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ABSTRACT

A nonlinear theory of multimode gyrotrons is developed, which
describes such effects as mode competition (ie suppression of
unexcited modes by the operating one), nonlinear excitation of
passive modes by the active one, and mode locking. Mode com-
petition is the dominant effect for modes with close frequencies
(relative to the cyclotron resonance band). In such a system
only single mode oscillations are stable. Nonlinear excitation
of passive modes whose frequency is greater than the frequency
of the operating mode is possible due to electrons under the
action of the operating mode group in the decelerative phase
with respect to the passive modes. For three or more modes with
an equidistant spectrum of frequencies, mode locking takes

place when the beam current substantially exceeds the threshold
conditions, even though one mode finds itself in the nonlinear
excitation band. The results obtained permit one to estimate
the conditions for stable single mode oscillation in multimode

gyrotrons.



THEORIE DER MODE-KONKURRENZ IM GYROTRON

ZUSAMMENFASSUNG

Eine nichtlineare Theorie eines mehrmodigen Gyrotrons wird
vorgestellt, die solche Effekte wie Mode-Konkurrenz (die
Unterdriickung einer nicht angeregten Mode durch die Betriebs-
mode), die nichtlineare Anregung einer passiven Mode durch

die schon angeschwungene und Mode-Locking beschreibt. Der
wichtigste Effekt flir Moden mit eng benachbarten Frequenzen

nah an der Zyklotronresonanz ist die Mode=Konkurrenz. Nur
einzelne Moden kdénnen stabil in ein solches System schwingen.
Die nichtlineare Anregung einer passiven Mode mit einer hd&heren
Frequenz als die der Betriebsmode wird ermdéglicht, wenn die
Elektronen genug von der Betriebsmode entschleunigt werden.

Im Falle drei oder mehr Moden kann Mode Locking stattfinden,
wenn der Strom sehr viel héher als der Startstrom ist, auch
wenn eine Mode sich im Bereich der nichtlinearen Selbstanregung
befindet. Auf Grund der vorgestellten Ergebnisse kann man die
Bedingungen filir stabile, ein-Mode Schwingung in mehrmodigen

Gyrotronen abschédtzen.



PREFACE

From the earliest stages of gyrotron development, the Institute of Applied
Physics at Gorky/USSR played a leading role, When KfK started development ac-
tivities on advanced gyrotrons in 1983, the basic theory was well established

and a considerable body of experimental results was available.

To accelerate our entry into this new field of research, it was obviously
desirable to establish an exchange with the Institute at Gorky and to partici-
pate in the knowledge and experience collected there over more than 15 years.,
As a first step we were pleased to have had Prof. G.S. Nusinovich as a guest
for two weeks at the Institut fir Kernphysik I1I, Kernforschungszentrum Karls-
ruhe. During this stay, G.S. Nusinovich presented a series df lectures and
kindly made available to us the manuscripts, which are comprised in this -

booklet.

These lectures provide a far more systematic and comprehensive treatment of
mode competition and start up phenomena than is otherwise published in the
literature. Thus they provide us with very useful guidelines for the develop-
ment of a program package to calculate gyrotron phenomena for the KfK gyrotron
experiment, During the time since they were given, we have used them as a
basis for our own treatment of the problem, adapted to the parameters of our

experiment.

With the agreement of the author and of the Academy of Sciences of the USSR,

we are pleased to make these lectures available to the gyrotron community.

We are grateful to the Institute of Applied Physics, Academy of Sciences of
the USSR for making possible the visit of Prof. Nusinovich, and we hope that

this was Jjust the beginning of a fruitful cooperation.

Minor modifications, such as the correction of obvious misprints,
as well as the insertion of figure captions (to comply with guidelines for KfK

publications)} have been made without further correspondence with the author.

E. Borie

G. Hochschild
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THEORY OF MODE INTERACTION IN THE GYROTRON

G.3. Nusinovich

Institute of Applied Physics, Academy of
Sciences of the USSR, Gorky, USSR

LECTURE I

Introduction

The development of a powerful microwave electron oscillator
usually takes place in three main directions:
- enhancement of the generated power,
- increase in the operating frequency,
- extension of the microwave pulse duration and/or transition
to CW operation.

What is the move in each direction connected with?

P=yUI (1)

can, obviously, take place owing to an increase in the operat-
ing Qoltage XJ- and the beam current I (the potentialities
of increasing the electron efficiency ? for highly effec-
tive m%crowave ogscillators cannot lead to significant increase
in the generated power). As the operating voltage and the beam
current grow, the amplitude of stationary microwave oscilla-

tions /A\ increases in accordance with the balance equation

pUl = %AZ\/, (2)
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The left-hand part of (2) is the microwave power transferred
from the electron beam to the RF field of the resonator, the
right-hand part is the power of microwave losses in the reso-
nator ('\f is the resonator volume, () is the operating fre-
quency, CQ is the Q-factor of the resonator). Since quite de-
finite values of the ogcillation amplitude /\ and the length
of the interaction space L_ usually correspond to high-effi-
ciency operation, in order to maintain a constant efficiency
with an increase in the power of the electron beam and micro-

wave oscillations, it is necessary to enlarge the cross-section

of the interaction space S_\_(\]"SLL>*.

microwave power ig also needed for enlarging the resonator
cross-gsection, because when the gyrotron operates at a fixed
mode of the resonator, all gizes of the resonator diminish pro-
portionally to the wavelength X and the microwave power drops
according to the balance equation (2). So, to keep the level of
the microwave power constant, it is necessary to enlarge the
resonator cross—-section in the wavelength scale, i.e. to ope-

rate at higher modes of the resonator.

make the resonator heating that is caused by ohmic losses of

microwave power essential. The power density of the ohmic los-

We do not discugs here the possibilities of diminishing the
Q-factor, becaugse for powerful gyrotrons the diffraction Q is
usuelly close to the minimum value QzQZ}x S'F(L/,\)Z . Some
comments on gyrotrons with low-Q cavities will be given below
in Lecture 4.
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ges is determined by the expression

— Q_d‘_.‘&_ . ._p__. | (3)
ohm Q g ’
ohm t

where the ohmic Q is proportional to the ratio of the rasonator
radius K to the skin layer depth d~>:/2: Qoth R/a(, and the
lateral surface of the cylindrical cavity (open in the axial di-
rection) is equal to Sm==2ﬂW?L_. Therefore if the power density
of ohmic losses is too large for the mentioned gyrotron opera-
tion (for CW operation the upper limit is of order 1 kW/cmz),
in order to avoid the resonator overheating one should enlarge
the resonator cross—-section.

So, ali the named directions of powerful gyrotron development
are concerned with the tendency to space-extended systems.

It was mentioned above that the increase of the resonator
" cross—gection leads to operation at high modes with a dense spec-
trum of eigenfrequencies. The distance between the frequencies

of neighbouring modes is proportional to
A"_bg""ﬁ (4)
. ESL

(this formula takes into account the fact that effective axial
mode selection can be provided in cylindrical open resonators[lj
of gyrotrons). At the game time, the gyrotron active medium that
is an ensemble of electrons with the time of transition through
the resonator "Y"==L_/QJ“ ( U, 1s the electron axial velocity),

has s typical band of amplification

T
AWan ~ = (5)

Hence, when the distance between the neighbouring mode eigenfre-

quencies given by (4) is smaller than the active medium band (5),

several modes of the gyrotron can be excited simultaneously. Un-
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der such conditions the problem of providing stable single-mode

oscillations with high efficiency becomes important.

Mode Selection

Before the discussion of the problem on simultaneous excita-
tion of several modes, it should be mentioned that relation (4)
ig valid unless we do not use different methods of transverse

mode selection.

Radial mode gele

tion can be provided with a coaxial inner cylin-
der in the resonator [21. Such a cylinder tapered to the collec-
tor pushes the rays of modes with a large radisl index f) out
of the resonator, i.e. diminishgs their diffraction Q. On the
contrary, when the radius of the inner cylinder incregses to the
collector, the Q-factor of these modes becomes large; than the
Q-factorg of the whispering gallery modes with a large azimuthal
index (h1>>f))' This can teke place when the inner cylinder
with the radius Y~ does not gignificantly disturb the field of
the whisperring gallery modes localized near the resonator wall,
i.e. when the caustic radius of these modes R, = g%i? is
greater than ¥ (here R is the radius of the resonator wall,
\)=2TT§— is determined by the boundary condition 3:\&(\% =0
for the TE-modes).

The other method of radial mode selection can be called
electron selection (in contrast to the previous one, that is
electrodynamic selection). This method consists in the appro-
priate choice of the radius of the electron guiding center FQQ.
Indeed, in gyrotrons the electron beam has a small spread in
?30 ( AF2°<K‘X> s which permits one to diminigsh the drop in

electron efficiency caused by the difference in the impedance

of coupling between different electrons and the resonator field.
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FPor conventional gyrotrong with a cylindrical regonator and
exially symmetric electron beam, the coupling impedance is pro-

portional to

—2 ,
. Jm_:t n (KJ- Ra}
K <\,z__ m2> 31 (\;) '
Here K, 1is the transverse wavenumber that is cloge to %g- be-

cauge gyrotrons usually operate near cutoff, N is the number

of the resonant cyclotron hermonic (W= NW, ), the sum ‘nL+nf
in the Bessel function index corregponds to the case where elect-
rong in the external magnetic field and the electromagnetic wave
in the resonstor rotate in opposite azimuthal directions, )
corresponds to rotation in the same direction. It is known that
the function k((fRo) is maximum for Ro close to the caustic
radius RC . In such a cage modes with neighbouring frequencies
and larger azimuthal indices (smaller radial indices) have
Rct>FRo , 80 the coefficient XX is small and the electrons
interact with these fields weakly. For modes with larger radial
indices, this radius of the electron guiding center Ro corres=
ponds to subsequent peaks of the'Bessel function whose maxims
are smaller that the inner one. Note, by the way, that modes
with larger radial indices occupy a larger part of the resona-
tor volume (in the expression for }( this fact corregponds to

a large value of VR for the given V ), hence, the starting

currents of these modes grow with an increase in P e

Azimuthal mode_selection, For azimuthal mode selection it is
necesgary to disturb the azimuthal symmetry of the interaction
space of conventional gyrotrons. The simplest way to do this ig
to make axial slotg in the resonator [ﬁ;{]. When the distance

between the two halves of such a cavity grows, this resonator
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transforms to an open quasioptical two-mirror resonator [5] (gy-
rotrons with such quasioptical resonators have been actively
investigated in recent years, see, for example, [6,7]). It is
obvious that in two-mirror resonators the modes with one azi-
muthal variation at the mirror surface have highest diffraction
Qe

Thus, the use of any method mentioned above' sets a condi-
tion for the density of competing modes that ig far less rigid
than (4):

AW A

[

&) L, - (6)
In (6) a typical transverse size LJ_ for modes differing in ra-
dial indices P is."the resonator diameter (the difference be-
tween the eigenvalues for such neighbouring modes with
P>>'1 is close to W ); for the Whisper:ing gallery modes
that satisfy the condition tA=2wkK_, L,=2wR, ; for the
modes of the quasioptical resonator that satisfy the condition
?—)23'—:28( P>>'\ R 2?, is the distance between the mirrors),

| =40 .

