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ZUR NUMERISCHEN INTEGRATION VISKOPLASTISCHER MATERIALMODELLE 

Mehrere explizite Integrationsmethoden wurden hinsichtlich ihrer 

Effektivität bei der Integration nichtlinearer "steifer" konstitu­

tiver Gleichungen für viskoplastische Materialmodelle kritisch 

überprüft. Es zeigt sich, daß eine einfache Euler-Vorwärts 

Methode mit automatischer Schrittweitensteuerung gute Ergebnisse 

liefert. Die Möglichkeiten verschiedener Verfahren zur Schrittweiteu­

steuerung wurden überprüft. Dabei hängt die erfolgreiche Anwendung 

eines Verfahrens - eines wird in diesem Bericht vorgestellt, ein 

anderes wurde von Kumar et al. vorgeschlagen - von dem zu integrier­

enden viskoplastischen Modell ab. 

ON THE NUMERICAL INTEGRATION OF VISCOPLASTIC MODELS 

Abstract 

A critical examination of several explicit integration methods, for 

their effectiveness in the integration of nonlinear and stiff con­

stitutive equations of viscoplastic models, has been presented. The 

use of a simple Euler-forward method with an automatic time step control 

strategy is seen to be encouraging. The capabilities of several such 

time step control strategies have been assessed. The success of inte­

gration strategy - one presented in the report and the other proposed 

by Kumar et al. - depends on the particular viscoplastic model being 

integrated. 
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1. Introduction 

The need for incorporating the influence of inelastic material be­

haviour into high-temperature design procedures for Nuclear Re~ctors 

and Gas-Turbine engines is now well recognized. The conventional way 

of treating the strain as the sum of a time independent component 

(plastic strain) and a time dependent component (creep strain) seems 

unjustified as only the combined effect is measurable. The necessity 

and importance of viscoplastic models, which treat the strain as a uni­

fied quantity, without artificially separating it into plastic and creep 

components, should thus be evident. During the last several years, con­

siderable effort has, therefore, been devoted to the development of vis­

coplastic models to characterize the inelastic behaviour of materials 

under thermomechanical loadings at elevated temperatures. As a result 

a number of viscoplastic models has emerged and is available in 

Iiterature [1-16]. The predicting capabilities of these models are 

different but each of these models is capable of predicting several of 

the following physical phenomena: 

1. Behaviour in tension (loading/ unloading), 2. Behaviour in compres­

sion (loading/ unloading), 3. Initial elastic behaviour, 4. Creep, 

5. Relaxation, 6. Rate sensitivity, 7. Anelasticity, 8. The Bauschinger 

effect, and 9. Cyclic hardening/ softening. 

The viscoplastic models give a better representation of material beha­

viour, but the difficulty coupled with their use is that the constitutive 

differential equations associated with these models are highly norilineat 

and "stiff" (used in a mathematical sense) to yield, in general, an 

analytical solution. Fortunately, the availability of versatile numeri­

cal methods such as the Finite-Difference, the Finite-Element or the 

Boundary Element methods, and of the high speed and large computers has 

facilitated the applicability of the viscoplastic models to the problems 

involving the high-temperature inelastic behaviour of materials. 

Although some investigations using the Finite Difference Method [17,18] 

and the Boundary Element Method [19-21] are available, yet the most 
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popular and commonly used method for the solution of time-dapendent 

inelastic problems remains the Finite Element Method, or FEM [5,6,12, 

15,22-25]. 

Since, as already pointed, the differential equations associated with 

these models are "stiff" in nature, these present a great deal of dif­

ficulty for a time-rlependent analysis. It is, therefore, necessary that 

suitable integration algorithms - fast, stable and economic (in computer 

time) - be developed for viscoplastic models so that these models could 

be used conveniently on a practical scale and lead to a more realistic 

and rational design of structural components for use at elevated tem­

peratures. The important and basic criterion in the development of any 

integration algorithm for the stiff equations of the viscoplastic models 

is that it must be usable with the Finite Element Method (or the Finite 

Difference or Boundary Element Methods). It is with this objective of 

developing a fast, stable and economic numerical integration strategy 

(to be used in conjunction with the Finite Element Method) for visco­

plastic models that the work presented in this report was carried out. 

Out of a number of viscoplastic models now available in literature, 

the more commonly used models due to Bodner-Partom [1-2], Robinson [4] 

and Walker [6] were selected for the development and assessment 

of the integration algori~hms. Thesemodels have different mathematical 

structures. For example, the Robinsonmodel utilizes the concept of 

a yield surface together with the loading and unloading criteria, whereas 

the other two do not. A detailed review of these models and their capa­

bilities may be found in Ref.[23]. The uniaxial forms of these models 

for isothermal conditions are presented in the following section. 

2. Viscoplastic Models (Uniaxial Forms) 

2.1 Bodner-Partom Model 

The uniaxial form of the equations for Bodner-Partom model is: 
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In which E is the strain and a the stress. The subscripts 'e' and 

'I' refer to elastic and inelastic components and the dot over a symbol 

denotes differentiation with respect to time t. The. quantities E, D , 
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l~) 

('t) 

(.S) 

The variable Z is a measure of isotropic hardening or dislocation density 

d I I ' an is called the drag stress. Wp is the rate of plastic werk. The 

first term in eq.(4) represents werk hardening and the secend term 

(through the constants A, r and z
1
), allows forthermal recovery or 

softening. 

2.2 Robinson Model 

The nondimensional uniaxial form of Robinson model for the case of pure 

shear may be written as: 
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Equations (6) are referred to as flow laws and eqs.(7) as evolution 

laws. a is the nondimensional back stress, t - the nondimensional 

applied shear stress, and o - the inelastic shear strain. The evo­

lution law includes two terms - one corresponding to a hardening 

process and the other to softening or recovery of the material and is 

based on the Bailey-Orowan theory [26]. B, n, R, ß, G are 
0 

material parameters and prime ( 1
) denotes differentiation with respect 

to nondimensional timeT (cf.Ref.[4]). The material constants for 

Robinsonmodelare given in Table I(b). 

2.3 Walker Model 

The equations for the uniaxial case of Walker model have the following 

form: 
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The quantities K
1

, K
2

, n, n
1

, n
2

, n
3

, n
4

, n5 , n6 , n
7 

and 

marematerial constants listed in Table- I(c). Q is the back 

stress and accounts for the Bauschinger effect or kinematic 

hardening. The first term in eq.(lO) corresponds to the dynamic 

strain recovery, whereas the second term to the static thermal 

recovery for the back stress. K is called the drag stress variable. 

