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Abstract

To take advantages of the semi-implicit computer code models - to solve
the two phase flow differential system - a proper averaging procedure
is also needed for the source terms.

In fact, in some cases, the correlations normally used for the source
terms - not time averaged - fail using the theoretical time step that
arises from the Tinear stability analysis used on the right handside.

Such a time averaging procedure is developed with reference to the bubbly
flow regime.

Moreover, the concept of mass that must be exchanged to reach equilibrium
from a non-equilibrium state is introduced to limit the mass transfer
during a time step.

Finally some practical calculations are performed to compare the different
correlations for the average mass transfer rate developed in this work.



Ein Zitmittelungsverfahren zur Berechnung von Massen- und Energietransport-
raten in adiabaten Zweiphasenstromungen

Zusammenfassung

Damit man die Vorteile der halb-impliziten Rechenmodelle zur LGsung
der Differentialgleichungssysteme in dem Bereich der Zweiphasen-
stromung nutzen kann, ist ein, auch fiir die Quellterme, geeighetes
Mittelungsverfahren notwendig.

Die flr die Ublicherweise liber die Zeit nicht gemittelten Quellterme
geeigneten Beziehungen, konnen wohl manchmal deshalb versagen, weil
sie einen theoretischen Zeitschritt verwenden, der aus den auf der
rechten Seite der Gleichung benutzten Linearstabilitdtsbetrachtungen
resultiert.

Solch ein Zeitmitte]ungsverfahreh wurde flr das Blasenstromungsregime
entwickelt.

Dariiberhinaus wurde die Definition der Masse eingefiihrt, die zum Erreichen
des Gleichgewichts von einem beliebigen Ungleichgewichtszustand aus
ausgetauscht werden muB, um den Masseniibergang wahrend eines Zeitschrittes
zu begrenzen.

Zum Schluf wurden einige Berechnungen durchgefiihrt, um die verschiedenen,
in dieser Untersuchung bereitgestellten Beziehungen zur Ermittlung der
mittleren Massenaustauschrate zu vergleichen.
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thermal diffusivity
parameters defined by (3.12)
surface area of vapor bubble
specific heat at constant pressure
enerqgy per unit volume that must be exchanged from
Tiquid to vapor to reach equilibrium, defined by (2.18).
specific Gibbs free energy
specific enthalpy
enthalpy of vaporization
Jacob number, defined as
pfcpfATs
Pviv
characteristic length, defined by (4.3)
mass per unit volume that must be exchanged from Tiquid
to vapor to reach equilibrium, defined by (2.17)
number of bubbles per unit volume
pressure
heat exchange rate
bubble radius
reference radius for bubble growth
initial bubble radius
specific entropy
time
characteristic time of collapse
reference time of bubble growth
absolute temperature
absolute temperature in saturated state at the pressure Pe
specific internal energy
specific volume
volume of associated 1iquid defined by (4.2)
static quality




Greek:

o - void fraction |

Yoo volume change fraction defined by (3.6) and (3.1)

At - time step

At. - mass exchange time defined as t, - t;

AT - temperature differencé

AT, - temperature difference, defined as [Ts - Tfl

A - thermal conductivity

U . mass exchange from liquid tovapor per unit volume

i - mass transfer rate per unit volume |

T - average‘mass transfer rate per unit volume defined by (1.8)




Subscript:

equilibrium property

liquid property

vapor property
non-equilibrium property
liquid property at saturation
mixture property

vapor property at saturation




Introduction

The use of semi-implicit computer code models to solve the differential
system that arisesin the mathematical description of two phase flow,
presents some advantages compared to explicit methods, to minimize

the computational work needed for integration of the system /1/, /2/,

/3/.

One of the features of this family of methods is the use of a relatively
larger time step.

The equations numerically solved are time and volume averaged, but
in common practice the source terms - like the mass and heat transfer
rates between the phases - are not time and space averaged.

The result is - e.g. for a very intensive mass transfer rate - the
semi-implicit methods fail® to use the theoretical time step that arises
from the Tinear stability analysis used on the right handside.

Therefore, we need a proper averaging procedure to take advantage of the
relatively large time step, used in the semi-implicit integral technique.

The purpose of the present study is to develop a time-averaging procedure

for the mass and energy exchange rates.

Moreover, to develop a methodology for practical evaluation of the pérameters
needed for this procedure, as well as.a numerical procedure suitable for
direct code use.

For calculating the mass and energy exchange transfer ratesbetween the two
phases in a non-equilibrium two phase flow model, we use a procedure based
on the evaluation of the mass and the energy that must be exchanged to reach
the equilibrium point, and on the evaluation of the time required for the
transfer to take place.

At every time step and mesh point during the integration, therefore, the

method must answer two questions.




First, if there are non-equilibrium conditions, what is the mass and
energy that must be exchanged to reach equilibrium condition?
And second, what is the time required for this exchange of mass and energy?

From general balances (masssenergy and linear momentum) the general inte-
gration method has calculated the conditions of the liquid and the vapor.

In general these are not equilibrium conditions.

Now one can calculate the equilibrium state with the hypothesis that there
is no exchange of mass and heat with the outside for a fixed control volume.
) that must be exchanged,

One can so evaluate the mass (M and energy (E

ex) ex
per unit volume, to reach equilibrium, only with general consideration of

equilibrium.

The second question concerns the time that is required to reach equilibrium.

