B) 

IIM(A) 

IIM(f) 

HM(E) 

VD(AE) 

VARIABLE 

X( 17) 

X(18} 

X( 16) 

X(19) 

X(15) 

X(14) 

X( 10) 

X( 11) 

X( 9) 

X( 8) 

X( 13) 

X(12) 

X(33) 

LAMB(AE,0-1) X(35) 

TABLE l/.2.-2.1(,d) LIST OF 14MOST IMPORTANT VARIABLES 

CD 
0 

I 



RElEASE CATEGORY 

DISTANGE 

NUCLIDE 

GONCENTRATION CLASS 

MEANING 

THERMAL ENERGY 

VERTICAL DISPERSION DC=D 

FK2 

0.2 - 0.5 KM 

IOD INE 

AIR 

PlUME RISE FACTOR DC=A,B,C,O 

VERTICAl DISPERSION DC=E 

VERTICAL DISPERSION DC=f 

VERTICAL DISPERSION DC=C 

VERTICAl DISPERSION DC=B 

VERT I CAL.Ili I SPERS I ON DC=A 

QUANTITY TO CORRECT PLUME RISE 

HORIZONTAL DISPERSION DC=D 

PHYS.SYMBOL 

Q 

SIGZ(D) 

fPR(A-0) 

SIGZ(E) 

SIGZ(F) 

SIGZ(C) 

SIGZ(B) 

SIGZ(A) 

DA 

SIGY(D) 

QUANTITY TO DESCRIBE ERRORR IN WIND SPEED R 

HORIZONTAL DISPERSION DC=C SIGV(C) 

HORIZONTAL DISPERSiON DC=B SIGY(B) 

HORIZONTAL DISPERSION DC=A SIGY(A) 

TABLE ll.t- A..Q..{~} LIST Of 14 MOST IMPORTANT VARIABlES 

VARIABLE 

X( 1) 

X(23) 

X( 4) 

X(24) 

X(25) 

X(22) 

X(21) 

X(20) 

X( 6) 

X( 17) 

X( 2) 

X(16) 

X(15) 

X(14) 

RElEASE CATEGORY 

DISTANGE 

NUCLIDE 

GONCENTRATION CLASS 

MEANING 

THERMAL ENERGY 

VERTICAL DISPERSION DC=D 

fl<2 

0.2 - 0.5 KH 

CAESIIJM 

AIR 

PLUME RISE FACTOR OC=A,B,C,O 

VERTICAl DISPERSION DC=E 

VERTICAL DISPERSION DC=F 

VERTICAL DISPERSION DC=C 

VERTICAL DISPERSION DC=B 

VERTICAL DISPERSION DC=A 

QUANTITY TO CORRECT PLUME RISE 

HORIZONTAl DISPERSION DC=D 

PHYS.SYMBOL 

Q 

SIGZ(D) 

FPR(A-0) 

SIGZ(E) 

SIGZ(f) 

SIGZ(C) 

SIGZ(B) 

SIGZ(A) 

DA 

SIGY(D) 

QUANTITY TO DESCRIBE ERRORR IN WIND SPEED R 

HORIZONTAl DISPERSION DC=C SIGY(C) 

HORIZONTAl DISPERSION DC=B SIGY(B) 

HORIZONTAl DISPERSION DC=A SIGY(A) 

TABLE /l . ..t -l.'J..(o..) LIST OF 14 MOST IMPORTAlU VARIABLES 

VARIABLE 

X( 1) 

X(23) 

X( 4) ():) 

X(24) 

X(25) 

X(22) 

X(21) 

X(20) 

X( 6) 

X( 17) 

X( 2) 

X(16) 

X(15) 

X(14) 



RELEASE GATEGORY 

DISTANGE 

NUCLIDE 

GONCENTRATION CLASS 

MEANING 

THERMAL ENERGY 

Fl<2 

0.8 - 1.2 KM 

IODHIE 

AIR 

VERfiCAL DISPERSION DC=E 

IIORIZONTAL DISPERSION DC=D 

VERTICAL DISPERSION DC=F 

VERTICAL DISPERSION DG=D 

UORIZONTAL DISPERSION DC=E 

VERTICAL DISPERSION OC=C 

QUANTITY TO GORREGT PLUME RISE 

VERTICAL DISPERSION DC=A 

VERTICAL DISPERSION DC=B 

HORIZONTAL DISPERSION DC=C 

HORIZONTAL DISPERSION DC=F 

UORIZONTAL DISPERSION DC=B 

HORIZONTAL DISPERSION DC=A 

PHYS.SYMBOl 

Q 

SIGZ{E) 

SIGY(D) 

SIGZ(F) 

SIGZ(D) 

SIGY(E) 

SIGZ(C) 

DA 

SIGZ(A) 

SIGZ(B) 

SIGY(G) 

SIGY(f) 

SIGY(B) 

SIGY(A) 

TABLE 11.2- -t.l(b) LIST OF 14 MOST IMPORTANT VARIABLES 

VARIABLE 

X( 1) 

X(24) 

X(17) 

X(25} 

X(23) 

X(18) 

X(22) 

X( 6) 

X(20) 

X(21) 

X(16) 

X( 19) 

X(15) 

X( 14) 

RELEASE GATEGORY 

DISTANGE 

NUCLIDE 

GONCENTRATION CLASS 

MEANING 

FK2 

0.8 - 1.2 KM 

CAESIUM 

AIR 

PHYS.SYMBOL VARIABLE 
----------------------------------------------------------------

THERMAL ENERGY 

VERTIGAL DISPERSION DG=E 

VERTIGAL DISPERSION DG=F 

HORIZONTAL DISPERSION DG=D 

VERTIGAL DISPERSION DG=D 

HORIZONTAL DISPERSION DG=E 

VERTIGAL DISPERSION DG=G 

VERTIGAL DISPERSION DG=A 

QUANTITY TO GORREGT PLUME RISE 

VERTIGAL DISPERSION OC=B 

HORIZONTAL DISPERSION DC=G 

HORIZONTAL DISPERSION DC=f 

HORIZONTAL DISPERSION DG=B 

HORIZONTAL DISPERSION OG=A 

Q 

SIGZ(E) 

SIGZ(f) 

SIGY(D) 

SIGZ(D) 

SIGY(E) 

SIGZ(G) 

SIGZ(A) 

DA 

SIGZ(B) 

SIGY(G) 

SIGY(F) 

SIGY(B) 

SIGY(A) 

TABLE 'f.2. ..:.z.Z(_S,) LIST OF 14 MOST IMPORTANT VARIABLES 

X( 1) 

X(24) 

X(25) 

X( 17) 

X(23) 

X{18) 

X(22) 

X(20) 

X( 6) 

X(21) 

X(16) 

X( 19) 

X(15) 

X( 14) 

CO 
t\) 



RELEASE CATEGORY 

OISTANCE 

NUCLIOE 

CONCENTRATION CLASS 

fY.2 

8.0 - 12.0 KM 

IOD INE 

AIR 

RELEASE CATEGORY 

DiSTANCE 

NUCLIDE 

GONCENTRATION CLASS 

FK2 

8.0 - 12.0 KM 

CAESIUH 

AIR 

MEANING PHYS.SYMBOL VARIABLE HEANING PHYS.SYMBOl VARIABLE 

VO( 10) X(32) DRY DEPOSITION VELOCITY IODINE 

WASHOUT COEFFICIENT IODINE 0-lMH/S 

HORIZONTAL DISPERSION DC=E 

LAMB( 10,0-1) X(34) 

SiGY(E) X(18) 

WASHOUT COEFFICIENT IODINE >3MM/S 

WASHOUT COEFFICIENT IOOINE 1-3MM/S 

HORIZONTAL DISPERSION DC=F 

HORIZONTAL DISPERSION OC=D 

llORIZONTAL DISPERSION DC=C 

IIORIZONTAL DISPERSION DC=B 

LAMB( 10,>3) X(38) 

LAMB( 10, 1-3) X(36) 

SI GY( F) 

SIGY(D) 

SIGY(C) 

SIGY(B) 

UORIZONTAL DISPERSION DC=A SIGY(A) 

VERTICAL DISPERSION DC=E SIGZ(E) 

VERTICAl DISPERSION DC=F SIGZ(F) 

VERTICAl DISPERSION OC=D SIGZ(D) 

QUANTITY TO DESCRIBE ERRORR IN WIND SPEED R 

TABLE lf . .Z.-·L2(c) LIST OF 14MOST IMPORTANT VARIABLES 

X(19) 

X( 17) 

X(16) 

X(15) 

X(14) 

X(24) 

X(25) 

X(23) 

X( 2) 

HORIZONTAL DISPERSION DC=f 

HORIZONTAL DISPERSION OC=E 

HORIZONTAL DISPERSION DC=D 

DRY DEPOSITION VELOCITY AEROSOLS 

HORIZONTAL DISPERSION DC=C 

HORIZONTAL DISPERSION DC=B 

HORIZONTAL DISPERSION DC=A 

WASHOUT COEffiCIENT AEROSOLS 0-lMM/S 

WASHOUT COEFFICIENT AEROSOLS 1-3MM/S 

SI GY( f) 

SIGY(E) 

SIGY(O) 

VO(AE) 

SIGY(C) 

SIGY(B) 

SIGY(A) 

X(19) 

X(18) 

X( 17) 

X(33) 

X(16) 

X(15) 

X(14) 

LAMB(AE,0-1) X(35) 

LAMB(AE,l-3) X(37) 

WASHOUT COEFFICIENT AEROSOlS >3MH/S LAMB(AE,>3) X(39) 

VERTICAL DISPERSION OC=E SIGZ(E) X(24) 

THERMAL ENERGY Q X( 1) 

QUANTITY TO OESCRIBE ERRORR IN WIND SPEED R X( 2) 

VERTICAL DISPERSION DC=f SIGZ(f) X(25) 

TABLE ~.~ -21(~) LiST Of 14 MOST IMPORTANT VARIABLES 

()) 
(..) 



