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ZUR NUMERISCHEN INTEGRATION VISKOPLASTISCHER MATERIALMODELLE

Mehrere explizite Integrationsmethoden wurden hinsichtlich ihrer
Effektivitdt bei der Integration nichtlinearer "steifer" konstitu-
tiver Gleichungen fiir viskoplastische Materialmodelle kritisch
Uberpriift. Es zeigt sich, daB eine einfache Euler-Vorwdrts

Methode mit automatischer Schrittweitensteuerung gute Ergebnisse
liefert. Die Mdglichkeiten verschiedener Verfahren zur Schrittweiten-
steuerung wurden iiberpriift. Dabei hdngt die erfolgreiche Anwendung
eines Verfahrens - eines wird in diesem Bericht vorgestellt, ein
anderes wurde von Kumar et al. vorgeschlagen - von dem zu integrier-

enden viskoplastischen Modell ab.

ON_THE NUMERICAL INTEGRATION OF VISCOPLASTIC MODELS

Abstract

A critical examination of several explicit integration methods, for
their effectiveness in the integration of nonlinear and stiff comn-

stitutive equations of viscoplastic models, has been presented. The

use of a simple Euler-forward method with an automatic time step control

strategy is seen to be encouraging. The capabilities of several such
time step control strategies have been assessed. The success of inte-
gration strategy - one presented in the report and the other proposed
by Kumar et al. - depends on the particular viscoplastic model being

integrated.
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Introduction

The need for incorporating the influence of inelastic material be-
haviour into high-temperature design procedures for Nuclear Reactors-
and Gas-Turbine engines is now well recognized. The conventional way

of treating the strain as the sum of a time independent component
(plastic strain) and a time dependent component (creep strain) seems
unjustified as only the combined effect is measurable. The necessity

and importance of viscoplastic models, which treat the strain as a uni-
fied quantity, without artificially separating it into plastic and creep
components, shouldvthus be evident. During the last several years, con-
siderable effort has, therefore, been devoted to the development of vis-
coplastic models to characterize the inelastic behaviour of materials
under thermomechanical loadings at elevated temperatures. As a result

a number of viscoplastic models has emerged and is available in
literature [1-16]. The predicting capabilities of these models are
different but each of these models is capable of predicting several of

the following physical phenomena:

1. Behaviour in tension (loading/ unloading), 2. Behaviour in compres-
sion (loading/ unloading), 3. Initial elastic behaviour, 4. Creep,
5. Relaxation, 6. Rate sensitivity, 7. Anelasticity, 8. The Bauschinger

effect, and 9. Cyclic hardening/ softening.

The viscoplastic models give a better representation of material beha-
viour, but the difficulty coupled with their use is that the constitutive
differential equations associated with these models are highly nonlinear
and "stiff" (used in a mathematical sense) to yield, in general, an
analytical solution. Fortunately, the availability of versatile numeri-
cal methods such as the Finite-Difference, the Finite-Element or the
Boundary Element methods, and of the high speed and large computers has
facilitated the applicability of the viscoplastic models to the problems
involving the high-temperature inelastic behaviour of materials.
Although some investigations using the Finite Difference Method [17,18]
and the Boundary Element Method [19-21] are available, yet the most
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popular and commonly used method for the solution of time-dependent
inelastic problems remains the Finite Element Method, or FEM [5,6,12,

15,22-25].

Since, as already pointed, the differential equations associated with
these models are "stiff" in nature, these present a great deal of dif-
ficulty for a time-dependent analysis. It is, therefore, necessary that
suitable integration algorithms - fast, stable and economic (in computer
time) - be developed for viscoplastic models so that these models could
be used conveniently on a practical scale and lead to a more realistic
and rational design of structural components for use at elevated tem-
peratures. The important and basic criterion in the development of any
integration algorithm for the stiff equations of the viscoplastic models
is that it must be usable with the Finite Element Method (or the Finite
Difference or Boundary Element Methods). It is with this objective of
developing a fast, stable and economic numerical integration strategy
(to be used in conjunction with the Finite Element Method) for visco-
plastic models that the work presented in this report was carried out.
Out of a number of viscoplastic models now available in literature,

the more commonly used models due to Bodner-Partom [1-2], Robinson [4]
and Walker [6] were selected for the development and assessment

of the integration algorithms. These models have different mathematical
structures. For example, the Robinson model utilizes the concept of

a yleld surface together with the loading and unloading criteria, whereas
the other two do not. A detailed review of these models and their capa-
bilities may be found in Ref.[23]. The uniaxial forms of these models

for isothermal conditions are presented in the following section.

Viscoplastic Models (Uniaxial Forms)

Bodner~Partom Model

The uniaxial form of the equations for Bodner=-Partom model is:
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In which ¢ is the strain and ¢ the stress. The subscripts 'e' and

'I' refer to elastic and inelastic components and the dot over a symbol
denotes differentiation with respect to time t. The quantities E, Do’

n, m, Z, A, ZI and r are material constants and listed in Table-I(a).

The variable Z is a measure of isotropic hardening or dislocation density
and is called the 'drag' stress. Wp is the rate of plastic work. The
first term in eq.(4) represents work hardening and the second term
(through the constants A, r and Zl), allows for thermal recovery or

softening.

Robinson Model

The nondimensional uniaxial form of Robinson model for the case of pure

shear may be written as:

Fnil (T=-4d)

e

{ F>0 , Tl >0 amd T(T-«) >0,

£E>6 anmd T 0. : .
BY - | e
F 4o ,
0 i g Fyo , Tt >0 and T(T-4) <0
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Equations (6) are referred to as flow laws and eqgs.(7) as evolution
laws. o is the nondimensional back stress, T - the nondimensional
applied shear stress, and ¥ - the inelastic shear strain. The evo-
lution law includes two terms - one corresponding to a hardening
process and the other to softening or recovery of the material and is
based on the Bailey-Orowan theory [26]. B,‘n, R, B, GO are

material parameters and prime (') denotes differentiation with respect
to nondimensional time T (cf.Ref.[4]). The material constants for

Robinson model are given in Table I(b).

