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Abstract 

The resonant and nonresonant cross section for break up of 
6
Li in the Coulomb field of a heavy nucleus is theoretically 

studied on the basis of a DWBA approach and analysed in view of 

a possible experimental access to electromagnetic transition ma­

trix elements between the ground state of the projectile and 

a+d continuum states at small relative energies. The calculation 

explicitly uses some simplifications appearing in the particular 

case of quadrupole transitions which dominate the considered case. 

Various sensitivities of the cross sections are discussed. 

DER RESONANTE UND NICHTRESONANTE COULOMB-AUFBRUCH VON 6Li 

Der resonante und nichtresonante Wirkungsquerschnitt des Aufbruchs 

von 6Li im Coulomb-Feld eines schweren Kerns wird theoretisch auf 

der Grundlage einer DWBA-Beschreibung untersucht und im Hinblick 

auf eine mögliche experimentelle Bestimmung von elektromagneti­

schen Matrixelementen für den Obergang vom Projektil-Grundzustand 

zu a+d Kontinuumszuständen analysiert. Die Rechnungen benutzen 

einige Vereinfachungen, die im Falle von Quadrupol-Obergängen auf­

treten, die den betrachteten Fall dominieren. Verschiedene Emp­

findlichkeiten des Wirkungsquerschnitts werden diskutiert. 
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1. Introduction 

The dissociation of light-ion projectiles under the in­

fluence of the electromagnetic and nuclear fields, experienced 

while passing a target nucleus, is an important reaction mode in 

nucleus-nucleus interactions. (Baur et al. 1984, de Meijer and 

Kamermans 1985) The reaction mechanism may be virtually consider­

ed as a two-step process, first exciting the projectile in a con­

tinuum state with the relative momentum k of the fragments, then 

decaying into free fragment states. Two extreme Situations do e­

merge, depending on the relation between the collision time and 

the lifetime of the excited projectile state. (Weidenmüller and 

Winther 1971) The so-called sequential break-up proceeds via an 

excitation of a particle-unstable resonance state with sufficient­

ly long life time, so that it subsequently decays far-away from 

the excitation region. The (elastic) process can be fairly well 

separated into sequential steps 

a + A + a* + A + b + X + A 

and the DWBA transition matrix element can be naturally written as 

(Rybicki and Austern 1972) 

T . = < X:t (-) (R) <jl (-) ( r) I V (R, t:) I x+ ( +) 
f1 ~f k res Qi 

(+R) tk (+) '~'a r > ( 1 • 1 ) 

where x+(+) (R) and x+(-) (R) denote the centre of mass motion of 
Q. Qf + + 

the initial and the final state with the momenta Qi and Qf, respec-
+ (-) + 

tively. The wave functions <jla(r) and <jlk (r) describe the groundstate 

and the continuum states of the projectile. When the fragments b 

and x are observed with the momenta kb and kx' the momenta are 

given (in obvious notation) by 

(1.2a) 

m 
X k 

m b 
( 1 • 2b) 

a 

In the case of a pure sequential process, <Pk is a resonance state, 

but the same matrix element may also describe nonresonant break up 

processes when adequate wave functions <jlk are introduced, describ-
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ing the relative fragment motion with k far-away from ~ resonanc~. 

This is the break up model introduced by Rybicki and Austern (1972), 
+ 

while Baur et al. (1976, 1980, 1984) immediately replace x
0 

(R)·~k 
+ ± + + f 

by Xb(qb'.I:{)•XX(qX,R) 1 thus starting With the other extreme Situation 

of a simultaneaus direct break up. 

