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ABSTRACT

A nonlinear theory of multimode gyrotrons is developed, which

describes such effects as mode competition (ie suppression of

unexcited modes by the operating one), nonlinear excitation of

passive modes by the active one, and mode locking. Mode com­

petition is the dominant effect for modes with close frequencies

(relative to the cyclotron resonance band). In such a system

only single mode oscillations are stable. Nonlinear excitation

of passive modes whose frequency is greater than the frequency

of the operating mode is possible due to electrons under the

action of the operating mode group in the decelerative phase

with respect to the passive modes. For three or more modes with

an equidistant spectrum of frequencies, mode locking takes

place when the beam current substantially exceeds the threshold

conditions, even though one mode finds itself in the nonlinear

excitation band. The results obtained permit one to estimate

the conditions for stable single mode oscillation in ~ultimode

gyrotrons.



THEORIE DER MODE-KONKURRENZ IM GYROTRON

ZUSAMMENFASSUNG

Eine nichtlineare Theorie eines mehrmodigen Gyrotrons wird

vorgestellt, die solche Effekte wie Mode-Konkurrenz (die

Unterdrückung einer nicht angeregten Mode durch die Betriebs­

mode), die nichtlineare Anregung einer passiven Mode durch

die schon angeschwungene und Mode-Locking beschreibt. Der

wichtigste Effekt für Moden mit eng benachbarten Frequenzen

nah an der Zyklotronresonanz ist die Mode-Konkurrenz. Nur

einzelne Moden können stabil in ein solches System schwingen.

Die nichtlineare Anregung einer passiven Mode mit einer höheren

Frequenz als die der Betriebsmode wird ermöglicht, wenn die

Elektronen genug von der Betriebsmode entschleunigt werden.

Im Falle drei oder mehr Moden kann Mode Locking stattfinden,

wenn der Strom sehr viel höher als der Startstrom ist, auch

wenn eine Mode sich im Bereich der nichtlinearen Selbstanregung

befindet. Auf Grund der vorgestellten Ergebnisse kann man die

Bedingungen für stabile, ein-Mode Schwingung in mehrmodigen

Gyrotronen abschätzen.



PREFACE

From the earliest stages of gyrotron development, the Institute of Applied

Physics at Gorky/USSR played a leading role. When KfK started development ac­

tivities on advanced gyrotrons in 1983, the basic theory was weil established

and a considerable body of experimental results was available.

To accelerate our entry into this new field of research, it was obviously

desirable to establish an exchange with the Institute at Gorky and to partici­

pate in the knowledge and experience collected there over more than 15 years.

As a first step we were pleased to have had Prof. G.S. Nusinovich as a guest

for two weeks at the Institut für Kernphysik 11, Kernforschungszentrum Karls­

ruhe. During this stay, G.S. Nusinovich presented aseries of lectures and

kindly made available to us the manuscripts, which are comprised in this

booklet.

These lectures provide a far more systematic and comprehensive treatment of

mode competition and start up phenomena than is otherwise published in the

literature. Thus they provide us with very useful guidelines for the develop­

ment of a program package to calculate gyrotron phenomena for the KfK gyrotron

experiment. During the time since they were given, we have used them as a

basis for our own treatment of the problem, adapted to the parameters of our

experiment.

With the agreement of the author and of the Academy of Sciences of the USSR,

we are pleased to make these lectures available to the gyrotron community.

We are grateful to the Institute of Applied Physics, Academy of Sciences of

the USSR for making possible the visit of Prof. Nusinovich, and we hope that

this was just the beginning of a fruitful cooperation.

Minor modifications, such as the correction of obvious misprints,

as weil as the insertion of figure captions (to comply with guidelines for KfK

publications) have been made without further correspondence with the author.

E. Sorie

G. Hochschild
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THEORY OF MODE INTERACTION IN THE GYROTRON

G.S. Nusinovich

Institute of Applied Physics, Academy of

Sciences of the USSR, Gorky, USSR

LECTURE I

Introduction

The development of a powerful microwave electron oscillator

usually takes place in three main directions:

- enhancement of the generated power,

- increase in the operating frequency,

- extension of the microwave pulse duration and/or transition

to CW operation.

What is the move in each direction connected with?

(1)

can, obviously, take place owing to an increase in the operat­

ing ~oltage \J and the beam current I (the potentialities

of increasing the electron efficiency ~ for highly effec­

tive microwave oscillators cannot lead to significant increase

in the generated power). As the operating voltage and the beam

current grow, the amplitude of stationary microwave oscilla­

tions A increases in accordance with the ba.lance equation

(2)
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The left-hand part of (2) is the microwave power transferred

from the electron beam to the RF field of the resonator, the

right-hand part is the power of microwave losses in the reso­

nator (V is the resonator volume, W is the operating fre­

quency, Q is the Q-factor of the resonator). Since quite de­

finite values of the oscillation amplitude)\ and the length

of the interaction space l- usually correspond to high-effi-

ciency operation, in order to maintain a constant efficiency

with an increase in the power of the electron beam and micro­

wave oscillations, it is necessary to enlarge the cross-section

of the interaction space SJ.. (V==&l.L; *.

l.n.2.r~a.§.e ....ia !h~ .2p~r!!tln~ !r~Cßleac,;y for a constant level of

microwave power is also needed for enlarging the resonator

cross-section, because when the gyrotron operates at a fixed

mode of the resonator, all sizes of the resonator diminish pro­

portional~y to the wav~length A and the microwav~ power drops

according to the balance equation (2). So, to keep the level of

the microwave power constant, it is necessary to enlarge the

resonator cross-section in the wavelength scale. ieee to ope­

rate at higher modes of the resonator.

!X!eas!oa .2f....t,he....mic,!:o,!a.Y,eJ>.1!l.§.e....d.J::!I'!!ti,oa and CW operation can

make the resonator heating that is caused by ohmic losses of

microwave power essential. The power density of the ohmic los-

* We do not discuss here the possibilities of diminishing the
Q-factor, because for powerful gyrotrons ~he diffraction Q is

Q mln 2.
usually close to the minimum value ~QcUJ. ~grr(L/A) • Some
comments on gyrotrons with low-Q cavities will be given below
in Lecture 4.
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ses is determined by the expression

(3)

proportional to

\2

S.L

where the ohmic Q is proportional to the ratio of the rasonator
~12.

radius R to the skin layer depth <11" A. : Qoltm.'""'" R/d., and the

lateral surface of the cylindrical cavity (open in the axial di­

rection) is equal to S~ == 211 RL. Therefore if the power density

of ohmic losses is too large for the mentioned gyrotron opera­

tion (for CW operation the upper limit is of order 1 kW/cm2),

in order to avoid the resonator overheating one should enlarge

the resonator cross-section.

So, all the named directions of powerful gyrotron development

are concerned with the tendency to space-extended systems.

It was mentioned above that the increase of the resonator

cross-section leads to operation at high modes with a dense spec­

trum of eigenfrequencies. The distance between the frequencies

of neighbouring modes is

(this formula takes into account the fact that effective axial

mode selection can be provided in cylindrical open resonators [1]

of gyrotrons). At the same time, the gyrotron active medium that

is an ensemble of electrons with the time of transition through

the resonator T = L lVII ( U
ll

is the electron axial velocity),

has a typical band of amplification

Hence, when the distance between the neighbouring mode eigenfre­

quencies given by (4) is smaller than the active medium band (5),

several modes of the gyrotron can be excited simultaneously. Un-
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der such conditions the problem of providing stable single-mode

oscillations with high efficiency becomes important.

Mode Selection

Before the discussion of the problem on simultaneous excita­

tion of several modest it should be mentioned that relation (4)

is valid unless we do not use different methods of transverse

mode selection..

Radial mode selection can be provided with a coaxial inner cylin-...... _---_ ........ --
der in the resonator [2J. Such a cylinder tapered to the collec-

tor pushes the rays of modea w1th a large radial index p out

of the resonator. i.e. diminishes their diffraction Q. On the

contrary. when the radius of the inner cylinder increases to the

collector, the Q-factor of these modes becomes larger than the

Q-factors of the whispering gallery modes with a large azimuthaI

index m (m'>'>? ). This can take place when the inner cylinder

with the radius r- does not significantly disturb the field of

the whisperring gallery modes localized near the resonator wall,

i. e. when the caustic radius of these modes Re = r:;- R is

greater than r (here R is the radius of the resonator wall,

'Y;:' 2"~ is determined by the boundary condition '"J~ (~J ::::.0
for the TE-modes).

The other method of radial mode selection can be called

electron selection (in contrast to the previous one, that is

electrodynamic selection). This method consists in the appro­

priate choice of the radius of the electron guiding center Ro ..

Indeed, in gyrotrons the electron beam has a small spread in

Ro (A Ra« \) , which permits one to diminish the drop in

electron efficiency caused by the difference in the impedance

of coupling between different electrons and the resonator field.
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For conventional gyrotrons with a cylindrical resonator and

axially symmetrie electron beam, the coupling impedance is pro­

portional to

Here KJ. is the transverse wavenumber that is close to 2.~ be­

cause gyrotrons usually operate near cutoff, n is the number

of the resonant cyclotron harmonie (W ~ n..u-\. ), the sum 'm+n!

in the Bessel function index corresponds to the case where elect­

rons in the external magnetic field and the electromagnetic wave

in the resonator rotate in opposite azimuthaI directions, ,~-~)

corresponds to rotation in the same direction. It is known that

the function K (Ro) is maximum for Ro close to the caustic

radius Re . In such a case modes with neighbouring frequencies

and larger azimuthaI indices (smaller radial indices) have

Re '> R0 ,so the coefficient K is small .and the electrons

interact with these fields weakly. For modes with larger radial

indices, this radius of the electron guiding center Ra corres­

ponds to subsequent peaks of the Bessel function whose maxima

are smaller that the inner one. Note, by the way, that modes

with larger radial indices occuPY a larger part of the resona­

tor volume (in the expression for}( this fact corresponds to

a large value of v2-nf for the given 'V ), hence, the starting

currents of these modes grow with an increase in? .

Azimuthal mode selection. For azimuthal mode selection it is
--------~----
necessary to disturb the azimuthal symmetry of the interaction

space of conventional gyrotrons. The simplest way to do this is

to make axial slots in the resonator [J~4J. When the distance

between the two halves of such a cavity grows, this resonator
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transforms to an open quasioptical two-mirror resonator [5](GY­

rotrons with such quasioptical resonators have been actively

investigated in recent years, see, for example, [6,7J). It is

obvious that in two-mirror resonators the ~odes with one azi-

muthal variation at the mirror surface have highest diffraction

Q.

*Thus, the use of any method mentioned above sets a condi-

tion for the density of competing modes that is far less rigid

than (4):

ALt) A
"-.J -

C.U L..L·
In (6) a typical transverse size l-~

(6)

for modes differing in ra-

dial indices p is::the resonator diameter (the difference be­

tween the eigenvalues -V for such neighbouring modes with

); for the whisper~ng gallery modes
..........

mÄ-==21T Rc , L.l..-211Rc ; for the

is close to 1\f '>'> 1
that satisfy the condition

modes of the quasioptical resonator that satisfy the condition

r~ :::: 2e( ~ '» ~ , 2~ is the distance between the mirrors),

L.L::::;4t ..
Nevertheless, as the transverse sizes of the interaction

space grow, even a relatively large distance between the mode

eigenfrequencies (6) can become smaller than the amplification

band (5) .. In such a case, the self-excitation conditions can be

fulfilled for several modes simultaneously. The amplitudes of

these modes grow independently until they become so large that the

non-linear properties of the electron beam provoke mode inter-

action.

