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PRINCIPLES AND TECHNIQUES OF DATA EVALUATION ~·() 

Abstract 

The probabilistic foundations of data evaluation are reviewed, with 

special emphasis on parameter estimation based on Bayes' theorem and 

modern methods concerning prior probabilities. The process leading from 

raw data to evaluated data files is briefly explained for the example of 

nuclear reaction cross sections, with a discussion of systematic and 

statistical errors and their propagation. It is shown how evaluators can 

establish data covariances if error components are properly specified 

by experimentalists, and how correlated data uncertainties in covariance 

files are utilised in sensitivity studies and accuracy assessments. The 

problern of inconsistent data is also addressed briefly. 

GRUNDLAGEN UND HETHODEN DER ~lESSDATEN-AUS\oJERTUNG 

Zusammenfassung 

Ein Überblick wird gegeben über die wahrscheinlichkeitstheoreti

schen Grundlagen der Heßdaten-Auswertung, mit besonderer Betonung der 

Parameterschätzung mit Hilfe des Satzes von Bayes und moderner Erkennt

nisse über a-priori-Wahrscheinlichkeiten. Der Weg von Rohdaten bis hin 

zu evaluierten Dateien wird kurz erläutert am Beispiel der Wirkungsquer

schnitte for Kernreaktionen, mit Diskussion der statistischen und syste

matischen Fehler und ihrer Fortpflanzung. Es wird gezeigt, wie die Aus

werter Datenkovarianzen ermitteln können, ~'enn die Fehlerkomponenten 

von den Experimentatoren angemessen dokumentiert sind, und wie die 

korrelierten Datenunsicherheiten aus Kovarianz-Dateien bei Empfindlich

keitsstudien und Fehlerabschätzungen verwendet werden. Das Problem 

der Unverträglichkeit von Daten wird ebenfalls kurz behandelt. 

*5 This report is based on lecture notes for the Ispra Course on 

Data Uncertainty, Sensitivities, Consistency and Adjustment, 

JRC Ispra, 14-18 April 1986 
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1. THE MATHEMATICS OF DATA EVALUATION 

We begin with a brief review of the probability-theoretical faunda

tians of data evaluation. This will help to tie tagether various rules 

for the extraction of 11 best 11 values and their uncertainties from experi

mental data, and recipes for data fitting and adjustment. Physicists have 

to learn these recipes usually during lab courses and on the job, and 

most of the textbooks on probability theory are not very helpful, being 

full of intimidating jargon and complicated 11 ad-hockeries 11 originating 

from desperate attempts to avoid Bayes' theorem with its a-priori proba

bilities. The following presentation, which (i) is squarely based on 

Bayes' theorem and (ii) utilises recent progress concerning prior pro

babilities, will be found to provide a concise and mathematically simple 

treatment of parameter estimation and data adjustment in the general 

context of inductive inference, or learning from observations. 

1.1 Probability as a Numerical Scale for Rational Expectation 

All our results will be fairly direct consequences of the basic 

product and sum rules of probability theory, 

p(ABIC) = p(AIBC)p(BIC) = p(BIAC)p(AIC) , 

-
p(AIB) + p(AIB) = 1 , 

(1) 

(2) 

h A B C deilote · · t · h 11 th co1' n shows head 11 w ere , , var1ous propos1 1ons suc as e 

or 11 the cross section is larger than 200 b 11
, AB means 11 both A and B are 

true 11
, Ä means 11 A is false 11

, and p(AIB) is the probability of A given B. 

This latter notation indicates that all probability assignments are 

conditional, based on either empirical or theoretical information or on 

assumptions. Following Laplace we shall interpret these probabilities as 

a numerical scale for degrees of rational expectation, ranging from 

0 (impossibility) to 1 (certainty), intermediate values indicating 

intermediate degrees of plausibility. 
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This interpretation (not the equations themselves) is often criti

cised by statisticians who insist that by "probability" one must mean 

only "frequency in a random experiment" such as coin tossing, in the 

limit of very many repetitions, and that one can assign the "direct" 

probabilities of effects (observations) if the causes (natural laws and 

natural constants) are given, but never the "inverse" probabilities of 

causes if the observations are given. For scientists in general, and 

data evaluators in particular, this viewpoint is much too narrow. It 

would not permit them to say that a physical constant has, according to 

measured data, such and such a probability to lie within given confi

dence limits. The job to infer the values of natural constants, half

lives, reaction cross sections etc. from error-affected and incomplete 

experimental data is not a random experiment that can be repeated at 

will, but rather an exercise in inductive inference (reasoning in the 

face of uncertainty). For evaluation work Laplace's probability concept 

is, therefore, the appropriate one. Incidentally, R.T. Cox [1] proved 

in 1946 that degrees of plausibility can, in fact, always be represented 

by real numbers, within any consistent system of inductive reasoning. 

The most general consistency conditions take the form of functional 

equations whose solution is found to satisfy our basic two equations. 

Thus the mathematics is exactly the same for Laplacean and frequentist 

probabilities and the whole controversy has become rather academic. 

1. 2 Bayes' Theorem as the Rule for Updating_ Kno~le~ge_~~t~ew ll_ata 

A scientific theory enables us to calculate the "direct" probability 

of some observation if the physical quantities occuring in the theory are 

known. If they are unknown, but observations have been made, the situa

tion is reversed. We must find the "inverse" probabilities for the vari

ous possible values of the physical constants from the given empirical 

data. This inversion is accomplished by Bayes' theorem. Its simplest form, 

p(A/BC) (3) 
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is a direct consequence of the symmetry of the product rule (1) with 

respect to A and B. Laplace generalised this to the case of several 

distinct alternatives A., 
. ' 1 
' 

p(B!A.C)p(A.!c) 
p(A.IBC) = 1 1 I 

1 IP<BIA.C)p(A. lc) 
• 1 1 

i=l ,2, ..• n • (4) 

1 

With (1) ft is easily verified that the normalising denominator is, in 

fact, equal to p(BIC) while the normalisation itself satisfies the sum 

rule (2). Bayes' theorem follows thus directly from the basic equations 

of probability theory. Expecially in its form for continuous alternatives, 

p(A!BC)dA = 
p(B!AC)p(A!C)dA 

fpCB!AC)p(A!C)dA 
(5) 

it can be considered as the very cornerstone of data evaluation. The 

usual situation is that we have data B which depend an the value of 

an unknown physical quantity A and an a theoretical model C of the expe

ment. If we know the mathematical form of the "likelihood function" 

p(BIAC), in which the unknown quantity A appears as parameter, and also 

the a-priori probability ("prior" for short) p(AIC)dA, we can calculate 

the a-posteriori probability (or "posterior") p(AIBC)dA that the unknown 

parameter lies in the infinitesimal increment dA at A. 

