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Abstract: 

One approach to improving software productivity is reuse of general soft­

ware to avoid development of code. Frequently, for a particular applica­

tion a "partial system" of a given general program system is sufficient, 

where a partial system consists only of those code "fragments" of the 

system, that implement the capabilities required by that application. 

Interdependencies among fragments must be observed for the construction 

of partial systems. They describe the structure each partial system must 

adhere to and form an implicit characterization of the set of partial 

systems. The notion of 11 fragment system" is introduced as a formalization 

of the properties of such interconnections among fragments; it is a model 

for system families, where the members of a system family (the partial 

systems) are composed of a subset of some collection of shared system 

components (the fragments). 

An algorithm for the construction of a "characteristic set" CF is pre-

sented: CF is a minimal suhset of fragments with the property, that it is 

sufficient to indicate for the fragments of CF only, whether or not they 

are relevant for a partial system. 

An 

a 

explicit representation of the set of partial systems is developed as 

subset of {O,l}ICFI, the elements of which satisfy certain Boolean 

expressions, called "restrictions". Restrietions are inherent to the 

fragment system and can be algorithmically derived. Restrietions may also 

be employed to model semantics of the system interface. 

This representation is of importance for the computer-aided specification 

and construction of partial systems: it determines the minimal amount of 

information to be entered for the specification of a partial system; 

based on such a representation a specification system can check, whether 

or not a specification entered describes a correct partial system. 



Eine Theorie der Teilsysteme 

Zusammenfassung: 

Ein Ansatz zur Erhöhung der Software-Produktivität besteht in der 

Wiederverwendung allgemeiner Software. Für eine gegebene Anwendung genügt 

häufig ein Teilsystem eines allgemeinen Programmsystems, wobei ein 

Teilsystem nur aus den Code-Fragmenten besteht, die die erforderlichen 

Fähigkeiten des Systems realisieren. 

Zur Erzeugung eines Teilsystems sind Querbeziehungen zwischen Fragmenten 

zu beachten. 

genügen hat, 

Teilsysteme. 

Sie beschreiben eine Struktur, der jedes Teilsystem zu 

und bilden eine implizite Charakterisierung der Menge der 

Der Begriff "Fragmentsystem" wird eingeführt als 

Formalisierung der Eigenschaften solcher Querbeziehungen; zugleich ist 

dies ein Modell für Systemfamilien, bei denen jedes System der Familie 

aus einer Teilmenge gemeinsamer Komponenten erzeugt wird. 

Ein Algorithmus für die Konstruktion einer "charakteristischen Menge" CF 

wird angegeben: CF ist ~ine minimale Teilmenge der Fragmente, so daß es 

genügt, nur für diese Fragmente anzugeben, ob sie für ein Teilsystem 

relevant sind oder nicht. 

Es wird eine explizite Darstellung der Menge der Teilsysteme eines 

Systems als Teilmenge von {O,l}ICFI angegeben, deren Elemente sogenannten 

Restriktionen genügen. Restriktionen werden aus dem Fragmentsystem 

algorithmisch hergeleitet. Mittels Restriktionen werden auch semantische 

Eigenschaften der Systemschnittstelle modelliert. 

Diese explizite Darstellung ist für die rechnergestützte Spezifikation 

und Konstruktion von Teilsystemen von Bedeutung: sie bestimmt die für die 

Spezifikation von Teilsystemen erforderliche minimale Information; 

weiterhin bildet sie die Grundlage für Prüfungen, ob eine Spezifikation 

ein korrektes Teilsystem beschreibt. 
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1. Introduction 

Software reuse has become a keystone in many current efforts to improve 

productivity. Reusability can come in many forms (cf. e.g. the September 

1984 issue of IEEE Transactions on Software Engineering), one of them is 

reuse of code. 

Reuse of code entails the design and implementation of general software, 

i.e. systems, which perform frequently used, common, and repetitive data 

processing tasks ('ireusable functional collections", "generic systems" 

[ 4]). Typical examples are operating systems, compilers, database 

management systems, mathematical subroutine packages. 

By definition, a general software system P has to provide services for as 

wide a spectrum of applications of the respective application area as 

possible. For a particular application, however, usually an often small 

subset of the features provided by P suffices such that the immediate use 

of P is at least wasteful and uneconomical, if not impossible altogether, 

e.g. due to efficiency problems or limited resources. Thus, it may be 

desirable to employ instead of the complete system P "versions" of P that 

provide only a subset of the capabilities of P and consist only of the 

parts of the program of P necessary for their implementation: 

.. This is basically the motivation for "SYSGEN" options of operating 

systems and research into families of operating systems [7, 9, 16, 17]. 

• Mary Shaw discusses in [18] the usefulness of and the benefits to be 

gained from having available for a programming language a "language 

contraction", i.e. a family of programmming languages produced by 

successively factaring out groups of features of the language: it is 

shown that this is a technique for improving compilation efficiency; in 
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particular, the sizes for the compilers pertaining to the sublanguages 

of a contraction are smaller than the size of the complete compiler 

implementing the full language. 

• The use of versions of a database management system that provide only 

subsets of the capabilities supported by the system is presented in 

[ 11, 15] as a way to benefit from general database software also in 

environments that do not allow the use of the complete database 

management system. 

Versions in this sense of a program system P will be referred to in the 

following as "partial systems" of P. We say that the program of P 

consists of "algorithms", where we rely on the intuitive notion of an 

algorithm as a set of one or more pieces of code required for the 

execution of some function provided by P. A partial system, thus, 

implements only a subset of the optional algorithms of P. 

The problern of generating partial systems, in particular the 

decomposition of the program of P into code fragments as building blocks 

for the programs of the partial systems, is dealt with in [10, 12, 13]: 

a fragment may be a program unit, a sequence of statements of a program 

unit or even a substring of a statement; also, rather than thinking of a 

fragment as a simple substring of the complete program it is essential to 

provide for nested fragments. Formally (cf. [12, 13]): 

• a fragment f is a not empty list of substrings of the complete program 

and fragments f.~f; the fragments f. are called the subfragments of f 
1 1 

• a fragment g is called to be nested in fragment f if and only if g is a 

subfragment of f or g is nested in a subfragment of f. 

The four-step method of [13] for the construction of a set of fragments 

is Lasedon flow analysis (for details see [12, 13]): 

In the first step for each program unit u of the program system a 
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PROGEDURE DBMS 

li (OP<1 OR OP>6~ 
THEN return operation unknown' 

GASE OP OF 
-1-: OPEN 

2: GLOSE 
3: FIND 
4: GET 
5: INSERT 
6: DELETE 

END 
END-
PROGEDURE OPEN 

OPEN RF 
OPEN-IF 

END -
PROGEDURE FIND 

USE INDEXES 
evaluate INDEX TABLE 
STRTGY -
return qss 

END 
PROGEDURE STRTGY 

determine access-strategy and 
set AGGESS TYPE 

GASE AGGESS-TYPE OF 
_"-; - -

bui ld seq,search qss 
2: BEGIN 

END 

GASE FILE TYPE OF 
-1-: calculate tfd 

2: ....•.• 
RETRIEVE_TID_LIST 

END 
bui ld direct-access qss 
END 

END-
PROGEDURE GET 

NEXT TUPLE: 

END 

GASE-AGGESS TYPE OF 
_"-; ... -:- . 

NEXT_SEQ 

2: ..... 
NEXT_TID 

END 
IF (qua I ifikation is not satisfied) 

THEN GO TO NEXT_TUPLE 

PROGEDURE NEXT SEQ 
GASE FILE TYPE OF 
-1-: - -

2: 

END 
END-

next_1 

next_2 

PROGEDURE NEXT TID 
return next ~id of tid-1 ist 

END 

Fig. 1: Fragmentation of the example system 
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8 PROGEDURE INSERT 
8 GASE FILE TYPE OF 
8 --1: -
8.1 INSERT_1 
8 2: 
8.2 INSERT_2 
8 END 
8.3 INSERT_TID 
8 END 
9 PROGEDURE GLOSE 
9 GLOSE RF 
9.1 GLOSE-IF 
9 END -

10 PROGEDURE DELETE 
10 GASE FILE TYPE OF 
10 --,: -
10.1 DELETE_1 
10 2: 
10.2 DELETE_2 
10 END 
10.3 DELETE TID 
10 END -
11 PROGEDURE OPEN_RF 
11 
11 GET 
11 
11 END 
12 PROGEDURE GLOSE_RF 
12 
12 END 
13 PROGEDURE OPEN IF 
13 USE INDEXES -
13 
13 GET 
13 
13 END 
14 PROGEDURE GLOSE IF 
14 USE INDEXES -
14 
14 END 
15 PROGEDURE INSERT_1 
15 
15 END 
16 PROGEDURE INSERT_2 
16 
16 END 
17 PROGEDURE DELETE_1 
17 
17 END 
18 PROGEDURE DELETE_2 
18 
18 END 
19 PROGEDURE INSERT TID 
19 USE INDEXES -
19 
19 END 
20 PROGEDURE DELETE TID 
20 USE INDEXES -
20 
20 END 
21 PROGEDURE RETRIEVE_TID_LIST 
21 
21 END 
22 PACKAGE INDEXES 
22.1 INDEX TABLE: ARRAY OF INTEGER 
22 END -

Fig. 1: Fragmentation of the example system (continued) 
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fragment comprising u is defined. 

Applied to the example system we obtain the fragments 1 through 22 as 

shown in fig. 1. 1 

In the second step for each fragment with statements, which (1) implement 

an optional algorithm of the program system or (2) the execution of which 

leads to the execution of statements implementing an optional algorithm, 

subfragments comprising these statements are defined. 

In-depth knowledge of the internal design of the system and the "meaning" 

of program statements are indispensable for this step [12, 13]. It makes 

available as building blocks parts of program units that either implement 

or (directly or indirectly) invoke an optional algorithm. 

The set of subfragments of a fragment f introduced in this step may 

contain subsets X(f), such that with the execution of f exactly one 

fragment of X(f) is executed. In the example system we have: 

X(l) = { 1.1 1.2 1.3 ' 1.4 1.5 1.6 } 
' ' 

X(4) = { 4.1 4.2 } X(4.2) = { 4.2.1 4.2.2 } 
' 

X(5) = { 5.1 5.2 } X(6) = { 6.1 6.2 } 

X(8) = { 8.1 8.2 } X(lO) = { 10.1 ,10.2 } 

The remairring subfragments of f, denoted O(f), introduced in this step 

are " really " optional: they can be omitted or included irrespective of 

1 the program system of fig. 1 is used for illustration purposes through­

out this paper. Program lines belanging to a fragment are marked with 

the name of that fragment at the left margin. E.g. the lines of code of 

fig. 1 marked with "1" belang to fragment 1 (program unit DBMS). 

Dots in fragment names indicate the nesting of fragments. 
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the presence or absence of the other subfragments. In the example system 

these are: 0(2)={2.1} 0(5)={5.3} 0(8)={8.3} 0(9)={9.1} ' 

0(10)={10.3} 

In general additional fragments must be introduced in order to obtain 

partial systems without superfluous code (cf. [12]). Step 3 completes the 

fragmentation of executable code: for each fragment f with statements, 

that can be executed only when subfragments of f are executed, fragments 

comprising these statements are defined. In step 4 fragmentation of 

definitional statements is done: for each fragment f with declarations of 

data objects, which are referenced only by statements of subfragments of 

f, fragments comprising these declarations are defined; for each global 

data object a fragment comprising its declaration is defined. 

In fig. 1 step 4 leads to fragment 22.1 (declaration of the global data 

object INDEX_TABLE). Examples for the application of step 3 can be found 

in [ 12]. 

Let F denote the set of fragments of P constructed in this way. Not any 

arbitrary subset of F may be used for the construction of partial 

systems, rather, interdependencies among fragments exist, which must be 

observed as "composition rules". Examples: a version with fragment 1.1 

must also contain fragment 1; inclusion of fragment 2 (program unit OPEN) 

implies inclusion of fragment 1.1 (the call to program unit OPEN) and 

vice versa; a prerequisite for fragment 5.3 is fragment 5, the reverse, 

however, does not hold. 

Therefore, with each fragment information as to whether or not f is 

relevant for a partial system must be associated. The "relevance" of a 

fragment f can formally be thought of as a mapping pf: 
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+-
1 0 f is not relevant for partial system t 

1 : f is relevant for partial system t 
+-

Then the interdependencies from above can be written as implications that 

must hold for each partial system t of the example system: 

p (t)=1 ==> p (t)=1 
1. 1 1 

p (t)=1 ==> p (t)=1 
2 1.1 

P1 . 1 (t)=1 ==> p2(t)=1 

==> p5(t)=1 

These interdependencies can be viewed as attributes of a graph (F,R), 

where relation R c FxF is defined through the method for the construction 

of F: (f,g) E R ("fragment f references fragment g") if (1) g contains a 

program unit, which is directly referenced by f• 
' 

or (2) g is a 

subfragment of f according to step 2; or (3) g is a fragment according to 

step 3 and the execution of f entails the execution of some statement of 

g; or (4) g is a fragment according to step 4 and f references a 

definition of g. 

Examples: (1.1 ,2) ER, (1, 1.1) ER, (5, 5.3) ER, (20, 22) ER. 

(F,R) models the data and control flow (cf. e.g. [6]) among the fragments 

of the program system: (f,g) E R <==> either flow of control can transfer 

from code fragment f to code fragment g or a statement in f references a 

definitional statement of fragment g. 

These interdependencies among relevances are statements about the 

structure each partial system adheres to and constitute an implicit 

characterization of the set of partial systems of P. The objective of 

this work is to develop an explicit representation of the set of partial 
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systems. This is not only of theoretical interest, such a representation 

is also of practical importance, in particular for the computer-aided 

specification and construction of partial systems (cf. [14, 15]): (1) it 

determines the minimal amount of information to be entered for the 

specification of a partial system. Example: fragments 1.1 and 2 of the 

example system have the same relevance. Therefore, it is sufficient to 

indicate the relevance of just one of them. (2) Based on this 

representation a specification system can check, whether or not a 

specification entered describes a correct partial system. 

Section 2 presents the concept of "fragment system" as a model for 

systems with partial systems. 

Section 3 shows that the relevance of a fragment may be determined by the 

relevances of other fragments in form of "relevance expressions". This 

suggests to look for a minimal subset CF of the set of fragments such 

that for each fragment f the relevance of f can be expressed in terms of 

the relevances of CF. A subset of fragments with these properties is 

called a "characteristic set", section 4 gives the formal definition of 

this notion and presents an algorithm for the construction of 

characteristic sets. 

In section 5 we prove properties of the algorithm. They are employed in 

section 6 where it is shown, how to find for a given fragment a relevance 

expression involving only relevances of characteristic fragments. 

Section 7 shows that the set of partial systems can be viewed as a subset 

of{0,1}1CFI. 

The reader is referred to appendix I for the basic concepts and notations 

used in this paper. 

Appendix IV presents FSA CEragment ~ystem ~nalyser), a PROLOG-

implementation of the algorithms and techniques of this paper. 
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2. Fragment systems: definition, rationale 

This section introduces the notion of fragment system and explains the 

rationale behind this concept. 

2.1. Definition, terminology 

Throughout this paper we use the following notation: 

0 T refers to the set of partial systems of a system P, F denotes the set 

of fragments 

0 B denotes the set {0, 1} of truth values (0: FALSE; 1: TRUE). 

DEFINITION 1: 

Let FP~ be a finite set, R ~ FxF a relation on F, G the directed graph 

(F,R), E the set {flf E F, PRED(f)=~}. Furthermore, let there be mappings 

X: F --> ~(F), 0: F --> ~(F) and p: TxF --> B. We define: 

~ 

X (f) := { g I g E F' f E X(g) } 
~ 

0 (f) := { g I g E F, f E O(g) } 

(F,R,X,O,E,p) is called a fragment system, if G is an acyclic graph and 

axioms FG1-FG5 are satisfied. 

FG1: For each e e: E there is at least one t e: T with p(t,e)=1 

FG2: For each f e: F holds: 

~ ~ 

o X (f)#~ or 0 (f)P~ => IPRED(f)l = 1 

o X(f) ~ SUCC(f), O(f) c SUCC(f), X(f) * O(f) = ~ 

0 I X(f) I ~ 1 

FG3: For each f e: F-E holds: 

p(t,f)=1 ==> there is a vertex g e: PRED(f) with p(t,g)=1 

FG4: For each f e: F with X(f)~~ holds: 
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p(t,f)=1 ==> there is a vertex g E X(f) with p(t,g)=1 

~ ~ 

FG5: For each g E PRED(f) with f E F and X (f)=O (f)=~ holds: 

p(t,g)=1 ==> p(t,f)=1 

Remark: 

Since (F,R) is an acyclic graph and IFI finite, property FGO holds: 

FGO: E ~ ~; each f E F is accessible from at least one e E E. 

Terminology, notations: 

• (F,R,X,O,E) is called the fragment graph of the fragment system 

(F,R,X,O,E,p). 

• The elements of X(f) are called the X-fragments of f, those of O(f) the 

0-fragments of f. The elements of E are the entry-fragments of the 

fragment system. 

• For f E F the mapping pf: T --> B is defined as follows: 

pf(t) := p(t,f) 

pf is called the relevance of f, pf(t) the relevance value of f for the 

partial system t. f and g are said to have the same relevance iff 

pf:pg. 

A relevance expression is a relevance or a Boolean expression with 

relevances as operands. The Boolean operators are defined on relevances 

in the obvious way; e.g.: 

2.2. Fragment system as a model for families of partial systems 

The concept of fragment system has originally been designed as a model 

for families of partial systems of program systems as discussed in 

section 1 [10, 12]: 
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a) The set F represents the set of code fragments, which form the 

building blocks for the programs of the partial systems. Relation R 

represents 

introduction. 

Remark: 

the "references"-relationship among fragments of the 

(F,R) being acyclic does not necessarily imply that partial systems of 

program systems with recursive procedures cannot be modeled as 

fragment systems: 

Let procedure u
0 

be recursive, i.e. there are procedures u
1

, u
2

, ... 

such that Ui calls Ui+l with Un=U0 for some n~O. Each procedure forms 

a fragment, this leads to a graph (F,R) with a cycle <f
0

, ... ,fn,f
0

>. 