Walker Model

The equations for the uniaxial case of Walker model have the following

form:
éI: = k:—yt lCT'- _ﬁl‘vt-q | .114 ’ @)
L2 = (My+w) Ep - (L2 -7 Ey) G , 3)
A -Ng R . -
G- (at+ 7y e Y R O+ i, |_[2_\m ' s ¢10)
Q. = léI‘ , | 14)
. nz R |
K = K - K, e ¥ (12)

“s)




The quantities Kl’ K2’ N, Ny, D,y Ngy N, DNgy Dy My and

m are material constants listed in Table- I(c). & is the back
stress and accounts for the Bauschinger effect or kinematic
hardening. The first term in eq.(10) corresponds to the dynamic
strain recovery, whereas the second term to the static thermal

recovery for the back stress. K is called the drag stress variable.

Numerical Integration Methods

Stiff Equations: A system of differential equations, in which a

small change in the values of independent variables may cause a
large change in the values of dependent variables is called a "stiff"
system of equations. A more rigorous definition of 'stiffness' may

be found in Ref.[27].

Since the differential equations associated with the viscoplastic
models and governing the growth of internal state variables are

stiff equations, special care and attention is called for their in-
tegration. For use in conjunction with a finite element code, these
equations are to be integrated a large number of times. The cost

and computer time involved, therefore, prohibit the use of traditional
methods of using small time steps for accurate integration of these
stiff equations. A 'smart' integration strategy with automatic time-
step control capable of achieving the desired accuracy and stability
is , therefore, required. This integration strategy, together with
one of the single or multistep, implicit or explicit numerical methods
reported in literature [27,28] may then be implemented into a finite

element code for optimal results. Kumar et al.* [29] present several

*Several other attempts to integrate these stiff equations have been
made and some useful information in this regard is available in

literature [30-32].
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such integration strategies and show that in case of inelastic model
due to Hart [7], the use of a simple one step explicit Euler in-

tegration scheme with automatic time-step control is advantageous.

Another favourable aspect of the explicit integration schemes over
the implicit integration schemes is that they do not require the
evaluation or inversion of a Jacobian matrix. This fact is of ad-
vantage and significance especially when the number of equations
involved is large. The advantage of using implicit integration methods
is that they may allow large time steps without affecting the sta-
bility of the method. Cormeau [33] has, however, shown that se-

veral implicit methods suffer from the same time-step restriction as
does the Euler method and in such circumstances the implicit methods

offer no special advantages over the simpler explicit methods.

With these considerations in mind, the following explicit integration

methods were selected for further investigations:

Euler method,
Modified Euler method,
Fourth Order Runge-Kutta method, and

P TR R

Milnefs predictor-corrector method.

The formulae for these methods in case of a system of equations

are given in Table II. The first three of these methods are single
step methods whereas the fourth - Milne's method - is a multistep
method. During the course of numerical computations, it was observed
that smaller time-step sizes than those required for Euler, Modified
Euler and Runge-Kutta method were required for the stability of Milne's

method. Further, being a multistep method the requirement of a large

- storage space (when used for integration with a finite element pro-

1

gramme) discourages the use of Milne's method. These considerations

resulted in the exclusion of Milne's method from further investigations.

Comparison of the Integration Methods

Because of highly non-linear and stiff character of differential

equations associated with the three viscoplastic models due to




Bodner-Partom, Robinson and Walker, it is natural to expect that
the integration of equations may be sensitive to the integration
method being used. (It will, of course, also depend on the par-
ticular viscoplastic model being integrated). To explore this
further, a considerable amount of computations® was carried out
for the three viscoplastic models using the above mentioned inte-

gration methods and different (constant) time steps. Some of the

results of these computations are listed in Tables III(a), III(b),
III(c) and Figures 2 through 4, for Bodner- Partom, Robinson and
Walker models, respectively. The cyclic 1oadings used with these
models are shown in Figure 1 and are taken from References [34],

[4] and [6], respectively.

The values of stress for Bodner-Partom model at different times,
obtained using the three integration methods, for a number of time-
step sizes were calculated and the values for time step sizes,

At = 0.5, 0.005 and 0.001 are shown in Table III(a). It is found
that for these time step sizes, the differences in the values of
stress for the three integration methods is negligibly small.

(These differences may be large if a sufficiently large time step

is taken). And, as expected, with the reduction of time step size,
the values obtained using different integration methods get improved.
It is also seen that to obtain the 'accurate' values (defined as
the values which change insignificantly with further reduction of
time step size) of stress, the same small time-step has to be used
for all the three integration methods. The CPU-times for these three

methods for any time-step size are, however, strikingly different.

For example, for At = 0.005 and At = 0.001, the CPU-times for

Euler, Modified Euler and Runge-Kutta methods are, respectively:

0.84, 3.78, 3.20; and 3.99, 18.85, 15.39 seconds (and the number of
iterations per cycle are 20,000; and 100,000 respectively). It may,
therefore, be noted that the CPU-time required. for the Euler method is

significantly less than that required for the other two methods.

* All the computations presented in this report were performed on
a SIEMENS M7890 machine. The double precision arithmetic was

used to reduce the errors due to truncation.



Table III(b) depicts the values of non-dimensional stress for Ro-
binson model, obtained using the three integration methods. The
time step sizes are At = 0.2x10 >, O.lXIO-Svand 0.5%x107°.

Similar results as those mentioned in the preceding paragraph for Bodner-
Partom model seem to hold good for this model, too. The CPU-times
required for the Euler, Modified Euler and Runge-Kutta methods for

the aforementioned time-step sizes are: 0.78, 3.52, 2.86, 1.51, 6.96,
5.64; and 2.87, 13.69, 11.15 seconds, respectively (and the number of
iterations per cycle is 10,000; 20,000; and 40,000; respectively).