Nevertheless, as the transverse sizes of the interaction
space grow, even a relatively large distance between the mode
eigenfrequencies (6) can become smaller than the a.mplification
band (5). In such a case, the self-excitation conditioné can be
fulfilled for several modes simultaneously. The amplitudes of
these modes grow independently until they become so large that the
non-linear properties of the electron beam provoke mode inter-

action,

Besides the mentioned methods of mode gelection, there exist
other methods that consist, for example, in step-profiling of
the resonator [8,9] .
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Equations of a Multimode Gyrotron

Every resohant microwave electron oscillator can be described
by a self-consistent set of equations which consists of the equa-
tion of electron motion in the RF field and the equation of the
resonator field excitation by the electron beam. It ié well
known (see, for example, {]O,1{l) that the equation of electron
motion has just the same form for the gyrotron as for a nonli-
near ogcillator under the action of the external alternating
force whose frequency is close to one of the harmonics of the
oscillator eigenfrequency. When the RF field acting on elect-
rons is a.sum of several modes of the resonator, the external
force is a superposition of all these modes and, corresponding-

ly, the averaged equation of electron motion has the form [12,13]

| : - Ugs—ned,
‘m ~-i[a+lal 4]Q,=L{§,Qn 4&43@6 Yo )?

with the boundary condition Q,(O)-:'l o In (7) the complex va-

lue QU = EJ; ' exp &—L(«%—&,)} describes the change in the
energy of electron oscillations ('Flo ig the initial value of
the orbital momentum, %L;=.i§° is the initial orbital velocity

normalized to the light ve}ocity) and the phase of the cyclot-
ron rotation (QX-\—LF\/‘“‘&Q‘@) O=8- Wel  related to the fre-
quehcy W, close to the initial cyclotron frequency of elect-
rons W, ( (W 1is the basic frequency for the averaging of
eq. (7)) 9 is the electron phase at the input crogs-section
of the resonator. The normalized axial coordinate & is pro-
portlonal to the axial coordinate 2 : &= gf“-‘g%}é K

@ 11— LO”°> . The sum of the RF forces gg’all modes that

io

can regonate with electrons at different cyclotron harmonics

(“Dskzns“%b>:is given in the right-hand part of (7). The func-
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tions gs(cj describe the axial structure of the resonator
modes, F; and WE are the normalized amplitude and phase of
the s-th mode, respectively, taking its transverse structure
into account ‘
p e 4 A Y ng®
& Ho ANY) Q'ﬂs‘vnsl' hS o

Here the amplitude of the s-th mode A% is normalized to the

(8)

value of the external magnetlc field Fl , the function
Lns [w ('”“'““”’“ﬂ P (X Y) describes [10, 11] the trans-
verse structure of the s-mode Lorentz force acting on the elect-
ron with the coordinates )()Tf of the guiding center, the mem-
brane function'gJ(QC*Y)is the solution of the Helmholtz equa-
tion A ‘Ltp + K%Y =0 with the boundary condition ffé:
for the TE-modes at the resonator wall.

Equations of sgeveral mode excitation have been known for such
a long time that it is difficult to establish their author now.
FPor radio oscillators, Van-der-Pol seems to be the first to
obtain these equations [j4] (later they were analysed in de-
tail for the case of two modes in papers [ﬁ5,16] and elsewhere),
Similar equations for optical masers were obtained by W. Lamb
Erﬂ. Finally, for microwave electron oscillators they were de-
rived by L.A. Vainstein [18,19]. The method of their derivation
is rather simple. The RF field of the resonator is presented
as a sum of high-Q modes with a fixed space structure and am-
plitudes ,Asth)that can slowly vary in time. The substitution
of the RF field in such & form into the Maxwell equationsg with
the condition l %ﬁél <<<i)/l taken into account, permits one
to reduce the wave equation to the equations of excitation that

are ordinary differential equations of the first order. These

equations for different types of oscillators differ only in the
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form of the term responsgible for a concrete active medium. For

gyrotrons, in particular, these equations have the form E2,131

o”:g

=F (-—— )) (9)
Aq) . i :
_&fz LW — g+ CPS . (10)

Here the amplitude F& and the phase q)s are determined by

(8), the dimensionless time t equalsg t=w®t , the dimension-
(-Oc COS‘F b(wS/z Q&)
, Lda, Qa

, @c>>4 is the Q-factor of the s-th mode, the

less eigenfrequency of the s-th mode equals W = =+
« Mg

= W+ Lo

S 1 2Q

value @s called below the factor of excitation equals

0
ATy

P [22 WL S(S ORNL

. ds,
da)&&l\{ 11)
S, Fs

The dlmensa.onless function WCRLO,Y’) normalized to unity de-

c%

scribes the electron distribution in the electron initial velo-
cities and coordinates of the guiding centers R_L (X Y (RD,L%)

the parameter Is ig proportional to the beam current I

I = el w2 ( n“SM )z 2(Rgd)

s me?® 02;(—?’[\[ s nl

[

Ns in (12) is the norm of the g-th mode oscillations. For a

hollow annular eled’cron beam, where the spread in electron velo-
cities and radial coordinates of the guiding centers can be neg-
lected, W(Rlo,gb3~2 R, S(R.— R_L°> 8(@ f’m) 8(@“ Pus and,

thus, CP _T_ $ , Where

R ' 2T 2w C:‘tn ““l’ n\g)
e T [0 g
0 Kl

Comparing equations (9) with the known equations of excitation

(see, for example, [10,7:(), where the active medium is described
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— —

by the polarization P =IXE (X is the dielectric sus-
ceptibility), one can easily relate D ana X L@:‘é")(, .

In view of the assersion that eqs.(9) and (10) are ordinary
differential equations of the first order, it is necessary to
note that, in principle, the factor of excitation CPS (11) is
determined as the infegral over the resonator volume at a given
moment of time t o At this moment the electrons which interact-

‘
ed with the RP field at a time £t ~1t , where O<+t'<T= —{L;— ,
I

are present in the resonator volume. Henceé, the gyrotron active
medium, similar to active media of other microwave electron de-
vices, possesses space-time dispersion and eqs.(9) and (10) are
integro-differential equations with a delay argument.

The processes in the multimode gyrotron described by eqs.(7),
(9) and (10) can be characterized by some typical times. For
electrons, this is the transit time.r5={z; during which an elect-
rbn passes through the resonator. This time determines the ty-
pical width of the Lorentz force gspectrum and, correspondingly,
the band of amplification (5). The typical time for mode ampli-
tudes in a "cold" resonator is the time of the oscillation de-
cay TSd’VCQS/Lng For a resonator filled by electrons, the ty-

pical time for nonstationary processes is the time of the am-

plitude growth which, as follows from eq.(9), is proportional

I |
to T ~ :_[——SYI’—-o %—S— o Since under usual conditions the beam
Tlhgt We

current I exceeds the starting value Ist only by several
times, one can consider T +to be of the order of Ty . The
beating effects play an important role for phase relations be-
tween the modes. These effects depend on the distance between
the mode frequencies: for two modes, "wa \w,\w-aoz\~4 ; for
three modes, besides 'CBN\(}Og,*LO&\v/I ( L,('\z/I‘Z,s') Lqé‘g ), such

. e} v e [
times as ’Cb’u \ LOL'!"L&)S _'Q’COKl ( L) A)K:’()Z,%') '\1"-/:& :{: K )
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can be essential and so on. Note, that for gyrotrons with the
axial symmetry of the interaction space '(Q's—_-‘JAm%(KSQ)éLms“S
and, as follows from (8), 'th=3ms'*—‘ns(‘<sRo) e—u(ms‘tnsyg , the
phase W, is a sum of the term (g depending on time and the
term (Wugtn%)gg depending on the azimuthal coordinate (g :
W= oc_sm(m&d:ns)&g . Therefore, the beating harmonics in
eqs.(9) and (10) have the form (wz—mgt—(mz—m«) g, (2¢0,- W= Jt-
- (Zmz—m,\“mdﬁg and so on.

?aking into account the expression for diffraction Q
QZ:; o= (l___/ }52 given above, one caen determine the ratio of
both times '[:/T‘ e [I@/(I-Igtﬂ 043%“ (L/}\) . Since under
typical conditions in,gyrotrons 4i§“ﬁigt/flsxgg.v4 and L>>A
the time of the mode amplitude growth is much greater than the
electron transit time 'T' e This fact permits one to integrate
the equation of electron motion (7) assuming the mode amplitudes
to be constant and, then to analyse '"slow" evolution of the mode
amplitudes, i.e. eqs.(9).

The typical times of phase beatings, in the general case,
can be comparable with the electron transit time T~ because
the distance between the mode eigenfrequencies can be of the
order of the amplification band. Correspondingly, the equation
of electron motion (7) should be integrated for different values
of phase differences L7 O 2%{2—%/«—- Y, and so on, which in-
creages the time of computer analysis significantly. At the
game time, in many cases the equations for mode amplitudes (9)
do not depend on the phase differences Aﬂ*) « These cases are:
a) Fast beating in time. This case corresponds to a large dis-
tance between the mode eigenfrequencies [LOZ—WLMK ’\Qﬂdzded"“%A
and so on, as compared with the width of the mode resonant

curve Wq / QS .
b) Azimuthal orthogonality of modes with different azimuthal
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indices when mﬁ M, , ) mM,# M,+ M, and so on.

In the first case, one can average eq.(9) over the time
gcale ’VQS/UQS and thus exclude all fast oscillations of dif-
ferent phases. In the second case, the phase differences vary
with the azimuthal coordinate kg eand, hence, the integration
over Lg in the expression for the factor of excitation (11)
will lead to the averaging over the phase beating in eqs.(9)
and (10). Since in such cases eq.(9) for mode amplitudes does
not depend on mode phases, purely amplitude interaction takes
place between the modes, i.e. one mode amplitude evolution is
affected only by the amplitudes of ddher modes, not by their
phases,

On the contrary, when several modes with a quasiequidistant
gpectrum are in the cyclotron band and : - . relations such as
szz m,+ ms can be valid for the azimuthal indices of
these modes, the amplitude evolution of these modes depends not
only on thé mode amplitudes, but on their different phases as
well., Whisperring gallery modes in a resonator with a large ra-
dius can be an example of such a case. The condition Q\fr12==m4-§-m3
is valid for azimuthal indices of these modes that differ only
by & unity. The spectrum of these modes is close to an equidigs-
tant one: representing the eigenvalues \)m for large M. in
the form [5] \)m)f: m_tf,(%y/s ( _tf‘ is th; p-th root of the
equation U'(¥)=0 , U is the Airy function), one can obtain

. Wi+ Wa—2wW,| 2 A a
the estimation [20] o o ?H;f”('2—> o3 o For

M »\O and psd ( | t,| =1.02, ltzi =3,25, and \t,|=4.82),

this frequency difference is not greater than the width of the
resonance curve for modes with Q~103. S50, in this case beat-
ing with the phase difference Zq)z—({{(-k{)s will be presented

in eq.(9) for the mode amplitudes and, hence, it will be ne=-
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cessary to analyse these equations together with the correspon-

ding equation for phase lelzvk{),l“‘\)g.
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LECTURE 2

Stability of Single-Mode Oscilldtions for Purely Amplitude

and Phase-Amplitude Interaction of Gyrotron Modes

In this lecture we shall restrict our consideration to the
investigation of the simplest and, perhaps, most important prob-
lem in a large number of problems concerning mode interaction,
namely, the stability of single-mode stationary oscillations.
The simplicity of this probiem is explained by the fact that on-
ly the vicinity of the equilibrium state on the F-axis will be
investigated in the (2N-1)-coordinate space that corresponds to
the enhancement of the N-modes (with N amplitudes and N-1 phase
differences).

This investigation can be readily divided into two stages,
the first of which is the analysis of stationary single-mode os-
cillations of the operating mode and the second one is the stu-
dy of the stability of these oscillations with respect to the
parasitic mode oscillations whose amplitudes are assumed to be
small as compared to the amplitude of the operating mode.