Since we need information only on which fragments are required (and 

not on flow of control as such), edge (fn,fO) is redundant and can be 

omitted. This eliminates the cycle. 

b) Mapping p: TXF --> B represents the family of relevance mappings pf 

c) Entry-fragments represent those code fragments of the program system, 

that must be executed in order to invoke the system to perform some 

operation. Typically, for systems running as separate tasks 

entry-fragments are main programs, for program systems in form of a 

subroutine package these are usually subprograms. In the latter case 

there are in general several entry-fragments: IEI>l: 

Fragment 1 is the only entry-fragment of the example system: E={l}. A 

fragment system with six entry-fragments would result, if the six 

program units called in the GASE-statement would implement the system 

interface immediately (instead of the one program unit DBMS). 

d) The mappings X and 0 model the sets X(f) and O(f), respectively. 

X and 0 of the example system: 
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+-
I { 1.1 1.2 1.3 ' +-
I 1.4 1.5 

' 
1.6 } f= 1 I { 2.1 } f= 2 

I { 4.1 4.2 } f= 4 I { 5.3 } f= 5 

I { 4.2.1 
' 

4.2.2 } f= 4.2 I { 8.3 } f= 8 
X(f) = < { 5.1 5.2 } f= 5 O(f) = < 

{ 6.1 6.2 } f= 6 { 9.1 } f= 9 
{ 8.1 8.2 } f= 8 { 10.3} f= 10 
{10 .1 ,10.2 } f= 10 f/J else 

f/J else +-
+-

e) FGl, FGO are necessary conditions for partial systems without 

superfluous ("dead") code. 

f) FG2 formally describes the facts that 

• exactly one fragment references an 0- or X-fragment 

• a fragment cannot be both a X-fragment and an 0-fragment 

• a fragment has either no or at least two X-fragments. 

g) Axioms FG3, FG4 and FG5 are the formalizations of the 

interdependencies among fragments: 

FG3 states that, if a fragment is relevant for partial system t, at 

least one of the fragments referencing it must be relevant for t; the 

reverse holds for fragments that are neither 0- nor X-fragments, this 

is axiom FG5; FG4 is the definition of the sets X(f). 

(Note that due to X(f) c SUCC(f) is FG4 weaker than FG5.) 

Figure 2 depicts the fragment graph of the example system. Fragment 

graphs are visualized in this paper as follows: 

• vertical bars represent the fragments, i.e. the vertices of (F,R); with 

each bar is associated the name of the respective fragment. 

• an edge (f,g) E R is diagrammed as an arrow from bar f to bar g. 

In order to avoid crossing arrows an edge (f,g) may be drawn as an 
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arrow from bar f to the name of g and a second arrow from the name of f 

at some other position tobarg (cf. edge (13,22)). 

• if g is an 0-fragment of f, then the arrow from f to g is labelled with 

with ''o''. If f has n>O X-fragments, then the n bars representing the 

vertices of X(f) are linked with a horizontal line and one arrow is 

drawn from f to that connecting line: 

1<------ X-fragments ------>1 
of f 



'"<j ..... 
OQ 

N 

>---'3 
::r 
(1) 

H"l 
1-1 
P> 

OQ 
9 
(1) 

i:l 
rt 

OQ 
1-1 
P> 

'1:l 
::r 
0 
H"l 

rt 
::r 
(1) 

(1) 

X 
P> 
9 

'1:l 
1-' 
(1) 

Ul 
"<: 
Ul 
rt 
(1) 

9 

11 

' ~-.1- --r.: T.2 ···- r1-~ -- L.-:- - 11.6 

' ' ' ' ' L lg 13 le l10 
~ ~ ~ ~ 
12.1 111 l12 19.1 L na. 2 Ia. 3 Lo.1 l1o. 2 l1o. 3 

' ~ v v v t t t t t 
113 ~ 1 IH L.1 L. 2 115 116 Lg l11 Ls l2o 

22 ls 
~ 
15.3 ~5.2 

t ' ls I, 

' n6.2 

t t I 
22 lq.2.1 1~.2.2 

' 121 
122 

v 

122.1 

1-' 
~ 



- 15 -

2.3. Fragment system as a model for system families. 

Fragment systems also model system families, where a system family 

't f II ' II d II f' t' II f consls s o verslon groups an con lgura lons , c . e.g. [20]: 

• The components of a version group are considered equivalent according 

to some criterion: the components, program modules or subsystems, share 

the same interface and abstract specifications, but may be implemented 

differently or tailored to different operating systems or user groups; 

a module may exist as a sequence of revisions. 

A version group implies a choice - one may choose one or several of its 

constituent versions. 

• The components of a configuration must be combined, a configuration, 

thus, implies an integration process (e.g. a link-edit process). 

In [20] Tichy models system families as AND/OR graphs. An AND/OR graph 

[8] is a directed acyclic graph, in which each vertex is either a leaf, 

an AND vertex or an OR vertex: 

• leaves are the primitive objects and present program modules, 

documentation fragments, test data, etc. 

• OR vertices represent version groups: one may choose one (or several) 

of its successors. 

• AND vertices represent configurations: all successors of an AND vertex 

must be combined to form a configuration. 

A system family in this sense can be viewed as a fragment system: 

• the fragments F are the vertices of the AND/OR graph 

• relation R models the successor relationship of the AND/OR graph 

• the successsors of an OR vertex in the AND/OR graph form (depending on 

the nurober of successors) 0- or X-fragments of the corresponding 
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fragment system. AND vertices correspond to fragments, the successors 

of which in the fragment graph are neither 0- nor X-fragments. 

• the set T represents the set of members of the family; as above mapping 

p indicates whether or not a fragment, i.e. a configuration or version 

or leaf, is a component of a member of the family. 

Example (adapted from [20]): 

Let an I/0-subsystem have two versions, one for the line printer (LPT), 

and one for the terminal (TERHINAL). The LPT version be a configuration 

consisting of three components: OPEN, GLOSE and PUT. The modules OPEN and 

GLOSE exist as a sequence of revisions, the module PUT have two machine 

specific versions, one for the VAX and one for the PDPll, each of those 

again with several revisions. 

Figure 3 shows this system family modeled as a fragment system, the 

vertices are labeled with names of the versions, configurations and 

revisions, respectively. 

Remark: 

The novel idea with the concept of fragment system is the notion of 

relevance, i.e. mapping p. With the AND/OR model in order to specify the 

"proper" members of the system family it is necessary to add "selection 

mechanisms" [ 20] . p is a formalization and generalization of these 

selection mechanisms. 
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tPT 

------------~ 
loPEN lcLOSE IPuT 

v v t 
11.5 12.3 11.2 12.2 13.1 

Fig. 3: A system family as fragment graph 

ITERMINRL 
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3. Relevance expressions 

Axioms FG3 through FGS are statements about the relevances of a fragment 

system. This section shows that the relevance of a fragment can be equal 

to relevance expressions with relevances of other fragments, in other 

words a relevance may be determined by other relevances. 

3.1. The relevances of fand PRED(f) 

Let f E F have relevance pf and n>O predecessors PRED(f)={fil1~i~n}, pi 

be the relevance of f., 1~i~n. 
l 

f is no entry-fragment, thus, due to FG3 we have the implication 

(I1) n 
p(t,f)=1 ==> 0Ri=1p(t,fi)=l 

from which we infer 

(I2) 
n OR. 1p(t,f.)=O ==> p(t,f)=O 
l= l 

If in addition f is neither an 0- nor X-fragment, then follows from FGS 

n OR. 
1
p(t,f.)=1 ==> p(t,f)=l 

l= l 

Thus, for fragments f E F-E, which are neither 0- nor X-fragments we have 

the equation: 

(Gl) 

Remark: 

If f is neither an 0- nor an X-fragment and PRED(f)={g}, then fand g 

have the same relevance: 
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DEFINITION 2: 

A R1-path from f to g of a fragment graph (F,R,X,O,E) is a path P of 

graph (F,R) from f to g, suchthat no vertex x E P with x~f is an 0- or 

X-fragment. 

Example: The path < 1.1 , 2 , 11 , 5 > of figure 2 is a R1-path. 

Later we will need the fo1lowing statement: 

THEOREM 1: 

f E F be neither an 0- nor X-fragment. Let E'={e. l1~i~m} c E be the set 
l -

of all entry-fragments, from which there is at least one path to f: for 

1~i~m there be p. paths P .. , 1~j~p., from e. E E' to f. Then 
l l,J l l 

where C := {g .. ll~j~p., l~i~m} 
l,J l 

and 

+-
I 
I 

g .. := < 
l,J 

+-

Proof: 

e. l 

X 

P. . is a Rl-path 
l,J 

XEP .. , x is an 0- or X-fragment and the subpath 
l,J of P. , from x to f is a Rl-path 

l,J 

We prove the statement of this theorem through repetitive application of 

equation G1 (utilizing the commutativity of the OR-operator): 

pf is identical to the DR-ing of the relevances of the predecessors of f. 

If the relevance expression for pf contains relevances of fragments that 

are neither 0- nor X-fragments, then each of these re1evances is replaced 

with relevance expressions according to Gl. Since IFI is finite and each 

path in (F,R) is acyclic, this substitution process yields in a finite 

number of steps a relevance expression for pf with relevances of 0-, 

X- or entry-fragments only. 
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Since this replacement process visits the vertices of all paths of (F,R) 

that lead to f, starting at f until the first 0-, X- or entry-fragment of 

the respective path is encountered, these fragments are exactly those of 

the set C of the statement. 

D 

Examples: 

'" In figure 2 there are three paths from E'=E={1} to fragment 5: 

p1 1 = < 1 1.1 2 2.1 13 5 > g1 1 = 2.1 , , 

p 1 2 = < 1 1.1 2 11 5 > g1 2 = 1.1 , , 

p 1 3 = < 1 1.4 5 > g1 3 = 1.4 , , 
Thus: P5 - P2.1 OR p1.1 OR p1.4 

• For fragment 22 we obtain: p22 - P2.1 OR p1.3 OR P9.1 OR Ps.3 OR 

3.2. The relevances of f and SUCC(f) 

Let f E F have relevance pf and n>O successors SUCC(f)={fil1~i~n}, 

the relevance of f., 1~i~n. 
]_ 

plO. 3 

p. be 
]_ 

In order to be able to deduce results similar to those above, we must 

make additional assumptions as to the sets PRED(f.). Due to X(f)~"'O(f)=~ 
]_ 

(axiom FG2) the set SUCC(f) can be written as the union of four pairwise 

disjoint, not necessarily nonempty sets: 

SUCC(f) .- X(f) + O(f) + SUC1(f) + SUCM(f) with 

SUCl(f) .- { x 

SUCM(f) .- { x 

x E SUCC(f), IPRED(x)i=1, x -.E X(f), x ..,E O(f)} 

x E SUCC(f), IPRED(x) 1>1 } 



Without loss of generality let 

X(f) 

SUCl(f) 

:= { f. 
1 

:= { f. 
1 

1:::;i<nx} 

no:::;i<n1} 
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O(f) 

SUCH(f) 

with integers nx, no, n1 satisfying 1:::;nx:::;no:::;n1. 

Examples: 

:= { f. 
1 

:= { f. 
1 

nx:::;i<no} 

n1:::;i:::;n } 

SUCC(8) = { 8.1 , 8.2 } + { 8.3 } + 0 + 0 

SUCC(2) = 0 + { 2.1 } + { 11 } + 0 

(i.e.: nx=3, no=4, n1=4, n=3) 

(i.e.: nx=1, no=2, n1=3, n=2) 

Fragment 5 is one of the fragments of figure 2 with more than one 

predecessor: SUCH(13)=SUCH(11)=SUCH(1.4)={5} 

DEFINITION 3: 

A S-fragment is a fragment f E F with IPRED(f)i > 1. 

3.2.1. fand its X-fragments 

Let be X(f)#0, i.e. nx>1. f. E X(f) is no entry-fragment, from FG2 
1 

follows PRED(f.)={f}; therefore, FG3 yields: 
1 

p(t,f.)=1 for an index i with 1:::;i<nx ==> p(t,f)=1 
1 

ORn.x-1 (t f ) 1 
1=1 p ' i = ==> p(t,f)=1 

Because of FG4 also the reverse is true: 

p(t,f)=1 => OR~x-1 p(t,f.)=1 1=1 1 

such that holds: 

pf - ORnx-1 
Pi i=1 

and thus: 
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3.2.2. f and its 0-fragments 

Let be O(f)F~, i.e. no>nx. f. E O(f) is no entry-fragment, from FG2 
1 

follows PRED(f.)={f}; therefore, FG3 yields: 
1 

p(t,f.)=1 for an index i with nx~i<no ==> p(t,f)=1 
1 

OR~0 - 1 
p.(t)=1 ==> pf(t)=1 1=nx 1 

and thus: 

Since neither FG4 nor FG5 apply here, the reverse, and thus an equation 

analogaus to the one of section 3.2.1 does not hold here. 

3.2.3. f and the elements of SUC1(f) 

Let be SUC1(f)#~, i.e. n1>no. Because of FG3 and FG5 f and the fragments 

of SUC1(f) have the same relevance (cf. remark in section 3.1): 

no~i<n1 

3.2.4. f and its S-fragments 

Let be SUCM(f)#~, i.e. n1~n. Because of FG5 for each element f. of 
1 

SUCM(f), i.e. for n1~i~n, holds 

==> p.(t)=1 
1 

These implications is all we can prove, FG3 is not sufficient to show the 

reverse. 

Example: The following implications hold for fragment 5: 

p (t)=1 ==> p (t)=1 
11 5 
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3.3. Entry-fragments and f ,E E 

THEOREH 2: 

If pf(t)=l for f E F-E, then there is at least one e E E and a path P 

from e to f, such that p (t)=l holds for each x E P; in particular: 
X 

p (t)=l. 
e 

Proof: 

Because of f E F-E FG3 (cf. also Il of section 3.1) implies the existence 

of a vertex u E PRED(f) with pu(t)=l; if u E F-E, then by the same token 

there is also a predecessor v of u with p (t)=l, and so forth: since F is 
V 

finite and (F,R) is acyclic repeated application of FG3 yields a path P 

from some entry-fragment to f, such that p (t)=l holds for each x E P. 
X 

0 

THEOREM 3: 

Let be F' c F, F'~~. If each path from E to f E F contains at least one 

vertex of F', then 

OR F I p (t)=O gE g 
==> 

Proof: 

For f E F' or F'=F there is nothing to been shown. Let be f E F-F', F'~F, 

i.e. f ..,E E, and OR F' p (t)=O. gE g 

Due to theorem 2 pf(t)=l implies the existence of a path P from some 

entry-fragment to f, with p (t)=l for each x E P. Because of P*F'~~ this 
X 

leads to OR F' p (t)=l, a contradiction. gE g 

0 
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COROLLARY 1 : 

Let be E1 c E the set of entry-fragments, from which there is a path to 

f E F. If E 1 ~~' then the following implication holds: 

OR EI p (t)=O eg e 
==> 

Proof: 

\Vith F 1 :=E 1 this is an immediate consequence of theorem 3. 

0 

COROLLARY 2: 

Let be E1 c E the set of entry-fragments, from which there is a path to 

f E F. If E 1 ~~ and for each e E E1 there is at least one R1-path from e 

to f, then 

Proof: 

From corollary 1 follows: OR EI p (t)=O eE e 
==> 

Since there is for each e E E 1 a R1-path to f, f is neither an 0- nor a 

X-fragment (cf. definition 2). According to theorem 1 there exists a 

subset F 1 c F with E1 c F 1 suchthat pf(t) = ORxEFI px(t). Therefore: 

OR EI p (t)=1 eE e => 

0 
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4. Characteristic fragments 

4.1. Definition 

The preceding section demonstrated that the relevance of a fragment may 

be given with the relevances of other fragments of the fragment system. 

This suggests to look for a subset of fragments with the property that 

their relevances determine those of the remaining fragments; furthermore, 

such a subset should be as small as possible. The following definition is 

a formal statement of these properties: 

DEFINITION 4: 

A set CF c F is called a characteristic set of fragment system 

(F,R,X,O,E,p), if it satisfies CFl and CF2: 

CFl: For each f E F there is a set C(f) ~CF, C(f)#~, suchthat holds: 

CF2: For f E CF there is no set C c CF-{f}, C#~, with: P - OR p 
f gEC g 

Terminology: 

• The elements of a characteristic set are called characteristic frag-

ments 

• A set C(f) with property CFl is called a CF-representation of f E F and 

ORgEC(f) pg a CF-expression for pf. 

The interest in characteristic sets stems from the fact that in order to 

specify the set of fragments relevant for a partial system t it is 

sufficient to indicate the relevance values pf(t) of the fragments f E CF 
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only. CF2 says that there is at least one t E T such that it is necessary 

to indicate for each f E CF, whether or not f is relevant fort. As we 

shall see in section 7 it may be the case, however, that there are 

partial systems such that the relevance values of a subset of the 

characteristic set are sufficient. 

4.2. Construction of a characteristic set 

4.2.1. R1-sets 

DEFINITION 5: 

• The R1-set of f E F, denoted by R1(f), is the set 

{f} + { g I g E F, there is a R1-path P from f to g, 

P-{f} contains no S-fragment } 

• f is called the root-fragment of R=R1(f), it is denoted by ROOT(R). 

Remark: 

In algorithm 1 the definition of ROOT(M) will be extended to non-R1-sets 

M c F. 

From definition 5 follows immediately: 

a) g E R1(f) ==> pg = pf (cf. section 3.1 or 3.2.3) 

b) If f is an 0-, X- or S-fragment, then there is no x E F suchthat x~f 

and f E R1 (x) . 

c) Each vertex of R1(f)-{f} has exact1y one predecessor. Therefore: 

- any subgraph of a fragment graph consisting of the vertices of a R1-

set is a tree. This is the justification for the term "root"-fragment. 

- each path from x E F-R1(f) to g E R1(f) contains f. 
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For a certain class of Rl-sets we can show a maximality property. 