The Euler method is found to be the most economic (in computer time)

method for this model, too.

The values of stress in case of Walker model for At = 0.0025, 0.001
and 0.00025 are exhibited in Table III(c), for the three integration
methods. It is seen that for At = 0.0025 the difference in the

values of stress obtained using the Euler method and those obtained
using the Modified Euler and Runge-Kutta methods is quite apparent.
But this difference decreases with the reduction in time-step size

to obtain the accurate values. For example, for At = 0.00025 the
differences in the values predicted by the three methods are negli-
gibly small. The CPU-times required for the Euler, Modified Euler

and Runge-Kutta methods for time steps, At = 0.0025, At = 0.001

and At = 0.00025 are, respectively, 0.47, 1.49, 1.24; 0.85, 3.38,
12.78 and 2.79, 12.50 and 10.47 seconds (and the number of iterations
per cycle is 2,480; 6200; and 24,800; respectively). The Euler method
is again seen to consume the minimum computer time to yield the

accurate values of stress in case of Walker model, too.

The foregoing results and observations suggest that the use of Euler
method with an automatic time-step integration strategy should lead
to an optimal integration algorithm for the integration of stiff
constitutive equations associated with these models, and for incor-
poration into a Finite Element Code (like ABAQUS, ADINA or MARC, etc.)
Naturally, the next step, therefore, was to develop or to use al-

ready existing automatic time-step control strategies in conjunction




.1

with the Euler method and assess their capabilities with regard to
the viscoplastic models mentioned herein. The integration strategies
examined during the course of present work are outlined in the next

section.

Integration Strategies With Automatic Time-Step Control

There are different integration strategies that have been proposed
or successfully used by various investigators [6,29-31,35] for
viscoplastic and creep problems. Some of these, and the integration
Strategy developed during the course of present investigations, are

listed below:

Automatic Time-Step Control Integration Strategies Based

On Taylor's Expansion

Expanding the strain & at any time t+At by Taylor's series, we

have
[ .tz Y] e
elt+at) = eLt) + At E (Az5l AN Aa)

The time step At is then chosen so that the second term in the series

is some small fraction, say )\, of the first term. This yields

At = AN ——— . - us)

Such a time increment has been used for the solution of creep pro-

blems [35].

If the time step At is so chosen that the third term in expansion (14)

is some small fraction, say |, of the second term, one obtains

st ad SEL 3
| €1
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Such a choice of time step has been suggested by Lindholm at al.[23]

for viscoplastic problems.

The Euler method with automatic time step increments, as suggested
in eq.(15) or eq.(16), was used for integrating the constitutive
equations associated with the Bodner-Partom, Robinson and Walker
models. The integration strategies worked well in the initial stages
of computations but later allowed time steps large enough to cause
instability. It was observed during the calculations that chooéing
small values for X and u delayed the onset of instability but it
could not be completely avoided. These two integration strategies

were, therefore, not further explored.

Integration Strategy Proposed By Kumar et al.

Kumar et al.[29], have proposed and employed an automatic time-step
integration strategy with explicit Euler method for the integration
of inelastic constitutive equations due to Hart [7]. The strategy
was found to be promising upon its comparison with several other
integration strategies reported therein. A brief outline of the
strategy proposed by them is given below.

For the single differential equation

n

dy 4%)
D t
o ¢ (Y, t) ,

the value of y at t+At can be obtained as

y(t + At) = y(t) + At ¢(y,t) . (12)

The error, e, at this step and used for time step control is then

defined as

N A L VAT T “3)
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where V¢ is the first backward difference of ¢.

Two error parameters e = and e , are prescribed. The
max min

strategy works as follows:

Compute e, if © nax < e : replace At by At/2, recompute e,

< : . + At .
e‘ e ax accept At; compute y(t At)

The time step for the next step, Atnew’ is defined as follows:

if e , <e ¢ At = At,
min max new

1A
®

and

if e < e | ¢ At = 2 At.
min " “new

It is easy to extend the method for a system of differential equa-

tions
f_fj) _ ‘Pd) (%U" , ), (20)
dt
by ‘defining an error vector e(i), as before.
Now a suitable norm
e =1 () | _ (24)

is defined. Three common norms suggested by Kumar et al. and used

in the present work are

=) L)
L o= wmax | e | R
i W
L = iié l e ( | R Arrel

(2097 . (22)

Y
5
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The values of stress for respective cyclic loadings, as depicted in
Fig.l, for Bodner-Partom model (one cycle), Robinson model (two and
one~quarter of a cycle) and Walker model (two and one-quarter of a
cycle) have been calculated using the abovementioned algorithm and
for the three error norms mentioned in eq.(22). Since the values
obtained using the three norms differed negligibly, the values only
for the norm, Lw, are tabulated in Tables IV(a), IV(b) and IV(c)

for the three viscoplastic models. The values have been listed for

twenty points per complete cycle (ten for loading and ten for unloading).

The third and sixth columns of these Tables show the corresponding

'accurate' values obtained using a constant time step (cf. Section 3.1).

Figures 2-4 show the accurate values for one cycle for Bodner-Partom
model and one and one-quarter of a cycle for Robinson and Walker
models. The solid circles (triangles) show the points taken on the
cycles for comparing the stress values due to Kumar et al. (present)

integration strategy with the accurate stress values.

Present Integration Strategy

The integration strategy developed during the course of present in-

vestigations will now be illustrated for the differential equation:

[

d4 4y % |
= b (4,%) . %)

Suppose that the solution of eq.(17) at any time t is known or
obtainable using any one of the integration methods. To obtain the

solution at the next time step, the integration strategy proceeds

as follows:

I. Choose a suitable time step, At, say. Denote the value

of y obtained with this time step as YF(=yt+At).