3. Numerical Integration Methods 

Stiff Equations: A system of differential equations, in which a 

small change in the values of independent variables may cause a 

large change in the values of dependent variables is called a "stiff" 

system of equations. A more rigorous definition of 'stiffness' may 

be found in Ref.[27]. 

Since the differential equations associated with the viscoplastic 

models and governing the growth of internal state variables are 

stiff ~quations, special care and attention is called for their in­

tegration. For use in conjunction with a finite element code, these 

equations are tobe integrated a large nurober of times. The cost 

and computer time involved, therefore, prohibit the use of traditional 

methods of using small time steps for accurate integration of these 

stiff equations. A 'smart' integration strategy with automatic time­

step control capable of achieving the desired accuracy and stability 

is , therefore, required. This integration strategy, tagether with 

one of the single or multistep, implicit or explicit numerical methods 

reported in literature [27,28) may then be implemented into a finite 

element code for optimal results. Kumar et al.* [29] present several 

*Several other attempts to integrate these stiff equations have been 

made and some useful information in this regard is available in 

literature [30-32]. 
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such integration strategies and show that in case of inelastic model 

due to Hart [7], the use of a simple one step explicit Euler in­

tegration scheme with automatic time-step control is advantageous. 

Another favourable aspect of the explicit integration schemes over 

the implicit integration schemes is that they do not require the 

evaluation or inversion of a Jacobian matrix. This fact is of ad­

vantage and significance especially when the number of equations 

involved is large. The advantage of using implicit integration methods 

is that they may allow large time steps without affecting the sta­

bility of the method. Cormeau [33) has, however, shown that se-

veral implicit methods suffer from the same time-step restriction as 

does the Euler method and in such circumstances the implicit methods 

offer no special advantages over the simpler explicit methods. 

With these considerations in mind, the following explicit integration 

methods were selected for further investigations: 

1. Euler method, 

2. Modified Euler method, 

3. Fourth Order Runge-Kutta method, and 

4. Milne's predictor-corrector method. 

The formulae for these methods in case of a system of equations 

are given in Table II. The first three of these methods are single 

step methods whereas the fourth - Milne's method - is a multistep 

method. During the course of numerical computations, it was observed 

that smaller time-step sizes than those required for Euler, Modified 

Euler and Runge-Kutta method were required for the stability of Milne's 

method. Further, being a multistep method the requirement of a large 

storage space (when used for integration with a finite element pro­

gramme) discourages the use of Milne's method. These considerations 

resulted in the exclusion of Milne's method from further investigations. 

3.1 Camparisen of the Integration Methods 

Because of highly non-linear and stiff character of differential 

equations associated with the three viscoplastic models due to 
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Bodner-Partom, Robinson and Walker, it is natural to expect that 

the integration of equations may be sensitive to the integration 

method being used. (It will, of course, also depend on the par­

ticular viscoplastic model being integrated). To explore this 

further, a considerable. amount of computations7'< was carried out 

for the three viscoplastic models using the above rnentioned inte­

gration methods and different (constant) time steps. Some of the 

results of these computations are listed in Tables III(a), III(b), 

III(c) and Figures 2 through 4, for Bodner- Partorn, Robinson and 

Walker rnodels, respectively. The cyclic loadings used with these 

models are shown in Figure 1 and are taken frorn References [34], 

[4] and [6], respectively. 

The values of stress for Bodner-Partorn rnodel at different tirnes, 

obtäined using the three integration rnethods, for a nurober of tirne­

step sizes were calculated and the values for time step sizes, 

At= 0.5, 0.005 and 0.001 are shown in Table III(a). It is found 

that for these time step sizes, the differences in the values of 

stress for the three integration rnethods is negligibly srnall. 

(These differences rnay be large if a sufficiently large time step 

is taken). And, as expected, with the reduction of time step size, 

the values obtained using different integration rnethods get irnproved. 

It is also seen that to obtain the 'accurate' values (defined as 

the values which change insignificantly with further reduction of 

time step size) of stress, the sarne srnall tirne-step has to be used 

for all the three integration rnethods. The CPU-tirnes for these three 

methods for any time-step size are, however, strikingly different. 

For example, for At = 0.005 and At = 0.001, the CPU-tirnes for 

Euler, Modified Euler and Runge-Kutta rnethods are, respectively: 

0.84, 3.78, 3.20; and 3.99, 18.85, 15.39 seconds (and the nurober of 

iterations per cycle are 20,000; and 100,000 respectively). It rnay, 

therefore, be noted that the CPU-tirne required. for the Euler rnethod is 

significantly less than that required for the other two rnethods. 

* All the cornputations presented in this report were performed on 

a SIEMENS M7890 rnachine. The double precision arithmetic was 

used to reduce the errors due to truncation. 
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Table III(b) depicts the values of non-dimensional stress for Ro­

binson model, obtained using the three integration methods. The 

time step sizes are ßt = 0.2Xl0- 5 , O.lXlO-S and O.SXl0- 6 . 

Similar results as those mentioned in the preceding paragraph for Bodner­

Partom model seem to hold good for this model, too. The CPU-times 

required for the Euler, Modified Euler and Runge-Kutta methods for 

the aforementioned time-step sizes are: 0.78, 3.52, 2.86, 1.51, 6.96, 

5.64; and 2.87, 13.69, 11.15 seconds, respectively (and the number of 

iterations per cycle is 10,000; 20,000; and 40,000; respectively). 

The Euler method is found to be the most economic (in computer time) 

method for this model, too. 

The values of stress in case of Walker model for At = 0.0025, 0.001 

and 0.00025 are exhibited in Table III(c), for the three integration 

methods. It is seen that for At = 0.0025 the difference in the 

values of stress obtained using the Euler method and those obtained 

using the Modified Euler and Runge-Kutta methods is quite apparent. 

But this difference decreases with the reduction in time-step size 

to obtain the accurate values. For example, for At= 0.00025 the 

differences in the values predicted by the three methods are negli­

gibly small. The CPU-times required for the Euler, Modified Euler 

and Runge-Kutta methods for time steps, At = 0.0025, At= 0.001 

and At= 0.00025 are, respectively, 0.47, 1.49, 1.24; 0.85, 3.38, 

12.78 and 2.79, 12.50 and 10.47 seconds (and the number of iterations 

per cycle is 2,480; 6200; and 24,800; respectively). The Euler method 

is again seen to consume the minimum computer time to yield the 

accurate values of stress in case of Walker model, too. 