In the present paper we consider some particular features of 

the matrix element (eq. 1.1) when used for describing the dissocia­

tion in the Coulomb field. Assuming point charge distribution for 

the constituent projectile cluster, the residual interaction is 

given (for R>r) by 

2 zb 
vres = ZAe (r 

bA 

z 
+~ 

rxA 

z a - -) 
R 

m L 
{ z (- ~) 

b m 
L,M~1 

a ( 1 • 3) 

In particular, we would like to call attention to the fact, that 

the matrix element 

( 1 • 4) 

for a quadrupole transition (L=2) can be factorized in a term in­

dependent from the momentum transfer q = Qi-Qf and a term which we 

call "contact term", being the product 

(+) (-)* 

lxoi (o) • xaf (o) I· 

This speciality of L = 2 transitions has been already noticed by 

Mullin and Guth (1951) and may lead to considerable simplifications 

in actual cases. Such a case is given by the 
6
Li + a+d break up 

(Hansteen and Wittern 1965), where dipole transitions are largely 

suppressed (Zx/mx = Zb/mb)>and the sequential break up proceeding 

through L = 2 transitions to the 3; state in 
6
Li has been found 
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tobe dominant (Scholz et al. 1977, Gemmeke et al. 1978). Refer­

ring to the case of 156 MeV- 6Li break up, we consider the inter­

play of resonant and nonresonant Coulomb dissociation processes, 

study various sensitivities and present calculated triple-differen­

tial cross sections. In particular, we try to estimate the value 

of the nonresonant dissociation cross section at a center-of-mass 

energy of the a-d-system ECM ~ 0.7 MeV. In this energy region the 

direct capture reaction, which is in some sense the inverse pro­

cess, is of astrophysical interest (Robertson et al. 1981) in view 

of the question of 6Li production in the big bang, but a direct ex­

perimental access to the capture cross sections at low energies is 

very difficult. It has been recently proposed (Rebel 1985, Baur 1985) 

to study the inverse process, the photodisintegration by the vir­

tual photon field, seen by the projectile when passing the Coulomb 

field of a heavy nucleus. This implies an enhancement of the cross 

section and experimental advantages. 

2. Evaluation of the orbital matrix element. 

In the plane wave Born approximation the matrix element M~ + 
QiQf 

(e.g. 1.4) is written (with z-axis along q) 
__ L ~~ 
M7Q + (PWBA)=ZAe v 2L+ 1 iQf 

41T- ZAe 
.L 

= l 

.L = 4TI•ZAe l 

+ + 
+ 

f 
eiq•R 

RL+1 YLM (R) dR 

J 
jL(qR) 

R2dR 
RL+1 

L- 2lim jL-1 (qR) 
q [ L-1 1R+O 

(q• R) 

L-2 q 

(2L-1)!! 

( 2 . 1 ) 

This matrix element has already the endearing property of being 

independent of q, Qi and Qf for L = 2. Introducing the Fourier 

transforms of the scattering wave functions* 

* This procedure was suggested by R. Serber as quoted by Mullin 
and Guth ( 1951) 
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-+ -+ 

(R) I 
'V -+ i k. •R 

-+ 
x+ = X. (k. ) e 1 dk. 

Qi 1 1 1 
(2.2a) 

-+ -+ 

= I 
i k •R -+ 

x+ -+ 'V -+ f dkf Qf (R) Xf(kf)e (2.2b) 

eq. 1 • 4 is transforrned in 

M~ -+ 

I 
-+ -+ 

1~ -+ (PWBA) 
'V 'V 

QiQf :::: dkidkf X. (k.) Xf(kf) 
ikf 1 1 

( 2 • 3) 

and for L = 2 

( 2 • 4) 

. f 
where u0 and u 0 are s-partial waves of the scattering states, eva-

luated at the origin. Obviously the use of correct distorted waves 

modifies the PWBA cross section just by a factor. In the case of 

pure Coulomb scattering frorn a point nucleus, this factor 

(2.5) 

with the Coulomb pararneter 

2 = zp • z e I -11 v . f A 1, 

and represents a rneasure of the penetration of the particle into 

the Coulomb barrier. It is quite clear that this factor changes 

when the attractive nuclear field is taken into account. Therefore, 

the "contact terrn" C2 = lx~~) (R=O) ·x~-)\R=O) 1
2 has tobe evaluated 

with distorted waves, deriv~d frorn a fCoulomb potential of realistic 

charge distribution and frorn adequate nuclear potentials, thus in­

troducing absorption effects. The corresponding wave functions can 

be easily provided frorn any optical rnodel scattering code. 
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3. Studies of various sensitivities and theoretical cross 

sections 

We consider the example 

ions in the Coulomb field of 

of .the elastic break of 156 MeV 6Li 
208 ( . ) Pb n. = 7.6 , where fragment-a-

1 

partiales and deuterons are emitted at various angle pairs (8a,8d). 

