Evaluation of Tetroon Flights and Turbulent Diffusion Under Weak Wind Conditions During the Field Experiment SIESTA

Institut für Meieorologie und Klimaforschung

Kerniorschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Meteorologie und Klimaforschung

KfK 4126

Evaluation of Tetroon Flights and Turbulent Diffusion Under Weak Wind Conditions During the Field Experiment SIESTA

Hu Erbang ${ }^{+}$
S. Vogt
+) Institute for Radiation Protection, Ministry of Nuclear
Industry, Taiyuan, Shanxi, People's Republic of China

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karisruhe 1

ISSN 0303-4003

Abstract

During several days in November 1985 an international field experiment took place in the Swiss plateau region near the cities of Aarau, Olten. As indicated by the name of the project SIESTA ($\underline{S F}_{6}$ International Experiments in Stagnant Air) its aim is to obtain knowledge of the general nature of turbulence advection andatmospheric dispersion processes in a cold pool with very low wind speed and undefined wind direction. An outline of the general concept of the project is followed by a more detailed description of a special research activity with Radar tracked tetroons. In the second part of the report it is shown how to determine the horizontal dispersion parameter from the trajectories of the tetroon flights. Two different methods are described and the result of the flights performed during SIESTA are presented.

Auswertungen von Tetroonflügen, die bei Schwachwindlagen während des Feldexperimentes SIESTA durchgeführt wurden

Zusammenfassung

Ein internationales Feldexperiment wurde an mehreren Tagen im November 1985 im Schweizer Mittelland in Qer Nähe der Städte Aarau, Olten durchgeführt. Wie durch den Namen des Projektes SIESTA angezeigt (SF ${ }_{6}$ International Experiments in Stagnant Air), ist es das Ziel, ein besseres Verständnis der Turbulenz, der Advektion und der Ausbreitungsprozesse in der Atmosphäre im Falle eines Kaltluftsees mit geringen Windgeschwindigkeiten und unbestimmten Windrichtungen zu erhalten.

Nach einer Einführung in die Konzeption des Experiments erfolgt eine ausführlichere Beschreibung der radarverfolgten Tetroonfluge. Im zweiten Teil des Berichtes wird gezeigt, wie der horizontale Ausbreitungsparameter aus den Trajektorien der Tetroonflüge bestimmt werden kann. Es werden zwei verschiedene Methoden beschrieben und Ergebnisse bezüglich der durchgeführten Flüge bei SIESTA gezeigt.
Table of Contents page

1. Introduction 1
2. Aim of the Project 1
3. General Layout of the Project 2
4. Tetroon Measurements 3
4.1 Description of the Radar site and of Points of Launching 3
4.2 Flights 3
4.3 Data Acquisition and Evaluation 4
4.4 Graphs of Trajectories 5
5. Determination of the Horizontal
Dispersion Parameter 5
5.1 Lateral Diffusion Estimates from Successive Tetroon Release 5
5.2 Lateral Diffusion Estimates from a Single Trajectory 7
5.3 Comparison of the Different Methods of Estimating Horizontal Diffusion Parameter 8
6. Dispersion Under Weak Wind and Calm Conditions 10
6.1 Lateral Diffusion Estimates Under Weak Wind and Calm Conditions 10
6.2 Wind Direction and Turbulence Intensity Under Calm Conditions 11
6.3 Wind Direction and Turbulence Intensity Under Weak Wind Conditions 12
7. Conclusion 13
8. Literature 14

1. Introduction

During several days in November 1985 an international
field experiment, SIESTA (SF ${ }_{6}$ International Experiments in Stagnant Air) took place in the Swiss plateau region of Aarau-Olten.

From an air pollution point of view this region is of specific interest, partly because the population density is high there, partly because it is completely surrounded by mountains (Alps in the south and east, Jura in the north and west) so that stagnant situations, so-called cold pools, occur frequently, especially during the winter season. A cold pool is formed by air flowing down to the Swiss plateau after having been cooled by radiative cooling in the prealpine and alpine regions.

The chosen test region between Olten and Aarau is a near-ideal site for cold pool investigations. The Jura in the north-west forms a well defined boundary of the flow field including only a few and rather narrow overflow regions, and the cold pool is deepest in the test region. Furthermore, a large nuclear power plant is situated between the two cities of Aarau and Olten, at distances of 5 and 7 km , respectively, from the power station.

2. Aim of the Project

As indicated by the name of the project, SIESTA, its aim is to obtain knowledge of the general nature of turbulence, advection and atmospheric dispersion processes in a cold pool with very low wind speed and undefined wind direction.

3. General Layout of the Project

The measuring campaign took place between November 14 and November 30, 1985. Five SF_{6}-tracer experiments were carried out during that period. The release rate was about $1 \mathrm{~g} / \mathrm{s}$ and the release height was 10 m above ground near the Gösgen meteorological tower which is situated about 1 km east of the nuclear power station (Fig. 1). Up to 50 sampling units were used to collect the air at 3 to 8 km distance around the point of emission.