The foregoing results and observations suggest that the use of Euler 

method with an automatic time-step integration strategy should lead 

to an optimal integration algorithm for the integration of stiff 

constitutive equations associated with these models, and for incor­

poration into a Finite Element Code (like ABAQUS, ADINA or MARC, etc.) 

Naturally, the next step, therefore, was to develop or to use al­

ready existing automatic time-step control strategies in conjunction 
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with the Euler method and assess their capabilities with regard to 

the viscoplastic models mentioned herein. The integration strategies 

examined during the course of present work are outlined in the next 

section. 

4. Integration Strategies With Automatie Time-Step Control 

There are different integration strategies that have been proposed 

or successfully used by various investigators [6,29-31,35] for 

viscoplastic and creep problems. Some of these, and the integration 

strategy developed during the course of present investigations, are 

listed below: 

4.1 Automatie Time-Step Control Integration Strategies Based 

On Taylor's Expansion 

Expanding the strain E at any time t+ßt by Taylor's series, we 

have 

.6t 
• E.. + 

•• 
e.~ ' ..... (14) 

= 

The time step ßt is then chosen so that the second term in the series 

is some small fraction, say >.., of the first term. This yields 

I s \ 

Such a time increment has been used for the solution of creep pro­

blems [35]. 

l15) 

If the time step ßt is so chosen that the third term in expansion (14) 

is some small fraction, say ll, of the second term, one obtains 

.At= (1GJ 
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Such a choice of time step has been suggested by Lindholm at al. [23] 

for viscoplastic problems. 

The Euler method with automatic time step increments, as suggested 

in eq.(15) or eq.(16), was used for integrating the constitutive 

equations associated with the Bodner-Partom, Robinson and Walker 

models. The integration strategies worked well in the initial stages 

of computations but later allowed time steps large enough to cause 

instability. It was observed during the calculations that choosing 

small values for A and ~ delayed the onset of instability but it 

could not be completely avoided. These two integration strategies 

were, therefore, not further explored. 

4.2 Integration Strategy Proposed By Kumar et al. 

Kumar et al.[29], have proposed and employed an automatic time-step 

integration strategy with explicit Euler method for the integration 

of inelastic constitutive equations due to Hart [7]. The strategy 

was found to be promising upon its comparison with several other 

integration strategies reported therein. A brief outline of the 

strategy proposed by them is given below. 

For the single differential equation 

the value of y at t+At can be obtained as 

y(t + At) = y(t) + At ~(y,t) . (iß) 

The error, e, at this step and used for time step control is then 

defined as 

USJ 
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where V~ is the first backward difference of ~. 

Two error parameters e · and e . are prescribed. The 
max m:tn 

strategy works as follows: 

Compute e, if e < e 
max 

e 5 e 
max 

replace At by At/2, recompute e 1 

accept At; compute y(t + At) • 

The time step for the next step, At is defined as follows: 
new' 

and 

if e . < e 5 e At = ßt, 
m:tn max new 

if e 5 e . 
m:tn 

ßt 
new 

2 ßt. 

It is easy to extend the method for a system of differential equa­

tions 

by defining an error vector e(i), as before. 

Now a suitable norm 

is defined. Three common norms suggested by Kumar et al. and used 

in the present work are 

oD 
\ e <.l ' \ L ::: "m.lCit , 

L'-
. 

:: ~" I 
e. (..4..) { 

' 
a.:nd. 

Lt :: ! 'Z [e.t~)1l 

(20} 

(_ 2.2.) 
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The values of stress for respective cyclic loadings, as depicted in 

Fig.l, for Bodner-Partom model (one cycle), Robinsonmodel (two and 

one-quarter of a cycle) and Walker model (two and one-quarter of a 

cycle) have been calculated using the abovementioned algorithm and 

for the three error norms mentioned in eq.(22). Since the values 

obtained using the three norms differed negligibly, the values only 
00 • 

for the norm, L , are tabulated 1n Tables IV(a), IV(b) and IV(c) 

for the three viscoplastic models. The values have been listed for 

twenty points per complete cycle (ten for loading and ten for unloading). 

The third and sixth columns of these Tables show the corresponding 

'accurate' values obtained using a constant time step (cf. Section 3.1). 

Figures 2-4 show the accurate values for one cycle for Bodner-Partom 

model and one and one-quarter of a cycle for Robinson and Walker 

models. The solid circles (triangles) show the points taken on the 

cycles for comparing the stress values due to Kumar et al. (present) 

integration strategy with the accurate stress values. 

4.3 Present Integration Strategy 

The integration strategy developed during the course of present in­

vestigations will now be illustrated for the differential equation: 

Suppose that the solution of eq.(17) at any timet is known or 

obtainable using any one of the integration methods. To obtain the 

solution at the next time step, the integration strategy proceeds 

as follows: 

)( 

I. Choose a suitable time step, ~t, say. Denote the value 

of y obtained with this time step as YF(=yt+~t). 

II. Halve the time step ~t. Denote the value of y obtained 
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III. Define the quantity 

Tot 

The upper and lower limits for the quantity Tol (say, tolerance) are 

prescribed and denoted as Tolu and Tol 1 , respectively. The 

next steps in the strategy are: 

IV. If Tol >Tal , replace ~t by ~t/2. Go to step I. Re­
u 

compute Tal by repeating steps I through III. Repeat the 

procedure until a time step ~t is obtained for which Tol ~ Tol . 
u 

Accept the corresponding value of y as the value yt+~t' 

V. Campare Tal with Tol
1

. If Tol
1 
~Tal, double the 

time step as used in step IV for the next step calculations. 

And, if Tol 1 < Tal, retain the time step used in step IV 

for next step calculations. 

VI. Repeat the procedure with the time step rendered by step V, 

and so on. 

The strategy can easily be generalized to a system of equations by 

using concepts similar to those mentioned in Section 4.2. 

The values of stresses obtained for Bodner-Partom, Robinson and 

Walker models in case of respective loadings (cyclic) have been 

tabulated in column 5 of Tables IV(a) through IV(c), respectively. 

The corresponding 'accurate' values have been shown in column.6 of 

these Tables. Another important point that is brought forward from 

these Tables is the fact that these integration strategies admit 

maximum error in the regions where the stress changes from tensile 

to compressive and vice versa. 
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5. Discussions 

In order to analyse the capabilities and efficiency of the integration 

strategies with automatic time step control presented in Sections 

4.2 and 4.3, the following error normwas defined: 

where a denotes the value of stress obtained using the integration 

strategy (Kumar et al. or present) and a denotes the corres-
a 

ponding 'accurate' value of stress taken from Column 3 or Column 6 

of Tables IV. 

