KfK 4002 Dezember 1985

Die COSIMA-Experimente und ihre Nachrechnung, eine Datenbasis zur Überprüfung von Rechenprogrammen für Zweiphasenströmungen

G. Class, R. Meyder, E. Stratmanns Institut für Reaktorentwicklung Projekt Nukleare Sicherheit

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE Institut für Reaktorentwicklung Projekt Nukleare Sicherheit

KfK 4002

für Zweiphasenströmungen

G. Class, R. Meyder, E.Stratmanns

Kernforschungszentrum Karlsruhe G.m.b.H., Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

Zusammenfassung

Die COSIMA Anlage hatte das Ziel, die Wechselwirkung der fluiddynamischen, thermischen und mechanischen Vorgänge im Kühlkanal und im Brennstab eines Druckwasserreaktors während der Abblasephase eines Kühlmittelverluststörfalles mit großem Leck zu simulieren. Im vorliegenden Bericht wird das umfangreiche Datenmaterial aller COSIMA Experimente vorgestellt. Die Datenbasis soll der Überprüfung und Weiterentwicklung von Rechenprogrammen für Zweiphasenströmungen dienen. Für das Brennstabverhalten ergab sich, daß im allgemeinen nur geringe Hüllrohrdehnungen erreicht werden, und daß zum Bersten der Hüllrohre in der Abblasephase extrem hohe Stabinnendrucke notwendig sind. Zusätzlich wurden wichtige Erkenntnisse zum Verhalten von Brennstabsimulatoren und zum Einfluß von Thermoelementen, die außen auf dem Hüllrohr angebracht sind, gewonnen.

Ergebnisse, die mit den Rechenprogrammen RELAP und DRUFAN gewonnen worden sind zeigen, daß schon heute eine zufriedenstellende Nachrechnung der Experimente erreicht wird. Eine Verbesserung kann erreicht werden, wenn man die Modelle zur Beschreibung der Phasentrennung verfeinert. The COSIMA-experiments, a database for validation of

two-phase-flow computer-codes

Abstract

The aim of the COSIMA-facility was to simulate the hydraulic, thermal and mechanical conditions in the subchannel, as well as in the cladding of fuel rod in a PWR during a large break LOCA. The report presents an overview on the large database generated with COSIMA. The database is to be used to validate and develope computercodes for two-phase flow. In terms of fuel rod behavior it was found that during blowdown under realistic conditions only small strains are reached. For clad rupture extremly high rod internal pressure is necessary. Additionnaly important results were found in the behavior of a fuel rod simulator and on the effect of thermocouples attached on the cladding outer surface.

Posttest calculations, performed with the codes RELAP and DRUFAN show a good agreement with the experiments. This however can be improved if the phase separation models in the codes would be updated.

Inhaltsverzeichnis

.

		Seite
1.	Einleitung	5
2.	Beschreibung der Versuchsanlage	7
2.1	Kreislauf	7
2.2	Teststrecke	8
2.3	Instrumentierung	9
2.4	Brennstabsimulator vom Typ WUS	11
2.5	Brennstabsimulator vom Typ SIM	11
3.	Einfache Abblase-Experimente ohne Beheizung	12
3.1	Zielsetzung und Versuchsmatrix	12
3.2	Abblasen aus dem Unterplenum	12
3.3	Abblasen aus dem Oberplenum	15
3.4	Vergleich einseitig abblasender Versuche	17
3.5	Abblasen aus Ober- und Unterplenum	18
4.	Abblase-Experimente mit dem Stabsimulator vom Typ WUS	22
4.1	Zielsetzung und Versuchsmatrix	22
4.2	Abblasen aus dem Oberplenum	22
4.3	Abblasen aus Ober- und Unterplenum	25
5.	Abblase-Experimente mit dem Stabsimulator vom Typ SIM	28
5.1	Zielsetzung und Versuchsmatrix	28
5.2	COSTRA-Experimente ohne Hüllrohrdeformation	28
5.2.1	Ablauf der COSTRA-Transiente	28
5.2.2	Experimente mit Al ₂ O ₃ -Pellets	30
5.2.2.1	Experimente mit nominellem Stab	30
5.2.2.2	Experimente mit veränderten Spaltweiten	31
5.2.3	Experimente mit Quarzpellets	32
5.3	Experimente zum Einfluß von Thermoelementen	33
5.3.1	Zielsetzung der Experimente	33
5.3.2	Ablauf der LOFTRA-Transiente	34
5.3.3	Einluß von Thermoelementen bei COSTRA und LOFTRA	35
5.4	Experimente mit Stabdeformation	36

6.	Nachrechnung der Experimente	38
6.1	Zielsetzung der Nachrechnungen	38
6.2	Probleme bei der Modellierung	38
6.3	Nachrechnung der Experimente ohne Beheizung	39
6.4	Nachrechnung von LOFTRA und COSTRA	41
7.	Schlußfolgerungen	44
8.	Literatur	46

· .

1. Einleitung

Der Kühlmittelverluststörfall mit großem Leck in einem Druckwasserreaktor wird im Rahmen des atomrechtlichen Genehmigungsverfahrens von Kernkraftwerken als ein Störfall behandelt, dessen Folgen von der Anlage beherrscht werden müssen. Um eine entsprechende Auslegung vornehmen zu können, ist es daher notwendig die Folgen dieses Ereignisses möglichst gut zu kennen. Die Sorge gilt dabei dem Verhalten der Brennstäbe, denn nur wenn die Brennstabhüllen versagen, können Spaltprodukte freigesetzt werden.

-5-

Das Verhalten eines Brennstabes während eines Kühlmittelverlustvon seinem Abbrand, störfalles hängt seinem Innendruck, seiner im Stab ab. Kühlung und der Wärmefreisetzung Die Versagensarten sind das Bersten der Hüllrohre ohne große Verformung, und das Erreichen Die großer Dehnungen mit und ohne Bersten. erste Versagensart führt im wesentlichen Freisetzung nur zur von während die zusätzlich die gasförmigen Spaltprodukten, zweite Flutung des Kernes behindern kann.

Im Rahmen des Projektes Nukleare Sicherheit wurden diese Fragen theoretisch und experimentell untersucht /1,2/. Dazu wurde der gesamte Fragenkomplex in integrale und spezielle Untersuchungen unterteilt. Die integralen Versuche wurden nochmals in Abblasephase und Wiederauffüllund Flutphase unterteilt. Der vorliegende Bericht behandelt die Experimente zum integralen Verhalten der Brennstäbe während der Abblasephase.

Im Rahmen dieses Vorhabens wurde im KfK die COSIMA-Anlage (<u>co</u>ntrolled blowdown <u>sim</u>ulation Karlsruhe) geplant, entwickelt und erstellt. Um der Aufgabenstellung zu entsprechen, waren eine Reihe von technischen Neuund Weiterentwicklungen notwendig. So wurde z.B. im Rahmen dieses Vorhabens ein Zweiphasen-Massenstrommeßgerät, das sog. 'True Mass Flow Meter' (TMFM), entwickelt /3,4,5,6,7/, sowie ein Brennstabsimulator mit einer linearen Leistung von ca. 700 W/cm, mit Gasinnendruck und einer deformierbaren Hülle aus Zircaloy. Im Laufe der Durchführung des Vorhabens ergab sich eine gewisse Verschiebung der Versuchsschwerpunkte. So konnte zu Anfang relativ demonstriert daß rasch werden, in der Abblasephase keine überraschenden Effekte auftreten und das Verhalten des Hüllrohres in Übereinstimmung mit den Ergebnissen der speziellen Experimente stand /8,9/. Es wurde daher anschließend mehr Gewicht auf die Erzeugung von Datensätzen zur Überprüfung von Rechenprogrammen für die Analyse des Brennstabverhaltens, besonders der Thermohydraulik, sowie auf die Verbesserung der Brennstabsimulatoren hinsichtlich der Reproduzierbarkeit ihres Verhaltens bei wiederholtem Einsatz gelegt.

Das Besondere dieser Datenbasis ist, daß sie Abblase-Experimente einer Teststrecke enthält bei der der Abblaseort, die Abblasequerschnittsfläche und die Beheizungsart systematisch variiert wurden. Auf diese Weise kann man sowohl einzelne Modelle in den Zweiphasen-Rechenprogrammen überprüfen, als auch ihr Zusammenwirken. Der vorliegende Bericht gibt einen Überblick über die durchgeführten Experimente und die dabei beobachteten Phänomene. Am Ende des Berichts werden einige Ergebnisse vorgestellt, die mit den Rechenprogrammen RELAP und DRUFAN gewonnen wurden. Es handelt sich dabei um Versuchsnachrechnungen, nicht um eine umfassende Verifizierung dieser Programme.

2. Beschreibung der Versuchsanlage

In der COSIMA-Anlage /10,11/ soll die Hülle des Brennstabsimulators denselben mechanischen sowie thermo- und fluiddynamischen Bedingungen ausgesetzt werden, wie sie für ein Brennstabhüllrohr während der Abblasephase eines Kühlmittelverluststörfalles erwartet werden /1/. Es mußten daher die im Stab freigesetzte Wärme und die Verhältnisse des Kühlmittels im Kühlkanal, im wesentlichen also Druck und Massenstrom, steuerbar sein. Gewählt wurde ein elektrisch beheizter Simulator in einem Stabbündel, welches zwischen zwei Kühlmittel-Speichervolumen angeordnet ist. An die Speichervolumina wurden Regelventile angeschlossen, so daß der Druck-Zeit-Verlauf in der Teststrecke durch die Summe der Ventilquerschnitte und der Massenstrom durch das Bündel durch die Aufteilung des Gesamtquerschnitts auf das untere bzw. obere Ventil eingestellt werden kann. Eine Gesamtansicht der Anlage gibt Abb. 2.1.

2.1 Kreislauf

Der Kreislauf der COSIMA Anlage (Abb. 2.2) hat die Aufgabe, in der Teststrecke stationäre Anfangsbedingungen einzustellen. Der Kreislauf besteht aus einem beheizten Druckhalter, mit einem angeschlossenen beheizbaren Wasserkessel von ca. 150 1 Inhalt, sowie einer Umwälzpumpe, Rohrleitungen, Ventilen und der Teststrecke. Die Anfangsbedingungen des Kühlmittels für ein Abblase-Experiment sind ca. 578 K und 16 Mpa.

Nach dem Erreichen dieser stationären Anfangsbedingungen werden die Heizer im Stabbündel eingeschaltet, um ein realistisches axiales Temperaturprofil einzustellen. Da im Kreislauf keine spezielle Wärmesenke vorhanden ist, muß zur Erhaltung der Anfangsbedingungen die Auslösung des Experimentes erfolgen, bevor die Temperatur des Kreislaufwassers am Austritt des Speicherkessels ansteigt. Bei der Auslösung des Experimentes wird die Teststrecke durch Schnellschlußventile vom übrigen Kreislauf abgetrennt.

-7-

Zur Auslösung und zur weiteren Steuerung eines Experimentes sind eine große Zahl aktiver Maßnahmen notwendig. Daher wurden sämtliche Steuerungsaufgaben programmiert und auf einen Steuerungsrechner gegeben. Nach dem Erreichen der stationären Anfangsbedingungen erfolgt somit nur noch die Auslösung des Experiments von Hand.

2.2 Teststrecke

Die Teststrecke (Abb. 2.3) besteht aus dem oberen und unteren, jeweils kugelförmigen Kühlmittelplenum und dem dazwischen gelegenen Stabbündel. Jedes Plenum hat ein Volumen von 6.54 l. Der Abstand der Plenamitten ist ca. 2.4 m. Zur Reduktion der Thermoschockbeanspruchung der Plena wurden diese innen mit Thermoschockblechen ausgekleidet.

Die Plena sind über die Abblaseleitungen mit dem Abblasebehälter verbunden (Abb. 2.2). In jeder Leitung liegen auf dem Weg zum Abblasebehälter zunächst ein True Mass Flow Meter, dann ein Schnellöffnungsventil und schließlich ein Regelventil. Die Regelventile haben einen linearen Zusammenhang zwischen Ventilhub und Öffnungsquerschnitt. Ihre Stellung wird in % des Maximalhubes angegeben. Der Abblasebehälter ist offen, der Gegendruck am Ende der Abblaseleitung ist daher in erster Näherung gleich dem Umgebungsdruck.

Das Stabbündel der COSIMA-Anlage besteht aus drei mal drei Stäben in quadratischer Anordnung (Abb.2.4). Die zentrale Position wird vom Brennstabsimulator, die anderen Positionen von den Begleitheizern eingenommen. Der Raum zwischen Bündel und Druckführungsrohr wird durch Füllstücke ausgefüllt. Die Begleitheizer sind elektrisch beheizte Stäbe mit thermisch sehr gut an das Hüllrohr gekoppeltem Heizleiter, deren axiale Heizzone sich von der Mitte des Bündels gemessen 0.75 m nach oben und unten erstreckt. Ihre Leistung beträgt insgesamt 110 kW. Jeder Begleitheizer des Bündels besteht aus einem oberen und einem unteren Teil. Dazwischen bleibt Platz für die Sichtfenster der Pyrometer zur berührungsfreien Messung der Oberflächentemperatur des Simulators.

-8-

2.3 Instrumentierung

Ein Instrumentierungsplan ist in Abb. 2.5.1 und 2.5.2 gegeben. Gemessen werden Drücke, Temperaturen, Dichten, Massenströme, Leistungen und die Stellung der Regelventile.

Der Druck im Kühlmittel wird in den Plena, an Positionen ober- und unterhalb des beheizten Bündels, und im Abblasebehälter gemessen. Zusätzlich wird auch der Differenzdruck zwischen den Plena erfaßt. Außerdem wird der Gasdruck im Brennstabsimulator gemessen. Die Dichte in den Plena wird mittels Gamma-Durchstrahlung bestimmt; weil die Gamma-Strahlen die Plena unter 45° zur Senkrechten durchstrahlen, sind Korrekturen für die vom Strahl nicht erfaßten Bereiche erfor-Dabei ist hier unter Dichte die über das Plenumvolumen derlich. gemittelte Dichte zu verstehen. Da sich im oberen Teil der Plena Wasserdampf ansammelt, häufig zur Ausbildung eines kommt es Gemischspiegels, der den überwiegend mit Dampf gefüllten Teil, von dem mit einem Zweiphasengemisch gefüllten Teil des Plenums trennt. Die Dichtemessung mittelt über beide Teilvolumina.

Die Messung der Massenströme in den Abblaseleitungen erfolgt, wie erwähnt, jeweils mit einem TMFM. Die Ventilpositionen werden über Tauchspulen in ein elektrisches Signal umgesetzt und ebenfalls aufgezeichnet.

Die Leistung der Begleitheizer und des Simulatorstabes werden getrennt durch Spannungs- und Strommessung erfaßt. Die Hüllrohr-Oberflächentemperaturen des Brennstabsimulators werden mittels 8 Quotientenpyrometern bestimmt. Sie arbeiteten zuverlässig und sehr genau (+/- 3 K). Die tiefste mit diesen Pyrometern meßbare Temperatur liegt bei 810 K. Fällt die Temperatur bei einem Pyrometer unter 810 K so wird daher der Wert 810K angegeben. Weitere Temperaturen werden im Fluidbereich, des Bündels und der Plena mittels Thermoelementen gemessen. Diese 'blanken' Thermoelemente haben einen Durchmesser von 1 mm. Zusätzlich werden noch zahlreiche Strukturtemperaturen der Füllkörper und der Plenawände mit aufgezeichnet. Der Versuch, aus diesen Daten gezielt das radiale Temperaturprofil in den Füllkörpern zu bestimmen, muß aber als gescheitert betrachtet werden. Schließlich werden noch die Temperaturen in den Abblaseleitungen und im Abblasebehälter aufgezeichnet.

Insgesamt wurden 67 verschiedene Meßsignale über die Datenerfassungsanlage aufgezeichnet. Die Aufzeichnungsfrequenz beträgt 100 Hz. Die Meßwerte sind im mKs – System auf Magnetband vom Kerforschungszentrum erhältlich. In den Abbildungen der folgenden Kapitel werden für die einzelnen Meßwerte folgende Abkürzungen verwendet:

- T : Temperaturmessung mit Thermoelementen.
- IN : Temperaturmessung mit Pyrometern.
- P : Druck.
- D : Dichte.
- M : Mássenstrom in den Abblaseleitungen.
- PO : Stellung der Regelventile.

2.4 Brennstabsimulator vom Typ WUS

Ein radialer und ein axialer Schnitt durch einen Brennstabsimulator vom Typ WUS /12/ ist in Abb. 2.6 gegeben. Dieser Simulator war zur Ermittlung von Wärmeübergangszahlen, unter Verzicht auf ein verformbares Hüllrohr, entwickelt worden. Der radiale Temperaturgradient des Hüllrohres und damit der Wärmestrom sollte ursprünglich mittels in unterschiedlichem Abstand von der Hüllrohroberfläche eingebetteten Thermoelementen bestimmt werden. Leider waren bei keinem Stab alle Temperaturmeßstellen hinreichend lange funktionsfähig. Daher mußte die mit den Pyrometern bestimmte Oberflächentemperatur zur Ermittlung der Wärmeströme mit herangezogen werden. Er ist ebenso wie der Simulator mit verformbarer Hülle (Typ SIM) über 0.5 m beheizbar. Die beheizbare Zone reicht von der Mitte des Bündels 0.25 m nach unten und nach oben. Die typische Leistung für diesen Stab liegt bei 600 W/cm.

2.5 Brennstabsimulator vom Typ SIM

Mit dem Brennstabsimulator vom Typ SIM /13/ sollte sowohl das thermodynamische als auch das mechanische Verhalten des Brennstabes simuliert werden. Sein Aufbau ist in Abb. 2.7 gegeben. Er besteht aus einem zentralen Heizstab aus Graphit von 6 mm Durchmesser, Al_2O_3 -Ringpellets und dem Zircaloy-Hüllrohr. Um einen Kurzschluß zwischen Heizstab und Zircaloy zu vermeiden, wurde das Graphit mit Tantalkarbid beschichtet. Die elektrische Leistung wird über Stäbe aus CuZr und Übergangsstücke aus Ta oder Mo an den Graphitstab herangeführt. Auch dieser Stabtyp ist nur über 50 cm Länge beheizt, die maximale Stableistung beträgt 700 W/cm. Am oberen Ende des SIM ist ein Anschluß, um den Stab in der Teststrecke mit Gas zu füllen. Normalerweise wurde Helium als Füllgas eingesetzt.

Eine ausführlichere Beschreibung der COSIMA Anlage ist in /10,11/ zu finden. Insgesamt wurden ca. 200 Versuche durchgeführt. Manche Versuche waren für Funktionstests oder zur Festlegung der Steuerprogramme notwendig, so daß nicht alle Versuchsnummern in Tabelle 2.1 fortlaufend verzeichnet sind. Die Tabelle gibt einen summarischen Überblick über die wesentlichen Randbedingungen aller COSIMA-Experimente. Eine nähere Erläuterung ausgewählter Experimente folgt in den Kapiteln 3 bis 5. 3. Einfache Abblase-Experimente ohne Beheizung

3.1 Zielsetzung und Versuchsmatrix

Wie aus der Beschreibung in Kapitel 2 hervorgeht, ist der Aufbau der COSIMA-Teststrecke der Simulatorstäbe und der einschließlich Begleitheizer recht kompliziert. Um das thermohydraulische Verhalten der Anlage und die Fähigkeiten der bei uns verfügbaren Thermohydraulik-Rechenprogramme RELAP und DRUFAN besser beurteilen zu können, wurde diese Serie einfacher Versuche gewählt, bei der auf die Stäbe verzichtet Diese Serie umfaßt die Beheizung der wurde. Versuche V191-V208 (Tabelle 2.1).

Bei den Versuchen V191, V192, V193 wird nur aus dem Unterplenum abgeblasen, bei den Versuchen V194, V195, V207 dagegen nur aus dem Oberplenum. Bei den Versuchen V208, V198, V199, V201, V202 wird sowohl aus dem Ober-, als auch aus dem Unterplenum abgeblasen. Bei allen bisher bleibt Ventilstellung genannten Experimenten die während des Abblasevorganges konstant. Bei den Versuchen V203 bis V206 schließlich wird die Ventilstellung am Ober- und am Unterplenum während der Transiente geändert. Nach einigen Vorausrechnungen wurden die Stufen der Ventilstellungen zu 10 %, 15 % und 20 % festgelegt. Um bei den vielen Versuchen die Übersicht zu bewahren, sind in Tabelle 3.1 und 3.2 die Versuchsnummern den schematisch dargestellten Ventilstellungen zugeordnet.

3.2 Abblasen aus dem Unterplenum

Für einen Abblaseversuch ohne Beheizung sind folgende Daten von Interesse:

 a) Druckverlauf im Kühlmittel, in diesem Bericht gelegentlich auch als Systemdruck bezeichnet; er ist nach dem Öffnen der Schnellschlußventile praktisch für die gesamte Teststrecke gleich. Es genügt daher im allgemeinen, nur eine Messung zu zeigen und zu diskutieren. Für die folgende Diskussion wurde P4 bzw. P6 der Druck im Unter- bzw. Oberplenum gewählt.

- b) Fluidtemperaturen; hier stehen die Messungen im Unter- und Oberplenum T5 und T8 sowie die Messungen im Bündel T6 und T7 unter- bzw. oberhalb der beheizbaren Zone zur Verfügung. Da die Plenumstemperaturen nur die zum Druck gehörenden Sättigungstemperaturen zeigen, werden sie nicht weiter behandelt.
- c) Dichten; es stehen die Messungen im Unter- und Oberplenum zur Verfügung (D1 und D2). Zur Definition der Dichte siehe Kapitel 2.3.
- Massenströme; diese stehen an der unteren und oberen Abblaseleitung zur Verfügung (M1 und M2).

In Abb. 3.1 ist der Systemdruckverlauf für V191 mit einer Ventilstellung von 10 % am Unterplenum gezeigt. Aus versuchstechnischen Gründen wird der Abblasevorgang stets bei einer Zeit größer Null, hier 16 s, ausgelöst. Zunächst fällt der Druck sehr rasch von 15.5 Mpa auf den Sättigungsdruck von 8.5 Mpa. Danach sinkt er nahezu linear bis ca. 26 s, um anschließend ebenfalls linear, aber mit größerer Steigung, bis zum Ende der Datenaufzeichnung zu fallen. Aus der Abbildung ist weiter zu erkennen, daß der Druck in beiden Plena gleich ist.

Abb. 3.2 zeigt den Verlauf der Dichten. Bei der Dichte D2 im Oberplenum kann man je nach Genauigkeit der Betrachtung vier bis fünf verschiedenen Phasen unterscheiden. Nach einem kurzen Abfall der Dichte, der im Unter- und Oberplenum nahezu identisch verläuft, bleibt die Dichte im Oberplenum bis ca. 21 s konstant. Danach fällt die Dichte linear bis ca. 26 s, um sodann bis 36 s noch steiler abzufallen. Nach diesem Zeitpunkt wird der Dichteabfall wieder geringer. Der Dichteverlauf im Unterplenum (D1) zeigt bis 18 s einen geringen Abfall. Danach wird er bis 22 s sehr steil, ist von 22 s bis 28 s wieder flacher, und bleibt ab 28 s praktisch konstant.

Die Temperaturen T6 und T7 (Abb. 3.3) zeigen durchweg Sättigungstemperatur.

Dieses Verhalten kann wie folgt erklärt werden: Zunächst strömt das in der Abblaseleitung enthaltene Fluid aus. Dieser Vorgang verhindert einen steileren Dichteabfall in den Plena bis 18 s. Danach verliert das Unterplenum sehr rasch Masse bis etwa 22 s. Im Oberplenum hingegen bleibt die Dichte bis 21 s nahezu konstant. Offenbar verhindert die Verdampfung im und die Ausströmung aus dem Bündel zwischen 18 s und 21 s die Ausbildung einer spürbaren Druckdifferenz zum Oberplenum. Erst danach tritt auch im Oberplenum ein Masseverlust auf, der nach ca. 2.5 s Verzugszeit als Massengewinn im Unterplenum den Dichtegradienten dort bei 23 s reduziert. Bei etwa 26 s hat sich im Oberplenum vermutlich ein Gemischspiegel ausgebildet, so daß nach dieser Zeit der Masseverlust dort zunimmt. 2.5 s später, bei 28 s, beendet dieser vergrößerte Massenstrom aus dem Oberplenum das weitere Absinken der Dichte Unterplenum. Durch das Gleichgewicht der zuim und abströmenden Massen am Unterplenum bleibt dort die Dichte bis zum Ende Transiente konstant. Bei etwa 26 s erreicht die Dichte im der Unterplenum erstmals den Wert, den sie bis zum Ende der Transiente beibehält. Wahrscheinlich erreicht bei dieser Dichte der Gemischspiegel das Niveau des Ausblasestutzens. Dadurch strömt nach 26 s mehr Dampf ab und der Druck fällt etwas steiler ab. Der Knick im Dichteverlauf des Oberplenums bei 36 s ist möglicherweise darauf zurückzuführen, daß sich im Oberplenum ein 'Badewannenwirbel' ausbildet. Damit wird eine Phasentrennung möglich, bei der bevorzugt Dampf nach unten ausströmt und das Wasser länger zurückgehalten wird.

Der nächste Versuch (V192), mit 15 % Ventilöffnung im Unterplenum, zeigt im Oberplenum ein nahezu gleichmäßiges Absinken der Dichte (Abb. 3.4), bis das Plenum nach ca. 38 s leer ist. Der Dichteverlauf und damit die Massenbilanz im Unterplenum zeigen dagegen drei Phasen an: bis etwa 21 s einen Netto-Massenverlust, dann bis 41 s ein Gleichgewicht zwischen dem Zustrom aus dem Bündel bzw. dem Oberplenum und dem Abstrom durch die Abblaseleitung und in der dritten Phase abermals einen Netto-Masseverlust. Der Systemdruck (Abb 3.5) fällt vom Sättigungsdruck bei 16.5 s bis ca. 56 s nahezu linear ab. Nur zwischen 41 s und 48 s zeigt sich eine schwache Störung dieses Verlaufs. Eine genaue Analyse der Meßwerte läßt zwar in manchen Fällen die in Versuch V191 beobachteten Details wieder erkennen, jedoch sind die Anzeichen schwach, so daß hier nicht näher darauf eingegangen wird. Die Temperaturen im Bündel (Abb. 3.6) zeigen oberhalb der beheizbaren Zone während der gesamten Versuchsdauer Sättigungswerte. Unterhalb der beheizbaren Zone tritt ab ca. 51 s Überhitzung auf. Dies ist zu erklären, wenn man annimmt, daß aus dem Oberplenum, ein mit der Zeit abnehmender Strom 'nassen' Dampfes in das Bündel gelangt, der während der Durchströmung durch das Bündel trocknet. Ab ca. 51 s ist der Dampfstrom so gering, daß die Speicherwärme der Bündelstrukturen ausreicht, um den Dampf zu überhitzen.

Im Versuch V193, bei einer Öffnung von 20 % im Unterplenum, ist im wesentlichen dasselbe zu beobachten wie in den vorhergehenden Versuchen. Lediglich die Zeitskala verschiebt sich hin zu kleineren Werten. Das Oberplenum ist schon bei ca. 31 s leer (Abb. 3.7). Der Druck (Abb. 3.8) nimmt bis 43 s linear und dann exponentiell ab. Dies wird durch die abnehmende Druckdifferenz am Regelventil verursacht. Die Fluidtemperaturen (Abb 3.9) folgen zunächst wieder den Sättigungswerten, zeigen aber ab 43 s unterhalb und ab 48 s auch oberhalb der beheizbaren Zone Überhitzung an.

Abb. 3.10 zeigt schließlich den Verlauf der Massenströme a115 dem Unterplenum für diese drei Versuche. Man sieht dort, wie erwartet, die mit Ausströmfläche zunehmender zunehmende Ausströmrate und die damit gekoppelte Abnahme der Abblasezeit. So ist im Versuch V191 zum Ende der Aufzeichnung noch nicht das Ende des Abblasevorganges erreicht, in den Versuchen V192 und V193 dagegen schon bei ca. 41 s.

3.3 Abblasen aus dem Oberplenum

Beim Versuch V194 ist das Regelventil am Oberplenum 10 % geöffnet. Der Dichteverlauf ist in Abb. 3.11 gezeigt. Man erkennt, daß die Dichte in der ersten Sekunde in beiden Plena, ähnlich wie beim Versuch V191, gleichmäßig fällt. Danach bleibt die Dichte im Unterplenum, durch die Verdampfung im Oberplenum und im Bündel bis ca. 27 s nahezu konstant, um dann bis zum Ende des Versuchs wieder abzufallen. Die Dichte im Oberplenum fällt während der gesamten Versuchszeit etwa exponentiell ab. Auffallend ist, daß das Dichtesignal im Oberplenum wesentlich größere Schwankungen zeigt als bisher. Dies ist wie folgt zu erklären: In den Versuchen V191-V193 wurde die Ausbildung von Gemischspiegeln (Phasenseparation) vermutet. Nimmt man an, daß sich auch hier solche Gemischspiegel ausbilden, so liegt in der unteren Hälfte des Oberplenums ein Zweiphasengemisch relativ hoher Dichte vor. In dieses Gemisch strömt von unten, aus dem Bündel, Dampf ein und führt zu heftigen Aufschäumen des Wassers, das im Dichtesignal als Schwankung beobachtet wird.

Der Vergleich des Verlaufs der Dichten in den Versuchen V191 und V194 zeigt, daß in V194 noch viel Wasser im Versuchsstand zurückbleibt. Bedingt durch die starke Reduktion des Strömungsquerschnittes beim Übergang vom Unterplenum in das Bündel, sowie durch die Phasenseparation infolge der Gravitation, strömt aus dem Unterplenum überwiegend Dampf in das Bündel ab.

Abb. 3.12 zeigt den Verlauf der Fluidtemperaturen im Bündel. Sie zeigen ab 32 s und 33 s Überhitzung an. Die Überhitzung wird, wie schon erwähnt, durch die Speicherwärme der Bündelstrukturen hervorgerufen. Aus dem axialen Temperaturgradienten (T7 ist größer als T6) kann man auf die Strömungsrichtung (von unten nach oben) schließen. Der Druck (Abb. 3.13) fällt zunächst steil auf den zur Fluidtemperatur gehörenden Sättigungswert. Bis etwa 20 s fällt er weniger, dann bis 36 s mehr, und danach wieder weniger. Die Zunahme des Druckgradienten bei 20 s ist wahrscheinlich darauf zurückzuführen, daß zu dieser Zeit der Gemischspiegel im Oberplenum unter das Niveau des Abblasestutzens sinkt und damit mehr Dampf aus der Strecke abströmt. Für die Abnahme des zeitlichen Druckgradienten ab 36 s ist die abnehmende Druckdifferenz am Regelventil verantwortlich.

Da sich die Versuche V194, V195 und V207 nur durch die Größe der Ausblasefläche am Regelventil unterscheiden, wurden ihre Ergebnisse in Vergleichsdiagramme eingetragen. Abb. 3.14 zeigt die Druckverläufe, die durch den zunehmenden Abblasequerschnitt bestimmt sind. Nach Abb. 3.14 bewirken bei ca. 31 s gemessen 5 % Änderung im Abblasequerschnitt ca. 1 Mpa Druckdifferenz. Abb. 3.15 zeigt den Verlauf der Fluidtem- peraturen. Dabei ist die Ordinate am rechten Bildrand gültig für die obere Kurvenschar (T7) und die Ordinate am linken Rand für die untere Kurvenschar (T6). Abb. 3.16 und 3.17 zeigen den Verlauf der Dichte im Ober- bzw. Unterplenum. Trotz der starken Schwankungen des Signals kann man in Abb 3.17 erkennen, daß die Dichte im Unterplenum am Ende der Tests praktisch gleich ist, obwohl unterschiedliche Abblasequerschnitte vorliegen.

Der Verlauf der Massenströme in Abb.3.18 ist nicht systematisch. So sollte Versuch V194, der zu Beginn des Experiments den kleinsten Massenstrom zeigt, am Ende den größten Massenstrom zeigen, denn die Fluidmasse in der Teststrecke ist für alle Experimente gleich. Da 3.18 nicht gefunden wird ist anzunehmen, daß hier dies in Abb. Meßfehler vorliegen, die wahrscheinlich mit der Temperatur des TMFM zusammenhängen. eindeutiger Zusammenhang Da aber kein zwischen Abweichung und irgendeiner vermuteten Einflußgröße gefunden wurde, bleibt zu vermerken, daß der Meßwert des TMFM am Oberplenum unsicher ist.

3.4 Vergleich einseitig abblasender Versuche

In den Abschnitten 3.2 und 3.3 wurden Versuche unterschiedlicher Abblasequerschnitte aber gleichen Abblaseortes miteinander verglichen. In diesem Abschnitt sollen Versuche gleichen Abblasequerschnitts, aber unterschiedlichen Abblaseorts, verglichen werden.

Abb. 3.19 zeigt den Verlauf des Druckes für die Versuche V191 (10 % unten) und V194 (10 % oben). Es ist deutlich zu sehen, daß beim Öffnen des Oberplenums der Druckabfall rascher ist als bei demselben Öffnungsquerschnitt am Unterplenum. Die Ursache ist in Abb. 3.20 anhand der Dichteverläufe in den Plena, aus denen abgeblasen wird, zu sehen. Zwar ist die Dichte in den Plena nicht unmittelbar gleich der Dichte in den Abblaseleitungen, hier spielt noch die Höhe des Gemischspiegels relativ zur Lage der Ausblaseleitung eine Rolle, aber sie gibt einen guten Anhaltswert dafür. Man erkennt, daß beim Abblasen aus dem Oberplenum Fluid geringerer Dichte abgegeben wird, dies ist aber, bei zu Beginn vergleichbarer Druckdifferenz am Regelventil, gleichbedeutend mit einer größeren spezifischen Volumund Enthalpieverlustrate. Hieraus ergibt sich eine stärkere Druckabsenkung. Es ist also nicht die im System noch verbliebene

Fluidmasse, die den Druck hält, diese ist in Versuch V194 viel größer als in V191, sondern die aus dem System noch nicht abgegebene Menge an Dampf bzw. Enthalpie.

Der Effekt, daß sich beim Abblasen aus dem Oberplenum ein steilerer Druckabfall einstellt als beim Abblasen durch denselben Querschnitt aus dem Unterplenum, nimmt mit abnehmendem Abblasequerschnitt zu. Die Abhängigkeit von dieser Größe ist in Abb. 3.21 zu sehen, in der der Druckverlauf für alle sechs Versuche eingetragen ist.