RELEASE CATEGORY 

DISTANGE 

NUCll OE 

GONCENTRATION ClASS 

fK2 

80.0 - 120.0 KM 

IOD INE 

AIR 

RElEASE CATEGORY 

DISTANGE 

NUCUDE 

GONCENTRATION ClASS 

FK2 

80.0 - 120.0 KM 

CAESIUM 

AIR 

MEANING PHYS.SYMBOL VARIABLE MEANING PHYS.SYMBOl VARIABlE 

HORIZONTAl DISPERSION OC=O 

DRY OEPOS IT I ON VELOCITY I 00 I' NE 

tlOR I ZONTAL 0 I SPERS I ON OC=E 

HORIZONTAl DISPERSION DC=C 

HORIZONTAL DISPERSION DC=f 

WASHOUT COEFFICIENT IODINE 0-lMM/S 

WASIJOUT COHFICIENT IODINE >3MM/S 

WASHOUT COEFFICIENT IODINE 1-3MM/S 

IIORIZONTAl DISPERSION DC=B 

HORIZONTAl DISPERSION DC=A 

MIXING HEIGHT DC=D 

MIXING HEIGfiT DC=C 

MIXING HElGilT DC=B 

MIXING HEIGHT OC=A 

SIGY(O) 

VD( 10) 

SIGY(E) 

SIGY(C) 

SIGY(f) 

X( 17) 

X(32) 

X( 18) 

X(16) 

X(19) 

lAMB( 10,0-1) X(34) 

lAMB( 10,>3) X(38) 

lAMB(IO,l-3) X(36) 

SIGY(B) 

SJGY(A) 

HM(D) 

HM(C) 

HM(B) 

HM(A) 

X(15) 

X( 14) 

X( 11) 

X(10) 

X( 9) 

X( 8) 

TABlE 11.2- -1.2(d) LIST Of 14 MOST IMPORTANT VARIABlES 

----------------------------------------------------------------
llORIZONTAL DISPERSION DC=D 

HORIZONTAl DISPERSION DC=E 

llORIZONTAl DISPERSION DC=C 

HORIZONTAl DISPERSION OC=F 

HORIZONTAl DISPERSION DC=B 

HORIZONTAl DISPERSION DC=A 

DRY DEPOSIT I ON VELOCITY AEROSOLS 

WASHOUT COEFFICIENT AEROSOLS 0-lMM/S 

WASHOUT COEFFICIENT AEROSOLS 1-3MM/S 

WASHOUT COEFFICIENT AEROSOLS >3MM/S 

MIXING HEIGHT DC=D 

MIXING IIEIGHT DC=C 

MIXING HEIGHT DC=B 

MIXING HEIGHT DC=E 

SIGY(D) 

SIGY(E) 

SIGY(C) 

SIGY(f) 

SIGY(B) 

SIGY(A) 

VD(AE) 

X( 17) 

X( 18) 

X(16) 

X( 19) 

X(15) 

X(14) 

X(33) 

lAMB(AE,0-1) X(35) 

lAMB(AE,l-3) X(37) 

lAMB(AE,>3) X(39) 

HM(D) X(11) 

HM(C) X(10) 

HM( B) X( 9) 

HM(E) X(12) 

TABlE ~.2- .Z.2(d) LIST OF 14 MOST IMPORTAI'H VARIABLES 

CXl 
-1>-



RELEASE CATEGORY 

DISTANGE 

NUCLIDE 

GONCENTRATION ClASS 

MEANING 

fK2 

0.2 - 0.5 KM 

IOD INE 

GROUND 

DRY DEPOSITION VELOCITY IODINE 

WASHOUT COEffiCIENT iODINE 0-1MM/S 

WASHOUT COEFfiCIENT IODINE >3MM/S 

WASHOUT COEFfiCIENT IODINE 1-3MM/S 

HIERMAL EINERGY 

VERTICAL DISPERSION DC=D 

PLUME RISE fACTOR DC=A,B,C,D 

VERTJCAL DISPERSION DC=E 

VERTICAL DISPERSION DC=f 

VERTICAL DISPERSION DC=C 

VERTICAL DISPERSION DC=B 

VERTICAL DISPERSION DC=A 

QUANTITY TO CORRECT PLUME RISE 

HORIZONTAL DISPERSION DC=D 

PHYS.SYMBOL VARIABLE 

VD( 10) X( 32) 

LAMB( 10,0-1) X(34) 

LAMB( 10,>3) X(38l 

LAMB( 10,1-3) X(36) 

Q X( 1) 

SIGZ(D) 

fPR(A-0) 

SIGZ(E) 

SIGZ(F) 

SIGZ(C) 

SIGZ(B) 

SIGZ(A) 

DA 

SIGY(O) 

X(23) 

X( 4) 

X(24) 

X(25) 

X(22) 

X(21) 

X(20) 

X( 6) 

X( 17) 

TABLE il.~.-t:13(o..) LIST Of 14 MOST IMPORTANT VARIABLES 

RElEASE CATEGORY 

DISTANCE 

NUCLIDE 

GONCENTRATION CLASS 

HEANING 

fK2 

0.2 - 0.5 I<M 

CAESIUM 

GROUND 

DRY DEPOSITION VELOCITY AEROSOlS 

WASHOUT COEffiCIENT AEROSOLS 0-lMH/S 

WASHOUT COEFfiCIENT AEROSOLS 1-3MM/S 

WASHOUT COEffiCIENT AEROSOLS >3MM/S 

THERMAL ENERGY 

PlUME RISE fACTOR DC=A,B,C,D 

VERTICAl DISPERSION DC=D 

VERTICAL DISPERSION DC=E 

VERTICAL DISPERSION DC=f 

VERTICAL DISPERSION DC=C 

HORIZONTAL DISPERSION DC=D 

VERTICAL DISPERSION OC=B 

VERTICAl DISPERSION OC=A 

QUANTITY TO CORRECT PLUME RISE 

PHYS.SYMBOL VARIABlE 

VD(AE) X(33) 

LAMB(AE,0-1) X(35) 

lAMB(AE,l-3) X(37) 

lAMB(AE,>3) X(39) 

Q X( 1) 

fPR(A-D) X( 4) 

SIGZ(D) 

SIGZ(E) 

SIGZ( F) 

SIGZ(C) 

SIGY(D) 

SIGZ(B) 

SIGZ(A) 

DA 

X(23) 

X(24) 

X(25) 

X(22) 

X( 11) 

X(21) 

X(20) 

X{ 6) 

TABLE lf.l.-2.3("-) LIST Of 14MOST IMPORTANT VARIABLES 

CXl 
(Jl 



RELEASE CATEGORY 

DISTANCE 

NUCLIOE 

GONCENTRATION CLASS 

FK2 

0.8 - 1.2 KM 

IOD INE 

GROUNO 

RELEASE CATEGORY 

OISTANCE 

NUCLIDE 

CONCENTRATION CLASS 

FK2 

0.8 - 1.2 KM 

CAESIUM 

GRourm 

MEANING PHYS.SYMBOL VARIABLE HEANING PHYS.SYMBOL VARIABLE 
-----------------------------~----------------------------------

DRY DEPOSITION VELOCITY IODINE 

WASHOUT COEFFICIENT IOOINE 0-lMM/S 

WASI!OUT COEHICIENf IODINE >3MM/S 

WASHOUT COEFFICIENT JODINE 1-3MM/S 

TllERMAL ENERGY 

HORIZONTAL DISPERSION DC=D 

VERTICAL DISPERSION DC=E 

HORIZONTAL DISPERSION DC=E 

VERTICAL DISPERSION DC=F 

VERTICAL DISPERSION DC=D 

HORIZONTAL DISPERSION DC=C 

VERTICAL DISPERSION DC=C 

HORIZONTAL DISPERSION OC=F 

QUANTITY TO CORRECT PLUME_RISE 

VO( 10) X( 32) 

LAMB( 10,0-1) X(34) 

LAMB( 10,>3) X(38) 

LAMB( 10,1-3) X(36) 

Q 

SIGY(O) 

SIGZ(E) 

SIGY(E) 

SIGZ(F) 

SIGZ(D) 

SIGY(C) 

SIGZ(C) 

SIGY(F) 

DA 

X( 1) 

X( 17) 

X(24) 

X(18) 

X(25) 

X(23) 

X(16) 

X(22) 

X(19) 

X( 6) 