5.1 Bodner-Partom Model 

The values of stress at different times obtained by using the two 

integration strategies and for the cyclic loading shown in Fig.1(a), 

have been listed in Columns 2 and 5 of Table IV(a). Columns 3 and 6 

(2~) 

of this table show the corresponding accurate values. The error norms, 

as defined in eq.(24), have been calculated by taking twenty points 

per complete cycle (at equal spaces wherever possible) for Kumar et al. 

and present integration strategies and denoted by ~K and tp, 

respectively. The error norms at the peak values of stress during 

loading or unloading were also calculated and denoted by ~KP and 

tPP' respectively, for the two integration strategies. 

The values of all the error norms and CPU-times (on a SIEMENS M7890 

machines) in case of Bodner-Partom model are reproduced from Table V 

and listed below: 

Kumar et al. Strategy Present Strategy 

~K = 0.1887, tp = 0.00225, 

-7 
~KP = 3X10 , 

-8 
~PP = 2X10 , 

CPU-Time = 0.55 secs. CPU-Time =0.16 secs. 
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The Table IV(a) also shows the 
-4 and values of e . (=10 ) 

m~n 

-3 and -5 and -4 used for the e (=10 ) of Tol
1 

(=10 ) Tol (=10 ) , max u 
two integration strategies. ~~ It is Seen that the present integration 

strategy not only works faster than the strategy proposed by Kumar 

et al. but also yields more accurate results in case of 

Bodner-Partom model. 

5.2 Robinson Model 

The values of nondimensional shear stress for nondimensional times 

(shear strains) have been listed for Robinson model for the two 

integration strategies in Table IV(b). The loading cycle is shown 

in Fig.l(b). The results listed are for two and one-quarter of a 

cycle of this loading and are obtained including the elastic com­

ponents. 

The values of error norms and CPU-times reproduced from Table V 

are: 

Kumar et al. Strategy 

~K = 0.0543 

-6 
~KP = 2X10 

CPU-Time = 0.63 secs. 

Present Strategy 

~p = 0.0045 ' 

~PP= 5Xl0-
7

, 

CPU-Time = 0.48 secs. 

The integration strategy presented in this report is seen to work 

more efficiently and accurately than that proposed by Kumar et al. for 

Robinson. model also. 

* In fact the values of e i , e , Tol1 and Tol were at m n max u 
first selected arbitrarily and reduced further until results close 

to the accurate values of stress were obtained. The values listed 

in this and other Tables are these values of ertor norms and 

tolerances. 
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5.3 Walker Model 

Table IV(c) exhibits the values of stresses obtained at dif­

ferent times (strains) for the loading cycle (two and one-quarter 

of a cycle) shown in Fig.1(c) for the two strategies. The values 

of error norms and CPU-times for these are shown below: 

Kumar et al. Strategy 

~K = 0.0498 

-6 
~KP = 1X10 

Present Strategy 

~p = 0.4517' 

~PP 
-5 = 0.67X10 , 

CPU-Time = 0.51 secs. CPU-Time = 0.76 secs. 

It is seen, therefore, that the present strategy does not 

work as well for Walker model as it did in case of Bodner-Partom 

and Robinson models. In fact, the strategy due to Kumar et al. works 

faster and yields more accurate results. This observation, there­

fore, supports the apprehension that the success of an integration 

strategy also depends on the viscoplastic model being integrated. 

It also serves as a warning that, in order to obtain optimum re­

sults, an integration strategy with automatic time control should be 

used with care. Table V gives a general overview of how the two in­

tegration strategies work in case of different viscoplastic models. 

The informations furnished therein may possibly be exploited bene­

ficially by a structural analyst. 

6. Conclusions 

The report deals with the problern of numerical integration of non­

linear and stiff differential equations associated with the unified 

viscoplastic models. Some integration methods have been examined in 

detail and, on the basis of a large amount of computations carried 

out during the course of present work, the use of a simple explicit 

Euler method with an automatic time step control is seen to be most 

encouraging. Several automatic time step control strategies have 

been presented and discussed to assess their applicability in con-
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junction with a Finite Element Programme. The capabilities of auto­

matic time integration strategies - one proposed by Kumar et al. 

and the other presented in the report - are estimated in case of 

viscoplastic models due to Bodner-Partom, Robinson and Walker (uni­

axial forms). It is concluded that the success of an automatic time 

step integration strategy is linked with the model being integrated. 

It is expected that the results presented in the report may be of 

help and provide some useful guidelines to analysts and engineers 

for integrating the stiff constitutive equations of viscoplastic 

models. 
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Table - I(a) 

Material Constants'~~- for Bodner-Partorn l1odel 

E 21 .3 103 KSI D lo4 -I = X = sec 
0 -3 -1 

n = o. 7 A 1.9 X 10 sec 

z = 1015 KSI r = 2.66 I 
z = 915 KSI z = 600 KSI 

0 

KSI-I 
I 

rn = 2·57 

~These constants taken frorn Ref. (36) are for INIOO at 1350°F. 

Table - I(b) 

* Material Constants for Robinson l1odel 

B = 3000 

R = 0.1 

n = 4 

~ Taken f rom Re'f. ( 4) • 

Table I(c) 

Material Constants* fov Walker 

>. = II ·5 X 106 

].1 = 4.9 X lo-6 

K = 59292 

K2 = 0 

n = 4.49 

rn = I. 16 

nl = 0 

ß = I ' 

a = 0.001 
0 

g = 10.000 

l1odel 

n2 "" I X 106 

n3 = 312 

n4 = 0 

n5 = 0 

n6 = 2,73 X 

n7 = 0 
oo = -1200. 

lo-3 

~These constants taken frorn Ref.(6), are for Hastelloy-X at 1800°F. 



-24-

Table - II 

Formulae För Numerical Integration Hethods 

Consider the vector initial value problern 

Y(x ) = C 
~ o -o 

(I ) 

Let x = x + nh and Y = ~(x'WI.) and let f = f(x ,Y ). n o ~n - ~n n ~n 

The integration formulae are: 

I. Euler Hethod: 

y = y + hf 
~n+l ~n ~n 

I I. Modified Euler Method: 

yP = y + h f 
~n+l ~n ~n 

Yc y h { f (x ,Y) + fn(xn+l ~~+I) } = +-
~n+l ~n 2 ~n n ~n (2) 

ynew +.!! { f (x ,Y ) + f (x +I' 
c*" } = y ~n+l) . 