3.5 Abblasen aus Ober- und Unterplenum

Die Versuchsserie, bei der aus dem Ober- und Unterplenum abgeblasen wird, kann in drei Gruppen unterteilt werden. In der ersten Gruppe ist das Oberplenum stets zu 20 % und das Unterplenum zu 10 %, 15 % bzw. 20% geöffnet (Versuche V208, V198, V199), in der zweiten ist das Unterplenum zu 20 % und das Oberplenum zu 20 %, 10 %, bzw. 15 % geöffnet (Versuche V199, V201, V202) und in der dritten (Versuche V203-V206) werden die Ventile während des Abblasens verstellt (Tab. 3.2).

Der Druckverlauf der ersten Gruppe ist in Abb. 3.22 zu sehen. Man erkennt den Einfluß der im Vergleich zu den vorhergehenden Experimenten vergrößerten Gesamtausblasefläche an der kürzeren Dauer des Abblasevorganges, die sich innerhalb der Gruppe nicht mehr wesentlich verändert. Lediglich der Gradient des Druckes über der Zeit nimmt zwischen 21 s und 26 s geringfügig zu bzw. zwischen 26 s und 36 s geringfügig ab. Die Verläufe der Dichten, die zur besseren Unterscheidbarkeit geglättet sind, zeigen Abb. 3.23 und Abb. 3.24. In Abb. 3.25 sind die Fluidtemperaturen in der Strecke für Versuch V208 nach aufgetragen. An diesen Temperaturen sieht man, daß der Überhitzung bei ca. 25 s eine stabile Strömung von unten nach oben vorliegt. In Abb. 3.26 ist aus dem Verlauf derselben Größen für den Versuch V198 abzulesen, daß zunächst wieder eine Strömung von unten nach oben vorliegt, bei ca. 45 s stellt sich jedoch Stagnation ein. Nach einem kurzzeitigen Absinken der Temperaturen beendet eine Strömung von oben nach unten den Versuch. In Abb. 3.27 erkennt man, daß im Versuch V199 die Strömungsumkehr schon sehr früh einsetzt und wahrscheinlich Tröpfchen der Zweiphasenströmung eine vorübergehende

Rückkühlung der Thermoelemente bewirken. Eine genaue Erklärung der Strömungsumkehr für Versuch V198 und V199 steht noch aus, denn der Abströmquerschnitt im Oberplenum ist in beiden Fällen größer als im Unterplenum. Für die Überprüfung von Rechenprogrammen ist sie aber von untergeordneter Bedeutung.

Der Druckverlauf der zweiten Gruppe, bei der der Abblasequerschnitt am Unterplenum stets 20 % war, ist in Abb. 3.28 dargestellt. Es zeigen sich keine Besonderheiten. Ebenso verhalten sich die Dichten im Oberbzw. Unterplenum (Abb. 3.29 - 3.30). Bei den Temperaturen (Abb. 3.31) nimmt mit abnehmender Ausblasefläche am Oberplenum die Überhitzung von T6 und T7 ab, da immer mehr Fluid durch das Bündel und das untere Plenum in den Abblasebehälter strömt.

In Abb. 3.32 bzw. 3.33 ist der Verlauf des Druckes von Versuchen eingetragen, die insgesamt dieselbe Ausblasefläche haben, d.h. Versuch V208 und V201 bzw. Versuch V198 und V202 (Tab. 3.1). Man erkennt dort, daß die Versuche einen steileren Druckabfall zeigen, die den größeren Öffnungsquerschnitt im Unterplenum haben. Der Unterschied ist klein und für V208/V201 größer als bei V202/V198. Dieser Gegensatz wird erklärbar, wenn man den Einfluß der Leckmassenstrom-Enthalpie auf den Druckverlauf berücksichtigt. Vergleicht man die Dichten in d'en Plena (Abb. 3.34, 3.35), so sieht man, daß sich die Dichten der Oberplena bis ca. 26 s weder für V208/V201 noch für V202/V198 wesentlich unterscheiden. Die Dichten der Unterplena sind aber in diesem Zeitraum für V201 und V202 am kleinsten, wobei der Unterschied zu den Vergleichsversuchen, entsprechend dem Druckverhalten, bei V201 größer ist als bei V202. Es strömt hier also aus dem Unterplenum mehr Dampf aus als in den Versuchen V208 und V198. Damit liegt auch der Systemdruck von V201/V202 unter dem von V208/V198. Eine Zunahme der Abströmfläche am Oberplenum um 5 % bzw. 10 % beschleunigt den Druckabfall des Systems somit weniger als eine Zunahme um 5 % bzw. 10 % am Unterplenum.

Ein Vergleich der Massenströme am Unterplenum ist für die Versuche V208, V198, V199, V201 und V202 in Abb. 3.36 gegeben. Mit in Abb. 3.36 eingetragen ist der Massenstrom für Versuch V193, bei dem die Ausblasefläche 20 % im unteren Plenum war. Man erkennt aus diesem Diagramm, daß mit zunehmender Ausströmfläche (Versuch V208, V198, V199) der Massenstrom zunimmt, ist sie aber konstant (Versuch V199, V201, V202, V193) so ist der Massenstrom in den ersten drei Sekunden praktisch unabhänging vom Ausblasequerschnitt im Oberplenum. Dasselbe Verhalten kann angenähert auch für die Massenströme am Oberplenum gezeigt werden (Abb. 3.37), jedoch ist es dort, wegen der Unsicherheiten in den Anzeigen des TMFM, nicht so deutlich.

Die dritte Gruppe von Versuchen stellt eine Mischung aus den Versuchstypen der ersten und zweiten Gruppe dar. Dabei wird in den Experimenten V203 und V204 bis 19 s nur aus dem Ober- und ab 25 s nur aus dem Unterplenum abgeblasen. Bei den Versuchen V205 und V206 ist dies gerade umgekehrt. Zwischen der 19. und der 25. Sekunde wird in allen Experimenten sowohl aus dem Unter- als auch aus dem Oberplenum abgeblasen. Für einen Vergleich ist wieder zu beachten, daß nur solche Experimente verglichen werden können, die insgesamt denselben Abblasequerschnitt über der Zeit aufweisen (Tab. 3.2). Daher ist der Verlauf des Druckes für die Versuche V203 und V205 in Abb. 3.38 und für Versuch V204 und V206 in Abb. 3.39 dargestellt.

Das Verhalten des Druckes entspricht den Beobachtungen bei den Versuchen V191-V195 und V207. Während der Phasen, in denen in einem Experiment nur aus dem Oberplenum abgeblasen wird, ergibt sich ein kleinerer Druck als im Vergleichsversuch, in dem derselbe Abblasequerschnitt am Unterplenum vorliegt. Dies zeigt sich bis 19 s in V203 und V204, und ab 25 s in V205 und V206. In der Zeitspanne, in der die Ventile oben und unten offen sind, ist der Druckabfall in dem Versuch größer, in dem das Unterplenum weiter geöffnet ist.

Die Fluidtemperaturen (Abb. 3.40) zeigen keine Besonderheiten. Bei den Dichten (Abb. 3.41-3.44) ist das Öffnen des zweiten Ventils bei 19 s deutlich am Sprung im Dichteverlauf des Ober- bzw. Unterplenums zu sehen. Die Versuche V205 und V206 zeigen das Entleeren des Oberplenums, so wie dies in den Versuchen V194, V195 und V207 auch beobachtet wurde.

Auf eine Beobachtung sei noch hingewiesen. Die Experimente V203 bis V206 unterscheiden sich von allen bisher erläuterten dadurch, daß die

-20-

Schnellöffnungsventile oben und unten zu Versuchsbeginn geöffnet wurden. Die Regelventile wurden aber entsprechend den Ventilsteuerprogrammen gefahren (Tab. 3.2). Wie nun in Abb. 3.45 und Abb. 3.46 zu erkennen ist, steigen in den True Mass Flow Metern die Temperaturen schon an, auch wenn das zugehörende Regelventil noch geschlossen ist. Dies deutet auf undichte Ventile hin.

4. Abblase Experimente mit dem Stabsimulator vom Typ WUS

4.1 Zielsetzung und Versuchsmatrix

Die Versuche mit dem WUS-Stab sind als Beispiele zur Überprüfung von Wärmeübergangskorrelationen, insbesondere bei hohem Druck und unter transienten Bedingungen, gedacht. Der Stab ist auf Grund seiner massiven Bauweise gut in einem Rechenprogramm modellierbar und eignet sich daher für solche Untersuchungen. Im Laufe der Versuche hat sich gezeigt, daß dieser Stab sehr empfindlich ist; es sind verschiedene Thermoelemente ausgefallen. Deshalb wurden nur sechs Experimente durchgeführt. Bei allen Versuchen wird die dem Simulatorstab zugeführte Heizleistung aus einer stationären Leistung von ca. 64 kW/m über der Zeit linear abgesenkt und in Versuch V56 bei 5 s sonst bei 7 s abgeschaltet. Dabei gab es gelegentlich Schwierigkeiten mit der Leistungsregelung, wie an dem unregelmäßigen Leistungsverlauf in den Versuchen V57 und V58 zu sehen ist (Abb. 4.1). In den Versuchen V56, V59, V61 und V62 wird nur aus dem Oberplenum, in den Versuchen V57 und V58 wird sowohl aus dem Ober- als auch aus dem Unterplenum abgeblasen. Tabelle 4.1 gibt einen Überblick über die Ventilsteuerprogramme.

4.2 Abblasen aus dem Oberplenum

Der Versuch V56 eignet sich zur Untersuchung des Einflusses der Beheizung des Stabbündels auf die Thermohydraulik, insbesondere den Bei diesem Experiment wird aus dem Oberplenum bis 26 s Druckverlauf. mit einem Querschnitt von 8 % und danach mit einem Querschnitt von ca. ausgeblasen. Das Ventil am Unterplenum bleibt während des 28 % gesamten Versuchs geschlossen. Er steht damit in einer Reihe mit den Experimenten V194, V195 und V207. Abb. 4.2 zeigt den Verlauf des Druckes für diese vier Versuche. Da die Auslösung der Experimente zu verschiedenen Zeiten erfolgte, wurde in diesem Diagramm eine Zeitverschiebung von -16 s bzw. -23 s vorgenommen. Man erkennt, daß sich ca. 4 s nach Beginn des Abblasens der Druck des Versuchs V56 in die Systematik der Versuche V194, V195 und V207 einfügt. Es ist also für den Verlauf des Druckes nach dieser Zeit kein wesentlicher Einfluß der Beheizung mehr erkennbar. Bei Zeiten kleiner 4 s nach Versuchsbeginn ist festzustellen, daß Verdampfung schon bei einem Druck von ca. 11 Mpa einsetzt, entsprechend einer Sättigungstemperatur von ca. 590 K. Dies deckt sich mit der gemessenen Fluidtemperatur über der beheizten Zone, Meßstelle T7 in Abb. 4.3.

Am Verlauf des Druckes (Abb. 4.4) in Versuch V56 ist bei 26 s eine Zunahme und bei 28 s eine Abnahme des Druckgradienten erkennbar. Die Zunahme ist auf das Öffnen des Abblaseventils am Oberplenum von 8 % auf 28 % (Abb. 4.9) zurückzuführen. Die darauf folgende Abnahme ist erklärbar, wenn man den Verlauf der Dichten (Abb. 4.5) betrachtet. Man sieht, daß die Verdampfung im Unterplenum erst bei 28 s beginnt. Der dabei produzierte Dampf reduziert den Druckgradienten. Der Dichteverlauf im Oberplenum in Abb. 4.5 zeigt ferner, daß durch die Verdampfung des Fluids im Unterplenum Wasser aus dem Unterplenum ins Oberplenum transportiert wird, und dort bei etwa 29 s zu einer kurzzeitigen Zunahme der Dichte führt.

Bei den beheizten Versuchen wurden am Simulator die Hüllrohr-Oberflächentemperaturen mit den Pyrometern gemessen. Bei den Versuchen mit WUS-Stäben wurde zusätzlich die Hüllrohrtemperatur mit Thermoelementen bestimmt. Die tiefste mit den Pyrometern meßbare Temperatur liegt bei 810 K. Es wird daher in allen folgenden Diagrammen bei Temperaturen kleiner 810 K der Wert 810 K angegeben. Des weiteren sei darauf hingewiesen, daß in den Experimenten mit WUS-Simulatoren das Pyrometer IN8 keine Meßwerte lieferte, da die beheizte Zone des WUS-Stabes erst ca. 1 cm unterhalb des IN8 beginnt.

Abb. 4.6 zeigt die Temperaturen in der oberen Hälfte des WUS. Aus diesem Diagramm liest man zu Beginn des Experiments eine Hüllrohrtemperatur von ca. 650 K ab. Dies entspricht etwa dem Wert der sich bei einer Heizflächenbelastung von 1800 kW/m² ergibt, wenn man die $W/m^2/K$ 40000 (Oberflächensieden) Wärmeübergangszahl $\mathbf{z}\mathbf{u}$ und die Tiefe der TE-Spitze unter der Zircaloy-Oberfläche zu 0.2 mm annimmt. Die Hüllrohrtemperaturen oberhalb des Abstandshalters zeigen ab 26 s Überhitzung an, die im Maximum einen Wert von ca. 900 K erreicht. Sie wird durch die Speicherwärme des Stabes verursacht. Die empfindlichen Pyrometer weisen darauf hin, daß diese Überhitzung unterbrochen wird. Vergleicht man den Verlauf des Meßwertes IN7 (Abb. 4.6) mit dem der

Dichte (Abb. 4.5), so stellt man fest, daß der Einbruch der Temperatur beim IN7 durch Fluid aus dem Unterplenum verursacht wird. Bei den Meßwerten T22, IN4 und IN5 in Abb. 4.7 ist zu beachten, daß T22 durch den mittleren Abstandshalter abgedeckt wird und die Pyrometer IN4 und IN5 sich in unmittelbarer Nähe dieses Abstandshalters befinden. Es ist daher eine Interpretation dieser Temperaturen problematisch. Die Temperaturen unterhalb des Abstandshalters (Abb. 4.8) zeigen dagegen, entsprechend der Aufwärtsströmung, einen systematischen Verlauf.

Die Druckverläufe in den Versuchen V56, V59, V61 und V62 sind ähnlich. Vergleicht man im einzelnen die Veränderungen am Ventilsteuerprogramm mit dem Druckverlauf, so erkennt man eine enge Korrelation; so z.B. in Abb. 4.9 beim Vergleich der Versuche V56 und V61, und in Abb. 4.10 für die Versuche V61 und V62. In Abb. 4.9 wird deutlich, daß erst nach Beginn der Verdampfung im Unterplenum bei 28 s (D1 in Abb. 4.12) die unterschiedliche Abblasefläche wirksam wird. In Abb. 4.11, beim Vergleich der Versuche V56 und V59, ist zu beachten, daß V59 etwa .1 s zu spät ausgelöst wurde. Diese Zeitverschiebung verursacht die scheinbaren Abweichungen im Druck bis 28 s.

Der geglättete Verlauf der Dichten zeigt ebenfalls ein recht einheitliches Bild (Abb. 4.12). Bemerkenswert ist, daß der Dichtesprung bei der Verdampfung im Unterplenum bei ca. 28 s offensichtlich nur unwesentlich von der Größe der Ausblasefläche abhängig ist; vermutlich begrenzt hier der Reibdruckverlust im Bündel die Verdampfungsrate.

Die Hüllrohrtemperaturen des WUS nehmen in den Versuchen V56, V59, V61 und V62 unterhalb des Abstandshalters mit abnehmendem Abströmquerschnitt zwischen 30 s und 40 s zu (Abb. 4.13). Dies kann wie folgt erklärt werden: Unterhalb des Abstandshalters tritt Überhitzung erst bei ca. 30 s ein. Man darf daher annehmen, daß der untere Teil des WUS, auf Grund des bis zu diesem Zeitpunkt guten Wärmeüberganges vom Stab ins Fluid, in allen Versuchen in etwa ein gleiches radiales Temperaturprofil hat. In der nun einsetzenden Dampfströmung stellt sich daher die Hüllrohrtemperatur nur noch entsprechend der Kühlung durch den Dampfstrom ein; d.h. mit abnehmendem Durchsatz steigt die Hülltemperatur. Für die Überhitzung oberhalb des Abstandshalters (Abb. 4.6, 4.14, 4.16) überlagern sich diesem Zusammenhang sowohl

die Unterschiede des Abblasequerschnitts bei Zeiten kleiner 30 s als auch die unterschiedliche Heizleistung im Stab. Die erste Spitze der Hüllrohroberflächentemperatur ist verursacht durch die Speicherwärme im Stab. Für den Versuch V56 (Abb. 4.6) ist ihr Maximalwert 880 K. Für t > 30 s werden trotz der nun im Kühlkanal vorliegenden Dampfstömung nur noch 820 K erreicht. In Versuch V59 ist die Abschaltkurve der Stableistung flacher, damit wird mehr Wärme im Stab frei und die erste Überhitzung (t < 30 s) erreicht höhere Temperaturen (Abb. 4.14) als im Versuch V56, obwohl entsprechend der Ventilstellung (Abb. 4.11) zu dieser Zeit ein größerer Massenstrom im Kühlkanal vorliegt als bei V56. Bei der zweiten Überhitzung (t > 30 s) führt der reduzierte Massenstrom im Kühlkanal in V59 zu einem deutlichen zweiten Temperaturmaximum mit etwa 970 K. Vergleicht man hierzu V62 in Abb. 4.15, bei dem der Abströmquerschnitt für t < 30 s vergrößert und für t > 30 s verkleinert wurde (Tab. 4.1), so erkennt man, daß der erhöhte Massenstrom für t < 30 s die Hüllrohrtemperatur um ca. 20 K absenkt und der reduzierte Massenstrom für t > 30 s den relativen Verlust an Speicherwärme bei t < 30 s in etwa ausgleicht. Versuch V61 liegt entsprechend dem Ventilsteuerprogramm zwischen V59 und V61, jedoch war dort die Anfangsstableistung ca. 31 kW anstelle der 32 kW in V59 und V61. Diese um ca. 3 % reduzierte Leistung wirkt sich auf die Temperaturen stark aus (Abb. 4.16), so daß ein Vergleich mit den anderen Versuchen nicht sinnvoll erscheint.

Zum Abschluß dieser Betrachtung sei auf eines noch explizit hingewiesen: In diesen Experimenten sind Unterschiede in der mittleren Hüllrohrtemperatur und der Oberflächentemperatur von ca. 100 K über einen Zeitraum von einer Sekunde aufgetreten (Abb. 4.14-4.16). Dies ist nur möglich bei einem Simulatorstab ohne Spalt zwischen Wärmequelle und Hüllrohr, weil nur dann genügend Wärme aus dem Stab nachfließen kann.

4.3 Abblasen aus Ober- und Unterplenum

Die Versuche V57 und V58 sind bis auf geringe Abweichungen im Leistungsverlauf (Abb. 4.1) identisch, also genügt es den Versuch V57 zu diskutieren. Abb. 4.17 zeigt das Ventilsteuerprogramm dieser Versuche. Mit diesem Programm wird in der Teststrecke der kaltseitige Bruch einer Primärkühlmittelleitung eines DWR simuliert /1/. In der Anfangsphase liegt eine Strömung von unten nach oben (25.5 bis 26 s) vor, entsprechend der normalen Durchströmung eines Reaktorkernes. Danach (26 bis 27 s) folgt eine Strömung von oben nach unten, entsprechend der angenommenen Bruchlage. Anschließend wird von 27 bis 35 s eine Stagnationsphase im Kern eingestellt, indem beide Abblasequerschnitte gleich groß gewählt werden. Die Transiente wird abgeschlossen durch eine Strömung von oben nach unten.

Abb. 4.18 zeigt die Fluidtemperaturen in der Teststrecke. An ihnen kann man erkennen, ob die durch das Ventilsteuerprogramm gewünschte Strömungsrichtung erreicht wurde. Die Aufwärtsströmung bis 26 S ist deutlich erkennbar, danach zeigen bis 28 s beide Meßstellen Sättigungstemperatur, es ist daher keine Strömungsrichtung erkennbar. In der Phase, in der Stagnation erwartet wurde, also zwischen 28 und 35 s, stellt sich eine Dampfströmung von unten nach oben ein. Ab 35 s wird durch das Schließen des oberen Abblaseventils das im Oberplenum verbliebene Wasser durch die Strecke ins Unterplenum gedrückt, wobei wieder eine vorübergehende Benetzung der Thermoelemente auftritt.

Der Verlauf des Druckes ist in Abb. 4.19 gezeigt. Im Vergleich mit z.B. V62 (Abb. 4.10) ist der Druckgradient in der Anfangsphase des V57 größer. Dies ist auch zu erwarten, da die Ausblasefläche insgesamt in V57 größer ist als in V62. Bei etwa 35 s ist, in dem bis dahin recht gleichmäßigen Druckverlauf, eine kleine Störung zu erkennen. zurückzuführen, Diese Störung ist auf die Dampfproduktion die auftritt, wenn das Restwasser aus dem Oberplenum durch das überhitzte Testbündel strömt.

Der Verlauf der Dichten (Abb. 4.20) ist im Unter- und Oberplenum beinahe gleich. Für die Zeit bis 35 s entspricht dies den Beobachtungen aus den Versuchen V203-V206 ohne Beheizung. Bei 35 s würde man aber, ähnlich wie in diesen Versuchen, erwarten, daß das Fluid aus dem Ober- ins Unterplenum strömt und dort zu einem Dichteanstieg führt. Dies wird hier jedoch nicht gefunden, vermutlich verhindern die hohen Temperaturen im Bündel, daß überwiegend Wasser ins Unterplenum strömt, somit erhöht der Zustrom an nassem Dampf aus dem Oberplenum lediglich den Leckmassenstrom. Der Verlauf der Massenströme ist in Abb. 4.21 gegeben. Sie reagieren in der Anfangsphase des Experiments sehr empfindlich auf das Ventilstellung. Später, bei 35 s, ist auch das Öffnen des Unterplenums noch deutlich zu erkennen, die Reaktion des Systems, d.h. jedoch ist der Anstieg des Massenstroms, relativ träge. Dies ist darauf zurückzuführen, daß anfangs nahezu reines Wasser und später ein Zweiphasengemisch geringer Dichte aus der Strecke ausströmt.

Der Verlauf der WUS Temperaturen ist für den Bereich unterhalb bzw. oberhalb des Abstandshalters in Abb. 4.22 bzw. 4.23, und für den Bereich des Abstandshalters in Abb. 4.24 zusammengefaßt. Man erkennt in diesen Bildern, daß hier nur geringe Differenzen zwischen der und der Oberflächentemperatur mittleren Hüllrohrtemperatur des Hüllrohres auftreten, außerdem passen die Temperaturen im Bereich des Abstandshalters in das Bild der übrigen Werte. Dies kann nur damit erklärt werden, daß in diesem Zeitbereich ein einphasiges Kühlmittel vorgelegen hat. Betrachtet man den Verlauf der Temperaturen genauer, so sieht man, daß die Überhitzung des Stabes zuerst am unteren Ende einsetzt. Es muß also zu dieser Zeit, entsprechend dem Ventilsteuerprogramm, eine Strömung von oben nach unten vorgelegen haben. Eine Langzeitwirkung dieser Strömungsrichtung ist, daß bei festgehaltener Zeit die Temperaturen von unten nach oben systematisch kleiner werden, wobei die axialen Temperaturunterschiede im unteren Teil des Stabes kleiner sind als im Oberen. Die maximale Temperatur ist mit der Leistung im WUS korreliert. Nach ihrer Abschaltung bei ca. 31 s fällt die Temperatur zunächst schwach und mit einsetzender Rückströmung stark. Der Stab wird dabei im oberen Teil noch für eine kurze Zeit benetzt (Meßstelle T23), während im übrigen Bereich des Stabes die WUS-Oberfläche trocken bleibt.

5. Abblase-Experimente mit dem Stabsimulator vom Typ SIM

5.1 Zielsetzung und Versuchsmatrix

Als nächster Schritt zur Simulation eines Reaktorbrennstabes während eines Abblasevorgangs werden in den Experimenten Simulatoren verwendet, die einen gasgefüllten Spalt mit einer deformierbaren Hülle besitzen (SIM). Dabei werden nicht mehr in erster Linie die thermohydraulischen Randbedingungen variiert, sondern vielmehr die verwendete Pelletart, die Geometrie der Spalte und der Gasdruck im SIM. Es hat sich gezeigt, daß die Pellets während eines Abblaseversuchs zerbrechen und hierdurch die Speicherwärme des Stabes verändert wird. Deshalb wurden Versuchsserien mit einem Stab bei konstant gehaltenen Randbedingungen durchgeführt, um zu sehen, ob sich dabei eine in einem Rechenprogramm formulierbare Systematik für die Änderung der thermischen Eigenschaften des Stabes ergibt.

5.2. COSTRA-Experimente ohne Hüllrohrdeformation

5.2.1 Ablauf der COSTRA-Transiente

Die COSTRA-Transiente ist in ihrem Ventilsteuerprogramm und einer charakteristischen Hüllrohroberflächentemperatur in Abb. 5.1 gezeigt. Sie erzeugt einen Druck/Zeit- und einen Massenstrom/Zeit-Verlauf, wie es für einen Druckwasserreaktor deutscher Bauart bei einem kaltseitigen Bruch einer Hauptkühlmittelleitung erwartet wird /14/. Der Vergleich mit dem Ventilsteurprogramm des Versuchs V57 (Abb. 5.2) zeigt, daß hier eine große Ähnlichkeit vorliegt. Der wesentliche Unterschied liegt im Zeitpunkt, zu dem die Stagnationsphase beendet wird, nämlich 32.5 s anstelle 35 s.

Der Druck in dem für COSTRA typischen Versuch V108 liegt im Vergleich zu V57 (Abb. 5.3) bei 27 s und 37 s etwas tiefer. Die erste Unterschreitung ist mit der geringeren Anfangstemperatur von V108 zu erklären (Abb. 5.4); die zweite mit dem geringen Restquerschnitt am Ventil des Oberplenum in V108. Deshalb kann in V108 nach 35 s aus dem Oberplenum noch Dampf austreten. Dies führt zu einer weiteren Druckabsenkung. Bei 38 s ist jedoch das Oberplenum des V57 leer und somit kein Druckaufbau im Bündel mehr möglich, so daß jetzt der Druck in V57 rascher fällt. Der Anstieg des Druckes in V108 nach 44 s ist auf das Schließen der Ventile und Fluten der Teststrecke am Ende der Tests zurückzuführen. Dies ist notwendig, um unkontrollierte Deformationen des Hüllrohres nach Abschluß des Tests sicher zu unterbinden.

Der Verlauf der Fluidtemperaturen in Abb. 5.4 zeigt für beide Experimente in gleicher Weise Überhitzung an, dabei ist bei COSTRA der Temperaturanstieg steiler. Nach der Strömungsumkehr folgen die Fluidtemperaturen dem Sättigungsdruck, wobei V57 an der Meßstelle T6 ab 41 s Überhitzung anzeigt.

Die Dichten in den Plena sind für V108 in Abb. 5.5 aufgetragen. Sie zeigen im Vergleich zu V57 (Abb. 4.20) einen durch das Ventilsteuerprogramm verursachten höheren Restmassegehalt in der Strecke am Ende der Transiente.

Die Temperaturen des Hüllrohres werden bei COSTRA nur mit den Pyrometern gemessen. Sie sind in Abb. 5.6 für IN1-3 (unterhalb des Abstandshalters), in Abb. 5.7 für IN6-8 (oberhalb des Abstandhalters), und in Abb. 5.8 für IN4 und IN5 (Abstandshalter liegt dazwischen) gezeigt. Die Maximalwerte der Hüllrohroberflächentemperaturen liegen zwischen 1050 und 1100 K. Die Unterschiede in den Werten haben verschiedene Ursachen; so setzt an den Meßstellen die Austrocknung der Hüllrohroberfläche nicht gleichzeitig ein, die Al₂0₃-Pellets liegen an einigen Meßstellen am Hüllrohr an, an anderen nicht, und schließlich ist die Fluidtemperatur entlang des Kanals nicht konstant. Nur der massive Einfluß der Rückströmung bei 33 s ist systematisch. Man sieht in Abb. 5.7, daß zunächst die Meßtelle IN8, dann IN7 und dann IN6 durch das Fluid aus dem Oberplenum benetzt wird. Interessant ist das Verhalten der Temperaturen IN4 und IN5 in Abb. 5.8. Während für t < 33 s IN5 kleiner ist als IN4, ist es für t > 33 s gerade umgekehrt. Hier spielt offenbar der Abstandshalter eine Rolle, der die ankommende ausgebildete Strömung verwirbelt, und damit zur Verdampfung von Tröpfchen im Fluid führt, wodurch die Dampftemperatur reduziert wird. Dieser Effekt hat bei manchen Experimenten zum Benetzen der

-29-

Hülle beim IN4 geführt, obwohl IN5 überhitzt blieb. Es bleibt festzuhalten, daß die Hüllrohr-Oberflächentemperaturen während Stagnationsphasen sehr empfindlich sind. Eine Diskussion kleiner Unterschiede erscheint daher nicht sinnvoll.

5.2.2 Experimente mit Al₂O₃-Pellets

5.2.2.1 Experimente mit nominellem Stab

Ein nomineller SIM-Stab ist ein Simulatorstab mit den Abmessungen entsprechend Abb. 2.7. Unsere Experimente haben gezeigt, daß die Al_2O_3 -Ringpellets der SIM-Stäbe bei der hohen Stableistung von ca. 700 W/cm durch Thermospannungen zerbrechen. Dieses Brechen hat zur Folge, daß sowohl der innere Spalt zwischen Graphitheizer und Pellet als auch der äußere Spalt zwischen Pellet und Hüllrohr reduziert werden, hierduch erhöhen sich die Spaltwärmedurchgangszahlen und die Speicherwärme wird reduziert /14/.

In Abb. 5.9 sind die Hüllrohr-Oberflächentemperaturen für eine Serie von sechs COSTRA-Experimenten mit demselben Stab aufgetragen. Um eine bessere Vergleichbarkeit der Experimente zu erreichen, wurden die lokalen zeitabhängigen Temperaturen sowohl in der Zeit (von 31 bis 32 s), als auch axial über alle Meßstellen gemittelt. Man erkennt den Einfluß der zerbrechenden Pellets an der starken Reduktion dieser mittleren Temperatur. Die Auszählung der Bruchstücke von Pellets aus Stäben, die eine unterschiedliche Anzahl von Abblaseversuchen bei unterschiedlicher Leistung erlebt haben ergab, daß die Zahl der Bruchstücke mit der Stableistung und mit der Anzahl der Abblaseversuche zunimmt (Abb. 5.10). Vergleicht man aber typische thermohydraulische Größen der Transiente, so kann man z.B. bei den Fluidtemperaturen in der Teststrecke (Abb. 5.11) nur geringe Änderungen während der Stagnationsphase feststellen, die auf die reduzierte Speicherwärme zurückzuführen sind. Man kann daraus schließen, daß der Einfluß einer veränderten Speicherwärme auf den Ablauf der Transiente vernachlässigbar ist, wogegen bei den Hüllrohr-Oberflächentemperaturen eine hohe Sensitivität vorliegt. Wegen der zerbrechenden Pellets sollte daher bei der Untersuchung von Parametern mit SIM Stäben nur das jeweils erste Experiment mit einem SIM-Stab herangezogen werden.

5.2.2.2 Experimente mit veränderten Spaltweiten

Die Veränderung der Spaltweite zwischen Graphitheizer und Al₂0₃-Ringpellet (innen) oder Al₂O₃-Ringpellet und Zircaloy Hüllrohr (außen) wirkt, ähnlich wie das Zerbrechen der Pellets, auf den Wärmewiderstand in den Spalten und somit auf die im Stab gespeicherte Wärme /15/. Aus dem Kapitel 5.2.2.1 ist bekannt, daß hierdurch nur die Hüllrohr-Oberflächentemperaturen beeinflußt werden, es genügt also nur diese zu diskutieren. Um eine Basis für diesen Vergleich zu haben, sind in Abb. 5.12 für zwei Versuche mit frischen nominellen Stäben (V102, V108) die Hüllrohr-Oberflächentemperaturen für die Meßstellen IN2 und IN7 aufgetragen. Man erkennt eine recht gute Übereinstimmung. Es treten nur Abweichungen von ca. 20 K auf. In Abb. 5.13 sind die Temperaturen von IN2 und IN7 für einen nominellen Stab und einen Stab mit aufgeweitetem Außenspalt (+0.05 mm, V172) eingetragen. In Abb. 5.14 sind wieder die Temperaturen von IN2 und IN7 aufgetragen, diesmal für nominellen Stab und einen Stab bei dem der Innenspalt, durch Reduktion des Graphitheizer-Durchmessers (-0.20 mm, V181), vergrößert wurde. Aus diesen Verläufen wird deutlich, daß die Zunahme im Außenspalt eine Erhöhung und die Zunahme im Innenspalt eine Reduktion Die in Hüllrohr-Oberflächentemperaturen bewirkt. den Erhöhung beträgt maximal ca. 50 K, die Reduktion ca. 70 K. Die Reduktion ist zunächst nicht verständlich, da die Vergrößerung der Spalte nur den Wärmewiderstand zwischen Quelle und Senke vergrößert. Vergleicht man aber die Wärmekapazität der verschiedenen Stäbe, so ist sie für den Stab mit aufgeweitetem Hüllrohr und den nominellen Stab gleich. Bei dem Stab mit vergrößertem Innenspalt fehlt aber ca. 10 % der Graphitmasse. Im warmen Zustand verhalten sich aber die Anteile der Speicherwärmen zwischen Graphit und Al_2O_3 in etwa wie 1:1, so daß für den Stab mit die Speicherwärme insgesamt reduziertem 5 % tiefer liegt. Dies erklärt Graphitheizer-Durchmesser ca. die Reduktion der Hüllrohr-Oberflächentemperaturen.

Um den Zusammenhang zwischen Speicherwärme, Spaltweite und Zahl der Abblaseversuche zu demonstrieren, ist in Abb. 5.15 analog zu Abb. 5.9 die zeitlich und räumlich gemittelte Hüllrohr-Oberflächentemperatur aufgetragen. Man sieht, daß die Abnahme der Speicherwärme infolge des Zerplatzens der Pellets praktisch unabhängig von dem zur Verfügung stehenden Leervolumen im Stab ist. Entscheidend ist lediglich der Temperaturgradient, der sich zwischen dem Heizer und der Hülle einstellt. Mit anderen Worten, unabhängig davon von welcher Spaltweite ausgegangen wird, ist nach einer Anzahl von Abblaseversuchen die Ausgangsgeometrie 'vergessen' und es bleibt nur noch die durch die Heizleistung charakterisierte Größe der Pelletbruchstücke übrig.