The evaluation of this time requires a physical model of the phenomena of
heat and mass transfer. That is, it requires making an assumption on the
kind of flow regime (bubbly,dispersed droplets, film, etc.) and proper
micromodels to simulate the exchanges in the interface region.

In the course of this work, we will refer particularly to a special flow
regime - bubbly flow - for analyzing some equations used in practice in the
two phase flow computer codes. The procedure proposed can be generalized to
the other flow regimes. '

In Section 1 we will discuss the problems that come in the evaluation of the
mass source term using a class of constitutive equations used in common
practice. Moreover, we will consider the possibility to derive time-averaged
expressions directly from these equations.

In Section 2 we will present the procedure for evaluating the parameters Mex
and Eex’ and the use of Mex to develop a theoretical maximum in the mass
exchange during a given time step.




In Section 3 and 4 we willdevelop new correlations to take into account
the maximum mass transfer, discussed in the previous section.

For these equations two different physical models will be used to describe
the growth and the collapse of a vapor bubble, one in a semi-infinite

and one in a finite 1iquid medium.

Finally, in Section 5, results from some calculations performed with the
expressions developed in this work will be shown, and comparisons are made

among them.



1. Evaluation of the mass transfer rate

In the evaluation of the mass transfer rate from the liquid to the vapor
phase, per unit volume, 1i(t), in the case of bubbly flow, one can derive
i(t) from models that describe the growth and the collapse of a single
vapor bubbTe,

The most common expressions that give the bubble radius as a function of
time are based on the "thermal controlled growth or collapse theory" /4/.

Among these, we refer to a special class that can be expressed in this

general form

% -/t for the growth (1.1)
g g

g =1 - /-% for the collapse (1.2)
0

For example, according to the expression of Lobunzov /5/ for bubble growth,

L. Rg (1.3)

where Rg is a reference radius, used only to derive a dimensionltess form.

Or, according to the Florschuetz and Chao "plane interface approximation"
/6/ for bubble collapse,
1T'Rc2)
t = — (1.4)
¢ 2
4’\]a ’af

where R0 is the initial radius. Note that, in contrast to Rg, Ro has a
physical meaning, and affects the expression of the radius versus time.




From eq.(1.1) and (1.2) one can derive expressions for ;(t), defined as:

. 2 5
5(t) = dn myp, - Ripy Ry (1.5)

These are, for bubble growth:

a(t) = 2m - Ny ey E—E%?— /€_

g (1.6)

| for t > 0 |

and for bubble collapse:

n{t) = -2n Ny * oy

R

o}
| for 0 < t < t. | (1.7)
B(t)=0 | fort>t |

These functions of ;y versus time are shown in Fig.(l.1) and (1.2).

Usually in the semi-implicit methods oneuses these equations for determining
the value of the mass source term directly, without an averaging procedure.

From the evaluation of the actual bubble radius(l) one can obtain the starting
time t,, with the use of the eq.(1.1) or (1.2) respectively.

With the value of £ ﬁ(tl)can be evaluated with the use of eq.(1.6) or
(1.7). The source term during the time step At is assumed to be ﬁ(tl)vAt.

(1) The procedure to evaluate the actual radius of the bubble is based on the
numbeyr of bubbles per unit volume, usually a user input. Then the actual
radius can be evaluated with the equation:

R=v 3o

4ﬂ.nb



This kind of approach presents some problems. First, the variation of
ﬁ(tl) may be very great during a given time step. Then the use of a
constant value of i (ty) underestimates or overestimates the exchange of
mass.

As one can see from Fig. 1.1 , the use of the value ﬁ(tl) gives an ex-
change of mass during the time step at - represented by the area ABCD -
less than the value predicted - area AECD -.

This difference Tncreases as At increases,as well as t1 approaches 0.

On the contrary (Fig. 1.2 ), for bubble collapse, there is an overestimation
of the mass exchange, and this increases as At increases as tl approaches 0.

For overcoming this problem we can use an average value to derive a correct
value of mass exchange. This average value is then defined as:

bo+at
. b 1
(ty, at) = A‘t—f a(t)-dt (1.8)

Because we have, in this case, very simple analytical solutions, we can give
the following expressions for the time-average mass transfer rate . For the growth:

3

- - 3/2 32

' C4n ey Ry

ity at) = % 7 [-(tl +at) -t (1.9)
g

For the collapse:

A
— . a4 My Ry 3/2 t
u(tys at) = . - {372 3tc/f'+ t - 3/E;°t
C

(1.10)

t

t = min (tl + At, tc)

bz,

However, the use of the average values given by (1.9) and (1.10) does not over-
come another problem.




The exchange of mass between the two phases 1is connected with non-
equilibrium conditions of the mixture. This exchange will be complete
when equilibrium is reached.

As noted in the introduction, it is possible to evaluate the mass that is
connected with reaching the equilibrium condition (Mex)' |

Then, for a given time step, we can use this value as the upper limit

of the mass exchange.

In fact, if more mass is transferred, the system would arrive at another

non-equilibrium point, but with the direction of mass transfer inverted.

If the situation repeats itself, in the next time steps we would observe

oscillation around the equilibrium.

Using Mex as the upper 1imit of the mass transfer, this problem can be avoided.

In the next section we will discuss the calculation of the parameter Mex’
and the theoretical limitation of mass transfer that comes from it.