TABLE lf.2 -10(~) LIST OF 14MOST IMPORTANT VARIABLES 

DRY DEPOSITION VELOCITY AEROSOLS 

WASHOUT COEFFICIENT AEROSOLS 0-1MM/S 

WASHOUT COEFFICIENT AEROSOLS 1-3MM/S 

WASHOUT COEFFICIENT AEROSOLS >3MM/S 

THERMAL ENERGY 

HORIZONTAL DISPERSION DC=D 

HORIZONTAL DISPERSION DC=E 

HORIZONTAL DISPERSION OC=C 

HORIZONTAL DISPERSION OC=F 

VERTICAL DISPERSION DC=E 

HORIZONTAL DISPERSION DC=B 

VERTICAL DISPERSION DC=F 

HORIZONTAL DISPERSION DC=A 

VERTICAL DISPERSION DC=D 

VD(AE) X( 33) 

LAMB(AE,0-1) X(35) 

LAMB(AE,l-3) X(37) 

LAMB(AE,>3) X(39) 

Q 

SIGY(D) 

SIGY(E) 

SIGY(C) 

SI GY( f) 

SIGZ(E) 

SIGY(B) 

SIGZ(f) 

SIGY(A) 

SIGZ(D) 

X( 1) 

X( 17) 

X(18) 

X(16) 

X(19) 

X(24) 

X( 15) 

X(25) 

X(14) 

X(23) 

TABLE lf.2.-Z,3(6>) LIST OF 14MOST IMPORTANT VARIABLES 

CXl 
()) 



RELEASE CATEGORY 

DISTANGE 

NUCLIDE 

GONCENTRATION CLASS 

MEANING 

fl(2 

8.0 - 12.0 KM 

IOD INE 

GROUND 

PHYS.SYMBOL VARIABLE 
----------------------------------------------------------------

VD(IO) X(32) DRY DEPOSITION VELOCITY IODINE 

WASHOUT COEffiCIENT IODINE 0-1MM/S 

WASHOUT COEffiCIENT IODINE >3MM/S 

WASHOUT COEffiCIENT IODINE 1-3MM/S 

LAMB( 10,0-1) X(34) 

LAMB(I0,>3) X(38) 

lAMB( 10,1-3) X(36) 

HORIZONTAl DISPERSION DC=E SIGY(E) 

HORIZONTAl DISPERSION DC=f SIGY(f) 

HORIZONTAl DISPERSION DC=D SIGY(D) 

HORIZONTAl DISPERSION DC=C SIGY(C) 

HORIZONTAl DISPERSION DC=B SIGY(B) 

HORIZONTAl DISPERSION DC=A SIGY(A) 

VERTICAL DISPERSION DC=E SIGZ(E) 

QUANTITY TO DESCRIBE ERRORR IN WIND SPEED R 

VERTICAL DISPERSION DC=f SIGZ(f) 

VERTICAL DISPERSION DC=D SIGZ(D) 

TABLE lf.l--t.3{.C) LIST Of 14MOST IMPORTAMT VARIABLES 

X(18) 

X(19) 

X( 11) 

X(16) 

X(15) 

X(14) 

X(24) 

X( 2) 

X(25) 

X(23) 

RELEASE CATEGORY 

DISTANGE 

NUCLIDE 

GONCENTRATION CLASS 

MEANING 

fK2 

8.0 - 12.0 KM 

CAESIUM 

GROUND 

PHYS.SYMBOL VARIABLE 

VD(AE) X(33) DRY DEPOSITION VElOCITY AEROSOLS 

WASHOUT COEffiCIENT AEROSOLS >3MM/S 

WASHOUT COEffiCIENT AEROSOLS 1-3MM/S 

WASHOUT COEffiCIENT AEROSOLS 0-1MM/S 

LAMB(AE,>3) X(39) 

LAMB(AE,l-3) X(37) 

lAMB(AE,0-1) X(35) 

HORIZONTAL DISPERSION DC=D SIGY(D) 

HORIZONTAL DISPERSION DC=f SIGY(f) 

HORIZONTAL DISPERSION DC=E SIGY(E) 

HORIZONTAL DISPERSION DC=C SIGY(C) 

HORIZONTAl DISPERSION DC=B SIGY(B) 

HORIZONTAL DISPERSION DC=A SIGY{A) 

QUANTITY TO DESCRIBE ERRORR IN WIND SPEED R 

THERMAL ENERGY Q 

VERTICAL DISPERSION DC=E SIGZ(E) 

VERTICAL DISPERSION DC=F SIGZ(f) 

TABlE l/.2- ..Z.'~(c) LIST Of 14 MOST IHPORTANT VARIABLES 

X(17) 

X(19) 

X(18) 

X(16) 

X(15) 

X( 14) 

X( 2) 

X( 1) 

X(24) 

X(25) 

Ol 
--.J 



RELEASE CATEGORY 

DISTANCE 

NUCLIDE 

GONCENTRATION CLASS 

MEANING 

Fl<2 

80.0 - 120.0 I<M 

IOD INE 

GROUND 

HORIZONTAL DISPERSION DC=D 

HORIZONTAL DISPERSION DC=E 

HORIZONTAL DISPERSION DC=C 

DRY DEPOSITION VELOCITY IODINE 

HORIZONTAL DISPERSION DC=F 

HORIZONTAL DISPERSION DC=B 

HORIZONTAL DISPERSION DC=A 

WASIIOUT COEFFICIENT IODINE 0-lMM/S 

WASHOUf COEFFICIENT IODINE 1-3MM/S 

WASHOUT COEFFICIENT IODINE >3MM/S 

MIXING HEIGHT OC=C 

MIXING HEIGHT DC=D 

MIXING HElGilT DC=B 

MIXING HElGilT DC=A 

PHYS.SYMBOL VARIABLE 

SIGY(D) X( 17) 

SIGY(E) X(18) 

SIGY(C) X( 16) 

VD( 10) X(32) 

SIGY(F) X(19) 

SIGY(B) X(15) 

SIGY(A) X(14) 

LAMB( 10,0-1) X(34) 

LAMB(IO,l-3) X(36) 

LAMB( I 0, >3) X(38) 

HM(C) X( 10) 

HM(D) X( 11) 

BM(B) X( 9) 

HM{A) X( 8) 

TABLE ft<.:l.- -i.?.(d) LIST OF 14 MOST IMPORTANT VARIABLES 

RELEASE CATEGORY 

DISTANCE 

NUCUDE 

GONCENTRATION CLASS 

fl<2 

80.0 - 120.0 KM 

CAESIUM 

GROUND 

MEANING PHYS.SYMBOL VARIABLE 

DRY DEPOSITION VELOCITY AEROSOLS VD(AE) X( 33) 

WASHOUT COEffiCIENT AEROSOLS 0-lMM/S LAMB(AE,0-1) X(35) 

HORIZONTAL DISPERSION DC=D SIGY(D) X( 17) 

WASHOUT COEFFICIENT AEROSOLS 1-3MM/S LAMB(AE, 1-3) X(37) 

WASHOUT COEFFICIENT AEROSOLS >3MM/S LAMB(AE,>3) X(39) 

HORIZONTAL DISPERSION DC=E SIGY(E) X(18) 

HORIZONTAL DISPERSION DC=C SIGY(C) X(16) 

HORIZONTAL DISPERSION DC=F SIGY(F) X( 19) 

HORIZONTAL DISPERSION OC=B SIGY(B) X( 15) 

HORIZONTAL DISPERSION DC=A SIGY(A) X( 14) 

MIXING llEIGHT OC=D HM(D) X( 11) 

MIXING HEIGHT OC=C HM(C) X(10) 

QUANTITY TO DESCRIBE ERRORR IN WIND SPEED R X( 2) 

MIXING HEIGHT DC=B HM(B) X( 9) 

TABLE 1./.2 -Z.3(cl) LIST OF 14 MOST IMPORTANT VARIABLES 

I 
CXl 
CXl 

I 



0.2 - 0.5 

0.6 - I. 2 

8.0 - 12.0 

-89-

"*****"""**"******** 
• IOOINE (AIR) * 
*""***************** 

Kl:l 

KM 

KM 

MAXIMUM RELATIVE VARIATION OF CON· 
Ct:NIRATION FROM CENIRAL VALUE CAL­
CULAT[O AT 10%- RESP, 90%-LEVEL OR 
OUE TO THE CRITERION 

10% 90% CRITERION 

161!.47 70.69 1117.69 

147. 17 61.75 121.66 

35.65 4~. 16 43.88 

80,0 -120.0 KM 80.36 80.12 74.65 

lAßLE lf.~-3 (0..) : MAXIMAL RELATIVE VARIATIONS OF GONCENTRATION 

0,2 - 0.5 

0.8 - 1.2 

6.0 - 12.0 

**"***"**"********** 
* IODINE (GROUNO) * 
******************** 

KM 

KM 

KM 

MAXIMUH llELATIVE VARIATION OF CON­
CENfllATION fROH CENTRAL VALUE CAL­
CULAlED AT IO%- RESP. 90%-LEVEL OR 
OUE TO THE CRITERION 

10% 90% CRITERION 

143.33 365.35 1813,05 

136.27 366.47 1396.30 

73.61 167.44 121.19 

60.0 -120.0 KM 80.95 51.73 75.09 

TABLE j.j, ,2, -!(.Ii): MAXIMAL RELATIVE VARIATIONS OF GONGENTRATION 

0,2 -

0.6 -

8,0 -

80.0 -

MN#NNN#MMNKM#NN#MNMM 

• IOD INE ( PLUME) * 
******************** 

0.5 I<M 

1.2 KM 

12,0 I<M 

120,0 KM 

MAXIMUM RELATIVE VARIATION Of CON­
CUHRATION fROH CENTRAL VALUE CAL­
CIILATED AT 10%· RESP, 90%-LEVEL OR 
OUE TO THE CRITERION 