5.2.3 Experimente mit Quarzpellets

A1₂03 Zerplatzen der Ringpellets entspricht Das dem bekannten 'relocation' der realen Brennstoffpellets. Für die Durchführung von Experimenten ist es aber unangenehm, wenn Pellets zerplatzen, da bei Parameteruntersuchungen stets ein frischer Stab gefertigt und in die Teststrecke eingebaut werden muß. Es wurde daher versucht, eine andere Pelletart zu finden, die den hohen thermischen Gradienten Stand hält /16/. Hierfür erwies sich Quarz (SiO₂) als geeignet. Es wurde daher eine Reihe von SIM-Stäben mit Quarzpellets angefertigt, um mit ihnen anhand der bekannten COSTRA Transiente die Reproduzierbarkeit der Ergebnisse bei wiederholtem Einsatz desselben Stabes zu untersuchen. Die Quarz-Pellets haben im Vergleich zu den Al₂O₃-Pellets eine größere Wärmeleitfähigkeit. geringere Wärmekapazität und Es eine wurde daher der Verlauf der Heizleistung zur Nachbildung der COSTRA-Transiente neu spezifiziert.

Die Pyrometertemperaturen des V160 sind für IN1-IN3 in Abb. 5.16, für IN4 und IN5 in Abb. 5.17, und für IN6-IN8 in Abb. 5.18 abgebildet. Ein Vergleich der Temperaturen mit den entsprechenden Werten aus einer COSTRA-Transiente mit Al_2O_3 -Pellets zeigt, daß hier insgesamt höhere Temperaturen erreicht werden. Die Ursache hierfür ist aber auf Grund der geänderten Heizleistung nicht eindeutig zu klären. Für die Untersuchung der Reproduzierbarkeit ist dies jedoch von untergeordneter Bedeutung.

Das Ergebnis einer Serie von sechs identischen Experimenten ist -wieder in Form der räumlich und zeitlich gemittelten Maximaltemperatur- in Abb. 5.19 dargestellt. Auch hier muß eine Veränderung der thermodynamischen Eigenschaften des Stabes festgestellt werden, die Speicher-
wärme nimmt ab, obwohl die Pellets nicht brechen. Dabei ist die Abnahme bei den ersten Versuchen größer und bei den späteren kleiner. Dieses Verhalten ist nicht völlig aufgeklärt. Eine Abschätzung des unterschiedlicher Exzentrizitäten Einflusses zwischen SiO₂-Pellet und Heizer bzw. zwischen SiO₂-Pellet und Hülle ergab eine deutliche Variation in der stationären Zentraltemperatur von ca. 180 K; man könnte also annehmen, daß zu Beginn der Experimente die Pellets zentriert waren, und diese Zentrierung sich im Verlauf der Experimente abgebaut hat. Eine realistischere Erklärung basiert auf der Beobachtung eines Graphitüberzugs auf den SiO₂-Pellets nach dem Ausbau der Stäbe. Durch diesen Überzug wird der Wärmeaustausch zwischen Pellets und Heizer in dem Maße verbessert, wie der Graphitüberzug dichter wird. Festzuhalten bleibt jedenfalls, daß auch ein Stab mit SiO₂-Pellets in seiner Speicherwärme nicht stabil ist.

5.3 Experimente zum Einfluß von Thermoelementen

5.3.1 Zielsetzung der Experimente

In der amerikanischen Loss Of Flow Testanlage (LOFT) beim Idaho National Engineering Labor (INEL) in Idaho-Falls wurden zur Bestimmung der Hüllrohrtemperaturen in Experimenten zum Kühlmittelverluststörfall Thermoelemente eingesetzt, die außen entlang des Brennstabes geführt werden. Sie sind dabei in kleinen Abständen und insbesondere am Meßort selbst auf die Hülle aufgeschweißt. Abb. 5.20 zeigt die damals verwendete Konstruktion. Bei der Auswertung der Versuche waren Zweifel darüber aufgekommen, ob diese Thermoelemente (TE) die wirklichen Hüllrohr-Oberflächentemperaturen anzeigen oder ob nicht bei vorliegender Tröpfchenströmung die TE wie Kühlrippen wirken und zu einem vorzeitigen Benetzen zunächst der TE und dann des Stabes führen. Zur Untersuchung dieser Frage erwies sich die COSIMA- Anlage mit ihren SIM-Stäben und dem Spalt zwischen Pellet und Hülle als gut geeignet /17,18/. Durch einen Vergleich der Pyrometermessungen für eine Stab mit Thermoelementen und einen Stab ohne Thermoelemente sollte der Unterschied sichtbar gemacht werden. INEL bestückte zwei mit Al₂0₃-Pellets gefüllte SIM-Stäbe außen mit solchen montierten Thermoelementen (LOFT-TE). Außerdem wurde noch ein weiteres Steuerprogramm entwickelt, um die Tröpfchenströmung im Bündel über

eine längere Zeit als bei der COSTRA-Transiente einzustellen. Diese zweite Transiente wird im folgenden LOFTRA genannt. Es wurden Experimente des Types COSTRA wie auch LOFTRA mit und ohne Thermoelemente gefahren. In der Diskussion der Ergebnisse wird ein SIM-Stab mit außen aufgebrachten Thermoelementen SIM-TE genannt und ein SIM-Stab ohne Thermoelemente SIM-BA.

5.3.2 Ablauf der LOFTRA-Transiente

Die LOFTRA-Transiente (Abb. 5.21) beginnt genau wie die COSTRA-Transiente (Abb. 5.1) mit einer Strömungsumkehr, gefolgt von einer Stagnationphase und einer Rückströmung bis etwa 35 s. Nach einer zweiten Stagnationsphase bis 40 s wird bis ca. 47 s eine aufwärts gerichtete Strömung eingestellt. Darauf folgt wiederum eine Stagnationphase bis 55 s mit abschließender Rückströmung bis 65 s. Da die LOFTRA-Transiente insgesamt länger dauert als die COSTRA-Transiente, sind die Ventilhübe kleiner. Bei etwa 66 s wird die Anlage, wie auch am Ende der COSTRA-Transiente, wieder geflutet.

Die in diesem Abschnitt vorgestellten Meßwerte wurden mit einem SIM-BA im Versuch V129 gewonnen. Der Druckverlauf ist in Abb. 5.22 dargestellt, man erkennt, daß sich der Druck im wesentlichen entsprechend dem Gesamtabblasequerschnitt verhält. Eine Ausnahme bildet der Knick bei ca. 40 s, wo trotz einer Zunahme der Ausblasefläche der Druckgradient kleiner wird. Dies ist darauf zurückzuführen, daß in dieser Phase eine Strömung von oben nach unten durch die Strecke vorliegt und dadurch Wasser bzw. Tröpfchen in die heiße Strecke gelangen und dort verdampfen. Die Dichten in Abb. 5.23 zeigen nur eine relativ gleichmäßige Abnahme. Dabei bleibt mehr Wasser in der Strecke zurück als bei der COSTRA-Transiente

Am Verlauf der Fluidtemperaturen (Abb. 5.24) ist die Strömungsrichtung im Kanal zu erkennen. Die Überhitzung oberhalb der Teststrecke (T7) tritt bei 31 s auf, 2 s nachdem sich eine Strömung vom Unter- ins Oberplenum eingestellt hat. Offenbar wird nach dieser Verzugszeit überwiegend Dampf aus der Strecke ins Oberplenum geleitet. Mit dem Öffnen des Ventils im Unterplenum zeigt auch T6 Überhitzung an. Durch das Schließen des Ventils im Oberplenum und das Öffnen des Ventiles im Unterplenums auf 13 % bei 40 s wird ein Fluid mit höherem Tröpfchenanteil von oben durch die Teststrecke transportiert, und T7 wird wieder benetzt. An der Meßstelle unterhalb der Teststrecke (T6) kommt es nicht mehr zur Benetzung, offenbar verdampfen die noch ankommenden Tröpfchen vollständig im beheizten Teil der Strecke. Die Kopplung zwischen Ventilstellung und Strömungsrichtung, angezeigt durch die Fluidtemperaturen, ist wesentlich geringer als bei den vorhergehenden Versuchen. Dies wird im wesentlichen durch den angestrebten höheren Gehalt an Tröpfchen im Fluid verursacht.

Bei der Analyse der Pyrometertemperaturen (Abb. 5.25-5.27) zeigt sich bis ca. 41 s eine direkte Kopplung der Hüllrohr-Oberflächentemperaturen an die aktuellen Ventilstellungen. Für die Hüllrohr-Oberflächentemperaturen ist charakteristisch, daß bei gerichteter Strömung eine Reduktion und bei Stagnation eine Erhöhung der Temperatur auftritt. Die Variationen entlang des Stabes lassen sich mit der lokalen Entspeicherung des Stabes während des Abblasevorganges erklären.

5.3.3 Einfluß von Thermoelementen bei COSTRA und LOFTRA

Wie aus der oben vorgenommenen Untersuchung des Einflusses der inneren und äußeren Spaltweite bekannt ist, sind kleinere Änderungen am SIM ohne Einfluß auf die Thermohydraulik während des Abblasevorganges. Es genügt daher lediglich die Temperaturen des SIM-TE mit denen des SIM-BA zu vergleichen.

Die Abb. 5.28-5.35 zeigen den Vergleich der Pyrometermessungen für die COSTRA-Transienten V93 mit einem SIM-TE und V108 mit einem SIM-BA. Man sieht dort, daß die Temperaturen, sofern sie nicht durch die Nähe zum Abstandshalter beeinflußt sind, im V93 (SIM-TE) um ca. 50 K tiefer liegen, und daß im Gegensatz zu V108 (SIM-BA) alle Meßpositionen benetzt werden. Im oberen Teil des Stabes (IN7 und IN8) ist auch eine deutliche Verzögerung bei der Austrocknung der Hüllrohroberfläche (steiler Temperaturanstieg) beim SIM-TE im Vergleich zum SIM-BA zu beobachten. In Abb. 5.36-5.43 sind die Pyrometermessungen für die LOFTRA-Transienten V126 (SIM-TE) und V129 (SIM-BA) aufgetragen. Man findet auch hier dasselbe Verhalten wie für die COSTRA, nur sind die Abweichnungen im unteren Teil des Stabes mit ca. 150 K wesentlich größer. Der geringe Unterschied der beobachteten Temperaturen in der Nähe der Abstandshalter ist, wie schon weiter oben bemerkt, auf die turbulenzfördernde Wirkung des Abstandshalters zurückzuführen. Die zusätzliche Anwesenheit eines TE führt zu keiner weiteren Änderung Man kann aus diesem Vergleich festhalten: des Signals. Die außen aufgebrachten Thermoelemente reduzieren die Hüllrohr-Oberflächentemperaturen, insbesondere bei Tröpfchenströmung, um bis zu 150 K, das Austrocknen der Hüllrohroberfläche tritt später und ihre Wiederbenetzung früher ein.

Für die Versuche mit SIM-TE-Stäben werden jetzt noch die Meßwerte der TE mit denen der Pyrometer verglichen, und zwar für COSTRA V93 in Abb. 5.44 und 5.45, und für LOFTRA V126 in Abb. 5.46 und 5.47. Die TE sind an der gleichen axialen Position wie die Pyrometer IN2, IN4, IN6 und IN8 angebracht, jedoch in Umfangsrichtung um 90° versetzt. Für den Vergleich wurden die Meßpositionen IN2 und IN6 gewählt, da diese nur wenig vom Abstandshalter und dem Ende der beheizten Zone beeinflußt werden, dabei sei daran erinnert, daß die Pyrometer unter 810 K keine verwertbare Anzeige liefern. Man erkennt aus diesen Diagrammen, daß die Thermoelemente teilweise geringere und teilweise höhere Temperaturen als die Pyrometer anzeigen. Die Abweichungen sind damit zu erklären, daß die Thermoelemerte auf Grund ihrer geringen Masse und ihrer relativ großen Wärmeübertragungsfläche der Dampftemperatur rascher folgen als das Hüllrohr. Die Abweichungen von ca. 20 K sind angesichts des hohen Temperaturniveaus gering.

5.4 Experimente mit Stabdeformation

Experimente mit Stabdeformation wurden durchgeführt, um zu überprüfen, ob eine fühlbare Reduktion des Kühlkanalquerschnitts während der Abblasephase auftritt /1/. Der Gasdruck in den Stäben wurde zwischen 3 Mpa und 12 Mpa variiert. Der verwendete Simulator war ein mit Al₂0₃ Pellets gefüllter SIM-BA. Die thermohydraulischen Randbedingungen wurden nach COSTRA eingestellt.

Die Deformation der Hülrohre wurde durch ihre Vermessung nach den Experimenten festgestellt. Sie waren, wie vom Materialverhalten her

zu erwarten, bei reaktortypischem Innendruck von 7 Mpa klein. Ein typischer Wert ist ca. 3 % Umfangsdehnung. Bei sehr kleinem Innendruck (3 Mpa) schrumpfte die Hülle auf die Pellets auf (Abb. 5.48), bei sehr hohem Druck (12 Mpa) ist die Hülle geborsten (Abb. 5.49). Die dabei erreichten Versagensdehnungen von etwa 10-20 % sind in Übereinstimmung mit den Erfahrungen aus Flutexperimenten /19/ und Einzeleffektuntersuchungen /20/.

Der für die Durchführung der Experimente ohne Hüllrohrdeformation vorzugebende Innendruck im Stab (V80-V208) wurde anhand von Abb. 5.50 gewählt. In diesem Diagramm sind abhängig von Differenzdruck und Temperatur Linien gleicher Kriechgeschwindigkeit für Zircaloy-Hüllrohre dargestellt /20/. Trägt man hier den Druck-Temperaturverlauf eines Experimentes ein, so kann man den Verlauf der Dehngeschwindigkeit ablesen und integrieren. Damit erhält man eine guten Schätzwert für die zu erwartende Enddehnung.

6. Nachrechnung der Experimente

6.1 Zielsetzung der Nachrechnungen

Mit den Nachrechnungen der COSIMA-Experimente wurden zwei Ziele verfolgt: Zum einen sollte ein besseres Verständis der Anlage erreicht und gegebenenfalls Hinweise auf sensitive bzw. ungenau gemessene Größen erhalten werden, zum anderen sollten die Fähigkeiten heute verfügbarer Rechenprogramme erprobt werden. Als Rechenprogramme wurden RELAP4/mod6 /21/ und DRUFAN02 /22/ eingesetzt.

6.2 Probleme bei der Modellierung

Die Nachrechnung jeder realen Anlage erfordert ein bestimmtes Maß an Abstraktion, um die Problemformulierung mit den Begriffen eines Rechenprogramms vornehmen zu können. So ist z.B. der Querschnitt der Teststrecke, wie in Abb. 6.1 dargestellt, nicht mit den gegebenen Rechenprogrammen modellierbar, da sowohl DRUFAN als auch RELAP nur Stäbe beschreiben können, die vollständig vom Fluid im Kühlkanal benetzt sind. Ebenso sind teilweise in die Füllstücke eingelassene Stäbe nicht vorgesehen. Ein weiteres Problem ist, daß nur prismatische Rohrleitungen zulässig sind. Mit diesen Elementen läßt sich jedoch ein kugelförmiges Plenum nur grob angenähert abbilden. Probleme entstehen auch auf Grund der Fluidmodelle dieser Codes. Wir beobachten in derRealität thermodynamisches und dynamisches Ungleichgewicht zwischen Dampf und Wasser, während die von uns eingesetzten Codes aber von den Grundgleichungen her nur Zweiphasenströmungen im Gleichgewicht beschreiben können. Erst die Einführung konstitutiver Modelle für den Schlupf erlaubt z.B. Aussagen über Differenzgeschwindigkeiten zwischen Dampf Wasser. Angesichts und dieser zum Teil schwerwiegenden Einschränkungen in den Modellen dürfen die Erwartungen an die Rechenergebnisse nicht zu hoch gestellt werden. Ein Nodalisierungsschema ist für eine RELAP-Rechnung in Abb. 6.2, und für eine DRUFAN-Rechnung in Abb. 6.3 angegeben.

6.3 Nachrechnung der Experimente ohne Beheizung

Als Beispiele der Nachrechnung der Experimente ohne Beheizung V191-V208 werden hier nur drei Fälle behandelt, nämlich V207 V193 und V198. Die Rechnungen wurden mit DRUFANO2 durchgeführt /23/. Ein Eingabedatensatz für V207 ist in Anhang A angegeben. Für V207 zeigen Abb. 6.4 den Vergleich des gemessenen und berechneten Druckes, Abb. 6.5 und Abb. 6.6 den Vergleich der Dichten im Unter- und Oberplenum.

Der gerechnete Verlauf des Druckes stimmt recht gut mit dem gemessenen überein, er wird im ersten Teil der Transiente maximal um ca. .5 Mpa über- und im zweiten Teil um ca. .2 Mpa unterschätzt. Der Verlauf der Dichte im Oberplenum zeigt in der Rechnung zwischen 20 und 23 s einen zu steilen, und danach einen zu geringen Abfall.

Die Dichte im Unterplenum ist bis etwa 36 s nahe an dem gemessenen Verlauf, danach zeigt sich aber eine deutliche Zunahme, die im Experiment nicht beobachtet wird. Vergleicht man nun hierzu den Verlauf des Dampfgehaltes in der geschlossenen Abblaseleitung am Unterplenum (Abb. 6.7), so erkennt man, daß in der Rechnung beim Erreichen des Sättigungsdruckes in dieser Leitung sehr rasch viel Dampf entsteht, der ein Zweiphasengemisch relativ großer Dichte in das Unterplenum drückt und dort die Dichte erhöht. Eine bessere Modellierung muß daher anstelle einer Anfangstemperatur für die drei Volumen, zur Nachbildung des axialen Temperaturgradienten in der Abblaseleitung, unterschiedliche Temperaturen verwenden.

Die Überschätzung des Druckes bei gleichzeitiger Unterschätzung der Dichte steht im Widerspruch zu den bei unseren Experimenten gefundenen Zusammenhängen (s. Kapitel 3.4) und deutet darauf hin, daß in der Rechnung der zeitliche Verlauf der Enthalpie des ausgeblasenen Fluids anders ist als im Experiment. Die in Abb. 6.5 und Abb. 6.6 angegebene Dichte der Rechnung ist aus den drei Teilvolumina der Plena gemittelt. Auf Grund einer zu starken Phasenseparation im Rechenmodell wird aus dem Oberplenum zunächst ausschließlich Wasser abgeströmt, wobei der Druck nicht genügend abfällt. Sinkt jedoch der Gemischspiegel unter das Niveau des Abblasestutzen so wird nur Dampf abgeströmt und der Druck fällt zu rasch. Die Abweichungen in den Fluidtemperaturen (Abb. 6.8) sind gering, ähnlich denen des Druckes.

Der Druckverlauf für V193 ist in Abb. 6.9, die Dichten in den Plena sind in Abb. 6.10 bzw. 6.11 angegeben. Der Druck ist in diesem Fall nur bis etwa 33 s in guter Übereinstimmung mit der Messung, danach treten größere Abweichungen bis maximal ca. 1 Mpa auf. Die Dichte im Unterplenum wird bis 10 s deutlich über-, und zwischen 33 und 39 s unterschätzt. Dies hängt wieder mit der Temperaturverteilung in der geschlossenen Abblaseleitung, diesmal des Oberplenums, zusammen. Die Leitung wurde in dieser Rechnung mit drei Knoten unterschliedlicher Anfangstemperatur modelliert. Dabei waren die Anfangstemperaturen geschätzt worden. Wie der Dampfgehalt dieser Leitung in Abb. 6.12 zeigt, wird bei Erreichen der Sättigungstemperatur in den Knoten Dampf erzeugt, der letztlich zu einer Erhöhung der Dichte im Unterplenum führt. Nach Abb. 6.10 war die höchste Temperatur zu hoch und die mittlere Temperatur zu tief geschätzt worden. Die tiefste Temperatur war recht gut geschätzt. Entgegen der Erwartung ist das Wasser, zu diesen Veränderungen der Dichte das im Unterplenum notwendig ist, in dem gerechneten Dichteverlauf des Oberplenums nicht erkennbar. Betrachtet man den Verlauf der Dichten in Abb. 6.10 und Abb. 6.11 bis etwa 33 s, so sieht man, daß das Fluid aus dem Oberplenum zu rasch ins Unterplenum fließt. Dies zeigt sich in Abb. 6.11 am steileren Dichtegradienten und in Abb. 6.10 am Knick bei 30 s.

Vor dem Hintergrund der Erfahrung bei der Nachrechnung von V207 kann man aus dem Duckverlauf schließen, daß die Dichte des abströmenden Fluids bis etwa 33 s recht gut stimmt. Zwischen 33 und 39 s ist nach Abb. 6.10 die berechnete Dichte im Unterplenum kleiner als im Experiment, was zu der starken Druckabsenkung in diesem Zeitraum führt.

Beim Versuch V198 ist das Problem der geschlossenen Abblaseleitung (s.o.) nicht mehr gegeben, da in diesem Versuch aus beiden Plena abgeblasen wird. Entsprechend gut sind auch die Resultate der Nachrechnung, von denen in Abb. 6.13 der Druck und in Abb. 6.14 und 6.15 die Dichte in den Plena aufgetragen sind. Dennoch ist auch hier das Problem der richtigen Berechnung der Dichte des abströmenden Fluids erkennbar.

6.4 Nachrechnung von LOFTRA und COSTRA

Für die Nachrechnung dieser Transienten /23,24/ wurde das Rechenprogramm RELAP4/mod6 herangezogen. Ein Eingabedatensatz für V129 ist in Anhang B angegeben.

Für LOFTRA ist in Abb. 6.16 der Verlauf des gemessenen und berechneten Druckes angegeben. Abb. 6.17 zeigt die Dichte im Oberplenum und Abb. 6.18 die Dichte im Unterplenum. Bis etwa 35 s ist für den Druck eine gute und für die Dichte im Unterplenum eine zufriedenstellende Übereinstimmung erkennbar. Die Dichte im Oberplenum sinkt aber zu Beginn zu rasch, bis der Gemischspiegel das Niveau der Ausblaseleitung erreicht. Danach stabilisiert sich der Verlauf und liegt bis ca. 40 s nahe bei den gemessenen Werten. Beginnend mit der Stagnationsphase bei 35 s wird der Druck zu hoch berechnet, ab etwa 37.5 s ist auch die berechnete Dichte im Unterplenum zu groß und ab etwa 40 s ist die Dichte im Oberplenum zu klein berechnet. Dies ist wie folgt zu erklären: Die geringe Rückströmung, beginnend in der Stagnationsphase ab 35 s, fördert in der Rechnung zuviel Wasser aus dem Oberplenum in das heiße Bündel. Das Wasser verdampft dort teilweise und der Systemdruck wird angehoben. Der Überschuß an Wasser führt nach einer Verzugszeit von 2.5 s auch zu einer Überschätzung der Dichte im Unterplenum. Nach dem Öffnen des Ventils am Unterplenum (40 s) fließt in der Rechnung in ca. 6 s alles Wasser aus dem Oberplenum nach unten ab und erhöht dabei den Systemdruck noch mehr, ebenso wie die Dichte im Unterplenum. Im Experiment hingegen bleibt ein relativ großer Anteil des Wassers im Oberplenum zurück; es wird daher kein so großer Druck aufgebaut und die Dichte im Unterplenum bleibt geringer.

Der zeitliche Verlauf der Hüllrohrtemperaturen kann, bei den festgestellten Abweichungen in den thermohydraulischen Randbedingungen, nicht besonders gut berechnet sein. Dennoch ist, wie in Abb. 6.19 an den Temperaturen unterhalb des Abstandshalters erkennbar, der qualitative Verlauf bis 35 s teilweise ähnlich dem gemessenen. Die Temperaturen oberhalb des Abstandshalters (Abb. 6.20) zeigen jedoch starke Abweichungen. Die im Zeitbereich zwischen 42 s und 52 s in den Abbildungen angegebenen berechneten Werte sind durch das Plotprogramm verfälscht, außerdem ist bei diesem Vergleich zu beachten, daß im Rechenmodell nur drei Temperaturen für den Simulator bestimmt werden, und nicht acht wie im Experiment.

Die absolute Abweichung in der Temperatur von ca. 100-150 K darf in diesem Zusammenhang nicht überbewertet werden, da hierfür schon geringe Fehler in der Bestimmung des Zeitpunktes zu dem das Hüllrohr austrocknet verantwortlich sein können. Man sieht aber auch am Verlauf der berechneten Temperaturen, daß nach 35 s keine Stagnation, sondern ein geringer Massenstrom von oben nach unten einsetzt. Dies deckt sich mit den Beobachtungen beim Druck und Dichteverlauf. Nach 40 s sieht man am Absinken der Hüllrohr-Oberflächentemperaturen, daß in dieser Phase zuviel Kühlmittel in das Bündel strömt. Der Verlauf ab 50 s ist wieder ähnlich dem gemessenen, nur sind die berechneten Temperaturen auf Grund der vorangegangenen Kühlung ca. 100-150 K zu tief.

Die Ergebnisse der Nachrechnung der COSTRA-Experimente sind in Abb. 6.21 für den Druck und in Abb. 6.22 und 6.23 für die Dichten in den Plena dargestellt. Dabei wird der Druck bis 38 s über- und danach unterschätzt. Die Dichte im Oberplenum ist bis ca. 33 s, die Dichte im Unterplenum bis ca. 30 s zufriedenstellend berechnet. Auch bei COSTRA ist, ähnlich wie bei LOFTRA, zu beachten, daß in der Rechnung zunächst die Dichte im Oberplenum zu rasch fällt und anschließend in der Stagnationsphase zu viel Fluid aus dem Ober- ins Unterplenum fließt, ebenso wie während der Rückströmphase nach 33 s.

Der Sprung bei 33 s im gemessenen Dichteverlauf des Unterplenum (Abb. 6.22), verursacht durch das Öffnen des Ventils am Unterplenum bei 33 s, wird in der Rechnung nicht wiedergegeben. Dies ist wahrscheinlich auf den überschätzten Massenstrom aus dem Oberplenum (Abb. 6.23) zurückzuführen.

Ab etwa 36 s fällt der berechnete Druck stärker als der gemessene obwohl die berechnete Dichte im Unterplenum noch größer ist als ihr gemessener Vergleichswert. Dies kann nur so erklärt werden, daß im Experiment das Zweiphasengemisch dieser Dichte einen höheren Gemischspiegel liefert als das Zweiphasengemisch höherer Dichte in der Rechnung. Es muß dann nach Abschnitt 3.4 der Gemischspiegel im Experiment höher als die Abblaseleitung liegen und der Spiegel in der Rechnung darunter.

Abschließend kann man feststellen, daß die Nachrechnung der Experimente zufriedenstellende Ergebnisse geliefert hat. Eine gewisse Verbesserung der Ergebnisse ist möglich, wenn man, wie in Abschnitt 3.5 angeführt, einen Fehler zwischen der angezeigten und der tatsächlichen Ventilstellung annimmt. Rechnungen unter Annahme eines solchen realistisch abgeschätzten Fehlers bestätigen dies. Als wesentliche Ursache für die Abweichungen zwischen Rechnung und Experiment wurde jedoch die berechnete Höhe der Gemischspiegel, bzw. der mittleren Blasendichte im Fluidbereich von Behältern, festgestellt. Das Problem bei der Berechnung dieser Größe liegt dabei sowohl in der Art der Modellierung der kugelförmigen Plena als auch in den physikalischen Modellen.

7. Schlußfolgerungen

Im vorliegenden Bericht wurde das systematisch geordnete, umfangreiche Datenmaterial aller COSIMA Experimente vorgestellt, das in dieser Breite von keiner anderen bekannten Versuchsanlage erreicht wird. Mit diesen Experimenten konnte das Dehnverhalten von Zircaloy Hüllrohren unter den für einen Külmittelverluststörfall typischen Bedingungen während der Abblasephase demonstriert werden. Es zeigte sich, daß im allgemeinen nur geringe Dehnungen erreicht werden, und daß zum Bersten der Hüllrohre in der Abblasephase untypisch hohe Stabinnendrucke notwendig sind. Zusätzlich wurden wichtige Erkenntnisse zum Verhalten Brennstabsimulatoren von und zum Einfluß von Thermoelementen gewonnen, die aussen auf dem Hüllrohr angebracht sind.

Das Verhalten der Versuchsanlage ist weitgehend geklärt. Spezielle Fragen, wie das Absinken der Speicherwärme bei Quarzpellets, gehörten nicht zu den Untersuchungszielen von COSIMA und sind für das Verständnis des Verhaltens der Anlage von untergeordneter Bedeutung. Neben der Vielfalt von Experimenten an der COSIMA-Anlage ist auch ihre gute Instrumentierung ein wichtiger Grund, um daran Rechenprogramme zur Beschreibung von Zweiphasenströmungen, wie RELAP oder DRUFAN, zu überprüfen. Mit eigenen Rechnungen wurde demonstriert, daß schon heute eine zufriedenstellende Nachrechnung der Experimente erreicht wird. Diese kann aber noch verbessert werden, wenn, wie im Bericht identifiziert, die Modelle zur Beschreibung der Phasentrennung weiter verfeinert werden.

Anerkennung

An erster Stelle sei den Herren Prof. Dr. D. Smidt (IRE) und DI. A. Fiege (PNS-PL) für ihr Interesse und ihre unverzichtbare Unterstützung des COSIMA-Vorhabens gedankt.

Den Ingenieuren und Experimentatoren des IT schulden wir ebenfalls besonderen Dank. Ohne ihren engagierten Einsatz, ihre Kreativität bei der Lösung der vielen Probleme bei der Entwicklung der Komponenten und bei der Planung und dem Betrieb der COSIMA-Anlage wäre dieses schwierige Vorhaben nicht durchführbar gewesen. Insbesondere gilt dabei unser Dank den Herren K. Hain, F. Brüderle, Th. Vollmer, K. Wagner, N. Paroth, F. Schloß, E. Mackert und den Herren der IT-Werkstatt. Viele weitere Kollegen haben durch Zuarbeit und in vielen Diskussionen zum Gelingen von COSIMA mit beigetragen; Ihnen gilt unser spezieller Dank.

8. Literatur

- /1/ Fiege, A.; (HRSG.); Bocek, M.; Class, G.; Erbacher, F.; Fiege, A.; Hofmann, G.; Hofmann, P.; Ihle, P.; Karb, E.; Leistikow, S.; Meyder, R.; Raff, S.; (MITARB.) Stand und Ergebnisse der theoretischen und experimentellen Forschungsvorhaben zum LWR-Brennstabverhalten bei Reaktorstörfällen. Eine Zwischenbilanz, Stand: Dezember 1977. KfK-Ext.28/78-01 (September 78)
- /2/ Fiege, A.; (HRSG); Bocek, M.; Borgwaldt, H.; Class, G.; Erbacher, F.; Fiege, A.; Gulden, W.; Hain, K.; Hofmann, G.; Hofmann, P.; Ihle, P.; Karb, E.; Leistikow, S.; Malang, S.; Meyder, R.; Petersen, C.; Raff, S.; Schanz, G.; Sepold, L.; Wiehr, K.; Zimmermann, H.; (MITARB.) Stand und Ergebnisse der Untersuchungen des PNS zum LWR-Brennstabverhalten bei Kühlmittelverluststörfällen KfK-3422 (Oktober 82)
- /3/ Class, G.; Reimann, J.; Wagner, K. Transient two-phase mass flow rate measurement with a true mass flow meter. Two-Phase Flow Instrumentation Review Group Meeting, Troy, N.Y., March 13-14, 1978
- /4/ Wagner, K.; Reimann, J.; Class, G.; John, H; Schloss, F. Transient and steady-state two-phase mass flow rate measurements with a true mass flow meter. Nuclear Power Option for the World, Europ. Nuclear Conf., Hamburg, May 6-11, 1979 American Nuclear Society, Transactions, 31(1979) S.431-33

- /5/ Class, G.; Hain, K.; Schloss, F.; Wagner, K. True mass flow meter. Entwicklung und Einsatz eines Massenstrom-Meßgerätes für instationäre Zweiphasenströmungen. KfK-2790 (Juli 79)
- /6/ Class, G.; Hain, K.; True mass flowmeter - a mass flowmeter for nonsteady-state two-phase flow. Nuclear Technology, 60(1983) S.314-319
- /7/ Class, G. Residual error problems in true mass flowmeters. Delhaye, J.M.; Cognet, G.; (HRSG) Measuring Techniques in Gas-Liquid Two-Phase Flows, UITAM-Symp., (Internat.Union of Theoretical and Applied Mechanics) Nancy, F, July 5-8, 1983 Berlin (u.a.) Springer 1984 S.607-23
- /8/ Class, G.; Fömpe, D.; Hain, K.; Brüderle, F.; Schloss, F.; Vollmer T.; Wagner K. Untersuchungen zum LWR-Brennstabverhalten unter gesteuerten thermohydraulischen Randbedingungen (COSIMA-Programm). In: Projekt Nukleare Sicherheit. Halbjahresbericht 1978/2. KfK-2750 (Oktober 79) S.4200/91-4200/96
- /9/ Class, G.; Hain, K.; Meyder, R. Thermohydraulisch gesteuerte Blowdown-Versuche in der Versuchsanlage COSIMA zum DWR Brennstabverhalten: Experimentelle und theoretische Ergebnisse. Jahreskolloquium 1978 des Projekts Nukleare Sicherheit, Karlsruhe, 28.-29.November 1978. In: KfK-2770 (November 78)

- /10/ Class, G.; Hain, K. COSIMA - Gesteuerte Blowdown-Versuche zum LWR-Brennstabverhalten. KfK-Nachrichten, 10(1978) No. 2, S.39-48
- /11/ Brüderle, F.; Hain, K. Die Teststrecke der Blowdownversuchsanlage COSIMA. KfK-3020, Kernforschungszentrum Karlsruhe (1980)
- /12/ Class, G.; Fömpe, D.; Hain, K.; Brüderle, F.; Schloss, F.; Vollmer T.; Wagner K. Untersuchungen zum LWR-Brennstabverhalten in der Blowdown-Phase eines Kühlmittelverluststörfalles. In: Projekt Nukleare Sicherheit. Halbjahresbericht 1978/1. KfK-2700 (November 78) S.4200/87-4200/95

/13/ Class, G.; Hain, K. Ergebnisse zum DWR Brennstabverhalten aus der Blowdown-Versuchsanlage COSIMA. Jahrestagung Kerntechnik 82. Reaktortagung 1982 Mannheim, 4.-6. Mai 1982 Kerntechnische Ges.e.V. Deutsches Atomforum e.V. Eggenstein-Leopoldshafen: Fachinformationszentrum Energie, Physik, Mathematik 1982 S.159-62

/14/ Class, G.; Fömpe, D.; Hain, K.; Brüderle, F.; Paroth, N.; Vollmer T.; Wagner K. Untersuchungen zum Brennstabverhalten in der Blowdown-Phase eines Kühlmittelverluststörfalles. Out-of-pile Experimente mit elektrisch beheizten Einzelstäben. In: Projekt Nukleare Sicherheit. Halbjahresbericht 1977/2. KfK-2600 (April 78) S.367-372 /15/ Class, G.; Meyder, R.; Stratmanns, E.; Hain, K.; Vollmer, T.; Brüderle, F. Untersuchungen zum Brennstabverhalten unter gesteuerten thermohydraulischen Randbedingungen (COSIMA-Programm). In: Projekt Nukleare Sicherheit. Jahresbericht 1980. KfK-2950 (August 81) S.4200/110-4200/131

/16/ Class, G.; Meyder, R.; Stratmanns, E.; Hain, K.; Vollmer, T.; Brüderle, F. Untersuchungen zum Brennstabverhalten unter gesteuerten thermohydraulischen Randbedingungen (COSIMA-Programm). In: Projekt Nukleare Sicherheit. Jahresbericht 1981. KfK-3250 (Juni 82) S.4200/66 4200/81

- /17/ Class, G.; Meyder, R.; Hain, K. Messung der Brennstab-Hüllrohrtemperatur mit LOFT-typischen Thermoelementen unter Blowdown-Bedingungen in COSIMA. Measurements of clad temperatures with LOFT-typical thermocouples in the COSIMA facility under blowdown conditions. 7.Jahreskolloquium des Projektes Nukleare Sicherheit des Kernforschungszentrums Karlsruhe. Karlsruhe 24.-25.November 1980 KfK-3070 (November 80)
- /18/ Class, G.; Hain, K.; Meyder, R. Measurement of cladding temperatures with Loss-Of-Fluid-Test thermocouples in the COSIMA blowdown test facility. Nuclear Technology, 69(1985) S.72-81

/19/ Erbacher, F.; Neitzel, H.J.; Wiehr, K. Interaction between thermohydraulics and fuel clad ballooning in a LOCA, results of REBEKA multirod burst tests with flooding 6. Water reactor safety research information meeting November 6-9, 1978, Gaithersburg, MD /20/ Raff, S.

