KfK 3975 September 1985

1000 h-Langzeituntersuchungen zur Iod-Korrosion an ausgewählten Edelstahlproben unter simulierten Auflöserbedingungen

J. Amend, H.-G. Dillmann, J. Furrer, R. Kaempffer Laboratorium für Aerosolphysik und Filtertechnik Projekt Wiederaufarbeitung und Abfallbehandlung

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Laboratorium für Aerosolphysik und Filtertechnik Projekt Wiederaufarbeitung und Abfallbehandlung

> KfK 3975 PWA 53/85

1000 h-Langzeituntersuchungen zur Iod-Korrosion an ausgewählten Edelstahlproben unter simulierten Auflöserbedingungen

J. Amend, H.-G. Dillmann, J. Furrer, R. Kaempffer

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

> Kernforschungszentrum Karlsruhe GmbH ISSN 0303-4003

1000 h-Langzeituntersuchungen zur Iod-Korrosion an ausgewählten Edelstahlproben unter simulierten Auflöserbedingungen

Zusammenfassung

Die Ergebnisse eines neuen Verfahrens zur Langzeituntersuchung von Iod-Korrosion an ausgewählten Edelstählen in Gegenwart von NO, werden vorgestellt.

Unter den vorgegebenen Korrosionsbedingungen des Auflöserabgases $(4 \text{ g Iod/m}^3 \text{ und } 1 \text{ Vol.\% NO}_x)$ haben sich die Werkstoffe 1.4539 und 1.4563 bewährt. Für den Werkstoff 1.4306 konnte nach Ablauf von 600 h Einwirkungszeit beim Einsatz in der Kondensationsphase Lochfraß nachgewiesen werden.

Diese extremen Langzeiteffekte wurden mit der begleitenden potentiokinetischen Untersuchung nicht erfaßt, da sie sich aus versuchsbedingten Gründen über wesentlich kürzere Zeiträume erstreckte.

1000 h Investigations of Iodine Induced Corrosion Performed on Selected Stainless Steel Specimens under Simulated Dissolver Conditions

Abstract

The results are presented of a novel technique for extended time investigations of iodine induced corrosion performed on selected stainless steel specimens in the presence of NO_{y} .

Under the specified corrosion conditions of the dissolver offgas $(4 \text{ g iodine/m}^3 \text{ and } 1 \text{ vol.\% NO}_x)$ the materials 1.4539 and 1.4563 have stood the test. For the material 1.4306 pitting corrosion was found after 600 h of exposure in the condensation phase.

These extreme long-time effects were not recorded by the potentiokinetic investigation made in parallel because the latter experiment covered much shorter periods ot time.

Inhaltsverzeichnis

- A. Langzeitkorrosionstests
- 1. Einleitung und Problemstellung
- 2. Versuchsaufbau
- 3. Versuchsdurchführung
- 4. Ergebnisse
- B. Elektrochemische, potentiokinetische Untersuchungen
- 1. Einleitung
- 2. Versuchsaufbau und Durchführung
- 3. Ergebnisse
- C. Literatur
- D. Tabellen
- E. Abbildungen

A. Langzeitkorrosionstests

1. Einleitung und Problemstellung

Die bei der Iodeinspeisung in die Auflöserabgas-Reinigungsanlage PASSAT aufgetretene Korrosion im Naßteil der Anlage führte zu ersten Kurzzeit-Korrosionstests an geschweißten Edelstahlproben /1/. Die Ergebnisse dieser 150 h und 300 h Tests ließen erkennen, daß zutreffende Aussagen über das Langzeitverhalten von Edelstählen in korrosiven Medien wie Iod und NO_x nicht gemacht werden können. Aufgrund starker Korrosion wurde die Auswahl der eingesetzten Edelstahlproben für die 1000 h-Korrosionsuntersuchung nach folgenden Kriterien getroffen:

- a) Stähle mit niedrigerem Kohlenstoffgehalt (X 1, X 2) mit maximal 0,02 Gew.% C. Die Werkstoffe 1.4541 und 1.4571, beide X 10, d.h. max. 0,1 Gew.% C, wurden nicht mehr eingesetzt.
- b) Stähle mit höheren CrNi + Mo-Gehalt, da mit steigender Wirksumme (W) die Lochfraßbeständigkeit verbessert wird /2/.
 Wirksumme (W) = Massenprozent Cr + 3 Massenprozent Mo der Legierung.