. A

I
|

|E
|
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Rz
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| |
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Dl 1 C

t1 t1+At t

Fig. 1.1 Mass transfer rate for bubble growth




Fig. 1.2 Mass transfer rate for bubble collapse
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2. Evaluation of the mass and energy that must be exchanged to reach

equilibrium conditions

For evaluating the mass and energy that must be exchanged between the phases

to reach equilibrium from a given non-equilibrium condition of the mixture,

we suppose that in a control volume (Fig. 2.1) the transformation from "i"

to "e" is without exchange of mass and energy between the control volume

and the outside.

This means that during this transformation the specific internal energy and

the specific volume of the mixture must be constant.

U = ugixi gt (1-X,). = UgeXe * Uge® (1-X) (2.1)
The following conditions characterize the equilibrium point of the mixture.
Pge = Pre mechanical equilibrium (2.3)
Tge = Tfe thermal equilibrium (2.4)
dge = Ife chemical equilibrium (2.5)
From these equations three different cases (for a water pressure range
from 700 Pa and 210-105 Pa) arise:
A - mixture in saturated state
uvexe + u]e-(l-Xe) = U (2.6)
Vvexe + v1e'(1-Xe) =V (2.7)
B - only subcooled Tiquid
Uge = Up (2.8)
Vee = Vi (2.9)
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C - only superheated vapor

uge = U (2.10)

= 11
vge iy (2.11)
The methodology used is based on attempting to solve the first set of
equations (A); if it is impossible to do this, then we select one of the
others, ‘

We can use an iterative procedure. From a trial value of p, it is possible to
calculate two values of X from the equations (2.6) and (2.7).

. Uy - uy (p) (2.12)
Tu ) -

V.- V](P)
X, = m. (2.13)

Vv(p) - V] (p)

If p is the equilibrium pressure of the mixture then Xu and Xv must be equal:

p=p,— X, =X (2.14)

If these two values are different, we will evaluate a new pressure until the
condition (2.14) is satisfied.

For evaluating this new value for p, we may use a Tinear interpolation based
on the values of p, Xu and XV in the actual step and in the previous iteration.
Using the subscript 1 for the previous values and 2 for the actual values, we

can give an estimation p, of p, (Fig.2.2):

(Kyp = Xy1) Py = Py) (2.15)

:p1+

In this way we arrive at a value for X.
If X is between 0 and 1, we are in the A condition, if X < 0 in B, if X > 1 in C.
The value of Xe is then;




Xe=X if 0<X<1
Ko = 0 if X <0 (2.16)
Ko =1 if X > 1

Then, the mass that must be exchanged from the Tiquid to the vapor phase, per
unit volume, (Mex) is given by :

SR B - (2.17)

The energy that must be exchanged from the liquid to the vapor phase, per
unit volume, is given by:

X
- (2.18)

In Appendix A is a listing of the subroutine EQUIL that performs this evaluation.

Figs. 2.3 - 2.8 show some results from the calculations made with the subroutine
EQUIL. In Figs. 2.3 - 2.6, we report the exchange parameters Mex and Eex as
functions of tne non-equilibrium void fraction for different Tiquid and vapor
conditions. In Figs. 2.7 and 2.8, the equilibrium void fraction as function of
non-equilibrium void fraction is shown.

One practical consequence of this kind of approach is the presence of a limiting

curve for 7 . In fact, if we suppose that entire mass Mex is exchanged at time
t = 0, the expression for the average mass transfer rate is given by

M
Wo(at) = =X (2.19)
At

This curve represents the maximum value that § can reach for a given time step
At. Note that (2.19) is based only on equilibrium considerations.

If we suppose that the exchanging process is completed at the time Atc - this 1is
evaluated by a proper model of mass exchange - the value of F(at) lies on the
limiting curve (2.19) for At > at.. For at < Atc it Ties below this curve
(Fig. 2.9).




Therefore, the curve (2.19) can be used as criterion for judging of the

correcthess of the previous results.

As we will show in the last section with a practical calculation, the expressions
(3.6), (3.7), (3.9) and (3.10) fail in some cases, because they predict a mass
exchange during the time step greater than the value of Mex'

To try to overcome this problem one might introduce a limitation in the
calculated value of Ti , based on eq.(2.19), or introduce this limitation
inside the expression of . (t), before integrating, to obtain the average value.

This second method is used in the next section, where the equations (1.1) and
(1.2) are used only to estimate the characteristic time of the mass exchange

while the amount of mass exchanged is based on Mex'
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Fig; 2.2 Interpolation methodology to evaluate an
approximate value Py of Pg-



— S——
\\\ Ilflll
e T —— -
\\ //r/r/
/S Tl
s e T T ——, = . -
4 \\\ T e
/ \\ /:/1/41/ T~
s — /
—~— ~——
\\\ T — T~. T
s T ——— ~
—— T~
0" 6°0 8°0 L°0 8°0 S°0 h°O0 £°0 ¢’'0 6—=0"0
m\ — —+ + — “ + + —+ —+ =00
L L \0\\\||\.
0 W/// \\t\\l\ -
// S~ STt -7 Ve
/ \ //I ||l\|\\ \\
1Y S~ |\||||\\ \\\ Vd
\ Ssol e - P Ve
/ \ IIII |||||||||| \\ =
N TN~ e - 7
NN T e e T - Vs
AN -
VN - Py 1
\ N P J
AN P
/ L
Voo - .
AN - ,
/ // \\\ v
/ //:/ \\\\ e -
\ T~s =" /
~~ee_ - -= s
N T T e e V2 T