* Besides the mentioned methods of mode selection, there exist
other methods tllat consi:s.t,~,j':or example, in step -profiling of

the resonator [8,9] ..
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Eguations of a Multimode Gyrotron
•

Every resonant microwave electron oscillator can be described

by a self-con&istent set of equations which consists of the equa­

tion of electron motion in the RF field and the equation of the

resonator field excitation by the electron beam. It is weIl

known (see, for example, \]O,11J) that the equation of electron

motion has just the same form for the gyrotron as for a no~li­

near oscillator under the action of the external alternating

force whose frequency is close to one of the harmonics of the

oscillator eigenfrequency. vYhen the RF field acting on elect­

rons is a SUffi of several modes of the resonator, the external

force is a superposition of all these modes and, corresponding­

ly, the averaged equation of electron motion has the form [12,1 il

with the boundary condition Cl,(O) = 1 . In (7) the complex va-

lue O. == Pol '~r t- L(~-~o) ~
Plc

energy of electron oscillations ( 'P~o is the initial value of

the orbital momentum, r~d= ~o is the initial orbital velocity

normalized to the light velocity) and the phase of the cyclot-

( i9) n ~ tron rotation ~y.+try=r.Le ;;:;;:=:.o'-L0Q.,'

quency uU~ close to the initial cyclotron frequency of elect-

rons uuHo (U0~ is the basic frequency for the averaging of

eq.(7)1 ~o is the electron phase at the input cross-section

of the resonator. The normalized axial coordinate c is pro-
2.. ::-'

< _ t;.lo Wo.. Zportional to the axial coordinate -z . c: ~ ,:.- · .-:-:=-
• 2. ~uo c

A== ~ (1- ~~O) . The sum of the RF forces of all modes that
q;J.o a..

cau resonate with electrons at different cyclotron harmonics

(e.u~~ rlSLUHo) is giyen in the right-hand part of (7). The func-
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tions g~(~) describe the axial structure of the resonator

mO.des t Fs and ~s are the normalized amplitude and phase of

the s-th mode, respectively, taking its transverse structure

into account ,
, A \.o(s /. ns
lo/S I ~ e rts-"1 (ns \

rse =~ Ho ~.LC in$.-n.s\) L hs • (8)

Here the amplitude of the s ...th mode As is normalized to the

value of the external magnetic field ~o ,the function

L =[..f- (.l- +L::L)~ 11~ t;1 (':I. Y) describes ~o, 111 the trans-
h.s wa... 0)( 'OY '1 r~ ) 'J

verse structure of the ß~mode Lorentz force acting on the elect-

ronwith the coordinates X)Y of the guiding center, the mem­

brane function 'ttl()l,y) is the solution of the Helmholtz equa­

tion !:l.lii~ +k2.'(ll =0 with the boundary condition 'O~s:=:O
't'~ .I. 't"So v n..

for the TE-modes at the resonator wall.

Equations of several mode excitation have been known for such

a long time that it is difficult to establish their author now .•

For radio oscillators, Van-der-Pol seems to be the first to

obtain these equations [14J (later they were analys,ed in de­

tail for the case of two modes in papers [15, 16J and elsewhere) ..

Similar equations for optical masers were obtained by W. Lamb

07J. Finally, for microwave electron oscillators they were de-

rived by L. A. Vainstein, 08, 19J. The method of their derivation

is rather simple. The RF field of the resonator is presented

as a SUfi of high-Q modes with a fixed space structure and am­

plitudes Aslt) that can slowly vary in time. The substitution

of the HF field in such a form into the Maxwell equations with

the condition l ~~ t <<.. W A taken into ac count , permits one

to reduce the wave equation to the equations of excitation that

are ordinary differential equations of the first order. These

equations for different types of oscillators differ only in the
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form of the term responsible for a concrete active medium. For

gyrotrons, in particular, these equations have the form D2, 13]

Here the amplitude F~

(8), the dimensionless

less eigenfrequency of
\ ,tts Q 11=LUs + L. tLQ '~~'>'I

~

value ~s called below

and the phase Ifs are determined by

time t equals t ~ wcvt , the dimension-
, t.0c UJ~+ L(w~/2Qs)

the s-th mode equals W(' = "....... ::: (.) ,=
, ~ Lva..- <..: 0...

is the Q-factor of the s-th mode, the

the factor of excitation equals

( 12)

o~ ~s

I 2" C , 11 ':Q \ ~ :.I..
I ( r r s .. ~ ~ f( r&n. * -IALI's-ns O)\J \1/

~s;::;-l- J L .)'r-W(R.LOJ(0o)d.~o9".1...\ JJct) SJ~(~)e d~~~~11)
S rs r OLiI 0 ~lA"I

1 ~ ~
The dimensionless function ~(~.LOI~O) normalized to unity de-

scribes the electron distribution in the electron initial velo­
.~

cities and coordinates of the guiding centers R..I.o= (X) Y) =-(Ro}~)'

the parameter I s is proportional to the beam current I
- ~,\1s+I\ )2-_ e 1 . tts. As. ns 2(ns-~) 2-

ISo- InC'" . j;rr'" N
s

C.n•• h.
s
! ~J.o \ Ln.! ,

~G in (12) is the norm of the s-th mode oscillations. For a

hollow annular electron beam, where the spread in electron velo­

cities and radial coordinates of the guiding centers can be neg-

lected, VI (Rl01 ~()) ==21 R 8(R.L- R.1.o} S( (?,j.-r?>..I.o)· 8( (311 .... ~\lC) and,",r 11 0 r r .
thus, e:p~= lsCP'5 ' where olit

2Ir Zrr ~s • c' ~)
q,s= - ~ · -#; )lid[ ~ a: Qs J;(6 ) E;' 'Yen. •JtJ cl~.~cl ~.( 11 a)

S 0 0 ~~ ·
Comparing equations (9) with the knO\Yn equations of excitation

(see, for example, [10,7]), where the active medium is described
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by the polarization t?;:; '\. 'E (t is the dielectric sus-

ceptibility), one can easily relate ep and X, ~ CJ? = ~ ';( ..

)

In view of the assersion that eqs.(9) and (10) are ordinary

differential equations of the first order, it is necessary to

note that, in principle, the factor of excitation crs (11) is

determined as the integral over the resonator volume at a given

moment of time t .. At this moment the electrons which int.eract­

ed with the RF field at a time t - -/:' ,where O~ t\ ~T= L ,
u(\

are present in the resonator volume. Hence, the gyrotron active

medium, similar to active media of other microwave electron de­

vices, possesses space-time dispersion and eqs.(9) and (10) are

integro-differential equations vrith a delay argument ..

The processes in the multimode gyrotron described by eqs.(7),

(9) and (10) can be characterized by some typical times .. For

electrons, this is the transit time lG ~ during which an elect-
\I

rön passes through the resonator.. This time determines the ty-

pical width of the Lorentz force spectrum and, correspondingly,

the band of amplification (5). The typical time for mode ampli-

tudes in a "cold" resonator is the time of the oscillation de­

cay 'Cet rvQs./W'b.. For a resonator filled by electrons, the ty­

pical time for nonstationary processes ia the time of the am­

plitude growth which, as follows from eq.. (9), is proportional

to "0 ro./ 1.1 s;~ ~ Qs. .. Since under usual conditions the beam
- st u)~

current I exceeds the starting value Ist only by several

times, one can consider 't to be of the order of "tel • The

beating effects play an important role for phase relations be-

tween the modes.. These effects depend on the distance between
. -1

the mode frequencies: for tWQ modes, rc'b "-J \ LJ,,\ - L02. \ ; for

three modes, besides L:b"-J\WL-lJ~\~1 (L,~=-1I2./~,) L-=f:.i ), such

I C) -~ • • ,times as '"Gb"J \ WL + u)j ~~('~JK \ ( L.) J)~()ZI?:» ·v:/=: ~ '=1= K
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can be essential and so on. Note, that for gyrotrons with the

axial symmetry of the interaction space V s = ""JAht,l Ks R) el,ms~
and, as follows from (8), Lh -= ::t.... + 1"\ (\< R ) e",(ms±n&)~ , the

s II~S_IL~ So C

phase ~s. is a sum of the term 0<.,$ depending on time and the

term (1Yts.+nsJ ~ depending on the azimuthaI coordinate ~ :

~~- o(.~ ~ (ms.±. ab) ':)' • Therefore, the beating harmonics in

eqs. (9) and (10) have the form (LÖz- lU'1Jt -(lTt2.-1l1.1) lq) (Z.ü·)z- LV1-l.(\!>)+-.-

- (2.m2.-tn.,\-m~J~ and so on.

Taking into account the expression for diffraction Q
~n 2 .

QeUt ~ ßir (L/>..) given above, one can determine the ratio of

both times -C IT ~ [I~/(I- I st')J ,4~\t (L IA) • Since under

typical conditions in1·gyrotrons 4~\\"Ts:t/('1-1d)A,I~ and L>'>A ,
the time of the mode amplitude growth is much greater than the

electron transit time 1r . This fact permits one to integrate

the equation of electron motion (7) assuming the mode amplitudes

to be constant and, then to analyse "slow" evolution of the mode

amplitudes, i.e. eqs.(9).

The typical times of phase beatings, inthe general case,

can be comparable with the electron transit time 1r because

the distance between the mode eigenfrequencies can be of the

order of the amplification band. Correspondingly, the equation

of electron motion (7) should be integrated for different values

of phase differences qJ2.-'-V4)j,~i-\.{!,\-~~andso on, which in­

creases the time of computer analysis significantly. At the

same time, in many cases the equations for mode amplitudes (9)

do not depend on the phase differences A~ • These cases are:

a) Fast beating in time. This ease corresponds to a large dis­

tance between the mode eigenfrequencies l tA) 2.- Lu" \ ,~2Wz..-W,,\'-l-U3,\

and so on, as compared with the width of the mode resonant

curve w~ / Qs. ..
b) AzimuthaI orthogonality of modes with different azimuthal
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and so on.

In the first case, one can average eq.(9) over the time

scale ~Q~/0Us and thus exclude all fast oscillations of dif­

ferent phases. In the second case, the phase differences vary

with the azimuthal coordinate ~ and, hence, the integration

over ~ in the expression for the factor of excitation (11)

will lead to the averaging over the phase beating in eqs.(9)

and (10). Since in such cases eq.(9) for mode amplitudes does

not depend on mode phases, purely amplitude interaction takes

place between the modes, i.e. one mode amplitude evolution is

affected only by the amplitudes of~he~ modes, not by their

phases.

On the contrary, when several modes with a quasiequidistant

spectrum are in the cyclotron band and :. ' -" relations such as

QJYl2 = ml\+ rn~ can be valid for the azimuthal indices of

these modes, the ~plitude evolution of these modes depends not

only on the mode amplitudes, but on their different phases as

welle Whisperring gallery modes in a resonator with a large ra­

dius can be an example of such a case. The condition 2m :=m +m
2 't .3

is valid for azimuthal indices of these modes that differ only

by a unity. The spectrum of these modes is close to an equidis-

taut one: representing the eigenyalues \) for large h1.- in
mli

the form [5]VI'n>f . m-tr ( ~Y/.?l ( -Cf is the p-th root of the

equation U' C:t) =0 ,U is the Airy function), one can obtain
, r. ~ lw,,+w~-2.~) l Z. (h1..)1 /"t, 1

the estimation L20 j lü
z

2. ~ 9 lir) '2 • m~ • J!'or

m~\O and f~ 6 ( tt ll \ =1.02, 11:2.1 =3 .. 25, snd \t~\ =4.82),

this frequency difference is not greater than the width of the

resonance curve for modes with ~~103. So, in this case beat­

ing with the .phase difference 2. ~~ - ~-1 - \.V~ will be presented

in eq.(9) for the mode amplitudes and, hence, it will be ne-
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cessary to analyse these equations together with the correspon­

ding equation for phase 2.~J2-~,\·-If~.
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LECTURE 2

Stability of Single-Mode Oscillations for Purely Amplitude

and Phase-Amplitude Interaction of Gyrotron Modes

In this lecture we shall restrict our consideration to the

investigation of the simplest and, perhaps, most important prob­

lem in a large number of problems concerning mode interaction,

namely, the stability of single-mode stationary oscillations.

The simplicity of this problem is explained by the fact that on­

ly the vicinity of the equilibrium state on the F-axis will be

investigated in the (2N-1)-coordinate space that corresponds to

the enhancement of the N-modes (with N amplitudes and N-1 phase

differences).