A self-consistent set of equations for stationary single-mode

oscillations in the gyrotron follows from eqs.(7), (9) and (11a):

Q/(o . ' 6
d&é LA+ 0 ) Q= LR £ @) (a%)’ ,1 (13)
T AT Get
=-1 =2, 4 ’ #\'O pK,
P, L £ 2 § { § (oj&) _§° &) Jc&owo , (14)
R (% (15)
P, = 26,

The boundary condition for (13) is just the same as for (7):
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Q%#Qy=4. The index " O " here corresponds to the operating mode
and its action on the electrons, the frequency &, in this lec-

ture is equal to

o ¢ Equation (15) corresponds to the ba-

' lance equation (2) given below in the dimensional variables.

The set of equations (13)-(15) was analysed in many papers
concerned with the theory of single-mode oscillations in the gy~
rotron (see, for exaﬁple, [1@]). These equations permit one to
determine the amplitude of the operating mode [,. for the gi-
vén values of the beam current parameter IO(QO , the cyclotron
resonance mismatch A and the axial structure of the resonator
.RPF field goéa). The results of numerous invesfigations of these
equations are summarized elsewhere (see, for example, [jo, Zf]
and [22] ).

In fhe study of the stability of these oscillations we shall
distinguish two possible cases that were discussed in the first
lecture: the case of purely amplitude interaction and the case
of phagse-amplitude mode interaction. In the first case, it suf-
fices to anélyée the sﬁability of the operating mode oscilla-
tions with respect to.one, arbitrary, parasitic mode, since pa-
ragitic modes do not affect one another in this case and the
condition of their self-excitation depends only on the intensi-
ty of the operating mode. On the contrary, in the case of phasge-
emplitude mode interaction, where the conditions of time
(lQ,’u)cf(O._(— LO.M\ < E% ) and space (Zi’\’to:m_1~+ M.,) synchro-
‘nisms are satisfied, the paressitic modes are coupléd. Here,
when the single-mode oscillations of the operating mode become
ungtable , the ogscillations of both satellites appear simulta-

neougly. This fact can be interpreted as automodulation of the

operating mode oscillations and, hence, this ingtability can be

called automodulation instability.
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Let us s‘uppose that parasgitic mode oscillations with a small
amplitude F‘« Fo appear in the gyrotron with intense oscilla-
tions of the operating mode, This fact ‘will provoke small per-
turbations in the electron motion. We shall describe these per-
turbations assuming the value (.. to be equal to Oyt E ey o
Linearizing eq.(7) in F;, we obtain the equation for (., from
(7) and (13):

d,ac ‘ _ , 5 .. . =2
,;Q'cf) ~L(A+21a,)|>1) Q- LQ2 Q%=1 {(no— )y §,F @t

+Q(n4—4 ¢ e:,(Xe;W)gae (16)
9 U4 .

This equation should be supplemented with a complex-conjugate
equation for QZ} and the boundary condition ()(0)=O. The
phase Y denotes here the difference f{l':—("lr, (O,;“-m CO,;)’(:;F
+(n4m,,--n°m4>\'§ of phases of both modes at the moment 'tc, when
the ‘electrons enter the input cross—section at the point with
the azimuthal coordinate: Ls) . The value A equals AA'ré—a <‘(%2".._§
The expression for the factor of parasitic mode excitation by

& hollow electron beam follows from (11a)
. - ) el
Zu 0 (:‘ "L(Nk‘“"' B

A ; A e d (1 ¢ n,—4 hy \)>"> \
p I N A (R LAt iV e SRR LAY
(E‘\ Y 2 SQLZWS L ) (\&‘l"k (/‘(«) h) = d lQ ° ‘{(t{“?)
0 0 ,&;'M
- |
In view of the fact that we consider the case ', IT, + 1, e,
the averaging over the azimuthal coordinate kS ig identical
here to the averaging over the phase difference § .,
Using eq.(9), one can eagily obtain the conditions of stabi-
lity for the given equilibrium state
|
(3 q) § " Q rL/]
— <O D, (N < =
- 1 ; g
b, (2 ) o > QQ/(

Q
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The first of these conditions defines the stability of oscil-
lations of the operating mode with a stationary amplitude
with respect to its own perturbations. This condition is not
fulfilled for the unstable branch of the oscillator with hard
gelf-excitation, it is valid in the below consideration.

If the second condition is violated, the parasitic mode has
a positive increment and, hence, its oscillations will grow.
Taking the balance equation (15) into account, this condition

can be written in the form

<‘Po‘ /CP': >%= %1‘ %—'{; ) (18)

or, for the gyrotron in which the spread in electron velocities

and radii of guiding centers can be neglected, in the form

A A A n,o I Q4
L/ >=%, Tq, (18a)

Two facts should be emphasized. First, both factors, CIZ
and qat , depend on the amplitude of the operating mode (for
a parasitic mode, it follows from eq.(16) that determines the
value QU) and, correspondingly, the factor CP,‘ , and includes
the value (., depending on ¢, ). Second, the given set of
equations can be applied to the analysis of the competition Sf
modes resonant with different cyclotron harmonics. A mode reso-
nant with the lower harmonic or s mode resonant with the higher
one can have some advantages in this competition depending on
the beam voltage and the pitch-factor of electrons @¢,4§“ .
Here we mean the ratio 1,(, /T Q . On the one hend, the ratio
of the effective impedances of coupling is proportional to the
electron orbital velocity to the power that corresponds to multi-

pole interaction of electrons with the RP field at different

harmonics [11] (see (12) ): I, /Iowg?i?/@i? . On the other
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hand, the diffraction Q of the regonator with a fixed length

is larger for the modes resonant with higher harmonics because
, N 2
the wavelength is smaller, i.e. Q4/Qo~ (L/M = fa and,

(LA 0 o
thus, the ratio 1,Q, /I ,Q, is proportional to (Yzqsl; /nog’sf:) .

The integration of eq.(16) and the computation of the factor
of excitation (17) cen be simplified by introducing the integ-
ral variables that are independent of the phase difference Y

Introducing the matrix

X oy Sins

\{: Y, _ _LZSW 0.‘2«)‘ Cos E d
Yy | | O cors 3
h & a.,iék) ‘ %—’m?

~ : \ \ .
where %’;Atﬂ* ¢, Q@)""' Q(«)‘CQ(«) , one can transform eq.(16)
to the equation that does not include the phase Y and has

a matrix form

dY
o =GY-H (168)
with the boundary comdition Y(O)=O . The matrix (&  is
equal to
2%y O X I A
= 0 -2y ~(4+5X2+y2—<) ~A
~A A+¥XEEZY-A 2%y 0
S(A+3XPLyRA) A O ~2X+y

J

where Qgy=X- L'7/ , end the matrix M for the modes resonant

with the fundamental cyclotron harmonics is
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{
ofn

-
N
Q O pay =

Hence, the factor ‘?? can be determined by the expression that

follows from (17):
A bAy 4

8:
&, =-t éﬁ?gfg (YY) 47 (=)= | 49, (17a)
o &

and daes not include the phase Y . The expressions for }{
and cEa for the case of higher cyclotron resonances are given
nzkﬂ.

Thus we have reduced our study to the following procedure.
In the first stage, we integrate the equation of electron mo-
tion in the field of the operating mode (13) and determine Qu(S).
Then, we calculate the factor <3?o (14) and find from the ba-
lance equation.(15) the value of the beam current parameter
T,Q, +that corresponds to the given amplitude of the operating
mode F: o In the second stage, we determine the pertﬁrbation
in the electron motion Quy(c) thet is caused by the field of
the parasitic mode using eq.(16a) end calculate the factor P,
(17a). After all these calculations we can determine the high-
est value of 6L for which the condition of operating mode
stability (18a) is valid.

The results of the calculations were given in [23,13] . As
an example, the dependence of the resl parf of the factor of

parasitic mode excitation (¥z on the frequency mismatch ‘A4==
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=A+A=%. -‘91%25—‘1 (Roq=1) is given in Fig.1 [13]

for the gy.;cloctron J'.no the absence of the operating mode oscilla-

tions (6942‘-) and in the presence of these oscillations with

the amplitudes Po =0,04 and different values of 'x\nismatch

A=.2" ", (the corresponding values of ?; are shown

in Fig.1 by horizontal dashed lines, { (¢)=@fo[(% _,4)2‘23 ’
0,1 out.

& oot =17) ¢ It follows from Fig.1 that the main effect of the
operating mc;de is the suppression of the parasitic mode, i.e.
the factor q?a‘ in the presence of the operating mode is, as a
whole, much lower than for the unexcited gyrotron. The origin
of the latter effect will be analysed in the next iectu.re.

A most typical situation for gyrotrons is the case when the
beam current is fixed and the external magnetic field is tuned
for the maximum of efficiency. The corresponding dependence of
the operating mode amplitude on the mismatch Ao for the va-
lue of the beam current parameter fo=Ing'&j¢=103 is given in
Fig.2. Using such dependences for the determin:ation of Fo as
a function of A, at a given value of i, , one can find the
zone of parasitic mode self-excitation in the plane of mismet-
ches A, K . This zone is shown in Fig.3 for the velues Q =1,
I, =102, and & ot =17. It follows from Fig.3 that self-exci-
tation of the parasitic mode can take piace in the left-hand
side of the zone of the operating mode oscillations where the
amplitude of the operating mode is small (see Fig.2) and the
paragitic mode can be enhanced with a larger amplitude if its
frequency is closer to the center of the zone of self-excita-
tion ( > O) .

It should be noted that for the optimum parameters of the
electron efficiency of the operating mode ( fo =103, & oat=1T,

and A, =0.4), the parasitic mode can be excited only when its
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frequency is closer to the center of the self-excitation zone
eand its product of the Q-factor and the coupling impedance is
twice ag great ag for the operating mode. The threshold curve %jk
is shown in Fig.4. The oscillations of the operating mode with

the maximum efficiency are unstable below this curve.

Let us congider the problem of stability of single-mode og-
cillations in the gyrotron with phage-amplitude mode interac-
tion. Due to the phase coupling, high- and low-frequency satel-
lites can appear in such a device simultaneously. We shall as-
gume that weak oscillations of the satellites cause small per-
turbation in the electron motion @=Q(°)+Q,(4) < \Qu;\«\aco)\) R
The corresponding equation for (b follows from egs.(7) and
(13) and for the cyclotron resonance at the fundamental harmo-
nic has the form

A r 0 2 . —(‘4\?/_.1 QLC{;
%%? —t S\LA*’?J a@)l"—ﬂ QU)JVQ“’)Q%E:L{;% =° ke g“ )

Here the phases q;:t'l are taken with respect to the phase of
the central mode ?;1‘-‘—‘ ((Oi_rwo)'t i‘*&’ +Ag g —Ko , T {2{‘ (O QBST).
Equation (19) similar to eq.(16) should be supplemented with a
complex-conjugate equation for O:Z) and a boundary condition
Q/u) (0y=0O

Similarly to the previous case, these equations can be re-
duced to the form that does not contain the amplitudes of para-

gitic modeg and the azimuthal coordinate ‘f , introducing

new variables Ui, and Uy ingtead of Q) :
| - e 27? ¢
Wy . LAL, 1 -y
Fucti.eiu,=e vé‘;gau)e 49,

- — Ly . tx‘\; 12_7\‘ ¥ —Lkg
FUtE,E U, = '5-.;5%8 4y

o
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““(0
Here A“‘z‘— W °

corresponds to four-photon decay of two quanta of the operating
mode to the quanta of both satellites. Equations for U, , U,

follow from eq.(19) and its complex-conjugate one:

ale N ) o
dt: -L (A°+A + Q_\Qm) \2;4) u4_ L,aq?;) U,‘ =L ;_4 ,
H X ’ 2 .
ML (K420 ) v L U =0, (20)

gf%i-@ R4+ 21 02 A) U -t 050, =0,

A L 4 (21)
\ d.;);/\ +L<AO~A +2_ \a«(o)\z—'o U__"—{- baj(éo) u._4=_b§_4 v

The corresponding boundary conditions are U.,(0)=0,Us(0)=0 .
Equations (20) and (21) do not include the satellite amplitudes,
the azimuthal coordinate “8 , and the phase difference Qf o