7 Qh-=S1-41
7 -

P 02-=S1-41

02+=G1-31

Qh+=S1-41

09+=S1-41

1]
X3
Ammv W

"0l

‘el

“hi

"9l

"8l

"g¢e

‘cc



5.50E+07
S.00E+07
4.50E+07
u.00E+07
3.50E+07
3.00E+07
2.50E+07
2.00E+07
1.50E+07
1.00E+07
S.00E+06
0.00E+06
7—5.00E+06
-1.00E+07
-1.5QE+07

-2.00E+07

e
_ X m3
~
- // ™~
- — _ TF-TS=+80 - S
4 -~
____ TF-TS=+40 - AN
e
| TF-T5=+20 e AN
—— TF-T$=-20 d \
4 o N\
o TF-TS=-u0 \
-+ S s T T T T T - \
/ —— ~
s ’//’ \\\ \
- / /// \\\ \
/ /// ~ \
/7 ,’// \\\ \
— s //// \\ \
| // -7 AN
1 / //// ___________________ \\ \
/ /// -------------------- ~a A
1 s S ~~o. A
/ e Sl \
Ve g _-—""‘ T \\\
P -
_J( /// T \\\ \\
s e \\‘\\\ o
"’-’ \\ 1
S — —+ + } —+ —+ —— +— + —] !
0.0=8L.___ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 A.0
< — /
1 \\‘\\ \‘\-\ ///l
\‘\‘\ —\'\,\_ _/ 4
L ‘\\ e ——— ,/ ,/
- ‘\\\~ S ———— ‘N'————_-__.___._.--——-—""/-/ /
\‘\\‘ /
4 T~ %
~——_ e
-\~\ —/
— .-
J T e e e T .

=
wed e
Rte
N
~
m
>
D
3
te}
S
')
x
)
=
o
=
@
[
o
(_i.
o
[
o
o
™
—~
—
[ta)
|
—)
)
(@]
——”

— L} —




— 18—

" "0g0 = L - L ™0z = 7L - 71) ebueyoxs ssey Gz by
o'l 80 0 ‘0 st0  s0 om0 e e0 10 00
7 L L LE ] 1 T _m__u ﬂu 1)) S
n o @ | n W @ ¥
o 1
©
© 0] v +
@ o Q © 4
\4 J
\4
\4
+ v
o 1
A\
v A4
+
+ -
N 1
eg §3°0S51=d T 1
+ Bd §3°001=d ¥V
+ gy 3705 =4 © T
B4 . =4 W
+ §3's  =d 1
+
+
" 1
€ X2
A.mw_v

"0l

‘el

"hi

"91

‘81

‘0¢

“ec

“he

‘9¢



(g0 = "L - "L A0z = "L - “1) sbueyoxs Abusuz 9z Biy
o 60 80 L0 90 S0 0 ep 2 1o 00
1 4 N ] 1 ¥ v m-_ B E P
o n) n n b w Q N
o 1
©

© Q v -
'0) @ 1
A4 © @ A

A4
+ v 1

A4
q ——
v
v 4
_ + 4
1
+

+
pg G3°051=d + T
+ ®d S3°001=d ¥ i

+ eg G3°05 =4 @
ed S3°S =4 U 4
+ +
+

1

w
()3

0°0°0

90+300°S

£0+300°1

L0+30S8°1

{0+300°¢

L0+30S°¢

L0+300°€

L0+30S°€E

£0+300°h

L0+30S°h

L0+300°S

L0+30S°S

L0+300°9



T,

— — TF-TS=+60
TF-TS=+40

TF-T5=-40

6.0

1.

0.9

-

0.8

0.7

T

0.6

0.5

o.u

0.3

9

Equilibrium void fraction (p = 50.E5Pa, T_-T

Fig. 2.7




= § S
Big0 = "L = "L A0z = °1 - %1) uotroeuy proa wnruqiiinbs g7 <61y

=
.-
(=
TOo
e
+o
e
--O
w
1o
uwn
--O
=
{a

m.w m.mu ﬁ.m 0°0

eg §3°051=d +
®d §3°001=d ¥
ed §3°0G =4 @
®d §3°¢ =4 O

0°0

1°0

¢’0

€°0

h°0

S°0

9°0

L°0

8°'0

6°0

0°1



SAND Buljiwiy g7 6Ly

o
T
®
T -
©
—
=

e

v
o

o

L]
o
-
®

o
To
0
L]

o
=
L3
TO

c'0 0°0

00
1 2°0

+ ®°0

+ 8°0

———
——

g3181nN3Is3 -~
JAENT LIWIT

1+ 2




3. Development of equations based on the limitation of mass exchange during

the time step

In Section 2 the evaluation of the void fraction in the corresponding equi-
Tibrium state, de’ from the non-equilibrium value o has been shown.

From these values it is possible to calculate the radius Rl’ connected with
ass and the radius R2, connected with Ggs using the equation presented in

i
Note 1 of Section 1.

For the bubble growth process, we can use eq.(l.1) to obtain this expression
of the volume change fraction, vg? defined in the following equation:

o, vy t3/2 . ¢ 302
Y, 2 — = | for t; <t <t, |
9 v, -V, 372 (312
2 1 (3.1)
i g = 1 | for t > t2 |
where

(3.2)

Eq.(3.1) describes the change of the volume of the bubble as function of time.