II. Halve the time step At. Denote the value of y obtained




(in two steps) as YH(=Yt+At)'

IIT. Define the quantity

;ToL i} | Ve "\/H\ _

| %l

(23)

The upper and lower limits for the quantity Tol (say, tolerance) are
prescribed and denoted as Tolu and Toll, respectively. The

next steps in the strategy are:

IV. If Tol > Tolu, replace At by At/2. Go to step I. Re-
compute Tol by repeating steps I through III. Repeat the
procedure until a time step At is obtained for which Tol £ Tolu.

Accept the corresponding value of y as the value yt+A£'

V. Compare Tol with Tol,. If Tolliz Tol, double the

1
time step as used in step IV for the next step calculations.
And, if Tol1 < Tol, retain the time step used in step IV

for next step calculations.

VI. Repeat the procedure with the time step rendered by step V,

and so on.

The strategy can easily be generalized to a system of equations by

using concepts similar to those mentioned in Section 4.2.

The values of stresses obtained for Bodner-Partom, Robinson and
Walker models in case of respective loadings (cyclic) have been
tabulated in column 5 of Tables IV(a) through IV(c), respectively.
The corresponding 'accurate' values have been shown in column 6 of
these Tables. Another important point that is brought forward from
these Tables is the fact that these integration strategies admit
maximum error in the regions where the stress changes from tensile

to compressive and vice versa.
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Discussions

In order to analyse the capabilities and efficiency of the integration
strategies with automatic time step control presented in Sectionmns

4.2 and 4.3, the following error norm was defined:
A2
& - 0a \* (24)
B = Z o
a

where o denotes the value of stress obtained using the integration
strategy (Kumar et al. or present) and oa denotes the corres-
ponding 'accurate' value of stress taken from Column 3 or Column 6

of Tables 1IV.

Bodner-Partom Model

The values of stress at different times obtained by using the two
integration strategies and for the cyclic loading shown in Fig.1(a),
have been listed in Columns 2 and 5 of Table IV(a). Columns 3 and 6

of this table show the corresponding accurate values. The error norms,
as defined in eq.(24), have been calculated by taking twenty points
per complete cycle (at equal spaces wherever possible) for Kumar et al.
and present integrafion strategies and denoted by EK and £P,
respectively. The error norms at the peak values of stress during
loading or unloading were also calculated and denoted by gKP and

¢, ., respectively, for the two integration strategies.
PP P

The values of all the error norms and CPU-times (on a SIEMENS M7890

machines) in case of Bodner-Partom model are reproduced from Table V

and listed below:

Kumar et al. Strategy Present Strategy
EK = (0.1887, EP = 0.00225,
- -7 - -8
EKP = 3x10 °, gPP = 2x10 7,

CPU-Time = 0.55 secs. CPU-Time =0.16 secs.
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The Table IV(a) also shows the values of emin(=10-4) and

€10y (51072) and of Tol (=10"%) and To1u(=1o'4), used for the

two integration strategies.® It is seen that the present integration

strategy not only works faster than the strategy proposed by Kumar
et al. but also yields more accurate results in case of

Bodner-Partom model.

Robinson Model

The values of nondimensional shear stress for nondimensional times
(shear strains) have been listed for Robinsonkmodel for the two
integration strategies in Table IV(b). The loading cycle is shown
in Fig.1(b). The results listed are for two and one-quarter of a
cycle of this loading and are obtained including the elastic com-~

ponents.

The values of error norms and CPU-times reproduced from Table V

are:

Kumar et al. Strategy | Present Strategy
EK = 0,0543 gP = 0.0045 ,
a0 _ -7
EKP = 2X10 gPP = 5%10 °,
CPU-Time = 0.63 secs. CPU-Time = 0.48 secs.

The integration strategy presented in this report is seen to work -

more efficiently and accurately than that proposed by Kumar et al.

Robinson model also.

for

* In fact the values of e , , e , Tol, and Tol were at
min’ “max 1 u

first selected arbitrarily and reduced further until results close

to the accurate values of stress were obtaimned. The values listed:

in this and other Tables are these values of error norms and

tolerances.



5.3 Walker Model

Table IV(c) exhibits the values of stresses obtained at dif-
ferent times (strains) for the loading cycle (two and one-quarter
of a cycle) shown in Fig.1(c) for the two strategies. The values

of error norms and CPU-times for these are shown below:

Kumar et al. Strategy Present Strategy
gK = 0.0498 EP = 0.4517,
11076 - -5
EKP = 1X10 EPP = 0.67)(10 >
CPU-Time = 0.51 secs. CPU-Time = 0.76 secs.

It is seen, therefore, that the present strategy does not

work as well for Walker model as it did in case of Bodner-Partom

and Robinson models. In fact, the strategy due to Kumar et al. works
faster and yields more accurate results. This observation, there-
fore, supports the apprehension that the success of an integration
strategy also depends on the viscoplastic model being integrated.

It also serves as a warning that, in order to obtain optimum re-
sults, an integration strategy with automatic time control should be
used with care, Table V gives a general overview of how the two in-
tegration strategies work in case of different viscoplastic models.
The informations furnished therein may possibly be exploited bene-

ficially by a structural analyst.