~n+l ~n 2 ~n n ~n n n 

(*rn this term the latest available values of different components 
c 

of Y +I are used.) 
~n 

III. Fourth Order Runge-Kutta Method: 

h (~I + 2~2 + 2~3 + ~4) 
y +I = y + 6 
~n ~n 

(3) 

where 

~I = f = f(x ,Y ) 
~n ~ n ~n 

~2 f(x +.!! h = y + 2 ~1) ~ n 2 ~n 

~3 f(x h h = + -· y + 2 k2) (4) 
~ n 2 ~n 

~4 = :<xn+h y + h ~3) ' ~n 



-25-

IV. Milne's Predictor-Corrector Nethod: 

Predictor 

Corrector 

yP 
~n+1 = ~n-3 + 

4h(2 ~n - ~n-1 + 2 En-2) 

3 

k-1 
h(!(xn+l ' ~n+1 ) + 4 In+ In-1) 

3 

j = 1,2, ..• 

(5) 

(6) 
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Table - III (a) 

Values of stress (KSI) at different times (strains) for Bodner-Partom Model, 

I~ 
6t = 0.5 6t = 0.005 6t = 0.001 

s Euler Modified Runge-· Euler Hodified Runge- Euler Hodified Runge-
(strain) Euler Kutta Euler Kutta Euler Kutta 

s.o 93.72 93.72 93.72 93.72 93.72 
l 

93.72 93.72 93.72 93.72 
(0.0044) 
10.0 149.53 149.75 149.76 149. 15 149. 16 149.16 149. 15 149. 15 149.15 
(0.0088) 
15.0 156.57 156.45 156.43 156.27 156.27 156.27 156.26 156.26 156,26 
(0.0132) 
20.0 157.88 157.82 157.81 157.78 157.78 157.78 157.78 157.78 157.78 
(0.0176) 
25.0 158.07 158.05 158.06 158.05 158.05 158.05 158.05 158.05 158.05 
(0.0220) 
30.0 63.91 63.90 63.88 60.12 60. 12 60.12 60.07 60.07 60.07 
(0.0176) 
35.0 -29.81 ..".29 .·82 -29.82 -33.60 -33.60 -33.60 -33.65 -33.65 -33.65 
(0.0132) 
40.0 -123.53 ~f23.54 -f23.54 -127.31 -127.31 -127.31 -127.36 -127.36 -127.36 
(0.0088) 
45.0 -157.95 -157.94 -157.94 -157.93 -157.93 -157.93 -157.93 -157.93 -157.93 
(0,0044) 
50.0 -158.08 -158.07 -158.07 -158.07 -158.07 -158.07 -158.07 -158.07 -158.07 
(0.0) 
55.0 -140.34 ~140.33 -140.33 -140.84 -140.84 -140.84 -140.84 -140.84 -140.84 
(0.0) 
60.0 -136.81 -136.80-136.80 -137.14 -137.14 -137.14 -137.14 -137.14 -137.14 
(0.0) 
65.0 -134.77 -134.76 -134.76 -135.01 -135.01' -135.01 -135.01 -135.01 -135.01 
(0.0) 
70.0 -133.32 -133.32 -133.32 -133.51 -133.51 -133.51 -133.52 -133.52 -133.52 
(0.0) 
75",0 -132.21 -132.20 -132.20 -132.36 -132.37 -132.37 -132.37 -132.37 -132.37 
(0.0) 
80.0 -47.65 -47.65 -47.65 -38,69 -38.69 -38.69 -38.62 -38.62 -38.62 
(0.0044) 
85.0 46.07 46.07 46.07 55,02 55.03 55.03 55.10 55.10 55.10 
(0,0088) 
90.0 139.71 139.71 139.71 147.43 147.43 147.43 147.48 147.48 147.48 
(0.0132) 
95.0 157.85 157.84 157.84 157.86 157.86 157.86 157.86 157.86 157.86 
(0.0176) 

100.0 158.06 158.06 158.06 158.06 158.06 158.06 158.06 158.06 158.06 
(0.0220) 



Table III(b) 

Values of nondimensional stress vs nondimensional time (strain) for Robinson MOdel· 

-5 -5 -6 

~ flt = 0.2 X 10 flt = 0.1 X 10 flt = 0.5 X 10 

e Euler M .Euler Runge Euler M.Euler Runge Euler M .Euler Rünge 

0.0025 10.242 10.242 10.242 10.241 10.241 10.241 10.241 10.241 10.241 
(0.0025) 
0.0050 12.095 12.094 12.094 12.094 12.094 12.094 12.094 12.094 12.094 

(0.0050) 
0.0075 -8.808 -8.808 -8.808 -8.807 -8.807 -8.807 -8.806 -8.806 -8.806 

(0.0025) 
0. 0100 -11.36 9 -11.369 -11.36 9 -11.369 -11.368 -11.368 -11.368 -I I. 368 -11.368 
(0.0§ 

0.012 -12.855 -12.855 -12.855 -12.854 -12.854 -12.854 -12.854 -12.854 -12.854 
(-0.0025) 
0. 015 0 -13. 9 98 -13. 9 97 --13. 997 -13.997 -13.997 -13.997 -13.997 -13.997 -13.997 

(-0.0050) 
0.0175 8.403 8.403 8.403 8.401 8.401 8.401 8.400 8.400 8.400 

(-0.0025) 
0.0200 11.234 11.234 11.234 11.233 11 '233 11.233 1 1 . 233 11.233 11.233 

(0.01 ' 0.022 12.758 12.757 12.757 12.757 12 .. 757 12.757 12.757 12.757 12.757 
(0.0025) 
0.0250 13.919 13.919 13.919 13.919 13.919 13.919 13.919 13.918! 13.918' 

(0.0050) 
0.0275 -8.422 -8.422 -8.422 -8.420 -8 .. 420 -8.420 -8.419 -8.419 -8.419 

(0.0025) 
0.0300 -11.240 -1 I. 239 -11. 239 -11.239 -11.239 -11.239 -11.239 -11.239 -11.239 

o~~~B~ (-0.002 ) 
-12.762 -12.761 -12.761 -12.761 -12.761 -12.761 -12.761 -12.761 -12.761 

0.0350 -13.923 
(--0.0050) 