Entwicklung eines Deformations- und Versagensmodells für Zircaloy im Hochtemperaturbereich zur Anwendung bei Kühlmittelversluststörfalluntersuchungen an Leichtwasserreaktoren KfK-3184 (November 82)

/21/ RELAP4/MOD6

A Computer Program for Transient Thermal Hydraulic Analysis of Nuclear Reactors and Related Systems. EG&G Idaho Inc. January 1978. Contract no. EY-76-C-07-1570

/22/ DRUFAN-01/MOD2

Programm Description, Volum 1, 2, 3, 4 Gesellschaft für Reaktorsicherheit (GRS) mbH

/23/ Class, G.; Meyder, R.; Stratmanns, E.; Hain, K.; Brüderle, F.; Vollmer, T. Untersuchungen zum Brennstabverhalten unter gesteuerten thermohydraulischen Randbedingungen (COSIMA-Programm). In: Projekt Nukleare Sicherheit. Jahresbericht 1983. KfK-3450 (Juni 84) S.4200/23 4200/41

/24/ Class, G.; Meyder, R.; Stratmanns, E.; Hain, K.; Brüderle, F.; Vollmer, T. Untersuchungen zum Brennstabverhalten unter gesteuerten thermohydraulischen Randbedingungen (COSIMA-Programm). In: Projekt Nukleare Sicherheit. Jahresbericht 1982. KfK-3350 (Juli 83) S.4200/71 4200/89

Tabelle 2.1

Versuchs-	Transienten-	Steuer-	Simul.	Wand-	Brennstab	Pellet	Gas	Stab-	Trans.	Bemerkungen
MCOUNTS 1		Nr.	Leist	Leist	Typ / Nr	stoff		druck /bar/	/ s /	((Versuchsziele))
V 01 - V 42					د ا			 		 Vorversuche; Komponenten-Tests
√ ¹ 43	2F - kalt	1017	660	108	SIMI/ 10	AL2 03	He	120	20	 1. Versuch für SSYST-Analyse
V 44	2F - kalt	1017	675	108	SIMI/ 11	AL2 03	He	30	20	1. Versuch für RELAP-Analyse
γ 45	2F - kalt	1019	720	108	SIMI/ 12	AL2 03	 He	120	20	Fehler Stabheizung
V 46	2F - kalt	1019	720	108	SIMI/ 12	AL2 03	He	120	20	2. Versuch für SSYST-Analyse
V 48	2F - heiss	1021		108	SIMI/ 8	AL2 03	He	30	20	lteration 2F heiss - Bruchlage
V 49	2F - kalt	501	680	108	wus				20	1.WUS-Versuch, Ausfall aller Stab TE
V 50	2F - kalt	501	660		WUS				20	2.WUS-Versuch, Ausfall aller Stab TE
V 51	2F - kalt	501	600		WUS				20 .	3.WUS-Versuch, Ausfall aller Stab TE
V 52	2F - kalt	1017	680	108	SIMI1/101	AL2 03	He	35	20	Erprobung SIMII / Simulator
V 53	Aufheizversuch	1022	680	108	SIMI1/102	AL2 03	He	35	20	Test zum Pelletcracking
V 56	2F - heiss	5000	650	108	WUSII				20	1.WUSII-Versuch (s. a. Abb 4.3-4.13)
V 57	2F - kalt	5001	650	108	WUSII				20	2.WUSII-Versuch (s. a. Abb 4.1-4.24)
- V 58	2F - kalt	5001	650	108	WUSII				20	3.WUSII-Versuch (s. a. Abb 4.1-4.24)
V 59	2F - heiss	5002	650	108	WUSII				20	4.WUSII-Versuch (s. a. Abb 4.1-4.24)
V 61	2F - heiss	5002	630	108	WUSII				20	5.WUSII-Versuch (s. a. Abb 4.1-4.24)
V 62	2F - heiss	5004	650	108	WUSII				20	6.WUSII-Versuch (s. a. Abb 4.1-4.24)
V 63	2F - kalt	1023	560	108	SIMI1/104	Th 02	Не	30	20	? Reproduktion V44 (mit Th O2-Pellets)
V 64	2F - kalt	1024	700	108	SIMI1/105	Th 02	He	120	20	? Reproduk. V43(V46) (Stab geborsten)
V 65	2F - kalt	1019	700	108	SIMII/ 16	A12 03	 He	70	20	? Transiente bei 70 bar Pi (? SSYST ?)
V 66	2F - heiss	1026	660	108	SIMII/ 16	AI2 03	He	30	20	2 F-heiss Iteration

- 51 -

Tabelle 2.1

Versuchs- Nummer	Transienten- Art 	Steuer- progr. Nr.	Simul. Heiz. Leist	Wand- heiz. Leist	Brennstab Simulator Typ / Nr	Pellet Werk- stoff	Gas Art 	Stab- innen- druck	Trans. dauer 	Bemerkungen ((Versuchsziele))
			/W/cm/	/kw/				/bar/	/ s /	
V 67	'Zeit Stand'	1027	700	108	SIMII/ 16	A12 03	He	30	20	Zeitstand-Verhalten Hülle
V 68	'Zeit Stand'	1029	680	108	SIMII/ 16	A12 03	He	30	20	Zeitstand-Verhalten Hülle
V 69	'Zeit Stand'	1029	660	108	SIMII/ 15	A12 03	He	85	20	Zeitstand-Verhalten Hülle
V 70	2F - kalt	1017	660	108	SIMII/ 17	A12 03	He	125	20	Stab geborsten. TMFM2 defekt
V 71	2F - kalt	1030	670	108	SIMII/ 18	A12 03	He	35	20	V44 mit 2% mehr Leistung
V 72	2F - kalt	1031	715	108	SIMII/ 18	A12 03	He	35	20	V71 mit höherer Stableistung
V 73	2F - heiss	1032	670	108	SIMII/ 20	A12 03	He	35	20	'WUS' V62 (aber Fehler Transduktor)
V 74	2F - heiss	1033	630	108	SIMII/ 14	AI2 03	He	35	20	'WUS' V62 (aber Fehler Transduktor)
V 75	2F - kalt	1034	670	108	SIMII/ 14	A12 03	He	35	20	Iteration Ventil-Steuerprog. COSTRA
V 76	2F - kalt	1035	670	108	SIMII/ 14	A12 03	Не	35	20	Iteration Ventil-Steuerprog. COSTRA
V 77	2F - kalt	1036	670	108	SIMII/ 14	A12 03	He	35	20	Iteration Ventil-Steuerprog. COSTRA
V 78	2F - kalt	1037	670	108	SIMII/ 14	A12 03	He	35	20	Iteration Ventil-Steuerprog. COSTRA
V 79	COSTRA	1034	660	110	SIMI1/106	A12 03	He	35	20	COSTRA-Transiente mit TE-Dummies
,V 80	COSTRA	1034	660	110	SIM11/106	A12 03	He	35	20	COSTRA-Transiente mit TE-Dummies
V 81	COSTRA	1034	660	110	SIMI1/106	A12 03	He	35	20	COSTRA-Transiente mit TE-Dummies
V 82	COSTRA	1034	660	110	SIMI1/107	A12 03	He	35	20	COSTRA-Transiente (RELAP-Analyse)
V 83	COSTRA	1034	770	110	SIMI1/107	A12 03	He	35	20	COSTRA-Transiente (2. Stab-Blowdown)
V 84	COSTRA	1038	500	110	SIMI1/109	A12 03	He	55	20	COSTRA; unverformte Hülle;(? Leistung)
V 85	COSTRA	1038	500	110	SIMI1/109	A12 03	He	55	20	COSTRA; unverformte Hülle;(? Leistung)
V 86	COSTRA	1038	500	110	SIMII/109	A12 03	He	55	20	COSTRA; wie V84,V85 ? Leistung/Elektr.
V 87	COSTRA	1039	460	110	SIMI1/103	A12 03	He	55	20	Vorversuch zur LOFT-Serie COSTRA
V 88	COSTRA	1040	460	110	SIMII/103	AI2 03	He	55	20	Vorversuch zur LOFT-Serie COSTRA

-52

1

Versuchs-	[Iransienten-]	Steuer-	Simul.	Wand-	Brennstab	Pellet	Gas	Stab-	Trans.	Bemerkungen
Nummer	Art	progr. Nr.	Heiz. Leist /W/cm/	heiz. Leist /kw/	Simulator Typ / Nr 	Werk- stoff 	Art	innen- druck /bar/	dauer 	((Versuchsziele))
V 89	COSTRA	1040	460	110	SIMI1/103	A12 03	He	55	20	Vorversuch zur LOFT-Serie COSTRA
V 90	COSTRA	1040	460	110	SIMI1/103	AI2 03	He	55	20	Vorversuch zur LOFT-Serie COSTRA
V 91	COSTRA	1040	460	110	SIMI1/112	AI2 03	 He	55	20	COSTRA LOFT-Untersuchung
V 92	COSTRA	1040	460	110	SIMI1/112	A12 03	He	55	20	COSTRA LOFT-Untersuchung -REPRO-Versuch
V 93	COSTRA	1040	460	110	SIMI1/110	A12 03	He	55	20	1. COSTRA - Versuch mit LOFT-TE
V 94	COSTRA	1040	460	110	SIMI1/110	A12 03	He	55	20	2.COSTRA-LOFT-TE (RELOCATION-Einfluss)
V 95	COSTRA	1040	460	110	SIMI1/110	A12 03	He	55	20	3.COSTRA-LOFT-TE (RELOCATION-Einfluss)
V 96	COSTRA	1040	460	110	SIMII/110	A12 03	He	55	20	4.COSTRA-(LOFT-TE- demontiert = > T ?)
V 97	COSTRA	1040	460	110	SIM11/110	A12 03	He	55	20	5.COSTRA-(LOFT-TE- demontiert)
V 98	COSTRA	1040	460	110	SIMI1/110	A12 03	He	55	20	6.COSTRA-(LOFT-TE- demontiert)
V 99	COSTRA	1040	460	110	SIM11/110	A12 03	He	55	20	7.COSTRA-(LOFT-TE- demontiert)
V100	COSTRA	10/10	460	110	SIMI1/110	A12 03	He	55	20	8.COSTRA-(LOFT-TE- demontiert)
V101	COSTRA	1040	460	110	SIMI1/116	AI2 03	He	55	20	1.REPRO-Versuch (Stab wird defekt)

____/

-----|---|----

|SIMII/117|A12 03| He

SIMII/117 A12 03 He

SIMII/117 AI2 03 He

110 |SIMII/117 |AI2 03| He

110 |SIMII/117 |A12 03 | He

110 |SIMII/117|AI2 03| He

110 |SIMII/118|A12 03| He

110 |SIMII/118|A12 03| He

----- |----- |----- |-----

| 110 |SIMII/118 |A12 03 | He

| 110 |SIMII/118|AI2 03| He

----|------|-----|

55

55

55

_ _ _ _

55

55

55

- - -

55

55

_ - - -

55

55

20

20

20

20

20

20

20

20

20

20

_ _ _

V102

V103

V104

V105

V106

_ _ _ _ _

V107

V108

V109

V111

V110

COSTRA

COSTRA

COSTRA

COSTRA

COSTRA

COSTRA

COSTRA

COSTRA

COSTRA

COSTRA

1040

_ _ _ _ _ _

10/10

_ _ _ _ _ _

1040

- - - - - -

1040

_ _ _ _ _

1040

1040

1041

1041

1042

_ _ _ _ _ _

| 1042

- - - -

460

_ _ _ _ .

460

460

.

460

460

460

460

460

460

460

110

110

110

С ω

1.REPRO-Versuch zu COSTRA-mit TE

2. REPRO-Versuch zu RELOCATION-Einfluss

3.REPRO-Versuch zu RELOCATION-Einfluss

4. REPRO-Versuch zu RELOCATION-Einfluss

5.-Versuch ? RELOCATION-Einfluss ?

6.-Versuch ? RELOCATION-Einfluss ?

1.-Versuch ? RELOCATION-Serie ?

2.-Versuch ? RELOCATION-Serie ?

3.-Versuch ? RELOCATION-Serie ?

4.-Versuch ? RELOCATION-Serie ?

Ī	ล	b	e	L	10	2	1
	••		••				

Versuchs- Nummer 	Transienten- Art 	Steuer- progr. Nr. 	Simul. Heiz. Leist /W/cm/	Wand- heiz. Leist /kw/	Brennstab Simulator Typ / Nr 	Pellet Werk- stoff 	Gas Art 	Stab- innen- druck /bar/	Trans. dauer / s /	Bemerkungen ((Versuchsziele))
V112	COSTRA	1042	460	110	 SIMII/118	A12 03	 He	55	20	5Versuch ? RELOCATION-Serie ?
V113	COSTRA	1042	460	110	SIMI1/118	A12 03	He	55	20	6Versuch ? RELOCATION-Serie ?
V114	COSTRA	1042	460	110	SIMI1/118	A12 03	He	55	20	7Versuch ? RELOCATION-Serie ?
V115	COSTRA	1042	460	110	SIMI1/118	A12 03	Arg.	55	20	8Versuch RELOCATION-Serie; Spaltgas
V116	COSTRA	1042	460	110	SIMI1/118	A12 03	He	55	20	9Versuch RELOCATION-Serie;
V117	COSTRA	1042	460	110	SIMI1/118	A12 03	He	·55	20	10.Versuch RELOCATION-Serie;Abstandsh.
V118	COSTRA	10/12	460	110	SIMI1/118	AI2 03	He	55	20	11.Versuch RELOCATION-Serie;Abstandsh.
V119	LOFTRA-Itera.	1044	460	110	SIMI1/121	AI2 03	He	50	40	1.Versuch LOFTRA Iteration
V120	LOFTRA-Itera.	1044	460	110	SIMI1/121	AI2 03	He	50	40	2.Versuch LOFTRA Iteration /Leistung
V121	LOFTRA-Itera.	1045	480	110	SIMI1/121	AI2 03	He	50	40	3.Versuch LOFTRA Iteration -Leistung
V122	LOFTRA-Itera.	1046	490	110	SIMI1/121	A12 03	He	50	40	4.Versuch LOFTRA Iteration -Ventile
V123	LOFTRA-Itera.	1047	490	110	SIMI1/121	A12 03	He	50	40	5.Versuch LOFTRA Iteration - Temp.verl.
V124	LOFTRA-Itera.	1048	520	110	SIMI1/121	A12 03	He	50	40	6.Versuch LOFTRA Iteration - Leistung
,v125	LOFTRA-Itera.	1049	520	110	SIMI1/121	A12 03	He	50	40	7.Versuch LOFTRA Iteration-Temp-Ver!.
V126	LOFTRA	1050	500	108	SIMI1/111	A12 03	He	50	40	1. LOFTRA-TE; TMFM2-Anzeige=??
V127	COSTRA	1040	460	108	SIMI1/111	A12 03	He	55	20	2. Versuch Stab 111 // COSTRA-Trans.
V128	ähnlich LOFT.	1051	560	108	SIMI1/111	A12 03	He	50	40	2. "LOFTRA"-TE; Leistungsverlauf
V129	LOFTRA	1050	500	108	SIMI1/122	A12 03	He	50	40	LOFTRA-Repro V126 ohne TE
V130	COSTRA	1040	460	108	SIMI1/122	A12 03	He	55	20	COSTRA-Repro V127 ohne TE
V131	ähnlich LOFT.	1052	560	108	SIMI1/122	A12 03	He	50	40	REPRO-V128 ohne TE //?? Elektrode
V132	LOFTRA	1050	500	108	SIMI1/124	A12 03	He	50	40	LOFTRA-Repro V129 ohne TE
V133		1042	460	108	SIMI1/124	A12 03	He	55	20	Datenaufzeichnung defekt/ PO2 ni. off.
 V134		1042	460	108	SIMI1/124	AI2 03	He	 55	20	Datenaufzeichnung defekt/? CALAS ?

- 54 -

Tabelle 2.1

Versuchs- Nummer	Iransienten- Art 	Steuer- progr. Nr. 	Simul. Heiz. Leist /W/cm/	Wand- heiz. Leist /kw/	Brennstab Simulator Typ / Nr	Pellet Werk- stoff 	Gas Art 	Stab- innen- druck /bar/	Trans. dauer / s /	Bemerkungen ((Versuchsziele))
V135		10/12	460	108	SIMI1/128	AI2 03	 He	55	20	Steuerung-CALAS defekt
V136		1042	460	108	SIMI1/128	AI2 03	He	55	20	Test CALAS-Steuerung
V137		1042	460	108	SIMI1/128	A12 03	 He	55	20	Test CALAS-Steuerung
V139		1042	460	108	SIMI1/129	AI2 03	He	50	2.0	?CALAS Nachwärme von Hand geschaltet
V140	COSTRA	1053	350	108	SIMI1/132	Si 02	He	50	20	Iteration Quarz-Pellets Relocation
V141	COSTRA	1054	380	108	SIMI1/132	Si 02	 Не	50	20	Iteration-Leistung Si O2 - Versuche
V142	COSTRA	1042	460	108	SIMI1/132	Si 02	He	50	20	COSTRA-Leistung mit SiO2-Pellets
V143	COSTRA	1042	460	108	SIMI1/132	Si 02	He	50	20	REPRO V142 ?? Relocation - SiO2 ??
V144	COSTRA	1042	460	108	SIMI1/132	Si 02	He	50	20	REPRO V143 ?? Relocation - SiO2 ??
V145	COSTRA	1053	350	108	SIMII/132	Si 02	He	 50	20	REPRO V140 ?? Relocation- SiO2 ??
V146	COSTRA	1053	350	108	SIMI1/132	Si 02	He	 50	20	REPRO V140 ?? "Relocation- Si O2 "?
V147	COSTRA	1053	350	108	SIMI1/132	Si 02	He	50	20	8.Versuch SiO2 Pellets ? Relocation
V148	COSTRA	1055	430	108	SIMII/133	Si 02	He	50	20	SiO2-Pellets/frisch. Stab ? Strahlung
V149	COSTRA	1056	380	108	SIMI1/137	Si 02	He	50	20	SiO2-Pellets/ Einfluss Strahlung ??
V150	COSTRA	1057	360	108	SIMI1/137	Si 02	Не	50	20	SiO2-Pellets/ Einfluss Strahlung ??
V151	COSTRA	1057	360	108	SIMI1/138	Si 02	He	50	20	SiO2-Pellets/frisch. Stab ? red. Graphit Ø
V152	COSTRA	1057	360	108	SIMI1/138	Si 02	He	50	20	SiO2-Pellets/red. Graphit Ø ?? Transduktor
V153	COSTRA	1057	360	108	SIMII/138	Si 02	He	50	20	SiO2-Pellets/red. Graphit Ø REPRO v151
V154	COSTRA	1057	360	108	SIMII/138	Si 02	Не	50	20	SiO2-Pellets/red. Graphit Ø REPRO v153
V155	COSTRA	1057	360	108	SIMI1/138	Si 02	Не	50	20	SiO2-Pellets/red. Graphit Ø REPRO v153
V156	COSTRA	1057	360	108	SIM11/138	Si 02	He	50	20	SiO2-Pellets/red. Graphit Ø REPRO v153

.

I. 55 I

Tabelle 2.1

Versuchs-	Transienten-	Steuer-	Simul.	Wand-	Brennstab	Pellet	Gas	Stab-	Trans.	Bemerkungen
Aronine r.		progr. Nr. 	Leist	Leist /kw/	Simulator Typ / Nr 	stoff		druck /bar/	dauer	((Versuchsziele))
V157	COSTRA	1057	360	108	SIMI1/138	Si 02	He	50	20	SiO2-Pellets/red. Graphit Ø REPRO v153
V158	COSTRA	1057	360	108	SIMI1/138	Si 02	He	5Ò	20	SiO2-Pellets/red. Graphit Ø REPRO v153
V159	COSTRA	1057	360	108	SIMI1/138	Si 02	He	50	20	SiO2-Pellets/red. Graphit Ø REPRO v153 .
V160	COSTRA	1057	370	108	SIMI1/139	Si 02	 He	50	20	SiO2-Pellets/frisch. Stab ? Nominal-Gap
V161	COSTRA	1057	370	108	SIMI1/139	Si 02	He	50	20	SiO2-Pellets-Relocation ? REPRO V160
V162	COSTRA	1057	370	108	SIMI1/139	Si 02	He	50	20	SiO2-Pellets-Relocation ? REPRO V160
V163	COSTRA	1057	370	108	SIMI1/139	Si 02	He	50	20	SiO2-Pellets-Relocation ? REPRO V160
V164	COSTRA	1057	370	108	SIMI1/139	Si 02	He	50	20	Si02-Pellets-Relocation ? REPRO V160
V165	COSTRA	1057	370	108	SIMI1/139	Si 02	He	50	20	SiO2-Pellets-Relocation ? REPRO V160
V166	COSTRA	1057	370	108	SIMI1/139	Si 02	He	50	20	SiO2-Pellets-Relocation ? REPRO V160
V167	COSTRA	1057	370	108	SIMI1/139	Si 02	He	50	20	SiO2-Pellets-Relocation ? REPRO V160
V168	COSTRA	1057	370	108	SIMI1/139	Si 02	He	50	20	SiO2-Pellets-Relocation ? REPRO V160
V172	COSTRA	1042	460	108	SIMI1/130	A12 03	He	50	20	1. Versuch mit aufgeweitetem Hüllrohr .1mm
V173	COSTRA	1042	460	108	SIMI1/130	A12 03	He	50	20	2. Versuch mit aufgeweitetem Hüllrohr .1mm
¥174	COSTRA	1042	460	108	SIMI1/130	A12 03	He	50	20	3. Versuch mit aufgeweitetem Hüllrohr .1mm
V175	COSTRA	10/12	460	108	SIMI1/130	A12 03	He	50	20	4. Versuch mit aufgeweitetem Hüllrohr .1mm
V176	COSTRA	1042	460	108	SIMI1/130	A12 03	He He	50	20	5. Versuch mit aufgeweitetem Hüllrohr .1mm
V177	COSTRA	1042	460	108	SIMI1/130	A12 03	He	50	20	6. Versuch mit aufgeweitetem Hüll_rohr .1mm
V178	COSTRA	1042	460	108	SIMI1/130	AI2 03	He	50	20	7. Versuch mit aufgeweitetem Hüllrohr .1mm
V179	COSTRA	1042	460	108	SIMI1/130	AI2 03	He	50	20	8. Versuch mit aufgeweitetem Hüllrohr .1mm
 V180	COSTRA	1042	460	108	SIML1/130	A12 03	He	50	20	9. Versuch mit aufgeweitetem Hüllrohr .1mm

- 56 -

Versuchs- Nummer 	fransienten- Art 	Steuer- progr. Nr.	Simul. Heiz. Leist /W/cm/	Wand- heiz. Leist /kw/	Brennstab Simulator Typ / Nr 	Pellet Werk- stoff	Gas Art 	Stab- innen- druck /bar/	Trans. dauer / s /	Bemerkungen ((Versuchsziele))
V181	COSTRA	1042	460	108	SIMI1/134	AI2 03	He	50	20	1. Versuch mit red. Heizer / (.2 mm)
V182	COSTRA	1042	460	108	SIMI1/134	AI2 03	He	50	20	1. Versuch mit red. Heizer / (.2 mm)
V183	COSTRA	1042	460	108	SIMI1/134	AI2 03	He	50	20	1. Versuch mit red. Heizer / (.2 mm)
V184	COSTRA	1042	460	108	SIM11/134	A12 03	He	50	20	1. Versuch mit red. Heizer / (.2 mm)
V185	COSTRA	10/12	460	108	SIM11/134	A12 03	He	50	20	1. Versuch mit red. Heizer / (.2 mm)
V186	COSTRA	1042	460	108	SIMI1/134	AI2 03	He	50	20	1. Versuch mit red. Heizer / (.2 mm)
V187	- Test -	1042			SIMI1/134	AI2 03	He	15	70	Anlagen Test
V188	- Test -	1042			SIM11/134	A12 03	lle	15	70	Anlagen Test
V189	COSTRA	1034	740	108	SIMI1/134	A12 03	He	30	20	Anlagen Test //Steuerung wie V82 //
V191	'TFD'	1058			SIMI1/134	A12 03	He	30	40	TFD-Versuch Ventile: UP 10% ; OP zu
V192	'TFD'	1059			SIMI1/134	A12 03	He	30	40	TFD-Versuch Ventile: UP 10% ; OP zu
V193	'TFD'	1060			SIMI1/134	AI2 03	He	30	40	TFD-Versuch Ventile: UP 20% ; OP zu
V194	'TFD'	1061			SIMI1/134	A12 03	He	30	40	TFD-Versuch Ventile: UP zu ; OP 10%
V195	'TFD'	1062			SIMI1/134	AI2 03	He	30	40	TFD-Versuch Ventile: UP zu ; OP 15%
V198	'TFD'	1063			SIMI1/134	A12 03	He	30	40	TFD-Versuch Ventile: UP 15% ; OP 20%
V199	'TFD'	1073			SIMI1/134	A12 03	He	30	40	TFD-Versuch Ventile: UP 20% ; OP 20%
V201	'TFD'	1067			SIMII/134	A12 03	He	30	40	TFD-Versuch Ventile: UP 20% ; OP 10%
V202	'TFD'	1068			SIMI1/134	A12 03	He	30	40	TFD-Versuch Ventile: UP 20% ; OP 15%
V203	'TFD'	1066			SIMI1/134	AI2 03	He	30	40	TFD-Versuch Ventile: UP OP s. Tab. 2.3
V204	'TFD'	1070			SIM11/134	A12 03	He	30	40	TFD-Versuch Ventile: UP OP s. Tab. 2.3
V205	'TFD'	1071			SIMII/134	AI2 03	He	30	40	TFD-Versuch_Ventile: UP OP s. Tab. 2.3
V206	'TFD'	1072			SIMI1/134	A12 03	He	30	40	TFD-Versuch Ventile: UP OP s. Tab. 2.3
V207	'TFD'	1069			SIMII/134	AI2 03	 He	30	40	TFD-Versuch Ventile: UP zu ; OP 20%
V208	'TFD'	1064			SIMI1/134	A12 03	He	30	40	TFD-Versuch Ventile: UP 10% ; OP 20%

- 57 -

- 58 -

Tabelle 3.1.2Ventilstellungen in % des Maximalwertes als Funktionder Zeit für COSIMA-Thermohydraulik-Experimente

Tabelle 3.2Ventilstellungen in % des Maximalwertes als Funktionder Zeit für die COSIMA-Versuche V203 - V206

Tabelle 4.1Ventilstellungen in % des Maximalwertes als Funktion
der Zeit für die COSIMA-WUS-Experimente

ntil

Abb. 2.1 COSIMA - Gesamtansicht

Abb. 2.2 COSIMA - Prinzipschema

<u>Teststrecke</u>

Abb. 2.3 COSIMA - Teststrecke

Abb. 2.4 COSIMA Stab-Bündel, Längs- und Querschnitt

Abb. 2.5.1 COSIMA Instrumentierungsplan, Temperaturen

Abb. 2.5.2 COSIMA Instrumentierungsplan Leistung, Druck, Durchsatz, Dichte

Pelletabmessungen

T7 - oberhalb der 'beheizbaren' Zone

- 70 -

- 71 -

T7 - oberhalb der 'beheizbaren' Zone

- 72 -

- 73 -

D1 - im Unterplenum

D2 - im Oberplenum

T7 - oberhalb der 'beheizbaren' Zone

- 75 -

Abb. 3.16 Versuch V194, V195, V207 - Dichte-Messwertverläufe (10%, 15%, 20% Ventilstellung Oberplenum; ohne Beheizung) D2 - im Oberplenum

- 76 -

M2 - obere Blowdown-Leitung

- 78 -

(10%, 15%, 20% Ventilstellung Unterplenum; ohne Beheizung)

(10%, 15%, 20% Ventilstellung Oberplenum; ohne Beheizung)

(V199-20%/20% Ventilstellung Ober-/Unterplenum; ohne Beheizung) D2 - (geglättet) im Oberplenum

T6 - unterhalb der 'beheizbaren' Zone

T7 - oberhalb der 'beheizbaren' Zone

(20%/15% Ventilstellung Ober-/Unterplenum; ohne Beheizung)

T6 - unterhalb der 'beheizbaren' Zone

T7 - oberhalb der 'beheizbaren' Zone

(V199-20%/20% Ventilstellung Unter-/Oberplenum; ohne Beheizung)

(V208-20%/10% Ventilstellung Unter-/Ohrerpienum; ohne Beheizung) (V201-20%/10% Ventilstellung Unter-/Oberpienum; ohne Beheizung)

- 84 -

(V198-20%/15% Ventilstellung Ober-/Unterplenum; ohne Beheizung) (V202-20%/15% Ventilstellung Unter-/Oberplenum; ohne Beheizung)

D1 - (geglättet) im Unterplenum

D2 - (geglättet) im Oberplenum

(V208-20%/10% Ventilstellung Ober-/Unterplenum; ohne Beheizung)
(V198-20%/15% Ventilstellung Ober-/Unterplenum; ohne Beheizung)
(V199-20%/20% Ventilstellung Ober-/Unterplenum; ohne Beheizung)
(V201-20%/10% Ventilstellung Unter-/Oberplenum; ohne Beheizung)
(V202-20%/15% Ventilstellung Unter-/Oberplenum; ohne Beheizung)
(V193-20%/0 % Ventilstellung Unter-/Oberplenum; ohne Beheizung)
M1 - untere Blowdown-Leitung

- 88 -

Abb. 3.39 Versuchs-Vergleich - Systemdruckverläufe (V204-transientes Verfahren der Ventile; ohne Beheizung) (V206-transientes Verfahren der Ventile; ohne Beheizung)

T6 - unterhalb der 'beheizbaren' Zone

T7 - oberhalb der 'beheizbaren' Zone

10 *10-1 * 203 203 © ▲ D ۷ V 12 8 RH0 (G/CM**3) 6 Ц when Martinsan 2 0 +26 16 21 31 36 46 51 56 41 ZEIT (SEK) Abb. 3.41 Versuch V203 Dichte-Messwertverläufe (V203-transientes Verfahren der Ventile; ohne Beheizung) D1 - im Unterplenum

(V204-transientes Verfahren der Ventile; ohne Beheizung)

D1 - im Unterplenum

D2 - im Oberplenum

D2 - im Oberplenum

- 90 -

- 91 -

T31 - Fluidtemperatur in der oberen Blowdown-Leitung PO2 - Ventilstellung in der oberen Blowdown-Leitung

V207 transientes Verfahren Ventil PO2; ohne Beheizung

T7 - oberhalb der beheizbaren Zone

T23.1, 23.2 - Thermoelement-Messungen

T22.1, 22.2 - Thermoelement-Messungen

IN1, 2, 3 - Pyrometer-Messungen

T21.1 21.2 - Thermoelement-Messungen

- 96 -

V61 transientes Verfahren Ventil PO2; mit Beheizung
 P4 - Systemdruck im Unterplenum

PO2 - Ventilstellung in der oberen Blowdown-Leitung

PO2 - Ventilstellung in der oberen Blowdown-Leitung

10 20 56 59 56 59 P P P0 P0 4422 V V V V V *10¹ 8 16 P (N/M2) *10° (')6 12 POS Ц 8 2 Ц - O 0 38 23 28 33 43 48 ZEIT (SEK) Abb. 4.11 Versuchs-Vergleich Korrelation Systemdruck-Ventilsteuerung

10 ×10-1 00 aabaadaa V 56 59 59 61 62 62 1 2 1 V V V V ▲+±×× 8 Ý 12 RHØ (G/CM**3) D1 6 Ц 2 D'2 0 | 23 58 33 38 43 48 ZEIT (SEK) Abb. 4.12 Versuchs-Vergleiche - Dichteverläufe D1 - (geglättet) im Unterplenum

D2 - (geglättet) im Oberplenum

- 97 -

- 100 -

- M1 untere Blowdownleitung
- M2 obere Blowdownleitung

T21.1, 21.2 Thermoelementmessungen untere Stabhälfte

- 103 -

IN4, 5 - Einflußbereich des Abstandshalters

V102, V108 - 1. Blowdown COSTRA, nominelle Spaltweiten IN 2 untere Stabhälfte

IN 7 obere Stabhälfte

- 112 -

- 113 -

Abb. 5.19 Hüllrohroberflächen-Temperaturen V160 - V168 Versuche mit SiO₂ - Pellets über Zeit(31s - 32s) und Ort (IN1 - IN8) gemittelt

Abb. 5.20 LOFT - typische Thermoelement-Instrumentierung

- 117 -

IN6, IN7, IN8 - obere Stabhälfte

IN4 - unterhalb des Abstandshalters

- 121 -

ŧ.