A
The expression for the factor of excitation P, (17} can be

transformed in a similar manner

. [e—

A

F4@ =F CP4 1 —4e CP« 1) Fﬂ@—«:a@—u +E, e @—4, -1, (22)

where
Cot 2

_ - Cot 27
CP@*.:/\:“L(;g g?é u;; ‘w"}& .ff@ﬁ) de, @«4;4:‘ §KL o& 0, dﬁﬂsgw@) ds(23)

The equation for the phase difference "({7 follows from eqs.(10)

Ok‘{ Wy +W04~2W0s AU Ay A
dt L, -t L, @_4 + l4@4 —2.1, CP: ) (24)

If the beam current parameters for all modes and their axial
structures are the same, Lxa= Lo, ., <éw) :-go(f“-,) , and
both the satellites have equal Q-factors @)_ 4=Q A , using
eq.(24) and expressions (22) and (23) one can determine the sta-

tionary value of the phase 1? (for F.,~> O ) that is stable

(5;0 @ the phase Y= . 4—\\)+4 (w, +W_~2 }"C+o<4+v< ~ 92X .
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with respect to the phase variations

cor o= h—y [-o8 ~bBeer-8"])

A—] b8~ —c\brrci—82 |

%\nt{)%t—-
_ W WAt W_=2W06 | g A
Here E e @4'-4 - @_4)4 3 C = CP,‘}_.,{ -+ @_4 4 ) 8 _-“—?_[__{'5——— @{11-‘—(@*4;_4 Z@f

is the frequency mismatch that characterizes the nonequidistance

(25)

—\~c;?-

of the mode eigenfrequency spectrum (see Lecture 1) with the
electron detuning of normal frequencies taken into account.

The equations for the satellite amplitudes which follow from
eqs.(9) and expressions (22) for the case of phase-amplitude

mode interaction are coupled:

O(FA 4<q—> \ * F‘“fz(CPA‘—«' cos q}—st"—cp4‘,l—4‘ m&?%)).

otF-4 _(:_4(@4_4 T Q)+P(CP cw{z?gq)“ FuPse)

here “G=I°(Aot . Two conditions of the operating mode stabili-

“Q’

ty with respect to the satellites follow from these equations
%l,\ —+ S_,\ < O, _ | (26)
: L { Ay i . g IR .
64'6—4“@4 4‘@—44'@)’ LV%?t"“CP ! CRM i Wer T
27
+ AWy 08 Yo (P 4 (PM @-4@10>O (27)

A __CP

where ©,= @4 21°Q4 4 ZIQ,\

of the satellites.

are the increments

Thus in comparison with the case of purely amplitude mode
interaction analysed above, these equations contain only one
additional parameter, namely, the mismatch 3 that charace-
terizes wesk nonequidistance of the mode eigenfrequency spect-
rum, Similarly to the previous case , only the situation where

the Q-factors of all modes are equal should be analysed numeri-

cally and the case QtﬁEQo can be analysed analytically be-
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cause conditions (26) and (27) can be rewritten in the form
T =34 2041y &) < O,
¥,= ?”4«(%—\‘)@ [’“({)-(—(4—“) Cf};_l>g,
where the functions ?ﬂhz denote the expressions in the left-
hand parts of conditions (26) and (27), respectively, the index
(1) symbolizes the cage = C)/QD
The results of numerical inveéklgatlons are given in Fig.5.

The axial structure of all modes was taken in the form @(k)——
..em?%( C?C\“ -—/\) 2& -—40 The solid line shows the zone of
the operatlng mode self—excitation. The dashed line shows the
beam current paremeter I;==21;<Q° optimum for the electron ef-
ficiency of the operating mode (the circle in this line corres-
ponds to the maximum of the electron orbital efficiency); The
dot-dash line corresponds to the break in the operating mode os-
cillations at the edge of the zone of hard self-excitation. For
different values of the distance between the mode frequencies

Z; s, the boundaries of the zone of the operating mode oscil-
lation stability are given in Fig.5 for 3‘:0, éL =1, The dash-
ed lines corréspond to condition (26) and the solid lines, to
condition (27). These lines are shaded as viewed from the auto-
modulatlon instability. As the distance between the mode fre-
quencies grows, the zones of automodulation first expand (cf.
the curves for A =0, 0.1 and 0.3). This fact can be explained
by the growing influence of = the dispersion in the gyrotron non-
linearity., Then, as the satellite frequencies move out of the

amplification zone, the region of automodulation instability
W+ Wy — 200,
— ==

Io L’oo
=0.02 and 0.05 show that weak nonequidistance of the mode eigen-

diminishes ( A =0.5). The analyses of the cases

frequency spectrum does not, practically, affect the boundary
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of the zone of automodulation instability.

If the frequency mismatch of the cyclotron resonance for the
operating mode is optimum for efficiency ( A, =0.6), the depen-
dence of the critical beam current that corresponds to the ap-
pearance of automodulation on the distance between the mode
frequencies N has the form shown in Fig.6. The dashed non-
shaded lines correspond to the case when the Q-factor of the
operating mode is two times smaller then that of the satellites
( GL =2), Even in this case, the central mode oscillations are
gtable for an arbitrary distance between the mode frequencies
up to the beam currents exceeding the optimum one by two times
and greater. The minimum value of the critical beam current pa-
rameter corregponds to the mode fregquency mismatch ch” 0.3
(see Fig.6). As the resonator radius grows and the mode frequ-
ency spectrum becomes more dense, the most "dangerous" satel-
lites are, obviously, the ones with the frequency mismatch close
to Ku rather than the ﬁeighbouring satellites., It is natu-
ral to suppose that the automodulation instability is inherent
in the decay processes, i.e. with an increage in the beam cur-
rent after the appearance of the first paiv of satellites sub=-
sequent pares of sgatellites will be excited.

Thus, the results obtained demonstrate the possibility to
provide stable gingle-mode oscillations with a high electron
efficiency in gyrotrons with an arbitrary dense spectrum of the
competing modes differing in their transverse structure. The
types of ingtability analysed here can play an important role
in the cages when the beam current ig increased over its value

optimum for efficiency in an effort to enhance the microwave
power.,

This conclusion permits one to establigh the fact that for
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gyrotrons with the beam current that does not exceed the opti-
mum value, the most important problem is the appropriate choice
of the start-up scenario that can p}ovide for the operating
mode to be first self-excited and then to operate with high

electron efficiency. We shall analyse this problem in the next

lecture.
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" LECTURE 3

Start-Up Scenario

Taking the results obtained in the previous lecture into
account, we shall assume that for the excitation of the ope-~
rating mode the gyrotron should be switched on so that the self-
excitation conditions are fulfilled for the operating mode prior
to the others. This method of providing the operating mode os-
cillations was proposed in [26] and then supplemented with the
analysis of & number of examples in [27].

In view of the fact that we consider a system of orthogonal
modes that are not coupled in the unexcited oscillator, the
condition of se1f~eicitation can be studied for any mode neg-
lecting the presence of all the others in the spectrum of eigen-
frequencies*. The corresponding condition follows from (9)

LTS
h LD = T (28)
Here the value CEi in the framework of a Small—signal theory
does not depend on the oscillation amplitude and is only the
function of the cyclotron resonsnce mismatch Ag==§E; 32§:£%§E&2
and the axial structure of the s-th Tzﬁe gséa)[ﬁo,28,2§1

o

AN

sob s :ﬁé_(hg.‘k%z_lg‘gsgs(% eLAS Jé\

® e, 12, s : . :
The value\g gs(ge chﬁ\ in (29) characterizes the intensity

2
O (29)

S

Double degeneracy ig, in principle, characteristic of any
non-symmetric mode, since modes with different directions of
azimuthal rotation Nexpgi(ud:i:nlg)g have equal frequencies
in the "cold" system. This degeneracy 1is, however, disturbed
in the presence of electrons and the modes differ in the start-

ing currents and oscillation frequencies due to the gyrotﬂ}opy
of the electron beam.
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of the spectrum of the RF Lorentz force acting on the electrons.
The first term in the right-hand part of (29) corresponds to
the "M"-type bunching of electrons that leads to cyclotron ab-
sorption (éigpA <O ), The second one, which is proportional
to the derivaéiVe of the spectrum intensity, corresponds to

the "O"-type inertial bunching of electrons. It follows from
(29) that the "QO"-type inertial bunching is dominant for St >
(the transit angle B = Agé1¢is usually of order 2% ) and,
hence, the real part of <§; can be positive and the gyrotron
can be self-excited. The dependence of Cii on the frequency
mismatch A for various axial structures of the RF field was
analysed elsewhere (see, for example, [23]).

The value of the starting current cen be determined using
equation (28) and expression (29). Under usual experimental con-
ditions, when the electron-optical and electrodynamic systems
are given, the starting current depends on the parameters that
can be varied, namely, the external magnetic field and the
anode Ijgﬁ and the resonator t%. voltages. One should disting-
uish here two types of operating regimes, pulsed and CW opera-
tion. At CW operation, one can vary all the named parameters.
The tuning usually reduces to a procedure when optimum voltages
are chosen for the electron-opticel system and then the magne-
tic field is tuned first for the best self-excitation of the
operating mode and after this for the operation with the maxi-
mum efficiency. Correspondingly, the zones of self-excitation
and oscillations are usually shown in the plane of parameters
"beam current versus magnetic field". An example of such
zones is given in Fig.T7 taken from.[bog. Here you can see the

gelf-excitation zones of various modes in the gyrotron that is

designed for operation at the TE15 1 1—mode at a frequency of
L
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100 GHz (similar maps of the gyrotron can be found, for example,
in [}il). According to Fig.7, one can choose a magnetic field
for the minimum starting current of the TE15’1’1-mode. As the
beam current increases, this mode will be excited and at about
40 A will oscillate with high efficiency (the magnetic field
optimum for the electron efficiency is lower than that corres-
ponding to the minimum starting current). At pulsed operation,
it seems impossible to vary the magnetic field of the super-
conducting solenoid during one pulse, because such golenoids
have a very large inductance and a very small resistance. It
during one pulse because the current
is also difficult to vary the beam current¥in cathodes with a
temperature~limited emission is already saturated at a rather
low level of the anode voltage and then grows insignificantly.
Therefore, the only way to provide an appropriate start-up
scenario for pulsed gyrotrons is to choose the necessary re-
lations between the anode and the résonator voltages at the
front of the pulses.