10% 90% CRITERIOH 

66.90 39.24 61.55 

72.05 IJ3, 02 63,03 

67.79 47.06 63 ,IJIJ 

1489.09 136.50 1302.66 

T AaLE 'f,2 • 3(.l.) : MAXIMAL RE.LATWE VARIATIONS OF GONCENTRATION 

REMAINING RELATIVE VARIATION OF CON· 
CENTRATION FROH CENTRAL VALUE WITH 14 
MOST SENSITIVE VARIABLES AT CENTRAL 
VALUE 

10% 90% CRITERION 

16.38 19.97 20.19 

16.64 13,62 17.37 

9.74 13. 18 12,68 

13,60 II. 53 13.17 

REMAINING RELATIVE VARIATION OF GON­
CENTRATION FROM CENTRAL VALUE WITH 14 
MOST SENSITIVE VARIABLES AT CENTRAL 
VALUE 

10% 90% CRITERION 

19.97 22.35 23.14 

22.62 24.02 26.04 

9.62 12,15 12.18 

10.98 9. 18 10.68 

REMAINING RELATIVE VARIATION OT CON­
C[NfRATION FROH CENTRAL VALUE WITH 14 
MOST SENSITIVE VARIABLES AT CENTRAL 
VALUE 

10% 90% CRITERION 

16.39 18.12 18.23 

11.68 11.59 13.20 

8.911 9;65 9.96 

16.98 46:62 44.82 



0.2 - 0,5 

0.8 - 1.2 

0.0 - 12.0 

81l,O -120.0 
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**""""""*"*"""*""""" 
• CAESIUM (AIR) • 
*"************"""*"" 

KM 

KM 

KM 

KM 

MAXIMUM HHATIVE VARIATION OF CON­
C[IH RAT I ON FROH CENTRAL VALU( CAL­
COLATED AT 10%- RESP. 90%-LEVEL OR 
DU[ TO THE CRITERION 

IO% 90% CRIHRION 

165.03 71.00 148.23 

149.61 61.86 123.92 

36.28 28.61 36. 13 

81.97 52.86 76.12 

TABLE 4. 2.-3 l.cl.): MAXIMAL RELATIVE VARIATIONS OF CONCEtHRATION 

0.2 - 0.5 

0.8 - 1.2 

8.o - 12.0 

""""""""""""""""""""" 
• CAESIUM (GROUND) • 
""""""""""""""""""""" 

KM 

KM 

KM 

MAXIMUM llELATIVE VARIATION OF CON­
CF.NJRATION FROH CfNTRAL VALUE CAL­
CULATED AT 10%- RESr. 90%-LEVEL OR 
OUE TO THE CRITlHION 

10% 90% GRIT ER ION 

95.52 306.88 1729.117 

107.51 330.58 1721. 12 

66.91 273.011 299.63 

80.0 -120.0 KM 64.15 147.05 105.40 

TABLE 4,2,- 3 (t!.) \ MAXII1AL RELATIVE VARIATIONS OF GONCENTRATION 

0.2 - 0.5 

0.8 - 1.2 

6.0 - 12.0 

80,0 -120.0 

"""""""""""""""""""" • CAESIUM (PLUME) • 
""*""""""""""""""""" 

KM 

KM 

KM 

KM 

MAXIMUM RfLA1 IVE VARIATION OF CON­
C[N I RAT I ON fR011 CENT RAL VALUE CAL­
CULATED AT 10%- RESP. 90%-LEVEL OR 
DUE TO THE CRITERION 

10% 90% CRIHHION 

67.37 39.24 61.91 

73. /II 43.20 611. 3 3 

70.39 47.50 65.60 

1713.99 130.52 1503.61 

TABLE lf,l- .Hf): MAXIMAL RELATIVE VARIATIONS OF GONCENTRATION 

HEMAINitW RELATIVE VARIATION OF GON­
CENTRATION Ffl011 CENTRAL VALUE WITII 14 
MOS1 SENSITIVE VARIABLES AT CENTRAL 
VALUE 

10% 90% CRITERION 

16.38 19.97 20,20 

18.99 13.95 17.65 

8.52 13.29 13.73 

7.69 15.03 20,15 

REMAINING RELATIVE VARIATION OF GON­
CENTHATION FROM CEtHRAL VALUE WITH 14 
MOST SENSITIVE VARIABLES AT CENTRAL 
VAlUE 

90% CRITERION 

18.76 21.56 22.39 

10.63 19.65 20.31 

7.90 9.94 9.83 

14.06 9.45 12.75 

REHAINIIW RELATIVE VARIATION OF GON­
CENTRATION FROH CENTRAL VALUE WITH 14 
HOST SENSITIVE VARIABLES AT CENTRAL 
VALUE 

10% 90% GRITEiliON 

16.411 18.27 16.35 

11.02 11.71 13,33 

0.64 7.71 11.56 

7.39 19.71 30.96 
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4.3 Main Results of the Uncertainty Analysis Using the 

Tolerance-Limit-Approach (+) 

As already indicated the relevant output of the atmospheric 

dispersion and deposition submodel of UFOMOD are three types 

of concentration (plume, ground, air), of all nuclides consi­

dered, in all mesh-cells of the spatial grid (20 radial dis­

tances, 36 angular sectors) following a specific accidental 

release. An FK2 release (see /2/) was assumed for the present 

uncertainty analysis. Since the Gaussian distribution (mo­

deling the plume) is represented by a 7-step function in cross­

wind direction its superposition with the spatial grid leads 

to an even finer spatial representation of the concentrations. 

Four different ways of analyzing the resulting bulk of out­

put data were considered: 

i) Limitation to the centerline concentration of each type and 

nuclide at four selected distances and averaged over 115 

weather sequences; 
ii) Limitation to the ccdf of the centerline concentration of 

each type and nuclide at the same four distance; 

iii) Limitation to the area exhibiting a concentration of a given 

type, nuclide and class (> 1Ci/m2 etc.) and averaged over 115 

weather sequences. 

IV) ccdf of the area exhibiting a concentration of a given type, 

nuclide and class (>1 Ci/m2 etc.) This aggregation is very close 

to the customary presentation of the final ACA results, namely 

the ccfs of the consequences. 

i) Averaged centerline concentrations: 

The analysis results are presented in Table 4.3-1. For all three 

types of concentration of each of the two nuclides the table shows 

at four selected distances under the plume centerline 

the minimum (averaged) concentration from the 59 parameter 

vectors ~. (the associated index j is given in the table); 
J 

(+) see HOFER/KRZYKACZ /7/ , HOFER et al /39/ 



Distance (lun) 

Concent.r.atioa: 

Hin. 
Ref. 
tl .. u:. 

.run j Conc. 

pac. i "Pi" tC,i·lt;ti 

Concentration: 

Hin. 
Ref. 
H.;ax. 

.run j Conc. 

p.ar. i "Pi" tC,i·k1:i 

Distuce (bn) 

Concentration: 

Hin. 
Ref. 
H.ax. 

run j C:onc. 

CiftDZ 

par. i "Pi•• tC,i·k1;i 

Concentr.ation: 

tlin. 
Ref. 
tlaJC. 

run j Conc. 

CijmZ 

p.ar .. i "Pi" rtC,i·k~i 

0.2 

45 

41 

I Q 

23 az. ,D 

6 DA 

0.5 

Plwoe (1) 

30.6 
130.3 
457.4 

-0 .. 52 

0.17 

O.IS 

17 ay.,D -0.13 

21 oz.,B 0 .. 13 

45 

41 

I Q 

Plumc (l) 

1.5 
6.3 

22.6 

-0.52 

23 az.,D 0.11 

6 DA 0.15 

17 oy.,D -0.1-4 

21 az_.B O.ll 

0.2 0.5 

Cround Surface 

45 

32 vd,l 

I Q 

38 A3,I 

23 az.,D 

3 hQ 

6.E-2 
1.7 

63.3 

0.38 

-0.32 

0.17 

0.16 

-0.10 

Ground Surhcc 

34 

42 

33 V d ,A 

I Q 

37 "2 ,A 

35 Al,A 

23 az.,D 

l.E-3 
3.E·2 
6.E-1 

0.37 

-0.30 

0.20 

0.20 

0.18 

0.8 1.2 

10 

39 

11.7 
72.1 

192.9 

I Q -0.56 

11 oy.,D -0.20 

2 t' -0.15 

o. 

g h,.,a 

10 

39 

0.11 

0.09 

0.6 
3.5 
9.5 

I Q -0.55 

17 ~y.,D -0.20 

2 r -G.IS 

DA 

21 az.,B 

0.8 

(2) 

45 

32 vd,I 

I Q 

38 A3,I 

23 oz.,D 

34 "'1,1 

(2) 

., 
33 V d ,A 

I Q 

35 /\1,A 

0.10 

0.10 

1.2 

5.E-2 
1.1 

35.6 

0 .. " 

-0.33 

o. n5 

o. no 

0.110 

S.E-4 
l.E-2 
4.E-1 

O • .t06 

-0.315 

0.16 

11 oy •• D -0.12 

37 A2 ,A 0.12 

a· 

16 

56 

12 

lluclide: 