120. Ш О IN 7 IN 7 v 129 126 104 (K) 96 Ø 88 80 -25 30 35 40 45 50 55 60 65 ZEIT (SEK) Abb. 5.42 Hüllrohroberflächentemperaturen V129 - LOFTRA mit 'SIM-BA' V126 - LOFTRA mit 'SIM-TE'

IN8 - obere Stabhälfte

- 128

. 00 1

IN2 - Pyrometermessung bei 659.5 mm

T22.1- TE-Messung bei 659.5 mm

T5 - Fluid-(Sättigungs-) Temperatur im Unterplenum

Abb. 5.50 Linien gleicher Kriechgeschwindigkeit (ESPU in (1 / s)) für Zircaloy-Hüllrohre als Funktion von Temperatur und Differenzdruck / 24 /

Abb. 6.1 Schematische Darstellung der Probleme bei der Modellierung des Teststreckenquerschnitts, des Kugelplenums und der Wasserspiegel für die Rechenprogramme RELAP und DRUFAN

Abb. 6.2 Nodalisierungs-Schema für RELAP4-Rechnung (Anhang A)

177

(27

IN INZ

Leitung
Volumen
Wärmeleitstruktur

20

WH

P4 - Messwert im Unterplenum

(0% / 20% Ventilstellung Unter-/Oberpl.; ohne Beheizung)

D2 - Messwert im Oberplenum

RHOM- Gerechneter Mittelwert (VOLUMEN: 15, 16, 17)

T6 - Messwert unterhalb der beheizten Zone

Volumen 8 - Knoten unterhalb der beheizten Zone

P4 - Messwert im Unterplenum

D1 - Messwert im Unterplenum

RHOM- Gerechneter Mittelwert (VOLUMEN: 2, 3, 4)

(20% / 0 % Ventilstellung Unter-/Oberplenum; ohne Beheizung)

D2 - Messwert im Oberplenum

RHOM- Gerechneter Mittelwert (VOLUMEN: 15,16,17)

P4 - Messwert im Unterplenum

D1 - Messwert im Unterplenum

RHOM- Gerechneter Mittelwert (VOLUMEN: 2, 3, 4)

AP2 - Druck im VOLUMEN 2

SR13 - RELAP Heatslab 13

SR15 - RELAP Heatslab 15

AP2 - Druck im VOLUMEN 2

RHO - Dichte im VOLUMEN 2

RHO - Dichte im VOLUMEN 8

ANHANG A

RELAP4/MOD6 INPUT ZU LOFTRA V129

.

```
= V129 INP: IRE118.SEM02.CNTL(V129GNO) OUT: RELAP4/1,2
*
*
 VEREINFACHTE NODALISIERUNG
*
  *
  POST-TEST CALCULATIONS FOR EXPERIMENT 129
**
  OUTER GAP = .01 MM, INNER GAP=.05 MM
5
  THERMAL CONDUCTIVITY OF AL2O3 ACCORDING TO THE MANUFACTUR'S SPECIF.
*
*
  WANDSTAERKE DER MESS-STRECKE IN DER RECHNUNG = 10 MM; MIT EINEM
           TEMPERATURGRADIENTEN LT. SSYSTRECHNUNG
*
*
*
   DIESER JOB IST DER AUSGANG- FUER SENSITIVITAET
*
   GROBE NODALISIERUNG; EIN WASSERSPIEGEL; IN DEN PLENA WILSON BUBBLE;
   IN DER STRECKE KONSTANTES BUBBLE RISE; HTS2 DEFAULT (2 0 0 2);
*
*
  HF KRITICAL FLOW;
* ======= NOMINAL EINGABE =
*
*
יאר אר אר
$ PROBLEM-DIMENSION
ייר אר אר אי אי
* LD NE NTC NTR NV NB NTV NJ NP NCK NL NF NSL NGO NM NCO NHT ISP IU
010001 -2 9 7 5 13 2 0 16 0 0 2 2 27 10 7 9 0 0
-10
******
$ PROBLEM CONSTANDS
*****
* POWER
              OMEGA
010002 2.5E-2
              1.0
**
<u>ى دەردىادىاد باد بادىادىادىادىار بار ئار</u>
$ MINOR EDITS
>と**************
020000 SR 14 AP 2 AT 2 AP 8 AT 8 JW 15 JW 16 SL 5 ML 8
*
*
*****
$ TIME STEP DATA CARDS
*****
*
      NMI NMA NDM NCH DEL
                         DTM
                                  TLA ENDCPU
030010 1 1 0 1 1.E-4 0.0
                                 1.1E-4 7100.
030020 200 25
             10 0 1.E-4 1.OE-7
                                  5.0
030030 2 25
             10 0 1.E-2 1.0E-5
                                  9.0
030040 200 25
             10 0 1.E-4
                         1.0E-7
                                 12.0
030050 2 25
             10 0 1.E-2 1.0E-5
                                 14.5
030060 200 25 10 0 1.E-4
                         1.0E-7 17.0
030070 2 25 10 0 1.E-2 1.0E-5 40.0
يل.
*****
$ TRIP CONTROL DATA CARDS
*****
*
   IDRP IDS IX1 IX2 SET
                         DELAY
040010 1 1 0
                0 40.
                          0.0
                                * END TRIP
                               * END TRIP WHEN P5 < 14.5 PSIA
040020 1 -4
              5
                 0 14.5
                          0.0
                               * OPEN BLOWDOWN VALVES
040030 2 1 0
                 0 0.0
                         0.0
                               * CLOSE ISOLATION VALVES
040040 3 1 0 0 0.0
                        0.0
```

040050	4	1	0	0	0.0	0.0		*	SCRAM	SIM	i AND	GUAR	D HEAT	TERS
77 abababababababa														
s vo)LUME	DATA	CARI	ns										
*****	*****	2												
*	IBUB	IRE	AD	Р		TEMP			HORE	ζ		V		ZVOL
*														
050011	2	0	2306	.50	0311	300.00	0		-1.000	000	1.4	2E-3		1.166
050021	1	0	2306	.16	8849	581.00	0		-1.000	000	0.2	2954	• •	0.6234
050031	2	0	2304	.40	0364	581.00	0		-1.000	000	6.5	946E-	3	0.9645/
050041	2	0	2303	,40 22	5775 7792	592 74	0		-1.000	000	9.0 8 /	7855F	-3 -3	1 6404
050061	2	õ	2300	.95	4612	600.44	0		-1.000	000	9.6	994E-	3	1.8766
050071	2	0	2300	.04	0558	604.10	0		-1.000	000	6.5	946E-	3	0.96457
050081	1	0	2299	. 64	2151	604.30	0		-1.000	000	0.2	2954		0.6234
050091	2	0	2299	.31	5547	300.00	0		-1.000	000	1.4	2E-3		1.166
050101	0	0	2306	.16	9211	446.00	0		-1.000	000	3.5	315E-	2. 6	5.562E-2
050111	0	0	2299	.64	2527	446.00	0		-1.000	000	3.5	315E-	26	5.562E-2
050121	0	0	2306	. 19	2242	582.00	0		-1.000	000	6.0	66E-3		8.86E-2
*	0	U	2298	.63	0681	604.30	U		-1.000	000	6.0	66E-3		8.86E-2
*		ZM		TT	PMV	FT.OV	۵		DTAMV		ΕT	EV	ΤΔΝ	1BLO
*				• •		1 101			Dimi					12 20
050012	1	.1660	00		0	1.218	E-3	1	.51E-3	3	3.5			2
050022	0	.6234	40 4		0	0.365	31	C	.6847		4.6	66		3
050032	0	.9645	57		0	5.12E	-3	4	.36E-2	2	5.2	894		4
050042	1	.8766	50		0	5.12E	-3		▶.36E-2	2	6.2	5397		5
050052	1	. 6404	+U 50	•.	0	5.12E	-3 -3		1.36E-2	2	8.1	3057		6 7
050002	1	9649	50		0	5 125	-3	1	- 36E-2	2	9.7	1091		/
050082	0	.6234	40 °		0	0.365	31	().6847	-	12.6	1214		9
050092	1	.1660	00		0	1.218	E-3	1	.51E-3	3	13.2	3554		0
050102	6	.562B	E-2		0	3.38E	-3	6	5.562E-	•2	4.9	4489		0
050112	6	.5628	S-2		0	3.38E	-3	е	5.562E-	-2	12.8	9103		0
050122	8	.86E-	-2		0	6.16E	-3	8	8.86E-2	2	4.9	274		0
050132 *	8	.86E-	-2		0	6.16E	-3	8	8.86E-2	2	12.8	7954		0
*****	*****													
\$ BUBBI	E DA	TA CA	ARDS											
*****	*****													
*	ALP	H	VB	UB										
060011	0.	8	-1.0	0										
060021	0.	0	0.1	22										
77 -1-														
*****	****													
\$ JUNCT	TON	DATA	CARD	s										5
****	* >* >* >* >* >*		Olin(D)	0										
*	IW1	IW2 1	[PUMP	ΙV	ALVE	WP	AJ	UN	I	Z	JUN		INERTA	ł
*														
080011	1	2	0		0	0.0	1.2	18	3E-3	2	1.666		0.0)
080021	2	3	0		0	3.179	5.1	2E	-3	5	5.289	4	0.0)
	3	4 5	0		U O	3.179	5.1	2E	-3	6	.253	97	0.0)
080041	4 5	с С	0		0	3.1/9	5.1	28	1=3 1=3	6	5.130 	5/ 07	0.0) J
080061	6	7	0		0	3,170	ン・L ミー1	ノビックロ		11	1.110 5.170	フノ 57	0.0	ر ۱
080071	7	, 8	õ		0	3,179	5 1	2£ 28	J 3	12	0 4 / 2.612	14	0.0	,)
080081	8	9	õ		0	0.0	1.2	18	E-3	13	3.235	54	0.0))
080091	12	2	0		0	3.179	6.1	6F	-3	4	.977	7	0.0)

.

	149	
--	-----	--

080101 080111	8 2	13 10	0 0	0 0	3.17 0.0	9 6.16 3.38	5E - 3 3E - 3	12.923	384 77	0.0		
080121	8	11	0	0	0.0	3.38	3E-3	12.923	384	0.0		
080131	0	12	1	0	3.17	9 6.16	5E-3	4.977	77	0.0		
080141	0	13	2	0	-3.17	9 6.16	6E-3	12.923	384	0.0		
080151	10	0	1	0	0.0	8.51	4E-4	4.977	77	0.0		
080161 *	11	0	2	0	0.0	8.51	L4E-4	12.923	384	0.0		
*]	FJUNF		FJUNR	JVERTL	JCHOKE	E JCALC	I MVMIX	DI	AMJ		
080012		0.		0.	0	-1	3	0	1.51	E-3		
080022		0.		Ο.	0	-1	3	0	4.36	E-2		
080032		0.	-	0.	0	-1	3	0	4.36	E-2		
080042		0.		Ο.	0	-1	3	0	4.36	E-2		
080052		0.		0.	0	-1	3	0	4.36	E-2		
080062		0.		0.	0	- 1	3	0	4.36	E-2		
080072		0.		0.	0	-1	3	0	4.36	E-2		
080082		0.		0.	Õ	-1	3	0	1.51	E-3		
080092		0		0	1	1	3	Õ	8 86	F-2		
080102		0.		0.	1	- 1 1	3	0	8 86	5 <u>2</u> F 2		
000102		0		<u>0</u> .	1	-1	5 2	0	6 56	E 0		
000112		0.		0.	1	-1	2	0	0.50			
000122		0.		0.	1	-1	3	0	0.50	E-2		
080132		0.		0.	1	-1	3	0	8.86	E-2		
080142		0.		0.	1	-1	3	-2	8.86	оЕ-2		
080152		5.		5.	1	0	2	0	3.28	E-2		
080162		5.		5.	1	0	2	0	3.28	E-2		
*												
*	C	ONCO	IC	HOKE IH	QCOR SR	COS IFI	LOOD IA	DJUN				
080013		0.		0	0	-1.	0	0				
080023		0.		0	3	-1.	0	0				
080033		0.		0	3	-1.	0	0				
080043		0.		0	3	-1.	0	0				
080053		0.		0 .	3	-1.	0	0				
080063		0.		0	3	-1.	0	0				
080073		0.		0	3	-1.	0	0				
080083		0.		0	0	-1.	0	0				
080093		0.		0	0	0.	0	0				
080103		0.		0	0	0.	0	0				
080113		0.625		0	0	0.	ů.	0 0				
080123		0.625		0 0	n N	0. 0	0	0 0				
080133		0.		0	Õ	0.	0	0				
080143		0. 0		0	0 0	0.	0	0				
080153		0		12	õ	0.	0	Ő				
080163		0.		12	0	0.	0	0				
*		0.		14	0	0.	0	U				
م بارد مارد مارد مارد ما	ه مرابه مرابه مرا	والدورا										
\$ LEAK	TA	BLE DAT.	A C	ARDS								
* UNTER	RPL	ENUM										
* 120100	NA 20	ITL SI 2 14	5	TA1 TA	2	•••						
120101	_0	.0 ?		0 29	231	4 151	6	136	२ 121			
120102		398	1.1	.506 1	.6 56	2 13	0 9 4	5.0 10	2 0	- 158	ø	
120103	1	1.1 07	1 1	5 1 N7	1 15 84	107	.5 J.C 27 K	135 20	.∠ .∪ g 11	7 20	112	
120104	т.	30 3 07	 10	0 0 0 0	T T2'00	. 141	22.0 .	77 CCT	.0 .11	./ 50.		
*			τU	0								
*				-								

***** * OBERPLENUM **** 120200 20 2 14.5 120201 .0 .0 .2 .0 .4 .47 .9 .468 1.15 .104 1.4 .037 120202 4.1 .038 4.2 .095 4.7 .152 10.1 .152 10.4 .046 15.1 .046 15.3 .0 120203 22.6 .0 23.2 .056 30. .056 30.3 .122 40. .122 40.2 .0 100. .0 * ***** \$ FILL TABLE DATA CARDS *** * ITF ITY NPT ICA ISA UNI PRESS TEMP 130100 3 1 4 4 0 LBS/SEC 2306.4 581.000 130200 3 1 4 4 0 LBS/SEC 2298.4 604.300 * FLO2 4 TIM1 FLO1 TIM2
 130101
 .0
 516.07
 .1
 516.07
 .120
 .0

 130201
 .0
 -516.07
 .2
 -516.07
 .220
 .0
 100...0 100...0 * ******** **\$ KINETICS KONSTANT DATA CARDS** *** * NOD KMU BOV RHO UDU PRO LAM TAU 140000 0 0.0 0.0 0.0 0.0 0.0 0.0 * **** \$ SCRAM TABLE DATA CARDS NSC ITS TSC1 TSC2 * 141000 12 4 .0 1. .2 1. .5 .32 .8 .034 1. .0 3. .0 141001 3.6 .12 8.2 .12 9. .07 40. .07 40.2 .0 100. .0 ÷. ******* \$ SECOND POWER DECAY CURVE/GAMMA HEATING POWER TABLE たっとっとっとっとっとっと * NGT IGT GTB1 GTB2 144101 4 4 0. 1. .15 1. .28 .0 100. 0. * ***** \$ HEAT TRANSFER SURFACE CORRELATION OPTION CARD **** * NSUR IMSS IQTB IQFB 150000 2 0 0 2 * **** \$ HEAT SLAB DATA CARDS ***** * IVSL IVSR IGOM ISB IXLO IMCL IMCR AHTL AHTR * 150011 2 0 0 0 0 1.7889 .0 1 1 150021 3 1 0 3 1 0 0 0.35947 .0 1 150031 0.6994 4 0 3 1 0 0 .0 1 150041 1 0.6114 5 0 3 0 0 .0 1 150051 0.6994 6 0 3 1 0 0 .0 1 3 1 0.35947 150061 7 0 0 0 .0 1 1 0 0 1.7889 150071 8 0 1 .0 0 0 0 0 150081 10 1.826 .0 10 0 0 0 0 1.826 · 10 0 .0 150091 11 . 2 2 7 1 0 .0 6.91E-2 150101 0

150111 150121 150131 150141 150151 150161 150171 150181 * GUARD 150191 150201 150211 *	0 3 0 4 0 5 0 5 0 6 0 7 0 8 - HEATER 0 4 0 5 0 6	7 6 6 7 7 7 8 8 8	1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	.0 .0 .0 .0 .0 .0 .0 .0 .0		1.07E - 2.08E - 6.726E 4.726E 6.725E 2.08E - 1.07E - 6.91E - 5.803E 5.072E 5.826E	$ \begin{array}{c} 1 \\ -2 \\ -2 \\ -2 \\ 1 \\ 1 \\ 2 \\ -1 \\ -1 \\ -1 \\ \end{array} $
150221 150231 150241	0 4 0 5 0 6	8 8 8	0 1 1	2 2 2	0 0 0	0 0 0	.0 .0 .0		5.803E 5.072E 5.826E	-1 -1 -1
150251 150261 150271	0 4 0 5 0 6	8 8 8	0 1 1	2 2 2	0 0 0	0 0 0	.0 .0 .0		5.803E 5.072E 5.826E	-1 -1 -1
*	VOLS	HDML H	IDMR	DHEL D	HER		CHNL	CHI	NR ZBOT	ZTOP
* 150012 150022 150032 150042 150052 150062 150072 150082 150102 150102 150122 150132 150142 150152 150162 150172 150182 * GUARD	4.689E-2 1.179E-2 2.295E-2 2.006E-2 2.295E-2 1.179E-2 4.689E-2 6.878E-2 6.878E-2 6.878E-2 6.090E-4 9.424E-4 1.833E-3 5.930E-4 4.167E-4 5.930E-4 1.833E-3 9.424E-4 6.090E-4 HEATER	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	0.0 9.32E-2 9.32E-2 9.32E-2 9.32E-2 9.32E-2 0.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	5 3E - 2 5 3E - 2	$\begin{array}{c} . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . $	$\begin{array}{c} . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . $.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
150192 150202 150212	4.856E-3 4.245E-3 4.856E-3	.0 .0 .0	.0 .0 .0 [.]	.0 .0 .0	3.5 3.5 3.5	52E - 2 52E - 2 52E - 2	.0 .0 .0	.0 .0 .0	.0 .0 .0	.0 .0 .0
* 150222 150232 150242 * 150252 150252	4.856E-3 4.245E-3 4.856E-3 4.856E-3 4.245E-3	.0 .0 .0 .0	.0 .0 .0 .0	.0 .0 .0 .0	3.5 3.5 3.5 3.5	52E-2 52E-2 52E-2 52E-2 52E-2 52E-2	.0 .0 .0 .0	.0 .0 .0 .0	.0 .0 .0 .0	.0 .0 .0 .0
150272 * * ******** * WALL 7	4.856E-3	.0 RESET	.0 CARI	. 0 D	3.5	52E - 2	.0	.0	.0	.0

* TP(1,XXX) · TP(NODER,XXX)
*

— 151 —

— 152 —

150013 150023 150033 150043 150053 150063 150073 * \$ GUARD H **********	578.500 578.500 592.790 592.790 694.770 601.970 601.970 ** HEATERS N **	0 577.6 0 577.6 0 577.6 0 577.6 0 577.6 0 577.6 0 577.6 0 577.6 10DELED AS R)	00 * IM 00 * UNB 00 * WAN 00 * SIM 00 * WAN 00 * UNB 00 * IM GAMMA HEATE	UNTERPLENUM EHEITZTES TEI D HEIZER ULATOR + WANI D HEIZER EHEITZTES TEI OBERPLENUM D SLABS	IL DHEIZER IL
<pre>* IG7 156019 1 156020 1 156022 1 156023 1 156024 1 156025 1 156026 1 156026 1 156027 1 * * ********************************</pre>	QV 8.66572 8.66572 8.66572 8.66572 8.66572 8.66572 8.66572 8.66572	2E+06 2E+06 2E+06 2E+06 2E+06 2E+06 2E+06 2E+06 2E+06 2E+06			
*********			OFRAG	ODMOD	ODYOD
* 101	עטא מי.		QFRAU	QPMOD	QUMUU
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 7 2 2 7 3 2 7 3 2 7 5 2 7 5 2 7 6 2 7 7 2 7 6 2 7 7 2 7 8 2 7 9 2 7 8 2 7 8 2 7 9 2 7 8 2 7 9 2 7 9 2 7 8 2 7 9 2 7 9 2 7 8 2 7 9 2 7 9 2 7 9 2 7 9 2 7 9 2 7 9 2 7 9 2 7 9<	12 .0 12 .0 10>	1.6E-5 4.85E-5 1.4375E- .36982 1.4375E- 4.85E-5 1.6E-5 1.6E-5	4 4 MASSE	
*	IG NR	IM NDX	X0	XR	PF
* IGH 170101	2 1	1 5	.3424	3.28E-2	.0
* 170201 *	2 1	1 5	.123	3.28E-2	.0

.

					_				
170301 *		1	1	1	5	4.66E-2	3.28E-2	.0	
170401 *		2	1	1	2	3.28E-2	.82E-2	.0	
170501 *		2	1	1	2	3.28E-2	1.64E-2	.0	
170601		2	5	5	3	.0	9.94D-3	1.0	
170602	0			3	2		1.64D-4	.0	
170603	0			2	3		5.085D-3	.0	
170604	0 0			3	2		3.281D-5	.0	
170605	0 0			4	2		2 /20=3	.0	
*	U			4	5		2.420 5	.0	
170701		2	5	7	3	.0	9.94D-3	1.0	
170702	0			3	2		1.64D-4	.0	
170703	0			2	3		5.085D-3	.0	
170704	0			3	2		3.281D-5	. 0	
170705	0			4	3		2.42D-3	.0	
*	Ū			-	5		2.420 5	.0	
170801		2	5	2	3	.0	8.46D-3	.0	
170802	0			1	3		1.21D-3	.5	
170803	0			6	3		2.31D-3	.0	
170804	0			1	3		1.31D-3	. 0	
170805	0 0			7	3		3 28D-3	5	
*	Ŭ			,	5		3.200 3		
170901 *		2	1	1	2	4.43D-2	2.13D-2	.0	
171001		2	1	1	2	3.28D-2	3.28D-2	.0	
*		IG	NR	IM	NDX	XO	XR	\mathbf{PF}	
* ()	IGP)	****	****	*****		/e zie zie zie zie zie zie zie zie zie zi	ור שה שנה שנה שנה שנה שנה שנה שנה שנה שנה	****	***
\$ MATER	IAL	- 1	.= S	TAHL	4571				
\$ MATER	IAL	- 2	= A	L203	NACH H	ERSTELLER			
\$ MATER	IAL	- 3	= H	ELIUN	[
\$ MATER	IAL	- 4	= Z	IRCAI	юY				
\$ MATER	IAL	- 5	= 0	RAPHI	Т				
\$ MATER	IAL	- 6	= B	ORNIT	RID (N.	ACH VOLLMER 9.	5 % DER THEOF	RETISCHEN DICHTE	I)
\$ MATER	IAL	- 7	= C	U					
*****	****	***	****	****	******				
*						*****************	*****	נר שלב	***
• • • • • • • •						יאָפאראראראראראראראראראראראראראי י	******	י אינ או	**
* MATER	IAL :	= 1	- 2	TAINI	ESS ST	eel Type 4571	******	* ** ** ** ** ** ** ** ** ** ** ** ** *	***
* MATER	IAL : IAL :	= 1 = 2	- S - A	TAINI L203	ESS ST	************** EEL TYPE 4571 ING TO THE MAN	**************************************	`````````````````````````````````````	**
* MATER* MATER* MATER	IAL : IAL : IAL :	= 1 = 2 = 3	- S - A - H	TAINI L2O3 ELIUN	ESS ST ACCORD	EEL TYPE 4571 ING TO THE MAN	**************************************	******************************	**
 MATER MATER MATER MATER 	IAL = IAL = IAL = IAL =	= 1 = 2 = 3 = 4	- S - A - H - Z	TAINI L2O3 ELIUN IRCAI	LESS ST ACCORD I LOY	EEL TYPE 4571 ING TO THE MAN	**************************************	******************************	**
 MATER MATER MATER MATER MATER MATER 	IAL = IAL = IAL = IAL = IAL =	= 1 = 2 = 3 = 4 = 5	- S - A - H - Z - C	TAINI L2O3 ELIUN IRCAI RAPHI	JESS ST ACCORD I JOY TE	EEL TYPE 4571 ING TO THE MAI	**************************************	* ** ** ** ** ** ** ** ** ** ** ** ** *	÷.+
 MATER MATER MATER MATER MATER MATER MATER MATER 	IAL : IAL : IAL : IAL : IAL : IAL :	= 1 = 2 = 3 = 4 = 5 = 6	- S - A - H - Z - G	TAINI L2O3 IELIUN IRCAI GRAPHI	ESS ST ACCORD OY TE NITRID	EEL TYPE 4571 ING TO THE MAI	**************************************	**************************************	CH
 * MATER 	IAL = IAL = IAL = IAL = IAL = IAL =	= 1 = 2 = 3 = 4 = 5 = 6 = 7	- S - A - H - Z - G - E - C	TAINI L2O3 ELIUN IRCAI RAPHI SORON	ESS ST ACCORD OY TE NITRID	EEL TYPE 4571 ING TO THE MAI E (NACH VOLLMI	**************************************	**************************************	
 MATER MATER MATER MATER MATER MATER MATER MATER MATER 	IAL = IAL = IAL = IAL = IAL = IAL = IAL =	= 1 = 2 = 3 = 4 = 5 = 6 = 7	- S - A - H - Z - C - E - O	TAINI L2O3 ELIUN IRCAI RAPHI ORON OPPEF	ESS ST ACCORD OY TE NITRID	EEL TYPE 4571 ING TO THE MAI E (NACH VOLLMI	**************************************	THEORETISCHEN D	[CH
 MATER MATER MATER MATER MATER MATER MATER MATER MATER ******** 	IAL = IAL = IAL = IAL = IAL = IAL =	= 1 = 2 = 3 = 4 = 5 = 6 = 7	- S - A - H - Z - G - E - O	TAINI L203 ELIUN IRCAI RAPHI CORON COPPEF	LESS ST ACCORD LOY TE NITRID	EL TYPE 4571 ING TO THE MAI E (NACH VOLLMI	**************************************	**************************************	•** [CH
 MATER MATER MATER MATER MATER MATER MATER * MATER * ***********************************	IAL = IAL = IAL = IAL = IAL = IAL = ****	= 1 = 2 = 3 = 4 = 5 = 6 = 7 ***	- S - A - H - Z - G - E - O	TAINI L203 ELIUN IRCAI RAPHJ CORON COPPER	ESS ST ACCORD OY TE NITRID	EL TYPE 4571 ING TO THE MAI E (NACH VOLLMI	**************************************	**************************************	:
* MATER * MATER * MATER * MATER * MATER * MATER * MATER * * ****** * * *******	IAL = 1 IAL = 1 IAL = 1 IAL = 1 IAL = 1 ***** AL C	= 1 = 2 = 3 = 4 = 5 = 6 = 7 ***	- S - A - H - Z - G - E - C ****	TAINI L2O3 EELIUN IRCAI RAPHI ORON COPPER	DESS ST: ACCORD LOY TE NITRID XXXXXXX DATA C	EEL TYPE 4571 ING TO THE MAI E (NACH VOLLMI ***************	**************************************	**************************************	:** [CH **
 MATER THERM FUER 	IAL == IAL == IAL == IAL == IAL == ***** AL C ***** HELI	= 1 = 2 = 3 = 4 = 5 = 6 = 7 ****	- S - A - H - Z - G - E - C ****	TAINI L2O3 ELIUN IRCAI RAPHJ ORON OPPEF	LESS ST ACCORD LOY TE NITRID CATA C.	EEL TYPE 4571 ING TO THE MAI E (NACH VOLLM ***********************************	********** NUFACTURER ER 95 % DER 1 *********	**************************************	:CH **
 MATER MATER MATER MATER MATER MATER MATER ************************************	IAL IAL IAL IAL IAL IAL XXXXXXXXXXXXXXXX	= 1 = 2 = 3 = 4 = 5 = 6 = 7 **** OND UM	- S - A - H - Z - G - E - C ****	TAINI L2O3 ELIUN IRCAI RAPHI ORON OPPER *****	DESS ST: ACCORD LOY TE NITRID ******* DATA C. VON 0.	ARDS	************* NUFACTURER ER 95 % DER 1 ************************************	THEORETISCHEN DI	1G2
 MATER MATER MATER MATER MATER MATER MATER MATER * *<!--</td--><td>IAL IAL IAL IAL IAL IAL X X X X X X X X X X X X X X X X X X X</td><td>= 1 = 2 = 3 = 4 = 5 = 6 = 7 **** OND UM M A E P</td><td>- S - A - F - Z - G - E - C - E - C - E - C - Z UCTI ZUSC</td><td>TAINI L203 ELIUN IRCAI CRAPHI CORON COPPER ***** VITY CUITY CHLAG</td><td>DESS ST ACCORD OY TE NITRID DATA C. VON 0. S CONT</td><td>EL TYPE 4571 ING TO THE MAI E (NACH VOLLM ***********************************</td><td>*********** NUFACTURER ER 95 % DER 1 ************************************</td><td>THEORETISCHEN DI</td><td>1G2</td>	IAL IAL IAL IAL IAL IAL X X X X X X X X X X X X X X X X X X X	= 1 = 2 = 3 = 4 = 5 = 6 = 7 **** OND UM M A E P	- S - A - F - Z - G - E - C - E - C - E - C - Z UCTI ZUSC	TAINI L203 ELIUN IRCAI CRAPHI CORON COPPER ***** VITY CUITY CHLAG	DESS ST ACCORD OY TE NITRID DATA C. VON 0. S CONT	EL TYPE 4571 ING TO THE MAI E (NACH VOLLM ***********************************	*********** NUFACTURER ER 95 % DER 1 ************************************	THEORETISCHEN DI	1G2
 MATER MATER MATER MATER MATER MATER MATER * *	IAL IAL IAL IAL IAL IAL XXXXXXXXXXXXXXXX	= 1 = 2 = 3 = 4 = 5 = 6 = 7 = 7 = 7 = 7 = 7 = 0 ND UM UM M A F R	- S - A - F - Z - C - E - C - E - C - E - C - Z UCTI ZUSC N AL	TAINI L203 ELIUN TRCAI RAPHI CORON COPPER ***** VITY CHLAG DITIC TION	DESS ST ACCORD LOY TE NITRID DATA C. VON 0. S CONT	EEL TYPE 4571 ING TO THE MAI E (NACH VOLLM ***********************************	*********** NUFACTURER ER 95 % DER 7 ************************************	THEORETISCHEN DI	1GS
 MATER MATER MATER MATER MATER MATER MATER MATER ************************************	IAL IAL IAL IAL IAL IAL XXXXX AL C XXXXX HELI L ELIU SE O	= 1 = 2 = 3 = 4 = 5 = 6 = 7 %*** OND UM M A F R	- S - A - F - Z - G - E - C - C - C - C - C - C - C - C - Z - C - Z - C - Z - C - Z - Z - Z - Z - Z - Z - Z - Z - Z - Z	TAINI L203 ELIUN IRCAL RAPHJ ORON OPPEF ***** VITY HLAG DITIC	DESS ST ACCORD J OY TE NITRID ATA C VON 0. S CONT	EEL TYPE 4571 ING TO THE MAI E (NACH VOLLM ARDS 04 W/MK AUF 01 24 W/M*K TO TI RIBUTION	*********** NUFACTURER ER 95 % DER 7 ************************************	THEORETISCHEN DI	1GS
 MATER MATER MATER MATER MATER MATER MATER MATER ********* THERM ********* FUER ANTEI FOR H BECAU * 	IAL IAL IAL IAL IAL IAL **** AL C **** HELI L ELIU SE O NKP	= 1 = 2 = 3 = 4 = 5 = 6 = 7 %*** OND UM M A F R TPK	- S - A - F - Z - G - F - C - C - C - C - C - C - C - C - C - C	TAINI L203 ELIUN IRCAI SORON COPPER WWW CUITY CHLAG DDITIC TION	DESS ST ACCORD OY TE NITRID DATA C. VON 0. S CONT	EEL TYPE 4571 ING TO THE MAN E (NACH VOLLM ARDS 04 W/MK AUF 01 04 W/MK AUF 01 RIBUTION	**************************************	THEORETISCHEN DI	ICH **
 MATER MATER MATER MATER MATER MATER MATER MATER MATER THERM THERM FOR H BECAU 180100 180101 	IAL IAL IAL IAL IAL IAL IAL ***** AL C **** HELI L ELIU SE O NKP -11	= 1 = 2 = 3 = 4 = 5 = 6 = 7 %*** OND UM M A F R TPK 212 2	- S - A - H - Z - C - C - C - C - C - C - C - C - C - C	TAINI L203 ELIUN IRCAI GRAPHI OORON COPPER WWWY CVITY CHLAG DDITIC TION	LESS ST ACCORD JOY TE NITRID ATA C. VON 0. S CONT S CONT 2. 10.	EEL TYPE 4571 ING TO THE MAI E (NACH VOLLM ARDS 04 W/MK AUF 0 04 W/MK AUF 0 04 W/MK TO TH RIBUTION 34 572. 11.12	**************************************	CHEORETISCHEN DI CHEORETISCHEN DI CHEORE	ICH ** JGS

180200 -13 80.33 11.16 260.33 8.46 440.33 6.12 620.33 4.59 800.33 3.58 180201 980.33 2.92 1160.33 2.36 1340.33 1.95 1520.33 1.64 1610.33 1.57 180202 1790.33 1.44 2060.33 1.398 2420.33 1.49 180300 -12 80. .0894 440. .1278 800. .1618 1160. .2044 1520. .2335 180301 1880. .2668 2240. .2988 2600. .3243 2960. .3549 3320. .3794 180302 3680. .4039 4040. .4282 180400 -8 80.6 7.61 440.6 9.1 800.6 10.42 1160.6 11.8 1520.6 13.5 180401 1880.6 15.76 2240.6 18.81 2600.6 22.89 180500 -15 32.0 67.19 392. 53.75 752. 47.03 1112. 38.97 1472. 33.59 180501 1832. 29.56 2192. 26.87 2552. 23.52 2912. 21. 3272. 19.48 3632. 180502 16.8 3992. 15.45 4352. 14.5 4712. 13.44 5072. 12.77 180600 1 212. 12.13 180700 -3 176.0 22.76 968.0 21.43 1994.0 19.06 s.J.a ***** \$ VOLUMETRIC HEAT CAPACITY DATA CARDS **** * NCP TPC1 190100 -11 212. 55.82 392. 60.7 572. 63.38 752. 65.7 932. 67.45 1112. 190101 68.9 1292. 71.17 1472. 74.42 1652. 79.07 1832. 86.63 2372. 111.63 190200 -9 62.6 45.64 440.6 59.26 800.6 64.82 1160.6 68.28 1520.6 70.48 190201 1880.6 71.78 2240.6 72.42 2600.6 72.42 2960.6 72.42 190300 -8 80. .3814 440. .2293 800. .1643 1160. .128 1520. .1048 190301 1880. .0888 2240. .0769 5000. .0769 190400 -12 80.6 28.26 260.6 29.18 440.6 30.08 620.6 31.0 800.6 31.9 190401 980.6 32.81 1160.6 33.72 1340.6 34.63 1466.6 35.19 1664.6 83.49 190402 1808.6 35.27 2600.6 35.27 190500 -9 62.6 13.49 440.6 24.83 800.6 30.31 1160.6 34.32 1520.6 37.48 190501 1880.6 40.03 2240.6 42.09 2600.6 43.71 2960.6 45.0 190600 -13 212. 30.83 392. 37.99 572. 43.72 752. 48.07 932. 51.03 1112. 190601 53.43 1292. 55.67 1472. 57.61 1652. 59.27 1832. 60.62 2012. 61.61 190602 2192. 62.47 2372. 62.95 190700 -3 68.0 50.67 1112.0 58.76 1832.0 64.17 *

.