This investigation can be readily divided into two stages,

the first of which is the analysis of stationary single-mode os­

cillations of the operating mode and the second one is the stu­

dy of the stability of these oscillations with respect to the

parasitic mode oscillations whose amplitudes are assumed to be

small as compared to the amplitude of the operating mode.

A self-consistent set of equations for stationary single-mode

oscillations in the gyrotron follows from eqs.(7), (9) and (11a):

The

(13)

( 14)

(15)
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(1 co):: 1 .. The index n 0 .. here corresponds to the operating mode
(0] •

and i ts action on the electrons, the frequency W,:t. in this lec-

ture is equal to Wo .. Equation (15) corresponds to the ba­

lance equation (2) given below in the dimensional variables.

The set of equations (13)-(15) was analysed in many papers

ooncerned with the theory of single-mode oscillations in the gy­

rotron (see, for example, (1(~1). These equations' permit one to

determine the amplitude of the operating mode Po, for the gi­

ven values of the beam current parameter Tc. Qc , the cyclotron

resonanoe mismatch ß and the axial structure of the resonator

. HF field 10 (e,) .. The results of numerous investigations of these

equations are summarized elsewhere (see, for example, [ja, 21]

and [22J ).

In the study of the stability of these oscillations we shall

distinguish two possible cases that were discussed in the first

lecture: the case of purely amplitude interaction and the case

of phase-amplitude mode interaction.. In the first case, it suf­

fices to analyse the stability of the operating mode oscilla­

tions with respect to one, arbitrary, parasitic mode, since pa­

rasitic modes do not affect one another in this case and the

oondition of their self-excitation depends only on the intensi­

ty of the operating mode .. On the contrary, in the oase of phase­

amplitude mode interaction, where the oondit ions of time

( l2Wc-0J'-1'~ 1..0.t1 \ ~ .~ ) and spaoe ( 2. i11.o ::: rn-i + m+1 ) synchro-

nisms are satisfied, the parasitic modes are coupled. Here,

when the single-mode oscillations of the operating mode become

unstable , the oscillations of both satellites appear simulta­

neously. This fact can be interpreted as automodulation of the

operating mode oscillations and, hence, this instability can be

oalled automodulation instability.
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,!h,2 !!,t!!b,!l,!tz .2.f_s!D:ßl,2-!!!o~e_0l!c!lla.:~.i.2.n!!,!o!: .E.U!:e1Y_amP!i!u~e

mo~e_iat,2r!!c!i.2.n_\l3..a..2il
Let u~ suppose that parasitic mode oscillations with a small

amplitude r'1 <<. f: appear in the gyrotron with intense oscilla.­

tions of the opera.ting mode. This fact will provoke small per­

turbations in the electron motion. We shall describe these per­

turbations assuming the value (1 to be equal to aCe) + ~ aLl) ..

Linearizing eq.. {7) in ~,we obtain the equation for Ct(:\) from

(7) and (13):

OvQ.Ü) _ i ( . 2.' 2.) '2. i(- ~ • [ \ 11 0-2. ~ r .
J..~) L-.1. + \0.(0)[ --{ 0,(1)'- L-Q(.o) Q(-t) - L 1 (no- {) Q'Q) "Jo t-c, a<.~+

n,,-Ij p ;, (Kc. +YJ) ri't (16)

+~c}) t'l e .s

the given equilibrium state

f)<f.)l\
-l-I <0
7l ~·o : ~o )

\F "o

This equation should be supplemented with a.complex-conjugate

'*equation for Q(~) and the bounda.ry condition Q('\)Lo)=O. The

phase tf denotes here the difference lf = (n,<:; <'0~ - h.-f tU~)-cQ+

+(n~mo-noh11)~ of. phasßs of both modes at the moment -to when

the 'electrons enter the input cross-section at the point with
-., ,-J> 2. (1..0 \ 11.1 )the azimuthal coordinate, . c..P .. The value /1 equals f::. =: 2. ._1. - ~ ..

) rp..kJ lc~ rlo

The expression for the factor of parasitic mode excitation by

a hollow e'le'ctron beam follows from (11a.)
. ~ " (.t.(~ .

A zn 2tl C, , ("".... oJl\
, A' \' I .._.t\ (\-1 ;t-\" .i<::;+,,)...... .,~cp '= - L(LA, . 2-!-., t .:_ l '\ \ C'a1,,1. • Cl,' t! \' e a~, \l~$() ,~(U( 17)

" TI) 2/\) ..... J . \ ("'j" ) .J \ •
o 0 "-~

c."
In view of the fact that we consider the case tl'i tn o 4=- llo rn,1

the averaging over the azimuthal coordinate ~ is identical

here to the averaging over the phase difference ~) ..

Using eq.(9), one can easily obtain the conditions of stabi­

lity for
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The first of these conditions defines the stability of oscil­

lations of the operating mode with a stationary amplitude

with respect to its own perturbations. This condition is not

fulfilled for the unstable branch of the oscillator with herd

self-excitation, it is valid in the below consideration.

If the second condition is violated, the parasitic mode has

a positive increment and, hence, its oscillations will grow.

Taking the balance equation (15) into account, this condition

can be written in the form

(18)

(18a)

or, for the gyrotron in which the spread in electron velocities

and radii of guiding centers can be neglected, in the form

A I / :" I A = 110. ~{ 0."
CPo qJ'\ '> 0 t1 - Q .

\I ~ 10 0

• On the other

pole interaction of electrons with the HF field

[
~ . /. 2n", / 2.n."

harmonics 11J (see (12) ): I~ IeJ 'V ~J..o rJ..o

Two facts should be emphasized. First, both factors, qpo
and ~1 ,depend on the amplitude of the operating mode (for

a parasitic mode, it follows from eq.(16) that determines the

value Q(-{) and, correspondingly, the factor CJ?'1 ' and includes

the value Q.{o) depending on Po ). Second, the given set of

equations can be applied to the analysis of the competition of

modes resonant with different cyclotron harmonics. A mode reso­

nant with the lower harmonie or a mode resonant with the higher

one can have some advantages in this competition depending on

the beam voltage and the pitch-factor of electrons ~J.!~\\ .
Rere we mean the ratio TI\. Q-1 /1

0
0

0
• On the one hand, the ratio

of the effective impedances of coupling is proportional to the

electron orbital velocity to the power that corresponds to multi­

at different
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band, the diffraction Q of the resonator with a fixed length

is larger for the modes resonant with higher harmonics because

the wavelength is smaller, i. e .. QII./Q ~ (L/'AA.J'2.. ::: n.~ and,
o (L/A<.tY· n; '2.

thus, the ratio I'1 Q A. /IoQo is proportional to (Q1~~/no~:~) ..
The integration of eq.. (16) and the computation of the factor

of excitation (17) can be simplified by introducing the integ­

ral variables that are independent of the phase difference 0/ ..
Introducing the matrix

YA. I

ct(1) I~"-}.

'(2- 2rr l\

y= - .L~
a(,\) ,~~

~})
y~ 21T \

0 Q('\)' ~}

y~ Q~~)' ~n,}

'" . /l \ I 11
where \:= L\); + <f, Q(1)'= '.(.,(1) - l, Q(-{) ,orie can transform. eq.. (16)

to the equation that does not include the phase ~ and has

a matrix form

~ =CY-Hclc.,

with the boundary condition yeo) =0 .. The matrix C.
equal to

(16a)

is

2.><.,y 0 K A+x2.+ sy2.-1

o -2x'y -CD.+?:JX~'12~{) -'K.
~ a: D. 4-)(2.+6['.-1 2.x'y 0

r>I

-(Ä+ öxz-+y'Z:--1) A 0 -Zx''j
)

where ~o)= x- ~.'I ' and the matrix H for the modes resonant

with the fundamental cyclotron harmonics is
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H=

(17a)

Henee, the faetor 1? ean be deter.mined by the expression that

follows from (17): . 0"'*:.
2rr c: '\

41=-Lin-) [~. (Y" -Yz) ~:(~)J~J ~~~
o c:.~

for the ease of higher eyelotron resonanees are given

• The expressions for Hnot inelude the phase <t'and does
1\

and CI2,
in [23].

Thus we have redueed our study to the following proeedure.

In the first stage, we integrate the equation of eleetron mo­

tion in the field of the operating mode (13) and determine Q(O)(c,).

Then, we calculate the faetor G?o (14) and find from the ba-'

lanee equation. (15) the value of the beam current parameter

ToQo that corresponds to the given amplitude of the operating

mode F: • In the second stage, we determine the perturbation

in the electron motion a0)(~) that is caused by the field of

the parasitic mode using eq.(16a) and caleulate the factor ~1

(17a). After all these calculations we can determine the high­

est value of ~ for which the condition of operating mode

stability (18a) is valid.

The results of the calculations were given in [23,13J .. As

an example, the dependence of the real part of the factor of

parasitie mode e:x:eitation CP-1 on the frequency mismatch A
1
=



is given in Fig.1 [13J
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"..... 2.. ((),,-tUHo ( A)
:- Ao+A = -2: • tU n..o}-t = "

\?:>.i.o ci
for the gyrotron in the absence of the operating mode oscilla-

A I

tions (<1'I\)L) and in the presence of these oscillations with

I the amplitudes ro =0 .. 04 and different values of mismatch
2. <..U -lUHo " I

A -- • <:) - (the corresponding values of <:Po are shown
~o- ~2. CD

in Fi~.1 by ~orizontal dashed lines, .t/1l~)=~f~-(~cd:._1)2~,
~a~=17). It follows from Fig.1 that the main effect of the

operating mode 1s the suppression of the parasit1c mode, i.e.
"I

the factor ~~ in the presence of the operating mode is, as a

whole, much lower than for the unexcited gyrotron. The origin

o~ the latter effect will be analysed in the next lecture.

A most typical situation for gyrotrons 1s the case when the

beam currentis fixed and the external magnetic field is tuned

for the maximum of effic1ency. The corresponding dependence of

the operating mode amplitude on the mismatch ~o for the va-
l\. 4 3

lue of the beam current parameter 1 =I -Q .)... =10 is given in
o 0 0 '"'o~,

Fig.2. Using such dependences for the determination of f70 as
" .

a function of 11
0

at a given value of 1 0 , oue can find the

zone of parasitic mode self-excitation in the plane of mismat-
...... A

ches ~O) A .. This zone is shown in Fig.3 for the values 9; =1,
A. 310 =10 , and ~0lct.=17 .. It follows from Fig.3 that self-exci-

tation of the parasitic mode can take place in the left-hand

side of the zone of the operating mode oscillations where the

amplitude of the operating mode is small (see Fig.. 2) and the

parasitic mode can be enhanced with a larger amplitude if its

frequency is closer to the center of the zone of self-excita-

( "" \tion ß '> 0) •

It should be noted that for the optimum parameters of the
A.

electron efficiency of the operating mode ( Tc =103, t:o.ct:=17,

and Ao =0.4), the parasitic mode can be excited only when its
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frequenoy is oloser to the oenter of the self-exoitation zone

end its produot of the Q-faotor and the coupling impedanoe i8
-1

twioe as great as for the operating mode. The threshold ourve ~th,

is shown in Fig.4. The osoillations of the operating mode with

the maximum effioienoy are unstable below this ourve.

Let us oonsider the problem of stability of single-mode os­

oillations in the gyrotron with phase-amplitude mode interao­

tion. Due to the phase coupling, high- end low-frequenoy satel­

lites oan appear in suoh a devioe simultaneously. We shall as­

sume that weak osoillationsof the satellites oause small per-

turbation in the eleotron motion O:t:=: Q(O) + Q'(1) (\ Q(~J«\QCO) \) •

The oorresponding equation for ~(~ follows from eqs.(7) end

(13) and for the oyclotron resonanoe at the fundamental harmo­

nio has the form

QQc-\) ~[ \2. iJ . 2. t- ( • f P -~t-1 P~- L~1/
J.r-~ -L l L\+2.(Q(O) -~JQ,(1)+Q(O)a('\)j=!JTt_1E1e +t11 e J~19)

Rere the phases ~±1 are taken with respeot to the phase of
- 2 ~)the oentral mode o/±1=(Lc)±1-W.,)""C +<-)'+o(±1-c{o,\;=uu (O~"'C~ ,.