Because the properties of the vapor do not change during the time of bubble
growth based on the "thermal controlled theory", one can use the same expression
to describe the exchange of mass in the interval [ t,, t, 1.

t) - t -
AREICUNER 5
U(tz) - U(tl) g

where n(tl) = 0, at the starting point ty.
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Then, to determine the expression of the net mass transfer ﬁ(t), it
remains only to evaluate “(tz)'

Following the proposed methodology for the total mass exchanged in the time
interval Atc - t2 - tl , we will use the value Mex instead of the integral
of (1.6) in the same time interval.

In this way we have the following expression for the net mass transfer from
the Tiquid to the vapor phase per unit volume.

N (32 _ (372
1 | for t, <t <t, |
u(t) =M S
ex t3/2 ] t3/2 1 2
2 1
(3.4)
B u(t) = M, | for t > t, |

From this expression one can derive - from the eq.(1.8) - the expression for
the average mass transfer rate:
3/2

— My (b +at) - £3/7
n(at) = 4% | for at < t, -ty |
372 3/2
2 1
(3.5)
- Mex
U(At)='—A-t——- l 'FOY"At>t2’t1 '

The same procedure can be applied to also get an expression in the case of
bubble collapse. The volume change fraction Ye is defined as:




[{>=g

| for t1 <t< t2 | (3.6)
| Yo = 1 | for t » t, |
with
t
F'_ _ C _
= ‘EZ [.Ro
° . (3.7)
tc
t, = —= R -
| 2 Rz [ 0
0

As seen in the growth of the bubble, one can use the same expression for

Yo to get the net mass transfer:

— + -3 3
L /—ﬁ—l— -1- /¢ J
C
p(t) =M - - [for t; <t <t, |
U 2 g
AT AT
(3.8)
5 (t) = Mox | for t > t, ‘
And from this equation, the average mass transfer rate:
: =3 3
Tat) - Mo [/%C - /tJ - [/%C - /Bt + 11|
" At T B E 3
[V%c ) /tlj ) D@; -]
| for at <t, -t | (3.9)
L(at) = @SX | for at > t, - t, |
. At 2 1




We rewrite egs(3.5) and (3.9), with the introduction of some parameters,
so that comparison with the limiting curve (2.9) is more meaningful.

For the growth: 3/2
. [_A’E_. (1—a)+a] - 332
M

t, -t
i(at) = Aix c 1 | for at < t, -t
3/2
1-a | (3.10)
T(at) =K%’i | for at > t, -t
For the collapse:
[ 3 33
fl/a_bJ -[1—/ab+b(1-a)—t-é—§t—]
o My 2™
3 3
[1-m - [i- 4]
| for at < t, - t |
(3.11)
M | |
fi(at) = == | forat sty -ty |
where
a=t,/t | 0 <a<1]
1772 (3.12)
b = t,/t, | 0<b<l]|

In Fig. 3.1, egs.(3.10) and (3.11) - in a dimensionless form - are compared with
the Timiting curve (2.9).

The use of this type of correlation to describe the growth and the collapse
of the bubbles is based on a initial hypothesis: the conditions of the Tiquid
(subcooled or superheated) surrounding the bubble remain constant during the
heat and mass transfer process, i.e. the driving force - the difference of
temperature between vapor and liquid - remains constant.
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However, the driving force becomes smaller and smaller as the system
approaches equilibrium. This means that the previous hypothesis under-
estimates the time necessary for the transport of mass to be accomplished.

In the next section we discuss a very simple model that takes the reduction

of the driving force into account.
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Fig. 3.1 Comparison of eqs. (3.10) and (3.11) with the Timiting curve (2.9) at,




4. Driving force reduction model

In this model, we keep the previous hypothesis that the vapor is in a
saturated state at the same 1iquid pressure. In contrast to the model
in Section 3, the 1iquid changes its state continuously to reach the

equilibrium point.
We suppose that the equilibrium conditions are very close to the non-equi-
Tibrium conditions, so that we can assume that the transformation occurs

at constant pressure and the change of the void fraction is small.

Fig. 4.1 is a P-T diagram of the transformation model, for the evaporation,
"a", and condensation, "b", of the vapor.

We suppose that for each bubble the same quantity of liquid that must be
heated (in case of condensation) or cooled (in case of evaporation) is
available. The exchanging of heat is possible only from the bubble to

its associated volume of liquid (Fig. 4.2).

If we use a plane interface model for the transient heat conduction problem,
we can represent the bubble model as shown in Fig. 4.3.

The area of the exchanging surface for a single bubble is:

2/3
A = 4n (473‘?%) (4.1)

The volume of the "associated" 1iquid is:

_ 1l -0
Vfb = —~——ﬁ-b-— (4.2)

The parameter L, the characteristic length, is then:

A D (4.3)

Ry g (22

m b(41Tnb

Now one can solve the transient conduction problem. Note that from the initial
hypothesis, L remains constant during the heat transfer.
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The differential equation is:

T 92T
5 = 3"~ | 0 <x <L | (4.4)

with the boundary conditions:

- T (x,0) =T, | 0 < x <L |
T (L,t) =T, | t>0] (4.5)
aT
Lo lx=0 °

Where Ti is the initial liquid temperature and Te is the vapor temperature
- at saturation - constant during entire transient.