As a fairly realistic illustration let us consider the determina

tion of the decay constant A of some short-lived radioisotope from 

decays registered at times t
1

, 

A with A, and the data t 1, 
information we have about the 

t 2 , ... tn. Obviously we must identify 

t with B, while C consists of all other 
n 

experiment such as applicability of the 

exponential decay law, purity of the sample, reliability of the recording 

apparatus, sufficiently lang observation time for all observable decays 

to be recorded, etc. The so-called sampling distribution, i.e. the 

Probability that a decay is recorded in a time interval dt at t, given 
't 

A, is 

l 
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0 < t < 00 • 
(6) 

(We simplify the notation by omitting explicit reference to C). The 

joint probability of observing the data, given X, is then abtairred as 

O<t.<oo, 
~ 

(7) 

I 
according to the product rule. This corresponds to p(BIAC) above. The 

probability density p(t 1 , ... tniX) is called the likelihood function. As 

the increments dt. cancel upon normalisation, we get Bayes' theorem in 
~ 

the form 

(8) 

which illustrates the fundamental rule: The posterior probability is the 

product of likelihood function and prior probability (apart from a tri

vial normali~ation constant). The likelihood function transmits the 

impact of the new data. In our example the data appear only in the form 

I.t. : nt so that for given n the sample averaget conveys all the 
~ 1 

information cantairred in the data. In statistical terminology t is a 

"sufficient statistic", n an "ancillary statistic", statistic meaning 

any function of the "sample" (i. e. of the data). 

If we consider all dX for 0 < X < oo as equally probable a priori, 

so that the prior is p(X)dX ~ dX, we get as the final result of our 

Bayesian parameter estimation 

-
0 < x _ Ant < "" , (9) 

the gamma function r(n+l) ensuring proper normalisation. This posterior 

distribution, known as gamma distribution or as chi-square distribution 

with 2n+2 degrees of freedom, represents the complete information about 

X which can be extracted from the data and the prior. 

Now most users of nuclear decay data do not want to be bothered by 

the details of an a-posteriori distribution. What they want is a recom-
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mended decay constant and its uncertainty, and nothing else. So we cal

culate the expectation value, (>.), and the square root of the variance, 

ö)., 

ro 

(><) J d:\p(:\jt
1

, ... tn)Ä 
n+1 

= = 
0 nt 

( 1 0) 

l r2 

oÄ I dÄp(><lt 1 , .•• tn)(Ä- (><) )
2 /n+l 

= 
nt 

( 11) 

and state the result summarily as ). = <>-) ± o>.. The choice of <>-> as 

the recommended value can be justified by the following least-square 

argument: The point estimate ).
0 

which minimises the expected squared 

error, so that 

min (12) 

is >.
0 

= {).), as one readily verifies by differentiation with respect 

to >. 0 and equating to zero. With this point estimate the expected 

squared error is just the variance, var A = (6).) 2
, which justifies also 

our uncertainty specification. The notation A = <).) ± ÖA, however, 

obscures the fact that especially for small n the gamma distribution is 

quite asymmetric. If such details are important one must return to the 

full posterior distribution. Our result, Eqs. 10-11, looks reasonable 

enough, but we shall see that there is a problern caused by the rather 

cavalier fashion in which we assigned the prior probability. 

1.3 Generalisation to More Observations and More Parameters 

Before we deal more carefully with priors let us see what impact a 

second measurement (with a fresh radioactive sample) would have on our 

knowledge of the decay constant. Using the posterior distribution of the 

first measurement as the prior for the second one we find the new 

posterior distribution 

p (>\ I t • • .. t ' t I • .. • t I ) d Ä a; p ( t I ' • • • t ' I i\ ) p ( t I .• • • • t I Ä) P. ( A) d Ä > ( I 3) 
I n I m I m n 
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where tl'' .. t~ are the new data. More generally, if there are k measure

ments, with associated data sets n
1

, ... Dk and likelihood functions 1 1 , ... Lk, 

one gets 

k 
{ TI L.(D.JA)}p(A)dA , 
j=l J J 

(14) 

which shows quite nicely how Bayes' theorem models the process of learn

ing by experience: Each new experimental result can be encorporated into 

the existing body of knowledge simply by multiplication of the associated 

likelihood function into the probability distribution (and renormalisa

tion). It is by no means necessary that all experiments are of the same 

type. In resonance analysis, for instance, one usually combines likeli

hood functions from transmission, capture, fission and scattering expe

riments involving all kinds of detectors and samples in order to obtain 

best values of resonance energies and partial widths. With each added 

data set the posterior distribution becomes narrower, so that the 

uncertainty of the estimated parameter becomes smaller. We see this 

explicitly in our example. The relative uncertainty of A goes to zero as 

1/l:n for large n. 

A last generalisation concerns the estimated parameters. In data 

evaluation and adjustment one has not only to deal with large bodies of 

data from many different experiments but also with many correlated para

meters that must be estimated simultaneously. Instead of one parameter 

A one has then a parameter vector A in the equations, instead of the 

increment dA one has a volume element dNA in the parameter space, and 

the prior and posterior distributions represent joint probabilities for 

all N parameters complete with correlations. Again resonance analysis 

provides an example. With modern shape analysis codes one can estimate 

the resonance energies and widths of many resonances simultaneously by 

fitting data from many types of resonance measurements (see e. g. [13]). 
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1.4 Closer Look at Prior Probabilities, Group-Theoretical Assignment 

We must now deal more thoroughly with prior probabilities. In our 

example we used the prior p(A)dA ~ dA which in terms of the mean life 

t = 1/A can be rewritten as p(1/t)dt/t 2 = p(t)dt ~ dt/t 2 . It seems that 

we could have equally well estimated t instead of A, and assumed all 

dt equally probable, so that p(t)dt ~ dt. This, however, would have re

sulted in a different posterior distribution. From a principal viewpoint 

it is no consolation that the dependence an the prior is weak if data 

are abundant. There seems tobe a fundamental arbitrariness about priors, 

especially for continuous parameters. 

For more than a century this seeming arbitrariness has caused many 

statisticians to repudiate the Bayesian approach to parameter estimation 

and to try alternative methods that circumvent priors. Others, comparing 

these efforts to an attempt to do arithmetic without zero, defended 

Bayes' theorem as derivable in a few lines from the basic equations and 

used "subjective" priors or, as H. Jeffreys [2), invoked invariance 

arguments to find priors which avoided ambiguities. A major step forward 

was the realisation by A. Wald [3) that the optimal strategies for 

making decisions in the face of uncertainty, as derived without priors, 

were just the Bayesian rules. Even more important was the application of 

group theory and information theory to the problern of priors by E.T. 