0.5 
4.1 

ILI 

17 aYuD -0 .. 29 

18 ,E -0.27 

u h.,o -0.1) 

16 oy •• c -0 .. 17 

-0.15 

Huc:lidc: 

45 

32 

S.E-2 
2.E-1 
J.E-1 

11 oy.,D -0.38 

18 

2 r 

,E -0.27 

-0.24 

19 oy.,F -0.23 

I Q -0.15 

12 

Huclidc: 

45 

32 vd,I 

34 Al,! 

l.E-2 
I.E-1 
S.E-1 

0.60 

0.11; 

24 oz.,E -0 .. 12 

38 A3 ,I 0.11 

18 oy.,E -0.10 

Nudide: 

34 

31 V d,A 

3S J\l,A 

37 /\2,A 

I Q 

hQ 

1 .E-5 
2.E-3 
2.E-2 

0.68 

0.16 

0.16 

-0.15 

-0.09 

80 120 

I-131 (I) 

16 

56 

16 ay.,C 

11 

18 

15 

,D 

,E .. 
9 h •• a _ 

Cs-137 (2) 

16 

56 

17 aY. ,n 
16 

18 

,c 

,E 

,F 19 

2 r 

80 

I-131 (I) 

57 

17 oy.,D 

16 

IB 

,C 

,E 

32 vd,I 

15 oy •• B 

Cs-137 l2) 

33 V d,A 

17 °y.,B 

16 ,c 
35. J\1,A 

10 h.,c 

2.E-5 
!.E-2 
lii.E-1 

-0.32 

-0.28 

-0.21 

-0.15 

0.14 

I.E-5 
7 .E-4 
3.E-2 

-0.33 

-0.29 

-0.25 

-0.23 

-0.12 

120 

z.E-4 
4.[-3 
I.E-2 

-0.24 

-0.23 

-0.22 

0.22 

-0.15 

5.E-6 
a.E-s 
4.E-4 

0.45 

-0.24 

-0.19 

0.16 

-0.15 

Dist.11nce (km) 0.2 0.5 0.3 1.2 

Concentr.ation: Air (1 m above ground ~urf.ace) (3) 

Hin. 
Ref. 
Hax. 

run j Conc. 

Ci/ml 

p.ar. i "P1" tC,i·k~i 

27 

41 

1.8 
145.9 

1264. 

I Q 

23 az.,D 

6 "• 

-0.51 

0.21 

0.15 

4 fPR,A-D-0.12 

21 az.,B 0.11 

27 

41 

I Q 

4.1 
102.7 
469.7 

-0.63 

11 oy.,D -0.16 

9 hm.,B 0.15 

39 /\J ,A -0.10 

2 r -0.09 

Concentntion: Air (l m above ground surh.ce) (3) 

Hin. 
Ref. 
tbx. 

run j Conc. 

Ci/ml 

par. i "P1" t.C,i·k~i 

27 

41 

I Q 

23 az.,D 

6 o, 

9.E-2 
).1 

62.5 

-0 .. 51 

0.21 

0.15 

4 fPR,A-D-0.12 

21 oz.,B 0.11 

27 

41 

I Q 

2.E-1 
s.o 

2,.3 

-0.63 

17 oy •• D -0.16 

9 h,.,ß 0.14 

2 r -0.09 

39 A3 ,A -0.09 

22 

12 

Nuclide: 

1.0 
9.) 

20.6 

32 vd,I -o.zs 

I Q -0.24 

18 oYo ,E -0.20 

11 hm,D -0.19 

24 oz.,E -0.17 

Nucl ide: 

45 

56 

I Q 

I.E-1 
S.E-1 
1.0 

-0.31 

18: ay .. E -0.22 

2 r -0 .. 17 

17 ay.,D -0.16 

6 DA 0.15 

Table ~-. 3-1: Statistic:al tolerance confidence Iimits and partial 

rank correlation coefficienu. 

80 

I-131 (I) 

56 

32 vd,I 

120 

7 .E-4 
J.E-1 
1.2 

-0.44 

17 ay.,D -0.20 

18 ,E -0.13 

16 ,c -0.12 

10 bm,C -0.11 

c.-137 (2) 

42 

57 

5.E-3 
3.E-2 
9.E-2 

17 ay.,D -0.37 

33 V d,A 

18 oy.,E 

-0.23 

-0.21 

15 

19 

,B -0.16 

,F -0.14 CO 
1\) 
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- the (averaged) concentration assessed with the reference 

values of the uncertain parameters pi; 

- the maximum (averaged) concentration from the 59 parameter 
~ 

vectors Pj· 

All the concentrations are averages over the 115 weather sequences. 

The uncertainty statement reads: 

1 At a subjective confidence level of 95% the averaged ) con-

centration of the respective type and nuclide at the res­

pective distance under the plume centerline is below the 
. . 2) l g1ven max1mum va ue. 

Subsequently the parameter ranking provided by the partial rank 

correlation coeffcients derived from Kendalls T is presented. 

Only the five coefficients of largest absolute value are listed 

tagether with the corresponding parameter index i. The actual 

parameter name may be found in Table 4.1.2-1 of paragraph 

4.1.2 and its meaning in the context of the atmospheric dis­

persion model is explained in /3/. It should be noted that 

coefficients of small absolute value are lacking statistical 

significance with respect to the case of independence. 

The table applies to centerline concentrations averaged over 

115 weather sequences (FK2 release). It provides for three 

concentration types, two nuclides and four distances the in­

dices j of those parameter vectors ~. (or submodel runs) that 
J 

led to the extreme (Min., Max.) concentration values among the 

59 runs. Additionally the respective averaged concentration 

values are shown tagether with those (Ref.) obtained for the 

reference values of the uncertain parameters. Subsequently 

the indices i of the parameters with the empirical partial rank 

correlation coefficients (Kendall) tC,i·k~i of largest absolute 

1) Average over the specific sample of 115 weather sequences 
basic to this investigation 

2) Statistical tolerance limit 
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value are listed tagether with the 

4.1.2-1 for details) and the value 

parameter symbol (cf. Table 

of tc . k~·. Coefficients 
, 1· rl 

of small absolute value are lacking statistical significance. 

The partial rank correlation coefficients in Table 4.3-1 reveal 

interesting connections between the assessed concentrations of 

a specific type, nuclide and at a specific distance on one hand 

and the parameter uncertainties on the other hand. Some of these 

connections will now discussed: 

- P 1 ume , I - 1 3 1 : 

Distance 1: The uncertainty in the best value of the released 

thermal energy Q seems to be the most important parameter un­

certainty. The negative sign of the coefficient indicates a 

counter-current influence on 'the concentration (large best 

value Q: small concentration). Q is followed by the vertical 

dispersion parameter G 1) for diffusion category D and the 
z 

plume rise correction DA for area sources, both acting in the 

same direction (large parameter value: large concentration). 

It should be noted that the influence of the latter would 

not be revealed so well by a separate effect sensitivity 

analysis based on a one-at-a-time design since the effect 

of DA on the concentration is more pronounced for large Q. 

Distance 2: Still Q seems tobe most influential followed, 

however, by the also counter-current influence of the uncer­

tainty in the horizontal dispersion parameter Gy 2 ) for 

diffusion category D. DA received a lower ranking at this 

distance. 

Distance 3: Here the uncertainties in the horizontal dis­

persion parameters Gy for diffusion categories D and E 

seem to be most importaht followed by the mixing height 

for diffusion category D, all acting in a counter-current 

manner on the concentration. 

1) more preciselv the constant coefficient G 
for G z (s ee Sec. 4. 1 . 1 ) z o 

in the expression 

2) more precisely the constant coefficient G in the expression 
Yo for Gy ( see Sec. 4. 1 . 1) 
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Distance 4: Clearly the uncertainties in the horizontal 

dispersion parameters oy for various diffusion categories 

are dominant here. 

Cs-137: 

Principally the same conclusions seem to hold for the nuc­

lide Cs-137 except for the parameter r (to correct wind 

speed data) appearing in the list instead of the mixing 

height at distance 3 and o F receiving some higher ranking y, 
at distances 3 and 4. 

Ground Surface, I-131 : 

Distance 1: The uncertainty in the dry deposition velocity 

of iodine vd,I seems tobe most influential, acting con­

currently (large vd,I: large concentration on the ground 

surface) . It is immediately followed by Q, again acting 

counter-currently, and by the iodine wash-out coefficient 

A3,I for rainrate class 3 being influential in the same 

direction as vd,r· 

Distance 2: Still vd,I seems most influential again followed 

by Q and A3 • 
I I 

Distance 3: The influence of the uncertainty in vd, 1 seems 

to be even more pronounced here, now followed by the iodine 

wash-out coefficient for rainrate class 1. 

Distance 4: As in the case of the concentration in the plume 

the uncertainties in the horizontal dispersion parameters are 

dominantat this distance- vd,I is still of importance. 

Cs-137: 

Sirnilar conclusions seem to hold for Cs-137, of course, with 

vd,I and A., 1 replaced by the respective parameters for aero­

sols. A major difference is to be observed at distance 4 

where the dry deposition velocity vd,A still seems to domi­

nate. 
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Air, I-131: 

Distance 1: As in the case of the concentration in the plume 

Q is the leading parameter uncertainty here, followed by 

0z D and DA. 
0' 

Distance 2: Much the same picture as for the concentration 

in the plume. 