THEOREM 4: 

Let f1 be an 0-, X-, s- or entry-fragment, f2 E F. Then 

or Rl (f )~~R1 (f )=r/J 
2 1 

Proof: 

Gase 1: f
2 

E Rl(f 1) 

From definition 5 follows immediately: R1(f2) c R1(f
1
). 

Gase 2: f
2 

~E R1(f
1

) 

==> Rl(f2) ~c R1(f
1

) (due to f2 ~f 1 ) 

Suppose R1(f2 )*R1(f 1 )~r/J, i.e. there is some x E F with x E Rl(f 1) and 

x E R1(f2): then there exists a Rl-path from f 1 to x, which must contain 

f 2 (statement c, second part), a contradiction to f
2 

~E R1(f
1
). 

Therefore, R1(f
2

)*R1(f1)=r/J must hold. 

0 

4.2.2. The algorithm 

For a fragment system (F,R,X,O,E,p) algorithm 1 yields in step 3 a set 

CF c F, which will be proved a characteristic set. At first, F is 

partitioned into subsets, so-called "R-sets" with the property that the 

fragments of a Q-set have the same relevance. Since by definition a 

characteristic set can contain at most one element of each R-set, a 

directed graph is constructed, the vertices of which represent the 

Q-sets. The set CF is described in terms of vertices of this graph. 
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ALGORITHM 1: Construction of a characteristic set 

Input : fragment system (F,R,X,O,E,p) 

Output: a characteristic set CF c F 

Algorithm: 

Step 1: 

i = 0 

~(O) - { R1(f) I fEF, f is a X-, 0- or S-fragment or feE } 

Step 2: 

Step 

WHILE (there are w
1

,w
2 

E ~(i) such that f=ROOT(w 2) is a S-fragment 

and PRED(f) ~ w1) 

DO 
i = i + 1 

w (i) = w1 + w2 

ROOT(w (i)) = ROOT(w 1) 

~(i) = ~(i-1) + { w(i) } - { w1, w2 } 
END 

3: 

~ = ~(i) 

G~ be the directed graph (F~,R~), where 
F~ = { f I f E F, there is w E ~ with ROOT(w)=f } 
R~ = { (f,g) I f,g E F~, PRED(g)*w~~ for w E ~ with ROOT(w)=f } 

Mapping X~: F~ 

X~(f) = { g I 
--> ~(F~) is defined as follows: 

+-
g E F~, X (g)P~, 
each path in G~ from E to g contains f, 
(f,g) E R~ or there is in G~ a path 
such that P-{f,g} contains neither 
0-fragment} 

CF = { f I f E F~, IPRED(f)l~1, X~(f)=~} 

P from f to g, 
an X- nor an 
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Note: 

Algorithm 1 does not specify the pair to be merged if in step 2 several 

pairs (w
1

,w
2

) satisfy the condition for the construction of w(i). As will 

be shown below (theorem 11) this choice is irressential in that step 2 

always produces the same set Q for a given fragment system. 

Terminology: The elements of Q are called Q-sets. 

From the definition of GQ=(FQ,RQ) in step 3 follows immediately: 

a) IFQI = IQI E c FQ lw*FQI=1 for each w E Q 

b) Let be w1 ,w2 E Q, f 1=ROOT(w 1), f 2=ROOT(w
2

) and P a path in G=(F,R) 

from f
1 

to f 2 . 

Then, PQ := P*FQ is a path from f 1 to f 2 in GQ and {f 1,f2} ~ PQ 

==> there 

contains no X- or 0-fragments. 

More general: if PQ is a path in GQ from f 1 to f 2 , then there is a 

path P in G from f 1 to f 2 and PQ ~ P 

Example: 

The encircled sets of fragments in figure 4 are the elements of Q(O) (the 

R1-sets) of the example system (cf. figure 2); no pair of elements of 

Q(O) satisfies the condition of step 2, thus Q=Q(O) and 

FQ = { 1 1.1 ' 1.4 ' 1.2 ' 1.3 ' 1.5 ' 1.6 ' 

2.1 9.1 ' 4.1 4.2 ' 4.2.1 ' 4.2.2 

8.1 8.2 8.3 ' 10.1 ' 10.2 10.3 

5 5.1 ' 5.2 ' 5.3 6.1 ' 6.2 ' 22 } 

Figure 5 depicts the directed graph (FQ,RQ). 
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The mapping XQ: 

+-
I { 1.1 1.2 ' 1.4 ' 1.3 

' 
1.5 ' 1.6 } f=1 

I { 4.1 4.2 } f=1.3 
I { 8.1 

' 8.2 } f=1.5 
I {10.1 ,10.2 } f=1. 6 

XQ(f) = < 
{ 4.2.1 

' 
4.2.2 } f=4.2 

{ 5.1 5.2 } f=5 
{ 6.1 6.2 } f=5.1 

f/J else 
+-

Since fragments 5 and 22 are S-fragments algorithm 1 yields for the 

example system: 

CF= FQ- { 5 , 22} - { 1 , 1.3 , 1.5 , 1.6 , 4.2 , 5.1 } 

Asterisks mark these fragments in figure 4 and figure 5. 

We show that the set CF of algorithm 1 is a characteristic set: 

• in section 4.3 we prove the minimality property CF2 

• as to property CF1 we show in section 5 that Q is a disjoint 

decomposition of F and that the elements of a Q-set have the same 

relevance. Therefore, the problern is reduced to the determination of 

CF-representations for the root-fragments of the Q-sets. This is dealt 

with in section 6. 

In section 4.3 we need a description of CF as a subset of F: 
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THEOREM 5: 

The set CF of algorithm 1 is the set 

{ f I f E F, f is a X-, 0- or entry-fragment, 

there is no X-fragment g suchthat holds: 

(*) each path in G from E to g contains f and 

~ ~ 

(**) (f E X (g) or there is in G a R1-path from f to x E X (g) )} 

Proof: 

According to step 3 of algorithm 1 CF contains all fragments f E F, which 

are X-, 0- or entry-fragments and for which there is no X-fragment g E F, 

that satisfies both (1) and (2): 

(1) each path in Gn from E to g contains f 

(2) (f,g) E Rn or there is in Gn a path P from f to g, such that P-{f,g} 

contains neither an X- nor an 0-fragment. 

Thus we have to show: (1) and (2) <==> (~'<') and c~'o'() 

The equivalence of (1) and (~"'), i.e. (1) <==> (~"'), follows immediately 

from the above statements b) and c). 

Statement (2) implies (**): 

• (f,g) E RQ ==> 
~ 

there is in G a R1-path from f to x E X (g) 

or g E X(f) ==> (~h"') 

• there is in GQ a path P from f to g, such that P-{f,g} contains neither 

an X- nor an 0-fragment => there is in G a R1-path from f to 

~ 

x E x (g) => c~h"') 

Statement (*~"') implies (2): 

~ 

• f E X (g) ==> (f,g) E RQ ==> (2) 

~ 

• there is in G a R1-path from f to x E X (g) ==> (2) 

0 
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+-
Because of X (x)=PRED(x) for X-fragments x follows immediately 

COROLLARY 3: 

CF= { f I f e F, f is a X-, 0- or entry-fragment, 

there is no g e F with X(g)#~, suchthat holds: 

each path in G from E to g contains f and 

(f=g or there is in G a Rl-path from f to g) } 

Convention: 

Unless otherwise indicated in the remainder a "path from f to g" is a 

path in G=(F,R), and not in GQ! 
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4.3. Proof of minimality 

CF has property CF2 if and only if for each f E CF holds: 

pf ~= OR p for each subset C c CF-{f}, C#~ gEC g 

which is equivalent to property CF2': 

CF2': for each C c CF-{f} there is at least one tc E T with 

\ve will prove CF2' by showing how to construct for a given fragment 

f E CF two partial systems t
1
,t

2 
e T with 

p(tl,f) # p(t2,f) and 

p(tl,g) = p(t2,g) for g e CF-{f} 

Since, if two such partial systems exist, we can define for C c CF-{f}, 

:= < 

+-
1 tl 

I t2 
+-

and p(tc,f) # ORgeC p(tc,g) holds: 

p(t 1 ,f) # ORgeC p(t 1 ,g) 

p(t 1 ,f) = ORgeC p(t 1,g) 

• tc=t 1 ==> p(tC,f) = p(t 1 ,f) # ORgeC p(t 1,g) = ORgeC p(tC,g) 

• tc=t2 ==> p(tc,f) = p(t2 ,f) # p(t 1 ,f) = ORgeC p(t 1,g) 

= ORgeC p(t2,g) = ORgeC p(tC,g) 

It is interesting to note that it is sufficient to consider for any 

f e CF only two partial systems, which furthermore depend only on f and 

not on the set C: C determines just which one of both is tC. (See also 

the example at the end of this section.) 
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The following result is instrumental in constructing t 1 , t 2 : 

THEOREM 6: 

Let be D:={f.ll~i~n} c F a nonempty set of 0-, X- or entry-fragments, 
1 

such that X(g) ,~ D for each g E F with X(g)#~. 

F' := { g I g E F, P*D#~ for each path P from E to g }. 

Then the elements of F-F' are the fragments of a partial system, i.e. 

there is tD E T with 

+-
1 0 g E F' 

1 g E F-F' 
+-

Proof: 

It must be shown that tD satisfies FG3, FG4 and FGS. 

• Let be f E F-E: 

p(tD,f)=l ==> f E F-F' 

=> there is a path P from E to f wi th P~'<'D=~ 

PRED(f)#~ ==> there is a fragment g E PRED(f) with g E P 

==> P' :=P-{f} is a path from E to g E PRED(f) with P'*D=~, and 

therefore g E F-F' 

==> there is a vertex g E PRED(f) with p(tD,g)=l. 

Thus, property FG3 holds. 

• Let be f E F with X(f)#~. 

p(tD,f)=l ==> f E F-F' 

==> there exists a path P from E to f with P~'<'D=~ 

From X(f)-D#~ and PRED(g)={f} for each g E X(f) follows: 

there is a vertex g E X(f), suchthat P':=P+{g} is a path from E to g 

with P'*D=~, i.e. g E F-F' 

==> there is a vertex g E X(f) with p(tD,g)=l 

Thus, property FG4 holds. 
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+- +-
• Let be f e F, X (f)=O (f)=~, g e PRED(f): 

p(tD,g)=1 ==> g e F-F' 

==> there exists a path P from E to g with P~i'D=Q 

f ,e D ==> P' :=P+{f} is a path from E to f with P'*D=~, and therefore 

f E F-F' 

==> 

Thus, property FGS holds. 

0 

Let be f E CF. The partial systems t
1

, t
2 

to be constructed consist of 

the fragments of the sets F-F 1 and F-F2 , respectively, where 

F1 .- { g I g E F, P*{f}~~ for each path P from E to g } 

FO .- { g g e F1 , g~f, g is an 0-fragment }, 

F2 .- { g g E F, P*FO~~ for each path P from E to g } 

i. e.: 
+- +-
I 0 g E F1 I 0 g E F2 

p(t1,g) := < p(t2,g) := < 
1 g E F-F 1 g E F-F 

+- 1 +- 2 

t 1 and t 2 are partial systems: 

• t 1 e T follows immediately from theorem 6 (with D={f}) 

• if FOPQ, then t 2 e T due to theorem 6 (with D=FO); if FO=~, then F2=Q 

and, thus, p(t2 ,f)=1 for each f e F, i.e. t
2 

is the complete system: 

t 1 , t 2 have the postulated properties: 

From the definition of FO follows F
2 
~ F

1
; F

2 
is even a proper subset of 

F1 because of f ~e F
2 

and f e F
1

. Thus, for g e F holds: 
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==> 

=> 

p(tl,g)=l 

g e CF-{f}, p(t 1 ,g)=l => 

p(t2,g)=l 

p(t2,g)=l 

It remains to be shown: 

g e CF-{f}, p(t
1

,g)=O ==> 

Proof: 

Letbege CF-{f}. p(t
1

,g)=O implies g e F
1

. 

• g is no entry-fragment because of gPf (cf. definition of set Fl). 

• If g is an 0-fragment, then g e FO (due to gPf), and thus p(t
2

,g)=O 

(since FO ~ F
2
). 

• Let g be a X-fragment. 

D 

Each path from f to g contains at least one 0-fragment besides f (f may 

be an 0-fragment). 

In order to prove this let us assume that there is a path P' from f to 

g, such that P'-{f} contains no 0-fragment, however at least one 

X-fragment, namely vertex g. 

P' be the list k., 
1 

l~i~j' with k =f and k.=g, m be the smallest index 
1 J 

such that X(k )P~, 
m 

i.e. km+l is a X-fragment of km. Then m<j (since 

k.=g 
J 

If 

is a X-fragment) and each path from E to km+l contains f. 

+-
m>l, then there is a Rl-path from f to km e X (km+l)' 

+-

otherwise 

km=f e X (km+l). Due to theorem 5 this is a contradiction to f E CF and 

disproves the assumption. 

Therefore, since each path from E to g contains f, each path from E to 

g contains at least one element of FO, i.e. g e F2 and thus p(t2 ,g)=O. 
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We have shown 

p(t1 ,g) = p(t2 ,g) for g e CF-{f} 

and O=p(t 1,f) ~ p(t2 ,f)=1 (because of f e F
1

, f ~e F
2

) 

i.e. t 1 and t
2 

are the partial systems to be constructed for f. 

Consequently, for each f e CF there are partial systems t
1

, t
2

, such that 

f is the only element in CF with different relevance values for t
1 

and 

t 2 ; in other words, through assigning relevance values to the fragments 

of CF-{f} only one cannot obtain all possible partial systems. This is 

the minimality property CF2 (or CF2 1
). 

Example: 

For fragment f=1.1 of the example system 

F1={ 1.1 , 2 , 11 , 2.1 , 13 } F0={2.1} 

Thus, t 1 consists of the fragments F-{1.1,2,11,2.1,13}, t 2 of F-{2.1,13}. 

If C={2.1}, then tc=t 2 ; else, even if 2.1 e C, tc=t 1 (all characteristic 

fragments of CF-{1.1} except for 2.1 have relevance value 1 for t 1). 
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5. Properties of Q-sets 

In this section we examine properties of Q-sets. These results will be 

used in the remainder show that algorithm 1 yields a characteristic set 

CF. Also, Q of step 2 is shown tobe unique for a fragment system. 

THEOREM 7: 

Each fragment f E F is element of exactly one R1-set of Q(O) 

Proof: 

are R1-sets, the respective root fragments are X-, 0-, 

S- or entry-fragments. Due to theorem 4 

or 

and 

or 

w *w = ~ 2 1 

w *w = ~ 1 2 

==> w
1

=w
2 

or w 1*w2=~, i.e. f E F is element of at most one R1-set of 

Q(O). 

• Suppose f E F is not element of any R1-set. 

Then, f is no entry- or S-fragment, i.e. IPRED(f)l=1. In addition, f is 

neither a X- nor an 0-fragment: thus the predecessor f' of f, too, 

cannot be element of a R1-set, since this set would contain f. These 

arguments also apply to f' 
' 

thus the predecessor of f' cannot be 

element of a R1-set, and so forth. Since F is a finite set this implies 

the existence of a R1-path from some e E E to f, the vertices of which 

are not contained in any R1-set. It follows in particular that e is not 

element of a R1-set, a contradiction to step 1 of algorithm 4.1. 

0 
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The statements on Q in the remainder of this section follow from 

properties of the sets Q(i), the proofs are through induction on index i. 

COROLLARY 4: 

a) Q is a disjoint decomposition of F 

b) Each w E Q is the union of R1-sets of Q(O) 

Proof: 

a) Q(O) is a disjoint decomposition of F according to theorem 7. 

In step 2 of algorithm 1 Q(i+1) is derived from Q(i) through replacing 

two e1ements of Q(i) with their union 

==> if Q(i) is a disjoint decomposition of F, then this holds also for 

I.e. for each i~O Q(i) is a disjoint decomposition of F. Since Fis 

finite, this is true also for Q. 

b) Similarly, straightforward induction on i shows that for each index 

i~O each element of Q(i) is the union of elements of Q(O). Again, 

since F is finite this implies statement b. 

0 

THEOREM 8: 

f nCi) '>Q > , g E W , W E ~' , 1- = p f - p g 

Proof: 

The theorem holds for i=O (statement a on definition 5). 

Inductive hypothesis: the theorem is true for the elements of Q(i), i~O. 

Inductive step: let be w E Q(i+1). 

F n ( i) ..t..n ( i+ 1 ) h · · b h h ' d ' h h ' • or w E ~' "~' not 1ng 1s to e s own, t e 1n uct1ve ypot es1s 

applies immediately. 

• For w E Q(i+1)-Q(i) holds: 
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where and (without loss of generality) 

With u:=ROOT(w
1
), v:=ROOT(w

2
) follows from the inductive hypothesis: 

Because of PRED(v) c w
1 

equation G1 of section 3.1 (v is a S-fragment) 

yields: 

==> 

OR p xe:PRED(v) x 

P :p :p for x e: w
1

+w
2

. 
X U V 

('+.) 
I.e. the statement of the theorem is true also for the elements of Q 1 1 

and, thus, holds for each i~O. 

0 

THEOREM 9: 

Let be w e: Q(i), i~O. Each path from x e: F-w to g e: w contains ROOT(w). 

Proof: 

The theorem holds for i=O (second part of statement c on definition 5). 

Inductive hypothesis: the theorem is true for the elements of Q(i), i~O. 

Inductive step: let be w e: Q(i+l). 

- For '·'" nCi) ..... ,,nCi+1) th' ' t b h • w ~ ~' ~' no 1ng 1s o e s own, the inductive hypothesis 

applies immediately. 

• For w e: Q(i+1)-Q(i) holds: 

w=w
1

+w2 , where and (without lass of generality) 

With u:=ROOT(w
1
), v:=ROOT(w

2
) the inductive hypothesis yields: 

(1) g e: w
1 

==> each path from x e: F-(w
1

+w
2

) to g contains u 

(2) g e: w
2 

==> each path from x e: F-Cw
1

+w 2) to g contains v 

PRED(v) ~ w
1 

==> each path from x E: F-(w
1

+w2) to g e: w2 contains an 

element of w
1 

and because of (1) also u 

==> each path from x e: F-(w
1

+w
2

) to g e: w
1

+w2 contains u=ROOT(w). 
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('+1) I.e. the statement of the theorem is true also for the elements of Q 1 

and, thus, holds for each i~O. 