Wegen der Abhängigkeit der Korrosion in der flüssigen Phase der HNO₃ von der Konzentration gelöster Chrom-, Mangan- und Eisenionen, sind definierte Konzentrationen dieser Ionen zuzüglich Cerionen als Auflösersimulat-Lösung vorgelegt worden.

Die Problemstellung für die Testapparatur bei der Langzeituntersuchung bestand darin, das Flüssigkeitsniveau der siedenden Säure bei konstanter Verdampfungsrate nur innerhalb äußerst geringer Grenzen schwanken zu lassen, d.h. sehr geringe Änderungen des Flüssigkeitsvolumens bedingen sehr geringe Änderungen der Säurekonzentration. Im Versuchsbetrieb betrug die maximale Volumenabweichung <u>+</u> 1,4 %, das entspricht einer Säurekonzentrationsänderung von < 0,6 %.

Außerdem resultiert daraus ein gleichbleibendes Volumen der Dampfphase. Die Konzentrationen an Iod und NO_x im definierten Gasvolumenstrom sowie die Verweilzeit über die Flüssigkeit wird dann konstant gehalten, da die sich am Siedepunkt einstellende Temperatur ein Fixpunkt ist.

Gelöst wurde die Aufgabe mit einer modifizierten Füllstandshöhenregelung, die mit der Heizung so gekoppelt war, daß die über einen bestimmten Zeitraum zudosierte Flüssigkeitsmenge der Verdampfungsrate entsprach.

2. Versuchsaufbau

Das Schema der Testapparatur wird in Abbildung 1 wiedergegeben /3/.

In einem Reaktionsgefäß aus Glas, welches mit verd. HNO₃ halbgefüllt ist, befindet sich ein Glasgestell, an dem die Edelstahlproben mit PTFE-Bändern so befestigt sind, daß eine Serie Proben von der Säure gut bedeckt ist, während die andere Serie 5 cm von der Flüssigkeitsoberfläche entfernt in der Dampfphase hängt.

Eine mit PTFE vollisolierte Stabsonde zur kapazitiven Füllstandsmessung ragt zentral in das Reaktionsgefäß. Die Sonde ist in der Art modifiziert, daß die zur kapazitiven Messung notwendige zweite Kondensatorplatte als Kupferblechmantel um das Gefäß gelegt ist. Ein 2 cm breiter Sehschlitz ermöglicht die visuelle Beobachtung während des Versuches.

Die Beheizung erfolgt durch einen Heizpilz, der zur Vermeidung von Siedeverzügen mit einem Magnetrührer im Verbund geschaltet ist.

- 2 -

Mit Hilfe einer Dosierpumpe wird aus einem Vorratsgefäß die der Verdampfungsrate und Iodkonzentration entsprechende Menge einer salpetersauren NaI-Lösung durch eine Kapillare in die Flüssigkeit des Reaktionsbehälters dosiert.

Der Gasvolumenstrom von 50 l Luft/h wird mit einem Kleinkompressor erzeugt, die Volumenmessung geschieht mit Durchflußmessern. Der Luftmenge wird über eine Mischkammer exakt 1 Vol.% NO zugeregelt und das Gemisch durch eine Glasfritte in die Dampfphase des Reaktionsbehälters eingespeist.