Distance 3: In cantrast to the concentration in the plume 

the uncertainty in the dry deposition velocity vd, I is of 

importance here. It acts counter-currently while in the 

case of the concentration on the ground surface it acted 

concurrently. vd,I is followed by Q, 0y
0

,E and hm,D. 

Distance 4: Still the uncertainty in vd,I is important 

now followed by the horizontal dispersion parameters acting, 

as in all other cases, in a counter-current manner. 

Cs-13 7: 

Much the same picture for distances 1,2 and 4. Otherwise 

the main difference lies in the ranking of vd,A' the dry 

deposition velocity of aerosols. 

From this probabilistic uncertainty analysis of concentrations 

under the plume centerline at selected distances and averaged 

over 115 weather sequences it may be concluded that the para­

meter uncertainties, most important to these concentrations, 

are those in 

Q best value of the released thermal energy, 

vd dry deposition velocities for iodine and aerosols, 

A wash-out coefficients for iodine and aerosoles for 

various rainfall rates, 

0 horizontal dispersion parameters for various diffusion y 
categories, 

0 vertical dispersion parameters for various diffusion z 
categories. 
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ii) ccdf of the centerline concentration at a specific distance 

The analysis results are illustrated by Figs. 4.3-1 to 4.3-4. 

The figures present for the ground surface concentration of 

I-131 at the selected distance the ccdf of the concentration 

under the plume centerline, as it is assessed with the refe­

rence values of the uncertain parameters (solid line). Addi­

tionally a continous connection of the maximum ccdf values 
-+ 

from the 59 parameter vectors p. is shown (dashed line). 
J 

The uncertainty statement reads: 

At a subjective confidence level of 95% the conditional 

probability 1 ) for the concentration (of the respective type, 

nuclide and at the respective distance under the plume cen­

terline) to exceed x is below the ordinate value at x of 

the dashed curve 2). 

The figure captions present the parameter ranking provided by 

the partial rank correlation coefficients tF,i;k~i' derived 

from Kendall's T, for one or two selected argument values x 

of the ccdf. Only the five coefficients of largest absolute 

value are listed tagether with the corresponding parameter 

index i. The actual parameter name may be found in Table 4 •. 1. 2.-1 

of section 2.2.1 and its meaning in the context of the at­

mospheric dispersion model is explained in Chap. 4.1.1. It should 

be noted that coefficients of small absolute value are lacking 

statistical significance with respect 

1) Derived from the specific sample of 115 weather sequences 
basic to this investigation and conditional on a FK2 re­
lease. 

2) Statistical tolerance confidence limit - the possible error 
in estimating the required 95% fractile from a limited sample 
(n=59) is accounted for. 
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to the case of independence. The partial rank correlation coeffi­

cients reveal interesting connections between the assessed ccdf­

value at x and the parameter uncertainties. To give an example 

some of these connections in Fig.4.3.-1 will now be discussed: 

- At X = 0.01 

The uncertainty in the best value of the released thermal 

energy Q seems to be the most important parameter uncertain­

ty. The negative sign of the coefficient tF, 1 ·kf1 indicates 

a counter-current influence (Larger Q: Smaller probability 

for concentrations > x = 0.01). Q is followed by the uncer­

tainties in vertical dispersion parameters, which seem to 

act concurrently. 

- At X = 1 

Still the uncertainty in Q receives the highest ranking but, 

different to the situation at x = 0.01, it is now immediately 

followed by the uncertainty in the dry deposition velocity of 

iodine. The larger this parameter the larger the probability 

for concentrations > x = 1. This parameter ranking for the 

ccdf value at x = 1 happens to be very similar to the one 

given in Table 4.3-1 for the ground surface concentration of 

r-131 at 0.2-0.5 km averaged over the 115 weather sequences. 

However, as the example shows, rankings at other argument 

values x may differ remarkably. The study of the rankings at 

different argument values of the ccdf provides a more de­

tailled indication of the influence of the parameter uncertain­

ties as compared to the study of rankings for averaged con­

centrations. 
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Figure 4.3-1: Complementary cumulative distribution function (conditional 
on a FK2 release) of the concentration under the plume 
centerline for 

- conc. type: 
- nuclide: 
- distance: 

Ground surface 
I-131 
0.2-0.5 km. 

Solid line: ccdf assessed with the reference values of the uncertain 
parameters 

Dashed line: Subjective 95% confidence limit of the ccdf value at x. 

Parameter ranking: 

At x = 1 [ci/m2] At X = 0.01 [ci/m
2
] 

1. symb, t . k:f' F, 1• 1 
i symb. tF,i•k:fi 

1 Q -0.40 1 Q -0.45 
23 0 0.18 
24 0

zo,D 0.15 
13 hzo,E 0.12 
25 0

m,F 0.12 zo,F 

32 V 0.31 
23 0

d,I 
0.19 

38 1\zo,D 0.14 
3 h3,1 -0.14 

Q 

Only the five coefficients of largest absolute value are listed tagether 
with the corresponding parameter index i. The actual parameter name may 
be found in table 4.1.2-1 of paragraph 4.1.2. Coefficients of small abso­
lute value are lacking statistical significance. 

• . 
I • • • • ' . 
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Figure 4.3-2: Complementary cumulative distribution function (conditional 
on an FK2 release) of the concentration under the plume cen­
terline for 

- conc. type: 
- nuclide: 
- distance: 

Ground surface 
I-131 
0.8-1.2 km. 

Solid line: ccdf assessed with the reference values of the uncertain para­
meters 

Dashed line: Subjective 95% confidence limit of the ccdf value at x. 

Parameter ranking at x = 0.5 [ci/m
2J 

~ symb. t . k~' F, ~. ~ 

1 Q -0.40 
32 V 0.38 
38 .1\d,I 0.15 
28 3,I -0.10 Pc 
23 a 0.09 

zo,D 

Only the five coefficients of largest absolute value are listed together 
with the corresponding parameter index i. The actual parameter name may be 
found in table 4.1.2-1 of paragraph 4.1.2. Coefficients of small absolute 
value are lacking statistical significance. 
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Figure 4.3-3: Complementary cumulative distribution function (conditional on 
a FK2 release) of the concentration under the plume centerline 
for 

- conc. type: 
- nuclide: 
- distance: 

Ground surface 
I-131 
8-12 km. 

Solid line: ccdf assessed with the reference values of the uncertain parame­
ters 

Dashed line: Subjective 95% confidence limit of the ccdf value at x. 

P t k . 1 rc~/m2 ] arame er ran ~ng at x = 0. L ~ 

~ symb. tF, i · k#:i 

32 V 0.63 
34 ll.d,I 0.16 
17 0

l,I -0.14 
24 0

yo,D -O.ll 
38 ll.zo,E 0.10 3,I 

Only the five coefficients of largest absolute value are listed tagether 
with the corresponding parameter index i. The actual parameter name may 
be found in table 4.1.2-1 of paragraph 4.1.2. Coefficients of small abso­
lute value are lacking statistical significance. 
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Figure 4.3-4: Complementary cumulative distribution function (conditional 
on a. FK2 release) of the concentration under the plume cen­
terline for 

Solid line: 

Dashed line: 

- conc. type: 
- nuclide: 
- distance: 

Ground surface 
I-131 
80-120 km. 

ccdf assessed with the reference values of the uncertain 
parameters 
Subjective 95% confidence limit of the ccdf value at x. 

Parameter ranking at x = 0.001 [ci/m
2

] 

i symb. tF,i•k#:i 

16 a -0.23 
15 0

yo,C -0.20 
12 hyo,B 0.16 
32 Vm,E 0.15 
31 d,I -0.15 PF 

Only the five coefficients of largest absolute value are listed together 
with the corresponding parameter index i. The actual parameter name may 
be found in table 4.1.2-1 of paragraph 4.1.2. Coefficients of small abso­
lute value are lacking statistical significance, 
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(iii) Average area exhibi ting concentration values from a specific 

interval 

For the ground surface concentration of I-131 from four inter­

vals the minimum (Min.) and maximum (Max.) area from the 59 pa­
~ 

rameter vectorsp. as well as the area (Ref.) assessed with the 
J 

reference values of the uncertain parameters p. are presented 
l 

below. All the areas are averages over the 115 weather sequences. 

The corresponding uncertainty statement reads: 

At a subjective confidence level of 95% the average area 

exhibiting a ground surface concentration of I-131 from the 

respective interval is below the given maximum value. 

The PRCc 1 ) reveal connections between the assessed averaged land 

area exhibiting a ground surface concentration of I-131 from a 

specific interval on the one hand and the parameter uncertainties on 

the other hand. To give an example sowe of these connections 

are now discussed for the intervals of lowest and highest con­

centration values: 

e <1Ö4ci/m2 : ~Min., Ref., Max.} = l9200, 29300, 366600J km
2 

The uncertainty in the horizontal dispersion parameters 

acts on the uncertainty in the averaged land area with 

concentrations from this interval in a concurrent manner. 