0 

Since IFI is finite and because of Q = Q(i) (step 3 of algorithm 1), the 

statements of both theorem 8 and 9 hold also for Q: 

COROLLARY 5: 

Let be w E Q: 

a) f,g E w ==> pf - pg 

b) Each path from x E F-w to g E w contains ROOT(w). 

Remark: 

In ~eneral the reverse of corollary Sa does not hold. Consider the 

fragment graph consisting of entry-fragments 1 and 2 and S-fragments 3 

and 4: 

Here p3 = p4 - p1 OR p2 , the fragments 3 and 4, however, are elements of 

different Q-sets: Q = { {1},{2},{3},{4) ). 
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THEOREM 10: 

f be an 0-, X- ' 
s- or entry-fragment, g E F, w E Q. If f E P for each 

path P from an entry-fragment to g and each path from f to g is a 

Rl-path, then holds: f E W ==> g E W 

Proof: 

Let L(y) denote the maximum of the path-lengths of all paths from f to 

y E F, i.e. L(y) := max { IPI-1 y E F, P is a path from f to y }. 

Since F is finite and (F,R) is acyclic IFI is an upper bound for the 

length of a path from f to g: L(g) ~ IFI < oo, Therefore, we show by 

induction on L(g) that the statement of the theorem holds for all finite 

values of L(g). 

L(g)=1 ==> g is no S-fragment (each path from E to g contains f) 

==> g E R1(f). Therefore: 

f E w ==> R1(f) ~ w ==> g E w (cf. corollary 4b) 

Inductive hypothesis: the statement holds for g E F with L(g)~k, k>1. 

Inductive step: 

Let g be a fragment with L(g)=k+1, PRED(g)={g. l1~i~m}, f E w. Since each 
~ 

path from e E E to g contains vertex f, this is true also for each path 

from e to x E PRED(g). Because of L(x)~k for x E PRED(g) the inductive 

hypothesis yields for 1~i~m: f E w ==> g. E w. 
~ 

• If m>1, i.e. if g is a S-fragment, then R1(g) c w due to step 2 of 

algorithrn 1 and corollary 4b; 

• else (i.e. if PRED(g)={g1}) the path from g
1 

to g is a R1-path. Thus: 

g1 ,g E R1(x) 

corollary 4b). 

for some x E F and R1(x) c w (because of g
1 

E w and 

In both cases follows g E w, such that the statement holds for each 
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finite value of L(g)~1. 

0 

As has been pointed out above if in step 2 there is a choice of pairs for 

the construction of (JJ 
(i) 

algorithm 1 does not specify, which pair to 

merge. We now show that irrespective of the order of merging algorithm 1 

always produces the same disjoint decomposition of F, i.e. Q is uniquely 

determined: 

THEOREM 11: 

For a given fragment system algorithm 1 produces exactly one Q-set. 

Proof: 

Let Q' and Q" be two Q-set constructed with algorithm 1 for a fragment 

system (F,R,X,O,E,p). Let be w' e Q' and ROOT(w')=r'. 

" It is R1 (r') ~ w' . According to corollary 4 there is some w" e Q" such 

that R1(r') c w". 

" For other R1-sets in w', i.e. for each R1-set R=R1(f) e Q(O) with 

R c w' and R#R1(r') holds: 

each path from E to f contains r' (corollary Sb) and each path from r' 

to f is a R1-path (FGO guarantees the existence of such a path). From 

r' e w" follows f e w" (theorem 10) and R ~ w" (corollary 4b). 

I.e. for each w' e Q' there is w" e Q", suchthat w" contains all R1-sets 

of w', and thus w' c w". Both Q' and Q" being disjoint decompositions of 

F implies Q'=Q". 

0 
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6. The relevances of a fragment system 

This section shows how to obtain for the fragments f e F of a fragment 

system CF-representations C(f) ~ CF and, thus, relevance expressions pf = 

ORgeC(f) Pg· In this way we prove that the set CF of algorithm 1 has 

property CFl. 

Since the elements of a Q-set have the same relevance (corollary Sa) and 

Q is a disjoint decomposition of F (corollary 4a), it suffices to 

construct CF-representations of the root-fragments of the Q-sets, i.e. 

for the elements of FQ. 

DEFINITION 6: 

SUCX(f) := { g I g e F, X(g)#~, each path in G from E to g contains f, 

(*) f=g or there is in G a Rl-path from f to g } 

(Examples follow in section 6.4) 

Remarks: 

• According to theorem 5 and corollary 3 holds for f e FQ with 

IPRED(f)l~l: SUCX(f)=~ <==> XQ(f)=~ <==> f E CF 

• If f is an entry-fragment, then f is the only entry-fragment, from 

which there is a path to the fragments of SUCX(f). 
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6.1. The relevances of X- and entry-fragments 

Let be f E FQ a X- or entry-fragment. 

6.1.1. CF-representations 

• f E CF: a CF-representation of f is {f}, beeause of the minimality 

property CF2 this is the only one. 

• f -.g CF: 

==> SUCX(f) # ~ (cf. remark on definition 6). 

Let be n:=ISUCX(f)l~1, SUCX(f):={f.l1:$;i:5n} and X(f.):={f .. l1:5j:5m(i)}, 
1 1 1,J 

Foreach i with 1:5i:5ISUCX(f)l and t E T follows 

p(t,f)=O ==> p(t,f.)=O 
1 

(theorem 3 with F'={f}) and 

p(t,f)=1 ==> p(t,f.)=1 
1 

(sections 3.2.3, 3.2.4 and ~': ) 

=> 

==> there are n=ISUCX(f)l equations for pf (cf. section 3.2.1): 

: ORm(i) 
pf j=1 Pi,j 1:5i:5ISUCX(f)l 

and n equations for C(f): 

C(f) = C(f.) = +~(i)C(f .. ) 
1 J=1 1,J 

1:5i:5ISUCX(f)l 

If there is 

+~(i)C(f .. ) = 
J=1 1 ,J 

If f. . -.g CF, 
1,J 

an index i such that f .. E CF for 
1,J 

+~( 11'){f .. } is a CF-representation of f. 
J= 1,J 

i.e. SUCX(f .. )#~, then C(f. .) itself 
1,J 1,J 

1:5j:5m(i), then 

is the union of 

CF-representations of the X-fragments of an element of SUCX(f .. ), etc. 
1,J 

Since F is finite and (F,R) acyclic, this substitution process yields 

after a finite number of steps a set C(f) ~ CF with pf = ORgEC(f) Pg· 

These considerations lead to the following recursive algorithm for the 
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construction of CF-representations: 

ALGORITHM 2: Construction of a CF-representation C(f) 

Input : fragment graph (F,R,X,O,E), X- or entry-fragment f E F 

Output: a CF-representation C c CF of f 

Algor:ithm: 

with: 

C = C(f) 

FUNCTION C(f) 
IF (SUCX(f)=(i}) 

THEN C = { f} 
ELSE DO 

select a fragment d E SUCX(f) 
let be X(d)={ di I 1~i~IX(d)l } and n=IX(d)l 

END 

6.1.2. Constraints 

If there are n=ISUCX(f)l>1 equations for then the n relevance 

expressions must be identical, i.e. the following n-1 "relevance con-

straints" must hold: 

(RC1) 2~i~ I SUCX(f) I 
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6.2. The relevances of 0-fragments 

Let be f E FQ an 0-fragment. 

6.2.1. CF-representations 

.. f E CF: a CF-representation of f is {f}, because of the minimality 

property CF2 this is the only one. 

'" f ""'E CF: 

==> SUCX(f) # r/J 

Let be n:=iSUCX(f)i~1, SUCX(f):={f.i1:s;i:s;n} and X(f.):={f .. l1:s;j:s;m(i)}, 
1 1 1,J 

As in section 

equations for pf: 

6.1.1 holds pf- pi 

m(i) 
Pf - OR. 

1 
p. . 

J= 1,J 

such that there are ISUCX(f)i 

Foreach X-fragment f .. a CF-representation C(f .. ) can be constructed 
1,J 1,J 

with algorithm 2, which leads to n CF-representations of f as follows: 

6.2.2. Constraints 

At least one constraint in form of an implication RC2 must hold: 

• Let be g E FQ the predecessor of f in GQ , i.e. (g,f) E RQ. Then 

according to section 3.2.2 (and with corollaries 4 and 5) must hold for 

t E T: 

(RC2) => p (t)=1 
g 

• If ISUCX(f)i>1 then in analogy to section 6.1.1 there areadditional 

ISUCX(f)l-1 constraints of the form RC1. 
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6.3. The relevances of S-fragments 

Let be f E FQ a S-fragment. 

6.3.1. CF-representations 

According to theorem 1 pf is equal to a relevance expression with the 

relevances of 0-, X- or entry-fragments f 0 ., say, 1~j~m(O): 
,J 

Since a 

fragments 

CF-representation 

m(O) 
0Rj=1 Po,j 

C(f
0 

.) can be constructed for each of the 
,J 

according to the preceding sections, a CF-representation 

of f can immediately be derived from this equation: 

C(f) = +~(O)C(f . ) 
J=1 0 ,J 

6.3.2. Constraints 

If ISUCX(f)I~O, then in addition 

::: ORm(i) 
pf j=l Pi,j 1~i~ISUXC(f)l 

which leads to ISUCX(f)l constraints of the type RCl: 

m(O) m(i) 
0Rj=1 Po,j- ORj=l Pi,j 1~i~ISUCX(f)i 
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6.4. The relevances of the example system 

We apply the results of the preceding sections to the example system and 

determine its relevances. 

a) The decomposition Q of F (figure 4) leads to the following equations 

(corollary Sa): 

~"( 
p 1. 1 - P2 - Pn 

";~ 
P2.1 - p13 

-;"( 

P10.1 - p17 

* p1.2 - Pg - pl2 ""k 
P9.1 - p14 

-;"( 
P10. 2 - p 18 

pl. 3 - p3 - p4 ('\ 
P8.1 - P1s 

;': 
P10. 3 - P2o 

Pl.s - P8 
";'\ 

P8.2 - p16 Ps. 1 - p6 

pl. 6 - plO "';'\ 
P8.3 - p19 

.. k 
Ps.2 - p7 

P22 - P22.1 
~~ p = 4.2.2 P21 

Starred equations involve the relevance of a characteristic fragment, 

therefore in these cases a CF-expression and a CF-representation of 

the pertaining fragments is already given. 

b) CF-representations of the X- and entry-fragments: 

CF does not contain the X-fragments 1.3, 1.5, 1.6, 4.2, 5.1 and the 

entry-fragment 1 (cf. section 4.2.2). CF-representations C(f) of these 

fragments according to section 6.1: 

f I SUCX(f) I C(f) 
----+---------+-------------------------------------------------
4.2 I {4.2} 1 { 4.2.1 , 4.2.2 } 
1.3 I {4} I { 4.1} + C(4.2) = { 4.1 ' 4.2.1 ' 4.2.2 } 
1.s I {8} 1 { 8.1 , 8.2} 
1.6 I {lo} 1 { 1o.1,10.2} 

1 I {1} I { 1.1 , 1.2 , 
I I = { 1.1 , 1.2 
I I 

5.11 {6} 1{6.1,6.2} 

1.4 } + C(1.3) + C(l.S) + C(1.6) = 
' 1.4 4.1 ' 4.2.1 ' 4.2.2 ' 

8.1 ' 8.2 ' 10.1 ' 10.2 } 
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c) CF-representations of the 0-fragments: 

Since here the 0-fragments are characteristic fragments, nothing needs 

tobe clone: C(f)={f}. 

d) CF-representations of the S-fragments: 

According to section 6.3 there are two CF-representations of fragment 

5: { 2.1 , 1.1 , 1.4 } (theorem 1) and { 6.1 , 6.2 , 5.2 } because of 

SUCX(5)={5}1~. 

For the remainder we set: C(5) := { 6.1 , 6.2 , 5.2 } 

Due to SUCX(22)=~ a CF-representation of fragment 22 can be determined 

only by means of theorem 1. Replacing in the relevance expression for 

p22 according to theorem 1 (cf. section 3.1) the relevance p1 . 3 with 

ORfEC( 1 . 3)pf (the CF-expression for p1 . 3) leads to: 

C(22) = { 2.1 , 4.1 , 4.2.1 , 4.2.2 , 9.1 , 8.3 , 10.3 }. 
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7. The set of partial systems 

In this section we shall develop an explicit specification for the 

mapping p and the set of partial systems T. 

To this end we assume that a given set of fragments can be the building 

blocks for at most one partial system; in particular is not possible to 

construct with a given set of fragments simply through rearranging 

fragments two different partial systems. This one-to-one correspondence 

is no stringent restriction: e.g. the textual order of subprograms of a 

program system in general does not affect the behavior of the program 

system. (Note: we do not postulate that the order, in which fragments are 

integrated to form partial systems, does not matter; cf. [13] .) 

CF={g. ll:::;i:::;n} 
J_ 

be a characteristic set and p. the relevance of g. for 
J_ J_ 

1:::;i:::;n. Let Ft denote the set of fragments relevant for partial system t. 

F = 
t 

{ f f E F, pf(t)=1 } 

= { f f E F, ORgEC(f)pg(t) =1 } 

i.e. Ft is determined by the I CFI relevance values p. (t)' l:::;i:::; I CFI. 
J_ 

Because of the one-to-one correspondence between Ft and t with each t E T 

can be associated exactly one element of BICFI, denoted by t(t), as 

follows: 

t ( t ) : = < p 1 ( t ) ' . . . , p I CF I ( t ) > 

t(t) will be referred to as the representation of t E T. 

Note: The representation of the complete system is the element of BICFI 

with the relevance value 1 for all components. 

With the representations of the partial systems it is possible to 

explicitly specify mapping p: 
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p(t,f) = ORiEI(f) T(t)(i] 

where I(f) := { i I g. E CF~'<'C(f) } 
1 

for t E T, f E F 

(i.e. I(f) is the set of the indices of the characteristic fragments in 

the CF-representation C(f) of f E F). 

Example: 

The example system has a characteristic set of ICFI=18 fragments (see 

figures 4 and 5); these fragments be assigned indices as follows: 

i I 1 2 3 4 s 6 7 8 9 10 
---+--------------------------------------------------------
g.l 1.1 2.1 1.2 9.1 1.4 5.2 5.3 6.1 6.2 4.1 

1 

i 1 11 12 13 14 1s 16 17 18 1 
---+----------------------------------------------1 
g. 14.2.1 4.2.2 8.1 8.2 8.3 10.1 10.2 10.3 1 

1 

Then, the representation of partial system t_ins (appendix II) is 

T(t_ins)=(1,0,1,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0): 

t ins is the partial system with the characteristic fragments 1.1, 1.2, 

5.3, 6.1 and 8.1. 

For fragment 22 we have (cf. section 6.4d) 1(22)={2,4,10,11,12,15,18}, 

thus: p(t_ins,22) = 0Riei(22 )T(t_ins)(i] = 0 . 

The complete list of the sets I(f) for the example system and the 

relevance values fort ins are given in appendix III. 

Note that there is no partial system t of the example system with a 

representation (0,1, ... )EB18 : because of p(t,2.1)=1 ==> p(t,1.1)=1 for 

each t E T (cf. section 6.2, RC2) T(t)[1] must be 1 whenever T(t)[2]=1. 

In general t E BICFI in order to be a representation of a partial system 

t E T must satisfy restrictions of the form 
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= ORiEIZt[i] 

with Il,I2 c {1, ... ,!CF!}. 

A subset of these restrictions is implied by the fragment graph: 

relevance constraints RCl and RC2, which are obtained as a "side product" 

with the determination of the relevances according to section 6, must be 

satisfied by each partial system. 

From these constraints restrictions for t E BICFI are derived by 

Tl: replacing relevances with their CF-expressions and 

T2: substituting in the resulting relevance expressions t[i] 

or p.(t), respectively. 
1. 

for each p. 
1. 

Since in general there may be several CF-representations for a fragment a 

single constraint may give rise to several different restrictions fort. 

In order to obtain all restrictions the sets of CF-representations of the 

fragments involved in the constraints must be computed. To this end we 

define: 

DEFINITION 7: 

M1 and M
2 

be two sets, s
1 
~ ~(M1 ), s

2 
~ ~(M2 ). 

sl~s2 := { sl+s2 I SlESl, S2ES2 } 

Explanation: 

sl~s2 is the set consisting of the unions of the pairs of slxs2: 

• ~ is commutative 

• 1s I=IS 1=1 ==> s ~s 
1 2 1 2 
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Let C_ALL(f) denote the set of all CF-representations of f e F. It is 

sufficient to consider f e FR with IPRED(f)l~l, since the constraints to 

be manipulated according to Tl involve relevances of 0- , 

entry-fragments only: 

+-
1 { f} SUCX(f)=~ (i.e. f e CF) 

C_ALL(f) := < 

+-

n 
+i=l C_ALL(fi) SUCX(f)={f. ll~i~n} 

1 

where n=ISUCX(f)l>ü, C ALL(f.) = C ALL(f. 1yo: ... :o:c ALL(f. (')) and 
- 1 - 1, - 1,m 1 

X(f. )={f. . ll~j~m(i)} 
1 1, J 

X- or 

This leads to the following recursive algorithm, basically an extension 

of algorithm 2: 

ALGORITHM 3: Determination of all CF-representations 

Input : fragment graph (F,R,X,O,E); 0-, X- or entry-fragment f e F 

Output: set C of all CF-representations of f 

Algorithm: 

with: 

C = C_ALL(f) 

FUNCTION C ALL(f) 
IF (SUCX(f)=~) 

END 

THEN C_ALL = {f} 
ELSE DO 

let be SUCX(f)={f.ll~i~n}, n=ISUCX(f)l and 
1 

X(f.)={f .. ll~j~m(i)} for l~i~n. 
1 1,J 

C ALL= +~_ 1 ( C ALL(f. 1):0: ... :o:c ALL(f. (')) ) 
1- - 1, - 1,m 1 

END 

Since F is finite and each path of (F,R) is acyclic, algorithm 3 yields 

in a finite nurober of steps the set of all CF-representations. 
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Not all restrictions are inherent to the fragment system and, thus, 

mechanically derivable. Additional restrictions may be necessary for the 

characterization of the set of correct partial systems. Such restrictions 

may e.g. stem from properties of the system interface: due to the 

semantics of the operations provided it may be the case that 

• a set of two or more operations will always be used tagether 

• the execution of an operation 0 implies the execution of one of n 

operations 0., 1~i~n (as prerequisite or consequence). 
1 

Such properties are statements on the relevances of fragments, which take 

the form of relevance constraints RC1 and RC2, respectively, and thus can 

be transformed into restrictions. 