The relative angle 68 defines the minimum value of k, observable 

in a particular kinematical situation. Fig. 1 displays the varia­

tion of k with the energy of the a-particle fragment, which is co­

incidently observed with the fragment deuteron, while the target 

nucleus remains in the ground state (elastic break up) . 

0.4 
I 

E 0.5 
'+-

.Y 0.6 

0.6 

0.5 

0.4 

~ 0.3 

I 

E 

u
1
(kr)/kr 

j 1 ( kr) 

8cx =5°, 8d = -5° 
8cx =5°,8d = -2° 
8cx = 2°, ed = -2° 
8et. =8°,8d = -8° 

0 2_j----~-.;------:;.L-r:------- k R 13;) t . " 0.1 . ......__/ 

00+----,----,----.----.----.----.----~ 
80 100 120 140 

Fig. 1 Variation of the relative a-d momentum k with the observed 

a-particle energy E~ab in the elastic break up of 156 MeV-

6Li-ions, and the nonresonant b(E2,k) distribution 
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The evaluation of the full matrix element (1 .1) requires a 
+ 

specification of the wave functions ~Li (r) and ~k. The ground state 

wave function is generated by a bound-state potential of Saxon­

Woods form reproducing the binding energy while the nonresonant 

continuum states were generated in the a-d potential given by 

Mc!ntyre and Haeberli 1967 (see also Robertson et al. 1981). 

The internal part of the matrix elements (1.1) can be written 

M(E2,M) 
m 2 

=I~ {Z e(_i_) 
5 a mLi 

m 2 
+ Zde (-a-) } 

mLi 

( 3 • 1 ) 

which is related to the reduced transition probability (De Shalit 

and Talmi 1963) 

We denote 

md 2 m 2 2 
= { z e (-) + zd e (-a-) } 

a mLi mLi 
* 

41T 

(> :f :) 2 D: ~~ :J 
00 

I 
0 

41T l
.L I 2L+1 

= V'~ 

u
1 

(kr) 
f 

kr 

2 
<llLi(r)r dr 

( 3 • 2) 

( 3 • 3) 

'th m b · th radial part of <llL 1., u1 (kr)/kr the same of the w1 ~Li e1ng e f 

continuum states. 

+ + 3+
1 

trans1'tion in 6Li (1 1.=0, lf=2, For the case of the 1gr 

sf=1, L=2) we get 

( k 1++3+) b E2, , ( 3 • 4) 
2 7 2 

1'21T I <R2 >I 
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The quantity b(E2,k) represents a transition density [in units 

of e
2 

fm7 ] and is displayed in Fig. 1. For comparison, the b(E2,k) 

distribution is additionally calculated by using simply plane waves 

for describing the continuum states. It is obvious that at very low 

k-values considerable differences occur as compared to the use of 

more correct scattering states. 

The triple differential cross section 

1 
2J.+1 

1 

( 3. 5) 

with p being the three body phase space factor (see Baur and Traut­

mann 1976a and Ohlsen 1965) can be concisely written as 

as 

= ds-2 dSGdE 
0: 0: 

(41T) 4 

901i. 

Z
2 2 
A e 

(with E being the relative energy of the fragments) 

1 
2J.+1 

1 

(~) b(E2,E) 
5 

( 3 • 6) 

( 3 • 7) 

Figs. 2 - 4 show the nonresonant triple differential cross section 

for some pairs of emission angles. The results in Fig. 2 differ by 

the values of the penetration factor C2
• The value for a point 

charge is (at Eo: = 104 MeV) 

C2 (point charge) = 0.36 • 1o-38 

while the realistic values 

C2 (homog. Charge) = 0.5482 

C2 (homog. charge + nucl.) = 0. 80 • 10-
5 

are calculated with a spherical homogeneaus charge distribution 

(R = 1.3 A1/ 3 ) and using optical model parameters of a Saxon-
e Target 

Woods form as given by Cook et al. 1982 and Neumann et al. 1982. 
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Fig. 2 Triple differential cross section and shape of the corre­

lated a-particle spectrum in the nonresonant 208Pb(
6
Li, ad) 