Jaynes [4, 5) in 1968. He demonstrated that in a nurober of simple but 

practically important cases the symmetry of the problern determines the 

prior unambiguously. If a so-called location parameter is estimated, for 

instance the mean ~ of a Gaussian, the form of the prior must be 

invariant under a shift in location, ~ ~ ~ + c. This implies 

-oo < ~ < oo , (15) 

a result that was never controversial. For a scale parameter such as the 

standard deviation o of a Gaussian, the form of the prior must be in

variant under rescaling, o ~ co, and this leads to 

p(o)do a:: dojo , 0 < 0 < 00 ' (16) 
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as already suggested in 1939 by H. Jeffreys [2]. Despite its importance 

and simplicity Jaynes' proof seems so little known that we quote it here 

almest verbatim for the case of a rate constant which scales all times in 

a problern (as A in Eq. 6 does). 

Suppose that two observers, Mr. X and Mr. X', wish to estimate a rate 

constant from a number of events. If their watches run at different rates 

so that their measurements of a given time interval are related by t = ct', 

their rate or scale parameterswill be related by A1 = cA. They assign 

prior probabilities p(A)dA and q(A 1 )d\ 1
, and if these are to represent 

the same state of ignorance, p and q must be the same function so that 

p(A)dA = p (AI ) dA I . From the two equations for A and A' one gets the func-

tional equation p(A)dA = p(cA)cdA. Its unique solution is Jeffreys' prior, 

p(A)dA o: dA/A , o < A < oo • ( 17) 

Obviously this is the correct prior for our example, since our decay 

constant is just such a rate or scale parameter, multiplying (scaling) 

all times and time increments in our equations. With this prior we get 

p(/..j t
1

, ... tn)di\ 
-1 -x n-1 -= r(n) e X dx, 0 < X - /..nt < 00 

' 
( 18) 

< ;..) = ( 19) 
t 

o/.. = (20) 
trn 

This looks neater than the result we had before, illustrating Ockham's 

wisdom that the simpler result is usually the more correct one. Further 

examples of priors derived from group-theoretical invariances can be 

found in Refs. 4 - 7. 

1.5 Bayesian Parameter Estimation for the Univariate Gaussian 

Let us apply Jaynes' results also to the the principally and 

practically important univariate Gaussian distribution. Suppose a re

peated measurement of the same physical quantity ~ has produced the 
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results x
1

, ... xn, with experimental errors that can be assumed 

to be normally distributed. Then the sampling distribution is 

p(x I ).l,o)dx = - 1'"---- exp [-- .!_ ( _x-_)1) 
2
] dx, 

hTio2 2 0 
-co<x<oo 

where the error dispersion o is unknown, and the prior describing 

complete ignorance of location and scale (width) of the Gaussian is 

-oo < ).l < oo , 

The posterior is thus 

p(J.l,oix
1

, ••• xn)d).ldo a: n exp[
o 

In terms of sample mean and sample variance, 

n 

0 < 0 < 00 • 

(21) 

(22) 

(23) 

X = L x. 
n i=l ~ 

s'2 (24)(25) 

we can write 

(26) 

so that, properly normalised, the posterior joint probability for ).l and 

o becomes 

I -nt,2 I -n n/2-ld dc -e _ __;;___e n n s' 
~~ r(n;l) 

-oo<[,_ \1-X 
S' < ()() ' o < n -

ns 12 
< 00 (27) 

The probability distribution of ~ given n is Gaussian, and that of n 

given ~ is a gamma distribution, but in general the two estimated para

meters are correlated. 
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If only ~ is of interest, regardless of o, one obtains the mar

ginal distribution by integration over all o as 

-oo < 1:- fl-x < oo • 
S - SI 

(28) 

This is known as Student's t-distribution with n-1 degrees of freedom. 

Obviously its mean is (t) = 0 which implies 

<~> = X 

This is the familiar, plausible ru1e to use the sample mean as point 

estimate of the population mean. The variance is <~ 2> = 1/(n-3) so that 

no finite real Öf.l can be calculated from it for n < 4. On the other hand 

the half width is always well defined and can be used to indicate the 

uncertainty of p as is familiar from the case n = 2, the Cauchy distri

bution (known to physicists also as Lorentzian or as symmetric Breit

Wigner profile). If only o is of interest, one finds 

P ( a / x 
1 

, ••• x n) da o < n -
ns' 2 

< 00 ' (29) 

a chi-square distribution with n-1 degrees of freedom for n. Its mean 

and variance are {n) = var n = (n-1)/2. The recommended value for 1/o2 

is therefore 

n-1 
n 

-2 -2 n-1 
SI - S = 

Icx.-~) 2 
. 1. 
1. 

(30) 

This is the precise formulation of the familiar, less plausible rule to 

use s2 instead of the the sample variance s' 2 as a (biased) estimate 

for 02. We recognise that -2 
is actually s b . d . f - 2 an un 1.ase est1.mate o o , 

the so-called precision. 

The case with one datum only, n = 1, must be treated separately 

because s = 0 , but this is easy. One finds 
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(32) 

(33) 

do 
0 

(34) 0:-

The marginal distribution of ~ has a sharp maximum at the observed value 

but that of o is seen to be still equal to the uninformative prior. This 

makes sense because from a sample of 1 one can learn something about the 

location, but nothing whatsoever about the spread of a distribution. 

Obviously the Bayesian method is consistent with common sense even in 

this extreme case. We mention that the posterior (27) for n ~ 2 was 

found lang before the Jeffreys-Jaynes prior became available, but those 

who know e.g. R.A. Fisher's fiducial approach [10] will appreciate how 

much simpler the present (Jeffreys 1
, [2]) derivation is and how easily 

it is extended to the case n = 1. Quite generally the Bayesian approach 

is simpler than alternative methods. Concepts like bias, efficiency, 

sufficiency, admissibility, James-Stein shrinking etc., on which other 

methods are based, need not be introduced at all since they appear only 

as more or less incidental aspects of the posterior distribution and its 

mean and variance. 