-13.922 -13.922 -13. 922 -13.922 -13.922 -13.922 -13.922 -13.922 

0.0375 8.421 8.421 8.421 8.419 8.419 8.419 8.418 8.418 8.418 
(-0.0025) 
0.0400 11.240 11.239 11.239 11.239 

(0.0) 
11.239 11.239 11.238 11.238 1 I. 238 

0.0425 12.762 12.761 12.761 12~761 12.761 12.761 12.761 12.761 12.761 
(0.0025) 
0.0450 13.923 13.922 13.922 13. 922 13.922 13.922 13.922 13.922 13.922 

(0.0050) 
-- ··----

N 
~ 
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Table III(c) 

Values of stress (psi) at different times (strains) for Walker Model • 

Ll.t = 0.0025 Ll.t = 0.001 6t = 0.00025 
Stress 

si) 

Time Euler Modified Runge Euler Modified Runge Euler Modified Runge 

(strain) Euler Kutta Euler Kutta Euler Kutta 

,0.31 13808 13820 138 20 13795 13800 13800 13789 13790 13790 
(0.0012) 

0.62 16700 16772 16772 16 710 16724 16724 16 711 16718 16 718 
(0.0024) 

0.93 17457 17546 1754 7 174 79 17497 17497 17482 17491 17491 
(0.0036) 

1.24 17973 18068 18069 18000 18019 18019 18003 18012 18013 
(0.0048) 

1.55 18339 18434 18434 18365 18384 18384 18368 18378 18378 
(0 .0060) 

I. 86 373 448 449 419 449 449 441 449 449 
(0.0048) 

2.17 -13633 -13590 -13589 -13588 -13571 -13571 -·13566 -13562 -13562 
(0.0036) 

2.48 -17156 -17204 -17204 -17150 -17170 -17170 -17148 -17153 -17153 
(0.0024) 

2.79 -18443 -18527 -18527 -18457 -18491 -18491 -18465 -18473 -18473 
(0.0012) 

3.10 -19358 -19459 -19459 -19382 -19423 -19423 -19394 -19404 -19404 
(0.0) 

3.41 -:200<16 -20123 -20123 -20043 -20086 -20086 -20057 -20067 -20068 
(-o.oo12) 

3. 72 -20485 -20591 -20592 -20511 -20554 -20554 -20525 -20535 -20535 
(-ü.0024) 

4.03 -20817 -20918 -20919 -20840 -20881 -20881 -20852 -20862 -20862 
(-0.0036) 

4.34 -21049 -21146 -21146 -21070 -21108 -21108 -21080 -21089 -21089 
(-ü.0048) 

4.65 -21212 -21303 -21304 -21229 -21265 -21266 -21237 -21246 -21246 
(-0.0060) 

4.96 -3219 -3290 -3290 -3262 -3290 -3290 -3283 -3290 -3290 
(-0.0048) 

5.27 10809 10771 10771 10768 10753 10752 10747 10743 10743 
( -o. 0036) 

5.58 14427 14481 14481 14425 14447 14447 14424 14429 14429 
(-ü.0024) 

5.89 15801 15890 15891 15819 15855 15855 15828 15837 15837 
(-0.0012) 

6.20 16783 16889 16890 168<}0 16853 16853 16824 16835 16835 
(0.0) 
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Table III(c) continued 

ilt = 0.0025 ilt = 0.001 Llt = 0.00025 

Stress 
si) 

Time Euler 
Modified Runge Euler Modified Runge Euler Modified Runge 

(strain) 
Euler Kutta Euler Kutta Euler Kutta 

6.51 17492 17603 17604 17522 17567 17567 17537 17548 17548 

(0. 0012) . 
6.82 17998 18108 18109 18027 18071 18071 18041 18052 18052 

(0.0024) 
7. 13 18356 18462 18462 18382 18424 18424 18395 18405 1840.? 

(0.0036) 
7.44 18608 18707 18708 18630 18670 18670 18641 18651 18651 

(0.0048) 
7.75 18784 18878 18878 18803 18840 18840 18812 18821 18821 

(0.0060) 
8 •. o6 793 866 866 838 867 867 859 867 867 

(0.0048) 
8.37 -13233 -13192 -13192 -13190 -13174 -13174 -13169 -13165 -13165 

(0.0036) 
8.68 -16844 -16896 -16896 -16841 -16862 -16862 -16839 -16845 -16845 

(0.0024) 
8.99 .... 1.82.13 -18301 -18301 -18230 -18265 -18265 -18239 -18248 -18248 

(0.0012) 
9.30 -19192 -19296 -19297 -19218 -19260 -19260 -19232 -19242 -19242 

(0.0) 
9.61 -19897 -20008 -20008 -19927 -19971 -19971 -19942 -19953 -19953 

(-0.0012) 
9.92 -20401 -20510 -20511 -20429 -20473 -20473 -20443 -20453 -20454 

(-0~0024) 
10.23 -20757 -20862 -20863 -20783 -20825 -20825 -20795 -20806 -20806 

(-0.0036) 
10.54 -21008 -21 107 -21107 -21030 -21069 -21069 -21040 -21050 -21050 

(-0.0048) 
10.85 -21183 .;.21276 -21277 -21201 -21238 . -21239 -212·10 -21219 ·-21219 

(-0.0060) 
11 • 16 -3192 -3264 -3265 -3236 -3265 -3265 -3258 -3265 -3265 

(-:-0. 0048) 
11 • 4 7 10835 : 10795 10795 10793 10777 10777 10772 10768 10768 

( -o .0036) 
11.78 14448 : .t.4499 14500 14444 ·14465 14465 14442 ... 14448 14448 

(-0.0024) 
12.09 15816 15904 15905 15833 15869 15869 15842 15851 15851 

(-0.0012) 
12.40 16794 16899 16900 16821 16863 16863 16834 16845 16845 

( 0.0 ) 
12.71 17500 17610 17611 ii530 17574 17574 17544 17555 17555 

(0.0012) 
13.02 18004 18113 18114 18032 18076 18076 18046 18057 18057 

(0.0024) 
13.33 18360 18465 18466 18386 18428 18428 18398 18409 18409 

(0.0036) 
13.64 18611 18710 18710 18633 18672 18673 18643 18653 18653 

(0.0048) 
13.95 18786 18879 18880 18805 18842 18842 18813 18823 18823 

(0.0060) 
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Table IV(a) 

Values of stress at different times obtained using the integration strategies pro­

posed (i) by Kumar et al. and (ii) in the present report,for Bodner-Partom Model 

~ Aceurate 
Kumar et al. * ) 

) 
Values . 