However, as indicated above, it shows counter-current in­

fluence on the (averaged) centerline concentration at 

80-120 km. This agrees very well since the counter-current 

influence indicates larger areas exhibiting small concen­

trations if a is increased. 
Yo 

e >1Ci/m2 : {Min., Ref., Max.} = {6.7•10- 5 ,0.34, 5.3} km
2 

The uncertainty in the averaged land area with concentra­

tions from this interval is influenced concurrently by the 

uncertainty in the dry deposition velocity o~ iodine 

(vd,I) and counter-currently by the uncertainty in the 

1 ) PRCC =Partial rank correlation coefficient 
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"best value" to be used for released thermal energy (Q). 

Again, this agrees with the information obtained for the 

averaged centerline concentrations at smaller distances 

(related to the area of highest concentration values). 

(iv) CCDF of the area exhibiting concentration values from given 

intervals 

Figure 4.3-5 presents for the ground surface concentration of 

I-131 and four intervals of concentration values the ccdf of 

the respective area of land, as it is assessed with the re­

ference values of the uncertain parameters (solid line) . 

Additionally a continuous connection of the maximum ccdf values 
-+ 

from the 59 parameter vectors p. is shown (dashed line). 
J 

The uncertainty statement reads: 

At a subjective confidence level of 95% the conditional 

probability 1 ) for an arealarger than x km2 to exhibit 

a ground surface concentration of I-131 from the respec­

tive interval is below the ordinate value at x of the 

dashed curve. 

The PRCCs now reveal connections between the assessed ccdf 

value at x and the parameter uncertainties. To give an example 

some of these connections in Fig. 4.3~5c are discussed: 

• At x = 100 km2 the uncertainty in the probability for an 
2 area larger than 100 km to exhibit a ground surface con-

centration of I-131 between 0.02 and 1.0 Ci/m2 is dominated 

by the uncertainty in the dry deposition velocity of 

iodine vd,l" 

• Atx = 250 km2 the uncertainty in vd,l is less influen­

tial, but still dominant and followed by the uncertainty 

in the wash-out coefficient for the third class of rain­

fall rates. 

1) Derived from the specific sample of 115 weather sequences basic 
to this investigation and conditional on a FK2 release. 
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Figure 4.3-5: Cornplernentary curnulative distribution function (conditional on 

( +) a FK2 release) of the area exhibiting a ground surface concen­
tration of I-131 frorn the interval (Ci/rn2): 

(a) < lo-4 , (b) 1o-4-2·1o-2 , (c) 2·10- 2-1, (d) > 1. 

Horizontal axis: Area x [krn2] 
Vertical axis Conditional probability F for areas > x 
Solid line: ccdf assessed with the reference values of the uncertain 

parameters 
Dashed line: Subjective 95% confidence limit of the ccdf value at x. 

( +) see HOFER et al /39 I 
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From the probabilistic uncertainty analysis of land areas with 

concentration values from different intervals as well as center­

line concentrations at selected distances it may be concluded 

that the most important parameter uncertainties, are those in 

• Q 

111 r 

best value of the released thermal energy 

dry deposition velocities for iodine and aerosols 

wash-out coefficients for iodine and aerosols for 

various rainfall rates 

horizontal dispersion parameters for various diffusion 

categories 

vertical dispersion parameters for various diffusion 

categories 

factor to describe plume rise for different diffusion 

categories 

quantity to describe error in wind speed 

The latter two parameters received a high ranking in the study 

of areas for one type of nuclide and one medium interval of 

concentration values only. 

These conclusions as well as the uncertainty statements above 

(subjective 95% confidence limits) are, of course, highly de­

pendent upon the uncertainty quantifications and their probabi­

listic modeling as given by the submodel experts. Needless to 

say, that only the influence of the quantified uncertainties 

can show up in the uncertainty statements and parameter 

rankings given above. The latter may be considered appropriate 

if the influence of all uncertainties not quantified may be 

neglected. 

Remark: 

Some details on correlation coefficients and the modeUing of 

dependence between input parameters (for MC-simulation of de-

pendent parameters in the tolerance-limit design) are given in 

HOFER/KRZYKACZ /7/. 
0 
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A. APPENDIX 
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A. 1 • One-At-A-Time-Design 

Procedure steps 

• Consider k input uncertain parameters but one as constants at 

some central value. (e.g. 50%-fractile) 

· Select two (resp. four) other values of this one parameter . 

(e.g. Min,,Max.resp.; Min.,10%-fractile, 90%-fractile, Max.) 

• Perform two (resp. four) computer runs (accident consequence 

code) with k-1 parameters at their central value and one parame­

ter at these two ( resp. four) selected values. 

· Repeat this procedure for all k variables, i.e. 2k + 1 

( resp. 4k + 1) computer runs. 

For the UFOMOD accident consequence code we have: 

k = 39 ·~ 4k + 1 = 157 UFOMOD runs 

D-Criterion for importance 

As criterion for importance the distance of the target values 

(concentrations) resulting from the two cases 

input variable is at one of its four levels 

· input variable is at its central level 

was chosen. 
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The distance measure is defined as: 

D. 
J 

4 
= L: 

i=1 
P. (c* - c .. ) 2 

l lJ 
j=1, .•• ,39 

whereby the levels i depict the cases 

i = 
i = 
i = 
i = 

p1 

p2 

p3 

p4 

c* 

and C .. 
lJ 

Remark 

1 : variable 

2 : variable 

3 : variable 

4 : variable 

= 0. 1 

= o. 4 

= 0. 4 

= 0. 1 

x. at Min 
J 

x. at 10%-fractile 
J 

x. at 90%-fractile 
J 

x. at Max 
J 

are 

the weighting factors for the 

squared difference between c* and c' ' ' lJ 

'central value' of concentrations 

(all input variables at 50%-fractile) 

concentration value, if variable x. 
J 

is at level i (all other variables 

at central value) 

The choice of the weights is motivated by the fact that due 

to the probability of occurence the attention is focussed 

rather on the central part of the input parameter distributions 

than on their tails. 

q 
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Criticism and Limitations of a One-At-A-Time-Design 

In Chap. 2.2 the principles of uncertainty investi9ations are 

mentioned: 

Partition of the study in some procedure steps to get insight 

into models and methods on submodel basis. 

Corresponding to the commonly justified practice 'to start 

somewhere' we have tried to study the effects of varying a 

single input parameter at a time only as a prelude to the study 

of varying several factors simultaneously. 

Moreover, following MAZUMDAR et al. /16/, this type of design 

is favoured as the simplest way to get some sort of visual 

appreciation of the form of input-output dependency. 

Following BOX/HUNTER/HUNTER /21 I there is the statement: 

"The one-at-a-timedesign method provides an estimate of the effect 

of a Singleparameter at selected fixed conditions of the other 

parameters . However for such an estimate to have general relevance 

it is necessary to assume that the effect would be the same at 

other settings of the otherparameters - that, over the ranges 

of current interest, the parameters act on the response additivel;t~' 
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A. "2 Modelling Rerttarks to Tolerance Limi t~Design 

(see HOFER/KRZYKACZ /7/) 
~ 

Generally a large nurober of evaluation points p., j=1 ,2, ... ,n 
J 

(parameter vectors, wi th components p. . 1 i=1 , 2, •.. ,k) is 
l,J 

selected at random from the (subjective) joint probability distri-

bution employed to model the uncertainties in the parameters Pi 

of the computational PRA models (for instance, the accident con­

sequence model) . 

Let F([t;x) be the value of the ccfd at x for a given parameter 

vector p. 
--? 

- Order the F' . : =F' ( p . ; x) , j = 1 1 2 1 ••• 1 n 
J J 

(n=1000, for instance) 

so that Fj 1 2 Fj 2 2 ... 2 Fj 1000 
- Use Fj 950 as an estimate of the local (at x) subjective 95% con­

fidence limit of FfP*;x) where p* is the appropriate parameter 

vector. 

- Confidence limits to this fractile (other customary names: 

percentile, quantile) estimate of G(F(p;x)) may be obtained from 

order statistics. 

- F· 
]950 

F(x) 

may serve as a local subjective 95% confidence limit of 

(the value at x of the appropriate ccfd) provided all un-

certainties not quantified may be neglected. 

We may say: 

The expected frequency per year (or per year and y reactors etc.) 

of accidents with consequence magnitude large than x is below 

Fj
950 

at a subjective confidence level of 95% provided all uncer­

tainties not quantified may be neglected. 

The meaning in consequence direction: 

The consequence magnitude x per accident, exceeded with the 

expected frequency w per year (or per year and y reactors) lies 

below xJ· at a subjective confidence level of 95% provided ... 
950 

Herewe assign Xj locally (at w) to~j if FTPj;xj) =wand order 

the xJ. so,that x· < x· < 
]1 J2 

< XJ' . • 
1000 
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However: It is generally infeasible, for practical reasons, to 

have 1000 ccfds by direct MC simulation. 

Therefore: Statistical tolerance limits may serve as a satis­

factory alternative. 

~ 
We observe (F(p;x) assumed to be continuous) frorn order statistics 

STECKetal /17/ GIBBONS /46/ that for quite modest n(<<1000)Fjn 

can be used as a y% confidence limit of the a% fractile of the 

(unknown subjective) probability distribution G'(F (p;x)), i.e. 