The non-normalisability of the uninformative priors is sometimes 

criticised. Now one can employ also a broad normalisable prior of con

venient (''conjugate 11
) mathematical form. In our first example this would 

be a gamma function. The posterior will then, of course, depend on the 

width of this prior. If one lets the width grow indefinitely one finds 

invariably that the posterior tends towards the posterior derived from 

the uninformative priors. These can therefore be considered as limiting 

cases of extremely broad, normalised distributions on the linear (d~) 

and logarithmic (dojo = d ln o) scale, just as Dirac 1 s delta function 

is the limiting case of an extremely narrow, normalised distribution. 

There are no conceptual or mathematical difficulties if one keeps in 

mind that both the completely uninformative priors and the 11 completely 
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informative'' delta function are, in this sense, nothing but convenient 

shorthand notations, meaningful only in convolution with other distri

butions. 

1.6 Assignment of Priors by Entropy Maximisstion 

Jaynes [4-7] also considered the case that one is not completely 

ignorant a priori. He showed how prior probabilities can be assigned in a 

well defined way if at least vague information is available about average 

quantities, e. g. order-of-magnitude estimates of mean values such as 

first and secend moments. The key concept is that of information entropy, 

i~troduced by C.E. Shannon in 1948 [11] as the unique measure of the 

indeterminacy or missing information implied by a given probability 

distribution. The information entropy of a continuous distribution 

p(x)dx, with a-priori equivalent increments dx, is 

s - J dx p(x) ln p(x) • (35) 

Let us now assume that information about p(x) is given in the form of 

expectation values for known functions fk(x), 

k=I,2, •.• K. (36) 

What is the probability density p(x) that satisfies these K equations 

but does not imply any other information or hidden assumptions? The last 

requirement in fact means maximal indeterminacy apart from the conditions 

(36), i.e. we must solve the variational problern S = max with the K con

straints (36) (and the additional constraints that p(x) is nonnegative 

and normalised to unity). The well-known solution, obtained by the method 

of Lagrange multipliers, is 

(37) 

This is manifestly positive for real Ak' and properly normalised to unity 

if 
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The Lagrange multipliers can be found from the K equations 

= 
d 
, ln Z , 

d/\k 
k= I, 2, •.• K 

which are equivalent to the constraints (36). If, for instance, we 

(38) 

(39) 

know only the first and secend moment of the distribution p(x)dx, with 

-oo < x < oo, we readily obtain a Gaussian with these moments. If x is 

inherently positive, 0 < x < oo, we can substitute y = ln x. With known 

first and second moments on the log scale we get a Gaussian on the log 

scale, i.e. a lognormal distribution on the linear (x-)scale. This is 

one of the reasons for the ubiquity of these distributions in statistics 

and data analysis. Moreover, we have now a recipe toset up a complete 

(though approximate) probability distribution from information given 

in the form x = < x) ± öx. 

The maximum-entropy algorithm (37)-(39) ought to look quite familiar 

to physicists, since it represents nothing less than Gibbs' axiomatic 

approach to thermodynamics. Clausius' thermodynamic entropy is the 

maximised information entropy multiplied by Boltzmann's constant, and Z 

is the partition function from which all macroscopically observable 

ensemble averages can be found by suitable differentiation. For instance, 

if x is interpreted as the (positive) energy of a thermodynamic system, 

about which nothing is known except its mean energy, one gets the 

canonical distribution, p(x) a exp(-Ax), i. e. a Boltzmann factor with 

the inverse temperature appearing as Lagrange parameter. If we know in 

addition the average particle nurober we obtain the grand-canonical 

distribution, with the chemical potential as a second Lagrange parameter, 

etc. A highly informative and readable review of the maximum-entropy 

formalism, including a wide variety of applications from hypothesis 

testing to non-equilibrium thermodynamics, can be found in Ref. 8. 
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1.7 Approximations: Maximum Likelihood and Least Squares 

The more abundant the data are, the less important is the prior 

and vice versa. In many cases it is therefore a reasonable approximation 

to use a constant prior, as we did initial1y in our first (decay con

stant) example. This means that the posterior probability density be

comes equal to the likelihood function. The maximum likelihood method 

consists essentially in the rule to recommend that parameter value or 

parameter vector which maximises the likelihood function. In many simple 

problems this point estimate turns out to be a function of one or a 

few "statistics" (functions of the sample values). Those are then said 

tobe "sufficient", and their samp1ing distribution provides an indica

tion of the uncertainty of the point estimate. If sufficient statistics 

exist and their probability distribution can be found, it turns out that 

the maximum-likelihood result coincides with the Bayesian resu1t. We can 

illustrate this with our decay constant example. The likelihood function 

in (7) becomes maximal for A = 1/t, where t is a sufficient statistic. 

One finds the distribution of t by integrating the likelihood function 

over all t. with t kept constant, i. e. over a spherical surface in the 
l 

space of the dt .. Using polar coordinates so that t = r 2
, dt = 2rdr, 

l 

dnt cr rzn- 1drdQ one gets, upon integration over Q, 

- - -Anr2 2n-l 
p(tiA)dt cr e r dr ( 40) 

After normalisation the right-hand side is the same as the Bayesian 

posterior (18) obtained with Jeffreys' prior. Since this is actually the 

probability distribution of x = \nt it can either be interpreted as the 

probability of A given n and t (one sample, various possible decay 

constants), or, equally well, asthatoft given n and A (one decay 

constant, various possible samples of size n). 

The maximum-likelihood method, one of the techniques invented to 

circumvent priors, is thus in favourable cases as rigorous as the 

Bayesian approach, but even then it is more cumbersome, requiring 

identification of sufficient statistics and calculation of their pro

bability distribution. The basic simplicity and superiority of the 

Bayesian approach as compared to other estimation techniques is quite 

forcefully demonstrated with a whole series of examples in Ref. 6. 
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The next approximation to be discussed, the least-squares method, is 

the most important one practically in data evaluation and adjustment. Let 

us consider 

observab1es y i' i = 1' 2, I (e.g. neutron transmission data) 

- parameters X ll = 1' 2' M (e.g. resonance parameters) 
ll' 

- a model y = y(x) (e.g. R-matrix theory) 

where y = (y1 , ... y1), x = (x
1

, ... xM) are vectors in the data and para

meter spaces, respectively, and I > M. Suppose 

(a) that before the data became available one had prior knowledge about 

the parameters x , namely estimates ~ and 
ll ll 

A = {ö~ ö~ ), or at least variances A , 
]lV ]l V ]l]l 

correlated uncertainties 

so that the probability of 

x given ~ can be taken as 

[ 
I + -1 J p(x\~) cr exp- 2 (x-~) A (x-~) , (41) 

+ where denotes the transpose; 

(b) that new measurements yielded values n. and correlated uncertain
:1 

ties B.k= <on.önk) for the observables y., so that the likelihood to 
:1 :1 :1 

obtain these values, provided the true parameter vector is x, can be 

taken as 

(42) 

The assumption of multivariate Gaussians is the only approximation 

invoked. For relatively small distances Jx-~1 and Jn-y(x)J it is expected 

to be reasonable and adequate for parameter estimation purposes. Bayes' 

theorem yields now 

p(xJ~n) ~ p(nJx)p(xJ~) 

[ 
I + -1 

~ exp - 2 (x-~) A (x-~) (43) 

The most probable vector x is the one that minimises the exponent, 
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This is the formal statement of the principle of least squares in its 

most general form, involving not only data errors but also uncertain 

prior knowledge about the estimated parameters and possible nonlinearity 

of the model y(x). Weshallcomeback to this equation in the following 

more technical sections. 