6. Conclusions

The report deals with the problem of numerical integration of non-
linear and stiff differential equations associated with the unified
viscoplastic models. Some integration methods have been examined in
detail and, on the basis of a large amount of computations carried
out during the course of present work, the use of a simple explicit
Euler method with an automatic time step control is seen to be most
encouraging. Several automatic time step control strategies have

been presented and discussed to assess their applicability in con-




junction with a Finite Element Programme. The capabilities of auto-
matic time integration strategies - one proposed by Kumar et al.

and the other presented in the report - are estimated in case of
viscoplastic models due to Bodner-Partom, Robinson and Walker (uni-
axial forms). It is concluded that the success of an automatic time
step integration strategy is linked with the model being integrated.
It is expected that the results presented in the report may be of

help and provide some useful guidelines to analysts and engineers

for integrating the stiff constitutive equations of viscoplastic

models.
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Table - I(a)

Material Constants” for Bodner—Partom Model

E=21.3 x 10° KSI D = 10% sec” !
n= 0.7 A =1.9 x 10_3sec_1
Zl= 1015 KSI r = 2.66
Z= 915 KSI Z_'= 600 KSI,
o -1 I
m = 2.57 KST

*These constants taken from Ref.(36) are for INI0OO at 13500F°

Table - I(b)

« .
Material Constants for Robinson Model

B = 3000 B=1"
= 0,1 o= 0.001
o
=4 g = 10.000 |,
" o
Taken from Ref.(4).
Table I(c)
Material Constant;kfor Walker Model
A =115 x lO6 n, = 1 x 106
uo=4.9x10° 'n3 = 312
K = 59292 n, = 0
K2 = 0 n5 = 0 s
n = 4,49 n, = 2,73 x 10
m = 1.16 n, = 0
n, =0 0% = -1200.

®These constants taken from Ref.(6],'are for Hastelloy-X at 1800°F.
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Table - II

Formulae For Numerical Integration Methods

Consider the vector initial value problem

day
- L&Y, Y(x) =C M

Let X, =X + nh and Xn = X(x“) and let fn = f(xn,gn).

The integration formulae are:

I. Euler Method:

= +
¥n+l gn hfn

I1. Modified Euler Method:

P =
¥n+] zn +h fn
C _ h p
¥n+] a gn * 2 { En(xn’zn) + fn(xn+l ’ ¥n+l) } ’ (2)
L o
new h C
¥n+l - Xn +'7 { fn(xn’Zn) * fn(xn+l’ ¥n+1) }'

(“In this term the latest available values of different components

C
of zn+l are used.)

ITI. Fourth Order Runge-Kutta Method:
h e + 2y + 2y 4 k)

¥n+l - En ¥ 6 > (3
where

El B fn - ﬁ(xn’gn) ’

PREICRS I A Lk

ky = 0o 43 Y +’121152) : ()

ky = £Gpep > Y, Ky



IV, Milne's Predictor—Corrector Method:

Predictor

Corrector

- f
P =y + 4h(2 fn ~n=1 *2 En—z)
~n+l  <n-3 ’
3
k-1
vl = + h('g(xnﬂ > Yo+ ) * 4 fn * gn—l)

~n+l Xn—]

(5)




Values of stress

Table = III(a)

(KSI) at different times (strains) for Bodner-Partom Model,

Stress At = 0.5 At = 0.005 At = 0,001

\Q

Time (ST Euler Modified Runge-—|Euler Modified Runge- [ Euler Modified Runge-
(strain) Euler Kutta Euler Kutta fuler Kutta
5.0 93.72 93,72 93,72 93.72 93,72 93.72 93,72 93.72 93.72
(0.0044)

10.0 149,53 149.75 149,76 149,15 149.16 149.16 149.15 149.15 149,15
(0.0088)

15.0 156,57 156.45 156.43 156.27 156.27 156.27 156.26 156.26 156,26
(0.0132)

20.0 157.88 157.82 157.81 157.78 157.78 157.78 157.78 157.78 157.78
(0.0176)

25.0 158,07 158.05 158.06 158.05 158.05 158.05 158.05 158.05 158.05
(0.0220) :

30.0 63.91 63.90 63.88 60.12 60.12 60.12 60.07 60.07 60.07
(0.0176)

35.0 -29,.,81 =29.82 -29.82 =33.60 =33.60 =33.60 =33.65 =33.65 =33.65
(0.0132)

40.0 =123.53 -123.54 -123.54 -127.31 =127.,31 =127.31 =127.36 -127.36 =127.36
(0.0088)

45.0 -157.95 =157.94 -157.94 -157.93 -157.93 =-157.93 -157.93 -157.93 -157.93
(0.0044)

50.0 -158,08 -158.07 ~158.07 -158.07 -158.07 ~158.07 ~158.07 -158,07 -158,07
(0.0)

55.0 -140.34 -140.33 =140.33 =140.84 =140.84 -140.84 -140.84 -140.84 -140.84
(0.0)

60.0 -136.81 -136.80 =136,80 =137.14 =137.14 ~137.14 =137,14 =137,14 =137.14
(0.0) ‘

65.0 -134.77 -134,76 -134,76 -135,01 ~135,01 =135.01 -135.01 =135.01 ~135,01
(0.0) ) a }

70.0 =133,32'-133.,32 -133.32 ~133.51 ~133.51 =133.51 =133.52 -133.52 -133,52
(0.0)

750 -132.21 -132,20 -132,20 ~132.36 =-132,37 =132,37 -132,37 -132,37 -132.37
(0.0)

80.0 -47.65 =47.65 =47.65 -38.69 =-38.69 -38.69 -~38.62 -38.62 -38.62
(0.0044)

85.0 46.07 46.07 46,07 55.02 55.03 55.03 55,10 55.10 55.10
(0.0088)

90.0 139.71 139.71 139.71 147.43 147.43 147.43 147,48 147.48 147.48
(0.0132)

95.0 157.85 157.84 157.84 157.86 157.86 157.86 157.86 157.86 157.86
(0.0176)

100.0 158.06 158.06 158.06 158.06 158.06 158,06 158,06 158.06 158.06

(0.0220)




Values of nondimensional stress vs nondimensional time (strain)