ANHANG B

DRUFAN02 INPUT ZU TFD-EXPERIMENT V207

***** * COSIMA V207 POST CALCULATION DRUFAN02/M2 17.9.84 * * FEINE NODAL DER PLENA (5 KNOTEN) & ABBLASELEITUNGEN * * ===> RLAP10 LABEL 11/12 ====> 20% OBEN OFFEN * OHNE M-L PFAD MIT RELAP - DRIFT * * DRUFAN POST TEST COSIMA V207/ 17.09.84 / LOWER CLOSED / UPPER 20% OPEN ----*3 NTRIP | DTOA IDL2 IPLO LTIME MZEIT 0.5 Т SETPT | *ITRI IDTR IDSI REF1 REF2 ILAT NVCO DELAY 0 0 40.0 1 0 0.0 0.0 *ITRI| IDAC| * *ITRI | TVCOVA | FVCOVA * *4 IWBER | IPUNC RESTAR VORRE ŀ F F * 4A RESTART TIME = 6 ZEITEN * TPNTWR I 10. 15. 20. 5. 40. 30. 30. 30. * *5 DTU | |IHE/MOODY*45 AN IAUR IAUR1 LRUECK * 3.0 0.0 Т *5 DTU AN IAUR IAUR1 LRUECK |ID-BLASI *48 0.0 3.0 T *6 ITPM *7 IKS ILSIPRIM IWSPIA *8 W.R.T. JUNCTION DATA CARDS * * J | IPRI | ILAR | ILA | ILE | IKAE | JDPA | JWDP |

* *9	20 21 22 23 24 25 26 27 28 29 I	4 4 5 5 -1 -1 -1 -1 1 2 3 4 5	1 10 1 22 1 23 1 13 1 19 1 20 5 23 5 24 6 0 6 0 IPRIA 10 10 10 10 10 10 10 10 10 10	6 22 2 23 3 24 3 19 9 20 0 21 1 0 4 0 0 25 0 26 1 5 3 6 5 3	2 0 2 0 2 2 1 1	1 2 1 2 3 3 1 1	3 1 1 3 1 1 1 1 1		
**************************************	J	 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	HH 1.44: 0.0 0.0 1.44: 1.	RLDF2 1.694730 2.850204 1.801561 2.850204 1.801561 2.850204 1.801561 2.850204 1.801561 2.850204 1.801561 2.9.504241 2.889456 8.307903 8.906072 9.504241 9.296544 2.9.504241 9.296544 2.9.504241 2.9.504241 2.9.504241 2.9.504241 2.9.504241 2.9.296544 2.30204 1.801561 2.850204 1.801561 2.02643 4.559461 4.812764 2.02643 4.559461 4.812764 2.279730 2.279730 2.279730	 4D7 5D2 6D3 5D2 2D7 2D7 7D7 7D7 7D7 7D7 7D7 7	ZETAFV 2.948444 0.0 0.0 0.0 1.961036 0.0 8.839609 0.0 8.839609 0.0 8.839609 0.0 4.296779 0.0 4.296779 0.0 0.0 1.349556 0.0 0.0 1.349556 0.0 0.0 1.349556 0.0 0.0 1.418499 5.066067 4.517270 1.418499 5.066067 0.0 0.0	64D6 66D5 96D5 96D5 95D6 91D6 92D7 98D6 9 D6 7D7 98D6 9 D6 7D7	ZETAFR 1.3495561D6 0.0 0.0 0.0 4.2967795D6 0.0 8.8396096D5 0.0 8.8396096D5 0.0 8.8396096D5 0.0 8.8396096D5 0.0 1.9610364D6 0.0 0.0 2.948444 D6 0.0 0.0 9.9455117D6 1.418499 D6 5.0660677D7 9.9455117D6 1.418499 D6 5.0660677D7 0.0 0.0	AKWLA 0.9999 0.361 0.101 0.361 0.101 3.6D-05 0.4888 0.5 0.5327 0.5 0.4664 0.5 0.5112 0.99996 0.8989 0.6387 1.74D-6 0.361 0.101 1.45D-6 0.44444 0.526 1.45D-6 0.44444 0.526 1.0 1.0
* *11	J		ITGZ	IDACT	1	IPROP	I	l	I
*12	J	28 28 28 28	TGZ 0.0 0.2	4 GZ1 2 1.4 2 0.4	2 442 442	GZ2	0 0. 0. 0.	·	
*13	J	28 28	100. ITHZ	0.0	J		0.		
*14	J	20	THZU	HZU1	I	HZU2	1		

— 157 —

*1 *1	1 J 2 J 3 J	28 28 29 29 29 29 29 29 29 29 29 29 29	ITGZ TGZ 10 ITHZ	0.0 100. 4 0.0 0.2 0.22 00. 0.2	1.36196 1.36196 IDACT GZ1 -1. -1. 0. 0.	D+6 D+6 2 442 442 0 0	IPROP GZ2	0.0 0.0 0 0. 0. 0. 0. 0.		I		I
*1 *	4 J		THZU	Ī	HZU1	Ì	HZU2					
* *3 *	V 3* I UNTER	OLUM I PLENUI	DATA CAF AFW M	rds 	IGKE	1	IGKA	1	LFS	ł	NTTDV	I
*	TFSTS	1 2 3 4 5 TRECKI	8.65902 2.71716 4.11871 2.71716 8.65902	2D-03 5D-02 1D-02 5D-02 2D-02		0 0 -4 0		0 0 23 0 0		0 0 0 0		0 0 0 0
		6 7 8 9 10 11 12 13	4.7566 4.7566 4.7566 4.7566 4.7566 4.7566 4.7566 4.7566	52D-4 52D-4 52D-4 52D-4 52D-4 52D-4 52D-4 52D-4 52D-4		0 0 0 0 0 0		0 0 0 0 0 0		0 0 0 0 0 0		0 0 0 0 0 0
* (OBERP	LENUM 14 15 16 17 18 LTGE	8.65902 2.71716 4.11716 2.71716 8.65902	2D-03 5D-02 5D-02 5D-02 2D-02		0 0 16 0		0 0 20 0 0		0 0 0 0 0		0 0 0 0 0
-11	CTAT.	19 20 21 22 23 24	3.1415 3.1415 3.1415 3.1415 3.1415 3.1415	59D-4 59D-4 59D-4 59D-4 59D-4 59D-4 59D-4		0 0 0 0 0		0 0 0 0 0		0 0 0 0 0		0 0 0 0 0
	JIAI	25 26	5.7255 5.7255	56D-4 56D-4		28 17		1 -29		0 0		0 0
*3/ * 1	4 I UNTER	 PLENUI	HH 1	I	TU	I	VAU	1	QS	1	HZ	I
÷.	ሮጥቦክ	1 2 3 4 5			304 304 0 0 0	.72 .72 .0 .0 .0	2.21 1.3586 3.295 1.3586 2.21	D-04 D-03 D-03 D-03 D-03 D-04		0. 0. 0. 0.	1.41 1.4 1.5 1.5 1.61	445 522 172 822 995
., ,	UINEU	6 7 8			0 0 0	.0	1.3010 1.3604 1.3604)0D-4 ⊧0D-4 ⊧0D-4		0. 0. 0.	1.76 2.0 2.3	945 492 352

'n

	9		0.0 1	.1801550D-4	· 0.	2,6032	
	10		0.0 1	.1801550D-4	0.	2.8532	
	11		0.0	1.36040D-4	0.	3.1212	
	12		0.0	1.36040D-4	0.	3.4072	
	13		0.0	1.30100D-4	0.	3.68695	
* OBE	ERPLENUM						
	14		0.0	2.21 D-04	0.	3.83645	
	15		0.0	1.3586D-03	0.	3.8742	
	16		0.0	3.295 D-03	0	3.9392	
	17		304.72	1.3586D-03	Ο.	4.0042	
	18		304.72	2.21 D-04	0.	4.04195	
* UN	VTERE BLD	LEITG					
	19		230.00	2.51000D-4	0.	1.5172	
	20		230.00	3.14200D-4	0.	1.0272	
	21		230.00	0.50000D-3	0.	0.5372	
* OE	BERE BLD	LEITG					
	22		230.00	2.51000D-4	0.	3.9392	
	23		230.00	3.14000D-4	0.	3.4492	
	24		230.00	0.50000D-3	0.	2.9592	
* STA	AT. STUTZ	EN					
	251	5900635.43	304.72	1.71800D-4	0.	1.5172	
	26		.0	1.71800D-4	0.	3.9392	
*							
*34 I	CIME DEPE	NDENT VOLUM					
**	I	IDACT					
*							
*35	W.R.T. J	UNCTION DAT	'A CARDS			•	
77	J [FF1	FF2	FFM	DIAM1	DIAM2	
	1	5.72555D-4	4.11871D-2	5.72556D-4	0.0270	0.229	
	2	4.11871D-2	2.71716D-2	2.71716D-2	0.229	0.186	
	3	2.71716D-2	8.65902D-3	8.65902D-3	0.186	0.105	
	4	4.11871D-2	2.71716D-2	2.71716D-2	0.229	0.186	
	5	2.71716D-2	8.65902D-3	8.65902D-3	0.186	0.105	
	6	8.65902D-3	4.75662D-4	4.75662D-4	0.105	1.33D-2	
	7	4.75662D-4	4.75662D-4	4.75662D-4	1.33D-2	1.33D-2	
	8	4.75662D-4	4.75662D-4	4.75662D-4	1.33D-2	1.33D-2	
	9	4.75662D-4	4.75662D-4	4.75662D-4	1.33D-2	1.33D-2	
	10	4.75662D-4	4.75662D-4	4.75662D-4	1.33D-2	1.33D-2	
	11	4.75662D-4	4.75662D-4	4.75662D-4	1.33D-2	1.33D-2	
	12	4.75662D-4	4.75662D-4	4.75662D-4	1.33D-2	1.33D-2	
	13	4.75662D-4	4.75662D-4	4.75662D-4	1.33D-2	1.33D-2	
	14	4.75662D-4	8.65902D-3	4.75662D-4	1.33D-2	0.105	
	15	8.65902D-3	2.71716D-2	8.65902D-3	0.105	0.186	
	16	2./1/16D-2	4.11871D-2	2./1716D-2	0.186	0.229	
	1/	4.118/1D-2	5./2555D-4	5./2555D-4	0.229	0.02/	
	18	4.118/1D-2	2./1/16D-2	2./1/16D-2	0.229	0.186	
	19	2./1/16D-2	8.65902D-3	8.659020-3	0.186	0.105	
	20	4.118/1D-2	3.14159D-4	3.14159D-4	0.229	0.02000	
	21	3.141590-4	3.14159D-4	3.141590-4	0.0200	0.0200	
	22	3.14139D=4	- 3.14159D-4	3.14159D-4	0.0200	0.0200	
	23	4.118/1D-2	2 14159D-4	3.14159D-4	0.229	0.0200	
	24	3.14139D-4	> 3.14159D-4	3.14159D-4	0.0200	0.0200	
	40	3.14139D=4	3.14159D=4	3.14139D-4	0.0200	0.0200	
	20	3.14159D-4	<pre>/.909/6D=5 /.909/6D=5</pre>	7.909/6D-5	0.0200	0.0100	
*	27	5.14159D-4	· /.909/6D-2	1.909/6D-2	0.0200	0.0100	
*	20	E 705555 /	5 70555 5 5	C 705555 /	0 0070	0 0070	
*	20	5.14335D=4		5./2555U-4	0.0270	0.02/0	
*251		3./2335U=4	→ ⊃./2555D=5	5.725550-4	0.0270	0.0270	
* JJA			A 1 T A	TTT I	1		
~	J I	A1	AILA	нь			

--- 159 ----

	1	264.76356	0.9895	1.5172	
	2	1.8912562	0.5135	1.4772	
	3	2.3925313	0.38456	1.4272	
	4	1.8912562	0.5135	1.5572	
	5	2.3925313	0.38456	1.6072	
	6	288.96651	0.00509	1.6327	
	/	588.12//	0.4888	1.9062	
	8	601.26729	0.5	2.1922	
	10	505,34253	0.5335	2.4/82	
	11	543 36349	0.5	2./202	
	12	505.54255 601 26720	0.40042	2.9/02	
	13	588 1277	0.5	3 5502	
	14	288.96651	0.9949	3.8237	
	15	2.3925313	0.61544	3.8492	
	16	1.8912562	0.4865	3.8992	
	17	264.76356	0.0105	3.9392	
	18	1.8912562	0.5135	3.9792	
	19	2.3925313	0.38456	4.0292	
* BLD. 1	LTG				
	20	1276.0206	0.00217	3.9392	
	21	2864.7914	0.44444	3.9392	
	22	3023.9464	0.5263	2.9592	
	23	1276.0206	0.00217	1.5172	
	24	2864.7914	0.44444	1.5172	
	25	3023.9464	0.5263	0.5372	
* BREAK	0.6	00// 701/	1 0	0 5070	
	26	2864.7914	1.0	0.5372	
* FIII	27	2004./914	1.0	2.9592	
	28	261 9835	0 0	1 5172	
	29	261,9835	0.0	3,9392	
*			0.00	017072	
*45 ISH	ENTROP	HOM AUSSTR	DEMMODEL =F(DC5/IAUR & FLD)
* J		FLD			•
*	23	-1.0			
*	24	-1.0			
*46 =F	(DC45)	& DC5 MOOD	Y-MODELL		
* PMIN	<	PMAXK	XMINK	XMAXK	
* 1 +/7 7()	.D+05	170.D+05	0.0	1.0	
π4/ =⊮(ľ -	100DY).	>OUTPUT			
*	1				
	ד עפיד-בינע	ארש האר	TNITTION		
* 1	101-100	TRLAS			
5	26	1			
	27	1			
*		-			
*49 FL	AECHE (OUTSIDE THE	BREAK / GEG	ENDRUCKVERLAUF	AM BREAK
* J	1	IPG	FPG		
	26	2	5.D-3		
*50 J		TPG	PG		
	26	0.0	1.D+5		
+10	26	100.0	1.D+5		
749 DRU	JCKVERI	LAUF /GEGEN	DRUCK AM BRE.	AK	
" J		IPG	FPG		
*50 T	27	2 TPC 1	5.D~3		
- JU J	ł	11.0	PG		

27 0.0 1.D+5 27 100.0 1.D+5 *51 TYPE-3; TYPE-5 FLOW-PATH DESCRIPTION | FV | A1V | ZETAVV | AKMUV 26 7.90976D-5 252.9 5.0661D+7 1 * J 1. *51 TYPE-3; TYPE-5 FLOW-PATH DESCRIPTION | FV | A1V | ZETAVV | 27 7.90976D-5 252.9 5.0661D+7 AKMUV * J 5.0661D+7 1. *52 TYPE-3; TYPE-5 FLOW-PATH DESCRIPTION | IREF | IDACT | IPROP 26 2 2 J 0 *54 TYPE-3; TYPE-5 FLOW-PATH DESCRIPTION; VALVE /UNTERPLENUM BREAK
 I TREF
 REF1
 REF2
 I

 26
 0.0
 0.0
 0.0

 26
 100.
 0.0
 0.0
 * J *52 TYPE-3; TYPE-5 FLOW-PATH DESCRIPTION | IREF | IDACT | IPROP 27 6 2 * J 0 *54 TYPE-3; TYPE-5 FLOW-PATH DESCRIPTION; VALVE/OBERPLENUM BREAK
 TREF
 REF1
 REF2
 1

 27
 0.0
 0.0
 0.0
 J 0.2 0.0 27 0.0 0.29 0.20 27 0.0 0.20 27 40.0 0.0 2740.090.0027100.00.00 0.0 0.0 *55 TYPE-5 FLOW-PATH VALVE--> NORMALIS. ZETA = F(NORM. FLAECHE) * J | IREV | 26 4 . L. *56 TYPE-3; TYPE-5 FLOW-PATH DESCRIPTION; VALVE | REV | REZEV | 26 1. 1. 4 J 1. 4. 26 0.5 20. 26 0.2 0.01 1000. 26 *55 TYPE-5 FLOW-PATH VALVE--> NORMALIS. ZETA = F(NORM. FLAECHE) * IREV J 27 4 * *56 TYPE-3; TYPE-5 FLOW-PATH DESCRIPTION; VALVE | REV | REZEV | * J 27 1. 1. 27 0.5 4. 27 0.2 20. 0.01 1000. 27 *57 TYPE-5 FLOW-PATH VALVE--> NORMALIS. INERTIA = F(NORM. FLAECHE) ÷ J | IREB | 26 4 4 *58 TYPE-3; TYPE-5 FLOW-PATH DESCRIPTION; VALVE * J REFB REB 26 1. 1. 26 0.5 2. 26 0.2 5. 26 0.01 100. *57 TYPE-5 FLOW-PATH VALVE--> NORMALIS. INERTIA = F(NORM. FLAECHE) * J | IREB · |

27 4 *58 TYPE-3; TYPE-5 FLOW-PATH DESCRIPTION; VALVE * J | REFB | REB | 1. 27 1. 27 0.5 2. 27 0.2 5. 27 0.01 100. *58A * QGAMMA 1 *59 EVAPORATION/CONDENSATION CORRELATION USED/ SIDEMANN & PLESSET * IGVK 1 *62 DEFAULT WERTE EINGESETZT FUER EVAPORATION/CONDENSATION CORRELATIONEN * PSISV | PSISK | PSIPV | UBWO | UTDO | ZB | 1.0 1.0 1.0 0.15 0.15 5.0D+9 * * ZT | ALFSV | BETASV | ALFSK | BETASK | AKWB 1.0D-6 1.0D-6 1.0D-6 1.0D-6 5.0D+9 0.1 * * | ANK ANR AKWT AND AFAK 0.1 1.0 0.0 0.0 1.0 ** *63 WERTE FUER PHASENGRENZFLAECHEN / PER VOLUM + VOLUMS DER PHASENTRENN. * CMUEV 1 | 2 | 3 | 4 | 5 | 6 | 1.0 *64 WERTE FUER PHASENGRENZFLAECHEN / PER VOLUM + VOLUMS DER PHASENTRENN. * CMUEK1 | 2 | 3 | 4 | 5 | 6 | 1.0 *65 WERTE FUER FLUTEN * CMUEK2 | 2 | 3 | 4 5 | 6 1.0*66 PROMPTE ODER VERZOEGERTE WAERMEFREISETZUNG * ETA 5 1 2 3 4 t ____I 6 0.0 *67 VOLUM DATA CARDS / DEF M-L TRACK /--> NO M-L TRACK =F(DC 7 IWSPIA) * I | IWSK| IWPF| IZTY| IWO | IWO | JWSP| | | | | -2 0 0 0 1 1 1 2 1 -2 0 0 0 2 -2 0 3 1 0 0 3 4 1 -2 · 0 0 0 4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -				5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26					
*68 J * J	UNCTION	JFLOW	RDS	DL	I	SINUS	I	SLIP	1		I
	1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	JILOW	-1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.7 0.186 0.105 0.186 0.105 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.3	D-2 D-2 D-2 D-2 D-2 D-2 D-2 D-2 D-2 D-2	51NU5	I 0.0 1.0	2715	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0$		
* BLD	LTG		,	0.0	D 0				0.0		
* 511	20 21 22 23 24 25 26 27	'NI	-1 -1 -1 -1 -1 -1 -1 -1	2.0 2.0 2.0 2.0 2.0 1.0 1.0	D-2 D-2 D-2 D-2 D-2 D-2 D-2 D-2 D-2		0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.0 0.0 0.0 0.0 0.0 0.0 0.0		
LIP	L 31012E	11	~1	2.7	D-2		0.0		0.0		
*68A * J	29 JUNCTIO	NS WITH JCOIB	-1 DRIFT 	2.7 > RE JCOB	U-2 LAP	CORREL JDROP	U.O ATION	COSLUG	v.0	KISLUG	
	2		12		U		S		υ.		υ.

****	*****	3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19	15 15 15 15 15 15 15 15 15 15 15 15 15 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
*69 *	VOLUM T	DATA	CARDS	ит.п	1		I	l I	ŀ
*	T	1	1.4272	1.4017	I	•	I	1	ł
*		2	1.4772	1.4272					
** ~~		3	1.5572	1.4772					
~ *		4 5	1.6072	1.6072					
*		6	1.9062	1.6327					
*		7	2.1922	1.9062					
*		8	2.4782	2.1922					
~ *		10	2.7282	2.4/82					
**		11	3.2642	2,9782					
sh sh		12	3.5502	3.2642					
*		13	3.8237	3.5502					
*		14 15	3.8492	3.823/					
*		16	3.9792	3.8992					
*		17	4.0292	3.9792					
*		18	4.0547	4.0292					
*		19	0.0	0.0					
*		20	0.0	0.0					
*		22	0.0	0.0					
*		23	0.0	0.0					
*		24	0.0	0.0					
*		25 26	0.0	0.0					
*			0.0	U.U					
*	IWK	I	ITWS					1	ŀ
*		1	21						
∾/⊥ ☆71	TWK	I	VAINT	нисрт	I	FWSPT	Т		1
*, *	TUN	1	0.0000D+00	1.40	17	7.06900D	-4	0.03	I · · ·
*		1	2.21 D-04	1.42	72	1.54000D	-2	0.14	
*		1	1.5796D-03	1.477	72	3.63000D	-2	0.215	
77 75		1	3.2271D-03	1.517	72	4.191 D	-2	0.231	
*		1 1	4.0740D-03 6.2332D-03	1.55.	12 79	3.03000D 1.54000D	-2	0.215	
*		1	6.4542D-03	1.632	27	7.06900D	-4	0.03	
*						-			
*70	GEOME	TRIE	(VOLUMEN)	UNTERHAI	LB I	ES WASSERS	SPI	EGELS	

* IWK ITWS 1 1 * 15 2 *71 *71 VAUWI | HWSPI | FWSPI | DHYDI | IWK 1.6327 4.75662D-4 * 0.0000D+0 1.33D-2 2 * 6.5843D-3 1.9062 4.75662D-4 1.33D-2 1 * 1 6.72034D-3 2.1922 4.75662D-4 1.33D-2 * 1 6.85638D-3 2.4782 4.75662D-4 1.33D-2 * 16.9743955D-3 4.75662D-4 1.33D-2 2.7282 2.9782 4.75662D-4 * 1.33D-2 17.0924110D-3 * 3.2642 4.75662D-4 1.33D-2 17.2284510D-3 * 1.33D-2 4.75662D-4 17.3644910D-3 3.5502 * 3.8237 7.06900D-4 0.03 17.4945910D-3 ÷. 3.8492 1.54000D-2 0.14 17.7155910D-3 ÷ 3.8992 3.63000D-2 0.215 19.0741910D-3 * 3.9392 4.19100D-2 0.231 11.0723491D-2 * 3.9792 3.63000D-2 0.215 11.2369191D-2 * 4.0292 11.3727791D-2 1.54000D-2 0.140 * 11.3948791D-2 4.0547 7.06900D-4 0.05 * *70 GEOMETRIE (VOLUMEN) UNTERHALB DES WASSERSPIEGELS * IWK 1 ITWS 1 1 * 2 2 *71 =F(70) * IWK HWSP FWSP DHYDI VAUWI * 2 Ο. * 2 Ο. *72 ? VAPOUR IM SYSTEM ? F=NO, T=Y * COBWR | | | 1 l 1 F *73 * GZMAS | GZVAU GALF1 | GALF2 0.D+00 1.D+00 1.D-02 5.D-04 *75 -77 DEFAULT WERTE FUER RECHEN-TIME-STEPS *75 75 Τ | HO | EPS | ECKS | GRESCH HMAX 0.0 1.0D-06 2.0D-05 1.000D-04 1.0D-08 5. *76 GLIMH | * GLIMP | GLIMG | GLIMX | CLIMU 1.0D00 1.0D00 1.0D-02 1.0D-04 1.D00 **☆**77 *IMP | IMH | IMG | IMX | T = IMPLIZIT / F = NO IMPLIZIT - INTEGRATION Т Т Т T *78 * NIMAX | TIMPL | EPSIM DTAV 0.01 1.00D-03 120 * *79 TIME STEPS FOR REFILL(CMUEK DC64; 65) AND * BB CC I DD EE AA 0.D+0 10.D+10 10.D+10 1.0 *80 INPUT FOR REWETTING * FF GG 00 1 PP QQ 0.0 0.0D+00 0.0 *81 OUTPUT CONTROL * IPANZ 18 *82 OUTPUT * IPLAR · |

* * ********** LEFT CONDUCTOR 1 (VOLUM1) *************** *88 HEAT TRANSFER CORRELATIONS 4 *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | -2 *90 * MHV| NKSL| NKSR|NGEOR| N2 | N3 |MATL1|MATL2|MATL3|ALP| 2 | 3 | 4 | -1 1 1 0 1 0 0 0 0 1 0 <u>بار</u> *91 GEOMETRIE * PARTIT 1 3 4 5 6 2 0.0525 0.02 <u>.</u>... *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 3 | 4 HLENGT ļ 0.0255 30000. 5. 0.0255 * *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE <u>ب</u>د WLF 1 | WLF 2 | WLF 3 | CPL 1 | CPL 2 CPL 3 0.0 0.0 0.0 0.0 0.0 0.0 RHOL 1 | RHOL 2 | RHOL 3 | ATTL 1 | ATTL 2 | ATTL 3 | 0.0 0.0 0.0 0.0 0.0 0.0 * *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL TDNBR DTDNBL DTDNBR DHYL DHYR | 0.5 1000. 1000. 0.5 0.105 0.145 * *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | DTRNBL ł DTRNBR 1000.0 1000.0 2.0 2.0 * *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU 0.0 0.0 1.4272 1.4017 * * * * *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | *ICHF| -2 0 Ω 1 1 Ω *90 * MHV| NKSL| NKSR|NGEOR| N2 | N3 |MATL1|MATL2|MATL3|ALP| 2 | 3 | 4 |

2 2 0 1 0 0 -1 0 0 1 0 <u>بار</u> *91 GEOMETRIE * PARTIT 1 | 2 | 3 | 4 | 5 | 6 0.093 0.02 ميايد *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | 4 | HLENGT | 0.05 30000. 0.05 5. * *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE

 *
 WLF 1
 |
 WLF 2
 |
 WLF 3
 |
 CPL 1
 |
 CPL 2
 |
 CPL 3
 |

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 *
 RHOL 1
 |
 RHOL 2
 |
 RHOL 3
 |
 ATTL 1
 |
 ATTL 2
 |
 ATTL 3
 |

 0.0 0.0 0.0 0.0 0.0 0.0 * *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR |
 1000.
 1000.
 0.5
 0.186
 0.226
 * *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR 1 1000.0 1000.0 2.0 2.0 * *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | 0.0 0.0 1.4772 1.4272 * * *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 0 1 0 -2 1 0 *9N * MHV| NKSL| NKSR|NGEOR| N2 | N3 |MATL1|MATL2|MATL3|ALP| 2 | 3 | 4 | 3 3 0 1 0 0 -1 0 0 1 0 *91 GEOMETRIE * PARTIT 1 | 2 | 3 | 4 | 5 | 6 0.1145 0.02 *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | 4 | HLENGT | 5. 0.08 30000. 0.08 4 *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE * WLF 1 | WLF 2 | WLF 3 | CPL 1 | CPL 2 | CPL 3 | 0.0 0.0 0.0 0.0 0.0 0.0 RHOL 1 | RHOL 2 | RHOL 3 | ATTL 1 | ATTL 2 | ATTL 3 | ميليه 0.0 0.0 0.0 0.0 0.0 0.0 يار. *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR |

- 168 ----

1000. 1000. 0.5 0.5 0.229 0.269 * *96 LATEST TIME OF REWETTING 1 * TWBAL | TWBAR | TWBER | TFBR 1 I 1000.0 1000.0 2.0 2.0 <u>.</u> *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | [0.0284 1.5572 1.4772 0.0 -1-* * ********* LEFT CONDUCTOR 4 (VOLUM4) *************** *88 HEAT TRANSFER CORRELATIONS <u>_</u>___ *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 0 1 0 -2 1 0 *9N * MHV | NKSL | NKSR | NGEOR | N2 | N3 | MATL1 | MATL2 | MATL3 | ALP | 2 | 3 | 4 | 4 4 0 1 0 0 -1 0 0 1 0 * *91 GEOMETRIE * PARTIT 1 | 2 | 3 | 4 | 5 | 6 | 0.093 0.02 * *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH 3 | 4 | HLENGT | * AORXL | HTCL 1 | 2 | 0.050 0.050 30000. 5. ᆢ *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE

 *
 WLF 1
 |
 WLF 2
 |
 WLF 3
 |
 CPL 1
 |
 CPL 2
 |
 CPL 3
 |

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 *
 RHOL 1
 |
 RHOL 2
 |
 RHOL 3
 |
 ATTL 1
 |
 ATTL 2
 |
 ATTL 3
 |

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 * *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER
* TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR |
1000. 1000. 0.5 0.5 0.186 0.226
* * *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR 1 1 1 1000.0 1000.0 2.0 2.0 * *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | 0.0 0.0284 1.6072 1.5572 * * * ********** LEFT CONDUCTOR 5 (VOLUM 5) ************** *88 HEAT TRANSFER CORRELATIONS - بار-*88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC | ICHF |

0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | - 1 1 0 -2 0 1 0 *90 * MHV| NKSL| NKSR|NGEOR| N2 | N3 |MATL1|MATL2|MATL3|ALP| 2 | 3 | 4 | 5 5 0 1 0 0 -1 0 0 1 0 * *91 GEOMETRIE 3 4 * PARTIT 1 | 2 5 1 6 1 0.02 0.0525 <u>بار</u> *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH يار. AORXL | HTCL 1 | 2 | 3 | 4 HLENGT 1 0.0255 30000. 5. 0.0255 <u>.</u> *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE WLF 1 | WLF 2 | WLF 3 | CPL 1 | CPL 2 * | CPL 3 1 0.0 0.0 0.0 0.0 0.0 0.0 * RHOL 1 | RHOL 2 | RHOL 3 | ATTL 1 | ATTL 2 | ATTL 3 0.0 0.0 0.0 0.0 0.0 0.0 * *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR 1000. 1000. 0.5 0.5 0.0105 0.145 .<u>.</u>. *96 LATEST TIME OF REWETTING TWBAL | TWBAR | TWBER | TFBR * 1000.0 1000.0 2.0 2.0 * *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | 0.0 0.0 1.6327 1.6072 ** * * *********** LEFT CONDUCTOR 6 (VOLUM 6) ************** *88 HEAT TRANSFER CORRELATIONS *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 0 1 0 -2 1 0 *90 * MHV| NKSL| NKSR|NGEOR| N2 | N3 |MATL1|MATL2|MATL3|ALP| 2 | 3 | 4 | 0 -1 0 0 1 0 6 6 0 1 0 4 *91 GEOMETRIE * PARTIT 1 | 2 · | 3 | 4 5 6 1

0.0142 0.02 * *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | 4 | HLENGT | 0.2735 30000. 5. 0.2735 يار *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE

 * WLF 1
 WLF 2
 WLF 3
 CPL 1
 CPL 2
 CPL 3
 0.0

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 * RHOL 1
 RHOL 2
 RHOL 3
 ATTL 1
 ATTL 2
 ATTL 3
 0.0

 * *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR | 1000. 1000. 0.5 0.5 0.0133 0.07 *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR 1000.0 1000.0 2.0 2.0 * *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | | 0.0 0.0 1.9062 1.6327 10 * ******** LEFT CONDUCTOR 7 (VOLUM 7) ************ *88 HEAT TRANSFER CORRELATIONS ** *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 1 1 0 -2 1 0 0 *90 * MHV | NKSL | NKSR | NGEOR | N2 | N3 | MATL1 | MATL2 | MATL3 | ALP | 2 | 3 | 4 | 7701 0 0 -1 0 0 1 Ω ** *91 GEOMETRIE * PARTIT 1 | 2 | 0.0142 0.02 5 3 4 6 *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | 4 HLENGT 0.286 30000. 0.286 5. * *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE * WLF 1 | WLF 2 | WLF 3 | CPL 1 | CPL 2 | CPL 3 1 0.0 0.0 0.0 0.0 0.0 0.0 يد. *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR 1000. 1000. 0.5 0.5 0.0133 0.07 *

*96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR 1 1 1000.0 1000.0 2.0 2.0 * *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | 0.0 0.0 2.1922 1.9062 * * * ************** LEFT CONDUCTOR 8 (VOLUM 8) ************** *88 HEAT TRANSFER CORRELATIONS *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 1 1 0 -2 1 0 0 *90 * MHV| NKSL| NKSR|NGEOR| N2 | N3 |MATL1|MATL2|MATL3|ALP| 2 | 3 | 4 | 8 8 0 1 0 0 -1 0 0 1 * *91 GEOMETRIE *91 GEOMETRIE * PARTIT 1 | 2 0.0142 0 | 3 | 4 | 5 | 6 - 1 0.02 0.0142 *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | 4 | HLENGT 1 0.286 30000. 0.286 5. ÷. *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE * WLF 1 | WLF 2 | WLF 3 | CPL 1 | CPL 2 | CPL 3 | 0.0 * 0.0 0.0 0.0 0.0 0.0 0.0 * *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR 1000. 0.5 0.5 0.0133 0.07 1000. بار *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR 1 1000.0 1000.0 2.0 2:0 * *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | | 0.0 0.0 2.4782 2.1922 * * * ******** LEFT CONDUCTOR 9 (VOLUM 9) ************ *88 HEAT TRANSFER CORRELATIONS *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF |

*88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 1 | 1 0 -2 0 1 0 *90 * MHV| NKSL| NKSR|NGEOR| N2 | N3 |MATL1|MATL2|MATL3|ALP| 2 | 3 | 4 | 9 9 0 1 0 0 -1 0 0 1 0 * *91 GEOMETRIE * PARTIT 1 | 1 3 | 4 | 5 1 6 - 1 2 0.02 0.0142 *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | | HLENGT 4 30000. 5. 0.25 0.25 * *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE * WLF 1 | WLF 2 | WLF 3 | CPL 1 | CPL 2 CPL 3 0.0 0.0 0.0 0.0 0.0 0.0 RHOL 1 | RHOL 2 | RHOL 3 | ATTL 1 | ATTL 2 | ATTL 3 * 0.0 0.0 0.0 0.0 0.0 0.0 * *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR 1 0.5 0.07 0.0133 1000. 1000. 0.5 .<u>!</u>~ *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR ļ 1000.0 1000.0 2.0 2 0 -1-*97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | - 1 0.0 0.0 2.7282 2.4782 * * * ********* LEFT CONDUCTOR 10 (VOLUM 10) ************** *88 HEAT TRANSFER CORRELATIONS *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC ICHF 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 0 1 0 -2 1 0 l l 1 ***** *90 * MHV | NKSL | NKSR | NGEOR | N2 | N3 | MATL1 | MATL2 | MATL3 | ALP | 2 | 3 | 4 | 0 -1 0 0 1 10 10 0 1 0 0 *91 GEOMETRIE 2 . | 3 4 5 * PARTIT 1 6 1

0.0142 0.02 بير *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH AORXL | HTCL 1 | 2 | 3 | 4 | HLENGT * 0.25 30000. 5. 0.25 * *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE
 WLF 1
 WLF 2
 WLF 3
 CPL 1
 CPL 2
 CPL 3

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 RHOL 1
 RHOL 2
 RHOL 3
 ATTL 1
 ATTL 2
 ATTL 3
 1 * 0.0 * ATTL 3 0.0 .0.0 0.0 0.0 0.0 0.0 <u>با</u>ر. *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR | 0.5 0.5 0.0133 0.07 1000. 1000. 4 *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR 1000.0 1000.0 2.0 2.0 * *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | 0.0 0.0 2.9782 2.7282 * * * **************** LEFT CONDUCTOR 11 (VOLUM 11) *************** *88 HEAT TRANSFER CORRELATIONS * *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2| 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 1 1 0 -2 1 0 0 **** *90 * MHV | NKSL | NKSR | NGEOR | N2 | N3 | MATL1 | MATL2 | MATL3 | ALP | 2 | 3 | 4 | 11 11 0 1 0 0 -1 0 0 1 4 *91 GEOMETRIE 2 * PARTIT 1 3 | 4 | 5 1 6 1 0.0142 0.02 * *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH 3 * AORXL | HTCL 1 | 2 | 4 HLENGT 5. 0.286 0.286 30000. * *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE * WLF 1 | WLF 2 | WLF 3 | CPL 1 | CPL 2 | CPL 3 0.0 0.0 0.0 0.0 0.0 0.0 RHOL 1 | RHOL 2 | RHOL 3 | ATTL 1 | ATTL 2 | ATTL 3 | * 0.0 0.0 0.0 0.0 0.0 0.0 * *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR · | TFBL | TFBR | DHYL | DHYR - 1

1000. 1000. 0.5 0.5 0.0133 0.07 ماره *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR | 1 1 2.0 1000.0 1000.0 2.0 .<u>!</u>. *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | 0.0 0.0 3.2642 2.9782 1 2.9782 * * *88 HEAT TRANSFER CORRELATIONS * *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 1 2 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 0 1 0 -2 1 0 *90 * MHV| NKSL| NKSR|NGEOR| N2 | N3 |MATL1|MATL2|MATL3|ALP| 2 | 3 | 4 | 12 12 0 1 0 0 -1 0 0 1 0 s.La *91 GEOMETRIE * PARTIT 1 | 2 | 3 | 4 | 5 | 0.0142 0.02 6 1 0.02 * *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | HLENGT 4 0.286 30000. 5. 0.286 * *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE
 * WLF 1
 WLF 2
 WLF 3
 CPL 1
 CPL 2
 CPL 3
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 * RHOL 1 | RHOL 2 | RHOL 3 | ATTL 1 | ATTL 2 | ATTL 3 | 0.0 0.0 0.0 0.0 0.0 0.0 * *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR | 1000. 1000. 0.5 0.5 0.0133 0.07 * *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR 1 2.0 1000.0 1000.0 2.0 مير *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | 0.0 0.0 3.5502 3.2642 1 * * * ******** LEFT CONDUCTOR 13 (VOLUM 13) *************** *88 HEAT TRANSFER CORRELATIONS 77 *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF |

0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | 0 1 0 -2 1 0 ***** *90 * MHV| NKSL| NKSR|NGEOR| N2 | N3 |MATL1|MATL2|MATL3|ALP| 2 | 3 | 4 | * *91 GEOMETRIE * PARTIT 1 | 2 | 0.0142 0.02 2 3 1 4 5 | 6 1 1 *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | 4 | HLENGT 0.2735 30000. 5. 0.2735 * *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE * WLF 1 | WLF 2 | WLF 3 | CPL 1 | CPL 2 | CPL 3 0.0 0.0 0.0 0.0 0.0 0.0 RHOL 1 | RHOL 2 | RHOL 3 | ATTL 1 | ATTL 2 | ATTL 3 0.0 0.0 0.0 0.0 0.0 0.0 * *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR 1000. 1000. 0.07 0.5 0.5 0.0133 * *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR 1 1000.0 1000.0 2.0 2.0 20 *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | 3.8237 0.0 0.0 3.5502 * * OBERPLENUM *88 HEAT TRANSFER CORRELATIONS مار *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC 2 3 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | 0 -2 0 1 1 Ω *90 * MHV | NKSL | NKSR | NGEOR | N2 | N3 | MATL1 | MATL2 | MATL3 | ALP | 2 | 3 | 4 | 14 14 0 1 0 0 -1 0 0 1 0 <u>.</u>.... *91 GEOMETRIE * PARTIT 1 2 3 4 5 6 Ì 0.0525 0.02 4
```
*92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH
* AORXL | HTCL 1 | 2 | 3 | 4 | HLENGT |
   0.0255 30000.
                               5.
                                                           0.0255
*93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE

      * WLF 1
      WLF 2
      WLF 3
      CPL 1
      CPL 2
      CPL 3

      0.0
      0.0
      0.0
      0.0
      0.0
      0.0

      * RHOL 1
      RHOL 2
      RHOL 3
      ATTL 1
      ATTL 2
      ATTL 3

      0.0
      0.0
      0.0
      0.0
      0.0
      0.0

*
*95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER
* TDNBL | TDNBR | DTDNBL | DTDNBR | DHYL | DHYR |
1000. 1000. 0.5 0.5 0.105 0.145
*
*96 LATEST TIME OF REWETTING
* TWBAL | TWBAR | DTRNBL | DTRNBR |
1000.0 1000.0 2.0 2.0
                                                                  1.
*97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS
* QTHRU | TL | HCO | HCU |
0.0 0.0 3.8492 3.8237
                                                                  ļ
مإر
1.
*
* ********* LEFT CONDUCTOR 15 (VOLUM15)**************
1
*88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS
*IHTC|ICHF |
   0 0
*88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS
*IHTC| 2 | 3 |
   2 1 1
*89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX
*ICHF| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | |
 0
         1
              0 -2
                                Δ
*9Λ
* MHV | NKSL | NKSR | NGEOR | N2 | N3 | MATL1 | MATL2 | MATL3 | ALP | 2 | 3 | 4 |
 15 15 0 1 0 0 -1 0 0 1
                                                        Ω
*
*91 GEOMETRIE
* PARTIT 1 | 2 | 3 | 4 | 5 | 6 |
0.093 0.02
*92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH
*92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH
* AORXL | HTCL 1 | 2 | 3 | 4 | HLENGT |
   0.05 30000.
                                                          0.05
                               5.
.
*93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE
* WLF 1 | WLF 2 | WLF 3 | CPL 1 | CPL 2 | CPL 3 |
0.0 0.0 0.0 0.0
                                                          0.0
*
*95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER
* TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR |
        1000. 0.5
                                0.5 0.186 0.226
  1000.
*
*96 LATEST TIME OF REWETTING
* TWBAL | TWBAR | TWBER | TFBR |
```

1000.0 1000.0 2.0 2.0 * *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | 0.0 0.0 3.8992 3.8492 * * * *********** LEFT CONDUCTOR 16 VOLUM(16)************** *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC |ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC 2 3 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 1 0 -2 1 0 *90 * MHV| NKSL| NKSR|NGEOR| N2 | N3 |MATL1|MATL2|MATL3|ALP| 2 | 3 | 4 | 16 16 0 1 0 0 -1 0 0 1 ÷ *91 GEOMETRIE * PARTIT 1 | 2 0.1145 0 3 4 5 6 0.02 0.1145 * *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | 4 | HLENGT | 0.08 30000. 0.08 5. * *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE * WLF 1 | WLF 2 | WLF 3 | CPL 1 | CPL 2 | CPL 3 1 0.0 0.0 0.0 0.0 0.0 0 0 RHOL 1 | RHOL 2 | RHOL 3 | ATTL 1 | ATTL 2 | ATTL 3 | * 0.0 0.0 0.0 0.0 0.0 0.0 1 *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR 0.5 0.5 0.229 0.269 1000. 1000. * *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR 1 2.0 1000.0 1000.0 2.0 * *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS 1 * QTHRU | TL | HCO | HCU 1 0.0 0.0 3.9792 3.8992 * * * *********** LEFT CONDUCTOR 17(VOLUM17)*************** *88 HEAT TRANSFER CORRELATIONS * *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | |

0 1 0 -2 1 0 ***** *90 * MHV| NKSL| NKSR|NGEOR| N2 | N3 |MATL1|MATL2|MATL3|ALP| 2 | 3 | 4 | 17 17 0 1 0 0 -1 0 0 1 0 * *91 GEOMETRIE * PARTIT 1 | 2 | 3 | 4 | 5 | 6 | 0.093 0.02 *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | 4 | HLENGT | 0.050 30000. 0.050 5. * *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE * WLF 1 | WLF 2 | WLF 3 | CPL 1 | CPL 2 | CPL 3 | 0.0 0.0 0.0 0.0 0.0 0.0 RHOL 1 | RHOL 2 | RHOL 3 | ATTL 1 | ATTL 2 | ATTL 3 | 0.0 0.0 0.0 0.0 0.0 0.0 × *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR | 0.5 1000. 1000. 0.5 0.186 0.226 * *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR | 1000.0 1000.0 2.0 2.0 25 *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | | 0.0 0.0 4.0292 3.9792 مارد <u>.</u> *88 HEAT TRANSFER CORRELATIONS -1-*88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2| 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | 0 1 0 -2 1 0 **************** *90 * MHV| NKSL| NKSR|NGEOR| N2 | N3 |MATL1|MATL2|MATL3|ALP| 2 | 3 | 4 | 18 18 0 1 0 0 -1 0 0 1 0 ميليد *91 GEOMETRIE * PARTIT 1 | 0.0525 2 3 | 4 | 5 | 6 1 0.02 <u>بار</u> *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | 4 | HLENGT | 0.0255 30000. 5. 0.0255 <u>بار</u> *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE * WLF 1 | WLF 2 | WLF 3 | CPL 1 | CPL 2 | CPL 3 |

0.0 0.0 0.0 0.0 0.0 0.0 RHOL 1 | RHOL 2 | RHOL 3 | ATTL 1 | ATTL 2 | ATTL 3 | * 0.0 0.0 0.0 0.0 0.0 0.0 * *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR | 1000. 1000. 0.5 0.5 0.0105 0.145 * *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR 1 1 1000.0 1000.0 2.0 2.0 * *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | 0.0 0.0 4.0547 4.0292 1 * * ********* LEITUNGEN ********** * ********** LEFT CONDUCTOR 19 (VOLUM25) **************** *88 HEAT TRANSFER CORRELATIONS *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC 2 3 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2| 3 | 4 | 5 | 6 | 7 | 8 | 9 | | J I 1 0 -2 0 1 *90 * MHV| NKSL| NKSR|NGEOR| N2 | N3 |MATL1|MATL2|MATL3|ALP| 2 | 3 | 4 | 19 25 0 1 0 0 -1 0 0 1 0 يار. *91 GEOMETRIE * PARTIT 1 | 2 0.0135 0.0065 2 3 4 5 6 * *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | 4 | HLENGT | 0.300 30000. 5.0 0.0 0.0 0.300 * *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE

 *
 WLF 1
 WLF 2
 WLF 3
 CPL 1
 CPL 2
 CPL 3
 1

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 *
 RHOL 1
 RHOL 2
 RHOL 3
 ATTL 1
 ATTL 2
 ATTL 3
 1

 0.0 0.0 0.0 0.0 0.0 0.0 * *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER
* TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR |
1000. 1000. 0.5 0.5 0.027 0.040 * *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR 1000.0 1000.0 2.0 1 2.0 *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU TL HCO HCU | 1

0.0 0.0 1.5307 1.5037 * * ********** LEFT CONDUCTOR 20 (VOLUM26) **************** *88 HEAT TRANSFER CORRELATIONS *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2| 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | | 0 1 0 -2 1 0 ***** *90 * MHV| NKSL| NKSR|NGEOR| N2 | N3 |MATL1|MATL2|MATL3|ALP| 2 | 3 | 4 | 20 26 0 1 0 0 -1 0 0 1 0 * *91 GEOMETRIE * PARTIT 1 | 2 | 3 | 4 | 5 | 6 | 0.0135 0.0065 مار *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | 4 | HLENGT | 0.300 30000. 5.0 0.0 0.0 0.30 مار *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE

 * WLF 1
 WLF 2
 WLF 3
 CPL 1
 CPL 2
 CPL 3

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 * RHOL 1
 RHOL 2
 RHOL 3
 ATTL 1
 ATTL 2
 ATTL 3

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 * *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR | 1000. 0.5 0.5 0.027 1000. 0.040 * *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR 1000.0 1000.0 2.0 2.0 * *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | I 0.0 0.0 3.9527 3.9257 * * *88 HEAT TRANSFER CORRELATIONS * *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX | | *ICHF| 2| 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1

0 1 0 -2 1 0 *90 * MHV | NKSL | NKSR | NGEOR | N2 | N3 | MATL1 | MATL2 | MATL3 | ALP | 2 | 3 | 4 | 21 19 0 1 0 0 -1 0 0 1 0 * *91 GEOMETRIE * PARTIT 1 2 3 4 5 6 1 0.005 0.01 * *92 GEOMETRIE/ HEAT TRANSFER CUEFFIGIENI / LENGIN * AORXL | HTCL 1 | 2 | 3 | 4 | HLENGT 0.800 30000 5.0 0.0 0.0 0.0 *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH 0.800 * *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE WLF 1 | WLF 2 | WLF 3 | CPL 1 | CPL 2 | CPL 3 | 5 0.0 0.0 0.0 0.0 0.0 RHOL 1 | RHOL 2 | RHOL 3 | ATTL 1 | ATTL 2 | ATTL 3 | * 0.0 0.0 0.0 0.0 0.0 0.0 * *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR | 0.5 0.5 0.02 0.03 1000. 1000. ** *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR 1 1 1000.0 1000.0 2.0 2.0 * *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | 0.0 1.5272 0.0 1.5072 * *88 HEAT TRANSFER CORRELATIONS * *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 0 1 0 -2 1 0 1 1 1 **** *9N * MHV| NKSL| NKSR|NGEOR| N2 | N3 |MATL1|MATL2|MATL3|ALP| 2 | 3 | 4 | 22 20 0 1 0 0 -1 0 0 1 0 * *91 GEOMETRIE * PARTIT 1 | 2 | 3 | 4 | 5 | 6 | 0.010 0.005 * *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | 1.0 30000. 5.0 0.0 4 HLENGT 0.0 1.0 4 *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE * WLF 1 | WLF 2 | WLF 3 | CPL 1 | CPL 2 | CPL 3 |

0.0 0.0 0.0 0.0 0.0 0.0 RHOL 1 | RHOL 2 | RHOL 3 | ATTL 1 | ATTL 2 | ATTL 3 | 0.0 0.0 0.0 0.0 0.0 0.0 * *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR | 1000. 1000. 0.5 0.5 0.02 0.030 * *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR | 1000.0 1000.0 2.0 2.0 * *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | 0.0 0.0 1.5272 .5272 I ŝ *88 HEAT TRANSFER CORRELATIONS * *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2| 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | | 0 1 0 -2 1 0 **** *90 * MHV| NKSL| NKSR|NGEOR| N2 | N3 |MATL1|MATL2|MATL3|ALP| 2 | 3 | 4 | 23 21 0 1 0 0 -1 0 0 1 0 ميلي. *91 GEOMETRIE * PARTIT 1 | 2 | 3 | 4 | 5 | 6 0.010 0.005 1 يار. *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | 4 | HLENGT 0.9 30000. 5.0 0.0 0.0 0.9 0.9 ÷. *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE

 *
 WLF 1
 |
 WLF 2
 |
 WLF 3
 |
 CPL 1
 |
 CPL 2
 |
 CPL 3
 |

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 *
 RHOL 1
 |
 RHOL 2
 |
 RHOL 3
 |
 ATTL 1
 |
 ATTL 2
 |
 ATTL 3
 |

 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4 *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR 1000. 1000. 0.5 0.5 0.02 0.0 0.030 * *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR 1000.0 1000.0 2.0 1 2.0 * *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | | 0.0 0.0 1.5472 .5272 1 . te

* * * ********* LEFT CONDUCTOR 24 (VOLUM22) ************** *88 HEAT TRANSFER CORRELATIONS *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | 1 0 -2 1 0 0 ***** *90 * MHV| NKSL| NKSR|NGEOR| N2 | N3 |MATL1|MATL2|MATL3|ALP| 2 | 3 | 4 | 24 22 0 1 0 0 -1 0 0 1 * *91 GEOMETRIE * PARTIT 1 | 2 | 3 | 4 | 5 | 6 0.01 0.005 - 1 * *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | 4 | HLENGT | 0.800 30000. 5.0 0.0 0.0 0.800 * *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE 1 * WLF 1 | WLF 2 | WLF 3 | CPL 1 | CPL 2 | CPL 3 0.0 0.0 0.0 0.0 0.0 0.0 55 *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR 0.02 0.03 1000. 1000. 0.5 0.5 بيليه *96 LATEST TIME OF REWETTING TWBAL | TWBAR | TWBER | TFBR 1 1000.0 1000.0 2.0 2.0 مايه *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU 1 0.0 0.0 3.9492 3.9292 * *88 HEAT TRANSFER CORRELATIONS * *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2| 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | 0 1 0 -2 1 0 *****

*90 * MHV| NKSL| NKSR|NGEOR| N2 | N3 |MATL1|MATL2|MATL3|ALP| 2 | 3 | 4 | 25 23 0 1 0 0 -1 0 0 1 0 * *91 GEOMETRIE * PARTIT 1 2 3 4 5 6 0.010 0.005 * *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | 4 | HLENGT 1.0 30000. 5.0 0.0 0.0 1.0 *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE

 * WLF 1
 WLF 2
 WLF 3
 CPL 1
 CPL 2
 CPL 3

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 * RHOL 1
 RHOL 2
 RHOL 3
 ATTL 1
 ATTL 2
 ATTL 3

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 * *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER
 * TDNBL
 TDNBR
 TFBL
 TFBR
 DHYL
 DHYR
 DHYR
 0.030

 1000.
 0.5
 0.5
 0.02
 0.030
 0.030
 * *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR | 1000.0 1000.0 2.0 2.0 1 1 ste -*97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | 0.0 0.0 3.9492 2.9492 1 * ********** LEFT CONDUCTOR 26 (VOLUM24)*************** *88 HEAT TRANSFER CORRELATIONS ماد *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC ICHF 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 1 0 -2 1 0 0 **** *90 * MHV | NKSL | NKSR | NGEOR | N2 | N3 | MATL1 | MATL2 | MATL3 | ALP | 2 | 3 | 4 | 26 24 0 1 0 0 -1 0 0 1 . *91 GEOMETRIE * PARTIT 1 | 2 | 3 | 4 | 5 | 6 0.010 0.005 <u>.</u> *
*92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH
* AORXL | HTCL 1 | 2 | 3 | 4 | HLENGT
COCCC 5.0 0.0 0.0 0.9 0.9 ميليد *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE * WLF 1 | WLF 2 | WLF 3 | CPL 1 | CPL 2 | CPL 3 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 * RHOL 1 | RHOL 2 | RHOL 3 | ATTL 1 | ATTL 2 | ATTL 3 |

0.0 0.0 0.0 0.0 0.0 0.0 *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR | 1000. 1000. 0.5 0.5 0.02 0.030 * *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR | 1 1000.0 1000.0 2.0 2.0 ** *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | | 0.0 [°]0.0 2.9692 2.9492 ×. ******* WANDHEIZER ANFANG ********** * *88 HEAT TRANSFER CORRELATIONS * *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC | ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2| 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | | 0 1 0 -2 1 0 *90 * MHV| NKSL| NKSR|NGEOR| N2 | N3 |MATL1|MATL2|MATL3|ALP| 2 | 3 | 4 | 27 0 7 1 3 2 -2 -1 -6 0 0 0 1 0 1 يل. *91 GEOMETRIE * PARTIT 1 | 2 | 3 | 4 | 5 | 6 0.00 3.6D-3 0.0 0.4D-3 0.0 1 0.00 3.00 3.00 3.00 5 * *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * HTCL 1 | 2 | 3 | 4 | HLENGT | 0.0 40000. 0.286 1.0D-3 0.286 *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE

 * WLF 1
 WLF 2
 WLF 3
 CPL 1
 CPL 2
 CPL 3
 1

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 * RHOL 1
 RHOL 2
 RHOL 3
 ATTL 1
 ATTL 2
 ATTL 3
 1

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR | 1000. 1000. 0.5 0.5 0.0 0.0133 *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR | 1000.0 1000.0 2.0 2.0 -<u>i</u>r *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL · | HCO | HCU |

0.0 0.0142 2.1922 1.9062 * * * ********** RIGHT CONDUCTOR 28 (VOLUM 8) ***************** *88 HEAT TRANSFER CORRELATIONS * *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF | 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2| 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | | 0 1 0 -2 1 0 *90 * MHV| NKSL| NKSR|NGEOR| N2 | N3 |MATL1|MATL2|MATL3|ALP| 2 | 3 | 4 | 28 0 8 1 3 2 -2 -1 -6 0 0 0 <u>مار</u> *91 GEOMETRIE 0.4D-3 * PARTIT 1 | 2 | 3 | 4 0.00 3.6D-3 0.0 0.4 l 6 0.0 1.0D-3 4 *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | 0.286 0.0 0.0 0.0 4 | HLENGT | 40000. 0.286 *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE
 * WLF 1
 WLF 2
 WLF 3
 CPL 1
 CPL 2
 CPL 3
 CPL 3
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0 RHOL 1 | RHOL 2 | RHOL 3 | ATTL 1 | ATTL 2 | ATTL 3 0.0 0.0 0.0 0.0 0.0 0.0 * *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR | 1000. 1000. 0.5 0.5 0.0 0.0133 * *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR 1 l 1000.0 1000.0 2.0 2.0 * *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | 1 1 0.0142 2.4782 2.1932 0.0 ** * ********** RIGHT CONDUCTOR 29 (VOLUM 9) ************ *88 HEAT TRANSFER CORRELATIONS *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC 2 3 2 1 1

 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX

 *ICHF|
 2
 3
 4
 5
 6
 7
 8
 9
 1

 1 0 -2 1 0 0 ******

- 187 -

*90 * MHV| NKSL| NKSR|NGEOR| N2 | N3 |MATL1|MATL2|MATL3|ALP| 2 | 3 | 4 | 29 0 9 1 3 2 -2 -1 -6 0 0 0 1 1 <u>بار</u> *91 GEOMETRIE * PARTIT 1 | 2 | 3 | 4 | 5 | 6 0.00 3.6D-3 0.0 0.4D-3 0.0 1.0 1.0D-3 4 *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | 4 | HLENGT | 0.25 0.0 0.0 0.0 40000. 0.25 0.0 *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE

 * WLF 1
 WLF 2
 WLF 3
 CPL 1
 CPL 2
 CPL 3

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 * RHOL 1
 RHOL 2
 RHOL 3
 ATTL 1
 ATTL 2
 ATTL 3

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 de. *95LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER* TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR |
1000.1000.0.50.50.0 *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR | 1000.0 1000.0 2.0 2.0 ÷ *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | | 0.0 0.0142 2.7282 2.4782 Т * 5 *88 HEAT TRANSFER CORRELATIONS <u>.</u>. *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC | ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | | 0 1 0 -2 1 Ω ********* ÷90 * MHV | NKSL | NKSR | NGEOR | N2 | N3 | MATL1 | MATL2 | MATL3 | ALP | 2 | 3 | 4 | 30 0 10 1 3 2 -2 -1 -6 0 0 0 1 * *91 GEOMETRIE 3 | 4 0.0 * PARTIT 1 | 2 | 3 0.00 3.6D-3 0.0 4 | 5 0.4D-3 0 | 6 0.0 1.0D-3 ميليه *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | 4 | HLENGT | 0.25 0.0 0.0 0.0 40000. 0.25 -<u>4</u>-*93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE * WLF 1 | WLF 2 · | WLF 3 | CPL 1 | CPL 2 | CPL 3 |

0.0 0.0 0.0 0.0 0.0 0.0 * RHOL 1 | RHOL 2 | RHOL 3 | ATTL 1 | ATTL 2 | ATTL 3 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 * *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR | 1000. 1000. 0.5 0.5 0.0 0.0133 * *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR 1000.0 1000.0 2.0 L 2 0 * *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | 0.0 0.0142 2.9782 2.7282 1 * * * ********* RIGHT CONDUCTOR 31 (VOLUM 11)************** *88 HEAT TRANSFER CORRELATIONS * *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC ICHF 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC 2 3 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | 1 0 -2 1 0 0 **** *90 * MHV | NKSL | NKSR | NGEOR | N2 | N3 | MATL1 | MATL2 | MATL3 | ALP | 2 | 3 | 4 | 31 0 11 1 3 2 -2 -1 -6 0 0 0 * *91 GEOMETRIE 5 | 6 0.0 * PARTIT 1 | 2 | 3 | 4 0.00 3.6D-3 0.0 0.4 4 | 5 0.4D-3 0.0 1.0D-3 - <u>t</u>-*92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | 0.286 0.0 0.0 0.0 4 | HLENGT | 40000. 0.286 0.286 0.0 0.0 0.0 * *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE * WLF 1 | WLF 2 | WLF 3 | CPL 1 | CPL 2 | CPL 3 0.0 0.0 0.0 0.0 0.0 0.0 RHOL 1 | RHOL 2 | RHOL 3 | ATTL 1 | ATTL 2 | ATTL 3 | 0.0 0.0 0.0 0.0 0.0 0.0 * *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR | 1000. 1000. 0.5 0.5 0.0 0.0133 * *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR 1000.0 1000.0 2.0 2.0 ÷ *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU TL · HCO HCU 1

0.0 0.0142 3.2642 2.9782 1 * *********** RIGHT CONDUCTOR 32 (VOLUM 12)************* *88 HEAT TRANSFER CORRELATIONS * *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF 2 3 4 5 6 7 8 9 1 0 -2 0 1 0 **************** *90 * MHV | NKSL | NKSR | NGEOR | N2 | N3 | MATL1 | MATL2 | MATL3 | ALP | 2 | 3 | 4 | 32 0 12 1 2 -2 -1 -6 0 .3 0 0 *91 GEOMETRIE * PARTIT 1 | 2 | 3 | 4 | 5 0.00 3.6D-3 0.0 0.4D-3 0.0 5 | 6 0.0 1.0 1.0D-3 * *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | 4 | HLENGT | 0.286 0.0 0.0 0.0 40000. 0.286 * *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE * WLF 1 | WLF 2 | WLF 3 | CPL 1 | CPL 2 | CPL 3 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 * RHOL 1 | RHOL 2 | RHOL 3 | ATTL 1 | ATTL 2 | ATTL 3 | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 * *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR | 1000. 1000. 0.5 0.5 0.0 0.0133 * *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR 1000.0 1000.0 2.0 1 2 0 * *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS QTHRU | TL | HCO | HCU | 0.0 0.0142 3.5502 3.2642 1 1 * 4 ____SIMULATOR 뇻 . بير. * ********* RIGHT CONDUCTOR 33 (VOLUM 9) ************** *88 HEAT TRANSFER CORRELATIONS 4 *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC | ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | |

- 190 -

0 1 0 -2 1 0 *90 * MHV | NKSL | NKSR | NGEOR | N2 | N3 | MATL1 | MATL2 | MATL3 | ALP | 2 | 3 | 4 | 33 0 9 1 3 2 -5 -2 -4 0 0 0 1 ÷ *91 GEOMETRIE * PARTIT 1 | 2 | 3 | 4 | 5 0.00 0.003 5.0D-05 1.55D-3 - | 6 1.D-5 -7.4D-4 *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | 4 | HLENGT | 0.25 0.0 15000. 25000.0 40000. 0.25 0.25 '0.0 *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE

 * WLF 1
 WLF 2
 WLF 3
 CPL 1
 CPL 2
 CPL 3
 0.0

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0

 * RHOL 1
 RHOL 2
 RHOL 3
 ATTL 1
 ATTL 2
 ATTL 3
 0.0

 4 *95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER * TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR | 1000. 1000. .5 .5 0.0 0.0133 * *96 LATEST TIME OF REWETTING * TWBAL | TWBAR | TWBER | TFBR | 1000.0 1000.0 1002.0 1002.0 4 *97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS * QTHRU | TL | HCO | HCU | 0.0 0.0142 2.7282 2.4782 ÷. * *********** RIGHT CONDUCTOR 34 (VOLUM 10)*************** *88 HEAT TRANSFER CORRELATIONS * *88A CONTROLLER FOR HEAT TRANSFER CORRELATIONS *IHTC|ICHF | 0 0 *88B INPUT IF IHTC =0 / CHOSE HEAT TRANSFER CORRELATIONS *IHTC| 2 | 3 | 2 1 1 *89 DNB-CORRELATION / CORRELATION FOR CRITICAL HEAT FLUX *ICHF| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | | 0 1 0 -2 1 0 1 ******* *90 * MHV | NKSL | NKSR | NGEOR | N2 | N3 | MATL1 | MATL2 | MATL3 | ALP | 2 | 3 | 4 | 34 0 10 1 3 2 -5 -2 -4 0 0 0 *91 GEOMETRIE * PARTIT 1 | 2 | 3 | 4 | 5 | 6 | 0.00 0.003 5.0D-05 1.55D-3 1.D-5 7.4D-4 *92 GEOMETRIE/ HEAT TRANSFER COEFFICIENT / LENGTH * AORXL | HTCL 1 | 2 | 3 | 4 | HLENGT 40000. 15000. 25000.0 0.25 0.0 0.25 يد. *93/94 MATERIAL DATA CARDS --> CONSTANTE MATERIALWERTE * WLF 1 | WLF 2 | WLF 3 | CPL 1 | CPL 2 | CPL 3 |

```
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0

      * RHOL 1
      |
      RHOL 2
      |
      RHOL 3
      |
      ATTL 1
      |
      ATTL 2
      |
      ATTL 3
      |

      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0
      0.0

*
*95 LATEST TIME OF DNB / FILM BOILING ; HYDRAU. DIAMETER
* TDNBL | TDNBR | TFBL | TFBR | DHYL | DHYR |
1000. 1000. .5 .5 0.0 0.0133
4
*96 LATEST TIME OF REWETTING
* TWBAL | TWBAR | TWBER | TFBR |
                                                                  1
    1000.0 1000.0 1002.0 1002.0
*
*97 POWER INPUT; DISTANCE BETWEEN; HEIGHT - OF CONDUCTORS
* QTHRU | TL | HCO | HCU | |
                                                                                    2.9782
    0.0 0.0142
                                            2.7282
*
  *********** SIM- ENDE **********
*
*
*
*
* MATERIAL DATA CARDS F( DC 85/5 )
\pm 103/104 SPECIFIC HEAT = F(T)
* I | NPTS | FNAME |
  1 11CPST4571
*TEMPERATUR | SPEC.HEAT |
         100. 479.95
         200.
                   521.91
                 544.96
         300.
         400.564.90500.579.95
                   592.42
         600.
                   611.94
         700.
                   639.88
         800.
                   679.86
         900.
        900.679.861000.744.861300.959.82
\pm 103/104 SPECIFIC HEAT = F(T)
* I | NPTS | FNAME |
    2 9 CPAL2O3
*TEMPERATUR| SPEC.HEAT |
         17. 805.50
         227.
                  1045.88
         427. 1144.01
                  1205.07
         627.
                  1243.90
         827.
        1027.
                  1266.84
        1227.
                  1278.14
        1427.1278.141627.1278.14
\pm 103/104 SPECIFIC HEAT = F(T)
* I | NPTS| FNAME | = AUS RELAP4/6 EINGABE
   3 8CPHELIUM
*TEMPERATUR| SPEC.HEAT |
         27. 2970.85
                  2946.03
         227.
         427.2938.39627.2939.88
```

827. 2928.55 2933.73 1027. 2930.33 1227. 5914.43 2760. *103/104 SPECIFIC HEAT = F(T) * I | NPTS | FNAME | 4 12CPZIRCAL *TEMPERATUR| SPEC.HEAT | 27. 288.48 127. 297.87 227. 307.05 327. 316.45 [.]325.63 427. 527. 334.92 627. 344.21 727. 353.50 797. 359.22 907. 852.26 987. 360.03 1427. 360.03 *103/104 SPECIFIC HEAT = F(T) * I | NPTS | FNAME | 5 9 CPGRAPH *TEMPERATUR | SPEC.HEAT | 17. 538.52 227. 991.22 427. 1209.98 627. 1370.06 827. 1496.21 1027. 1598.01 1227. 1680.25 1427. 1744.92 1627. 1796.41 $\pm 103/104$ SPECIFIC HEAT = F(T) * I | NPTS | FNAME | 6 13CPBORNIT *TEMPERATUR | SPEC.HEAT | 100. 1088.24 200. 1340.97 300. 1543.23 400. 1696.77 500. 1801.25 600. 1885.97 700. 1965.04 800. 2033.51 900. 2092.11 1000. 2139.76 1100. 2174.71 1200. 2205.06 1300. 2222.01 *103/104 SPECIFIC HEAT = F(T) * I | NPTS | FNAME | **3CPCOPPER** 7 *TEMPERATUR| SPEC.HEAT | 380.54 20. 600. 441.30 1000. 481.93 *105/106 THERMAL-CONDUKTIVITY =F(T)