2. EVALUATION OF NUCLEAR DATA FOR APPLICATIONS 

In the following sections we shall discuss some of the more practi

cal aspects of nuclear data evaluation. The progress from experimental 

raw data to evaluated files of cross sections and cross section covari-

ances will be outlined, with more detailed reference to the general 

least-squares formalism, to statistical versus systematic errors and 

how the latter cause correlations among data points and data sets. 

2.1 Steps in the Preparation of Nuclear Data for Applications 

Nuclear (and other scientific) data for technological applications 

are usually prepared in several steps. Weillustrate these steps with 

neutron cross section measurements. 

(1) Measurement: Experimenters take data, typically at steady-state or 

pulsed accelerators, the latter permitting use of the time-of-flight 

technique which covers wide energy ranges with high resolution·. 

The simplest measurement is that of the total cross section ot. 

One measures that fraction of a beam of particles of given energy 

(or flight time between accelerator pulse and detector response) 

which traverses without interaction a sample of given thickness n 

(atoms/b). This fraction, the transmission, is 1-ot~n for a very 

thin layer of material. For a sample of finite thickness it is 
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(45) 

In practice T is obtained as the ratio of two count rates from a 

" 1 ' " d " 1 " Th ' ' fl d h d samp e-1n an a samp e-out run. e 1ncom1ng ux an t e etec-

tor efficiency cancel out, so there is no calibration uncertainty. 

Background noise, however, requires corrections. Usually one needs 

"th. " d " h. k" 1 d . d bt . . 1 1n an t 1c samp e ata 1n or er to o a1n opt1ma accuracy 

of the extracted cross sections or resonance parameters. Fig. 1 

shows four sets of transmission data obtained at ORNL across two 

resonances of 238 U [12]. 

Partial cross section are more difficult to measure. Experimentally 

one obtains a reaction yield, for example of fission products or 

capture gamma rays which are emitted from a thin sample upon bom

bardment with the beam particles and subsequently recorded by a 

detector. The yield is defined as the fraction of beam particles 

undergoing a reaction of the type measured in the sample. It is 

a sum of contributions from multiple-collision events with zero, 

one, two etc. preceding scattering collisions, 

y = Yo + Y 1 + · · · ' (46) 

(47) 

where o is the partial cross section for the (n,x) reaction 
X 

considered. The multiple-collision terms must usually be obtained by 

Monte Carlo simulation [13]. The count rate observed is the product 

of Y, the flux and the detector efficiency. These latter two quan

tities must be measured separately and introduce correlated norma

lisation errors. Fig. 2 shows recent neutron capture data across the 

1.15 keV resonance of 56Fe which is responsible for most of the 

iron contribution to the Doppler coefficient in fast reactors [14]. 

(2) Reduction of raw data: Constant and time-dependent backgrounds are 

subtracted, sample impurities are corrected for, and, in the case 
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of partial cross section data (yields), flux and detector efficiency 

are factorised out. Gorreetions for multiple scattering and instru

mental resolution are usually deferred to the next step if they 

require e.g. resonance theory, and due to the complicated relation

ship between observables and cross section (see Eqs. 45-47) this 

means that at this stage cross sections are still unavailable, except 

for thin-sample measurements. 

(3) Analysis of clean data: Whenever possible, nuclear reaction theory is 
----·------- -
used to parametrise the cross sections. In order of increasing energy 

the following theories and models are used: 

- R-matrix theory for the thermal and resolved resonance region, 

- level-statistical (Hauser-Feshbach) theory in the unresolved 

resonance region, 

the optical model at higher energies where levels overlap strongly 

but compound reactions still dominate, 

- precompound, direct and multistep theories at still higher energies 

where direct and pre-equilibrium processes are important. 

This is complemented by the giant-dipole resonance model for photon 

reactions (and beta decay), fission barrier models for fission reac

tions, etc. At this stage parameter estimation techniques are used 

extensively, for instance to extract resonance parameters or the 

parameters of an optical potential. From the estimated parameters 

and their uncertainties one calculates the cross sections and their 

uncertainties which the user finds in files of evaluated nuclear 

("microscopic") data. Where suitable models are unavailable poly

nomial or similar fits are used to interpolate between evaluated 

data points. Unmeasured data are generated with the help of nuclear 

models or from systematics. Fig. 3 shows neutron scattering data for 
93 Nb and curves fitted to them by adjusting the parameters of an 

optical model [15]. 

(4) Generation of group constants: Doppler-broadened point cross sections 

for all open reaction channels and for various temperatures can now 
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be calculated and averaged suitably for reactor or shielding appli

cations over relatively large energy intervals. The result is a set 

of group constants, usually including so-called self-shielding fac

tors for specified temperatures and 11 dilutions 11 (i.e. admixtures of 

other nuclides), as needed e.g. for transport calculations in nuclear 

technology. 

2.2 International Cooperation 

All these steps require time and many years may pass before nuclear 

data needed for technological or scientific applications become available 

in the form of machine-readable computer files. This motivated efforts to 

coordinate the work on an international scale, with OECD (Organisation 

for Economic Cooperation and Development of the Western industrialised 

countries) and IAEA (International Atomic Energy Agency of the United 

Nations) playing the leading parts. Two cooperating nuclear data commit

tees, NEANDC (advising the Nuclear Energy Agency of OECD) and INDC (ad

vising the Nuclear Data Section of IAEA), collect and screen formal 

requests for nuclear data which are periodically published by IAEA in 

\vRENDA, the Worldwide Requests for Nuclear Data. Heasured Data are 

collected by a network of data centres, each operating within its agreed 

service area: 

- NNDC (National Nuclear Data Center) 

at Brookhaven, USA, servicing the US and Canada; 

- NEADB (NEA Data Bank, OECD) 

- CJD 

- NDS 

at Saclay, France, servicing the non-American OECD countries; 

(Centr po Jadernym Dannym) 

at Obninsk, USSR, servicing the Soviet Union; 

(Nuclear Data Section, IAEA) 

at Vienna, Austria, servicing all other countries. 