As a rule, the duration of the pulse front under experimen-
tal conditions is significantly greater than the typical time
of the amplitude growth A/QS/L%;and the electron transit time
*r==L_/%J“ . The estimates show that, for exasmple, for the gy-
rotron with the operating frequency of 100 GHz, the resonator
Q-factor ~ 10>, the resonator length | =5SA and the
electron axial velocity = U,=0.3 ¢, the time of the empli-
tude growth is of the order of several nanoseconds and the
electron transit time does not exceed one nanosecond. This
fact permits one to consider the oscillations at the front of
the voltage pulses as a quasistationary process during which

the parameters that depend on the voltage vary rather slowly.
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In order to determine the zones of self-excitation of va-

rious modes in the plane "anode voltage klb versus resonator

voltage KZ~ s one should express the parameters A. andcigi
in expression (29) for CEL in terms of Ij and U
2 (()S“~ n-SCQHO (ol $E~° COHo L
A= T 0 Gy =3 (30)
Y)‘Lg (J“Ho 2&3((0

The orbital velocity of electrons in the gyrotron adiaba-
tic electron gﬁn et a small space charge density can be deter-
mined by the expression [32]

. U
%Lo dF-P{f ’

where c&==L4o/ﬂ46 is the transmagnetic factor, i.e. the ratio

(31)

of the external magnetic field in the resonator region, }{o ’
to the magnetic field near the cathode, }{c « Introducing é
critical anode voltage [);?hthat corresponds to the appearance
of the anode current, when the height of the first cycle of the
electron trajectory equals the distance ci between the ca-
thode end the anode, one can express the ratio <i?44f/2&2 in
(31) in terms of I;)cr [331

2 (Viy

=9 0= (32)

Substituting this expression into (31), we obtain

2
§>Z — x e Uo., (31a)
2 io n C7— T
2 m kjm

The total electron velocity can be determined by the resonator

voltage

el >—2 (33)

@i:: 1-“<:1*- mcz
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Using expressions (29)-(33) and the balance equation (28),
we can determine the self-excitation zones of different modes
in the plane " [iL versus Tjr " for a gyrotron with an arbit-
rary axial structure of modes resonant with an arbitrary cy-
clotron harmonic.

For a gyrotron whose axial structure of modes can be de-
scribed by a gau531an function g@&) exp%» 4) % , the
excitation factor <P is [34]

C%;=-%(C?) g ,M>e/><{>§ (4:8s7) g (34)

As an example, the gelf-excitation zones of the modes resonent
with the fundamental cyclotron harmonic are shown in Fig.8
(see [?5]) for a gyrotron with the gaussian axial structure
of the RF field. The gyrotron parameters Io y G out and A°P
correspond here to the maximum of the electron efficiency
(the voltage reaches the pulse top). The self-excitation
zones are given in the plane of parameters 7<==§Ai;/2‘,
7/=f%%/Q2 « The zone of the operating mode self-excitation
is shaded. The point of the maximum efficiency,as seen from
Fig.8, lies in the field of hard self-excitation (the bounda-
ry of this field, where the oscillations break, is plotted

by the dot-dash line) and can be attained only if the trajec-
tory corresponding to the electron velocity components at the
pulse fronts passes across the shaded zone of the soft self-
excitation of the operating mode. Figure 8a shows an example

of a gyrotron with a rather large distance between the fre-
oe’C

op -
0.4, for a high-frequency parasitic mode, £&b§=0‘6’ for a

quencies of competing modes (for the operating mode, A

low-frequency one, A14 =0,2; the modes with equal minimum
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starting currents are considered). The trajectory I shows
electron velocity components for equal voltage pulses at the
anode and the resonator of the tube. The trajectory II cor-
responds to the case where the difference between the resona-
tor voltage and the anode voltage is constant through the
pulge, It is seen from Fig.8a that the first type of voltage
feeding results in initial excitation of a higher-frequency
parasitic mode at the pulse front. Then, its oscillations
break and the operating mode appears and oscillates with high
efficienCy at the pulse top. The second type of voltage feed-
ing leads to the excitation only of the operating mode in the
pulsed gyrotron.

If the frequency spectrum of the competing modes is more
dense (Fig.8b), the first type voltage feeding provides initial
aelf-excitation of a high-frequency parasitic mode whose oscil-
lations are stable while the gyrotron is crossing the shaded
zone of the operating mode self-excitation and break only in
the zone of the low-frequency parasitic mode self-excitation.
Thus, in such a case the low-frequency parasitic mode oscil-
lates with low efficiency at the pulse top and the oscilla-
tions are accompanied by the high-frequency parasitic mode
oscillations at the pulse fronts. The second type high-voltage
feeding results in nearly simultaneous excitation of both
operating and low-frequency parasitic modes in this case. In
order to determine the oscillations that are established in
such a gyrotron it is necessary to investigate mode interac-
tion, which is done below.

Thus, in the latter case we have come close to the limit

of this kind of mode selection. Note that for a typical value
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of the squared orbital velocity @{;::0.2, the case under study
corresponds to the relative distance between the competing
mode eigenfrequencies equal to 1%. If the frequency spectrum
is more rare, the pfoposed method of choosing the start-up
scenario of the gyrotron seems to be rather effective for mode
selection. For example, even the first type high-voltage feed-
ing in the above-mentioned gyrotron with the ']3E15’1,1 operat-
ing mode (Pig.7) can provide, as seen from Fig. 9 , stable os-

cillations of the operating mode with high efficiency.

Bagic Effects of Mode Intersction

It was elucidated above that it is very difficult to pro-
vide the excitation only of one, operating, mode in a gyrot-
ron with a very dense spectrum of the competing mode frequen-
cies., When such a gyrotron is switched on several modes can
be excited simultaneously. Let us consider the oscillations
that can be established in such a device.

In order to give a clear picture for the origin of the
nonlinear effects of mode interaction, we shall resort to a
polynomial approximation of the dependence of the mode exci-
tation factor CE% on the intensity of the RF field, that is
we shallvtake into account only the first nonlinear terms,
which permits us to describe the saturation effects in the
oscillator wit%~soft gself-excitation. The corresponding ex-
pression for CEZ can be obtained as a result of the integra-
tion of the equation of electron motion (7) by successive ite-
rations in FZ:Z;‘ F;'.§S(Q) ews , substitution of the itera-
tion terms obtained, CLK«/<F§)K , into the expression for
Q{is (11a) and calculation of CEE . The equations for the
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terms Q. follow from (7) [13,36]

dQ
de,

the boundary conditions are Q, (0)=0 for «k = 1. Here, as com-

-+ Q) = 1T, (35)

pared to eq.(7), the fundamental frequency ), is teken to

be equal to the initial cyclotron frequenqy of electrons in

the input cross-section, (), ; the functions I, in the
right-hand part of (35) for K = 1 contain the solutions of
the lower-order (in (\-—Z)K ) equations: ?1—;\?; ,jfz-: af+2_(a4\2‘,
.= 2(Q4QZ+QTQZ+Q4Q§)+Q4[Qd[zand so on. The solution of

equation (35) has the form
S =

{
— ¢ * = )
=i F e ((rmalan. Go
0 0o O ,
Below, the cases of purely amplitude and phase-smplitude mode

interaction will be considered separately.

In conformity with the discussion given in Lecture 1 we
shall consider here the interaction of two modes. The substi-
tution of the solutions of eqs.(36) into the expression for

A
@s (11a) permits us to obtain the following expression

A
Py= g - f)spgz“‘ few Far ) (37

where ¢'# & (8,9'=42) ,the coefficient ol describes the

"linear" properties of the s-th mode, the coefficient g?as

is responsible for the effect of saturation by the self-field

of the s-=th mode, the coefficient rss‘ describes the effects

of the cross-interaction of modes. All these coefficients

depend on the cyclotron resonance mismatch As and the

axial structure of the s-th mode; the coefficient Y&s' also

depends on the distance between the mode frequencies and on
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the axial gtructure of the g'-th mode. The expressions for

these coeffiéients follow from (36) and (11a)

Couts N
—_-LS S'QZ ")
Eoct & 3
%Sz—_—bs : S,‘Lu gu c*"'-d&‘wgvs—Suﬁugdcﬂc@&&&@s)
é@x a;o B s uo ° &
Xvss'“_&_( {(ﬂ; :Lu ‘S sus A dis U UV §u8 oV dﬁlaﬂé‘&&
00

J

Here gfw variables are introduced: g £ C&)éyAsé’ Ug= Sg Q&jdﬁ‘
U= S\Jg de! .« Expressions (38) are given for the gyrotron
operatlng at the fundamental cyclotron resonance; it is assum=
ed that 8; S>1, i.e. the effects of the "M"-type bunching
can be neglected in comparison with the "O"-type bunching
]33,36]. The real part of the coefficient o, can be re-
duced after the necessary transformations to the second term
in expression (29).

Since the mode interaction in this case does not depend
on the phase relations between the modes, we shall describe
it by the equations for the intensities of two modes P4S?=ng
that follow from (9) and (37)

oQM4
= M, (S, ?HP4 6}2 z}
(39)
d MZ _ .
T =M (G g Mo T M),
Here & = o(q— Zét 3. are the mode increments, TST:I%LOHQt:
i the dimensionless “slow® time, ¥ =1 //I , @; and

I
Ksy are the real parts of the coefficients %S and Kgg' 5

respectively. Bquations (39) have the same form as the

one obtained by W.Lamb [}j] for the optical maser. According
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to [17] , 1f the condition of "strong" coupling between the

modes

(oo [ > 002 (40)
is fulfilled, the phase portrait of the oscillator in the
plane M4)M2 has the form shown in Fig.10e, i.e. mode com-
petition takes place and the oscillations of one mode will
be established, depending on the initial conditions. If con-
dition (40) is not valid, weak coupling between the modes takes
place and such modes coexist. The phase portrait of such a gy- |
rotron is shown in Pig.10b. It follows directly from expres—
gions (38) that, if the modes have identical axial structures
(&(g):é}z(&)) and the distance between their frequencies
is small as compared to the cyclotron resonance band (i.e.
A=A, ), then the coefficients g,s and K\ss' are related
as X‘SS‘:Z%S and, hence, the condition of "strong" coupling
(40) is valid. Equations (39) have, in this case, the same
form as for a conventional radio oscillator that was analysed
in EI4—16]. The dependence of the coefficients o and @'g
on the transit angle O = A ¢ 18 shown in Fig.11a for
a gyrotron with a constant amplitude of the RF field aslong

, 08t
the resonator axis ({(&)= é—* ;% & similer dependence of
uwt

\6"3"3, on O, is given in Fig.11b for different values of the
ratio = ((03|“"C0H°>/<u33—-—60 Ho) that characterizes the
distance between the frequencies of competing modes EB]

In accordance with the data given in Fig.11, the lines for

equal values of the ratio Y=Yi'[x /s -. that defines the
Pa* P2

degree of mode coupling, are plotted in Fig.12 in the plane

of transit angles of both modes @s and @s' =D ot [36}.

One can see from Fig.12 that as the distance between the fre-
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quencies of competing modes in the zone of soft self-excita-
tion <G%‘>Ci) grows, the degree of mode coupling \ increas-
es. This effect can he explained by the fact that we consider
a gyrotron:with a negligibly small spread in the electron ve-
1ocities and the radii of the gulding centers (these factors
weaken the mode coupling [3f]). In addition, the electrons
differing in the azimuthal coordinate of the guiding centers
interact with the rotating or symmetric modes of the cylind-
rical resonator with equal efficacy. That is why the space-
extended electron beam rolled by the rotating modes of the
gyrotron becomes equivalent to the elementary beam of elect-
rons with a common guiding center and, hence, two modes exci-
ted due to the interaction with the same electrons behave si-
milerly to two kinds df beasts feeding on the same prey, one
of them suppressing the population of the other 1381. Under
such conditions, the transit effects that stipulate the dis-
persion of the gyrotron nonlinearity play the dominant role.
In particular, when one mode frequency tends to the boundary
of the soft self-excitation zone and g;—» 0, the coeffici-
ent Y&S" as seen from Fig.11b, cen be rather large owing

to the cross-interaction of modes. As a result, the degree

of mode coupling grows when @é-éro (see Fig.12).