208
Pb break up reaction at ELi = 156 MeV. 
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Fig. 3 Triple differential cross section of the nonresonant 
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Fig. 4 Triple differential cross section of the nonresonant 
208 Pb( 6Li,ad) 208Pb reaction 
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Fig. 5 displays the Variation of various factors with the labora­

.tory energy of the a-particle observed in a particular kinematical 

arrangement of the detectors. 
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Fig. 5 The Variation of the phase 
2 

space factor p, of the contact 

the reduced transition proba­

energy 

term (ooixQ (R=O) I ) and of 

bility wit~ the a-particle 

In Fig. 6 the resonance excitation of the 3+1 state in 6Li(k = res 
0.21 fm- 1) is included with a width r (=26 keV)* corresponding to 

B(E2; 1+-3;) = 45 e 2 fm4 (Endt 1979) by writing 

Here 

= 
(E-E ) +if / 2 res 

2 

( 3. 8) 

( 3 . 9) 

is a Breit-Wigner resonance factor with E = h 2
k

2
/2 ~ad andEres = 

b 2 k 2 /2 ~ d" For the very narrow 3+1 resonance, we replaced 
res a 

* Due to the "magnifying glass" effect of the three body kinematics 

r corresponds to ~ 260 keV on the Ea axis in Fig. 5 
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~ad kres r = b(EL,k )•n•-
2 ( 2 n)3 "i\2 res 

90 

e!X = 20 

ed = -20 

3+ 3+ 

~ ><10-2 ft ><10-2 

100 110 

---fliio- E !X 

120 130 

Resonant and nonresonant excitation of the a+d continuum 

in 6Li by projectile break up in the Coulomb field of 
208 

Pb at ELi = 156 MeV 

The result shown in Fig. 6 demonstrates the dominance of the 

"sequential break up" via the 3; resonance. However, the resonance 

peak disappears in other kinematical arrangements (see Fig. 1). 
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4. Discussion 

In view of the experimental difficulties in measuring radia­

tive capture reaction cross sections at low relative energies, be­

ing of considerable interest for nuclear astrophysics, it has been 

proposed (Rebel 1985) to study the inverse reactions: the electro­

ma.gnetica.lJ.y ind,uced decay of a nuc:Leus into two fragments, which 

subsequently emerge from the reaction with low relative energies E, 

however on a pedestal of sufficiently high laboratory energies, 

which are convenient for the experimental detection. Such a process 

is the break up of a complex nuclear projectile while moving through 

the Coulomb field of a nucleus, which only acts as a catalyst for 

the electromagnetically induced dissociation. In addition to obvious 

advantages, partly arising from the flexibility of the three body 

kinematics, there is an enhancement (Rebel 1986, Baur 1985) of the 

dissociation cross section as compared to the photo dissociation 

cross section oy(a+y+b+x). The latter is directly related via de­

tailed balance to the capture cross section a (b+x+a+y) cap 

(2jb+1) (2jx+1) 

(2j +1)•2 a 

k2 
0 capt (E) 

k 2 
y 

( 4 • 1) 

The enhancement is due to the virtual photon flux and can be esti­

mated by the Weizsäcker-Williams method (see Jackson 1975), writ­

ing (Hoffmann and Baur 1984) 

L do
0

. (E) = 
lSS 

NL ( E = E + Q) • a ( E ) y y y y ( 4 • 2) 

L with NY(EY 1 b) the virtual photon spectrum (multipolarity L), expe-

rienced by the projectile, when scattered with the impact parameter 

b. The quantity N is of the order of 10 3 Mev- 1 for forward scatter-
Y 

ing of light ion projectiles at 30 MeV/amu. 

In the present paper we investigated the Coulomb break up of 

light-ion projectiles on the basis of a DWBA approach. We adopted 

the reaction model of Rybicki and Austern (1972), assuming the pro­

cess as evolving from a two-step-mechanism: excitation to a reso­

nant or nonresonant continuum state of the fragment-system, whose 

center of mass motion in the field of the catalyst-nucleus is des-
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cribed by a distorted wave x0 (~). This picture differs from the 

DWBA approach of Baur et al. (1976, 1980, 1984), ignoring any final 

state interaction between the fragments and describing their motion 

separately by distorted waves x+ (t )•x+ (tb). Although it is not 
q X qb 

clear, how these two pictures arg mutualiy related (see Srivastava 

and Rebel 1985) and to which extent they really differ, we feel that 

the quasi-sequential approach is more adequate, when studying final 

states with small relative energies of the fragments. 