Regular data exchange in a special format (EXFOR) ensures that the data 

base is essentially the same at all four centres. Evaluated data are 

also collected, notably the files ENDF (US), JEF (NEA member countries), 

JENDL (Japan), SOKRATOR (USSR), KEDAK (Germany), the first two only 

available to restricted user communities. The four centres produce 
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periodically also the widely used Computer Index to Neutron Data (CINDA). 

The well known "barn book", BNL 325, cantairring resonance parameter 

tables and cross section plots, is a product of NNDC. Computer programs 

for cross section analysis and fitting or for group constant generation 

are also collected and distributed by the neutron data centres. Similar 

networks of data centres compile and distribute charged-particle data and 

nuclear structure and decay data. The ENSDF file contains evaluated data 

of the latter type, it is the machine-readable offspring of the well 

known Table of Isotopes and the Nuclear Data Sheets. 

Comparable international cooperation exists in meteorology, aero

space, high-energy physics and other scientific and technological areas. 

2.3 Iterative_Least-Squares Fitting. 

Most of the parameter estimation work in step (3), analysis of clean 

data, employs the least-squares method. We return therefore to the gene

ral least-squares equation, 

(44) 

We stress again that the data vector n may contain data from quite 

different types of measurements which, of course, must be mathematically 

described by the corresponding components of the modelling vector y(x). 

We shall consider the solution vector x as the improved estimate and 
-1 

derrote it by ~~. Note that without prior knowledge A vanishes and 

with it the whole first term. Neglecting also the off-diagonal elements 
-1 

of the matrix B one gets the starting condition for "primitive" 

least-squares fitting which is used in many computer codes. It utilises 

only the data and their uncertainties, but the resulting parameters and 

their uncertainties must be combined with previous parameter estimates, 

derived from other data, by some kind of weighted averaging after the 

fit. It is much more practical to utilise existing values and their un

certainties right from the start in a prior (cf. Eq. 41). In most cases 

the off-diagonal elements of the matrix A are unknown. They are then set 

equal to zero, i. e. A-l is diagonal, with the inverse squared uncertain

ties of the existing or estimated parameters as elements. This is easy to 
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do and not only ensures that existing knowledge is automatically taken 

into account but also improves convergence, as we shall see. 

The extremum condition (44) is equivalent to 

-1 • + -1 
A (x-0 - y(x) B (n-y(x)) = 0 , 

• where y is the reetangular matrix of sensitivity coefficients, 

ay. 
~ 

dX 
J-1 

(48) 

(49) 

Eq. 48 is easily solved for x if y is a linear functior. of x. In nuclear 

data work, however, y(x) is nonlinear and one must iterate, e.g. with the 

Newton-Raphson method (in H dimensions). Fig. 4 shows a typical example 

[16] of the nonlinearities and correlations induced by measurements of 

various types for two estimated parameters (partial widths of a 232 Th+n 

resonance). Starting the iterative process with the a priori most pro

bable value, x
0 

= ~' one finds after n steps 

[
--1 +-1 J-1 +-ll- "j x I = ~+ A +j(x ) B j(x ) j(x ) B n-y(x )-j(x )(~-x ). n+ n n n n n n 
. - -

(50) 

and finally, after convergence, the new estimate 

-1 + -1 -1 + -I 

1
.. J ,- -·1 ~ 1 = ~+ _A +j(x,") B y(x

00
) j(x,) B _n-y(x

00
)-j(x

00
) (~-xoo)_ . (51) 

The new correlated errors are obtained as follows: We consider a 

small domain araund x = ~~ where y(x) can be considered as linear. The 

right-hand side of (43) reduces then to a product of two multi-variate 

Gaussians which is equivalent to another multivariate Gaussian with the 

mostprobable value (mean) <x> = ~~ and correlated errors given by 

I -I -1 o + -1, 
A = A +y(x ) B y(x ) . (52) 

00 00 

In practice, of course, one does not need infinitely many steps 

as our notation seems to imply. Usually three or four steps are quite 

enough for practical convergence (i.e. stationarity within single pre

cision of the computer). 
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Sometimes it is better to express everything in terms of the 

covariance matrices A and B instead of their inverses. For instance, 

a common (systematic) background uncertainty in the data, on. = b, 
1 

-1 
results in Bik = <onionk) = b 2

. The matrixBis then singular and B 

is undefined. It can be shown that Eqs. 51 and 52 are equivalent to 

~I ~ + Ay ( x ) + ,-B +y (X ) Ay ( x ) +j -J r~ -y (X ) -y ( x ) ( ~ -x )J 
oo L oo oo L oo oo oo 

(53) 

(54) 

The pairs of Eqs. 51, 52 and 53, 54 show explicitly how the prior 

estimates and uncertainties C, A are updated by the new data n, B 

resulting in posterior estimates C', A'. The minus sign in Eq. 54 

indicates that new data in fact reduce the uncertainties. The changes 

aresmall if the sensitivity coefficients y. aresmall and vice versa. 
1]1 

This iterative least-squares method [17] is employed in the resonance 

analysis code SAMMY [18] and in the Hauser-Feshbach code FITACS [19]. 

Experience with these codes has clearly shown the advantage of formalised 

inclusion of a-priori information. Since the parameter search is con

strained smoothly to a reasonable domain, the (linear programming) prob

lems encountered with sharp limits are avoided, and convergence is 

dramatically improved compared with earlier "primitive" least-squares 

Versions of these codes which did not utilise prior uncertainties. 

2.4 Statistical Errors: the Poisson Distribution 

We must now discuss the error information which is needed for the 

construction of the covariance matrix B describing the data uncertain

ties and their correlations. In practically all nuclear data measure

ments particles of a certain type are detected and counted, for instance 

fission fragments signalling nuclear fission, or gamma quanta signalling 

radiative capture. The counts are a measure for the corresponding fission 

or capture probabilities (conventionally expressed as fission or capture 

cross sections). In the limit of infinite counting time, andin the 
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absence of other errors, one would measure the probabilities (in the 

frequentist sense) directly, but in practice there is always some stati

stical uncertainty as to the limiting count rate (or cross section) due 

to the finite nurober of counts abtairred within a finite time span. What 

can we say about the true rate A if n events were registered during a 

time t? Counting statistics is gouverned by the Poisson distribution, 

p(njAt) 
(At)n -At 

= ~.:::...!..-.- e 
n! n=O, I, ••. 

in which A is seentobe a scale parameter. Bayes' theorem with 

Jeffreys' prior yields immediately the inverse probability 

p(AJt,n) 

whence 

n 
t 

-1 -x n-1 
f(n) e X dx , 

;; 
t 

The relative uncertainty is 

ÖA I 

<>0 = rn 

0 < X - At < 00 ' 

(55) 

(56) 

(57) (58) 

(59) 

which, of course, is the familiar rule for the assessment of statistical 

errors, widely used not only in counting statistics but also in Monte 

Carlo calculations. 