Equation (19) similar to eq.(16) should be supplemented with a

'*oomplex-oonjugate equation for <l(i) and a boundary condition

Similarly to the previous ease, these equations can be re­

duced to the form that does not eontain the amplitudes of para­

sitic modes end the azimuthal coordinate ~ ,introducing

new variables U±i\ end U±1 instead of Qc'\)

.Lf _ LA{;{ 211 -~Y' .
E, U1 + t.1e U._,\ - e .2IT ~ Q({) e eR.~)

o

""' ~ ~o/ ._, tA~ 1 2," * -L~
\=1 U,\T \--1 e U--1 ~ e .2rr ~ Q({) e d~.

o
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'" l LU'1 - <'-vo - ~ ~
Rere ~..= f.>~ . «.)0 ,the phase r= le"i+\,p+1=(<.(:·tt+u...t1-2.cOo)""G+G<1-hX_r2o<<:

, 0

corresponds to four-photon decay of two quanta of the operating

mode to the quanta of both satellites. Equations for

follow from eq.(19) and its complex-conjugate one:

(20)

(21 )

The corresponding boundary conditions are U±'1 (c)=q, "lJ±'1(0) =0 •

Equations (20) and (21) do not include the satellite ~plitudes,

the azimuthal coordinate ~ ,and the phase difference lfI •
A.

The expression for the factor of excitation <±?±-1 ('t1) can be

transformed in a similar manner

where

The equati.on for the phase difference '-Y follows trom eqs. (10)

cl~ W'" +tU~-i-2(.Jo . 1 ffi l( _ 1\ \\ A If

d..:t ::= C0 . + -J\ ~-1 + l/I\ -2.10 Cl?o. (24)
o

If the beam current parameters tor all modes and their axial

structures are the same, I±.-t = To ) +±... (~,) :== 40U",,) , and

both the satellites have equal Q-tactors Q-If=QIf ,using

eq.(24) and expressions (22) and (23) one can determine the sta-

tionary value of the phase ALt' (for ~'1 4 0 ) that is stable
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with respeet to the phase variations

(25)

of the mode eig~nfrequeney speetrum (see Leeture 1) with the

eleetron detuning of normal frequeneies taken into aeeount.

The equations for the satellite amplitudes whieh fo1low from

eqs.(9) and expressions (22) for the ease of phase-amplitude

mode interaetion are eoupled:

d. F, ,..., ( { J( \ ( (l'\ , - Cl? 11 ~ - '\

etl,: =. r-t CP"/1 - '2-I::,Q--1 ) + E.'t 'j;~J-'1·c.o.~f~~ 1J-"i C+!<;it./y.

clF-1 I ~ ( cp I ~ 11 ,,-:--)
c:;lL; ~ ~ E-f (er_1/--f - 2.ToQJ + ~ -1/1f(:~Lf~+ep-tj"1' ~\l'f~~, )

here -c. ~ I o wot . Two eonditions of the operating mode stabili­

ty with respeet to the satel1ites fol1ow from these equations

(26)

j i 2. -..,...... fT) l( cp iI • 2- .

6'" ' 0'-'t - <PA _,,' <1'-1 -1 '~ ~<;(t+ ':t'~ -1' -1 "l' ~Q.. epSfC +
"li "\) I)

t -:-- ~ (tI\ll cpl ffil fT\1I ) 0 (27)
+ ~tl.-l\!~' ~ l('~ \... '-1:'" -1' -11- ':t'1-1' 'r-1 1 '> ')'1, ) I I

where S'~= <P~J1 - 2.~ Q' ) S-1"" ep~ -1 - :z~ CL, are the inerements
. ~ ~ ). 0

of the satellites.

Thus in eomparison with the ease of pure1y amplitude mode

interaetion analysed above t these equations eontain only one

additional parameter, namely, the mismateh 8 that eharae-

terizes weak nonequidistanee of the mod~ eigenfrequeney speet­

rum.Similar1y to the previous ease , only the situation where

the Q-factors of all modes are equal should be analysed numeri­

ea1ly and the ease Q±4-:F Q 0 ean be analysed analytiea1ly be...



amp1ification zone, the region of automodulation
..-...;.

diminishes ( !l =0.5). The analyses of the cases
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cause conditions (26) and (27) can be rewritten in the form
0) A

3-t -= 1',\ + 2(~-\) cp~ < 0,

iFz~ :r~\) -\- ({-'J 4~ [~({) + ({ -r) eP~1'>0,

where the functions ':f'I}2. denote the expressions in the left­

hand parts of conditions (26) end (27), respectively, the index

( 1) symbolizes the case ,==. Q0 la ==- 1 •
. (~ ±~

The results of numerical investigations are given in Fig.5.

The axial structure of all modes was taken in the form 4C~) =

=~ l-( ~~..:t-1)z.L~od= {o. The solid 1me shows the zone of

the operating mode self-excitation. The dashed 1ine shows the

beam current parameter I~- 2..1 0 0
0

optimum for the electron ef­

ficiency of the operating mode (the circle in this line corres­

ponds to the maximum of the' electron orbital efficiency). The

dot-dash 1ine corresponds to the break in the operating mode os­

cil1ations at the edge of the zone of hard self-excitation. For

different values of the distance between the mode frequencies

K ,the boundaries of the zone of the operating mode osci1­

lation stability are given in Fig.5 for ~ =0, ~ =1. The dash­

ed lines correspond to condition (26) and the solid lines, to

condition (27). These lines are shaded as viewed from the auto­

modulation instability. As the distance between the mode fre­

quencies grows, the zones of automodulation first expand (cf.
A.r

the curves for Ä =0, 0.1 and 0.3). This fact can be explained

by the growing influence of' the dispersion in the gyrotron non­

1inearity. Then, as the satellite frequencies move out of the

instability
C-0{ + (~L1 -2l,-\
- =

Iowo
=0.02 end 0.05 show that weak nonequidistance of the mode eigen-

frequency spectrum does not, practically, affect the boundary
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of the zone of autamodulation instability.

If the frequency mismatch of the cyclotron resonance for the

operating mode is optimum for efficiency ( ~o =0.6), the depen­

dence of the critical beam current that corresponds to the ap­

pearance of automodulation on the distance between the mode

frequencies ~ has the form shown in Fig.6. The dashed non-

shaded lines correspond to the case when the Q-factor of the

operating mode .is two times smaller than that of the satellites
1\( q, =2). Even in this case, the central mode oscillatj.ons are

stable for an arbitrary distance between the mode frequencies

up to the beam currents exceeding the optimum one by two times

and greater. The minimum value of the critical beam current pa-
,....,

rameter corresponds to the mode frequency mismatch 6.('''{' ~ 0.3

(see Fig.6). AB the resonator radius grows and the mode frequ­

ency spectrum becomes more dense, the most "dangerous" satel­

lites are, obviously, the ones with the frequency mismatch close
,-.J

to ~ tt rather than the neighbouring satellites. It is natu-

ral to suppose that the automodulation instability is inherent

in the decay processes, i.e. with an increase in the beam cur­

rent after the appearance of the first pair of satellites sub...

sequent pares of satellites will be excited.

Thus, the results obtained demonstrate the possibility to

provide stable single-mode oscillations with a high electron

efficiency in gyrotrons with an arbitrary dense spectrum of the

competing modes differing in their transverse structure. The

types of instability analysed here can. play an important role

in the cases when the beam current is increased over its value

optimum for efficiency in an effort to enhance the microwave

power.

This conclusion permits one to establish the fact that for
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gyrotrons with the beam current that does not exceed the opti­

mum value, the most important problem is the appropriate choice
,

of the start-up scenario that can provide for the operating

mode to be first self-excited and then to operate with high

electron efficiency. We shall analyse this problem in the next

lecture.
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LECTURE 3

Start-Up Scenario

Taking the results obtained in the previous lecture into

account, we shall assume that for the excitation of the ope­

rating mode the gyrotron should be switched on so that the self­

excitation conditions are fulfilled for the operating mode prior

to the others. This method of providing the operating mode os­

cillations was proposed in [26J and then supplemented with the

analysis of a number of examples in [27].

In view of the fact that we consider a system of orthogonal

modes that are not coupled in the unexcited oscillator, the

condition of self-excitation can be studied for a.ny mode neg­

lecting the presence of all the others in the spectrum of eigen-

*frequencies'. The corresponding condition follows from (9)

(28)

" I

Here the value ~s in the framework of a small-signal theory

does not depend on the oscillation amplitude and is only the
2 Ws. - nSG·..lHo

function of the cyclotron resonance mismatch 6.s= (2.,'1... ' r,'\

rJ..o UJl{o

and the axial structure of the s-th mode fs(Ä) '[10,28,29]
<:;0111;

" \ 0 t S LA ~ 2.crs ::::-llh.s+~) ~ ts(~Je s :i~\ . (29)

T~ P\~ C, 2. s ~~
The value \ J ~ßle.-~e s dl~,\ in (29) characterizes the intensity

c:ks.

* Double degenerac.y is, in principle, characteristic of any

non-symmetric mode, since modes with different directions of
azimuthaI rotation .'Ve'lCp lLL (~t + mlS)~ ha.ve equal frequencies
in the "cold" system.. Tllis degenerac.y is, however, disturbed
in the presence of electrons and the modes differ in the start-

ing currents and os'cillation frequencies due to the gyrot.....:ropy
'--"of the electron beam.
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of the spectrum of the HF Lorentz force acting on the electrons.

The first term in the right-hand part of (29) corresponds to

the "M"-type bunching of electrons that leads to cyclotron ab-
AI

sorption (crs M. <:: 0 ). The second one, which iso proportional
. I

to the derivative of the spectrum intensity, corresponds to

the "On-type inertial bunching of electrons. It follows from

(29) that the "Olt-type inertial bunching is dominant for c.ou:J:?> \'t

( the transit angle 8&:.:=. As~:ut;iS usually of order 2'}r ) and,
A

hence, the real part of qpß can be positive and the gyrotron
1\(

can be self-excited. The dependence of gps on the frequency

mismatch ~s for various axial structures of the HF field was

analysed elsewhere (see, for example, [29J).

The value of the starting current can be determined using

equation (28) and expression (29). Under usual experimental con­

ditions, when the electron-optical and electrodynamic systems

are given, the starting current depends on the parameters that

can be varied, namely, the external magnetic field and the

anode Ua... and the resonator Ur- voltages. One should disting­

uish here two types of operating regimes, pulsed and CW opera­

tion. At CW operation, one can vary all the named parameters.

The tuning usually reduces to a procedure when optimum voltages

are chosen for the electron-optical system and then the magne­

tic field is tuned first for the best self-excitation of the

operating mode end after this for the operation with the maxi­

mum efficiency. Correspondingly, the zones of self-excitation

and oscillations are usually shown in the plane of parameters

"beam current versus magnetic field". An example of such

zones is given in Fig.7 taken from. [;30]. Here you can see the

self-excitation zones of various modes in the gyrotron that is

designed for operation at the TE15,1,1-mode at a frequency of
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100 GHz (similar msps of the gyrotron can be found, for example,

in [Jfl). According to Fig. 7, one can choose a magnetic field

for the minimum starting current of the TE15,1,1-mode. AB the

beam current increases, this mode will be excited and at about

40 A will oscillate with high efficiency (the magnetic field

optimum for the electron efficiency is lower than that corres­

ponding to the minimum starting current). At pulsed operation,

it seems impossible to vary the magnetic field of the super­

conducting solenoid during one pulse, because such solenoids

have a very large inductance sud a very small resistance. It
during one pulse because the current

is also difficult to vary the beam curren~n cathodes with a

temperature-limited emission is already saturated at a rather

low level of the anode voltage and then grows insignificantly.

Therefore, the only way to provide an appropriate start-up

scenario for pulsed gyrotrons is to choose the necessary re­

lations between the anode and the resonator voltages at the

front of the pulses.