Besides the mode competition analysed above, which is the
basic effect of purely amplitude mode interaction, the oppo-
gite effect can take place, namely, nonlinear mode excita-
tion K}j]. The possibility of such an effect is self-evident
in Fig.11b which shows that the coefficient r;s‘ is negative
for a rather large value of the transit angle (9S . In this

situation, the growth of the intensity of the s'-th mode, as

follows from (39), enhances the increment of the s-th mode,
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i.e. even if the self-excitation condition in the unexcited
gyrofron is not fulfilled for the s-th mode (S < O> , this
mode can be excited owing to the appearance of the oscilla-
tions of the s'=th mode with the intensity JN&S;>\Gg\/\g;g\ .

This effect can be explained by the quantum theory inter-
pretation. From this point of view, the active medium of the
cyclotron resonance masers (i.e. the electron beam) has a
quasiequidistant (not equidistant) spectrum of energy levels.
Due to. this fact the zones of positive and negative reabsorp-
tion of the coherent cyclotron radiation are lécated at close
frequencies and, hence, the zones of mutual suppression and
excitation are also neighbouring ones.

This effect can also be explained by simple kinematic specﬁ—
lations. For this purpose one should bear.in mind that the
s'-th mode affects the electrons and the newly formed electron
bunch finds itself in the decelerating phase of the s-th mode
and, hence, the conditions for this mode to be excited by the
bunching electron beam seem to be better than in the absence
of the s'-th mode.

It is shown in [13] that this effect takes place when first
the mode with a low gtarting current is excited and then the
growth of its intensity promotes the appearance of the other
mode with a higher frequency. The latter one can have a nega-
tive initial increment S <O , but if it is in the zone of
hard self-excitation (@;.<()) , it can oscillate with high
efficiency. A direct numerical analysis of eqs.(7) and (9)
shows that this effect takes place when the electron beam
current is much larger than the value optimum for efficiency

(see Fig.13 taken from [?é]). This effect was evidently ob-

gserved in the experiments [4@] and under the gyrotron opera-
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tion at the second harmonic. of the cyclotron frequency'[?{l,
where as shown in [jiL the oscillations at the second harmonic
provoke the excitation of parasitic modes at the fundamental
cyclotron resonance. Here, the reason for the nonlinear exci-
tation of parasitic modes at the fundamental resonance lies

in the fact that the modes resonant with the second harmonic
have larger rates of saturation, which leads to the distur-
bance of the condition of their stability (see (18) in Lectu-
re 2) as the amplitude of this mode grows 133,4{1.

The results obtained permit us to demonstrate an example
of the evolution of the zones of self-excitation of two modes
in the plane of mismatches A,‘“:é—i_o‘ QL;%—H() ’ N':é'i’ cg%%_
(Fig.14) [ﬁi]. Let us assume that the electron beam current
was increased rapidly at a certain initisl moment of time,
thus providing the posdibility for the gyrotron self-excita-
tion., So long as the mode intensities in such a gyrotron are
rather small, the self-excitation zones of both modes have a
gymmetric form (they are shown in Fig.14, where the increment
of the second mode in the shaded zone is larger than that of
the first mode, the axial structure of the resonator field

2
is £(c3==e«9{;~ jgi' )%g y Cout=17, the beam current

ﬂwa;“4
parameter is "IO=MIS(QSg:fM:=103). If the cyclotron resonance
mismatch of the first mode 134 corresponds to the minimum of
the starting current and the mismatch.‘Z' is nonzero, the
first mode has a larger increment and its oscillations grow
faster. As the first mode intensity grows, the self-excita-.
tion zone of the second mode changes as shown in Fig.14 (the

curve marked F}¥=C> ): the first mode suppregses the oscilla-

tions of the second one at the right edge of the oscillation
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zone (where the amplitude of the first mode is large) and in
the region of small mismatches between the mode frequencies

ZK (where the effects of mode competitiﬁn are dominant).,
At the same time, at the left edge of the oscillation zone,
where the coﬁditions for the first mode are far from optimum
and its amplitude is rather small, the second mode with a higher
frequency that can oscillate with a larger amplitude can be
self-excited and, owing to‘the effect of nonlinear excitation,
its self-excitation zone spreads in the direction of large misg-
matches QK o

Thus, we can now answer the question that arose when we

analysed the start-up scenario. When the self-excitation con-
ditions for two modes with close eigenfrequencies are ful- |
filled nearly simultaneously(the geparatrix with the "saddle"
state of.equilibrium in FPig.108 is close to the bisectrix of
the quadrant WL)P%), the oscillations of one of the competing
modes will be established with almost equal probability depen-
ding on the initial fluctuations of the radiation in the osg-
cillator. Note, that in such a case each of the two modes will
ogcillate with practically equal efficiency because thege modes

have equal Q~-factors, coupling impedances and close frequencies.
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LECTURE 4

In order to describe the phase~amplitude mode interaction,
we should take into account three or more modes for which the
' ¢

conditions of time \QCOZ-—CL?,(—-C%H-S— and space (azimuthal)

Q

Zmz'—: m4+ m5 gynchronism are fulfilled. Using the method of
succesgive iterations in FZ'=Z,§~§S[¢,)QWS for the in-
tegration of the equation of gle‘ctron motion and the computa-
tion of the factors of excitation, oné can obtain the expres-

A
sions for [13:( gimilar to (37)

D]
N
— — ,’—\2- 2 ,%__S_, L"“ —
T= A= peFe =), Y Fo- S RRREY e=2 @D
$=*S s i_y_.

Here I\_T: kV,\-Jrk{/s‘Z%’z is the phase difference that corresponds
to the synchronous harmonic of the alternating current. The
expressions for the coefficients ?s that describe the phase

coupling of modes, have the form [_13]

Sact e
S _""S 54 {gEZMsSﬁuzd ey +usvz—guzu 4e) de e,

" PR & (42)
% =—2LS %g\:m Sg\x Uy A&, &t“-&-uZUU gu U dai|de 13(,@@

0 0 00

The expresgion for %3 follows from fthe expression for %1 ’
provided that we change the indices 1 === 3, All variables in
(42) are just the same as in formula (38). One can easily

find that for close mode frequencies (AS’:A> and their iden-
tical axial structures (gs(¢\§=§(é,)> . gz 2%4‘?}: 2? (cf.
(38) and (42) ).
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The coefficients %S , &8 well ag the coefficients Qg

and Xse‘ (38), can be rather simply calculated analytically
for a gyrotron with a constant amplitude of the RF field along
the resonator axis gs(h>=<%¢(0<¢$“> The corresponding depen-—
dences of the coefficients gs and 6\3“9 on the transit angle
are shown in Figs.15 and 16. The transit angle of the central
mode @2= AZCM: is given in PFig.15a-c along the horizontal
axiss; the mismatch 8 is proportional to the distance between
the mode frequencies: for the first mode (Fig.15a), 8— w f’if\
for the third mode, &= %‘3-——%_2“ = 8(4) o The des:Lgnatlons in«

Fig.16 correspond to the ones accepted in Fig.11b.

9

In g simple cagse of three mode interaction, the phase-ampli-
tude interaction of these modes can be described by the equa-
tions for the mode amplitudes and the phase difference —C}/_)
that follow from (9), (10) and (41) [13]:

OQF:' \ 2. \ 2 -0y
o =F. (8, - B S h Y fe) - R (3,

({F . \ p L \ L-‘
;Fé - F2[62“ i pzz“FZ\ F«Z"Fsté ~FFRe(y,e ‘*})1 )

At _r/ =2 ' EF _L{P—
o NGA P3te=Yu FAZ'"F%’LF?:Q - \_"'FZZ' Pelsee ) (43)

i T2/ v " it i
T 8 'V (%ﬁ'(e,‘; 26’21) Fz(f’g*‘&gfz\ﬁ\zs)'l’% <2f3;“5\4“2_ ?:2)—

F“,’ F2 DYL(%« Y) _H FZ Tm Qsé'&) + 25 Fs'-[m(gzeu?) .

We assumed here that the coupling impedances of all modes

XN Wtwa—2w,
are equal, §= T
2“39_

For a gyrotron with close frequencies of the interacting

+o<“+0<“ 204;‘ .

modes and identical axial structures of their fields (when
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Fsgl=§2_=2§43,= ng ), the set of equations (43) defines
the equilibrium states of the oscillator, which for equal Q-
factors of all modes and a negligibly small nonequldlstance

Y‘O m
of their frequency spectrum (8 %43> are ag followéV[h3]

- gingle-mode oscillations with the intensity F'==g% ;

- oscillations of both lateral satellites in the absence of

the central mode R3=LE:5=€§? , F,=0;

- symmetric synphase three-mode oscillations ¢ =O ,F;%=
2_2_ 29 .
F,\ - Fg - 45@; ’ .
- asymmetric antisynphase three-mode oscillations Y=r |,
2 __ + 2 __ _—
Fz 5@1 s 4 'tO ‘(5 \/’—‘) F‘ O\%\ (5—\—\/%_')
The analysis of the stability of these equilibrium states

5
S@‘

shows that all multimode oscillations are unstable and the
characteristic equation of the fourth order for the stability
of single-mode oscillations implied by (43) has three roots
with a negative real part and one root with a zero real part.
The latter is indicative of the fact that the oscillator with
gingle-mode osgcillations of the central mode does not react
on the appearance of lateral satellites with small amplitudes
Fk==Fé and the phase difference q7=:n‘ s 1.€. on the auto-
modulation with a frequency.vluoz—ug4( of the central mode
oscillations. Therefore, the single-mode oscillations of the
central mode can be considered here to be relatively stable
(this conclusion ig also supported by the results of numeri-
cal computations of eqs.(43) ). However, we believe that
guch a stability cen be changed as a result of weak varia-
tion in the gyrotron parameters.

The difference in the mode Q-factors can, no doubt, affect
this stability. Let us suppose that the diffraction Q of the

lateral satellites ig smaller than that of the central mode
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owing to electrodynamic selection and the beam current exceeds
the starting value only for the central mode (i.e. €2>O ’
8,=83 <O ). The satellite intensities in such an oscilla-
tor become equal as the time grows and the set of equations
(43) with the given above relations for the coefficients e

¥ and ¥, =F, taken into account, reduces to the form
ssH Ve 3

T = x[g-FOrrrye a4yt
%:Y[ﬁ“g(w%\/%ﬂ)} + x(Bze =X, (44)

42 _ 5 [-9-x " rcsz+@‘—ﬂ>1

Here x—\/?_(-}_/ y VZF/ l%wnz,z—ﬁ—%,v |5| T, w5t

\3 |
G
\6’%[ )-\)-:\ 335\) ”gé/gb“ . The first two equations in set (44)
&
define the stationary amplitude of the central mode (when
d
=0

K wprEfaryrf--r= 1

The analysis of stability of these equilibrium states shows

' A
XZ—\-\/ZZ%‘R ) Xi—:‘ ,l+

that only the equilibrium state with ¥ _ 1s stable with res-
pect to the variations in Q (or X and 7 ). It follows

from the last equation in set (44) that this equilibrium state
is unstable with respect to the appearance of satellites when

the condition

V<l \/ 20 +y 202 _y2 -2
is fulfilled. This condition of automodulation instability
shows that as the Q-factor of the satellites decreases (the
perameter }) increases), the stability of the single oscilla-

tions of the central mode becomes better. This condition can
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be alsgo written in the form
)
1-4-V2 449 +2)2

which giveg a better illustration of the difference between

the example under study and the model analysed in [}2], where
the system with Y =0 was considered. It was shown in [}2]
that automodulation oscillations, in which the growth of the
central mode is stabilized by its decay into two passive sa-
tellites, can be stable besides the gingle oscillations of

(the nerement of the central mode &5 and
the central mode,depending on the relations between\the decre-

ments of the satellites ©,, . Moreover, it was shown that not
only stable automodulation but also automodulation with a pe-
riodic change in the automodulation amplitude and stochastic
oscillations can ftake place in such an oscillator. The active
nonlinearity that is taken into account in eqs.(44) by the
coefficient @% sy as follows from the given condition of sta-
bility, makes the oscillator dynamics more regular because it
becomes pogsible to stabilize the growth of the central mode
by its own saturation.