Prob. { G (F . ) 
Jn 

y 
> 100 

Required values of n for Fjn to be an upper Y% confidence limit 

of the a% fractile: 

Ä o. 90 o. 95 0.99 0.995 
0 

0.50 4 5 7 8 

0.90 22 29 44 51 

o. 95 45 59 90 104 

o. 99 230 299 459 528 

0.995 460 598 919 1058 

Table A.4-1: Necessary runs for (a, y)-tolerance lirnits 
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The simplest case of a tolerance limit can be determined from 

the erdered sample. Since it is based only on order statistics 

of the sample and does not require any distributional assumptions 

on G it will be calleddistribution-free tolerance limit. 

Let Y1 , ..• Yn be a sample from an arbitrary 

necessarily assumed tobe continuous!) and let 

distribution G (not 

Y*=Y. := max [Y
1

, ... Y) J , n n ) 

Using some well known properties of order statistics it may easily 

be shown that G (Yjn) is a random variable with the property: 

p(G(Y. )<z)< 
J = 

n 
z (z s [o, 1] ) 

n 

(equality holds for continuous distribution G!). 

~ 
Let U(Y) be defined by 

-+ 
~(Y): = Y. = Y* 

Jn 

where n is the smallest integer satisfying 

n 
1 - cJ., > y. 

Then 

..:r.. 
p(G(L(Y)) > 0() = p(G(Y*);:; a) = 

= 1 - p(G(Y*)<a) 

> 1 
n - a = 

> y 

i.e. y* is a (a,y)-tolerance limit. 
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The table shows the nurnerical values of n=n(a,y)= (i~(~:J) ) . 

So: 59 runs (giving 59 ccfds) would render a (y=) 95% upper 

confidence lirnit of the (a·=) 95% fractile of GfP;x) which 

is the local subjective upper (~=) 95% confidence lirnit of 
:4-.lt 

F(p;x). 

59 runs rnay still require too rnuch CPU; 

- More than 59 runs will be needed if the sensitivity to 

distribution type, chosen for the pi' is tobe studied. 
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A.3 Catchwords for Latin Hxeercube Same1ing 

- Samp1ing 

· Random same1ing may resu1t in a se1ection of k-tupe1 

(X1 , ... ,Xk)where the fu11 range of the uncertain input parameters 

Xi(i=1 , .•. k) is not covered. 

· In stratified random same1ing a11 areas of the samp1e space S 
~ 

of the parameter vector X = (x1 , ... ,Xk) are represented by 

input parameters.But one might random1y se1ect the corners of 

the input parameters range, say X. , and thus not adequate1y 
l 

represent the midd1e of the X. -inputparameter range. 
l 

(To do stratified samp1ing one has to partition the samp1e -space S of the parameter vector X = ( x
1 

, ... 1 Xk) into M dis-

joint strata S. 1 where p. = Prob (XE S.). Get a random samp1e 
l l l 

X .. ((j=1 , ... ,n.) 1 n.=k) from S .. If i=1 one has the case 
l] l l l 

of random samp1ing.) 

Latin Hypercube same1ing 

If we wish to ensure that each of the parameters X. 
l 

(i=1 , ... ,k) has ~11 portions of its distribution represented 

by input prrameters, a partition of the range of each parameter 

into N strata (genera11y with equa1 probabi1ity) is required. 

The components of the 'partioned' X. are matched random1y 
l 

without rep1acement. If there are on1y two input parameters 

this method of samp1ing is ca11ed Latin square samp1ing. LHS 

can be viewed as a k-dimensiona1 extension of Latin square 

samp1ing. One has kN 'partition e1ements' (ce11s) which cover 

""" the samp1e space of X= (X 1 , ... 1Xk). 
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(Note: A LHS-plan for response surfaces construction uses 

the same nurober of intervals for each inputparameter as 

the nurober of computer runs!(see McKAY/CONOVER/WHITEMAN 

/47/. A user-friendly FORTRAN 77-code for LHS is given in 

IMAN/SHORTENCARIER /48/. 

Although LHS has certain advantages thisparameter selection 

technique makes it difficult to ascertain relationships that 

may exist between individual independent inputs and dependent 

output. This difficulty arises from the concurrent variation 

of input parameters which results from LHS. Therefore one has 

to determine the effects of individual inputs on output with 

the effects of other parameters removed. The partial (rank) 

correlation coefficient can be used and treated as a measure 

of sensitivity. 

- Partial (rank) correlation coefficient 

A good sampling for selecting input parameters should permit an 

assessment of the relative importance of each input parameter., It 

is usually (in the case of linear models) measured using the 

partial correlation coefficient. In most nuclear codes the 

relationships are usually not linear. It is nevertheless 

reasonable to assume that the relationships between input and 

output are monotonous. This is more meaningful than testing 

linearity. 

Following McKAY/BOLSTAD/WHITEMAN /2~/, therefore partial rank 

correlation coefficients (PRCC) provide a good means for 

measuring monotonicity. 

The PRCC is the partial correlation coefficient (PCC) evaluated 

using rank transformed data. The PCC measures the degree of 

linear association between two parameters from a multivariate 

structure after adjusting for the linear effects of the 

remaining parameters. 

The PRCC measures the degree of monotonaus association in the 

same way that the PCC measures linear association (-12PRCC21). 
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A.4 Response Surface Techniques 

(see HOFER /41 /) 

The problem: 
-+ 

Certain fractiles of G(F(p;x)) are needed. The "random vari-
-+ 0 

able" F(P;x) 1s a function of "random variables"P. with given 
l 

joint pdf. The analytical functional expression is unknown and 

each evaluation (real or numerical experiment) is very expen­

sive: 

Given (as computer code) the transformations 

-+ -+ 
TI 1 : P-+ Y:= F(P;x) => 

-+ -+ 
TI 2 :k(p) -+ g(F(p;x)) 

Needed: 

- Not primarily a good approximation of the response surface 
-+ 

F(p;x) 

- Not primarily a good approximation of its subjective pdf 
-+ 

g (F (p;x)) 

But good approximations of y
1 

and y2 with 

y1 ()() 

J g(y)dy = J g(y)dy = 0.05, for instance. 
-oo 

A. 4. 1 Fitted Response Surfaces (Regression) 

Principle: 
-+ Points p., j = 1,2, ... ,n selected (at will) from the parameter 

J 
space 

Corresponding n runs of the computational model give the 
-+ 

responses F.:=F(p.;x) 
J J 

Determine the coefficients in the set B:= {ßklk = 0,1, ... , 

q; q + 1 
-+ 

F(B,p;x) 

< n} such that 
-+ -+ 

= ßo + ß1<1>1 (p) + ••• + ßq</>q(p) 

approximates the unknown response surface satisfactorily. 

The functions <l>k indicate the possibility of transformations. 
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- Obtain the set B by the least squares principle 

n 
SSE: L: 

j=1 

- Obtain estimate of F
95

(x)fromMc1 lsimulation with ;(B,~;x). 

Stepwise procedures are available in standard mathematical sub­

routine libraries. 

Inverse polynomials may in some situations be of advantage OLIVI/ 

PIKE /49/. Switches in the computational model are a matter of 

concern. 

Adequacy checks are sometimes performed via: 

- the empirical multiple correlation coefficient r(F,F); 
.... 

100·r2 is an estimate of the "coefficient of determination" 

(percentage) 
A 

r 2 = SSR/(SSR+SSE) with SSR = L: (F. - F) 2 

J j 

SSE = L: (F . - F.) 2 

J J 
A j 

so r close to 1 is good but does not guarantee mode adequacy; 

- the residuals 

- residual sum of squares (SSE) 

-(Fjmax-Fjmin)/(Rjmax-Rjmin); Rj = F. - F. 
J J 

- empirical distribution shows the requested properties? 

- mean value close to 0 

- standard deviation small 

- pdf symmetric 

- pdf peaked at 0. 

- confidence intervals and significance levels (F-Test) . 

These quantities are problematic here since Fj is identical 

for identical ~ .. 
J 

for details see IMAN/HELTON/CAMPBELL/24/,/25/, 

IMAN/HELTON/BROWN /33/, IMAN/HELTON /14/. 

1 ) MC = Monte-Carlo 
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A.4.2 Fitted Response Surfaces (Interpolation) (+) 

Principle: 
+ 

Select at set S of points p. (at 
J 

will) in the parameter space 

- Perform the function evaluations 

- Determine set C of coefficients 
A + + + 
F ( C ,p . ; X) = F ( p . ; X) f 0 r p . E: S • 

J J J 

+ 
F(p.;x) 

J 
such that 

A + 
- Obtain estimate of F

95
(x) from MC simulation with F(C,p;x). 

Specific realization: 

"" m m 
F(C,~;x)=A + E' { B. + C. (p.-~.) + E D. k(pk-~k) 

i=1 l l l l k=i+1 l, 

M = 1 +2m+ m(m-1)/2 runs are needed for this second degree 
..... 

fitted surface. F may be formed regionwise (over each quadrant) 

and continuously connected. M = 1 + 2m if a regionwise linear 

fitted surface is used (19). 

Transformations of the P. (logarithms, exponentials, powers 
l 

etc.) may permit the use of a structurally simple fitted sur-

face in the transformed variables rather than a complex one in 

the original P .. 
l 

Switches in the computational model may lead to discontinuities 
+ of F(p;x) and are therefore a matter of concern. Adquacy checks 

of the fitted response surface need to be performed. There are 

several possibly expensive ways suggested. 

(for details see VAURIO/MUELLER /42/ and VAURIO /50/) 

+ see HOFER /41/ 
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