Table III(b)

for Robinson Model-

Stress At = 0.2 x 107 At = 0.1 x 107 At = 0.5 x 1070
Time Euler M.Euler Runge Euler M.Euler Runge Euler M .Euler Runge
0.0025 10.242 10.242 10.242 10.241 10.241 10.241 10.241 10.241 10.241
@-2382 12.095 12.094 12.09 12.094 12.094  12.094 12.09% 12.094 12.09
(028830) -8.808  -8.808  -8.808  -8.807 -8.807 -8.807  -8.806 -8.806  —8.806
(OZ%S%P) -11.369 -11.369 -11.369 -11.369 -11.368 ~-11.368 -11.368 ~-11.368 ~-11.368
og%i% -12.855 -12.855 -12.855 -12.854 -12.854 -12.854 =12.854 -12.854 ~-12.854
('Q'Q%%S) -13.998  -13.997 -13.997 -13.997 -13.997 -13.997 -13.997 -13.997 -13.997
Pi%RY  5.403 8.403 8.403 8.401 8.401 8.401 8.400 8.400 8.400
(995> 11.234 11.234 11.234 11.233 11.233 11.233  11.233 11.233 11.233
0% 12.758 12.757 12.757 12.757 12.757 12.757 12.757 12.757 12.757
Q-9928) 13.919 13.919 13.919  13.919  13.919 13.919 13.919 13.918  13.918
9932 _g.420 ~8.422 -8.422  -8.420  -8.420  -8.420  -8.419  -8.419  -8.419
Q% 11,240 -11.239  -11.239 -11.239  -11,239 -11.239 -11.239 -11.239 -11.239
(48?%%%%) -12.762 -12.761 =-12.761 -12.761 -12.761 =-12.761 -12.761 -12.761 -12.761
(-8388?85 -13.923  -13.922 -13.922 -13.922 -13.922 -13.922 -13.922 -13.922 -13.922
(9593335) 8.421 8.421 8.421 8.419 8.419 8.419 8.418 8.418 8.418
0.8?8? 11.240 11.239 411.239 11.239 11.239 11.239 11.238 11.238 11.238
(g:gggg) 12.762 12.761 12.761 12.761 12.761 12.761 12.761 12.761 12.761
0.0450 13.923 13.922 13.922 13.922 13.922 13.922 13.922 13.922 13.922

— e —




Values of stress (psi) at different

Table III(c)

times (strains)

for Walker Model .

(0.0)

At = 0.0025 At = 0,001 At = 0,00025
Euler Modified Runge | Euler Modified Runge |Euler Modified Runge
Euler Kutta Euler Kutta Euler Kutta
0.3% 13808 13820 13820 13795 13800 13800 13789 13790 13790
(0.0012)
0.62 16700 16772 16772 16710 16724 16724 16711 16718 16718
(0.0024)
0.93 17457 17546 17547 17479 17497 17497 17482 17491 17491
(0.0036)
' 1.24 17973 18068 18069 18000 18019 18019 18003 18012 18013
(0.0048)
1.55 18339 18434 18434 18365 18384 18384 18368 18378 18378
(0.0060)
1.86 373 448 449 419 449 449 441 449 449
(0.0048)
2.17 -13633 -13590 -13589 -13588 =13571 -13571 =13566 -13562 -13562
(0.0036) :
2.48 -17156 =17204 =-17204 =17150 - =17170 =17170 =-17148 =-17153 =17153
(0.0024)
2.79 -18443 -18527 =-18527 ~—18457 ~=18491 -18491 =-18465 -18473 =18473
(0.0012)
3.10 ~19358 =19459 ~-19459 ~19382 =19423 =-19423 ~-19394 =-19404 ~19404
(0.0)
3.41 -20016 =~-20123 =20123 =-20043 =20086 =20086 =20057 =~20067 =-20068
(-0.0012) :
3.72 -20485 =20591 -20592 ~20511 =20554 =-20554 ~20525 =-20535 =20535
(~0.0024)
4.03 -20817 =20918 -20919 =-20840 =-20881 -20881 ~-20852 ~20862 -20862
(-0.0036)
4.34 -21049 =21146 -=21146 =21070 =21108 -21108 =-21080 =21089 =-21089
(-0.0048)
4,65 =21212 =21303 -~21304 =21229 ~21265 -21266 -21237 -21246 -21246
(~0.0060)
4.96 -3219 =3290 =3290 ~3262 =3290 -3290 -3283 -3290 -3290
(~0.0048)
5.27 10809 10771 10771 10768 10753 10752 10747 10743 10743
(-0.0036)
5.58 14427 - 14481 14481 14425 14447 14447 14424 14429 14429
(-0.0024)
5.89 15801 15890 15891 15819 15855 15855 15828 15837 15837
(-0.0012)
6.20 16783 16889 16890 16810 16853 16853 16824 16835 16835




Table III(c) continued

At = 0.0025 At = 0.001 At = 0.00025
Euley Modified Runge | Euler Modified Runge|Euler Modified Runge
Euler Kutta Euler Kutta Euler Kutta
6.51 17492 17603 17604 17522 17567 17567 17537 17548 17548
(0.0012) . - ,
6.82 17998 18108 18109 18027 18071 18071 18041 18052 18052
(0.0024) ' _
7.13 18356 18462 18462 18382 18424 18424 18395 18405 18405
(0.0036)
7.44 18608 18707 18708 18630 18670 18670 18641 18651 18651
(0.0048)
7.75 18784 18878 18878 18803 18840 18840 ~ 18812 18821 18821
(0.0060) '
8.06 793 866 866 838 867 867 859 867 867
(0.0048)
8.37 =-13233 -13192 -13192 =-13190 =13174 =13174 -13169 =13165 <=13165
(0.0036)
8.68 -16844 -16896 =-16896 —16841 =-16862 —-16862 -16839 ~16845 ~16845
(0.0024)
8.99 -18213 -18301 -18301 -18230 =18265 -18265 -18239 ~18248 ~-18248
(0.0012)
( 9330 -19192 =-19296 =19297 -19218 =19260 =19260 =-19232 -19242 -19242
0.0
9.61 =19897 =20008 =-20008 =19927 <=19971 -19971 -19942 =19953 =19953
(=0.0012)
9,92 =20401 =20510 =20511 =20429 <=20473 =20473 -20443 =20453 -20454
(~0.0024) A
10.23 -20757 -20862 =20863 =-20783 =-20825 =-20825 -20795 ~20806 =20806
(-0.0036)
10.54 =21008 =21107 =21107 =21030 =-21069 =21069 -21040 =21050 =21050
(-0.0048)
10.85 -21183 21276 =21277 =21201 =21238 ' -21239 -21210" -21219 -=21219
(~0.0060)
11.16 3192  =3264 -3265 -3236 -3265 -3265 -3258  -3265 -3265
(+0.0048)
11.47 10835 110795 10795 10793 10777 10777 10772 10768 10768
(-0.0036) .
11.78 14448 14499 14500 14444 14465 - 14465 14442 - 14448 14448
(-0.0024)
12.09 15816 15904 15905 15833 15869 15869 15842 15851 15851
(-0.0012)
) 12.4? 16794 16899 16900 16821 16863 16863 16834 16845 16845
0.0
12.71 17500 17610 17611 17530 17574 17574 17544 17555 17555
(0.0012) ' :
13.02 18004 18113 18114 18032 18076 18076 18046 18057 18057
(0.0024)
13.33 18360 18465 18466 18386 18428 18428 18398 18409 18409
(0.0036)
13.64 18611 18710 18710 18633 18672 18673 18643 18653 18653
(0.0048) .
13.95 18786 18879 18880 18805 18842 18842 18813 18823 18823