Another factor that can influence the gyrotron dynamics
is the difference in thé mode frequencies, which causes the
dispersion of the gyrotron nonlinear properties. Let us con-
sidef the interaction of three modes with equal Q-factors énd
the transit angles equal tq @4=Tr) '92:%'1“\) 93: ;-f;n— o In
such an : ogscillator, as follows from Figs.11 and 12, the com-
petition of two firgst modes takes place CKQZ‘BE;E’ﬁ;‘@;) ; at
the same time, the first mode that has the largest increment
can maintain the third one that is in the hard self-excita-
tion zone.

The results of the integration of the set of equations (43)
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are presented in Fig.17 [ﬂil. The values of the coefficients
g @’s R @Sg and Es are taken from Figs.11,15 and 16 for
the given transit angles of the modes. As the beam current
grows, the oscillator dynamics becomes more complicated (cf.
Fig.17). When the beam current slightly exceeds the threshold
value Pig.17a, I/I‘;‘t“ =1.1; & =0), stable oscillations of the
first mode that has the lowest starting current are established.
For a larger beam current ('1/0122‘=1.2, Fig.17b), the ampli-
tude of the first mode becomes greater and, correspondingly,
amplitude pulsations appear in the oscillations of the third,
damping, mode (at the same time, the first mode suppresses the
gecond one owing to the mode competition effect). Then, for
I,/IZ;f =1,25 (Fig.17c), the first mode provokes nonlinear exci-
tation of the third mode and these two modes provoke pulgations
of the second mode due to the phase coupling. At last, for
il/f[::ﬁ =1,3 (Fig.17d) and larger currents ( I/fing =3,
Fig.17e), intense intermode beatings are established by the
three-mode oscillations with constant amplitudes and phase qT ’
i.e. mode locking takes place. A gyrotron with a slightly non-
equidistant spectrum of eigenfrequencies behaves in a similar
memmer (gsee Fig.17f,g where S’q& 0).

Thus, due to the third mode whose role is here analogous
to the role of a saturable absorber used for mode locking in
lagers, the competition of two first (active) modes ceages to
be dominant in the nonlinear interaction of modes.,

Note, however, that in our study the mode locking remained
stable even if the beam current exceeded the minimum threshold
value by 5-10 times. These results disagree with the data by

other authors [43,4{] who carried out a space-time analysis of

other microwave oscillators and showed that, when the beam
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current is much larger than the minimum threshold value, mode
locking is changed by stochastic oscillations. It is shown be-
low that this disagreement can be explained by the fact that
until recently we have not taken into account the change in the
mode amplitude at times comparable with the transit time of
electrons | = L /v, e Such changes can be significant for
large beam currents under the conditions of electron rebunch-
ing in a too strong RF field of the resonator and, hence, the
delay effects that usually complicate the microwave oscillator

dynanmics [43,441 may become essential.

Space=Time Analysis of Nonstationary Processes in Multimode

Gyrotrons

We have considered nonlinear effects in multimode gyrotrons
using the mode representation of the resonator RF field. It is
obvious, however, that this method is too complicated for the
description of the processes in overmoded resonators with a
large number of interacting modes. In such cases it seems
reasonable to use space-time congideration of the resonator
RF field describing this field as waves with slowly varying
envelopes (without its representation as a sum of the resona-
tor eigenmodes). A complex space-time structure of such an en-
velope seems to correspond to the excitation of a large number
of eigenmodes,

Below, we shall describe briefly a series of problems which

can be investigated using this space-time consideration.

A gyrotron with a whigpering gallery wave_

If the resonator radius is so large that the distance bet-

ween the mode frequencies determined by relation (6) (see Lec-

ture 1) is much smaeller.than the cyclotron amplification band (5),
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many modes can be excited simultaneously. Let us represent the

RF field of such a resonator in the form

- Lt -
E-RelB®) 1At 0L

where W and Lg define the basic frequency and the "basic"

7

azimuthal index, respectively, and the function A&iqu describes

slow evolution of the wave envelope in both these variables:

\%\<<LQ\A\) \%\ << tu\ A\ (see Pig.18).
The self-congigtent set of equations that describes such a
system consists of the equation of electron motion (7) in the
right-hand part of which F{g;@ should be written, the expression
for the factor of excitation (118) and the equation of the RF
field excitation which follows from the Maxwell equations and

can be written in the form [}4]

2F 2k
?1;'*'%;§ +P=F@

This equation must be supplemented with the initial condition
F(t=0)=TF,(¢) and the condition of the RF field periodicity
along the cyclic coordinate ¥(4)= P(@+2m) .

Preliminary results of the numerical investigation of such
a set of equations showed that,if the beam current does not
exceed the threshold value too much, the oscillations with a
constant amplitude along Lg are established (this fact corres-
ponds to o6ne mode excitation), Then, for a larger beam current,
the azimuthal structure of the envelope becomes nonhomogeneous
but the envelope remains stable in time, which corresponds to

the mode locking analysed above,

A guasioptical gyrotron

It was mentioned in the first lecture that in recent years
the possibility of using two-mirror quasioptical resonators

(similar to the ones used in lasers) in gyrotrons have been

actively analysed. The theory of stationary oscillations in
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such quasioptical gyrotrons was developed in [;,461. The nume-
rical study of nonstationary processes in such systems with g
large number of excited modes was provided in [7]. We shall
consider here the results of investigations of similar proces-
gses that were obtained using the space-time approach [47].

Let us represent the RF.field of the resonator shown in
Fig.19 as & sum of two waves moving between the mirrors in the

opposite directions ‘
- . .t -LK ¢
T-RelE(aRe (A Ay,

We assume that all losses of the microwave power in the resona-
tor are caused by the fact that the coefficient of reflection
of the direct wave at the output mirror is different from uni-
ty ( R<41 ). Taking into account the above-mentioned condi-
tions of the slow change of the wave envelopes in f: and

along Y , one can easily reduce the Maxwell equations to the |

equations of excitation of the opposite waves

e R A F.  2FL A
ae TR TR, %Y"CR--

These equations should be supplemented with the boundary
conditions F(¥=0)=F.(¥=0), F_ (¥=L)=R¥,_(¥=L) and the ini-
tial conditions VQ:CD=C»=:F£%(\f) . Now we put the sum of these
two waves F;€§q++-FL€§q“ into the right-hand part of the
equation of electron motion (7) and replace the integration
over the resonator cross-section in the expression for the fac-
tor of excitation <§% (11a) by the averaging over the diffe-~
rence between the phases of the two opposite waves which varies
by 27 at the wavelength in the Y =direction [4?1. Thus
the equations obtained will be the equations averaged over a

small scéle of the order of the wavelength in the -Y =direc-

tion. Nevertheless, using these equations one can analyse the
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slow evolution of the wave envelopes in time and along the
Y -coordinate.

The results of numerical investigations of such a system
are presented in PFPig.20. This figure shows the dependence of
the wave amplitudes at the left mirror ( Y =0) on the "glow"
dimensionless time'tﬁ=13coti for different values of the "beanm
current® variable E;:ng<L_ (for the parameters corresponding
to Pig.20, the threshold value of the parameter t_ is L: =
0.042). It is seen from Pig.20a that, if the beam current
8lightly exceeds the starting value, stationary oscillations.
with a constant amplitude are established in this oscillator
(the dashed lines in Fig.20 denote the electron or??tal effi-
ciency averaged over the interaction space ?L=:éj§ QLud\/ ).
As the beam current grows, automodulation appears in these og-
cillations (Fig.20b) and the amplitude of the modulation in-
creases with the current. Then, with a further increase in
current, the oscillations with a periodically varying depth
of automodulation appear and the modulation period doubles
(Fig.20¢c ). Finally, for still larger currents, the oscilla-
tions become stochastic (Fig.20d). The oscillator behaves in
a similar manner for other values of the reflection coefficient:
the results for R =0.8 and R =0.9 are given in Fig.ZOc, in
all other figures, R =0.8.

The space structure of the amplitudes of both waves in va-
rious regimes of operation is given in Fig.21a-d, where the
discrete time points (21<T =< 25) that correspond to these
pictures are marked and the values of the orbital efficiency
?iL are given., As follows from these figures, a complex struc-
ture of the RF field is typical of stochastic oscillations in

contrast to automodulation and regular oscillations (cf. Fig.
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21a,b and d). A similar space structure with several maxima is

also formed in stochastic oscillations in BWO [@4].

In order to enhance the output microwave power of a power-
ful gyrotron and to diminish the ohmic losses of microwave po-
wer in the resonator walls, it seems expedient to decrease the
diffraction Q of the resonator. However, as the coefficient
of the wave reflection at the output cross-section approaches
zero and, correspondingly, the diffraction Q comes close to
its minimum value that is determined by the resonator length
QX: gv(\_/@z , the axial structure of the RF field in
such a resonator becomes nonfixed and is established in a
gself-consistent manner upon the influence of the electron beam.

The theory of stationary oscillations in a gyrotron with a
nonfixed axial structure of the resonator field was developed
in [}éL where it was shown, in particular, that the orbital
efficiency of oscillations in such gyrotrons can be as high
as t[fm=75%. Below, we shall describe in brief the equations
of a similar nonstationary theory and preliminary results of
its investigation [4§].

Teking into account the fact that the frequency of oscilla-
tions is close to the cut-off frequency 030 of a part of the
waveguide that is used as a resonator, one can represent a

nonstationary RF field in the form

E=Re {AGHE(R)e

DR

—
where the function E%JE&J describes a fixed transverse struc-
ture of the elecitric field,%\(?ﬁg is the complex amplitude

of the RF field that varies slowly in time and along the axial

coordinate Z& .
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Substituting this representation into the Maxwell equations
and taking the condition of slow variation of the amplitude in
time l%ﬁé\'<<ublﬂd into account, one can eagily obtain a pa-
rabolic equation that descibes the excitation of the RF field
by the electron beam. In terms of variables of the gyrotfon
theory this equation has the form

{ N
. "TT‘:?— 'D'C 21‘(‘ 3
Here»T:=h%i1 W, T is a "glow" time, the beam current parame-

g B

o
ter ]; corresponds to the expression given in (}7]:

I=1¢ <2 \l 2 (xRy) [(vz—mlﬂi(ﬂl%.

t, c5 gg) trtn
The boundary conditions for the resonator that is formed by a

Sa*&&o | (45)

part of a regular waveguide with a cut-off narrowing in the in-
put cross-section and whose output cross-section is determined
by the ceasing of the interaction between the electrons and
the RF field due to a sharp change in the external magnetic
field, can be given in the form

ol _

g —'CD _— “gua‘
02

&E=o _éut
Here the second condition is the condition of radiation of the

Fourier components gua of the resonator nonstationary field
f= Tgw erxpd L[(@ ~oo03t—\<“2]& dw o K=1 Juw-w? is the axial
o
wavenumber,
Preliminary results on the study of the gelf-consistent
set of equations (7) and (45) are presented in Fig.22, The
calculations were carried out for é;m¢f10, the negative fre-
quency mismatch A ==0.6 corresponds to the synchronism
between the electrons and the components of the RF field that

propagate in the direction opposite to the direction of the
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electron axial velocity; the latter fact enhances the feedback
in such an oscillator. It is shown in Fig.22 that with an in-
crease in the beam current the time of the transitional non-
stationary period grows; after this period oscillations with

a constant amplitude are established. Figure 22b shows that auto-
modulation oscillations are established at a large beam current,
A rather low efficiency of oscillations can be expléined by

the fact that the axial structure of the resonator field is
unfavourable for efficiency, which ig typical of the resonance
with opposite waves when the amplitude of the RF field is ma-
ximum near the input cross-section. An example of the axial
structure of the RF field under such a gyrotron operation is

given in Fig.23.