As will be exemplified below restrictions may also correspond to 

properties of the system that are not modelad by fragment systems as e.g. 

the "semantics" of modules. 

Example: The restrictions of the example system 

1) Inherent restrictions 

Inherent to the fragment graph (figure 4) are the following constraints: 

• for Q-sets with an 0-fragment as root (section 6.2.2, RC2): 

p(t, 2 .1)=1 => p(t,1.1)=1 

p(t, 9 .1)=1 => p(t,1.2)=1 

p(t, 5.3)=1 => p(t, 5 )=1 

p(t, 8.3)=1 => p(t,1.5)=1 

p(t,10.3)=1 => p(t,1.6)=1 

• for the Q-set with S-fragment 5 as root: one RC1-constraint because of 

ISUCX(S)I=1 (cf. section 6.3.2) 

P2.1 OR Pl.l OR P1.4 = Ps.1 OR Ps.2 
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No additional RC1-constraints can be inferred from the fragment system, 

since ISUCX(f)l~1 for the root-fragments f of the other Q-sets. 

With the indices of CF from above and utilizing the CF-expressions of 

section 6.4 (cf. also the sets C(f) and I(f) of appendix III) these con-

straints correspond to the following restrictions: 

T( 2]=1 ==> T( 1)=1 

T[ 4]=1 ==> T[ 3)=1 

because there are 2 CF-representations of fragment 5 (cf. section 6.4d): 

T[ 7]=1 ==> T[ 8) OR r[ 9] ORT[ 6] = 1 

T[ 7]=1 ==> T[ 2] ORT[ 1] ORT[ 5] = 1 

r[15]=1 ==> r[13] OR r[14] = 1 

t[18)=1 ==> T[16] OR T[17] = 1 

t[2] OR T[l] OR r[S] = t[8] OR r[9) OR t[6) 

2) Additional restrictions 

As to the operations provided by DBMS description in appendix II states 

(
11-l- 11 stands for "requires"): 

• OPEN-l-CLOSE, CLOSE-l-OPEN (operations OPEN, GLOSE must be used together): 

P2.1::p9.1 ' p1.1=pl.2 

Cl INSERT -l- OPEN: Ps.1(t) 

• FIND -l- OPEN: P4.1(t) 

• GET -l- FIND: P6.1(t) 

OR 

OR 

OR 

p ( t ) = 1 => p ( t) = 1 8.2 1.1 

P4.2.1(t) OR P4.2.2(t) = 1 ==> P1.1(t)=l 

p6 . 2(t) OR p5 . 2 (t) = 1 ==> 

==> p4 . 1(t) OR p4 . 2 . 1(t) OR p4 . 2 . 2 (t) = 1 

These five relevance constraints yield five restrictions: 
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t[2]=t[4] 1: [ 1] =t [ 3] 

t [ 13] OR t [ 14] = 1 => t[1]=1 

t[10] OR t[11J OR t[12] = 1 ==> t[1]=1 

t[8] OR t[9] OR t[6] = 1 ==> t[10] OR t[11] OR t[12] = 1 

In order to perform operation OPEN a partial system must retrieve 

information from system catalogues (see appendix II). Tothis end the 

same module (fragment 5) is invoked as the "ordinary" user operation GET 

does, with the effect, however, that only fragment 6.1, i.e. algorithm 

AB, is executed, but never fragments 6.2 or 5.2; i.e.: 

OPEN 4 algorithm A8: p 1 . 1(t)=1 ==> p6 . 1 (t)=1 

This constraint cannot be inferred from the fragment system! It yields 

the additional restriction t[1)=1 ==> t[8]=1 

The set of partial systems of a fragment system can be viewed as a subset 

of BICFI. If NC is the number of characteristic fragments not involved in 

any constraint, then for the number ITI of partial systems holds: 

2Nc ~ ITI ~ 2 1CFI 

The following result may be used to obtain better upper bounds for ITI: 



- &0 -

THEOREM 12: 

m n 
Let be x=<x1 , ... , xm> E B , y=<y1 , ... , yn> E B . 

m n ~ 1) there are (2 -1)*(2 -1)+1 different elements (x,y) E B such that 

m n 
ORi=1 xi = ORi=1 yi 

2) there are (2m-1)*(2n-1)+2n different elements (x,y) E Bm+n such that 

OR~=1 xi =1 ==> OR~= 1 yi =1 

Proof: 

There are 2i-1 elements of Bi with at least one component equal to 1, 

1:Si. 

For each Bm with m 1 there are 2n-1 elements Bn such X E 0Ri=1 x. = y E 
1 

that n y. =1, thus there (2m-1)'"'(2n-1) elements (x,y) Bm+n such 0Ri=1 are E 
1 

that both sides of the first equation evaluate to 1. 

This concludes the proof of the first statement, since both sides of the 

equation evaluate to 0 if and only if x=<O, ... ,0> and y=<O, ... ,0>. 

The second statement is a consequence of the fact that ,, if OR~= 1 xi =0 is 

true, the implication holds for each y E Bn (and 1Bnl=2n). 

D 

This theorem says that there are at most (2m-1)*(2n-1)+1 partial systems 

satisfying ORiEI 1t[i] = m n n 
ORiEI 2t[i] and at most (2 -1)*(2 -1)+2 partial 

systems satisfying ORiEI 1t[i]=1 ==> ORiEI 2t[i]=1, where m=II11, n=II21 

and n~'<'I2=~. 
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8. Conclusions 

The notion of fragment system has been presented. Originally, this 

concept has been designed specifically as a model for program systems 

with partial systems; it is, however, generally applicable to families of 

software systems including their job control programs, documentation, 

test data as well as hardware systems. It models the interdependencies 

among the building blocks, out of which the members of a system family 

are constructed. For software systems these interdependencies may 

represent the data and control flow of the program system [12, 13] or 

information on interconnections among configurations, versions, revisions 

of the system family [20]. 

These interdependencies describe the structure each partial system 

adheres to and, thus, indirectly the set T of possible partial systems. 

An explicit representation of T as a subset of {0,1}n has been 

constructed, where n is minimal and its elements satisfy equivalences and 

implications of Boolean expressions with OR-operators only. Restrietions 

of this type are inherent to fragment systems and can be algorithmically 

inferred from them. Additional restrictions of this form representing 

e.g. semantics of the system interface may be necessary for the 

characterization of the set of partial systems. 

The concepts and results of this paper have been employed for the 

generation of partial systems of an oparational database management 

system (details are 

collects, among 

given in [11, 

other things, 

14, 

the 

15]): A specification system 

relevance values of the 32 

characteristic fragments, constructs the representation t of the desired 
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partial system and passes T to a program generator. For program 

generation at first job control programs for source program generation, 

compile and link steps are generated. These JCL-programs form partial 

systems of the JCL-programs of the given database management system, i.e. 

in this case besides source code fragments there are also fragments with 

JCL-statements. Their relevances form relevance expressions with 

relevances of code fragments. 

Restrietions involving OR-operators only are sufficient for the 

characterization of partial systems of a program system in the sense of 

[12, 13]. For the use in general customizing systems, as e.g. MACS [5], 

or version control systems [3, 19, 20] two extensions are necessary: 

First, general logical expressions must be allowed as restrictions: 

In system families there are typically groups of components, e.g. 

revisions of a module, that exclude each other in that for the 

construction of a member of that family at most one element of a group of 

components may be used. In terms of relevances this means that the 

relevance of a fragment may be the "negation" of some relevance 

expression. This type of structural information cannot be modeled with 

fragment systems, rather it must be added (by the software engineer, say) 

in form of logical expressions involving the NOT-operator to the 

restrictions inferable mechanically. 

A second extension refers to the fragment concept as such. The relevance 

of a fragment may depend also on the "environment" of the system: e.g. a 

module of a family of program systems may be required, only if the system 

is intended to run under a particular operating and/or hardware system. 

In order to be able to express options of this kind uniformly in terms of 
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relevances, the set of fragments representing "real" system components 

can be supplemented with "virtual" fragments that represent such aspects 

of the environment. In the application mentioned above e.g. such a 

fragment was defined in order to be able to specify the compiler (FORTRAN 

IV or FORTRAN 77) to be used for the compilation step. 
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APPENDIX I: Notations, definitions 

This appendix gives the basic definitions and notations of set and graph 

theory used in this paper (cf. e.g. [1], [2]). 

Let M and N be sets: 

A: The cardinality of M, denoted: IMI, is the number of elements in M. 

~ denotes the empty set, i.e. 1~1=0. 

B: M~"'N denotes the intersection M+N the union of M and N. The union of n 

C: 

sets M., 1~i~n, is denoted by: 
~ 

n 
+. 1 M. 

J= J 

The Cartesian product of M and N is the set 

MxN := { (m,n) m E M, n E N } 

~(M) denotes the power set of M, i.e. the set of all subsets of M. 

A set of subsets M., 
1 

1~i~n, is a disjoint decomposition of M if 

M. ~'<'M .=~ for H j and for each m E M there is some k, 1~k~n, with 
1 J 

m e Mk. 

A set R c MXN is called a (binary) relation from M to N. 

A partial order on M is a relation R ~ MxM such that 

.. (x,x) E R for each X E M (R is reflexive) 

.. (x,y) E R, (y,x) E R ==> x=y (R is antisymmetric) 

.. (x,y) E R, (y,z) E R => (x,z) E R (R is transitive) 
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D: With R a partial order on M a set L c M is called a list, if for each 

pair (x,y) e LXL either (x,y) e R or (y,x) e R. L[i] denotes the i-th 

element of list L, L is written using angular brackets: 

L = < L[l], 1[2], ... , L[i], ... > 

E: A mapping f: M --> N is a relation f c MxN such that 

(x,y) e f, (x,z) E f ==> y=z 

Two mappings f: M --> N, g: M --> N are said to be equal, denoted: f -

g, if f(x)=g(x) holds for each x e M. 

F: A directed graph is a pair G=(M,R), where M is a set and Ra binary 

relation R ~ MXM. The elements of M are called the vertices, the 

elements of R the edges of G. 

Let k,k 1,k2 be vertices of a directed graph G=(M,R): 

• The predecessors of k in G are the vertices of the set 

PRED(k) := { x I x e M, (x,k) e R } 

• The successors of k in G are the vertices of the set 

SUCC(k) := { x I x e M, (k,x) e R } 

from x to y is a list of n~2 vertices k., 
1 

l~i~n, with 

(ki,ki+l) e R for l~i~n-1 and k1=x, kn=y. P is a c y c 1 e if x=y. 

A path from a set K of vertices to y is a path from some element 

x e K to y. 

is said to be accessible from k
1

, if there is a path from k1 to 
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G: A tree is a directed graph G=(M,R) such that: 

1. G has no cycles 

2. there is exactly one vertex r E M with PRED(r)=~; r is the root of 

G 

3. k E M, k#r ==> jPRED(k)j=l 

4. for each vertex k E M, k#r, there exists a path from r to k. 

A vertex k E M without successors, i.e. jSUCC(k)j=O, is called a leaf 

of G. 



- 67 -

APPENDIX II: The example system DBHS 

The program system of fig. A-1, called DBHS, is used throughout this 

paper for demonstration purposes (cf. [11]). It sketches the 

implementation of a database management system with a simple, one-tuple 

database interface consisting of the six operations of table A-1. 

+=============+======================================================+ 
I operation I semantics I 

+=============+======================================================+ 
I OPEN I acquire a lock on a relation; in order to access I 

I I the tuples of a relation the relation must be I 

I I locked by the application program I 

+-------------+------------------------------------------------------+ 
I CLOSE I release a lock; at the end of a transaction all I 

I I locks acquired (with OPEN) must be released by the I 

I I application program I 

+-------------+------------------------------------------------------+ 
I FIND I select a set of tuples of a relation satisfying a I 

I I qualification, make them available in a QSS I 

+-------------+------------------------------------------------------+ 
I GET I retrieve a tuple of a QSS I 

+-------------+------------------------------------------------------+ 
I INSERT I insert a tuple into a relation I 

+-------------+------------------------------------------------------+ 
I DELETE I delete a tuple from a relation I 

+======--======+======================================================+ 

Table A-1: The operations supported DBMS 

For the implementation of relations DBMS supports two storage structures 

(cf. variables FILE_TYPE of program units INSERT and DELETE of fig. A-1), 

access paths can be supported through "sequential search", hashing or an 

inverted files. 

There are two access methods (variable ACCESS_TYPE of program unit GET): 

"sequential search" und "direct access" (employing lists of tuple 

identifiers TID). 
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PROGEDURE DBMS 
li (OP<1 OR OP>6) 

THEN return 'operation unknown' 
GASE OP OF 
----,--:- o PE N 

2: GLOSE 
3: FIND 
4: GET 
5: INSERT 
6: DELETE 

END 
END-

PROGEDURE OPEN 
OPEN RF 
OPEN-I F 

PROGEDURE GLOSE 
GLOSE RF 
GLOSE= I F 

END - END 

PROGEDURE FIND 
USE INDEXES 
evaluate INDEX TABLE 
STRTGY ' -
return qss 

END 

PROGEDURE STRTGY 
determine access-strategy and 
set AGGESS TYPE 

GASE AGGESS-TYPE OF 
-,-: bu i I d seq, search qss 

2: BEGIN 

END 

GASE FILE TYPE OF 
-1-: calculate tTd 

2: ...... . 
RETRIEVE_TID_LIST 

END 
bui ld direct-access qss 
END 

END-

PROGEDURE GET 
NEXT TUPLE: 

END 

GASE-AGGESS TYPE OF 
-,-: NEXT_SEQ 

2: NEXT_TID 

END 
IF (quallfication is not satisfied) 

THEN GO TO NEXT_TUPLE 

PROGEDURE NEXT SEQ 
GASE FILE TYPE OF 
-,-: next -, -

2: next-2 
END -

END-

PROGEDURE NEXT TID 
return next-tid of tid-1 ist 

END 

PROGEDURE RETRIEVE_TID_LIST 

PAGKAGE INDEXES 
INDEX TABLE: ARRAY OF INTEGER 

END - ---

PROGEDURE OPEN_RF 

GET 

END 

PROGEDURE GLOSE_RF 

PROGEDURE INSERT 
GASE FILE TYPE OF 
-1-: INSERT 1 

2: I NSERT-2 
END -
INSERT TID 

END -

PROGEDURE OPEN IF 
USE INDEXES-

GET 

END 

PROGEDURE GLOSE IF 
USE INDEXES -

PROGEDURE DELETE 
GASE FILE TYPE OF 
-1-: DELETE 1 

2: DELETC2 
END -
DELETE TID 

END -

PROGEDURE INSERT_1 PROGEDURE DELETE_1 

END END 

PROGEDURE INSERT_2 PROGEDURE DELETE_2 

END END 

PROGEDURE INSERT TID PROGEDURE DELETE TID 
USE INDEXES - USE INDEXES -

Fig. A-1: The example system DBMS 
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Table A-2 delineates the implementation of the operations of table A-1, 

with the pertaining program fragments in angular brackets (statements, 

subroutine calls); the right-most column contains the "names" of the 

algorithms of DBMS in form of the integers 1 through 17. 

Partial system t_ins of DBMS (cf. [11]): 

Let A be a database application, the only purpose of which is to collect 

and store data in (one or several relations of) a database. 

We assume that storage structure 1 is used for the implementation of the 

relations to be operated on by A; since (i) there are no retrieval 

operations to be supported and (ii) the maintenance of inverted files 

slows down update operations, no inverted files will be employed for A. 

For this type of application algorithm 12 (insertion according to storage 

structure 1) suffices for the implementation of operation INSERT. A has 

to lock and unlock the relations to be accessed (operations OPEN, GLOSE; 

see table A-1): for these purposes only algorithms 1 and 3, respective1y, 

are necessary for A (and not algorithm 2 or 4, since here inverted files 

will not be encountered). It is assumed that the relations ("system 

catalogues") holding the database schema are implemented according to 

storage structure 1, too: access to system catalogues (the call to GET in 

OPEN_RF!) requires algorithms 8 and 11. 

The partial system of DBMS providing the operations OPEN, GLOSE and 

INSERT with these five algorithms is referred to as t ins. 



- 70 -

+===========+===============================================+===========+ 
I operation I implementation I algorithm I 

+===========+====-~--=======================================+===========+ 
I OPEN I - lock relation <OPEN RF> I 1 I 

I I - if inverted files exist for the relation, I I 

I I acquire locks and update INDEX_TABLE I I 

I I <OPEN IF> I 2 I 

+-----------+-----------------------------------------------+-----------+ 
I GLOSE I - release lock for relation <GLOSE RF> I 3 I 

I I - if inverted files exist for the relation, I I 

I I release locks and update INDEX_TABLE I I 

I I <GLOSE IF> I 4 I 

+-----------+-----------------------------------------------+-----------+ 
I FIND I - determine in INDEX TABLE the available I I 

I I inverted files <evaluate INDEX TABLE> I I 

I I - determine access technique and create a I I 

I I subset (QSS) for I I 

I I sequential search <build seq.search qss> I 5 I 

I I or I I 

I I direct access employing: I I 

I I hashing <calculate tid> I 6 I 

I I TID-list via inverted file I I 

I I <RETRIEVE TID LIST> I 7 I 

+-----------+-----------------------------------------------+-----------+ 
I GET I - retrieve next tuple through: I I 

I I sequential search <NEXT_SEQ> according to I I 
I I storage structure 1 <next_1> or I 8 I 

I I storage structure 2 <next_2> I 9 I 

I I direct access with a TID-list <NEXT TID> I 10 I 

I I - check, whether qualification is satisfied I 11 I 

+-----------+-----------------------------------------------+-----------+ 
I INSERT I - insert a tuple according to storage I I 

I I structure 1 <INSERT 1> or I 12 I 

I I 2 <INSERT 2> I 13 I 

I I determine in INDEX TABLE the available in- I I 

I I verted files and perform updates, I I 

I I where applicable <INSERT TID> I 14 I 

+-----------+-----------------------------------------------+-----------+ 
I DELETE I - delete a tuple according to storage I I 

I I structure 1 <DELETE 1> or I 15 I 

I I 2 <DELETE 2> I 16 I 

I I - determine in INDEX TABLE the available in- I I 

I I verted files and perform updates, I I 

I I where applicable <DELETE TID> I 17 I 

+=======--===+=====--=======----==============================--=+===========+ 

Table A-2: The algorithms of DBMS 
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A four-step method yields a fragmentation of DBMS as shown in fig. A-2 

(for details the reader is referred to [12]): 

• Each program unit is defined a fragment. This leads to frag~ents 1 

through 22. 