Das Iod- und NO_x-haltige Wasserdampf-Luftgemisch strömt aus dem Reaktionsbehälter in den auf 60 ^OC geregelten Kondensationsbehälter. Im Kondensationsbehälter sind die Edelstahlproben in der gleichen Art wie im Reaktionsbehälter an einem Glasgestell befestigt. Am Boden des Gefäßes befindet sich ein Ventil zum Kondensatablaß. Die Iod- und NO_x-Rückhaltung des Gasgemisches erfolgt in zwei weiteren Gefäßen mit 30prozentiger NaOH durch Auswaschen.

Der stationäre Zustand der Apparatur, bei dem das vorgegebene Niveau der siedenden Säure bei konstanter Temperatur gehalten wird und die Verdampfungsrate dem kontinuierlichen Zulauf entspricht, wird durch die Regeleinrichtung erreicht.

Die Regeleinrichtung umfaßt die komplette Meßeinrichtung, bestehend aus der mit Elektronikeinsatz versehenen Sonde zur kapazitiven Füllstandsmessung mit separatem Meßumformer (Silometer), einem PID-Regler, dem Leistungssteller (Thyristor) und dem Grenzwertgeber.

Das füllstandsproportionale Meßsignal der Sonde wird im Silometer auf ein normiertes Ausgangssignal von 0 - 20 mA bzw. 4 - 20 mA (Sero-Life) umgeformt. Der verwendete Regler, ein stetiger PID-Regler mit analogem Stromausgang, Sollwert-Einsteller und Handautomatik verfügte zusätzlich über eine Digitalanzeige für Soll- und Istwert und Stellsignal, sowie über eine quasianaloge LED-Anzeigekette für Regelabweichungen. Für diesen Regelvorgang mußte der Regler invers geschaltet werden, d.h. die Wirkungsrichtung des Ausgangssignals war umgekehrt.

Bei einem eingestellten Proportionalbereich von $X_p = 50 \%$, einer Nachstellzeit von $T_N = 18$ min konnte eine Regelung ohne bleibende Regelabweichung und ein Anfahrverhalten ohne Überschwingungen erzielt werden. Das vom Regler ausgehende Stellsignal, welches über das Stellglied (Leistungssteller) die Regelung der Heizung ermöglichte, lag laut digitaler Anzeige im stationären Zustand der Apparatur bei 50 %.

Eventuelle extreme Abweichungen des Füllstandes sollten aus sicherheitstechnischen Gründen mit einem Grenzwertgeber abgefangen werden. Der Grenzwertgeber für 2 Signale mit je einem Grenzwert für Maximalwert-Überschreitung und Minimalwert-Unterschreitung hätte die Heizung und die Dosierpumpe ausgestellt und zusätzlich über ein Magnetventil die NO-Einspeisung unterbrochen.

3. Versuchsdurchführung

Für den 1000 h-Korrosionstest wurden folgende nach dem WIG-Verfahren geschweißte Edelstähle:

1.4462		1.4539
1.4306	(Krupp)	1.4563
1.4306	(Thyssen)	Inconel 625

als gebeizte und passivierte Proben im Format von ca. 50x20x2 mm³ eingesetzt. Die Übersichtstabelle (Tabelle 1) zeigt die Hersteller, die Schweißzusätze und die Legierungsanteile der Edelstähle. Der Einsatz der Proben erfolgte in der Flüssig- und in der Dampfphase bei ca. 104 ^oC - 105 ^oC, im Kondensationsgefäß bei 60 ^oC. Der Ansatz im Reaktionsgefäß enthielt KIO₃ (4,9 g) in 3,5 molarer HNO₃ (ca. 600 ml). Zusätzlich wurden zur Simulation der Auflöserlösung folgende Ionen vorgelegt:

Cr ^{VI} :	120	mg/l	Ce ^{III} :	1300	mg/l
Fe ^{III} :	1000	mg/l	Mn ^{VII} :	40	mg/l