We considered the particular case of Coulomb break up of 6Li. 

Here the dominant contributions (resonant and nonresonant) are of 

multipolarity L = 2. In this specific case the influence of the 

catalyst-nucleus on the orbital motion is absorbed by a "contact­

term" with the role of a penetration factor. The absolute magnitude 

of the break up cross section depends sensitively on the assump­

tions about this factor, which is defined by the values of the 

wavefunctions XQ(R) of the orbital motion at the origin R=O. Here 

the question of the use of correct distorting and absorbing poten­

tials enters. In fact, when considering the break up in the streng 

nuclear field, the Rybicki and Austern-approach has been found to 

be less sucessful and affected by coupling effects, requiring un­

usual optical potentials in a formal DWBA description (Austern 1984). 

However, in the case of Coulombbreak up it can be reasonably ex­

pected that coupling effects are of minor importance. 

The quantity which relates the break up cross section to the 

radiativ~ capture cross section is the reduced transition proba­

bility b(EL,E) o(E-Ef). It enters into the capture cross section by 

e2 
a t (EL,E) = ~ cap uV 

81T (L+1) 
L[(2L+1)!!P 

k 2L+ 1 •b (EL E) 
y capt ' 

( 4 • 3) 

The b(E2,E), calculated with a+d continuum states for the consider­

ed 6Li case are consistent with values theoretically extrapolated 

by an analysis of 2H(a,y) 6Li capture reaction data measured at 

E > 1 MeV (Robertson et al. 1981). Therefore, the calculated cross 

sections represent realistic estimates within the adopted descrip­

tion of the reaction mechanism. Measurements of cross sections of 

this order of magnitude seem to be feasible (Jelitto et al. 1985) 
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They would sensitively check the theoretical apparatus, which 1 

in turn, mediates the access to electromagnetic transition ma­

trix element at rather small relative energies of the interact­

ing nuclear particles. 

The authors would like to thank each other for a most pleasant 

collaboration in elucidating the problern considered in this paper. 

We acknowledge clarify discussions and comments of Dr. G. Baur, 

Prof. Dr. G. Schatz and Dr. R. Krivec. 
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Appendix A 

The multipole expansion of residual Coulomb potential for 

a uniform charge distribution of radius Re. 

The differential Coulomb potential experienced by the projectile 

'a' in the field of the target A is given 

A. 1 

where 

c ZA • z. 2 
viA(r) = ]_ e if r> R c r 

and A. 2 
ZA • z. 2 2 

]_ e 
(3 

r 
if = - R 2) r< R c· 

2 R c c 

-+ 
For very large values of R 

-+ = raA' the multipale expansion is 

given by 

Vres = 4TIZAe2 

A more general expression for the multipole expansion can be 

derived by noting that (see appendix B) 

where 

1 = 
(2TI) 3 

-+ -+ 
i q•r -+ e •dr 

= 
j 1 (qRc) 

• [ q R ] 
c 

A. 3 

A.4 

A. 5 

A.-6 
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If Re = 0, the 

unity. Putting 
+ + 

quantity inside the square brackets reduces to 
+ + + + 

the expressions for rbA and rxA in terrns of RaA(=R) 

and rbx(=r) in (A.4) we get 

Now the Coulomb forrn-factor can be written as 

Taking the ground state wave function as 

and 

( +) + + 
~ (k,r)=41T ~ i 

LM 

L 

+ ' 
~ (r) = ~(r) a 

A * A 

~L(k,r) YLM(k) YLM(r) 

we get, using the condition of their orthogonality, 

-L A * A 

Fc(k,R)=(41T) 3L i YLM(k) • YLM(R) FL(k,R) 

where 
()() 

FL(k,R)= fq2dq [(-1)L ~b(q) ·I~+ ~x(q)•I~] jL(qR) 