To investigate the flow field in the test region, the following measurements were performed:

- Tethered balloons: 3 tethered balloon sounding systems measured the temperature, humidity, wind speed and direction at places near the meteorological tower, near Trimbach and near Niedererlinsbach.
- Meteorological tower: The 110 m high tower of the Gösgen power plant measures 10 minute averages of wind direction and velocity at 10 and 110 m altitude. A sonic anemometer at the 2 m level measures the vertical heat flux, friction velocity, and wind speed.
- Small masts: 4 small masts of 2 to 10 m height have been installed to measure the wind speed and direction continuously.
- Radar tracked tetroon: Radar-tracked tetroons are a very effective tool to investigate the wind flow system in a Lagrangian manner. Two teams performed tetroon flights independently.

The following organizations participated in SIESTA:

- EIR (Eidgenössisches Institut für Reaktorforschung): Scientific responsibility and tethered ballon.
- APL/Risø (Air pollution Laboratory of the Danish National

Agency of Environmental Protection): SF_{6}-tracer technique, emission system, automatic samplers, and mobile sampling van, small masts and sonic anemometer.

- JRC (Joint Research Center Ispra, Italy) : automatic samplers, sonic anemometer, tethered balloon.
- LAPETH (Laboratory for Atmospheric Physics at ETH Zürich): radar tracked tetroons.
- IMK/KFK (Institut für Meteorologie und Klimaforschung, Kernforschungszentrum Karlsruhe): radar tracked tetroons. Only these tetroon flights of $I M K / K E K$ will be presented in the following chapters.

4. Tetroon Measurements

A detailed description of the experimental technique and of the evaluation of data measured previously has been published /VO83/, B084/.

4.1 Description of the Radar Site and of the Points of Launching

During all tetroon flights the radar was located on a hill 1460 m height) about 1.8 km south-east of the point of tracer release. The coordinates of this site are $641900 / 244400$ in a Swiss Ordinance Survey map. The tetroons were launched either 150 m north of the point of tracer release or 350 m east of that point near the Niedergösgen Mehrzweckhalle. The difference in height between the radar and the launching site is 85 m . The width of the Aare river valley varies between 1 and 4 km in the near distance of the radar and tetroon launching points.

4.2 Flights

During three days 10 tetroons were tracked in total. All tetroons carried transponders. The relevant flight data are shown in Tab. 1. All transponders were found and sent back to Kfk. So it was possible to indicate in Tab. 1 also the points of touch-down of each tetroon.

Information about the stability category was collected at a nearby (4 km east of launching point) micrometeorological station operated by JRC-Ispra:

Based on 30 min mean values of the horizontal wind, visible radiation or radiation balance a stability category was estimated according to the Pasquill classification scheme. The stability category prevailing during the tetroon flights is indicated in Tab. 1.

4.3 Data Acquisition and Evaluation

During automatic tracking of the tetroons by radar the following data were printed with a teletype and punched on paper tape every $10 \mathrm{~s}:$

- time after release of the tetroon in min and s;
- distance d between the radar and tetroon, in m i
- elevation angle ϕ in degrees;
- azimuthal angle α in degrees.

Averages of d, ϕ and α were calculated off-line using a window of 70 s shifted by steps of 10 s in such a manner that an average of e.g. \bar{d} is composed of seven instantaneous values $d(t)[d(t-30 s), d(t-20 s) \ldots . . ., d(t), \ldots, d(t+30 s)]$.

From these averages the position of the tetroons was calculated for each 10-s-step in x^{-}, y^{-}and z-coordinates. This rectangular system is oriented with the x - and y-axes in the east and north directions, respectively. The origin of the system is identical with the operating base of the radar.

$$
\begin{align*}
& x=d \cdot \cos \phi \sin \alpha \tag{1}\\
& y=d \cdot \cos \phi \cos \alpha \tag{2}\\
& z=d \cdot \sin \phi \tag{3}
\end{align*}
$$

Taking into account the earth curvature, the true height h of the tetroon is:

$$
\begin{equation*}
h \cong z+\frac{d^{2}}{2 R} \tag{4}
\end{equation*}
$$

$\mathrm{R}=6378 \mathrm{~km}$ is the radius of the earth.

The refraction of the radar beam is also taken into account but only roughly: In Eq. (4) it is assumed that the earth radius can be replaced by an "equivalent radius" of $\frac{4}{3} R$.

Besides the average values $\bar{\alpha}, \bar{\phi}, \bar{\alpha}, \bar{x}, \bar{y}$ and \bar{h}, the velocities u, v and w, the wind direction in an $x-, y-p l a n e$ and the flight path are calculated for each $10-s-s t e p$ based on these average values.

4.4 Graphs of Trajectories

The trajectories of all flights are plotted in three different types of graphs in Figs. 2 to 11.

Figures 2 to 4 show the projection of the flight path into the $x^{-}, y-p l a n e$ in an ordinance survey map.

The trajectories of SI8508 and SI8510 show several changes in the flight direction. Therefore, these flights have been plotted again on a larger scale in Fig. 5, which is the relevant section of Fig. 4.

Figures 6 to 8 show the height profile of the tetroon as a function of the travel distance. The length scale is 10 times larger than the height scale.