• Each fragment with optional code is partitioned into subfragments that 

enclose these pieces of code: in this way we obtain e.g. the 

subfragments 1.1 through 1.6 of fragment 1 or the subfragments 4.2.1 

and 4.2.2 of fragment 4.2, which itself is a subfragment. (Dots in the 

fragment names indicate the nesting of fragments). 

A fragment f may have subsets X(f), suchthat with the execution of f 

exactly one fragment of X(f) is executed. Fragments with this property 

are the X - f r a g m e n t s of f; the fragments that are optional 

without any restriction are called the 0 - f r a g m e n t s of f. 

The sets of X-fragments of this example: 

X(1) = { 1.1 

X(4) = { 4.1 

X(5) = { 5.1 

X(8) = { 8.1 

1.2 

4.2 } 

5.2 } 

8.2 } 

1.3 , 1.4 , 1.5 , 1.6 } 

X(4.2) = { 4.2.1 

X(6) = { 6.1 

4.2.2 } , 

6.2 } 

X(10) = {10.1 ,10.2 } 

The 0-fragments: 2.1 , 5.3 , 8.3 , 9.1 , 10.3 

• After the definition of X- and 0-fragments additional fragments are 

introduced according to the following rules: 

a) For each fragment f with statements that can be executed only when 

subfragments of f are executed define fragments comprising these 

statements. 

b) For each fragment f with declarations of data objects that are 

referenced only by statements of subfragments of f define fragments 
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PROGEDURE DBMS 

lf (OP<1 OR OP>6l 
THEN return operation unknown' 

GASE OP OF -r: OPEN 
2: GLOSE 
3: FIND 
4: GET 
5: INSERT 
6: DELETE 

END 
END­
PROGEDURE OPEN 

OPEN RF 
OPEN-I F 

END -
PROGEDURE FIND 

USE INDEXES 
evaluate INDEX TABLE 
STRTGY -
return qss 

END 
PROGEDURE STRTGY 

determine access-strategy and 
set AGGESS TYPE 

GASE AGGESS-TYPE OF -r: - -
build seq.search qss 

2: BEGIN 

END 

GASE FILE TYPE OF -r: calculate tid 
2: ...... . 

RETRIEVE_TID_LIST 

END 
bui ld direct-access qss 
END 

END-
PROGEDURE GET 

NEXT TUPLE: 

END 

GASE-AGGESS TYPE OF -r: ... -:-. 
NEXT_SEQ 

2: ..... 
NEXT_TID 

END 
IF (qua I ifikation is not satisfied) 

THEN GO TO NEXT_TUPLE 

PROGEDURE NEXT SEQ 
GASE FILE TYPE OF -r: - -

2: 

END 
END-

next_1 

next_2 

PROGEDURE NEXT TID 
return next tid of tid-1 ist 

END 

Fig. A-2: Fragmentation of the example system DBMS 
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8 PROGEDURE INSERT 
8 GASE FILE TYPE OF 
8 --1: -
8.1 INSERT_1 
8 2: 
8.2 INSERT_2 
8 END 
8.3 INSERT TID 
8 END -
9 PROGEDURE GLOSE 
9 GLOSE RF 
9.1 GLOSE-IF 
9 END -

10 PROGEDURE DELETE 
10 GASE FILE TYPE OF 
10 --1: -
10.1 DELETE_1 
10 2: 
10.2 DELETE_2 
10 END 
10.3 DELETE TID 
10 END -
11 PROGEDURE OPEN_RF 
11 
11 GET 
11 
11 END 
12 PROGEDURE GLOSE_RF 
12 
12 END 
13 PROGEDURE OPEN IF 
13 USE INDEXES-
13 
13 GET 
13 
13 END 
14 PROGEDURE GLOSE IF 
14 USE INDEXES 
14 
14 END 
15 PROGEDURE INSERT_1 
15 
15 END 
16 PROGEDURE INSERT_2 
16 
16 END 
17 PROGEDURE DELETE_1 
17 
17 END 
18 PROGEDURE DELETE_2 
18 
18 END 
19 PROGEDURE INSERT TID 
19 USE INDEXES -
19 
19 END 
20 PROGEDURE DELETE TID 
20 USE INDEXES -
20 
20 END 
21 PROGEDURE RETRIEVE_TID_LIST 
21 
21 END 
22 PACKAGE INDEXES 
22, 1 INDEX TABLE: ARRAY OF INTEGER 
22 END -

Fig. A~2: Fragmentation of the example system DBMS (continued) 
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comprising these declarations. 

c) For each global data object define a fragment comprising its 

declaration. 

In this way we obtain fragment 22.1. 

The program lines that form fragment f (and thus also the subfragments of 

f) are marked with the name of that fragment or one of its subfragment at 

the left of the program text. E.g. the lines of code of fig. A-2 with 

11 111
, 

11 1.1 11
, ... , 

11 1.6 11 belang to fragment 1. 

A fragment f can be considered a list of substrings of the source program 

and (sub)fragments f.~f; with each fragment is associated "substitute" 
1 

code (cf. (12]). The generation of the program of a partial system can 

informally be described as follows: 

Starting with the first fragment the relevance value of each fragment is 

determined. In case a fragment is not relevant for t the substitute of 

that fragment is appended to the program text produced so far (the empty 

string is assumed as the initial value of the programtobe generated); 

otherwise the fragment is "processed": 

• if it is a substring of the source program, this string is appended to 

the program text generated so far 

• if it is a list of substrings and fragments the substrings are appended 

to the program text generated so far, for each fragment as just 

described the relevance value is determined, . . . ' etc . 

(A formal treatment of this process is given in (12].) 

Figure A-3 shows the program of partial system t_ins. It is the result of 

applying this procedure to the fragmentation of figure A-2 with the 

relevance values p(t_ins,f) of appendix III. 
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1 PROGEDURE DBMS 
1 
1 IF (OP<1 OR OP>6) 
1 -- THEN return operatlon unknown' 
1 GASE OP OF 
1. 1 -1-: OPEN 
1.2 2: GLOSE 
** 
1 . 5 5: INSERT 
** 
1 END 
1 END-
2 PROGEDURE OPEN 
2 OPEN_RF 
** 
2 
5 
5 
5 
5 
5. 1 
5. 1 
5 
** 
5 
5.3 
5.3 
5 
6 
6 
6 
6. 1 
6 
** 
6 
6 
8 
8 
8 
8. 1 
8 
** 
8 
** 
8 
9 
9 
** 
9 

11 
11 
11 
11 
11 
12 
12 
"12 
15 
15 
15 

END 
PROGEDURE GET 

NEXT TUPLE: 
GASE-AGGESS TYPE OF 
-1-: ... -:-. 

NEXT_SEQ 

2: 
~etu~n''iliegal access-type' 

END 
IF (qua I ifikation is not satisfied) 

THEN GO TO NEXT_TUPLE 

PROGEDURE NEXT SEQ 
GASE FILE TYPE OF -,-: - --

next_1 
2: 

return 'storage structure not accessible' 
END 

END-
PROGEDURE INSERT 

GASE FILE TYPE OF --,: -

INSERT_1 
2: 

return 'storage structure not accessible' 

END 
PROGEDURE GLOSE 

GLOSE_RF 

END 
PROGEDURE OPEN_RF 

GET 

END 
PROGEDURE GLOSE_RF 

END 
PROGEDURE INSERT_1 

Fig. A-3: The program of the partial system t_ins 
c~·d~· marks substitute code, within program units only!) 
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APPENDIX III: The fragments of DBMS and their relevances 

With the characteristic set CF of section 4.2 the table below contains 

for each fragment of the example system a characteristic representation 

C(f) and the indices I(f) of these fragments according to section 7. 

The rightmost column lists the relevance values pf(t_ins): t ins is the 

partial system with the characteristic fragments 1.1, 1.2, 5.3, 6.1 and 

8.1. Thus: p(t_ins,f)=1 <==> {1.1,1.2,5.3,6.1,8.1}~'>C(f)#Qj 

<==> { 1, 3, 7, 8, 13}~'>I(f)~Qj 
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f I C(f) I(f) I p(t_ins,f) 

-----+------------------------------+--------------------+-----------
1 I { 1.1 ) 1. 2 ' 1.4 ' { 1' 3' 5 ' I 1 

I 4.1 , 4.2.1 ' 4.2.2 ' 10, 11, 12, I 
I 8.1 ' 8.2 ' 10.1 ' 10.2 } 13, 14, 16, 17 } I 

1.1 I { 1.1 } { 1 } I 1 
1.2 I { 1.2 } { 3 } I 1 
1.3 I { 4.1 ' 4.2.1 ' 4.2.2 } { 10, 11, 12 } I 0 
1.4 { 1.4 } { 5 } I 0 
1.5 { 8.1 ' 8.2 } { 13, 14 } I 1 
1.6 { 10.1,10.2} { 16, 17 } I 0 
2 { 1.1 } { 1 } I 1 
2.1 { 2.1 } { 2 } I 0 
3 { 4.1 ' 4.2.1 ' 4.2.2 } { 10, 11, 12 } I 0 
4 { 4.1 ' 4.2.1 ) 4.2.2 } { 10, 11, 12 } I 0 
4.1 { 4. 1 } { 10 } I 0 
4.2 { 4.2.1 ' 4.2.2 } { 11, 12 } I 0 
4.2.1 { 4.2.1} { 11} I 0 
4.2.2 { 4.2.2 } { 12 } I 0 
5 { 6.1 ' 6. 2. ' 5.2 } { 8, 9' 6 } I 1 
5.1 { 6.1 ' 6.2 } { 8, 9 } I 1 
5.2 { 5.2 } { 6 } I 0 
5.3 { 5.3 } { 7 } I 1 
6 { 6.1 

' 
6.2 } { 8, 9 } I 1 

6.1 { 6.1 } { 8 } I 1 
6.2 { 6.2 } { 9 } I 0 
7 { 5.2 } { 6 } I 0 
8 { 8.1 

' 
8.2 } { 13, 14 } I 1 

8.1 { 8.1 } { 13 } I 1 
8.2 { 8.2 } { 14 } I 0 
8.3 { 8.3 } { 15 } I 0 
9 { 1.2 } { 3 } I 1 
9.1 { 9.1 } { 4 } I 0 
10 {10.1,10.2 } { 16, 17 } I 0 
10.1 { 10. 1 } { 16 } I 0 
10.2 {10.2 } { 17 } I 0 
10.3 {10.3 } { 18 } I 0 
11 { 1.1 } { 1 } I 1 
12 { 1.2 } { 3 } I 1 
13 { 2.1 } { 2 } I 0 
14 { 9.1 } { 4 } I 0 
15 { 8.1 } { 13 } I 1 
16 { 8.2 } { 14 } I 0 
17 {10 .1 } { 16 } I 0 
18 {10.2 } { 17 } I 0 
19 { 8.3 } { 15 } I 0 
20 {10.3 } { 18 } I 0 
21 {4.2.2} { 12 } I 0 
22 { 2.1 ' 4.1 ' 4.2.1 , { 2, 4, 10, 11, I 0 

4.2.2 ' 9.1 ' 8.3 ' 10.3 } 12, 15' 18 } I 
22.1 { 2.1 ' 4.1 4.2.1 

' 
{ 2, 4, 10, 11, I 0 

4.2.2 ' 9. 1 ' 8. 3 ' 10.3 } 12, 15' 18 } I 
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APPENDIX IV: A Fragment System Analyser 

This appendix describes FSA Ciragment ~ystem ~nalyser). FSA is a 

conversational system that makes available implementations of the 

algorithms of sections 4.2, 6 and 7. 

FSA is written in PROLOG [21] using the IF/Prolog interpreter version 2.1 

[22], it runs on a VAX 750 under VMS version 4.1. 

The PROLOG programs implementing the various algorithms and the structure 

of FSA are explained. The reader is assumed to have at least basic 

knowledge of PROLOG (for an introduction to PROLOGsee [21]). Excerpts 

from a FSA-session are given, where FSA is applied to the fragment system 

of the example system (appendix II or fig. 1). 

1. PROLOGprograms 

1.1. Describing fragment systems in PROLOG 

FSA must be presented the description of the fragment system to be 

analyzed in form of a PROLOG program in a separate file. FSA consults 

this file (predicate 'consult' [21]) in the course of initilization and 

adds the clauses specifying the fragment system to the actual FSA 

database. 
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A fragment system (F,R,X,O,E,p) is specified for FSA as follows: 

• for each f E F there is exactly one fact 'fragment(f)' 

• for each (f,g) ER there is exactly one fact 'edge(f,g)' 

• mapping Xis implementedas predicate 'x_fragments' with two arguments, 

where the first argument 

the elements of X(f) 

• mapping 0 is implemented 

where the first argument 

the elements of O(f). 

Remark: 

is 

as 

is 

a fragment f E F and the second a list with 

predicate 'o_fragments' with two arguments, 

a fragment f E F and the second a list with 

The set E of entry-fragments need not be specified explicitly, it is 

determined by FSA (cf. consult-file fg_general, below). 

Example: 

Fig. A-4 shows the PROLOG specification of the example fragment system of 

section 2.2. 

Note that here r u 1 e s are employed to specify the fragments f E F 

with X(f)=(D and O(f)=(D, respectively. In principle also facts 

'x_fragments(f,[])' and 'o_fragments(f,[])' could have been used. The 

scheme of fig. A-4 may be advantageous, if the PROLOG description of the 

fragment system is to be generated automatically (by a program, which 

provides a user-friendly interface, say) and not by manually editing of a 

file. 



fragment(.,l") .. 
fragment( "1..1 ") .. 
fragment("1.2")., 
fragment("l .. 3")., 
fragment("1 .. 4"),. 

fragment( "'1 .. 5"'). 
fragment("1 .. 6"). 
fragment("2') .. 
fragment("Z .. l")., 

fragment("Ju) .. 
fragment("4") .. 
fragment("'4.1") .. 
fragment("'4 .. 2") .. 

fragment("4.2.1"). 
fragment(•4.2 .. 2"). 
fragment("5') .. 
fragment( .. S .. l") .. 
fragment("5 .. 2") .. 

fragment("5 .. 3"). 
fragment("6"')." 
fragment("6 .. 1") .. 
fragmentC"6 .. 2"). 
fragment('.7"') .. 
fragment("8") .. 
fragment('B ... l"). 
fragment('ß .. 2") .. 
fragment("'8 .. 3") .. 
fragment("9")" 
fragment("9 .. 1") .. 
fragment("lO"). 
fragment("lO.l'). 
fragment("l0 .. 2"). 
fragment('l0.3"). 
fragment("ll") .. 
fragment( .. 12"). 
fra<;;ment( .. 13") .. 
fragment("l4") .. 
fragment("l5") .. 
fragment( "16 ') .. 
fragment("'l7") .. 
fragment("18"). 
fragment("'l9") .. 
fragment("20") .. 
fragment("21')., 
fragment("22'). 
fragmentc•zz.l"). 
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edge("13" 11 "22")., 
edge("'l3", .. 5')., 
eclge( "11 ","5") .. 
edge("l .. 4","'5") .. 
% 
eclge( .. 5"', .. 5 .. 3"')., 
edge( .. 5",·5 .. 1") .. 
eclge("'5", .. 5 .. 2') .. 
.% 

~dge("5 .. 1"', .. 6") .. 
eclge("5 .. 2","7")., 

adge("6","6 .. 1") .. 
edge( .. 6"',"6 .. 2"') .. 
% 
eclge("'1.,2"', "'9") .. 
edge("9 .. ,"12") .. 
edge( "'9', "9 .. 1 ")., 
edge('9 .. 1","14") .. 
eclge('14', '22")., 

eclge("'1 .. 3","3")., 
edge("3"',"22')., 
edge("'3","4"') .. 
eclge("'4",·4 .. 1"). 
edge("4","4 .. 2"). 
edge('4.2",·4 .. 2 .. 1 .. ) .. 
edge("4.2·,·4.2.2'). 
edge("4.2 .. 2","'21"). 
·~ 
eclge( '1 .. 5", "8") .. 
eclge("a·,·a .. l·). 
eclge("8"',·a.2") .. 
eclgeC"a·,·a .. 3") .. 
eclge("3.1·,·1s")., 
edge('8.2","16'). 
edge("'8 .. 3'","'19"),. 
edge("'19", "2.2") .. o, 
'O 

ed ge ( "1", "1 .. 1 "') .. 
edge("1',"'1.2·). 
edge("l"',"1..3"). 
edge('1',"1.4·). 
edge("l", .. l .. S"') .. 
edge("'l"ll•l .. 6")., 

% 
edge('1el',"2"')~ 

% 
eclge("2', .. 2 .. 1"). 
edr:;Je("'2","11')., 
Y. 
edge("'2.1",'13'). 