As a rule, the duration of the pulse front under experimen­

tal conditions is significantly greater than the typical time

of the amplitude growth ~Qs/<.Js and the electron transit time

T':-' L/ vII .. The estimates show that, for example, for the gy­

rotron with the operating frequency of 100 GHz, the resonator

Q-factor -- 103, the resonator length l 5,\ and the

electron axial velocity I:.J.\= 0.3 c, the time of the ampli-

tude growth is of the order of several nanoseconds sud the

electron transit time does not exceed one nanosecond. This

fact permits one to consider the oscillations at the front of

the voltage pulses as a quasistationary process during which

the parameters that depend on the voltage vary rather slowly.
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In order to determine the zones of self-excitation of va­

rious modes in the plane "anode voltage ·Ua.., versus resonator

voltage VI"" ", one should express the parameters ~s. and C;~
At

in expression (29) for G?s in terms of Ua. and Ur

<-us~ \1S c.0Ho ~~ ~t. tVl-to L~
, <"""s • (30)

CU Ho . 2. ~II 0 c.

The orbital velocity of electrons in the gyrotron adiaba-

tic electron gun at a small space charge density can be deter­

mined by the expression ~2J
2.

2. = 0(.&. U~ (31)
~J.o cf-. H~ ,

where 0(= l-io /HC!, is the transmagnetic factor, i.e. the ratio

of the external magnetic field in the resonator region, t10 ,

to the magnetic field near the cathode, }{c • Introducing a

Uc..r
critical anode voltage ~ that corresponds to the appearance

of the anode current, when the height of the first cycle of the

electron trajectory equals the distance J between the ca­

thode and the anode, one can express the ratio cL'L· H:! 0(2. in

(31) in terms of U~-r [331

cl2.. H~ =: clZ.. 1/2.=. 0 ~cz..V(:-r (32)
d..,2.. N<:, L. e 0....

Substituting this expression into (31), we obtain

2-
2.. oG e U(\~ (31a)

~.Lo::::: '2. .-~. ·U C~ •

Ov

The total electron velocity can be determined by the resonator

voltage

2.. =. 1_(0 1+ e Ur )-2
~o meZ. f1

(33)
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Using expressions (29)-(33) and the balance equation (28)>>

we ean determine the self-exeitation zones o~ different modes

in the plane" ·Uo.., versus Ur- tt for a gyrotron with an arbit­

rary axial strueture of modes resonant with an arbitrary ey­

elotron harmonie.

For a gyrotron whose axial strueture of modes ean be de­

seribed by a gaussian funetion g(~) =~f l.-(2·~ - 1)'Z-} » the
AI" ~

exeitation faetor <Ps. is [)4]

4:(=-E.CC~)2.(h. +:L\ r_CAs.~Qt)21 (34)
'i:. g""' S So ro ti~) ~f L ~ ~ .

As ~ example, the self-exeitation zones of the modes resonant

with the fundamental eyelotron harmonie are shown in Fig.8

(see [35]) for a gyrotron with the gaussian axial strueture

of the HF field. The gYrotron parameters 1 0 ,~ou:t and 6 0p

eorrespond here to the maximum of the eleetron efficiency

(the voltage reaches the pulse top). The self-excitation

zones are given in the plane of parameters X = 'f~ /1- ,
Y== 'P~ 1'2. · The zone of the operating mode self-excitation

is shaded. The point of the maximum efficiency,as seen from

Fig.8,lies in the field of hard self-exeitation (the bounda­

ry of this field, where the oscillations break» is plot ted

by the dot-dash line) and can be attained only if the trajec­

tory corresponding to the electron velocity components at the

pulse fronts passes aeross the shaded zone of"the soft self­

exeitation. of the operating mode. Figure 8a shows an example

of a gyrotron with a rather large distanee between the fre-
A of'"C __

quencies of eompeting modes (for the operating mode, D or
0.4, for a high-frequency parasitic mode, b.h.~ =0.6» for a

low-frequency one, 6.t~ =0.2; the modes with equal minimum
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starting currents are oonsidered). The trajectory I shows

electron velocity components for equal voltage pulses at the

anode and the resonator of the tube. The trajeetory 11 cor­

responds to the ease where the difference between the resona­

tor voltage and the anode voltage is constant through the

pulse. It is seen from Fig.8a that the first type of voltage

feeding results in initial excitation of a higher-frequeney

parasitic mode at the pulse front. Then, its oscillations

break and the operating mode appears and oseillates with high

efficiency at the pulse top. The second type of voltage feed­

ing leads to the excitation only of the operating mode in the

pulsed gyrotron.

If the frequency speetrum of the eompeting modes is more

dense (Fig.8b), the first type voltage teeding provides initial

self-excitation of a high-frequency parasitic mode whose osoi1­

lations are stable while the gyrotron 1s erossing the shaded

zone of the operating mode self-excitation and break on1y in

the zone of the low-frequency parasitic mode self-excitation.

Thus, in such a ease the low-frequency parasitic m~de oscil­

lates with low effioiency at the pulse top and the oscil1a­

tions are accompanied by the high-frequency parasitie mode

oscillations at the pulse fronts. The second type high-voltage

feeding results in near1y simu1taneous excitation of both

operating and low-frequency parasitic modes in this case. In

order to determine the oscil1ations that are established in

such a gyrotron it is necessary to investigate mode interac­

tion, which is done below.

Thus, in the latter.case we have come close to the limit

of this kind of mode selection. Note that for a typical value
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'2..of the squa.red orbital velocity ~l.;- 0.2, the case under study

corresponds to the relative distance between the competing

mode eigenfrequencies equal to 1%. If the frequency spectrum

is more rare, the proposed method of choosing the start-up

scenario of the gyrotron seems to be rather effective for mode

selection. For example, even the first type high-voltage feed­

ing in the above-mentioned gyrotron with the TE15 ,1,1 operat­

ing mode (Fig.7) can provide, es seen from Fig. 9 , stable os­

cillations of the operating mode with high efficiency.

Basic Effects of Mode Interaction

It was elucidated above that it is very difficult to pro­

vide the excitation only of one, operating, mode in a gyrot­

ron with a very dense spectrum of the competing mode frequen­

cies. When such a gyrotron is switched on several modes can

be excited simultaneously. Let us consider the oscillations

that can be established in such a device.

In order to give a clear picture for the origin of the

nonlinear effects of mode interaction, we shall resort to a

polynomial approximation of the dependence of the mode exci­

tation factor ~s on the intensity of the HF field, that is

we shall take into account only the first nonlinear terms,

which permits us to describe the saturation effects in the

oscillator with soft self-excitation. The corresponding ex-
"-

pression for q:>~ can be obtained as a result of the integra-

tion of the equation of electron motion (7) by successive ite­

rations in t=L-. ~I ~ '.f.~;Cc.) e~l.\1s , substitution of the itera­

tion terms obtained, Qk rv (V~)K , into the expression for

~ (11a) and calculation of Cf:<-' • The equations for the$ ,~.
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(35)

the boundary conditions are QI(' (0) =0 for K ~ 1.. Rere, as com­

pared to eq. (7), the fundamental frequency UJo.- is taken to

be equal to the initial cyclotron frequency of electrons in

the input cross-section, uJHo; the functions ~s in the

right-hand part of (35) for K ~ 1 contain the solutions of

the lower-order (in ('F'::i:JI< ) equations: 'f"t=~; ,"\=a~+2..lQ-1lZ.,

f3=.2.(Q1a2.+a~Q2.+a1a1)+Q,-1lQ.1l2.andso on. The' solution of

equation (35) has the form
C; C; t:-,I

Q,k = L) 'fK J.~I +~[j (-:r;_~)Jc,I~ JÄt. (36)
o 0 0

Below, the cases of purely amplitude end phase-amplitude mode

interaction will be considered separately ..

In conformity with the discussion given in Lecture 1 we

shall consider here the interaction of two modes.. The substi­

tution of the solutions of eqs .. (36) into the expression for
A

C1?$ (11a) permits us to obtain the following expression

(37)

,the coefficient o(~ describes the

"linear" properties of the s-th mode, the coefficient ~s

is responsible for the effect of saturation by the self-field

of the s-th mode, the coefficient ~S~ describes the effects

of the cross-interaction of modes. All these coefficients

depend on the cyclotron resonance mismatch 6.s and the

axial structure of the s-th mode; the coefficient Q&&I also

depends on the distance between the mode frequencies end on
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the axial structure of the sv-th mode. The expressions for

these coefficients follow from (36) and (11a)
CC<N"b-

• ( A*
oG e = L.) 'Os ~s. k.J

•.> 0

Cou.:c C, c' ~I ~'

ts= - cjt{ ~ ~u1 ~ ~ U~ dt,"'. J~'+LI~u:-}LI~U; Jc.'~ ~~ib;P8)
o 0 00 0

Coo:t ~ ~I ~" ~'

'f\;SI=:-~ ~:1r~u;i~u~USI c{C:
II

•d~ \\+u~ U~'USI-jUsu&;u~Jc1 cl~fl le, ,
() () 00 0

A ;A ~ ~A
Rere new variables are introduced: ~s -=: gCt-.,) eL

s ,u~=j t/~I)k')
~ s 0

Ds= SUs . Je;l • Expressions (38) are given for the gyrotron
o

operating at the fundamental cyclotron resonance; it is assum-

ed that ~ Ol.l:l::>'> 1, i. e .. the effects of the "M"-type bunching

can be neglected in comparison with the "O"-type bunching

D3,36]. The real part of the coefficient <:Xs. can be re...

duced after the necessary transformations to the second term

in eXpression (29) ..

Since the mode interaction in this ease does not depend

on the phase relations between the modes, we ahall describe

i t by the equations for the intensities of two modes M~·-~:

that follow fram (9) sud (37)

~~' = M, (G",-t~ M'-01~ M,,),

J-d~2" ,-,,!M2 (62.-~~ M"- Q~1 M1').

Rere \3' = cX ~ - i . are the mode increments» -c -= Ti cU\tJ:
s- ZIs Qs: /

is the dimensionless "slow" time» :r. -= I,2. 1
1

, ~~ and

~ ~Sl are the real parts of the coefficients ~s. and Qs.s.' ,

respectively~ Equations (39) have the same form as the

one obtained by W"Lamb [17] for the optical maser" According
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to [17J, if the condition of "strong" coupling between the

modes

(40)

is fUlfilled, the phase portrait of the oscillator in the

plane ~1)~2 has the form shown in Fig.10a, i.e. mode com­

petition takes place and the oscillations of one mode will

be established, depending on the initial conditions. If con­

dition (40) is not valid, weak coupling between the modes takes

place and such modes coexist. The phase portrait of such a gy­

rotron is shown in Fig.10b. It follows directly from expres­

sions (38) that, if the modes have identical axial structures

(+'\C~)=;2(~)) and the distance between their frequencies

is small as compared to the cyclotron resonance band (i.e.

tiA ~.6.2., ), then the coefficients ~ß and 'fSS\ are related

as \(I =.21f, and, hence, the condition of "strong" coupling
~ s.s,' rs.

(40) is valid. Equations (39) have, in this case, the same

form as for a conventional radio oscillator that was analysed

in D4-16J. The dependence of the coefficients 0<, ~ and ~~

on the transi t angle Qs.= 6.s·~~ is shown in Fig. 11 a for

a gyrotron with a constant amplitude of the HF field along

(
. ~ O~~~c-t

the resonator axis . ~(c;):::.;:- )~milar dependence of
L,o..t.

'('~Sl on Eis. is given in Fig.11b for different values of the

ratio \< = ( C0~, - <..0 Ho) I (lUs- Lu 1-10) that characterizes the

distance between the frequencies of competing modes B3].
In accordance with the data given in Fig.11, the lines for

equal values of the ratio -qr~ O~~· Oz~ /~~ ~ ~~ that defines the

degree of mode coupling, are plotted in Fig.12 in the plane

of transit angles of both modes 8s. and GS.I :=:: 6
S
\' t~ [J6}.