(0.0060)




Table 1IV(a)

Values of stress at different times obtained using the integration strategies pro-

posed (i) by Kumar et al. and (ii) in the present report,for Bodner-Partom Model

SE;E;? Accurate St;g;; Present Accurate
Time( Kumar et al. Values™ | Time Report Values'
sec.) (sec.

5.0 93.73 93.72 5.11 95,78 95.78
10.06203 $49.34 149.30 10.01 149,18 149.17
15.26203 156.51 156.42 15.01 156.29 156.27
20.14203 157.85 , 157.80 20.13 157.80 157.79
25.0 158.06 158.05 25.00 158.05 158.05
30.0 54,67 60.06 32.265 17.58 17.60
35.0 -39.05 -33.66 37.385 ~78.39 ~78.36
40.0 -132.76 =127.37 40.025 -127.87 -127.83
45.0 =157.97 ~157.93 45.145 -157.94 ~157.94
50.0 =158.08 -158.07 50.00 =158.,07 =158.07
55.25 =139, 86 -140.58 55.04 -140.78 -140.80
60.25 ~136.57 =137.01 60.00 ~137.12 -137.14
65.25 -134.60 =134.,92 65.12 =134.95 -134.97
70.25 -133.20 ~133.45 70.24 ~133.44 -133.45
75.00 ~132.16 =132.37 75.00 =~132.35 =132.37
80.00 -38.33 -38.60 80.92 =21.33 -21.36
85.00 55.39 55.11 86.04 74.63 74.61
90.00 148.03 147.49 90.00 147 .54 147 .49
95.1875 157.90 157.88 95.14 157.88 157.87

100.0. ' 158,07 158.06 100.00 158. 06 158.06
¥ defined in Section 3.1.
e . =10, e .= 107 and Tol, = 10, Tol, = 107
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Table IV(b)

Values of non-dimensional stress at different times obtained using the inte-
gration strategies proposed (i) by Kumar et al. and (ii) present report, for

Robinson Model

) Lress Kumar et al Accurate ' fress Present Accurate
Time ' Values Time Report Values
0.001000582 7.842 7.839 0.001 7.841 7.839
0.002002582 9.714 9.712 0.002008 9.720 9.718
0.003010582 10.704 10.701 0.003 10.6 94 10.692
0.004018582 11.469 11.465 0.004024 11.472 11.469
0.005 12.098 12.094 0.005 12.096 12.094
0.006183284 -0.665 -0.631 0.006018 1.012 1.011
0.00700570 =7.400 ~7.362 0.0070039 ~7.390 ~7.361
0.008005702 -9.577 -9.569 0.00799987 -9.569 -9.562
0.009013514 -10.607 =10.601 0.00900787 -10.601 -10.598
0.0100]351 -11.384 =11.377 0.01001587 =11.385 ~11.379
0.01101351 =12.036 -12.029 0.01100787 -12.031 -12.026
0.01202914 ~12.614 -12.608 0.01199987 -12.597 =12.592.
0.01302914 ~-13.,125 -13.118 0.01299817 =13.105 =13.103
0.01399789 ~13.575 -13.569 0.01401587 ~-13.581 -13.576
0.015 =14 ,005 =13.997 0.015 -14.002 =13.997
0.0160298 ~-2,764 =2.774 0.016026 -2.815 -2.812
0.01700214 6.342 6.332 0.01700384 6.346 6.343
0.01800214 9.320 9.314 0.01799984 9.312 9.311
0.01900214 10.428 10.423 0.01900784 10.429 10.428
0.02000214 11.240 11.235 0.02001584 11.247 11.244
0.02101777 11.922 11.916 0.02100784 11.913 11.910
0.02201777 12,505 12.499 0.02199984 12.494 12.489
0.02301777 13.026 13.020 0.02299184 13.010 13.007
0.02401777 13.499 13.492 0.02401584 13.495 13.491
0.025 13.926 13.918 0.025 13.922 13.918




Table IV(b) = continued

. Stress Kumar et al. Accurate ' tress Present Accurate
Time Values Time Report Values
0.02617414 1.192 1.253 0.026026 2.735 2.734
0.02700169 -6.439 -6.382 0.02700172 —6.384 -6.382
0.0290056 -9.344 ~9.330 0.02800572 -9.332 -9.330
0.0290056 -10.443 ~10.433 0.02899772 ~10.428 -10.427
0.0300056 -11.252 ~11.243 0.03000572 ~11.245 -11.244
0.03102123 -11,933 ~11.923 0.03102972 -11.931 ~11.928