* I | NPTS | FNAME |

11THST4571 1 *TEMPERATUR| TH. COND. | 100. 16.390 200. 17.896 300. 19.246 400. 20.544 500. 21.790 600. 23.001 700. 24.092 800. 25.303 900. 26.394 1000. 27.501 ⁻30.790 1300. *105/106 THERMAL-CONDUKTIVITY =F(T) * I | NPTS | FNAME | 2 13 THAL203 *TEMPERATUR | TH. COND. | 27. 19.315 127. 14.642 227. 10.592 327. 7.944 427. 6.196 527. 5.054 627. 4.085 727. 3.375 827. 2.838 877. 2.717 977. 2.492 1127. 2.420 1327. 2.579 *105/106 THERMAL-CONDUKTIVITY =F(T) * I | NPTS | FNAME | 3 12THHELIUM *TEMPERATUR | TH. COND. | 27. 0.1547 227. 0.2212 427. 0.2800 627. 0.3538 0.4041 827. 1027. 0.4618 1227. 0.5171 1427. 0.5613 1627. 0.6142 1827. 0.6566 2027. 0.6990 2227. 0.7411 *105/106 THERMAL-CONDUKTIVITY =F(T) * I | NPTS | FNAME | 4 8CPZIRCAL *TEMPERATUR| TH. COND. | 27. 13.171 227. 15.750 427. 18.034 627. 20.423 827. 23.365 1027. 27.276 1227. 32.555 1427. 39.617

*105/106 THERMAL-CONDUKTIVITY =F(T) * I | NPTS| FNAME |

```
15 THGRAPH
*TEMPERATUR | TH. COND. |
        0. 116.290
        200.
                93.027
        400.
                81.396
        600.
                67.447
        800.
                 58.135
       1000.
                51.161
       1200.
                46.505
               40.707
36.345
       1400.
       1600.
       1800.
                33.715
               <sup>-</sup>29.076
       2000.
       2200.
                26.740
       2400.
                 25.096
       2600.
                 23.261
       2800.
                22.101
*105/106 THERMAL-CONDUKTIVITY =F(T)
* I | NPTS | FNAME |
   6 2THBORNIT
*TEMPERATUR | TH. COND. |
       100.
                 20.994
       1300.
                 20.994
*105/106 THERMAL-CONDUKTIVITY =F(T)
* I | NPTS | FNAME |
   7 3CPCOPPER
*TEMPERATUR| TH. COND. |
      80. 39.392
        520.
                 37.090

        520.
        37.090

        1090.
        32.988

*107/108 DENSITY = F(T)
* I | NPTS | FNAME |
   1 2RHST4571
*TEMPERATUR RHO
      1300. 7800.
*107/108 DENSITY = F(T)
* I | NPTS| FNAME |
   2 2 RHAL2O3
*TEMPERATUR RHO
      1627. 2001
*107/108 DENSITY = F(T)
* I | NPTS| FNAME |
   3 8RHHELIUM
*TEMPERATUR | RHO
                    27.
                  8.61
        227.
                  5.22
        427.
                 3.75
        627.
                 2.92
       827.
                 2.40
       1027.
                 2.03
       1227.1.762760.0.872
*107/108 DENSITY = F(T)
* I | NPTS| FNAME |
   4 2RHZIRCAL
*TEMPERATUR | RHO |
```

5

20. 6570. 1427. 6570. *107/108 DENSITY = F(T) * I | NPTS | FNAME | 5 2 RHGRAPH *TEMPERATUR | RHO | 1680. 20. 2800. 1680. *107/108 DENSITY = F(T) * I | NPTS | FNAME | 6 2RHBORNIT *TEMPERATUR | RHO | 1900. 20. 1300. 1900. $\pm 107/108$ DENSITY = F(T) * I | NPTS| FNAME | 7 2RHCOPPER *TEMPERATUR | RHO | 8930. 20. 1000. 8930. *113/114 ENERGY = F(TIME) = F(DC 85/4) * I | NPTS | FNAME | 1 17SCRAMSIM * TIME REL. ENERGY 1.000 0.00 0.32 1.000 0.354 0.65 0.093 0.80 0.0138 1.02 0.0 1.23 0.0 2.66 0.052 2.92 3.14 0.075 3.46 0.092 4.13 0.089 4.94 0.084 8.45 0.084 9.26 0.06 0.0578 20.0 20.1 0.0 100.0 0.0 $\pm 113/114$ ENERGY = F(TIME) = F(DC 85/4) * I | NPTS | FNAME | 2 4SCRAMWAN * TIME |REL. ENERGY| 0.00 1.000 0.15 1.000 0.28 0.000 100.00 0.000 *122 WHICH ROD IS COUPLED WITH WHICH ENERGIE #IROD|NSEGS|IQF1 |IDACT| | 1 2 1 2 *123 WHICH ROD IS COUPLED WITH WHICH ENERGIE *IROD|IZONE| IQF | ROFA| QROD | 1 1 1 1.0 0.0 *124 POWER DENSITY PER ROD-SEGMENT *MHV | SPOW1 | SPOW2 | SPOW3 |

```
33 6.52490D-2 6.52490D-2 6.52490-2
    34 6.52490D-2 6.52490D-2 6.52490-2
*
*122 WHICH ROD IS COUPLED WITH WHICH ENERGIE
*IROD NSEGS IQF1 | IDACT |
                         2
         6
               1
                      2
*123 WHICH ROD IS COUPLED WITH WHICH ENERGIE
*IROD|IZONE| IQF |
                        ROFA
                                   QROD |
    2
        2
                2
                         3.0
                                     0.0
*124 POWER DENSITY PER ROD-SEGMENT
*MHV
        SPOW1
                SPOW2
                           SPOW3
                                        1
    27
        0.2
                   0.2
                               0.2
                               0.2
    28
       0.2
                   0.2
    29
       0.2
                   0.2
                               0.2
    30 0.2
                   0.2
                               0.2
                               0.2
    31 0.2
                   0.2
    32 0.2
                               0.2
                   0.2
*
*
* EINGABE-DATEN FUER DAS EIN- UND AUSSCHALTEN VON GLEICHUNGEN
*
* AUSSCHALTEN DER BLDLTG. AUS DEM UNTERPLENUM
*
*129
*NTOPC
           NTOPCR
*
      NTOPG
                 NTOPGR
*
     3
                0
          4
                      0
     0
          0
                0
                      0
*
*
    BLASIFELD MIT 20 FACHER VERDAMPFUNG GERECHNET
\dot{\pi}
*
                    IHE
                          IMN DAMPF IARD
    ΤP
         IA1
             IHEA
          9
    10
                3
                     5
                           1
                                1
                                        1
÷
      PRESSURE
                 P(I), I=1, IP
 0.2000D+06 0.1500D+07 0.3000D+07 0.5000D+07 0.7500D+07 0.9500D+07
 0.11000D+08 0.12500D+08 0.14000D+08 0.15500D+08
*
      ALFA VALUE A(I), I=1, IA1
 0.10000D-01 0.90000D-01 0.15000D+00 0.20000D+00 0.30000D+00 0.60000D+00
 0.80000D+00 0.90000D+00 0.98000D+00
*
      ENTHALPY
                 H(I), I=1, IHE
 0.7000D+05 0.35000D+05 0.0
                                   -0.30000D+05-0.30000D+06
*IBLAS
     1
         RLT
                                            FF2
                    FLD
                                FF1
                                                        RLB
                                                                     XT.
 0.40000D+00 0.20000D-01 0.31416D-03 0.78540D-04 0.40000D+00 0.20000D-01
  1.4191159787D+03 8.5961770723D+03 1.5551315758D+04 2.4064711930D+04
  3.2981541076D+04
                   3.9218183802D+04 4.3780603691D+04 4.7747010025D+04
  5.1243301190D+04
                   5.4033961759D+04 1.7826167688D+03 1.0297541185D+04
  1.8633587198D+04
                   2.8318969909D+04 3.8141003624D+04
                                                      4.5270122643D+04
  4.9327344833D+04
                   5.4517981844D+04 5.8234429858D+04
                                                       6.1373265875D+04
  3.0497603868D+03
                   1.5869591661D+04 2.6938542700D+04
                                                       3.8764202657D+04
  5.0732169134D+04
                   6.0086155744D+04
                                     6.5362994234D+04
                                                       7.0695211687D+04
  7.5871262419D+04
                   7.9108358229D+04
                                     3.0497603868D+03
                                                       2.4990999821D+04
  3.6867780723D+04
                   5.1920986732D+04
                                     6.3175241682D+04
                                                       7.2289129673D+04
  7.8400542967D+04
                   8.4842599931D+04
                                     8.9451824787D+04
                                                       9.3732616704D+04
  3.0497603868D+03
                   3.2568701326D+04
                                     6.6629017795D+04 8.2650812363D+04
  9.5892464604D+04
                   1.0553906557D+05
                                     1.1120883995D+05 1.1637830610D+05
  1.2109001535D+05 1.2525121038D+05
```

1.4126610689D+03	8.6507465069D+03	1.5520309585D+04	2.3820816499D+04
3.2867359012D+04	3.9061958940D+04	4.3102433959D+04	4.7357004491D+04
5.0898816387D+04	5.4277910737D+04	1,4083522355D+03	8.5155809369D+03
1.5358173586D+04	2.3362241172D+04	3.1915268528D+04	3.8079253829D+04
4.2001756936D+04	4.5654891354D+04	4.8860919996D+04	5.1887432323D+04
1,4009426969D+03	8,4604565621D+03	1.5248839411D+04	2 3109325136D+04
3.1584138731D+04	3.7201222949D+04	4 0995784361D+04	4 4402460954D+04
4.7404698782D+04	5.0333285378D+04	1 4002823596D+03	8 4522600161D±03
1 5202778848D+04	2 2854808776D+04	3 0967674668D±04	3 6437724344D±04
4 0088419864D+04	4 3333378906D+04	6185332779D+04	6 00218/05/5DL0/
1 40886986500+03	8 3383732051D+03	1 /0/8725/07D±04	4,3021049343DT04 2,2000762012D±06
2 9727428203D±04	3 45464499030+04	2 8108220218D±04	4 102007/02913D+04
4 4064428683D+04	4 61/0220027D+04	1 200150220218D+04	4,1029974024D+04
1 3/186695920+04	4.0140320037D+04	2 50427222450104	7.8630632730D+03
3 1385/65508D±0/	2 25001/20250+04	2.50457222650704	2.89049022270+04
1 3663057638D±03	2.33991429330T04 6.070/57979/DL02	1 1208047415D104	3.7206093111D+04
1.3443937430D+03	0.9/943/0/34D+03		1.5/52538909D+04
2.00019035060+04	2.29/1005164D+04	2.504/068411D+04	2.6901076472D+04
2.86460214/6D+04	3.02622949530+04	1.2/51/366/9D+03	5.866145/481D+03
9.194/21264/D+03	1.259/0195900+04	1.6215304335D+04	1.8866816681D+04
2.0774813233D+04	2.26302625410+04	2.44030506470+04	2.6112356367D+04
9.53488881/8D+02	3.1824//2811D+03	. 5,7550892343D+03	8.4284195947D+03
1.1/064/1951D+04	1.4331873320D+04	1.6332844282D+04	2.2630261869D+04
2.4403050337D+04	2.6112356276D+04	1.7810848098D+03	1.0306101186D+04
1.854/3/3/52D+04	2.819/393/96D+04	3.7491791289D+04	4.5258271990D+04
5.0085035041D+04	5.4331667598D+04	5.7954114569D+04	6.1111934646D+04
1./392961332D+03	1.03313570520+04	1.818//9/858D+04	2.7355444164D+04
3.6/9231/40/D+04	4.314136/692D+04	4.7953986330D+04	5.1835899377D+04
5.5186096024D+04	5./24484//0/D+04	1./389123007D+03	1.0248037595D+04
1.8025335411D+04	2.6779686700D+04	3.5912549887D+04	4.1938498098D+04
4.5639965226D+04	4.9318322948D+04	5.2470246971D+04	5.5653145419D+04
1.7507854883D+03	1.0221905639D+04	1.7894434956D+04	2.6279244375D+04
3.4987364921D+04	4.0765434261D+04	4.4567014664D+04	4.7938339323D+04
5.1400923895D+04	5.3408619680D+04	1.7242415224D+03	1.0030052954D+04
1.7094034907D+04	2.5150756333D+04	3.3243331225D+04	3.8260821514D+04
4.1794871528D+04	4.5271705347D+04	4.7898005494D+04	4.9947162265D+04
1.7151057009D+03	9.0243175371D+03	1.4934412353D+04	2.1088208521D+04
2.6855775363D+04	3.0587717543D+04	3.3102665026D+04	3.5364388652D+04
3.7311614962D+04	3.8908283126D+04	1.6502271104D+03	7.6820472882D+03
1.2108724494D+04	1.3793744945D+04	2.0776440845D+04	2.3865860192D+04
2.5920766465D+04	2.7705503888D+04	2.9423965562D+04	3.1086340104D+04
1.4993230384D+03	6.2805336534D+03	8.1925466170D+03	1.3011917717D+04
1.6621953179D+04	1.9264870496D+04	2.1173201943D+04	2.3042500360D+04
2.4810557658D+04	2.6527634168D+04	1.0462996696D+03	3.5044091462D+03
5.8304186725D+03	8.5103246655D+03	1.1782787597D+04	1.4410248051D+04
1.6408414228D+04	2.0422956383D+04	2.4148838362D+04	2.6527632963D+04
3.0231480076D+03	1.5684825473D+04	2.6753657519D+04	3.8738091887D+04
5.1191899440D+04	5.9573758677D+04	6.3781877932D+04	6.9224189363D+04
7.3917043646D+04	7.7607360355D+04	3.0621938342D+03	1.5248442346D+04
2.4770099012D+04	3.5756671969D+04	4.6228250316D+04	5.3433200934D+04
5.8604902372D+04	6.2103963881D+04	6.5775358566D+04	6.8664642579D+04
3.0280692804D+03	1.4366348418D+04	2.4355630138D+04	3.4697752298D+04
4.3445220903D+04	5.0270474432D+04	5.5131736390D+04	5.8442326464D+04
6.1874191647D+04	6.3895202496D+04	3.0244891437D+03	1.4327734400D+04
2.3123202905D+04	3.2947023670D+04	4.2274957024D+04	4.7672034996D+04
5.2401333015D+04	5.5538747457D+04	5.8827653095D+04	6.0793716954D+04
2.8667724805D+03	1.3498801357D+04	2.2143577365D+04	3.0968747840D+04
3.8964235231D+04	4.4055026378D+04	4.7850236732D+04	5.0851602513D+04
5.3037032609D+04	5:4924780869D+04	2.6346411709D+03	1.1183211584D+04

1.7780862901D+04	2.3646482832D+04	2.9397674898D+04	3,2993009674D+04
3.5346382042D+04	3.7512028326D+04	3 9549373080D+04	4.1082302103D+04
2.3382096165D+03	8.68996300330+03	1 3316255590D+04	1 7653833151D±04
2 1807326188D±04	2 47249548920±04	2 68377106760+04	2 850226065010104
3 03906421260±04	2,47249546920+04	2.08577190700+04	2.83932808300+04
1.012250(207D+04	3,1961/86382D+04	2.0412920678D+03	6.7462299508D+03
1.0132504307D+04	1.3510482143D+04	1.7067645913D+04	1.9686649431D+04
2.160214/647D+04	2.3451507814D+04	2.5246192591D+04	2.6965796263D+04
1.1660841469D+03	3.7445973756D+03	5.9108320779D+03	8.5916863785D+03
1.1865984459D+04	1.4491699114D+04	1.6487037997D+04	1.8496546632D+04
2.5246189462D+04	2.6965795170D+04		
3.0730811123D+02	2.1730095041D+03	4.3118278831D+03	7.2390532858D+03
1.1029675379D+04	1.4168633903D+04	1.6633073655D+04	1,9217742987D+04
2.1985237382D+04	2.5008870730D+04	3.1416143586D+02	2.2147157511D+03
4.3916957981D+03	7.3756620083D+03	1 1246106701D+04	1 4455031773D+04
1.6962392944D+04	1 9620672269D+04	2 2473057328D+04	2 5575230263D±04
3 21580378670+02	2 25902387210+03	4 4718775012D+04	7 51/55000000000
1 1/720822/40+0/	1 67200065100406	4.4/10//JJ120+03	7.5145369862D+03
2 20751215100104	1.4739900310D+04	1.73139992280+04	2.00493473020+04
2.23/3131312D+04	2.0201/0000/0+04	1 (0017055(0010)	
1.14092423140+03	8.2294156082D+05	1.6031/25566D+06	2.653/9842/8D+06
3.95638789640+06	4.9759087244D+06	5.7715052681D+06	6.5568017688D+06
7.3434485574D+06	8.1130069856D+06	1.1100859123D+05	7.9591058633D+05
1.5707489234D+06	2.5316250625D+06	3.7331724461D+06	4.6983217329D+06
5.4087915717D+06	6.0946907286D+06	6.7765340516D+06	7.4723298415D+06
9.8305058715D+04	6.9541490900D+05	1.3106980051D+06	2.1316927869D+06
3.1039690058D+06	3.8193535130D+06	4.3464265640D+06	4.8695228579D+06
5.3834753264D+06	5.9480631784D+06	9.8305058715D+04	5.7349850373D+05
1.1102366045D+06	1.7065813052D+06	2.5237815391D+06	3.0869323631D+06
3.4525324339D+06	3.7465994662D+06	4.2118044027D+06	4.5403514499D+06
9.8305058715D+04	1,9045055526D+05	2.9677228205D+05	5.7368099422D+05
1.0339620972D+06	1,3558502950D+06	1 6460648609D+06	1 9293446936D+06
2.15169354190+06	2 41608417630+06	1.04000400090100	1.92934409300100
1 1307765424D+05	8 2941711868D+05	1 611/71520/D+06	2 66154948440+06
3 9732/6102/D+06	5 00983191950+05	5 73/10120/2D+06	6 5647062000DL06
7 34543830400+06	9 1934784460DL06	1 12250510780105	0.384/962099D+06
1 63734/0000+00	2 6740512201D406	1.1323031078D+03	6.2291333463D+05
5 9025/34499090706	2.6749313201D+06	4.0230784217D+06	5.0470602202D+06
3.80234714110+06	6.6306287486D+06	7.5061135074D+06	8.2115269833D+06
1.1320/22/100+05	8.2078553712D+05	1.604/241406D+06	2.6/08635588D+06
4.04548272160+06	5.08415202430+06	5.8628750528D+06	6.7428824063D+06
7.5781437973D+06	8.4958105351D+06	1.1395794879D+05	8.2060419501D+05
1.6392958487D+06	2.7053705060D+06	4.0571208090D+06	5.0990914705D+06
5.9646241684D+06	6.7446280046D+06	7.6706764458D+06	8.5522316686D+06
1.1351166854D+05	8.2943675817D+05	1.6519595339D+06	2.7311552227D+06
4.0955870842D+06	5.2036331522D+06	5.9729672669D+06	6.9118892545D+06
7.8676665461D+06	8.7691871936D+06	1.1378119249D+05	8.4019840160D+05
1.6676033391D+06	2.8169453953D+06	4.2834314732D+06	5.5119999484D+06
6.3731286604D+06	7.3980293988D+06	8.4052944239D+06	9.4171443226D+06
1.1466352228D+05	8.5898255507D+05	1.7336871264D+06	2.8904212882D+06
4.4960933265D+06	5.7417907412D+06	6.7313004376D+06	7.7040176958D+06
8.6678133584D+06	9.8526300186D+06	1.1459412264D+05	8,7335545894D+05
1.7721904416D+06	2,9812328995D+06	4.5769527681D+06	5.7972692767D+06
6.8520731882D+06	7.88366524550+06	8.9202236319D+06	1.00595573820+07
1.17871048380+05	9.02679858400+05	1.82142137310+06	3 0661738717D±04
4.66610721990406	5 964162785/DLOG	6 9261630260DL04	7 8836651// 2DL04
8 92022222200	1 0050557300040700	1 00/0/360130100	7 057007/400TUD
1 56760200/0010C	1,0035337322DTU/	1,0747430712DTU5	/ . 73/77/4071U+U5
1.JU/UZJ774JUTU0 5. 3040/5/07/D:04	2.34003U2930D+U0	3,7240337446D+06	4.03119/U893D+U6
J.J7074347/4D+U0	0.1201491250D+06	0.0323800381D+06	7.590546211/D+06
1.10/3/0/360D+05	/.9/85//1040D+05	1.5/3580/747D+06	2.56806/04270+06
3.81162/9442D+06	4:/514040784D+06	5.5519161245D+06	6.1494130032D+06

7.0484268467D+06	7.9052222695D+06	1.1034811776D+05	8.0630124615D+05
1.5747201087D+06	2.5453806156D+06	3.8354952472D+06	4.8886055566D+06
5.5321073811D+06	6.4061854720D+06	7.2400231324D+06	8.0876339409D+06
1.0958202091D+05	7.9713501731D+05	1.5668065766D+06	2.6003033273D+06
3.8816129363D+06	4.8935840953D+06	5.7191340368D+06	6.5256184607D+06
7.3570985979D+06	8.2312110587D+06	1.0933788790D+05	8.0622040010D+05
1.5939279105D+06	2.6403777921D+06	3,9632772568D+06	5.0617752756D+06
5.8898724487D+06	6.7469289022D+06	7.6106198412D+06	8.5090451435D+06
1.1194067282D+05	8.1970876817D+05	1.6534874953D+06	2.7603738649D+06
4.2432239628D+06	5.4385756388D+06	6.3616204456D+06	7.3003993166D+06
8.2073524106D+06	9.3447906314D+06	1.1283403741D+05	8.4683999868D+05
1.7146991137D+06	2.9446721525D+06	4,4601442833D+06	5.7313334118D+06
6.6844095022D+06	7.6682309177D+06	8,7039680302D+06	9.7234951087D+06
1.1427003673D+05	8,7340165621D+05	1,7968994181D+06	2,9964241418D+06
4.5920174632D+06	5 8722653019D+06	6 8598929580D+06	7 7927183887D+06
8,9203960445D+06	1 0032587068D+07	1 1639161787D+05	9.0393409055D+05
1.8261299452D+06	3.0343894333D+06	4.6934495039D+06	5,9815942342D+06
6.9480978040D+06	7 9382140398D+06	8 85749918750+06	1 0032586951D+07
9.8583555978D+04	6 9597798228D+05	1 3424206975D+06	2 1541146734D+06
3.1148527212D+06	3 8593032744D+06	4 4378958671D+06	5 0195193185D+06
5.5397722495D+06	6.0735429083D+06	9.8328859428D+04	7 1250322091D+05
1.3712623482D+06	2 2598982936D+06	3 3299457545D+06	4 1719462620D+06
4.8858088957D+06	5 5760686103D+06	6 2289378718D+06	6 9612854090D+06
9 8662893409D+04	7 1803038388D+05	1 4076592430D+06	2 2664402449D+06
3 4489386367D+06	4 3960252823D±06	5 0579276872D+06	5 7822301018D+06
6 5472931769D+06	7 3057475414D+06	9 9526159261D+04	7 2526316105D+05
1 4387909395D+06	2 3756903159D+06	3 5514755541D+06	4 5149057154D+06
5 2892238032D+06	6 0318862812D+06	6 8283945316D+06	7 6379200942D+06
1 0055027408D+05	7 4740769499D+05	1 4652470575D+06	2 4495061632D+06
3 7183462312D+06	4 7649723024D+06	5 5632760768D+06	6 3617400516D+06
7 2090251519D+06	4,7049723024D100 8 1068611318D±06	1 020511/1830+05	7 9375925593D+05
1 6078533557D+06	2 69907593160+06	4 17080625070±06	5 2381796129D±06
6 2385619707D+06	7 2083010470D+06	8 0090642792D+06	9 1831588905D+06
1 0590036750D+05	8 /937602932D+05	1 693//990/50+06	2 8855345817D+06
4 3799399050D+05	5 70/9/6/971D+06	6 6162701270D+06	7 68688459400+06
8 6789466052D+06	9 7907932164D+06	1 1070/69825D+05	8 7608527604D+05
1 7682612552D+06	2 99191944830+06	4 5884709109D±06	5 8570807444D±06
6 8468636201D+06	7 8755803618D±06	8 93//1853/2D+06	1 000665/95/D+07
1 1811878761D±05	9 0/9/7/6/200+05	1 82440924570±06	3 05938830200+06
4 6856572636D+06	5 969068/75/D+06	6 97/6/88683D+06	8 06195081/3D+06
8 9344182595D+06	1 00066549570+07	0.97404000000000000000000000000000000000	0.00193001430100
1.09459150040+05	8 3787731321D+05	1 6929926513D+06	2 8296245332D+06
4.2344447086D+06	5 3447075306D+06	6 2380322368D+06	7 0491648398D+06
7 94342596620+06	8 82845591170+06	1 10694320730+05	8 38645421080+05
1.6855345786D+06	2 7925713926D406	4 1886142598D+06	5 2899647525D+06
6 2157197346D+06	7 0387317563D+06	7 9/123103/2D+06	8 8290662091D+06
1.11097898030+05	8 332/150859D+05	1 6688986677D+06	2 831/300/85D+06
4 1836039054D+06	5 3551855538D±06	6.20570128670 ± 06	7 0213538346D+06
7 95072874870+06	8 822/089987D+06	0.20370120070100	1.0710000000000000000000000000000000000
1 67939579700+01	7 98051344110±01	1 25872163050+02	1 7/656/78960+02
$2 13262985230 \pm 02$	2 337056/097D±02	2 /7007210303D102	2 570/289717D+02
2.62393785510402	2.33703040370702 2.62536/0681D±02	2.4/79//3/440F02 2.6678006760D±01	1 1401200711DFU2
1 76946478/3DL02	2.0233043001DTU2	2.00/0330/03DTUI 2 68730/0383DL03	2 Q062671622D102
2 96339077777TL02	3 081/852000DL02	2.00/3747303DTU2 3 AQ7A3/20A2DLA3	2.3002071023DTU2 3.0760039673D103
8 3035907222DTU2	2.0014032799DTUZ	3.07/0340700DTUZ	3 7693050/20/30702
<u>4 02199375110±02</u>	4 180747/872D±02	J.24J/JI01/20TU2	1023730400DTU2
4 1751568030DL02	+.1072024023DTU2	9 202500040/00UTUZ	* 1040000040UTUZ
4 9521261105DUDTU2	5, 201/004710D100	5 10/1/419/00100	4,0124494960D+U2
+.JJ213011030+02	5.2914996/18D+02	J.1241401342D+U2	5,00509904/30+02

5.0166432251D+02	4.9711809202D+02	4.8773417886D+02	4.7345273444D+02
8.3235928784D+01	4.3793841351D+02	8.4721051127D+02	8.0503776448D+02
7.5649967563D+02	7 29348167770+02	7 08114919710+02	6 8821655012D+02
$6 6737/187870\pm02$	6 4761642113D+02	/:00114/19/18/02	0.00210330120.02
1 (5:05/07000)01	0.4701042113D+02	1 05071////20100	1 70(0005/000000
1.65505427880+01	8.0932/53419D+01	1.259/14466/D+02	1.7268335492D+02
2.1266179241D+02	2.3326283185D+02	2.4187755715D+02	2.5419348468D+02
2.5968320313D+02	2.6451284364D+02	1.6499405607D+01	7.8375689440D+01
1.2484219044D+02	1.6704579664D+02	2.0261701340D+02	2.2304632472D+02
2.3150823843D+02	2.3973882288D+02	2.4563027500D+02	2.4543210671D+02
1.6371181158D+01	7 718/39395/D±01	1 2063571006D+02	$1 6235/370320\pm02$
1 00120067660102	2 1/(21/01/20100	2.22222270(270102	2 20676662000102
1,9912994704D+02	2.1482189180D+02	2.22/38/042/0+02	2.30876482900+02
2.34219691700+02	2.3826645338D+02	1.6425408294D+01	7.6684644222D+01
1.2142830546D+02	1.6051202617D+02	1.9238462572D+02	2.0677993820D+02
2.1640323787D+02	2.2044033562D+02	2.2544160354D+02	2.2817044240D+02
1.6474652358D+01	7.5317875452D+01	1.1758278368D+02	1.5090669327D+02
1.7916276634D+02	1.9094829288D+02	1.9745699884D+02	2.0329625389D+02
2.09545276520+02	2 0902257562D+02	$1 5888646137D \pm 01$	6 6907775694D+01
9 $4775415274D+01$	1 17758568570+02	1 32095308760±02	1 40266097420+02
1 42412200100102	1.1//303003/0102	1 (220)000000000	1.40200997420102
1,42412309100402	1.464/0116550+02	1.40601428320+02	1.49/8596/6/0+02
1.5054309679D+01	5.25/3491264D+01	6.8560960298D+01	7.9085911621D+01
8.8399434472D+01	9.2594517975D+01	9.6305029023D+01	9.9115813711D+01
1.0160473472D+02	1.0651457286D+02	1.3384665048D+01	3.7101283056D+01
4.5650810063D+01	5.1885796208D+01	5.8841566250D+01	6.3268113745D+01
6.8088773987D+01	7.2598231417D+01	7,6996740981D+01	8.2467548471D+01
7.3953444902D+00	1.0992452964D+01	1 8116540136D+01	2 37304895420+01
3,1310740261D+01	3 781/67670/D+01	4 2831004046D+01	7 2598228266D±01
7 69967399270+01	8 2/675/8180D 01	4.2051004040D101	1 1/00/716670102
1 7592097779DL00	8.2467348180D+01	2.8379204489D+01	1.14004710870+02
1.73830877780+02	2.302/0/22360+02	2.6218032372D+02	2.868/5/0985D+02
2.9998160669D+02	3.0677908249D+02	3.0896953358D+02	3.0809035687D+02
2.5770445039D+01	1.1362343286D+02	1.6977727908D+02	2.1914801565D+02
2.5451370789D+02	2.6878123710D+02	2.8260724415D+02	2.8286075351D+02
2.8850287088D+02	2.8463866751D+02	2.5631769354D+01	1.1252979363D+02
1.6605018702D+02	2.0884519095D+02	2.4369335165D+02	2.5970011554D+02
2.60420788170+02	2.6836204290D+02	2 7092819760D+02	2 72944811910+02
2.56362493290 ± 01	$1 10/29088110\pm02$	1 6215303765D±02	2.04505076830+02
2 34297096030+02	2 66720167620+02	2 E422E12744D102	2.0430307083D+02
2.54297090050+02	2.46729147430+02	2.3422312744D+02	2.57774785540+02
2.01041501950+02	2.58342029280+02	2.4814/636600+01	1.0/109193110+02
1.5160492695D+02	1,9000662668D+02	2.1561474132D+02	2.2551152673D+02
2.3107288998D+02	2.3650499193D+02	2.3677062913D+02	2.3448224618D+02
2.4689442277D+01	8.7420239522D+01	1.1738820145D+02	1.3737325893D+02
1.5004815100D+02	1.5487185718D+02	1.5758149572D+02	1.5937405237D+02
1.5918527260D+02	1.6157533664D+02	2.2809332172D+01	6.3581373827D+01
7.8304985251D+01	6,1320160774D+01	9.4414711668D+01	9.9234747465D+01
1.0202788994D+02	1.04525748290+02	1 0726508030D+02	1 1032417791D+02
1 8667289876D±01	4 2702993771D+01	3 6/83357127D±01	5 5520204264D±01
6 19391910270401	4,2/029937/1D+01	3.04833371270+01	3.33333343640401
7 0//0070/707-01	0.0/504/5/46D+01	7.0699284414D+01	7.4179294699D+01
7.9448973670D+01	8.4662012119D+01	8.7625354551D+00	1.3265243717D+01
1.8633604375D+01	2.3929250842D+01	3.1907801926D+01	3.8337066192D+01
4.3387106763D+01	6.0751072735D+01	7.5960591227D+01	8.4662006464D+01
8.2163509863D+01	2.4720138165D+02	3.2451900763D+02	3.7570384858D+02
4.0440470486D+02	4.1363679829D+02	4.0711465499D+02	4.1068724189D+02
4.0706438386D+02	3.9784044788D+02	8,2791158737D+01	2.34939007500+02
2.86539925130+02	3.34960506070±02	3 53971351600100	3 60967066710±02
3.68576125750102	3 63387/12000/0702	3 58800700240102	2 510/0/044/10702
8 001050700000000	2.120100413420TUZ		J.JI04J41J12D#02
3 34030000000000000000	2.1301226457D+02	2.78261512260+02	3.14155655160+02
2.2493900935D+02	3.3491921618D+02	3.3865435393D+02	3.3440415415D+02
5.3261960515D+02	3.2235804167D+02	8.0887593952D+01	2.1038953620D+02
2.5837995433D+02	2.9604761484D+02	3.1194569404D+02	3.1131966098D+02

3.1903325167D+02	3.1463769563D+02	3.1330198986D+02	3.0460276306D+02
7.3271801048D+01	1.8614688415D+02	2.3685252220D+02	2.6612230784D+02
2.7628659353D+02	2.7801186424D+02	2.8052680597D+02	2.7818393253D+02
2.7287860980D+02	2.6741891555D+02	6.1315154676D+01	1.3236144375D+02
1.6048269358D+02	1.6866014321D+02	1.7538825636D+02	1.7266841178D+02
1.7520160802D+02	1.7598233044D+02	1.7294931194D+02	1.7511566942D+02
4.7269157761D+01	7.9838015433D+01	9.3261089873D+01	9.8567518717D+01
1.0182904061D+02	1.0614301046D+02	1.0786344459D+02	1.1114489123D+02
1.1351943959D+02	1.1710275564D+02	3.5047406739D+01	4.8736879588D+01
5.5220595292D+01	5.9569311834D+01	6.5124143288D+01	6.9354668664D+01
7.3303964830D+01	7.7622780995D+01	8.2237781573D+01	8.7014938216D+01
1.0973473024D+01	1.5148883312D+01	1.9119550553D+01	2.4569397040D+01
3.2280485401D+01	3.8666834627D+01	4.3987017782D+01	5.0118152409D+01
8.2237764375D+01	8.7014932583D+01		
6.5173674596D-01	4.4525728634D+00	8.8764801583D+00	1.5043602547D+01
2.3231359149D+01	3.0294249851D+01	3.6381244932D+01	4.2713031006D+01
5.0305473565D+01	5.9005820174D+01	6.8721382762D-01	4.6269458636D+00
9.1779967376D+00	1.5457900676D+01	2.3935284740D+01	3.1252503819D+01
3.7761621008D+01	4.4467125836D+01	5.2508850649D+01	6.1717063341D+01
7.2202709607D-01	4.7883781096D+00	9.4604330332D+00	1.6244820693D+01
2.4881793904D+01	3.2860792078D+01	3.9319827466D+01	4.6336156048D+01
5.4967246543D+01	6.4640045847D+01		