The solution is /7/:

8

Thot) = Tg + 2(TyTy)

1,2 2.
, -{n + m-a
exp [j ( ?) f t
L2

il o~

0
(4.6)

(-1)n 1, @x
—(——-:—1—5‘-——- + COS [(n + é> T] ' n = 1929390--!
n 5 o T

The expression of the heat transfer throughout the surface of the bubble
(x=L) can be easily derived:

. 2(T.-T ) o
%-é »” %% = —1— I exp(-t/t) (4.7)
b =L n=0
where
T e T | n=0,1,2...]
" (2n+1)2
(4.8)
2
- L 4

Lo 2
m af




Because the properties of the vapor do not change during the exchange
process and all the heat is used to evaporate or condense vapor,
one can use equation (4.7) to describe the mass transfer process.As noted

in Section 3, we introduce the same Timit for mass exchange, using this
expression (4.7) only to evaluate the characteristic time of the process,
while the amount of mass exchange is based on Mex'

Then, for the mass transfer rate ji(t) we can derive the following expression:
M -

W(t) = o =X I exel-t/ty) (4.9)
n=

To show the importance of each exponential term, we can rewrite
eq.(4.9):

(4.10)

() =2, 2 exp(-t/t)

Fig. 4.4 shows - in dimensionless form - the behaviour of the terms
w (t).

One can derive the average mass transfer rate

G0y < 5,00
n=0 (4.11)
T - 8 Mex - _ At
Lun(At) ) 2 (2n + 1)2 At [ bl f;‘> ]

In Fig. 4.5 the single terms ;h(At) are given in dimensionless form, while
in Fig. 4.6 the function {(at) is given.

The model described in this section seems more consistent with the model of
mass exchange developed in Section 2, because it takes the reduction of the
"driving force" into account.



Moreover, in condensation, every consideration about the initial radius

of collapse RO is avoided.
Nevertheless, one can make the following remarks:

1.  the plane interface approximation might not be a good hypothesis;

2. the hypothesis of a constant L is - as previously stated - proper
only for initial conditions not far from the equilibrium state;

3. in this model all historical effects are neglected, because one
supposes that the temperature gradient at the bubble boundary is
infinite at the beginning of each time step.

A consequence of the first point is that there is no difference in the
equations describing the phenomena of growth or collapse of the bubble,
The difference in results is only due to the different value of Mex'
Extension to spherical geometry would require a more complex mathematical
solution.

Similarly the second point is justified by the simpler mathematical model.

In contrast, the third consideration brings up a problem that is common for
every correlation that uses a dynamical model. To take historical effects
into account one might store some parameters (the boundary velocity of

the bubble, e.g.) to be used in the next time step. Additionally, the form
of eq.(4.6) must be modified to take the influence of the previous time
step on the initial condition in the new time step into account.

In the next section we discuss some results of the values calculated with
the different expression obtained for the mass source term, and make a
comparison among them.
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— 34 —

e N —

O

"Associated " volume

Fig. 4.2



isolated Viquid vapor
boundary

bubble surface

AR

Fig. 4.3 Bubble model



1 Auvcm T 93®Rd J94SuURA] Sse Py “bL4
1
10+30°1 00+30°1 10-30°1 c0-30°1 €0-30°1 h0o-30"1
N } } } } c0-30°1
6=N <A -Z
g=N &£—Z
L=N X—X T®
g=N v ¥ 1h
mnz = llm
N X—X T3
| n=N 1L
8 g=N 18
| -+
2=N V¥ + 10-30°1
[=N @ S
o=N (B ol
12
+¢€
+h
L1m Xa
W/ T9 X (3 ﬂ

2
]
1
i
3
Bl
)
Y
0
@

00+30°1



1.0E+00
94
8 : . o e |

Bplst) T BT o
BTN
q--
34
21
g—= N=0
o—o N=1
1.0E-01 + a—a N=2
8+ +—+ N=
i1 —x N=
5+ o—o N=
Y+ P N2
31 x—=x N=
z—=z N=
24 ¥y N=
1.0E-02 — : } !
1.0E-0Y 1.0E-03 1.0E-02 1.0E+00 1.0E+01

Fig.- 4.5 Average mass transfer rate : fi_ (at)

a"z‘




1.0E+02 T _b(at)r
1.0E+01
1.0E+00
1.0E-01
1.0E-02
Z___Z N=8
1.0E-03 + o « SUM
1.0E-0uU } } -+ —- {
1.0E-04 » 1.0E-03 1.0E-02 1.0E-01 1.0E+Q0 1.0E+01
At

Fig. 4.6 Average mass transfer rate fi(at) .




— 39 —

5. Numerical values and conclusions

We have performed some calculations with the previous correlations for
practical cases. We have taken into account six conditions, whose initial
parameters are shown in Table 5.1.

For each case Mex and Gg have been calculated with the subroutine EQUIL.
In Table 5.2 these calculated values are shown.

In Table 5.3 and 5.4 expressions for the mass source term developed in
this. work are summarized, for evaporation and condensation in bubbly flow
respectively,

In Tables 5.5 - 5.10 the results of the calculations are shown for each case.

Analysis of these tables points out the different behaviour of the first

two correlations, with respect to the last two, when compared to the Timiting
value (Case 3). Delimited by heavier lines are the results that exceed the
Timiting value for a given time step.

This occurs for the largest value of At in each table shown.

Otherwise the results of Cases 4 and 5 tie considerably under the Timiting
curve (Fig. 2.9) for the smallest values of At and approach this curve for
the Targest values. /

Case b5 displays, in general, the smallest value with respect to Case 4
over a wide range of practical interest of At. In fact, the "driving force
reduction model" delays the complete transfer of mass, with respect to the
models based on equations (1.1) and (1.2).