~ 0.03200365 -12.505 ~12.496 0.03202172 ~12.508 -12.505
0.03300365 -13,025 -13.016 0.03304572 ~13.040 -13,037
0.03400365 ~13.499 -13.489 0.03400572 -13.494 ~13.490
0.035 -13.931 -13.922 0.035 -13.923 -13.922
0.0364051 1,153 1.035 0.036026 -2.739 -2.737
0.03700267 6.451 6.385 0.03700172 6.382 6.379
0.03800267 9.344 9.326 0.03800572 9,331 9.330
0.03900267 10,443 10.430 0.03901372 10,442 10.440
0.04000267 11.252. 11.240 0.04000572 11.245 11.243
0.0410183 11.933 11.921 0.04102972 11.931 11.928
0.04200658 12,508 12.497 0.04202172 12.508 12,505
0.04300658 13,028 13.017 0.04304572 13.040 13,037
0.04400658 13.501 13.490 0.04400572 13.493 13.490
0.045 13,933 13.922 0.045 13.925 13.922
e in = 0> e . = 104 and Tol, = 107° Tol = 10




Table IV(c)

Values of stress (psi) at different times (sec.) obtained using the inte-

gration strategies proposed (i) by Kumar et al. and (ii) in present report

for Walker Model

' Stre§s Rumar et al. Accurate Stress| Present Accurate
Time si) Values Time~{psi)| Report Values
(sec.) (sec.)

0.3102109 13795 13797 0,31 13890 13791
0.6208359 16717 16712 0.62 16737 16710
0.9302109 17487 17479 0.93 17501 17479
1.240211 18008 18000 1.24 18021 18000
1.55 » 18373 18365 1.55 18386 18365
1.885252 -878 ~859 '1.86 364 434
2.170216 =13599 =13580 2,17 ~13717 ~13574
2.481074 =17157 -17152 2.48 -17185 =17149
2.79 -18472 ~18462 2.79 -18487 -18462
3.10129 -19405 -19393 3.10 ~19410 -19390
3.412596 =20070 -20057 3741 —-20071 -20052
3.720309 -~20533 -20520 3.72 ~20539 -20520
4.026825 ~20857 ~20845 4.03 ~20868 ~20845
4.,342920 -21088 -21078 4,34 =21098 -21076
4.65 =21243 =21235 4,65 =21257 -21235
4.96674 =2913 - =2932 4.975 -2430 -2508
5.270131 10788 10755 5.27 10909 10754
5.582631 14447 14438 5.58 14461 14424
5.892006 15845 15833 5.89 15849 15825
6.201381 16838 16822 6.20 16839 16820
6.511439 17549 17534 6.51 17550 17532
6.821596 18052 18038 6.82 18055 18037
7.130971 18403 18391 7.13 18410 18391
7.443471 18650 18639 7.44 18659 18637
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Table IV(c) - continued

Stress Stress

oo | tamar en ar. fegurace [ Jad bresene dccurace
(sec.) (sec.)

7.75 18817 18809 7.75 18832 18809
8.068649 394 409 8.08 =244 -172
8.371330 ~13229 ~13210 8.37 -13347 -13176
8.680473 ~16847 ~16840 8.68 -16876 -16840
8.992973 -18256 -18247 8.99 -18259 -18236
9.302348 -19246 -19233 9.30 -19246 -19227
9.611723 =19953 -19939 9.61 -19954 -19937
9.921098 -20453 ~20440 9.92 -20457 -20439
10.23360 -20806 -20794 10.23 -20810 -20791
10.55235 ~21055 21044 10.54 -21058 ~21037
10.85 =21217 -21207 10.85 -21230 -21207
11.18375 -1986 -2034 11.175 ~2404 -2482
11.47054 10838 10793 11.47 10935 10779
11.78018 14454 14444 11.78 14480 14443
12.09489 15871 15859 12.09 15863 15839
12.40072 16847 16830 12.40 16849 16830
12.71086 17556 17540 12.71 17557 17539
13.02114 18057 18043 13.02 18060 18042
13.3333 18409 18397 13.33 18414 18394
13.64295 18652 18641 13.64 18661 18640
13.95 18819 18810 13.95 18833 18810
e . = 107> e = 107%  and Tol, = 107, Tol = 10




Table V

Comparison of Error Norms and CPU-Times for Kumar et al. and Present Lﬁte-

gration Strategies in Case of Different Viscoplastic Models .

Error Norms

CPU - Time (secs.)

Model Strategy
Complete Peak Values Complete
Cycles ‘ Cycles

Kumar et al. 0.1887 3 x 107 0.55
BODNER 8

Present 0.00225 2 10 0.16

Kumar et al. 0.0543 2 10_-6 : 0.63
ROBINSON _

Present 0.0045 5 10 0.48

Kumar et al. 0.0498 1.0 10_'6 0.51
WALKER 5

Present 0.4517 0.67 10 0.76
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a) Bodner - Partom Model (Ref. [34])).
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c) Walker Model (Ref.[6])

Fig. 1 Cyclic loadings for different models.
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Fig. 2 a: Stresses (accurate) vs strain for Bodner -Partom model
(one cycle) - KUMAR et al. STRATEGY.
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Fig. 2b: Stresses (accurate) vs strain for Bodner -Partom model
* (one cycle) - PRESENT STRATEGY. |




Robinson Model
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Fig.3a:  Stress (nondimensional) vs strain for Robinson model
(one and one-quarter of a cycle) - KUMAR et al. STRATEGY,
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Fig. 3b: Stress (nondimensional) vs strain for Robinson model
A (one and one-quarter of a cycle) - PRESENT STRATEGY.
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Walker Model
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Fig. 4 a: Stress vs strain for Walker model (one and one-quarter
of a cycle) - KUMAR efal. STRATEGY.
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Fig. 4b: Stress vs strain for Walker model (one and one-quarter
of a cycle) - PRESENT STRATEGY.