One can see from Fig.12 that as the distance between the fre-
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quencies of competing modes in the zone of soft self-excita­

tion (~~ '> 0) grows, the degree of mode coupling '-!! increas­

es. This effect can be explained by the fact that we consider

a gyrotron with a negligibly small spread in the electron ve­

locities and the radii of the guiding centers (these factors

weaken the mode coupling [37J). In addition, the electrons

differing in the azimuthaI coordinate of the guiding centers

interact with the rotating or symmetrie modes of the cylind­

rical resonator with equal efficacy. That is why the space­

extended electron beam rolled by the rotating modes of the

gyrotron becomes equivalent to the elementary beam of elect­

rons with a common guiding center and, hence, two modes exci­

ted due to the interaction with the same electrons behave si-

milarly to two kinds of beasts feeding on the same prey, one

of them suppressing the population of the other ~81. Under

such conditions, the transit effects that stipulate the dis­

persion of the gyrotron nonlinearity play the dominant role.

In particular, when one mode frequency tends to the boundary

of the soft self-excitation zone and ~~~ 0, the coeffici­

ent l"ssl' as seen from Fig.11b, can be rather large owing

to the cross-interaction of modes. As a result, the degree

of mode coupling grows when ~~ ~ 0 (see Fig.12)"

Besides the mode competition analysed above, which is the

basic effect of puraly amplitude mode interaction, the oppo­

site effect can take place, namely, nonlinear mode excita­

tion ~3J. The possibility of such an effect i8 self-evident

in Fig.11b which shows that the coefficient r~~i is negative

for a rather large value of the transit angle Gß • In this

situation, the growth of the intensity of the s'-th mode, aa

follows from (39), enhances the increment of the s-th mode,
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i.e. even if the self-excitation co~dition in the unexcited

gyrotron is not fulfilled for the s ...th mode (6'2, < 0) , this

mode can be excited owing to the appearance of the oscilla­

tions of the st-th mode with the intensity .M.si'>\~S\/\6~s.'\ •
This effect can be explained by the quantum theory inter­

pretation. From this point of view, the active medium of the

cyclotron resonance masers (i.e. the electron beam) has a

quasiequidistant (not equidistant) spectrum of energy levels.

Due to~ this fact the zones of positive and negative reabsorp'"

tion of the coherent cyclotron radiation are located at close

frequencies and, hence, ,the zones of mutual suppression and

excitation are also neighbouring ones.

This effect can also be explained by simple kinematic specu­

lations. For this purpose oneshould bear in mind that the

st-th mode affects the electrons and the newly formed electron

bunch finds itself in the decelerating phase of the s-th mode

and, hence, the conditions for this mode to be excited by the

bunching electron beam seem to be better than in the absence

of the sl-th mode.

lt is shown in [13J that this effect takes place when first

the mode with a low starting current is excited and then the

growth of its intensity promotes the appearance of the other

mode with a higher frequency. The latter one can have a nega­

tive initial increment ~~<0 , but if it is in the zone of

herd self-·excitat ion (\i>~ < 0) , i t can oscillate with high

efficiency. A direct numerical analysis of eqs.(7) and (9)

shows that this effect takes place when the electron beam

current is much larger than the value optimum for efficiency

(see Fig.13 taken from [39J). This effect was evidently ob­

served in the experiments [40J and under the gyrotron opera-
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tion at the seeond harmonie, of the eyelotron frequeney' [31] ,

where as shown in [13], the oseillations at the seeond harmonie

provoke the exeitation of parasitie modes at the fundamental

eyclotron resonance. Here, the reason for the nonlinear exci­

tation of parasitic modes at the fundamental resonanee lies

in the fact that the modes resonant with the seeond harmonie

have larger rates of saturation, whieh leads to the distur-

banee of the eondition of their stability (see (18) in Leetu-

re 2) as the amplitude of this mode grows ~3,4~ •

The results obtained permit us to demonstrate an example

of the evolution of the zones of self-excitation of two modes
2. (.0 't - L0 H <> "" 2. t() - <-<"')-1

in the plane of mismatches /j.~=~ · ') , t1.::::: rz..2.. 2-
f->.Lo L<-: H<) \-.1.0 C0Ho

(Fig.14) [13J. Let us assume that the electron beam eurrent

was increased rapidly at a certain initial moment of time,

thus providing the possibility for the gyrotron self-excita­

tion. So long as the mode intensities in such a gyrotron are

rather small, the self-exeitation zones of both modes have a

symmetrie form (they are shown in Fig.14, where the inerement

of the second mode in the shaded zone is larger than that of

the first mode, the axial strueture of the resonator field

is t(c,J=~~t~L2;~-1J'2-) '~o~=17, the beam eurrent

parameter is 1
0

::::: I s Qs t;~u..t =103). If the eyclotron resonance

mismatch of the first mode 6. 1 corresponds to the minimum of

the starting current and the mismateh l is nonzero, the

first mode has a larger'inerement end its oseillations grow

faster. As the first mode intensity grows, the self-exeita-,

tion zone of the seeond mode changes as shown in Fig.14 (the

curve marked \7'1*0 ): the first mode suppresses the oseilla­

tions of the seeond one at the right edge of the oscillation
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zone (where the amplitude of the first mode is large) and in

the region of small mismatches between the mode frequencies
A~ (where the effects of mode competition are dominant).

At the same time, at the left edge of the oscillation zone,

where the conditions for the first mode are far from optimum

and its amplitude is rather small, the second mode with a higher

frequency that can oscillate with a larger amplitude can be

self-excited and, owing to the effect of nonlinear excitation,

its self-excitation zone spreads in the direction of large mis~

r,../

matches 6. •

Thus, we can now answer the question that arose when we

analysed the start-up scenario. When the self-exeitation con­

ditions tor two modes with elose eigenfrequeneies are tul­

filled nearly simultaneously(the separatrix with the ttsaddle"

state of equilibrium in Fig.10a is elose to the bisectrix of

the quadrant M-1)M2), the oscillations of one of the eompeting

modes will be established with almost equal probability depen­

ding on the initial fluctuations of the radiation in the os­

cillator. Note, that in such a ease eaeh of the two·modes will

oseillate with praetically equal efficieney because these modes

have equal Q-factors, eoupling impedanees and elose frequeneies.
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LECTURE 4

In order to desGribe the phase-amplitude mode interaction ,

we should take into account three or more modes for which the

conditions of time \QC02.-c-<J1-CL\\ ~ ~ and space (azimu.thal)

2m ::::: ml\+ lil
2

synchronism are fulfilled. Using the method of
~ ~ I

successive iterations in F'z.·=~I=;·t&(6.,)e(,.~s for the in-

tegration of the equation of eleotron motion and the computa-

(41)

8=5 •

c;s =2.

s=1

tion of the factors of excitation, one can obtain the expres-

"sions for epg ~3J similar to (37)

is the phase difference that corresponds

to the synchronous harmonie of the alternating current. The

expressions for the coefficients ~s that describe the phase

coupling of modes, have the form [13J
Co-d- ~ ~'~11 c. 1 .

~,,='~L ~ 47{ ~ [2.lA~) \ lAi J.C~". dc," +U~ui - ~'L(~D~ J~IJ Jc,'~ J~~)
o 0 00 0

~ou:C c
1

c,' t:," ~, (42)

~2 ~2L~ ~;i~ [2u~~ ~ \A~Ub JC~\I.&C.II+u~u"U~-~lA"UbqJ~jJ~~Je, .
o 0 00 0

The expression for ~ 6 follows from the expression for ~ '{ ,

provided that we change the indices 1 ~ 3. All variables in

(42) are just the same as in formula (38). One can easily

find that for close mode frequencies (As~ ti) and their iden-

tical axial structures (~s(~,y=:~(~,)), ~-=. 2..~ := 2..~ (cf.
2.. <-'tl~ r

(38) and (42) ).



- 42 -

The coefficients ~ ~ ,as well as the coefficients ~s

and Oss' (38), can be rather simply calculated analytically

for a gyrotron with a constant amplitude of the RF field along

the resonator axis t/~) "=~ (O<<';~~). The corresponding depen-
"'od:.

dences of the coefficients ~ s and O~... \ on the transit angle

are shown in Figs.15 and 16. The transit angle of the central

mode 82= b.2.tovJ:. is given in Fig.15a-c along the horizontal

axis; the mismatch g is proportional to the distance between
• ) t\ W2-(0~the mode frequencies: for the first mode (FJ.g.15a ,0. = 1 '

(1 c.v - <..02. (' (~ LI... z-<.{.'\{o
for the third mode, 0 = 6 W ~ 0(,\) • The designations in

<..02. - Wo

Fig.16 correspond to the ones accepted in Fig.11b.

I~ a simple case of three mode interaction, the phase-ampli­

tude interaction of these modes can be described by the equa­

tions for the mode amplitudes and the phase difference ~)

that follow from (9), (10) and (41) [13J ~

~ F4 _ ~ CE) \ r2.. \ 2.. I 2) 2. -~,t'
Jv - -{ 0'1- ~'1 1. - ()121='2 - ~16 \='6 - ~~' F2 ' Rtl(~1e ))

We assumed here that the coupling impedances of all modes
1\' ...... <.-0,,-+t.0~~-2 vJ2. '\ 1\ 1\

are equal, Q'- .,.. ,\ +0<." +0<.'6 -2..01.. 20 •
..\..,2. 1.Vz.

For a gyrotron with close frequencies of the interacting

modes and identical axial structures of their fields (when
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O~r;l = ~2..-= 2 $~I~= 2,~ ), the set of equations (43) defines

the equilibrium states of the oseillator, whieh for equal Q­

faetors of all modes end a negligibly small nonequidistenee
~ 5rom .

of their frequeney speetrum (f) ·~o) are as fOllows'l[13J

- single-mode oseillations with the intensity r~- ~ ;
- oseillations of both lateral satellites in the absence of

r2. r2. G"
the eentral mode 11 =. '6= 6~ , F2 =0;

- symmetrie synphase three-mode oseillations f =0 , FzZ,= .~ ,
'f2.= ~2.~ 2. G"" f

'\ 6 1S~

... asymmetrie antisynphase three-mode oseillations ttJ =1\

e:-2 _ ~ F2.-~ ('2 +. (;:::::15
1
\ ,,2. - ~ (2.'- "5') •

\2 - S~I '1 -10~ ~-\Jb) ,rö - ~O~I ,~+,,~

The analysis of the stability of these equilibrium states

shows that all multimode oscillations are unstable end the

eharaeteristie equation of the fourth order for the stability

of single-mode oseillations implied by (43) has three roots

with a negative real part and one root with a zero real part.

The latter is indicative of the fact that the oseillator with

single-mode oseillations of the central mode does not react

on the appearance of lateral satellites with small amplitudes

F" = \='3 end the phase difference \V =11 , i. e. on the auto­

modulation with a frequency ....., \ W2 l -t...\l of the central mode

oscillations. Therefore, the single-mode oseillations of the

central mode can be considered here to be relatively stable

(this conclusion is also supported by the results of numeri-

cal computations of eqs.(43) ). However, we believe that

such astability ean be changed as a result of weak varia-

tion in the gyrotron parameters.

The difference in the mode Q-factors can, no doubt, affect

this stability. Let us suppose that the diffraetion Q of the

lateral satellites is smaller than that of the central mode

,
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owing to electrodynamic selection and the beam current exceeds

the starting value only for the central mode (i. e'. 6'2, '>0

6'\ =: G~ < 0 ). The satellite intensities in such an oscilla­

tor become equal as the time grows end the set of equations

(43) with the given above relations for the coefficients ~. ~s

y. I (6 and F1=F::I taken into account, reduces to the form
Os.s. ) )ß .;:>

i~ = X[~ - ~ (X2-+ 6'12-+ 12 ~J] +Y(~-1 +)\2)

*~YL6-~(-)(Z-+y'Z-+4ili\ -+ Xlt>L+1-X-z» (44)

'6 ')(2+ '12-
~=~[-'-V-X'Y-\(~Z+ ~ 2. jJ

, ~ \I I ~ S2.
Rere X=V2Y2./\'Sl CA6 ~) y=y2r:2/tsl ~I\,T)Z =\;'\' ~=l8l Iowot)

0= ~t ,v = \ ~I~t) t =~\ I ~I\ • The first two equations in set (44)

define the stationary amplitude of the central mode (when

L-O )d:c -

v2.+\.J2.=~ X~·= 1 [1+Gf'+·rz~+~r)2.-1-'fz.IJ
,.. I I") - 1+f" Vl' .