2.5 Systematic Errors: Correlated Uncertainties and their Propagation 

We shall now briefly discuss a few basic types of systematic errors 

and how they cause correlations between data (or parameters). Above we 

denoted the unknown errors of the n. by on .. If they were purely stati-
l l 

stical they would be uncorrelated and one would have 

<on.on.) = vadn.)o .. - o,~o .. 
l J l lJ - lJ 

(60) 
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This is assumed in many primitive least-squares codes where B is a dia

gonal matrix with elements B .. = o~, so that the i-th data point 
ll l 

is weighted by 1/0~. Besides the statistical errors from counting sta-
1. 

tistics there are, however, always errors from flux determination, detec-

tor calibration, timing uncertainty etc. In cantrast to the statistical 

errors these so-called systematic errors are common to a whole set of 

data, for instance to the data obtained from all the time channels in a 

time-of-flight measurement. Now common errors are, quite generally, the 

cause of correlations between data. To see this we express the unknown 

total errors in the form 

on. = on ~ + on' , 
l l 

(61) 

where on! is the statistical error, and the systematic error on' has 
l 

no subscript since it is the same for all data points. The elements of 

the covariance matrix B are now readily obtained as 

= (62) 

if one uses the fact that statistical errors of different data points 

are uncorrelated, (on~on.') = {Con.') 2)o .. , with zero mean, (on
1
!) = 0, and 

l J l lj 

that there is no correlation between statistical and systematic errors, 

<on~on') = 0. Eq. 62 shows that common, i.e. systematic, errors automa

tically produce correlations between the elements of a data set. In case 

there is a common background error ob we have on' =ob. If there is a 

calibration error oc the resulting relative error is on'/n. = ocjc. If 
l 

both error types are present we have on' =ob+ n.ocjc and thus 
l 

= {Con!) 2)o .. + (Cob) 2
) + n.n.<(oc/c) 2

) 
l l.J 1. J . 

(63) 

This should suffice to illustrate how one can generate the elements 

of the matrix B if enough information about the various error sources is 

available. It is important to realise that only the numerical values of 

expected (absolute or relative) errors are needed for this purpose, but 

not their correlations. Those are automatically obtained once the split 

of the total error into components has been made. The addi~ion of squared 

statistical and systematic errors is sometimes criticised as incorrect. 
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Our equations show, however, that it is perfectly alright. The only 

problern with the sum of squared errors is that it does not reveal how 

much of it is systematic and how much statistical, i.e. how much 

correlation there is. 

This demonstrates how important it is that experimentalists state 

clearly and in as much detail as possible the statistical and systematic 

error components when they report their data, whereas they need not worry 

about correlations or covariance matrices since these can be constructed 

easily from the error components. For an instructive example of corre

lated data errors and their impact on estimated resonance parameters see 

the discussion of resonance energy standards by F.G. Perey [20]. 

The statement that experimentalists need not worry about correla

tions between their data should, by no means, be misunderstood as meaning 

that correlations are unimportant. The remark referred only to the data 

uncertainties required for construction of the covariance matrix B. The 

correlated uncertainties of cross sections or of cross section parameters 

in the posterior covariance matrix A' are highly relevant information 

for users of the data. The uncertainty of any function y of the cross 

section parameters x , for example the calculated criticality of a 
ll 

nuclear reactor, is given in linear approximation by the square root of 

I l: 
jJ \) 

~ <ox ox ) EL-ox jJ \) dX 
ll \) 

(64) 

where (öx öx) is the element of the covariance matrix A' obtained in 
ll \) 

the least-squares fit. It is obvious that a good sensitivity study is not 

possible without the covariance matrix or at least its more important 

elements. In the past it often seemed that nuclear data are not accurate 

enough for certain applications when covariance information was'ignored, 

whereas their accuracies were quite acceptable, due to many negative sume 

terms in the last equation, when the correlations were properly taken 

into account. Hence those who extract cross section parameters from expe

rimental data should not just state the parameters and their uncertain

ties, but also at least the more important elements of the covariance 

matrix. 
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2.6 Inconsistent Data 

One of the thorniest problems in data evaluation is that of incon

sistent data. Suppose we are given the results of n completely indepen

dent and experimentally different measurements of the same physical 

quantity, ~. in the form x. ± 
J_ 

o., i = 1, 2 , ... n. If the separation of 
J_ 

any two values, lx. - x.l, is 
J_ J 

smaller or at least not much larger than 

the sum of the corresponding uncertainties, o. + o., the data are said 
J_ J 

tobe consistent or to agree "within error bars". (The probability that 

two equally precise measurements yield a separation greater than o. + o. 
J_ J 

= 2o. is only erfc 1 ~ 15.7 %, provided the sampling distribution is 
J_ 

Gaus~ian with standard deviation o.). If some or all Separationsare 
J_ 

much larger, the data are not consistent with the assumptions implied by 

the stated errors. Inconsistencies are caused by unrecognised or mal

corrected experimental effects such as backgrounds, dead time of the 

electronics, instrumental resolution, sample impurities, calibration 

errors, etc. The data are then not properly corrected for these effects, 

and the given uncertainties tend to be too small on their account. 

What can we say about the unrecognised errors? If we have no other 

information but the data, and know nothing about the experiments that 

yielded them, positive and negative errors are equally probable, hence 

the probability distribution for the unrecognised error Ei of the i-th 

experiment should be symmetric about zero, and the same distribution 

should apply to all experiments. Let us therefore assume identical 

Gaussians foi all 

p(E.IT)dE. 
• 1 l. 

-oo < E' < oo • 
l. 

The probability to measure the value x., given the true value ~' the 
J_ 

(65) 

untecognised error E, and the uncertainty o, due to all recognised error 
J_ J_ 

sources, is now given by 

p (X, lfl, E , , 0 , ) dx, 
1 l. l. 1 

J [ .J X, -IJ-E, 2 J 
exp- z-( 1.