Fig. A-4: The PROLOG description of the example fragment system 
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edge('l.6','10'). 
edge('lO"','lO.l'). 
edge('lO"', "'10 .. 2"') .. 
edge("'10',"'10.3'). 
edge("'l0.1"','17'). 
ed ge ( ... 1 0. 2 "' '1 a .. ). 
edge('10.3','20'). 
edge("'Z0',"2Z')., 
% 
edge('22','2241'). 
% 
% mapping x: 
x_fragments('l", ["'1 .. 1','1.2"','1.3"','1.4"','1 .. 5','1 .. 6']). 
x_fragments("'4"', ('4.1',"'4.2']). 
x_fragments("'4.,2"',["'4.2.1"',"'4.Z.2"'J). 
x_fragments("'5"', ["'5.1 ... ,"'5.2']). 
x_fragments('6', ['6.1 ... ,'6.2"')). 
x_fragments("'8"', r·a .. l·,·a.Z'J). 
x_fragments('lO', ['10.1','10.2']). 
x_fragments(f,(J) :- f\="'l"',F\='4',F\="'4.2',F\="'5"',F\='6',F\=·s·,F\="'10"'. 
% 
% mapping o: 
o_fragments('2', 
o_fragments('S', 
o_fragments("'8", 

['2.1"')) .. 
("'5 .. 3']) .. 

["'8 .. 3']) .. 

o_fragments('9', ('9.1']). 
o_fragments{'lO', ['10.3~]). 

o_fragments{F,[J) :- f\='2',F\='5',F\='8',F'=·9'•F\='10'. 

CXl 
t-' 
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1.2. Construction of set Q: steps 1 and 2 of algorithm 1 (fig. A-5) 

Predicate 1 omega 1 constructs the set Q of the given fragment system, i.e. 

omega implements steps 1 and 2 of algorithm 1: 

each w E Q with ROOT(w)=r and thus finally each w E Q corresponds a fact 

1 omega_set(s,r) 1 of the database, where s is a list comprising the 

fragments of w. The presence of the "dummy"-fact 1 omega_set([],dummy) 1 in 

the FSA database indicates that Q has been determined already; i.e. 

predicate 1 omega_set 1 is available. 

I I (Q) Predicate omega_O constructs Q (implementation of step 1): 

• 
1 r1s_path(f,g,path) 1 succeeds if fandgare fragments and list path is 

a R1-path from f to g and path-{f} contains no S-fragment. 

1 r1_set(f,s) 1 constructs in list s the R1-set of fragment f (cf. 

definition 5): by means of 1 r1s_path 1 it collects all elements of R1(f) 

that are accessible from f and adds f. 

• for each of these R1-sets a fact omega_set(s,r) is added to the 

database. They represent Q(O). 

Predicate 1 build_omega 1 implements step 2: 

• 
1 sets_to_merge 1 implements the WHILE-condition, i.e. it succeeds, if 

there are sets to be merged, and returns a pair (S1,S2) of sets (with 

their respective roots R1 and R2) for merging. 

• merging of sets implies removal of the corresponding omega_set-facts 

and addition of a (single) new one. 

• the recursive definition of 1 build omega 1 is essential for the correct 

implementation of the WHILE-loop: 1 sets_to_merge 1 can succeed at most 

once; it fails, when (1) there are no more sets tobe merged or (2) an 

attempt is made to resatisfy it in the course of backtracking. 
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rls_path(F,G,[F,GJ) . . edge(F,G), 
not(x_fragment(G)), 
not(o_fragment(G)), 
not(s_fragment(G)). 

rls_path(F,G,[FITJ) :- edge(F,X), 
not(x_fragment(X)), 
not(o_fragment(X)), 
not(s_fragment(X)), 
rls_path(X,G,T). 

rl_set(f,[FITJ) 

omega_O(f,S) : 
omega_O(F,S) : 
omega_O(F,S) :­
omega_O(F,S) : 

omega_O 

omega_O ... 

. . 

:- findall(X,rls_path(F,X,P),T). 

x_fragment(F), rl_set(F,S). 
o_fragment(F), rl_set(F,S). 
s_fragment(F), rl_set(F,S). 
e_fragment(F), rl_set(F,S). 

asserta(omega_set([J,dummy)), 
fragment(F), 
omega_O(F,S), 
asserta(omega_setCS,F)), 
nl 9 write(' Rl-set constructed: '), write(S), 
write(' Root: '), write(f), 
fail .. 

sets_to_merge(Sl~Rl,SZ,RZ) :- omega_set(Sl,Rl), omega_set(S2,R2), 
predecessor_checkCRZ,Sl). 
predecessors(R,Pred), ! , 
Pred=[-~TJ, T'=[J, 

predecessor_check(R,S) . . 
subset(Pred,S) .. 

Sl,=SZ, 

build_omega :- sets_to_merge(Sl,Rl,S2,R2), 
retract(omega_set(Sl,Rl)), retract(omega_set(SZ,RZ)), 
append(Sl,S2,Snew), asserta(omega_set(Snew,Rl)), 
nl, write(' merging ·), write(Sl), writec· with '), writeCSZ), 
build_omega. 

build_omega :- nl, writec· End of step 2: OMEGA constructed·). 

omega :- omega_o, 
build_omega .. 

CXl 
UJ 
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1.3. Construction of set CF: step 3 of algorithm 1 (fig. A-6) 

Predicate 'char_frags_alg' determines the set CF of characteristic 

fragments of a fragment system according to step 3 of algorithm 1. 

Predicate 'omega_set' must be defined (i.e. steps 1 and 2 of algorithm 1 

must have been clone; cf. predicate provide_omega_set of consult-file 

fg_general, below). 

• 'omega_edge(f,g)' succeeds if (f,g) is an edge of graph GQ. 

Note that since the vertices of GQ are given with predicate 'omega_set' 

these two predicates constitute a PROLOG specification of graph GQ. 

• predicate 'xomega' implements the mapping XQ. 

'xomega(f,s)' collects in list s all elements of the set XQ(f) by means 

of predicate xomega_el, the specification of the properties to be 

satisfied by an element of XQ(f): 

no_omega_dominator(f,g)' succeeds, if there is a path in graph GQ 

from some entry-fragment to g such that f is not element of this 

path; therefore: 'not no_omega_dominator(f,g)' succeeds, if each path 

in GQ from E to g contains f. 

- 'omega_path_check(f,g)' succeeds if either (f,g) is an edge of GQ or 

there is in GQ a path P from f to g, such that P-{f,g} contains 

neither an X- nor an 0-fragment 

• 'cf_alg(f)' succeeds if f is a characteristic fragment, i.e. predicate 

'cf_alg' implements the characterization of the elements of CF 

according to step 3 of algorithm 1. 
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cf_alg(F) : omega_sat(_,F), F\=dummy, 
predecessors(F,Pred),card(Pred,N_pred),N_pred=<l, 
xomec;a(F,(J) .. 

xomega(f,S) 
xomega_el(F,G) 

. . 
:-

findall(X,xomega_el(F,X),S). 
omega_set(_,F), 
x_fragm~nt(G), omega_set(_,G), 
omega_path_check(F,G), 
not no_omega_dcminator(F,G). 

omega_path_check(F,G) ! 
omega_path_check(F,G) : 

no_omega_dominator(_,E) 
no_omega_dominator(f,G) 

omega_edge(F,G). 
omega_edge(X,G), 
not x_fragment(X), not o_fragment(X), 
omega_path_chack(F,X). 

:- e_fragment(E). 
:- omega_edge(X,G), X\=F, 

no_omega_dominator(F,X). 

omega_edge(F,G) :- omega_set(S,F), omega_set(_,G), 
edge(X,G), member(X,S). 

char_frags_alg(Char_fragments) :-
provide_omega_set, 
findall(X,cf_alg(X),Char_fragments). 

o:> 
l..n 
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1.4. Construction of set CF according to corollary 3 (fig. A-7) 

Predicate 'char_frags_cor' determines the set CF of characteristic 

fragments of a fragment system as a subset of F according to corollary 3 

(section 4.2.2). It collects (in list char_fragments) the characteristic 

elements of the fragment system by means of predicate 'cf_cor', which 

implements the characterization of the elements of CF according to 

corollary 3. 

'check x frags(f,g)' (consult-file fg_general, below) succeeds if 

fragment g has X-fragments, i.e. X(g)~~' and each path G from E to g 

contains fand (f=g or there is in Ga Rl-path from f to g); therefore: 

'not check_x_frags(f,g) 1 succeeds if there is no g E F with X(g)~~ such 

that holds: each path in G from E to g contains f and (f=g or there is 

in G a Rl-path from f to g) 

cf cor(F) :- x o e fragment(F), not check_x_frags(f,_). - - - -
char_frags_cor(Char_fragments) :- findall(X,cf_cor(X),Char_fragments). 

Fig. A-7: Construction of set CF according to corollary 3 

(consult-file: fg_c_set_cor) 
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1.5. Construction of CF-representations (fig. A-8) 

'c(f,1)' constructs for fragment f in 1ist 1 a CF-representation C(f) of 

f: 1 is the CF-representation of the root-fragment of the ~-set, which 

contains f. 

'cf_repr(f,1)' constructs for a fragment f, which must be the root of 

some ~-set, in 1ist 1 a CF-representation C(f) of f. 

• 'sucx(f,1)' (consu1t-fi1e fg_general, below) co11ects for fragment f in 

list 1 the elements of the set SUCX(f) of definition 6 

• predicate 'cf_repr': 

the first two 'cf repr' ru1es imp1ement the construction of 

CF-representations for X- ,0- and entry-fragments as described in 

sections 6.1 and 6.2, in particular they implement a1gorithm 2. 

the third rule implements the construction of CF-representations for 

S-fragments as described in section 6.3: 

'cf_repr_s1' constructs CF-represents according to section 6.3.1; 

' 2' cf_repr_s constructs CF-represents according to section 6.3.2, 

i.e. if ISUCX(f)I~O. 

• 'union cf reprs(frags,l)' constructs for frags, which must be 

instantiated to a list of X- 0- or entry-fragments, in list 1 the 

concatenation of CF-representations of the fragments of list frags. 
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c(F,l) :- fragment(f), provide_omega_set, 
omega_set(S,Root), member(f,S), 
cf_repr(Root,L). ' 

cf_repr(F,CFJ) 

cf_repr(F,l) 

. . -
:-

cf_repr(F,l) : 
cf_repr_s{f,l) :­
cf_repr_s(F,L) : 
cf_repr_sl(F,L):-

cf_repr_s2CF,l):-

x_o_e_fragment(F), 
sucx(F,[J), ! • 
x_o_e_fragment(F), 
sucx(F,X), X'=[J, ! , 
member{O,X), x_fr2gments(O,Xd), 
union_cf_reprs(Xd,l). 
cf_repr_s(F,L) .. 
cf_repr_sl(F,l). 
cf_repr_s2(F,l). 
s_fragment(F), 
findall(X, next_x_o_e_predecessor(F,X), 
union_cf_reprs(l_x_o_e,l). 
s_fragment(F), 
sucx(F,X), X'=(J, ! , 
member(C,X), x_fragmentsCO.Xd), 
union_cf_reprs(Xd,l). 

l_x_o_e), 

union_cf_reprs((XfragiXtailJ,l) :- cf_repr(Xfrag,Cfrep), 
union_cf_reprs(Xtail,Ctail), 
append(Cfrep,Ctail,l). 

union_cf_reprs([J,(J) • 

next_x_o_e_predecessor(F,G) :-

x_o_e_predecessor(X,X) : 
x_o_e_predecessor(X,Y) : 

predecessors(F,Pred), 
member(X,Pred), x_o_e_predecessor(X,G) • 
x_o_e_fragment(X), ! • 
next_x_o_e_predecessor(X,Y). 

' 
00 
00 
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1.6. Construction of constraints and restrictions (fig. A-9) 

The nul1-ary predicate 'constraints' constructs the inherent constraints 

of the fragment system by adding predicate 'constraint' to the database. 

The presence of the "dummy"-fact 'constraint(dummy,dummy,[dummy]))' in 

the FSA database indicates that the inherent constraints have been 

determined already, i.e. predicate 'constraint' is available. 

Each constraint corresponds a fact 'constraint(t,f,l): 

• a 'constraint(rcl,f,l)' represents a RCl-constraint: 

if f is an X- , 0- or entry-fragment with ISUCX(f)l>l, then the list 1 

is the set SUCX(f); if f is an S-fragment an d ISUCX(f)I>O, then 

list 1 is the set SUCX(F). 

• a 'constraint(rc2,f,l)' represents a RC2-constraint: 

f is an 0-fragment and l=[f,g] with g the predecessor of f in GQ. 

The nu11-ary predicate 'restrictions' determines and dip1ays the inherent 

restrictions of the fragment system according to Tl, T2 of section 7. 

'restrictions' assumes that predicate 'constraint' is defined (i.e. that 

the inherent constraints have been constructed). 

• disp1ay of restrictions: 

as a short form the Boo1ean expressions are output as lists of 

characteristic fragments: a 1ist of characteristic fragments stands for 

the re1evance expressions invo1ving the re1evances of that list; 

instead of indices (cf. section 7) FSA disp1ays the fragment names. 

• 'append_a11_cf_reprs(l,1reps)' compi1es in list lreps all 

CF-representations of the fragments of 1ist 1. 
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constraints 

constraints 
constraints(f) 

constraints(F) 

constraints(F) 

constraints(F) 
constraints(F) 
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:- not provide_omega_set. 
:- fragment(f), omega_set(_,F), 

constraints(F), 
fail.. 
asserta(constraint(dummy,dummy,(dummyJ)). 

- x_e_fragment(F), 
rcl_constraint(F). 

:- o_fragment(F), 
omega_eclge(X,F), 
asserta(constraint(rc2,F,CF,XJ)), 
rcl_constraint(F). 
s_fragment(F), 
sucx(F,X), X\=[J, 
asserta(constraint(rcl,F,X)). 

:- x_o_e_fragment(f). 
:- s_fragment(F). 

rcl_constraint(F) :- sucx(F,X), 
card(X,Xl), Xl>l, 
asserta(constraint(rcl,F,X)). 

restrictions :- x_o_e_fragment(F), constraint(rcl,F,[HITJ), 
findall(Lh,c(H,lh),H_reprs), 
append_all_cf_reprs(T,T_reprs), 
cartesian_product(H_reprs,T_reprs,P), 
write_boolean_exprs(equiv,P), 
fail. 

restrictions :- s_fragment(F), constraint(rcl,F,Sucx), 
findall(L,cf_repr_sl(F,L),Sl_reprs), 
append_all_cf_reprs(Sucx,S2_reprs_O), 
delete_list(S1_reprsoS2_reprs_O,S2_reprs), 
cartesian_product(Sl_reprseS2_reprs,P), 
write_boolean_exprs(equiv,P), 
fail .. 

restrictions :- o_fragment(F), constraint(rc2,F,CHITJ), 
findall(Lh,c(H,lh),H_reprs), 
append_all_cf_reprs(T,T_reprs), 
cartesian_product(H_reprs,T_reprs,P), 
write_boolean_exprs(impl,P), 
fail. 

restrictions :- nl, writec· end of restrictions·). 

append_all_cf_reprs(CJ,[J). 
append_all_cf_reprs(CHITJ,L) :- findall(lh,c(H,lh),H_reprs), 

append_all_cf_reprs(T,T_reprs), 
append(H_reprs,T_reprs,L). 

Fig. A-9: Construction of constraints and restrictions 
(consult file: fg_constraints) 
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1.7. The general predicates 

Fig. A-10 and fig. A-ll contain FSA-predicates, which are either of 

general nature or are used in several of the programs of the preceding 

sections. 
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~ tab(N)! defin~tion of tab predicate 
% ------

tab(Q) :- ! . 
tab(N) :- N)Q, put(32), M is N-1, tab(M) .. 

% 
% nl(N) performs predicate nl N-times 
% -----

nl(l) :- nl .. 
nl(N) :- N>l, nl:~~ M is N-1, nlOO .. 

% 
% subset(X,Y) succeeds if: X is a subset of X {cf. /ClocMel/) 
t -----------

subset((AIXJ,Y) :- member(A,Y), subset(X,Y). 
subset([J,Y). 

% 
% no_duplicates(ll,l2) constructs list l2 such that lZ contains the elements 
% -------------------- of list ll without duplicates • 

% 

no_duplicates((J,[J) .. 
no_duplicates([HITJ,l) :-

insert_no_dupl(E,l,le) :­
insert_no_dupl(E,l,le) : 

no_duplicates(T,lx), 
insert_no_dupl(H,lx,l). 
not member(E,L), append([EJ,l,le). 
member(E,L), le=l. 

% delete_all(El,ll,LZ) constructs list lZ from list Ll by removing from ll 
% -------------------- all ocurrences of element El. 

% 

. . -delete_all(_,(J,[J). 
delete_all(El,CEl)TailJ,l2) 
delete_allCEl,CHITlJ,[HjTZJ) : 

! , delete_allCEl,Tail,LZ) • 
delete_all(El,Tl,T2). 

% delete_list(ll,l2,l) constructs list l by removing from list l2 all 
% -------------------- elements of list ll. 

't 

delete_list([J,L,L). 
delete_list([H~TJ,L2,L) : delete_all(H,L2,X), 

dalete_list(T,X,l). 

1..0 
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% card(L,Card) succeeds if: L is a list; 
% ------------ Card is the cardina1ity {=length) of L 

card([J,O). 
card([HITJ,Card) :- card(T,T_card), Card is T_card+l. 

~ 0 

% cartasian_product(Ll,L2,C) succeeds if! list C is the Cartesian Product 
% --------------------------- of lists ll, LZ, i.e. C is tha list of pairs 
% (11,12), where 11 is element of Ll and 12 is 
% element of LZ. (pairs are represented as 1ists) 

% 

cartesian_product([J,_,(J). 
cartesian_product(CHITJ,L,C) :- cartesian_product_l(H,L,Xl), 

cartesian_product(T,L,X2), 
append(Xl,XZ,C). 

cartesian_product_l(Elem,(J,(J). 
cartesian_product_lCE1em,[HITJ,C) :- cartesian_product_l(Elem,T,X), 

appen~{((Elem,HJJ,x,C) • 

% print_as_table(Max_items,Items,List) outputs 1ist List in form of a table 
% ----------------------------------- with Max_items entries per row 

% 

print_as_table(M,Col,I,(HITJ) :- I<Mt write(H), 
name(H,Hl),card(H1,H_length), 

print_as_tableCM,Co1,M,l) 
print_as_table(_,_,_,[J) 

Blanks is Co1- H_length, tab(Blanks), 
X is !+1, 
print_as_tab1e(M,Col,X,T). 