Über die Dosierpumpe wurde eine Lösung (58 ml ≙ Verdampfungsrate) von Natriumiodid in verdünnter HNO₃ zugespeist. Die Konzentration der NaI-Lösung war so berechnet, daß nach der Gleichung:

$$KIO_3 + 5 NaI + 6 HNO_3 = 3 I_2 + KNO_3 + 5 NaNO_3 + 3 H_2O$$

200 mg Iod/h entwickelt wurden. Nach Zugabe von NO_x in das Transportgas (50 l/h) entspricht dies der Auflöserabgas-Zusammensetzung von 4 mg Iod/l und der NO_x-Konzentration von 1 Vol.%. Die zudosierte Menge an HNO₃ ersetzt den stöchiometrischen Verbrauch an Säure bei dieser Reaktion.

Um unnötige Aufkonzentrierung der entstandenen Salze zu vermeiden, wurde ca. alle 80 h der Versuch vollständig neu angesetzt.

Die Auswertung der Testproben erfolgte nach 150, 300, 600 und 1000 Stunden.

4. Ergebnisse

In Tabelle 1 und 2 sind die differentiellen und integralen Korrosionsraten der Edelstahlproben mit normaler und intensiver Vorbehandlung (Beizen und Passivieren) der jeweiligen 1000 h Korrosionsteste aufgeführt. Zur Verdeutlichung des unterschiedlichen Korrosionsverhaltens sind die Werkstoffe 1.4306 ESU und 1.4539 herausgestellt worden. In der flüssigen Phase zeigen beide Werkstoffe nach 150 h einen hohen Abtrag, der sich dann gleichmäßig abschwächt (Abb. 2). Durch die intensivere Vorbehandlung wurden die hohen Anfangskorrosionsraten reduziert und ab 300 h findet ein stetiger Abtrag auf niedrigerem Niveau statt. Dem Einsatz in der Dampfphase widerstanden alle Stähle.

In der Kondensationsphase dagegen sind die Unterschiede der beiden Edelstähle klar zu erkennen (Abb. 3). Beim Werkstoff 1.4306 ESU wurde durch die Intensiv-Vorbehandlung der Erstabtrag drastisch verringert und durch die gebildete Passivschicht findet eine Stabilisierung bis 600 h statt. Nach 1000 h trat deutlich Lochfraß auf, der durch Untersuchungen am Raster-Elektronenmikroskop (REM) bestätigt wird (Abb. 4). Unter den gewählten Korrosionsbedingungen haben sich die Werkstoffe 1.4539 und 1.4563 sowie bedingt 1.4462 bewährt.

B. Elektrochemische, potentiokinetische Untersuchungen

1. Einleitung

Theoretisch ist der Ablauf der Korrosion mit den Mitteln der Thermodynamik, der chemischen Kinetik und der Diffusion berechenbar. Wegen der Vielfalt der bei der Korrosion ablaufenden Vorgänge ist allerdings eine Voraussage über Ablauf und Geschwindigkeit der Korrosion nur in seltenen Fällen möglich. Aus diesem Grunde besitzen Korrosionsversuche bei der Beurteilung von Korrosionsproblemen eine besondere Bedeutung.

Die Korrosionsvorgänge mit Gasen werden als Zunderung bezeichnet. Bei der Korrosion mit Flüssigkeiten, insbesondere mit wässrigen Lösungen, aber auch mit Salzschmelzen, sind elektrochemische Vorgänge bestimmend; man spricht deshalb auch von "elektrochemischer Korrosion".

Der elektrochemische Mechanismus der Korrosion besagt im Prinzip, daß die Korrosion eines Metalls in einem Elektrolyten aus zwei an verschiedenen Orten ablaufenden Teilreaktionen besteht, die sich an einem zweiwertigen Metall wie folgt formulieren lassen:

$$Me \longrightarrow Me^{++} + 2e^{-} \qquad (1)$$

$$A+2e \longrightarrow B \qquad (2)$$

$$A+Me \longrightarrow Me^{++} + B \qquad (3)$$

Bei elektrochemischen Vorgängen treten zwei charakteristische Größen auf, durch die sich die vielfältigen Arten und komplizierten Eigenschaften von Elektrodenvorgängen quantitativ beschreiben lassen:

- a) Das Potential, meßbar als Differenz gegenüber einer Bezugselektrode;
- b) die Stromdichte, gegeben durch den Quotienten aus Stromstärke und Elektrodenoberfläche.