Nevertheless, for the smallest values of At, the values in Curve 5 becomes
greater than those in curve 4, because

1im SR(At) =+ o
At-0
while the 1imit of the curve 4 in at-0 is finite.




We can observe the effects of the strong dependence of the parameter Ry in
the collapse equation (1.7) on the equations developed for u(at).
The value of R0 has been changed from 1.2 to 2.

The increase in R, with respect to Ry produces large reduction of the mass
source term. Of course this has no effect on expressions 3 and 5, because
these equations are not based on equation (1.7).

The analysis performed on the bubbly flow regime can be considered satis-
factory for the range of At generally used in the computer codes.

Nevertheless, further theoretical considerations might be done in the range
of the smallest value of At, where the theory developed can give values

of u(at) that are infinite or too large. In fact, the "thermal controlled
theory" can fail in some cases, neglecting the inertial resistance of the
liquid, and especially at the starting point of the bubble collapse.

The present theory can be completed by developing analogous equations for
EKAt) based on the "inertial controlled theory". This can set some limitations

on the maximum values of {i(at) especially in the range of the smallest values
of At.

Another set of equations can be developed using the same methodology for

the other flow regimes, or to take into account other phenomena, such as

the presence of a non-condensible gas in the gas field.

In this way one can complete the package of equations describing the transfer
of mass (and energy, using a theory based on Eex) between the phases in non-
equilibrium.

At this point, the next problem to consider is to generalize the different
equations developed into only one mathematical form. This generalization
would be very suitable for practical computation and to perform a linear
stability analysis that also takes the source terms into account.

The kind of analysis performed in this work constitutes a first approach to

the problem of developing a well based time-averaging procedure for the source
term. The next step in this work will concern testing the correlation developed
by comparison between edtculated and experimental data.




Table 5.1 : Initial conditions for each of the calculations performed

Calculation Pressure (Pa) Void fraction Tf-T (OK) Tg-Ts (OK) Eci— (for collapse) nb(m_3)
al 5 . 10° 0.3 £+ 20 0 - 10°
a2 5 . 10° 0.3 - 20 0 1.2 10°
a3 5 - 10° 0.3 - 20 0 2. 10°
b1 5 . 10° 0.3 + 20 0 - 10°
b2 5 . 10° 0.3 - 20 0 1.2 10°
b3 5 . 10° 0.3 - 20 0 2. 10
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Table 5.2 : Calculated values of Mex and oy for each cases.

Calculations performed

Calculated |, a2 a3 b1 b2 b3
variables

k o
Mex(m% 0.486 -0.326 -0.326 3.164  -2.229 2.229

o 0.3009 0.2994 0.2994 0.3089 0.2947 0.2947
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Table 5.3. ¢ Average mass transfer rate (ﬁ) for bubble growth.

3
R
v g
1 2'TT nb pv T3—7—2— /{:—1 (1.6)
| g
4r pPy RS 3/2 . 3/2
2 Fea [(tl +at)70 -ty ] (1.9)
g
3 ey (2.19)
At
" M R at)3/2 - t13/2
= - : | for at < t, -ty |
302, 3/2
2 T 1
4
(3.5)
I fkﬁi_ | for at > t, -t |
At
5 - . o] 1 - exp(- ) 4.11
n=0 72 (2n+1)2 st i




— 44 —

Table 5.4 : Average mass transfer rate ()i) for bubble collapse

Rg (/fg - /El)z

_ . | for 0 < t. <t |
ene My ey a7 7E 1= ¢
¢ c (1.7)
0 | for t; > t, |
3 )
R 3t &+ 3% 23k ot
3 At 3/2 c c
t t
o 1
(1.10)
. A -
Lwith t = min (t; + at, tc)
Mex
At (2.19)
V- - 3
M (/EC k) (/EC AT+ ) |
B T Y | for at < t, -t |
(VE, - Vi3 - (Vi - /R,)
(3.9)
M
ex
| | for at > t, - t; |
e M e
8 ex At ,
nzo ﬂ2(2n+1)20 At [1 eXP( tn )J (4-11)




Table 5.5 : Results of the al calculation (_T___)kg
m’sec
At(sec) '
eqs. 107 107° 107% 1073 1072 1071 1
(Tab.5.3)
1 1065. 1065, 1065. 1065. 1065. 1065. 1065.
2 1065. 1068. 1089. 1275. 2403. 6797. 2120.
3 486000. 48600. 4860. 486.0 48.60 4.860 0.4860
4 207300. 48600. 4860. 486.0 48.60 4.860 0.4860
5 1142, 227.3 70.80 22.39 7.081 2.238 0.4796




Table 5.6 : Results of a2 calculation :

=
Wi
~—

m-sec

eqs. S 107 107 107 1073 107 107! 1
(Tab.5.4)
1 - 1423. - 1423, |- 1423, | - 1423, - 1423, | - 1423. | - 1423.
2 - 1420. - 1494, | - 1193. | - 555.5 ~79.98 | -7.998 | - 0.7998
3 - 325900. | - 32590. | - 3259. | - 325.9 - 32.59 | - 3.259 | - 0.3259
4 - 300800. | - 32500. | - 3259. | - 325.9 - 32.59 | - 3.259 | - 0.3259
5 - 765.1 - 1519 | - 47.29 | --14.96 -4.729 | -1.495 | - 0.3214