0
. 

1
) dxi' -oo < x, < 00

• (66) 
hn0Z . 1 l. 

l. 
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The joint posterior distribution for V and the t. is 
~ 

n 
p(~,EJ ••• lx

1 
... ,a

1 
... ,t)d~dnE ~ d~ IT dE, 

i=l ~ 
exp [-

(x.-~-E.)2 
~ ~ 

2 
E. J 
2:2J 

if the dispersion t of unrecognised errors is known. Completing squares 

in the exponent we can easily integrate over the t,. The resulting po
~ 

sterior distribution for v can be written in the form 

-oo < ~ < oo 

with 

(67) 

(68) 

(69)(70) 

where 

X:;::------
-2 

0 (71)(72) 

For consistent data one can put t equal to zero so that x becomes 

just the familiar weighted average with weights equal to l/0. 2
• In 

~ 

the other limiting case of extreme inconsistency one can neglect the 

given errors o., whereupon x becomes the unweighted average and o becomes 
1 

equal to T /in, as might have been expected. 

If we have no information about the scale parameter t we take 

Jeffreys' prior. The joint posterior probability for v, t and all t. 
~ 

is then the right-hand side of Eq. 67 multiplied by dt/t. Integrating 

out the t , one finds 
1 

where x and a are defined as before (Eqs. 7l, /;~) and 

(73) 
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8 •2 = x2 _ X:2 , 
-I Ica?+t2 ) 

(74)(75) 

. 1 
~ 

The integration over t is easy only in the case of negligible known 

errors, a. « T. With a. = 0 for all i the integrand reduces to a 
~ 1. 

gamma distribution, integration of which yields the Student distribution 

r (I) 
-oo < ~ (76) 

with 

s•2 
var 1-l = n-3 

( 77) (7 8) 

where x and x 2 are now unweighted averages. Thus the uncertainty of ~ 

in this extreme case is determined by the sample variance s' 2 , i. e. by 

the scatter of the data x. (sometimes called the "external error"). 
1. 

This, of course, is just what we had before, when we discussed estima-

mation of ~ from a given sample drawn from a Gaussian with unknown 

standard deviation (compare Eq. 28). For large n the distribution of ~ 

is practically Gaussian. 

In general the integration over t must be performed numerically 

for a number of ~-values chosen in such a way (in the vicinity of the 

measured values) that the ~-distribution can be established with suffi

cient accuracy. If information on the relative reliability of the n 

measurements is available, one can introduce, instead of the common 

precision parameter 1/t 2 in Eq. 6 above, individual precision parameters 

w./t 2
, where w. is the relative precision (with respect to un-

1. 1. 

recognised errors) of the i-th experiment. It is straighttorward to 

repeat the calculations with this modification. The only change in the 

results isthat the weights lj(a. 2 +t 2 ) are replaced by lj(a. 2 +t 2 /w.), and 
_1. 1. 1. 

the unweighted averages X: and x 2 in the last equations become averages 

weighted by w •• 
1 
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3. CONCLUDING REHARKS 

We reviewed briefly the probabilistic foundations of data evalua

tion, with special emphasis on Bayes' theorem and its consequences. The 

state of the art concerning prior probabilities was reported, in parti

cular the group-theoretical approach and the technique of entropy maxi

misation. Parameter estimation was discussed in some detail, the expo

nential, Gaussian and Poisson distributions and the generalised least

squares problern providing practically important examples. The process 

leading from raw experimental data to evaluated nuclear cross section 

libraries including covariance files was outlined. The role of nuclear 

models and reaction theory and their use in least-squares fitting was 

illustrated by recent examples. It was explained how data correlations 

are induced by common errors and how correlated error input for least

squares adjustment can be set up if error sources and error estimates 

are known in sufficient detail. The utilisation of correlated output 

uncertainties, e. g. of cross section covariance matrices, was briefly 

indicated. Finally it was shown how the problern of inconsistent data can 

be tackled with the methods of Bayesian parameter estimation and group

theoretical priors. 

The whole presentation was, by necessity, very short. The interested 

reader will find much more detailed material on data reduction and eva

luation methods involving nuclear models and reaction theory in Ref. 21, 

for instance in the papers by W.P. Poenitz and H.R. Bhat there. Special 

experimental and analytical techniques for resonance cross sections are 

reviewed in Refs. 13 and 17, while Ref. 22 treats estimation of level

statistical parameters such as strength functions and mean level densi

ties from resonance parameters, with account of missing weak levels. 

A final remark concerns future work. Although data evaluation has 

reached a high level of sophistication and organisation in response to 

the demands of applied science and technology, it should be understood 

that there are unsolved problems, some of them quite basic. We mention 

four: (1) general recipes for the assignment of prior probabilities in 

multiparameter estimation problems, (2) generalisation of the least

squares formalism to discrete parameters such as resonance spins, (3) 

assessment of information entropy maximisation as a potential competitor 
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for least-squares fitting, and (4) practical methods for evaluation of 

inconsistent data. 
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Resolution: Doppler 
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Fig. 1 - Simultaneaus least-squares fit to four sets of transmission data 

obtained with four different 238 U samples by D. Olsen, G. de 

Saussure et al. at the Oak Ridge Electron Linear Accelerator 

(ORELA) over the 3858 and 3873 eV resonances of 238 U+n. Time

of-flight data are represented by bars, fitted curves are based 

on resonance theory including Doppler and resolution broadening 

(code SIOB) [12]. 
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Fig. 2- Neutron capture yield data measured at Geel by Corvi et al. across the l.JS keV resonance of 56Fe+n 

(histogram) and R-matrix calculation including instrumental and Doppler broadening as well as 

multiple scattering (smooth curve,TACASI code LI6]), from ll4]. 
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Fig. 3 - Measured differential-elastic-scattering cross sections of niobium. 

The measured values are indicated by circular data symbols and the 

results of optical-model calculations by curves. Cross sections are 

in b/sr and scattering angle (8) in laboratory-system degrees. 

(from [15]) 
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Fig. 4 - Illustration of nonlinearities and correlations in least-squares 

fitting: neutron width r and radiation width r of the 23.52 eV 
n y 

f 232 . d b . d. resonance o Th were estlrnate y Slrnultaneous a JUStrnent to 

two rneasured transrnission dip areas (TA), five capture peak areas 

(CA) and two self-indication ratios (SIR). The curves correspond 

to y.(x) in Section 2.3 (i=l,2, ... 8), the "error ellipse" shows 
l 00 

the best values and their correlated uncertainties (code TACASI). 

Frorn [16]. 
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