Wird durch eine äußere Stromquelle ein Stromfluß erzwungen, so kann der fließende Strom als Funktion der an einer Elektrode angelegten Potentialdifferenz gemessen werden, man erhält eine Stromdichte-Potentialkurve.

2. Versuchsaufbau und Versuchsdurchführung

Die Abbildung 5 zeigt das Prinzipschaltbild der Versuchsanordnung zur Aufnahme von Stromdichte-Potentialkurven.

Für die durchgeführten Untersuchungen wurde 1 n $H_2SO_4 + x$ n KI (x = 10⁻⁴, 10⁻²) als Elektrolyt gewählt, da HNO₃ für sich selbst ein elektrochemisches Redoxsystem darstellt und die anfallenden Kurven wesentlich schwerer zu interpretieren sind. Die Arbeitstemperatur der belüfteten Meßzelle betrug 20 ^oC.

Als Vorschubgeschwindigkeit wurde für alle Versuche 0,440 mVs⁻¹ gewählt. Die Vorbehandlung der eingesetzten Edelstahlproben wurde bereits beschrieben.

3. Ergebnisse

Abbildung 6 zeigt die Stromdichte-Potenialkurven ausgehend vom sich einstellenden Ruhepotential. Die Ruhepotentiale liegen alle voll im Passivbereich, zurückzuführen auf den Luftsauerstoff der belüfteten Meßzelle. Die geringfügigen Abweichungen beim Werkstoff 1.4541 liegen im Rahmen der Reproduzierbarkeit. Der starke Stromanstieg im Bereich von 900 mV wird verursacht:

- a) durch Sauerstoffentwicklung
- b) Übergang in die transpassive Auflösung des Werkstoffes.

In den Abbildungen 7, 8 und 9 sind die Stromdichte-Potentialkurven der Werkstoffe 1.4541, 1.4306 und 1.4539 dargestellt, die im Potentialbereich von - 400 bis + 900 mV zyklisch im iodidhaltigen Elektrolyten aufgenommen wurden. Die Ruhepotentiale wurden hier drastisch in Richtung negativer Potentiale verschoben. Im wesentlich wird das Ruhepotential der Werkstoffproben in diesem Elektrolyten durch das Redoxpotential der Iod/-Iodid-Reaktion bestimmt:

 $2I = I_2 + 2e^{-1}$ oder $3I = I_3 + 2e^{-1}$

wobei auch Iodat auftreten kann /4/.

Die dargestellten Kurven sind Summen-Stromdichte-Potentialkurven, bei denen die Korrosionsreaktion von der Iod/Iodid-Reaktion überlagert wird. Die bereits beschriebenen Langzeit-Laboruntersuchungen zur Iodkorrosion von Edelstählen zeigten nach 600 h beim Werkstoff 1.4306 einen stark ansteigenden Korrosionsangriff /5/. Da die potentiokinetischen Untersuchungen sich über einen wesentlich kürzeren Zeitraum erstreckten, können solche Langzeiteffekte deshalb nicht erfaßt werden.

C. Literatur

- /1/ J. Amend, J. Furrer, R. Kaempffer; 18th DOE Nuclear Air Cleaning Conference, Baltimore, Conf. 840806, Volume 1, p. 400 - 423 (1984).
- /2/ K. Lorenz, G. Medwar; Thyssenforschung 1 (3) 97/108 (1969).
- /3/ Patentanmeldung P 3403514.5 (1985) Einrichtung zur Konstanthaltung der Verdampfungsrate und Konzentration von beheizbaren aggressiven Medien.
- /4/ K. Vetter; Elektrochemische Kinetik, Springer Verlag Berlin, 1961.
- /5/ R. Kaempffer, J. Amend, H.-G. Dillmann, J. Furrer; Reaktortagung München, ISSN 0720 - 9207, p. 491 - 494 (1985).