The analysis of stability of these equilibrium states shows

that only the equilibrium state with X_ is stable with res-

pect to the variations in ~
rv """(or y.. and '1 ). It follows

from the last equation in set (44) that this equilibrium state

is unstable with respect to the appearance of satellites when

the condition

v< ; J2~\+~2.,2_\~ -2'(;

is fulfilled. This condition of automodulation instability

shows that as the Q-factor of the satellites decreases (the

parameter ~ increases), the stability of the single oscilla­

tions of the central mode becomes better. This condition can
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be also written in the form

t:'< 2..1f
1+\l2.+Lf\)Q +2>'02

which gives a better illustration of the difference between

the example under study and the model analysed in [42J, where

the system with r =0 was considered. It was shown in [42J

that automodulation oscillations, in which the growth of the

central mode is stabilized by its decay into two passive sa­

tellites, can be stable besides the single oscillations of
-tht?- t.n.c.'C'emeyd: o· the ce.l\tra.e moc{e 6'2. a.tlc;{

the central mode,depending on the relations be ween the decre-

ments of the satellites ~"'?> .. Moreover, i t was shown that not

only stable automodulation but also automodulation with a pe­

riodic change in the automodulation amplitude and stochastic

oscillations can take place in such an oscillator. The active

nonlinearity that is taken into account in eqs.(44) by the

coefficient ~~ ,as follows from the given condition of sta­

bility, makes the oscillator dynamics more regular because it

becomes possible to stabilize the growth of the central mode

by its own saturation.

Another factor that can influence the gyrotron dynamics

is the difference in the mode frequencies, which causes the

dispersion of the gyrotron nonlinear properties .. Let ue con­

eider the interaction of three modes with equal Q-factors and
f"\ f\ 1 Lithe transit angles equal to C)'" ==lT) °t..72="6i1) 9~= ~ir .. In

such an, oscillator, as follows from Figs.11 and 12, the com~

petition of two first modes takes place (~~2.. ~~1 ':> ~~. (b~) ; at

the same time, the first mode that has the largest increment

can maintain the third one that is iX1 the hard self-excita-

tion zone.

The results of the integration of ·the set of equations (43)
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are presented in Fig.17 [1 j]. The values of the coefficients

ot~ , ~s. ' ~ s.~i and ~ s are taken from Figs. 11 ,15 and 16 for

the given transit angles of the modes. As the beam current

grows, the oscillator dynamies becomes more complicated (cf.

Fig.17). When the beam current slightly exceeds the threshold

value Fig.17a, 11 I ~n. =1 .1 ; '§ =0), stable oscillations of the

first mode that has the loweßt starting current are established.

For a larger beam current ( Y! I.~ =1.2, Fig.17b), the ampli­

tude of the first mode becomes greater and, correspondingly,

amplitude pulsations appear in the oscillations of the third,

damping, mode (at the same time, the first mode suppresses the

second one owing to the mode competition effect). Then, for

! ~n..I l~ =1.25 (Fig.17c), the first mode provokes nonlinear exci-

tation of the third mode and these two modes provoke pulsations

of the second mode due to the phase coupling. At last, for

I./I~~ =1.3 (Fig.17d) and larger currents ( I!I~n.~ =3,

Fig.17e), intense intermode beatings are established by the

three-mode oscillations with constant amplitudes and phase ~ ,

i.e. mode locking takes place. A gyrotron with a slightly non­

equidistant spectrum of eigenfrequencies behaves in a similar
"-0

manner (see Fig.17f,g where /} ~ 0).

Thus, due to the third mode whose role is here analogous

to the role of a saturable absorber used for mode locking in

lasers, the competition of two first (active) modes ceases to

be dominant in the nonlinear interaction of modes.

Note, however, that in our study the mode locking remained

stable even if the beam current exceeded the minimum threshold

value by 5-10 times. These results disagree with the data by

other authors [43,44J who carried out a space-time analysis of

other microwave oscillators and showed that, when the beam
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current is much larger than the minimum threshold value, mode

locking 1s changed by stochast1c oscillations. It is shown be­

low that this disagreement can be expla1ned by the fact that

until recently we have not taken into account the change in the

mode amplitude at times comparable with the transit time of

electrons T= l(un • Such changes can be significant for

large beam currents UIlder the conditions of electron rebunch­

ing in a too strong HF field of the resonator and, hence, the

delay effects that usually complicate the microwave oscillator

dynamics [43,44] may become essential.

Space-Time Analysis of Nonstationary Processes in Multimode

Gyrotrons

We have considered nonlinear effects in multimode gyrotrons

using the mode representation of the resonator RF field. It is

obvious, however, that this method is too complicated for the

description of the processes in overmoded resonators with a

large number of interacting modes. In such cases it seems

reasonable to use space-time consideration of the resonator

RF field describing this field as waves with slowly varying

envelopes (without its representation as a sum of the resona­

tor eigenmodes). A complex space-time structure of such an en­

velope seems to correspond to the excitation of a large number

of eigenmodes.

Below, we shall describe brieflyaseries of problems which

can be investigated using this space-time consideration.

If the resonator radius is so large that the distance bet­

ween the mode frequencies determined by relation (6) (see Lec-

ture 1) is much smaller.than the cyclotron amplification band (5),
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many modes can be excited simultaneously. Let us represent the

HF field of such a resonator in the form
- L(("j't-\'n~) 1.
E:= \(e l,e(\<.l) *(:~) A(-t,~) e _~ ,

where tU and ~ define the basic frequency and the "basic"

azimuthal indexJ respectivelYJ and the function A(~)~) describes

slow evolution of the wave envelope in both these variables:

,'OA \« lo\A\ \ '(jA '\« tn..\A\ (see Fig.18).
\ ~·t ) ~c.g

The self-consistent set of equations that describes such a

system consists of the equation of electron motion (7) in the

right-hand part of which ~(~Ji) should be written t the expression

for the factor of excitation (11a) and the equation of the HF

field excitation which follows from the Maxwell equations and

can be wri tten in the form 8-4J
~+~+r=.F.Cl?
C(}'"C '0 ~ •

This equation must be supplemented with the initial condition

\='l1:=O) ~ro(~) and the condition of the HF field periodicity

al.ong' the cyclic coordinate F(~J = 'P(~ +211) •

Preliminary results of the numerical investigation of such

a set of equations showed thatJif the beam current does not

exceed the threshold value too much J the oscillations with a

constant amplitude along ~ are established (this fact corres­

ponds to one mode excitation). Then J for a larger beam current J

the azimuthal structure of the envelope becomes nonhomogeneous

but the envelope remains stable in time, which corresponds to

the mode locking analysed above.

It was mentioned in the first lecture that in recent years

the possibility of using two-mirror quasioptical resonators

(similar to the ones used in lasers) in gyrotrons have been

actively analysed. The theory of stationary oscillations in
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such quasioptical gyrotrons was developed in [6,46]. The nume­

rical study of nonstationary processes in such systems with a

large number of excited modes was provided in [7J. We shall

consider here the results of investigations of similar proces­

ses that were obtained using the space-time approach [47J.
Let us represent the RF field of the resonator shown in

Fig.19 as a sum of two waves moving between the mirrors in the

opposite directions

We assume that alllosses of the microwave power in the resona­

tor are caused by the fact that the coefficient of reflection

of the direct wave at the output mirror is different from uni­

ty (R<1 ). Taking into account the above-mentioned condi­

tions of the slow change of the wave envelopes in t and

along y , one cen easily reduce the Maxwell equations to the

equations of excitation of the opposite waves

?> F+ '0 Ft- A \ ~ \='- '() p- q:, \
~ + 0 y~ = CI?+, ~-c - '()y =- .- .

These equations should be supplemented with the boundary

conditions \='+(Y=OJ = r-'_CY·=O), t_(Y=l'j=-R'\='+(Y=L') end the ini-
, (0)

tial conditions F+- l"'t:.=O) = F± (Y) • Now we put the sum of these

two waves P+el~++ F_ et~- into the right-hand part of the

equation of electron motion (7) and replace the integration

over the resonator cross-section in the expression for the fac-
1\

tor of excitation q:~ (11a) by the averaging over the diffe-

rence between the phases of the two opposite waves which varies

by 211 at the wavelength in the 'I -direction [47]. Thus

the equations obtained will be the equations averaged over a

small scale of the order of the wavelength in the y -direc­

tion. Nevertheless, using these equations one can analyse the
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slow evolution of the wave envelopes in time and along the

Y -coordinate.

The results of numerical investigations of such a system

are presented in Fig.20. This figure shows the dependence of

the wave amplitudes at the left mirror ( Y =0) on the ttslowtt

dimensionless time l.-= I~ wt for different values of the "beam

current" variable L=Is KL (for the parameters corresponding

I ' \ 'to Fig.20, the threshold value of the parameter L is L =

0.042). It is seen from Fig.20a that, if the beam current

slightly exceeds the starting value, stationary oscillations

with a constant amplitude are establishedin this oscillator

(the dashed lines in Fig.20 denote the electron orbital effi-
C

ciency averaged over the interaction space ~ ~ ~ tz..L ~ cA Y ).
o

As the beam current grows, automodulation appears in these os-

cillations (Fig.20b) and the amplitude of the modulation in-

creases with the current. Then, with a further increase in

current, the oscillations with a periodically varying depth

of automodulation appear and the modulation period doubles

(Fig.20c ). Finally, for still larger currents, the oscilla­

tions become stochastic (Fig.20d). The oscillator behaves in

a similar manner for other values of the reflection coefficient:

the results for R =0.8 and R =0.9 are giyen in Fig. 20c, in

all other figures, R =0.8.

The space structure of the amplitudes of both waves in va­

rious regimes of operation is given in Fig.21a-d, where the

discrete time points (21 $; G'::;;;: 25) that correspond to these

pictures are marked and the values of the orbital efficiency

n are given. As follows from these figures, a complex struc­
Cl..

ture of the RF field is typical of stochastic oscillations in

contrast to automodulation and regular oscillations (cf. Fig.
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21a,b and d). A similar space structure with several maxima is

also formed in stochastic oscillations in BWO [44J.

In order to enhance the output microwave power of a power­

ful gyrotron and to diminish the ohmic losses of microwave po­

wer in the resonator walls, it seemsexpedient to decrease the

diffraction Q of the resonator. However, as the coefficient

of the wave reflection at the' output cross-section approaches

zero and, correspondingly, the diffraction Q comes close to

its minimum value that is determined by the resonator length

Q~~ glT ( LIA')2. ,the axial structure of the RF field in

such a resonator becomes nonfixed and is established in a

self-consistent manner upon the influence of the electron beam.

The theory of stationary oscillations in a gyrotron with a

nonfixed axial structure of the resonator field was developed

in [4~, where it was shown, in particular, that the orbital

efficiency of oscillations in such gyrotrons can be as high
rn~}<

as ~~ =75%. Below, we shall describe in brief the equations

of a similar nonstationary theory and preliminary results of

i ts investigation [49].
Taking into account the fact that the frequency of oscilla­

tions is close to the cut-off frequency Wo of apart of the

waveguide that is used as a resonator, one can represent a

nonstationary RF field in the form

"E:= Re tA(~)-t}E~(R:) eLwot
,~ ,

-...4 ~

where the function E~(RL) describes a fixed transverse struc-

ture of the electric field, A('l,+"') is the complex amplitude

of the RF field that varies slowly in time and along the axial

coordinate Z. •
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by a

is a "slow" time, the beam current parame-

equation has the form

~2. ( (l I Zlf
-.!. - L~ = ~ ( ~&~
'Ot:,'2. ~"C 2lT ~a 0 •

to the expression given in [47J ~

, trI ~II -1I o-1b~ ,~ 12. (KR \ [(-y2._ hil.) :12.("')1
tn c~ (1..6 1n..±1'l.- 0) In.