5.0 93.73 93.72 

10.06203 ~49.34 149.30 

15.26203 156.51 156.42 

20.14203 15 7. 85 157.80 

25 .o 158.06 158.05 

30.0 54.67 60.06 

35 .o -39.05 -33.66 

40.0 -132.76 -127.37 

45.0 -157.97 -157.93 

50.0 -158.08 -158.07 

55.25 -139.86 -140.58 

60.25 -136.57 -137.01 

65.25 -134.60 -134.92 

70.25 -133.20 -133.45 

75.00 -132.16 -132.37 

80.00 -38.33 -38.60 

85.00 55.39 55. 11 

90.00 148.03 147.49 

95.1875 157.90 157.88 

100.0. 158.07 158.06 

*' defined in Section 3.1 . 

e . = 10-4 , e = 10-3 and Tol
1 m~n max 

~ Present 

( 

) 
Report . 

5. 11 95.78 

10.01 149. 18 

15.01 156.29 

20.13 15 7. 80 

25.00 158 .OS 

32.265 17.58 

37.385 -78.39 

40.025 -127.87 

45. 145 -157.94 

50.00 -158.07 

55.04 -140~78 

60.00 -137.12 

65 .12 -134.95 

70.24 -133.44 

75.00 -132.35 

80.92 -21.33 

86.04 74.63 

90.00 147.54 

95. 14 157.88 

100.00 158. 06 

Tal = 10-4 
u 

Aceurate 

Values "" 

95.78 

149.17 

156.27 

157.79 

158.05 

17.60 

-78.36 

-127.83 

-157.94 

-158.07 

-140.80 

-137. 14 

-134.97 

-133.45 

-132.37 

-21.36 

74.61 

147.49 

157.87 

158.06 
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Table IV(b) 

Values of non-dimensional stress at different times obtained using the inte­

gration strategies proposed (i) by Kumar et al. and (ii) present report, for 

Robinson Model 

~ Kumar et al. Aceurate ~ Present Aceurate 
Values Report Values e e 

0.001000582 7. 842 7.839 0.001 7.841 7.839 
0.002002582 9.714 9.712 0.002008 9. 720 9.718 
0.003010582 10.704 1 o. 701 0.003 1 o. 6 94 1 o. 692 

0.004018582 11 .46 9 II. 465 0.004024 11 .4 72 II. 469 
0.005 12.098 12.094 0.005 12.096 12.094 

0.006183284 -0.665 -0.631 0.006018 1. 012 1 . 011 

0.00700570 -7.400 -7.362 0.0070039 -7.390 -7.361 

0.008005702 -9.577 -9.569 0.00799987 -9.569 -9.562 

0.009013514 -10.607 -I o. 601 0.00900787 -10.601 -10.598 

o. 01001351 -11.384 -11 .377 0.01001587 -11.385 -11.379 

o. 0110 i 351 -12.036 -12.02 9 0.01100787 -12.031 -12.026 

0.01202914 -12.614 -12.608 o. 01199987 -12.597 -12. 592,. 

o. 01302 914 -13. 125 -13.118 0.01299817 -13 .. .105 -13.103 

0.01399789 -13.575 -13.569 0.01401587 -13.581 -13.576 

0.015 -14.005 -13. 997 0.015 -14.002 -13.997 

0. 0160298 -2.764 -2.774 0.016026 -2.815 -2.812 

0.01700214 6.342 6.332 o. 01700384 6.346 6.343 

0.01800214 9.320 9.314 0.01799984 9.312 9. 311 

0.01900214 10.428 10.423 0.01900784 10.429 10.428 

0.02000214 11 • 240 11.235 o. 02001584 11.24 7 11.244 

0.02101777 11.922 11.916 0.02100784 11.913 11.910 

0.02201777 12.505 12. 49 9 0.02199984 12.494 12.489 

0.02301777 13.026 13.020 0.02299184 13.010 13.007 

o. 02401777 13.4 99 13.492 0,02401584 13.495 13.491 

0.025 13.926 13.918 0.025 13.922 13.918 



~ e 

0.02617414 

0.02700169 

0.0290056 

0.0290056 

0.0300056 

0.03102123 

0.03200365 

0.03300365 

0.03400365 

0.035 

0.0364051 

0.03700267 

0.03800267 

0.03900267 

0.04000267 

0.0410183 

0.04200658 

0.04300658 

0.04400658 

0.045 

e . 
rn~n 
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Table IV(b) - continued 

Kurnar et al, Aceurate ~ Values e 

1. 192 1.253 0.026026 

-6.439 -6.382 0.02700172 

-9 ~ 344 -9.330 o. 028005 72 

-10.443 ·-10.433 o. 02899772 

-11.252 -11.243 0.03000572 

-11.933 -11.923 o. 03102972 

-12.505 -12.496 0.03202172 

-13.025 -13.016 0.03304572 

-13.499 -13.489 0.03400572 

-13.931 -13.922 0.035 

I. 153 1.035 0.036026 

6.451 6. 385 o. 03700172 

9.344 9.326 0.03800572 

10.443 10.430 0.03901372 

11.252 1 1 . 240 0.04000572 

11.933 11 0 921 0.04102972 

12.508 12.497 0.04202172 

13.028 13.017 0.04304572 

13.501 13.490 0.04400572 

13.933 13.922 0.045 

e rnax 
= 10-4 and = I0-6 

Present 
Report 

2. 735 

-6.384 

-9.332 

-10.428 

-11.245 

-11.931 

-12.508 

-13.040 

-13.494 

-13.923 

-2. 739 

6.382 

9.331 

10.442 

11.245 

11.931 

12.508 

13.040 

13.493 

13.925 

Tol = 10-5 
u 

Aceurate 
Values 

2. 734 

-6.382 

-9.330 

-10.427 

-11.244 

-11.928 

-12.505 

-13.037 

-13.490 

-13.922 

-2.737 

6.379 

9.330 

10.440 

11.243 

11.928 

12.505 

13.037 

13.490 

13.922 
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Table IV(c) 

Values of stress (psi) at different times (sec.) obtained using the inte­

gration strategies proposed (i) by Kumar et al. and (ii) in present report 

for Walker Model 

~ Kumar et al. Aceurate 

* 
Present Aceurate 

Values Report Values 
' 

) 
) 

) 