Tabelle 1: Korrosionsrate an Edelstahlproben nach 1000 h-Korrosionstest in Iod- und NO_x-haltiger Phase

Korrosionsrate

different.
$$K_{D} = \frac{\Delta m_{i}}{A \cdot \Delta t_{i}} \left[\frac{mg}{m^{2} \cdot h} \right]$$
; integr. $K_{I} = \frac{\sum \Delta m_{i}}{A \cdot \sum t_{i}} \left[\frac{mg}{m^{2} \cdot h} \right]$

<u>Flüssigphase</u>

Stahlprobe	Differen	Integr. <u>mg</u> Korr. m ² ·h						
	150 h 300 h 600 h			1000 h	1000 h			
1.4462 1.4306 WAK 1.4306 ESU 1.4563 Inconel 625 1.4539	31,0369 29,9708 36,4208 38,8855 47,6633 39,8321	24,6828 20,4678 26,3470 18,2839 27,5457 22,5715	30,6703 24,1228 24,6680 18,2839 28,7837 21,6421	32,9003 24,2599 19,1791 19,8934 25,6500 17,7253	30,7192 24,5066 24,4872 22,0179 30,1764 22,9433			
Dampfphase								
1.4462 1.4306 WAK 1.4306 ESU 1.4563 Inconel 625 1.4539	7,1663 6,0464 3,6701 14,4140 15,7100 6,0196	O,2389 2.134O 2,3594 6,4348 3,3884 O,2736	O,1194 3,7346 3,6701 4,3757 8,9332 O,2736	3,7623 2,9343 3,2441 0,3861 7,3930 5,4381	2,6515 3,5212 3,3031 4,5945 8,5019 3,2013			
Kondensationsphase								
1.4462 1.4306 WAK 1.4306 ESU 1.4563 Inconel 625 1.4539	O,4618 111,9549 427,7286 3,4339 12,6296 3,3847	O,4618 3,2089 3,6873 2,2075 3,3884 1,9341	0,5773 0,5348 0,1317 0,9811 0,1540 0,3626	O,5196 6.6852 15,1114 5,0589 O,6931 1,2693	0,5196 20.1091 70,7965 3,1641 2,7262 1,4143			

<u>Tabelle 2:</u> Korrosionsrate an Edelstahlproben nach 1000 h-Korrosionstest in Iod- und NO_x-haltiger Phase

Korrosionsrate different. $K_{D} = \frac{\Delta m_{i}}{A \cdot \Delta t_{i}} \left[\frac{mg}{m^{2} \cdot h} \right]$; integr. $K_{I} = \frac{\sum \Delta m_{i}}{A \cdot \sum t_{i}} \left[\frac{mg}{m^{2} \cdot h} \right]$