Table 5.7 : Results of a3 calculation : ( _kg
mSsec
At(sec)
eqs . 107° 107 1074 1073 1072 107 1
(Tab.5.4) ™\ |
1 - 284.6 - 284.6 - 284.6 - 284.6 - 284.6 - 284.6 - 284.6
2 - 284.5 - 284.1 - 279.6 - 240.3 - 79.63 - 7.998 - 0.7998
3 - 325900. - 32590. - 3259, - 325.9 - 32.59 - 3.259 - 0.3259
4 - 60270. - 32590. - 3259, - 325.9 - 32.59 - 3.259 - 0.3259
5 - 765.1 - 151.9 - 47.29 - 14.96 - 4,728 - 1.49% - 0.3214

b




Table 5.8 : Results of b.1 calculation T —= )
m sec
107 107 107* 1073 1072 1071 1
218.9 218.9 218.9 218.9 218.9 218.9 218.9
218.9 218.9 219.0 219.9 229.0 303.1 681.7
3164000. 316400. 31640. 3164. 316.4 31.64 3.164
3076. 3076. 3078. 3091. 316.4 31.64 3.164
7243. 1345. 441.2 131.0 41.43 13.10 3.071

—8y—




Table 5.9 : Results of the b2 calculation : T ';9
m~sec
At(sec) _ _ _ _ _ _
eqs. 107° 107° 107 1073 1072 107! 1
(Tab.5.4) |
1 - 207.5 - 2.07.5 - 207.5 - 207.5 - 207.5 - 207.5 - 207.5
2 - 207.5 - 207.4 - 206.8 - 201.2 - 161.3 - 62.42 - 7.614
3 - 2223000. - 222300 . - 22230 - 2223. - 222.3 - 22.23 - 2.223
4 - 3411. - 3811. - 3401. - 2223. - 222.3 - 22.23 - 2.223
5 - 5171. - 1003. - 311.3 - 98.44 - 31.13 - 9.842 - 2.182




Table 5.10 : Results of the b3 calculation ; 7 kg
mosec
At{sec)
eqs. 107 107 1074 1073 1072 1071 1
(Tab.5.4)
1 - 41.50 - 41.50 - 41.50 - 41.50 - 41.50 - 41.50 - 41.50
2 - 41.50 - 41.50 - 41.49 - 41.39 - 40.39 - 32.23 - 7.614
3 - 2223000. - 222300. | - 22230. - 2223. - 222.3 - 22.23 - 2.223
4 - 682.3 - 682.3 - 682.1 - 680.5 - 222.3 - 22.23 - 2.223
5 - 5171. - 1003. - 311.3 - 98.44 - 31.13 - 9.842 - 2.182




APPENDIX A : Listing of the subroutine EQUIL

SUBROUTINE EQUIL(P,TF,TG,AL,RHF,RHG,HF,HG,MEX,EEX,ALEQ,XEQ,RERU,

% RERV, ERROR)
C
IMPLICIT REAL*8(A-H,0-2)
REAL#8 LW,LD,MEX
LOGICAL FLAG,ERROR
C
ERROR=.FALSE.
c
C. STATIC QUALITY CALCULATION
C
XG=AL*RHG/ (AL*RHG+ (1. -AL)*RHF)
c
C SPEC. VOLUME AND INTERNAL ENERGY CALCULATION
C
VF=1./RHF
VG=1. /RHG
UG=HG-P*VG
UF=HF - P*VF
C
VM=(1. -XG)*VF+XG*VG
UM=(1. -XG)*UF+XG*UG
c
C ITERATIONS
C
N=0
FLAG=.FALSE.
P1=P
PX=P1+10.E5
IF(P1.GT.100.E5) PX=P1-10.E5
c ,
1 CALL SAETO1(TE,P1,VW,VD,HW,HD,HWD,SW,SD,
* TSP, CPW,CPD,EW,ED,IW,LD, SIGMA, 1)
C
UW=HW-P1*VW
UD=HD-P1*VD
C
UWD=UD-UW
VWD=VD-VW
C
XGU1=(UM-UW) /UWD
XGV1=(VM-VW) /VWD
C
IF(.NOT.FLAG) GO TO 100
C .
c ERROR CONTROLL
C

XEQ=XGV1
IF(XEQ.LE.0.) XEQ
IF(XEQ.GE.1.) XEQ

0.
1




UME=XEQ*UD+(1. ~-XEQ)*UW
VME=XEQ*VD+(1. ~XEQ)*VW
ERU=UME -UM

ERV=VME ~VM
RERU=ERU/UM*100.
RERV=ERV/VM*100.

SCR1=DABS (RERU)
SCR2=DABS (RERV)
IF(SCR1.LT.0.1.AND.SCR2.LT.0.1) GO TO 200

PX=P1+(XGV1-XGU1)* (P2-P1)/(XGU2-XGU1-XGV2+XGV1)

IF(PX.LE.700.0) PX=700.0
IF(PX.GE.21.E6) PX=21.E6

100 N=N+1
IF(N.GE.100) GO TO 300

P2=P1
P1=PX
XGV2=XGV1
XGU2=XGU1

FLAG=.TRUE.
GO TO 1

200 MEX=(XEQ-XG)/VM
EEX=(UD*XEQ-UG*XG) /VM
ALEQ=XEQ/ (VW* (XEQ/VW+(1.-XEQ)/VD))

RETURN
300 ERROR=.TRUE.

RETURN
END
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