<> ,~J..

boundary conditions for the resonator that is for.medThe

-4
Here L. =:~ LU tg '2. 0

I S'i\O
ter 0 corresponds

Substituting this representation into the Maxwell equations

sud taking the condition of slow variation of the amplitude in

time l~~ \«co\A\ into account, one can easily obtain a pa­

rabolic equation that descibes the excitation of the RF field

by the electron beam. In terms of variables of the gyrotron

theory this

of the

the form

'O~w \ =-ck r
~i: ~ \\i'w •

C, -~()~
is the condition of radiation

t l =0,
\~=ö

Here the second condition

part of a regular waveguide with a cut-off narrowing in the in­

put cross-section and whose output cross-section is deter.mined

by the ceasing of the interaction between the electrons and

the RF field due to a sharp change in the external magnetic

field, can be given in

Fourier components &~ of the resonator nonstationary field

~= r~~ e'l<.rt. ~.[(u.'-Wo)t-k,\Z.J~ ~W ,\<\,~ 2- /V::?'-l{'};' is the axi~l
o

wavenumber.

Preliminary results on the study of the self-consistent

set of equations (7) and (45) are presented in Fig.22. The

calculations were carried out for C;o~=10, the negative fre­

quency mismatch ß =-0.6 corresponds to the synchronism

between the electrons and the components of the RF field that

propagate in the direction opposite to the direction of the
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electron axial velocity; the latter fact enhances the feedback

in such an oscillator. It is shown in Fig.22 that with an in­

crease in the beam current the time of the transitional ~on­

stationary period grows; after this period oscillations with

a constant amplitude are established. Figure 22b shows that auto­

modulation oscillations are established at a large beam current.

A rather low efficiency of oscillations can be explained by

the fact that the axial structure of the resonator field is

unfavourable for efficiency., which is typical of the resonance

with opposite waves when the amplitude of the RF field is ma­

ximum near the input cross-section. An example of the axial

structure of the HF field under such a gyrotron operation is

given in Fig.23.

Conclusion

Our consideration testifies to the fact that the effects of

mode interaction in gyrotrons have received a thorough study

so that we have understood the physical reasons for the ap­

pearance of these effects in gyrotrons. We believe that the

developed theory can be applied to the computation of the pro­

cesses in gyrotrons where several modes can be self-excited.

At the same time, the investigation of nonstationary proces­

ses in gyrotrons with overmoded resonators where a lot of modes

can be excited is in its early stage. The basic mechanisms

that cause the complication of oscillations in such gyrotrons

can be considered known in view of the results obtained in the

analysis of nonstationary processes in gyrotrons and other

microwave devices (free electron lasers, backward wave oscil­

lators and others). Nevertheless, this range of problems seems

to be an attractive field for fruitful theoretical investiga­

tions.
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FIGURE CAPTIONS

Fig. 1. Real part of ~2 as a function of mismatch ~2

in a nonexcited oscillator (~'2L) and in the presence of

the first mode (F1=0.04), for various values of ~1' The

horizontal dashed lines show corresponding values of ~'1'

(In the text the indices 1,2 are replaced by 0,1, respectively).

Fig. 2. (a) Single mode orbital efficiency versus beam current

parameter I O' with Gaussian axial field structure and ~out=17.

for various values of ~1'

(b) Amplitude of single mode oscillations F1 as a

function of mismatch ~1 for fixed I O=10 3
•

Fig. 3. Zone of parasitic self excitation in a gyrotron

with constant beam current parameter I O=103 and q=l,

~out=17.

Fig. 4. Threshold values q~~ for parasitic mode

at optimum values of the parameters for the operating mode.

Fig. 5. Beam current parameter vs mismatch for automodulation

instabi1ity. solid curve: starting current for operating mode.

dashed curve: optimum for electronic efficiency of operating mode.

dash-dot curve: break in operating mode oscillations at edge

of zone of hard self excitation.

shaded curves: boundaries of zone of operating mode stability
. ,..,

for dlfferent values of ~.

Fig. 6. Dependence of critical beam current for automodulation

'"on distance ~ between mode frequencies. The mismatch ~ for the

operating mode is fixed at the optimum value (0.6).

solid shaded lines q=l. dashed lines q=~.

Fig. 7. Starting current vs. magnetic field for the TE 15 ,l,l

mode and neighboring competing modes. An idealized closed

cavity of length 4A (=1.2 cm at 100 GHz) is employed. All

modes have a loaded Q of 100 (from [30]).
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Fig. 8. self exeitation zones (solid eurve) and voltage

trajeetories (dashed eurves) of modes resonant with the

fundamental eyelotron harmonie for parameters I O' ~out'

6 =0.4 eorresponding to the maximum eleetronie effieieneyop
in the plane x=~ßl ,y=~ß2 . The shaded region eorresponds to

self exeitation of the operating mode. Trajeetory I: equal

voltages at anode and resonator. Trajeetory II: eonstant voltage

differenee between anode and resonator. (a): eompeting modes

weIl separated from operating mode; (b) denser frequeney

speetrum of eompeting modes.

Fig. 9. Starting eurrent vs resonator voltage with equal voltage

pulses at anode and resonator for the TE 15 ,1,1 mode.

Fig. 10~ Phase portrait of oseillator. (a) strong eoupling

between modes. (b) weak eoupling between modes.

Fig. 11. (a) Real parts of the eoeffieients

angle 0=6~ t for a uniform field profile.ou
(b) Real parts of the eoeffieients

for different values of the ratio K=0 ,/0 .s s

tt, ß versus transit

o ,versus 0ss s

Fig. 12. Lines of eonstant values of ~=o~20~1/ß~ß~ in

the plane of transit angles 0 =6 ~ t' s=1,2.s s ou

Fig. 13. Nonstationary proeesses in a gyrotron for three

different values of the beam eurrent, showing support of

parasitie mode at very large eurrents.

Fig. 14. Field of parasitie self exeitation in the plane of
~

mismatches 61 , 6 in a nonexeited oseillator (dashed lines)

and in a gyrotron with oseillation amplitude F1 +0 (shaded)



b) I/Imin =1.2, 6=0;st

d) I/Imin =1.3, 6=Ojst

f) I/Imin =3.0, 6=1;st
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Fig. 15. Real (solid) and imaginary (dashed) parts of the

coefficients ~s for a three ~ode gyrotron as a function of

transit angle 82 for three values of 6=(w2 -w1 )/(w2 -wH )
o

(mode 2 is the central mode) and constant field profile.

(a) s=l j (b) s=2; (c) s=3

Fig. 16. Dependence of the coefficients 0 ,and ß onss s
transit angle 82 for different values of the ratio K=8 s ,/8 s '

Fig. 17. Amplitude and phase time evolution in a three mode
mingyrotron with relation between modes. a) I/Ist =1.1, 6=Oj

c) I/Imin =1.25, 6=0;
st

e) I/Imin =3.0, 6=Oj
st

g) I/Imin =3.0, 6=2.
st

Fig. 18. Cross section of a CRM showing rotating wave envelope

A defined in lecture 4.

Fig. 19. Cross section of a CRM with counter-rotating waves in

plane geometry.

Fig. 20. Time dependence of the wave amplitude at the left

mirror for various values of the beam current variable.

Fig. 21. Spatial structure of both opposite waves at fixed

moments in time t=Iwt for various values of the beam current

variable.

rig. 22. Time dependence of efficiency for various values of

beam current parameter with =-0.6 and ~ t=10.ou
(a) 1=0.01, 0.02 and 0.04, showing the increase in duration

of the nonstationary phase with increasing beam current.

(b) 1=0.1, showing the onset of automodulation oscillations.

Fig. 23. Axial structure of resonator field at large values of

the beam current parameter.
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Fig. 1. Real part of ~2 as a function of mismatch A2
in a nonexcited osci~lator (i'2L) and in the presence of

the first mode (F1=O,04), for various values of Al. The

horizontal d~shed lines show corresponding values of ~'1.

(In the text the indices 1,2 are replaced by 0,1, respectively).

0.4

0.2

(0)

0.08

0.04

0.2

(b)

0.4 61

Fig. 2. (a) Single mode orbital efficiency versus beam current

parameter 10, with Gaussian axial field structure and ~out=17.

for various values of Al'
(b) Amplitude of single mode oscillations F1 as a

function of mismatch Al for fixed 10=10 3
,
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zone of oscil1ations I
~--------ot the operating mode~

. A
ort

Fig. 3. Zone of parasitic self excitation in a gyrotron

with constant beam current parameter I O=103 and q=1,

'out=17.

-02
I

DA

0,2

o f1

Fig. 4. Threshold values q~~ for parasitic mode

at optimum values of the parameters for the operating mode.
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02
I

01
I

o
0,2 O~

I 0,6

Fig. 5. Beam current parameter vs mismatch for automodulation

instability. solid curve: starting current for operating mode.

dashed curve: optimum for electronic efficiency of operating mode.

dash-dot curve: break in operating mode oscillations at edge

of zone of hard self excitation.

shaded curves: boundaries of zone of operating mode stability
. ,...,

for dlfferent values of 6.
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o 04
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Fig. 6. Dependence of critical beam current for automodulation

on distance Tbetween mode frequencies. The mismatch Ä for the

operating mode is fixea at the optimum value (0.6).

solid shaded lines q=l. dashed lines q=~.
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Fig. 7. Starting current vs. magnetic field for the TE1S ,1,1

mode and neighboring competing modes. An idealized closed

cavity of length 4A (=1.2 cm at 100 GHz) is employed. All

modes have a loaded Q of 100 (from [30]).
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Fig. 8. setf exeitation zones (solid eurve) and voltage

trajeetories (dashed eurves) of modes re sonant with the

fundamental eyelotron harmonie for parameters I O' 'out'

6 =0.4 eorresponding to the maximum eleetronie effieieneyop
in the plane x=~ßl ,y=~ß2 . The shaded region eorresponds to

self exeitation of the operating mode. Trajeetory I: equal

voltages at anode and resonator. Trajeetory II: eonstant voltage

differenee between anode and resonator. (a): eompeting modes

weil separated from operating mode; (b) denser frequeney

speetrum of eompeting modes.
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Fig. 9. Starting current vs resonator voltage with equal voltage

pulses at anode and resonator for the TE 15 / 1 / 1 mode.
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a

Fig. 10. Phase portrait of oscillator. (a) strong coupling

between modes. (b) weak coupling between modes.
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Fig. 11. (a) Real parts of the coefficients

angle 0=ßC t for a uniform field profile.ou
(b) Real parts of the coefficients

for different values of the ratio K=0 ./0 .
s s

a, ß versus transit

o , versus 0ss s
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Fig. 13. Nonstationary processes in a gyrotron for three

different values of the beam current, showing support of

parasitic mode at very large currents. (a) I/I~~) = 7 ;

(b) I/I~~) = 32; (c) 1/1(1) = 110.
st
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Fig. 14. Field of parasitic self excitation in the plane of
rJ

mismatches 61 , 6 in a nonexcited oscillator (dashed lines)

and in a gyrotron with oscillation amplitude F1 +0 (shaded)
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Fig. 18. Cross section of a CRM showing rotating wave envelope

A defined in lecture 4.
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Fig. 19. Cross section of a CRM with counter-rotating waves in

plane geometry.
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Fig. 20. Time dependence of the wave

amplitude at the left mirror for

various values of the beam current

variable.

Fig. 21. Spatial structure of both

opposite waves at fixed moments in

time t=Iwt for various valuesof

the beam current variable.
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Fig. 22. Time dependence of efficiency for various values of

beam current parameter with =-0.6 and ~ t=10.ou
(a) I=O.Ol, 0.02 and 0.04, showing the increase in duration

of the nonstationary phase with increasing beam current.

(b) 1=0.1, showing the onset of automodulation oscillations.
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Fig. 23. Axial structure of resonator field at large values of

the beam current parameter.