Conclusion

Our consideration testifies to the fact that the effects of
mode interaction in gyrotrons have received a thorough study
so that we have understood the physical reasons for the ap-:
pearance of these effects in gyrotrons. We believe that the
developed theory can be applied to the computation of the pro-
cesses in gyrotrons where several modes can be self-excited.

At the same time, the investigation of nonstationary proces-
ges in gyrotrons with overmoded resonators where a lot of modes
can be excited is in its early stage. The basic mechanisms
that cause the complication of oscillations in such gyrotrons
can be congidered known in view of the results obtained in~the
analysis of nonstationary processes in gyrotrons and other
microwave devices (free electron lasers, backward wave oscil-
lators and others). Nevertheless, this range of problems seems
to be an attractive field for fruitful theoretical investiga-

tions,.
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FIGURE CAPTIONS

Fig. 1. Real part of §2 as a function of mismatch A2

in a nonexcited oscillator (@'ZL) and in the presence of
the first mode (F1=O.O4), for various values of Al. The
horizontal dashed lines show corresponding values of @'1.

(In the text the indices 1,2 are replaced by 0,1, respectively).

Fig. 2. (a) Single mode orbital efficiency versus beam current

parameter I with Gaussian axial field structure and cout=17.

OI
for various values of Al.
(b) Amplitude of single mode oscillations Fl as a

function of mismatch Al for fixed IO=103.

Fig. 3. Zone of parasitic self excitation in a gyrotron
with constant beam current parameter IO=103 and g=1,
Cout=17‘

Fig. 4. Threshold values q;i for parasitic mode

at optimum values of the parameters for the operating mode.

Fig. 5. Beam current parameter vs mismatch for automodulation
instability. solid curve: starting current for operating mode.
dashed curve: optimum for electronic efficiency of operating mode.
dash~dot curve: break in operating mode oscillations at edge

of zone of hard self excitation.

shaded curves: boundaries of zone of operating mode stability

for different values of T.

Fig. 6. Dependence of critical beam current for automodulation
on distance A between mode frequencies. The mismatch A for the
operating mode is fixed at the optimum value (0.6).

solid shaded lines g=l1l. dashed lines g=%.

Fig. 7. Starting current vs. magnetic field for the TElS,l,l
mode and neighboring competing modes. An idealized closed
cavity of length 4\ (=1.2 cm at 100 GHz) is employed. All
modes have a loaded Q of 100 (from [30]).



- 58 -

Fig. 8. self excitation zones (solid curve) and voltage
trajectories (dashed curves) of modes resonant with the
fundamental cyclotron harmonic for parameters IO, 4

out’
A _=0.4 corresponding to the maximum electronic efficiency

izpthe plane x=%B7 ,y=4$?> . The shaded region corresponds to
self excitation of the operating mode. Trajectory I: equal
voltages at anode and resonator. Trajectory II: constant voltage
difference between anode and resonator. (a): competing modes
well separated from operating mode; (b) denser freguency

spectrum of competing modes.

Fig. 9. Starting current vs resonator voltage with equal voltage

pulses at anode and resonator for the TE15 11 mode.

Fig. 10. Phase portrait of oscillator. (a) strong coupling

between modes. (b) weak coupling between modes.

Fig. 11. (a) Real parts of the coefficients a, B versus transit

angle O=Acou for a uniform field profile.

t
(b) Real parts of the coefficients Xss' versus OS

for differeht values of the ratio K=OS./OS.

. . Y A ‘r/.
Fig. 12. Lines of constant values of Y—312X21/8182 in

the plane of transit angles 0 =ASC , s=1,2.

S out

Fig. 13. Nonstationary processes in a gyrotron for three
different values of the beam current, showing support of

parasitic mode at very large currents.

Fig. 14. Field of parasitic self excitation in the plane of

mismatches A % in a nonexcited oscillator (dashed lines)

1/
and in a gyrotron with oscillation amplitude Fl + 0 (shaded)
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Fig. 15. Real (solid) and imaginary (dashed) parts of the
coefficients ZS for a three mode gyrotron as a function of

transit angle 02

(mode 2 is the central mode) and constant field profile.
(a) s=1; (b) s=2; (c) s=3

for three values of 5=(w2—wl)/(w2-wHo)

and on
s' Bs

for different values of the ratio K=OS./Os

Fig. 16. Dependence of the coefficients XS
transit angle 02

Fig. 17. Amplitude and phase time evolution in a three mode
gyrotron with relation between modes. a) I/Izin =1.1, 6=0;

min _ —n. min _ —N.
b) I/ISt =1.2, 6=0; «c¢) I/ISt =1.25, 6=0;

min _ —n. min _ —n.
d) I/ISt =1.3, 6=0; e) I/Ist =3.0, 6=0;

min

min 1.
6=1; g) I/I}

f) I/ISt =3.0, =3.0, 6=2.
Fig. 18. Cross section of a CRM showing rotating wave envelope

A defined in lecture 4.

Fig. 19. Cross section of a CRM with counter-rotating waves in

plane geometry.

Fig. 20. Time dependence of the wave amplitude at the left

mirror for various values of the beam current wvariable.

Fig. 21. Spatial structure of both opposite waves at fixed
moments in time t=Iwt for various wvalues of the beam current

variable.

Fig. 22. Time dependence of efficiency for various values of
beam current parameter with =-0.6 and Coutzlo'

(a) I=0.01, 0.02 and 0.04, showing the increase in duration
of the nonstationary phase with increasing beam current.

(b) 1I=0.1, showing the onset of automodulation oscillations.

Fig. 23. Axial structure of resonator field at large values of

the beam current parameter.
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1000

500

Fig. 1. Real part of §2 as a function of mismatch A2

in a nonexcited oscillator (Q'ZL) and in the presence of
the first mode (E1=O.O4), for various values of Al' The
horizontal dashed lines show corresponding values of é'l.

(In the text the indices 1,2 are replaced by 0,1, respectively).

0.4k | QA 0.08 |-

N
= - ,
8=023 £y=0.45 .
0.2} 0.04 .
A =0l |I
4 |
|
1 1 1 N | L 1,
102 2:102 4-102 103 2.103 Io 0.2 0.4 4

(a) (b)

Fig. 2. (a) Single mode orbital efficiency versus beam current
parameter I:, with Gaussian axial field structure and Cou =17.

for various values of Al'

(b) Amplitude of single mode oscillations F, as a

1
function of mismatch Al for fixed IO=10’.

t
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zone of oscillations
——————of the operating mode ————e—

B
P | ! 1 .
! 02 04 &,

N

Fig. 3. Z2Zone of parasitic self excitation in a gyrotron
with constant beam current parameter IO=103 and g=1,

Cout=l7'

-4

o
- 04

~04 02 0 &

Fig. 4. Threshold values qgi for parasitic mode

at optimum values of the parameters for the operating mode.
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Fig. 5. Beam current parameter vs mismatch for automodulation
instability. solid curve: starting current for operating mode.
dashed curve: optimum for electronic efficiency of operating mode.
dash-dot curve: break in operating mode oscillations at edge

of zone of hard self excitation.

shaded curves: boundaries of zone of operating mode stability

for different values of A.
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o~
P![

Fig. 6. Dependence of critical beam current for automodulation
on distance % between mode frequencies. The mismatch A for the
operating mode is fixed at the optimum value (0.6).

solid shaded lines g=1. dashed lines g=%.

T VvV = S80kV
a = 20
L = 4) SINCAVITY
“ QL- 100

g 4
Lol
2 -
w
©
«
o TE R
© 1n,2.1
z .
-
4
<
- -4
173

Q 1 1 1 [l I

35 3.6 3.7 38 3.9 4 4.1

MAGNETIC FIELD (TESLA)

Fig. 7. Starting current vs. magnetic field for the TElS,l,l
mode and neighboring competing modes. An idealized closed
cavity of length 4\ (=1.2 cm at 100 GHz) is employed. All
modes have a loaded Q of 100 (from [30]).
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0.15 Al =02
0.1
X
0.05
—
0.2

0.15

0.05

Fig. 8. self excitation zones (solid curve) and voltage
trajectories (dashed curves) of modes resonant with the
fundamental cyclotron harmonic for parameters IO’ Cout’
Aop=0.4 corresponding to the maximum electronic efficiency

in the plane x=%§i ,Y=%B? . The shaded region corresponds to
self excitation of the operating mode. Trajectory I: equal
voltages at anode and resonator. Trajectory II: constant voltage
difference between anode and resonator. (a): competing modes
well separated from operating mode; (b) denser frequency

spectrum of competing modes.
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b)

100

50

30 40 50 Ukv

Fig. 9. Starting current vs resonator voltage with equal voltage

pulses at anode and resonator for the TE15 1.1 mode.
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Fig. 10. Phase portrait of oscillator. (a) strong coupling

between modes. (b) weak coupling between modes.
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K=1/4
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|
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0
-05|}-
Fig. 11.

angle 0=Acou

{b)

(a) Real parts of the coefficients «, B versus transit
for a uniform field profile.

(b) Real parts of the coefficients Xss' versus Os

for different values of the ratio K=Gs./Os.
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. . WA ot
Fig. 12. Lines of constant values of Y—X12K21/BIBZ in

the plane of transit angles GS=A Z s=1,2.

s out
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204
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Fig. 13. Nonstationary processes in a gyrotron for three

different values of the beam current, showing support of

parasitic mode at very large currents. (a) I/Iéi) =7

.
’

(b) 1/188) =32, (o) 1/1{]) = 110,
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F, #0
0,4 1

0,2 -

Fig. 14. Field of parasitic self excitation in the plane of
mismatches Al, % in a nonexcited oscillator (dashed lines)

and in a gyrotron with oscillation amplitude F, # 0 (shaded)
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Fig. 15. Real (solid) and imaginary (dashed) parts of the
coefficients Es for a three mode gyrotron as a function of

transit angle 02 for three values of 5=(w2-w1)/(w2-wHo)

(mode 2 is the central mode) and constant field profile.
(a) s=1; (b) s=2; (c) s=3
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prrtiy]

Fig. 16. Dependence of the coefficients XSS. and‘BS on
transit angle 02 for different values of the ratio K=OS./OS.
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Fig. 17. Amplitude and phase time evolution in a three mode

gyrotron with relation between modes. a) I/ISt

min _ —A.
b) I/Ist =1.2, 6=0;
min _ —n.
d) I/ISt =1.3, 6=0;
min _ 1.
f) I/Ist =3.0, 6=1;

min
c) I/ISt

min
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Fig. 18. Cross section of a CRM showing rotating wave envelope
A defined in lecture 4.

Wave envelopes

N
/\(’ 7/.\ — Output

® Ho | radiation
L XS L
1 Electrons R<1
z y

- Fig. 19. Cross section of a CRM with counter-rotating waves in
plane geometry.
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amplitude at the left mirror for
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Fig. 21. Spatial structure of both
opposite waves at fixed moments in

time t=Iwt for various valuesof

various values of the beam current

variable.

the beam current variable.
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Fig. 22. Time dependence of efficiency for various values of
beam current parameter with =-0.6 and cout=10.

(a) I=0.01, 0.02 and 0.04, showing the increase in duration
of the nonstationary phase with increasing beam current.

(b) 1I=0.1, showing the onset of automodulation oscillations.
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Fig. 23. Axial structure of resonator field at large values of

the beam current parameter.