:- n1, print_as_tab1e(M,Col,O,L). 
:- n1. 

% read_word(W) reads from the current input stream, W is the string 
% ------------ of characters from the current position to the next 

~ rterminating character·. 
read_word{W) :- read_char_list(Chars), 

name{W,Chars). 
read_char_list(Chars) :- getO(C), rest_char_list(C,Chars). 
rest_char_list(C,[]) :- terminating_char(C), ! • 
rest_char_list(C,CCIChars]) :- read_char_list(Chars). 

~ the terminating characters: <return) 
terminating_char(10). 

\0 
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% fragments systems: definitions 
% ============================== 
% 
% x_fragrnent(f) holds if F is a X-fragment 
.% ------------

x_fragrnent(F) :- x_fragments(X,Y),rnernber(F,Y). 
% 
% o_fragment(F) holds if F is an 0-fragment 
% -------------

o_fragrnent(f) :- o_fragments(X,Y),rnember(F,Y). 
% 

% create facts s_fragment(F)! s_fragrnent(F) holds if f is a S-fragrnent 
% -------------

% 

. . edge(X,FltedseCY,F),X\=Y, 
not clausa(s_fragment(F),true), asserta(s_fragment(F)), fail. 

% create facts e_fragment(F): e_fragment{F) holds if F is an entry-fragment 
% -------------

:- fragment(F), not edge(_,F), asserta(e_fragment(F)), fail. 
% 
% x_o_e_fragment(F) succeeds, if F is an X-, 0- or entry-fragment 
% --------------

x_o_e_fragment(f) :- x_fragment(F). 
x_o_e_fragment(f) :- o_fragment(F). 
x_o_e_fragment(f) :- e_fragment(F). 

% x_e_fragment(f) succeeds, if F is an X- or 0-fragment 
% --------------

% 

x_e_fragment(F) 
x_e_fragment(F) 

. . x_fragment(F). 
e_fragment(f). 
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% no_dominator(F,G) succeeds 
% -----------------
% 

if there is a path in graph G from some 
entry-fragment such that F is not element of 
this path. 

% 
% 

no_dominator(F,G) 
no_dominator(F,G) 

:- F'=G, e_fragment(G). 
:- F'=G, edge(X,G), no_dominator(F,X). 

% sucx(F,l) succeeds, if l is the set SUCX(F) of definition 6 
% ---------

sucx(F,l) 

~ 

:- findall(X,check_x_frags(F,X),lx), 
no_duplicates(lx,L). 

% check_x_frags(F,G) succeeds, if fragment G has X-fragments such that 
% ------------------ each path from set E to G contains F 
% CF=G or there is a Rl-path from F to 

check_x_frags(F,G) :- x_fragments(G,C_I_J), 
not no_dominator(F,G), 
sucx_check(F,G). 

% 

and 
G) 

% sucx_check(F,G) succeeds if F=G or there is a Rl-path from fragment F to G 
% ---------------

% 

sucx_check(f,F). 
sucx_check(f,G) :-not o_fragment(G), not x_fragment(G), 

edge(X,G), 
sucx_check(F,X). 

% rl_path(F 11 G11 Path) succeeds if: list Path is a Rl-Path from fragment F 
% ----------------- to fragment G 

rl_path(F,G,(F 11 GJ) :- edge(f,G),not x_fragment(G),not o_fragment(G). 

rl_path(F,G,[FITJ) 

% 

.- edge(F,X), 
not(x_fragment(X)),not o_fragment(X), 
rl_path(X,G,T) .. 
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Ul 
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% predecessors(F,Pred) succeeds if: list Pred is set of predecessors of 
% -------------------- fragment F. 

predecessors(F,Pred) :- findallCX,edge(X,F),Pred). 
% 
% provide_ome~a_set: constructs OMEGA-set unless it exists already. 
% -----------------

% 

provide_omega_set : 
provide_omega_set : 

clause(omega_set(_,_),_). 
nl, write(' set OMEGA being constructed'), 
omega. 

% provide_constraints: constructs the inherent constraints unless 
% ----------------- done already0 

% 

provide_constraints :- clause(constraint(dummy,dummy,[dummy]) 1 true). 
provide_constraints :- constraints. 

% write_boolean_exprs(T,P): prints the pairs [l,rJ of list P as 
% ----------------------- implications 1 ==> r if T=impl 
% equivalences 1 <==> r if T=eqiv 

write_boolean_exprs(_,[J). 
write_boolean_exprs(Type,[HJTJ) . . 
write_boolean_expr(equiv,[Ll,LZJ):-

write_boolean_expr(impl,[Ll,LZJ) : 

write_boolean_expr(Type,H), 
write_boolean_exprs(Type,T). 
nl, 
write(Ll), 
write(' <==> '), 
write(L2) .. 
nl, 
write(Ll), 
write(' ==> #), 
write(LZ) .. 

\0 
0\ 
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2. FSA-user interaction 

FSA is an interactive systern. Figures A-12, A-13 and A-14 show excerpts 

frorn a FSA session, where the exarnple fragrnent systern (cf. fig. A-4) is 

analyzed; cf. sections 6 and 7. 

The rernainder of this section lists the PROLOG program irnplementing the 

FSA user interface. 
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available FSA commands (class=l): 
end : termination of FSA 
1 : determination of CF-representations 
2 : determination of the set of characteristic fragments 
3 : display set OMEGA 
4 : determination/display of the inherent constraints 
5 : determination of the inherent restrictions 
6 : FSA-logging 

c ommand: 1 

determination of CF-representations 

The Cf-representations for all fragments of the fragment system: 

C(l) = C1.1,1.2 9 4.1,4.2.1,4.2.2,1.4,8.1,8.2,10.1,10.2J 
C(l..l) = C1 .. 1J 
C(l .. 2) = C1 .. 2J 
CC1.3) = [4.1 1 4.2.1,4.2.21 
C(1 .. 4) = [1 .. 4] 
C(1.5) = C8.1,8.2J 
C{l,.6) = (l0oltl0e2J 
C(2) = 1:1 .. 1] 
C(2 .. 1) = C2 .. 1J 
C(3) = (4.1 9 4.2.1 9 4.2.2) 
C(4) = C4.1,4.2.1,4.2.2J 
C(4.,1) = 1:4 .. 1] 

CC4.2) = [4.2.1,4.2.2] 
C(4.2.1) = C4.2.1J 
C(4.2 .. 2) = C4.2 .. 2J 
C(5) = 1:2 .. 1,1.1,1 .. 41 
C(5) = [6.1,6.2,5.2] 
C(5.1) = [6.1,6.2J 
C(5 .. 2) = t:5 .. 2J 
C(5 .. 3) = C5 .. 3J 
C(6) = 1:6 .. 1 9 6 .. 2) 
C(6 .. 1) = C6 .. 1J 
C(6 .. 2) = C6 .. 2J 
C(7) = C5 .. 2J 
C(8) = (8 .. 1,8 .. 2] 
C(8 .. 1) = 1:8 .. 1] 
C(8 .. 2) = t8 .. 2J 
cca .. 3> = ca .. :n 
C(9) = [1 .. 2) 
C(9.1) = (9 .. 1J 
C(10) = C10.1,10.2J 
C(10 .. 1) = t10 .. 1J 
C(10.2) m [10.2) 
C(10 .. 3) :: [10 .. 3J 
CC11) = (1 .. 1J 
CC12) = Cl ... ZJ 
CC13) = [2 .. 1J 
C(14) = [9 .. 1J 
C(15) = [8 .. 1J 

C(16) = 
C(17) = 
C(18) = 
C(19) = 
C(20) = 
C(21) = 
C(22) = 
C(22 .. 1) 

[8 .. 2] 
[10 .. 1] 
[10 .. 2] 
[ 8 .. 3] 
[10 .. 3] 
[4 .. 2 ... 2] 
[2.1,9 .. 1,4 .. 1,4.2 .. 1,4 .. 2.2,8 .. 3,10 .. JJ 
= [2.1,9.1,4.1,4.2.1,4.2.2,8.3,10.3] 

Fig. A-12: Determination of CF-representations 
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available FSA commands (class=l): 
end 
1 
2 
3 
i. .... 
5 
6 

. 
$ . . . . 
: . . . 
e . .. 

termination of FSA 
determination of CF-representations 
determination of the set of characteristic fragments 
display set OMEGA 
determination/display of the inherent constraints 
determination of the inherent restrictions 
FSA-logging 

command: 2 

available FSA commands (class=2): 
end : termination of FSA 
1 : The characteristic fragments according to COROLLARY 3: 
2 : The characteristic fragments according to ALGORITHM 1: 

command: 1 

the characteristic set according to COROLLARY 3: 

1 .. 1 
4 .. 2 .. 2 
8 .. 2 
8 .. 3 

l .. Z 
5 .. 2 
10 .. 1 
9 .. 1 

1 .. 4 
6 .. 1 
10 .. 2 
10 .. 3 

4 .. 1 
6 .. 2 
2 .. 1 

4 .. 2 .. 1 
8 .. 1 
5 .. 3 

Fig. A-13: Determination of characteristic set 
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available FSA commands (class=1): 
end : termination of FSA 
1 : determination of CF-representations 
2 : determination of the set of characteristic fragments 
3 : display set OMEGA 
4 : determination/display of the inherent constraints 
5 : determination of the inherent restrictions 
6 : FSA-logging 

command: 5 

the inherent restrictions: 
CZ.1,1.1,1.4J <==> [6.1,6.2,5.ZJ 
[2.1J ==) [1.1] 
[5.3] ==) [2.1,1.1,1.4] 
C5.3J ==> (6.1,6.Z,5.ZJ 
[8.3] ==> (8.1,8.2] 
(9.1J ==> [l.ZJ 
[10.3] ==) [10.1,10.2] 

end of restrictions 

~ available FSA commands (class=l): 
end : termination of FSA 
1 : determination of CF-representations 
2 : determination of the set of characteristic fragments 
3 : display set OMEGA 
4 : determination/display of the inherent constraints 
5 : determination of the inherent restrictions 
6 : FSA-logging 

command: end 

e n d 0 f F S A 

Fig. A-14: Determination of inherent restrictions 
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action(cmnd('end')• 
class(O), 
expl('termination of FSA')). 

action(cmnd('end'), 
class(l), 
expl('termination of FS~')). 

action(cmnd('end'), 
class(2), 
expl('t~rmination of FSA')). 

action(cmnd('end')~ 

class(3), 
expl('termination of FSA')). 

action(cmnd('init'), 
class(O), 
expl('initialization')). 

action(cmnd('l'), 
class(l), 
expl('determination of CF-representations')). 

action(cmnd('2'), 
class(l), 
expl('determination of the set of characteristic fragments•)). 

% subcommands: 
action(cmnd('l'), 

class(Z), 
expl('lhe characteristic fragments according to COROLLARY 3:')). 

action(cmnd('2'), 
class(2), 
expl('The characteristic fragments according to ALGORITHM l!')). 

% 
action{cmnd('3'), 

class(l), 
expl('display set OMEGA')). 

Yo 

action(cmnd('4'), 
class(l), 
expl('determination/display of the inherent constraints')). 

% 
action(cmnd('S'), 

class(l), 
expl('determination of the inherent restrictions')). 

% 
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action(cmnd('6'), 
class(O), 
expl('FSA-logging')). 

action(cmnd{'6'), 
class(l), 
expl('FSA-logging')). 

% subcommands: 

% 
% . . 

action(cmnd('l'), 
class(3), 
expl('logging on (log_file: fsa_log)q)). 

action(cmn~('2'), 
class(3), 
expl('logging off')). 

consult(p_programs), 
nl, write('~f'), tab(35), 
write(' F S A '), nl(2), tab(10), 
writeC'A PROLOG implemention of algorithms related to fragment systems~), 
nl, tab(25), write('programmed by Franz J. Polster'), 
nl(2), write(' to proceed enter: run. !'), nl(2). 

% 
action_class(O). 

% 
% ======================================================================= 

run :- repeat, 
prompt_for_action(Class), 
read_action(Cmnd), 
execute(Cmnd,Class), 
fail. 

% ======================================================================= 
% 
% 
execute(Cmnd,Class) 

execute(Cmnd,Class) ! 

clause(logging_on,true), 
tell(fsa_log), 
perform_action(Cmnd,Class), 
tell(user), ! • 
perforre_action(Cmnd,Class). 

...... 
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prompt_for_action(Class) :- action_class(Class), 
write_menue(Class), 
nl{2), write(' enter command: ~). 

write_menueCClass):- nl(3), write('available FSA commands'), 
action_class(Class), 

write_menue(Class):-

. .. write_menue(_) 
write_cmnd(Cmnd) : 

build_list(X,L) : 
build_list(X,L) :­

% 
% . . 

write(' (class:'),write(Class),write('):'), 
action(cmnd(Cmnd),class(Class),expl(Text)), 
write_cmnd(Cmnd), write(Text), 
fail. 
clause(logging_on,true), 
tell(fsa_log), 
nl(3)t write('\f available FSA cammands'), 
action_class(Class), 

write(' (class:'),write(Class),write('):'), 
action(cmnd(Cmnd),classCClass),expl{Text)), 
write_cmnd(Cmnd), write(Text), 
fail. 

tell{user). 
nl,write(Cmnd), 
build_list(Cmnd,X), card(X,Cmnd_length), 
X_blanks is 5-Cmnd_length, 
tab(X_blanks), write(': '). 
name(X,L). 
number(X,L). 

read_word(X), read_log{X), read_action(X) 
read_logOO :- clause{logging_on,true), 

tell(fsa_log), 

read_log{_) .. 
% 

nl(2), write(' command: '), write(X), nl(2), 
tell(user). 
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perform_action(init,O) :-
nl, write(' initialization!'), 
nl, write(' enter name of file with the specification of fragment system:'), 
read_word(f),call(consult(f)), 
consult(fg_general), 
consult(fg_omega_sets), 
consult(cf_repr), 
consult(fg_char_frags), 
consult(fg_c_set_cor), 
consult(fg_constraints), 
new_action_class(l), 
nl, write(' end of initialization'), nl(2), 

% 
perform_action('l',l) 

conversation(l,l,F) .. . -

conversation(l,l,F) :­
cf_representation(F) : 

cf_representation(_) : 

cf_representation(_). 
write_reprs(F,(HITJ) : 

write_reprs(_,[J). 
% 

:- nl, write('determination of CF-representations'), 

conversation(l,l,F), 
cf _representation(f), ! .. 
telling(X), X\=user, tell(user), 
nl, write('enter fragment name: '), read_word(F), nl, 
tell(X). 
nl, write('enter fragment name: '), read_word(F), nl. 
fragment(F), 
findall(L,c(F,L),l_reprs), 
nl(2), write('The CF-r~presentations:'), 
write_reprs(F,l_reprs). 
nl(2), 
write(' lhe Cf-representations for all fragments'), 
write(' of the fragment system:'), nl(2), 
fragment(X), 
findall(L,c(X,L),L_reprs), 
write_reprs(X,l_reprs), 
fail. 

nl, write(' C('),write(F),write(') = '), write(H)t 
write_reprs(F,l). 
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'---' 

perform_actior.('2',1) :-new_action_closs(2), 
'i ·o 

oerform_action('l',2) :- nl, write('the char~ctaristic set'), 
~ritac· according to CDROLLARY 3:'), 

nl, 
char_fr29S_corCCnar_frag~ents), 

print_as_tablecs,e,s.cnar_fra~ments), 

new_action_cla~s(l), ! 
% 
perform_actionC*2',2) :- nl, write('the characteristic set'), 

% 

write(' according to ALGORITHM 1 (step 3):'), 
nl, 
writa('(Very tima-consuming! Have a coffee break!)') 1 

nl, 
char_frags_al~(Ch?r_fragments), 

print_as_table(5,S,5,Char_fra~ments), 

ne~_action_class(1), ! 

perform_action('3',1) :- provide_omega_set, 
nl, writa(' The elements of set JMEGA:'), 
write_omegas, ! 

write_omegas :- omega_set(X,R), R\=dum~y, 

nl, tab(l),write(X), tab(5), write('root is: ') 9 

write(R), 
fail. 

write_omagas :- nl(2), write(' end of set OMEGA'). 
% 
perform_action('4'~1) :- nl(Z), 

~ 

write(' the inherent constraints:·), 
provide_constraints, 
write_constraints, ~ 

write constraints :- constraint(rcl,F,L), 
write_boolaan_exprs(equiv,[[[FJ,LJJ), 
fail. 

~rite_constraints :- constraint(rc2,F,CF,GJ), 
write_boolean_exprs(impl 9 [[[FJ,[GJJJ), 
f~il. 

write constraints :- nl,write(' end of constraints'). 
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perform_action('S',l) 

% 
perform_action('6',0) 
perform_action('6',1) 
perform_action('1',3) 

perform_action('2',3) 

% 
perform_action(end,l):­
perform_action(end,2):­
perform_action(end,3):­
perform_action(end,O):-

. . 

. . 

nl(2), 
write(' the inherent restrictions:'), 
provide_constraints, 

restrictions, ! • 

. .-
asserta(old_action_class(O)), new_action_class(3), 
asserta(old_action_class{l)), new_action_class(3), 
asserta(logging_on), . . 
old_action_class(C), retract{old_action_class(_)), 
new_action_class{C), ! • .. .- old_action_class(C), retract(old_action_class(_)), 
new_action_class(C), ! , 
tell(user), 
retract(logging_on). 

perform_action(end,O). 
perform_action(end,O). 
perform_action(end,O). 

nl(3), tab(lO), 
write('e n d o f 
nl(3), 
tellCfsa_log), told, 
end. 

F S A'), 

~ % 
perform_action(debug,_) :- ! , debug. 
perform_action(nodebug,_) :- ! , nodebug. 
perform_action(X,_) :- nl, ~rite('command '),~rite(X), 

% 
% 
new_action_class(Class) 

write(' unknown or not allowed')e 

retract(8ction_class(_)), 
?sserta(~ction_cl3ss(Class)). 
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