Flüssigphase

Stahlprobe	Differen	t. Korros	ionsrate	mg m ² •h	Integr. <u>mg</u> Korr. m ² .h			
	150 h	300 h	600 h	1000 h	1000 h			
1.4462 1.4306 WAK 1.4306 ESU 1.4563 Inconel 625 1.4539	22,8137 14,1995 16,2092 19,6830 34,2679 30,4676	9,5761 9,5847 11,7647 7,4131 16,8224 10,2564	9,9986 9,5847 11,8954 7,0297 15,1090 8,8989	11,6181 12,2471 12,5490 9,1066 16,4720 8,7104	12,5053 11,3419 12,7843 9,8160 18,7850 12,2624			
Dampfphase	- -							
1.4462 1.4306 WAK 1.4306 ESU 1.4563 Inconel 625 1.4539	10,9479 2,1834 2,1147 6,9018 12,4611 14,3740	2,3048 0,7278 0,2643 - 11,5265 3,1623	5.4739 3,6390 4,0973 3,5787 13,7072 3,4498	2,3768 0,5459 0,4956 0,2876 0,5841 0,1078	4.5808 1,7467 1,7843 2,2239 7,9439 3,7085			
Kondensations	phase			1				
1.4462 1.4306 WAK 1.4306 ESU 1.4563 Inconel 625 1.4539	5,2342 46,8584 11,9838 4,8569 6,8536 3,1646	0,2755 0,3550 0,3115 	0,8264 - 0,1278 1,0903 0,9230	7,8512 29.4196 16,4127 0,5752 1,2850 0,6922	4,2149 18,8498 8,3626 0,9969 1,9159 1,0285			

Tabelle 3:	Übersichtstabelle	der	beim	1000]	h	Korrosionstest	eingesetzten	Edelstahlproben
**************************************							2	–

Werkstoff DIN Nr.	Her-	Schweiß-	0	Wirk- summe	irk- Anteile in Gew.%								
Handelsname bzw. Herkunft	SCELLEL	Zusacz	2	(W) Mass.%	С	Si	Mn	P	S	Cr	Ni	Мо	Bemerkungen
1.4462 X2 Cr Ni Mo N 22 5 3 SAF 2205	Sandvik	22.6.3L	7,8	31.1	0,027	0,35	1,67	0,026	0,003	22,1	5,7	3,0	N = 0,15
1.4306 X2 Cr Ni 18 9 (WAK)	Thyssen	Thermanit 30/40 E	7,9	19,2	0,017	0,39	1,54	0,029	0,003	18,39	10,22	0,28	
1.4306 X2 Cr Ni 18 9 (E S U)	Krupp	Thermanit 30/40 E	7,9	19,4	0,007	0,02	1,59	0,022	0,005	19,13	12,4	0,09	
1.4563 X1 Ni Cr Mo Cu 31 27 4 Sanicro 28	Sandvik	27.31.4L Cu	8,0	37,0	0,011	0,15	0,67	0,014	0,003	26,9	32,2	3,36	Cu = 1,0
Inconel 625	Wiggin Alloys		8,44	49,0	0,06	0,30	0,05	0,005	0,006	21,8	62,3	9,05	Co = 0,027 Fe = 2,4 Ti = 0,2 Al = 0,1 Ta+Nb = 3,7
1.4539 X2 Ni Cr Mo Cu 25 20 5 2 RK 65	Sandvik	20.25.5L Cu	8,0	32,6	0,018	0,497	1,667	0,016	0,004	19,4	24,77	4,393	Cu = 1, 4

- 12

I

ω

Kontinuierlich arbeitende Testapparatur zur Korrosionsuntersuchung von Edelstahlproben in NO_x - und I_2 -haltiger flüssiger und dampfförmiger Phase

Differentielle Korrosionsrate von Edelstahlproben mit unterschiedlicher Vorbehandlung als Funktion bestimmter Zeitabschnitte

LAF 11-85

<u>Abb. 3</u>

Differentielle Korrosionsrate von Edelstahlproben mit unterschiedlicher Vorbehandlung als Funktion bestimmter Zeitabschnitte

 $\frac{mg}{m^2h}$

440

Werkstoff 1.4539

Werkstoff 1.4563

Werkstoff 1.4306 ESU

Abb. 4

REM-Aufnahmen (500fache Vergrößerung) verschiedener Edelstahlproben nach 1000 h-Korrosionstest

Stromdichte-Potentialkurven von austenitischen CrNi-Stählen

Stromdichte-Potentialkurven von austenitischem CrNi-Stahl

Stromdichte-Potentialkurve von austenitischem CrNi-Stahl

Stromdichte-Potentialkurve von austenitischem CrNi-Stahl