0 

with 

Jr
2
dr 

rn 
L ~L(k,r) 

, ( X qr) • ~ ( r) Ib(k,q)= JL m 
a 

and 

L 
Jr

2
dr ~L(k,r) 

rnb 
I (k,q)= jL(m qr) ·~(r) 

X a 

A. 7 

A. 8 

A. 9 

A. 10 

A. 11 

A. 12 

A. 13 

A. 14 
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For large values of R, the multipole expansion of the residual 

potential (A.3) can be used to get 

FL(k,R) 
( 4'1T) 2 

::: 
( 2L+ 1) 

2 • z • e 
A 

m L m L 
{ z (- ~) + z (__!?_) } I RL+ 1 

b ma x ma 
00 

A. 15 



- 20 -

Appendix B 

Fourier transform of the Coulomb potential for a nueleus 

having a uniform eharge distribution. 

The Coulomb potential experieneed by a point projeetile with the 

eharge Zp in the field of a nueleus of the eharge ZT with a uni­

form eharge distribution of radius Re is given by, 

z •Z •e 
V (r) = E T 

e 2 R e 

and 

z •Z •e 
Ve(r) = E T 

r 

2 

[3 -

2 

2 
!:__] 
R 2 e 

for r < R e 

for r > R e 

The Fourier transform of the distribution is given by 

\7 - 1 e ( q) - TI 3 
( 2 ) f 

= 

2 Z • Z • e E T 

()() 

1 -r 

V (r) e 

+ + 
i q•r + • e dr 

R 

J
e 1 r 2 2 

2R [ 3 - R 2]•r 
0 e e 

sin qr 2 • r dr 
qr 

sin qr • dr 
qr 

B. 1 

B.2 

B.3 

In this above, the [O,R ] integral e 
is evaluated easily, and the 

[R ,oo] part is evaluated by inserting e 
integrating and then taking the limit 

\1 (q) = _1_ 
e 2TI2 

2 
• Z •Z •e 

p T 

-Er 
a eonvergenee faetor e 

s-+0. This yields 

B. 4 
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The validity of the expression B.4 can be checked by writing, 

If r > R c 

K = 

and thus 

= 
R~ c c 

00 

sin qr • q2 dq 
qr 

00 

0 

f ~2 •J3/2(q Re) • J1/2(qr) dq = 
0 

2 
Z • Z • e 

V (r) = p T 
c r 

For r < R c 

K = 

and thus 

Z • Z • e p T 
2 

2 
• {3 - _r_} 

R 2 c 

2 
• {3 - _r_} 

R 2 
c 

R 3/2 
c 

3/r 

B.S 

B.6 

B.7 

B.8 

which are the original expressions (B.1, B.2) for the potential. 
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Appendix C 

Predicted non-resonant break·up triple differential cross-section 

for eL = 2° and eL = -2° 
(X (X 

EL [MeV] 
(X 

... tj' 

80. 

82. 

84. 

86. 

88. 

90. 

92. 

94. 

96. 

98. 

100. 

102. 

104. 

106. 

108. 

11 0 • 

1 1 2 • 

114 • 

116. 

1 1 8 • 

120. 

122. 

124. 

126. 

driL 
(X 

d 3o [mb/sr 2 MeV] . 
driL dEL 

d (X 

0.0210 

0.0382 

0.0755 

0.1452 

0.2263 

0.2506 

0.2022 

0.1282 

0.0651 

0.0260 

0.0085 

0.0030 

0.0024 

0.0054 

0.0173 

0.0483 

0.1043 

0.1748 

0.2196 

0.1825 

0.0968 

0.0414 

0.0185 

0.0096 
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Predictions for the triple differential cross-section for the 

break up of 6Li via the 3~-state, over the lower energy sequential 

peak for 0L = 2° and 0L = -2°. a a 

E~ (MeV) d 3o/dr2L 
a 

dQL 
d dE~(MeV) 

94.0 96.8 

94. 1 146.4 

94.2 248.2 

94.3 480.0 

94.4 1170.5 

94.5 2385.6 

94.6 1680.0 

94.7 544.3 

94.8 306.0 

94.9 192.1 

95.0 111 . 2 