0.3102109 13795 13797 0.31 1'3890 13791 

0.6208359 16717 16 712 0.62 16 737 16710 

o. 9302109 17487 17479 0.93 17501 17479 

1. 240211 18008 18000 1.24 18021 18000 

!.55 18373 18365 1.55 18386 18365 

1. 885252 -878 -859 1. 86 364 434 

2.170216 -13599 -13580 2. 17 -13717 -135 74 

2.481074 -17157 -17152 2.48 -17185 -17149 

2.79 -184 72 -18462 2.79 -18487 -18462 

3.10129 -19405 -19393 3.10 -19410 -19390 

3. 4125 96 -20070 -20057 3'.'41 -20071 -20052 

3. 720309 -20533 -20520 3. 72 -20539 -20520 

4.026825 -20857 -20845 4.03 -20868 -20845 

4.342920 -21088 -21078 4.34 -21098 -21076 

4.65 -21243 -21235 4.65 -21257 -21235 

4.96674 -2913 -2932 4.975 -2430 -2508 

5.270131 10788 10755 5.27 10909 10754 

5.582631 14447 14438 5.58 14461 14424 

5.892006 15845 15833 5.89 15849 15825 

6.201381 16838 16822 6.20 16839 16820 

6. 511439 17549 17534 6.51 17550 17532 

6.821596 18052 18038 6.82 18055 18037 

7.130971 18403 18391 7. 13 18410 18391 

7.443471 18650 18639 7.44 18659 18637 



I~ 

7.75 

8.068649 

8.371330 

8.680473 

8.992973 

9.302348 

9.611723 

9.921098 

10.23360 

10.55235 

10.85 

11.18375 

11.4 7054 

11.78018 

12.09489 

12.40072 

12.71086 

13.02114 

13.3333 

13.64295 

13.95 

e . m1n 
"" 10-5 

' 
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Table IV(c) - continued 

Kumar et al. 

18817 

394 

-13229 

-16847 

-18256 

-19246 

-19953 

-20453 

-20806 

-21055 

-21217 

-1986 

1'0838 

14454 

15871 

16847 

17556 

18057 

18409 

18652 

18819 

e = 10-4 
max 

Aceurate 
Values 

18809 

409 

-13210 

-16840 

-18247 

-19233 

-19939 

-20440 

-20794 

-21044 

-21207 

-2034 

10793 

14444 

15859 

16830 

17540 

18043 

18397 

18641 

18810 

and 

~ 
Present 
Report 

7. 75 

8.08 

8.37 

8.68 

8.99 

9.30 

9.61 

9.92 

10.23 

10.54 

10.85 

11. 175 

11.47 

11.78 

12.09 

12.40 

12.71 

13.02 

13.33 

13.64 

13.95 

18832 

-244 

-13347 

-16876 

-18259 

-19246 

-19954 

-20457 

-20810 

-21058 

-21230 

Tol 
u 

-2404 

10935 

14480 

15863 

16849 

17557 

18060 

18414 

18661 

18833 

Aceurate 
Values 

18809 

-172 

-13176 

-16840 

-18236 

-19227 

-19937 

-20439 

-20791 

-21037 

-21207 

-2482 

10779 

14443 

15839 

16830 

17539 

18042 

18394 

18640 

18810 
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Table V 

Camparisan af Errar Narms and CPU-Times far Kumar et al. and Present Inte-.: .. 

gratian Strategies in Case af Different Viscaplastic Models . 

Er rar Narms CPU - Time (secs.) 
Model Strategy 

Camplete Peak Values Camplete 
Cycles Cycles 

Kumar et al. 0.1887 3 X 
10-7 0.55 

BODNER 
10-8 Present 0.00225 2 X o. 16 

Kumar et al. 0.0543 2 X 
10-6 0.63 

ROBINSON 
X 10-7 

Present 0.0045 5 0.48 

Kumar et al. 0.0498 1.0 X 
10-6 0.51 

WALKER 
10-5 Present 0.4517 0,67 X o. 76 



c: 
ro 
'--V) 

0.0220 

0.0132 

0.0044 

0 
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25 50 75 
time, s 

a) Bodner - Partom Model (Ref. [34]). 

0.0050 

c: 0.0025 
ro 
'--V) 

c: 
ro 
'--V} 

nondimensional 
-0.0025 

-0.0050 

b) Robinson Model (Ref. [4]) 

0.006 

0.004 

0.002 

0 

-0.002 1.55 4.65 

-0.004 
time, s 

-0.006 

c) Walker Model (Ref. {6)) 

Fig. 1 Cyclic loadin.gs for different models. 

100 

• 8 8 10-4 -1 
E1 = . X S 

(25 s) 
. 8 8 10-4 -1 
E2 =- , X S 

(25 s) 

t 3 = 0.0 (25 s) 

t 4 = t1 (25 s). 

't'1 = 1.0 (0.005 units) 
'l'2 = 1.0 (0.010 units) 
'(3 = t 1 (0.005 units). 

E:1 = 3.87x1o-3 s-1 (1.55 s) 
t:2 = 3.87x1o-3 s-1 '(3.10 s) 
e:3 = e:1 (1.55 s). 
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Bodner - Partom Model 

strain, 0/o 

• points chosen for 
comparison of 
integration strategy 

Fig. 2 a: Stresses (accurate} vs strain for Bodner· -Partom model 
(one cyde) - KUMAR et al. STRATECiY .. 
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Bodner - Partom Model 

strain, 0/o 

.A points chosen for 
comparison of 
integration strategy 

Fig. 2 b: Stresses (accurate) vs strain for Bodner-Partom model 
( one cyde) - PRESENT STRATEGY. 



Fig. 3 a: 
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Robinson Model 

16 

-16 

• points chosen for 
comarison of 
integration strategy 

Stress (nondimensional} vs strain for Robinson model . . 

(one and one-quarter of a cycle) - KUMAR et al. STRA TE GY. 
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Robinson Model 

16 

-5 

-16 

strain, 0/o 

..a. points chosen for 
comparison of 

integration strategy 

Fig. 3 b: Stress (nondimensional) vs strain for Robinson m odel 
(one and one-quarter of a cycle) - PRESENT STRA TEGY. 
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Walker Model 

20 

~ 10 

-3.6 -2.4 
strain, 0/o 

• points chosen for 
comparison of 
integr ation s tr ategy 

Fig. 4 a: Stress vs strain for Walker model (one and one-quarter 
of a cycle) - KUMAR et al. STRATEGY. 
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Walker Model 

22.5 

V) 

~ 10 

strain, 0/o 

.& points chosen for 
comparison of 
integration strategy 

Fig. 4 b: Stress vs strain for Walker model (one and one-quarter 
of a cycle) - PRESENT STRATEGY. 