In Figs. 9 to 11 the projection of the trajectories into the plane perpendicular to the mean transport direction (looking downstream) is shown. Tetroon positions are marked at 5 min intervals by circles.
5. Determination of the Horizontal Dispersion Parameter
5.1 Lateral Diffusion Estimates from Successive Tetroon Releases

As shown in /SL68/, it is possible to estimate lateral diffusion from successive tetroon flights. Panofsky and Brier /PA58/ showed
that the best estimate of the variance of the tetroon trajectories $\left(\sigma_{y}{ }^{2}\right)$ is given by:

$$
\begin{equation*}
\sigma_{y}^{2}=(N-1)^{-1} \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2} \tag{5}
\end{equation*}
$$

where N is the number of trajectories, y_{i} is the position of tetroon No. i on the y-axis, and \bar{y} is the mean position of the N tetroons on the y -axis.

The square root of this lateral variance is the horizontal dispersion parameter σ_{y} in the Gaussian dispersion formula.

According to this procedure, circles with different radii are drawn and the distances between points of intersection of the trajectories with these circles are measured yielding σ_{y}-values at individual downwind distances x.

This was done for the series of tetroon flights on November 15 and 17. Series No. 1 consists of the tetroons Si8501, SI8502 and SI8503 whereas series No. 2 comprises four tetroons, SI8504 to SI8507. It is not possible to evaluate with this method the flights made on November 27, because it is impossible to define a reasonable mean wind direction for this series.

For the values o_{y} obtained in this way the dependency of the downstream distance is supposed to take the form

$$
\begin{equation*}
\sigma_{y}=\sigma_{o x} x^{p} \tag{6}
\end{equation*}
$$

The reason for choosing such a function is to make the comparison with former tracer experiments more easier /TH85,VO78,MC69/. In all these tracer experiments such a functional dependence on the downstream distance has been used. By a least squares fit σ_{o} and p are evaluated for each series of flights. The results are listed in Tab. 2 and indicated by a solid line in Fig. 12.

5.2 Lateral Diffusion Estimates from a Single Trajectory

As shown in /SL68/ and /HA82/, it is also possible to estimate lateral diffusion from a single tetroon trajectory based on the lateral wind fluctuation. The relevant formula is:

$$
\begin{equation*}
\sigma_{y}=\sigma_{V} \quad t f_{y} \tag{7}
\end{equation*}
$$

where σ_{y} is the lateral standard deviation after travel time t, σ_{V}, is the square root of the variance of the lateral wind speed averaged over the diffusion or travel time t. The rectangular coordinates $x^{\prime \prime}, y^{\prime}, z^{\prime \prime}$ are oriented in such a way that the x^{\prime}-axis points to the mean flight direction of the individual tetroon trajectory. f_{y} is a universal function and its approximation has been derived by Irwin /IR79/:

$$
\begin{align*}
f_{y} & =\left(1+0.031 x^{0.46}\right)^{-1} & & \left(x \leqslant 10^{4} \mathrm{~m}\right) \\
& =33 x^{-\frac{1}{2}} & & \left(x>10^{4} \mathrm{~m}\right) \tag{8}
\end{align*}
$$

where x is expressed in meters.

Then, according to Eq. (7), the horizontal dispersion parameter σ_{y} is calculated for each individual tetroon. The same functional dependency as in Chapter 5.1 was assumed for each value of σ_{y}. The individual values of σ_{0} and p for each tetroon trajectory were determined again by least squares fit and the results are shown in Tab. 2. For the comparison in Chapter 5.3 the values of σ_{y} of several single tetroon trajectories are combined by forming the geometric mean value according to the following formulas:

$$
\begin{align*}
& \bar{\sigma}_{y_{\text {ind }}}=\bar{\sigma}_{o} x_{x}^{\bar{p}} \tag{9}\\
& \bar{\sigma}_{o}=\left(\underset{i=1}{N} \sigma_{O_{i}}\right)^{1 / N} \tag{10}\\
& \bar{p} \tag{11}
\end{align*}
$$

where N is the number of tetroons within a series. The mean regression lines are indicated as a dotted-dashed line in Fig. 12.

5.3 Comparison of the Different Methods of Estimating Horizontal Diffusion Parameters

It can be seen from Tab. 3 and Fig. 12 that the o_{y} calculated from successive release (first method) is always higher than that based on single tetroon trajectories (second method).

Of course, this is not surprising as the second method, unlike the first method, does not include the effect of wind meandering over several hours.

In order to make an honest comparison one must calculate the total diffusion also in case of the second method. This can be done with the following formula suggested by Gifford /GI59/:

$$
\begin{equation*}
\bar{\sigma}_{y_{\text {tot }}}=\left(\bar{\sigma}_{y_{\text {ind }}}^{2}+\bar{\sigma}_{y_{m}}^{2}\right)^{1 / 2} \tag{12}
\end{equation*}
$$

Gifford assumes two separate scales of diffusion:
$\bar{\sigma}_{y_{\text {ind }}}$ stands for the mean small scale of turbulence within one series and $\bar{\sigma}_{y_{m}}$ is caused by the meandering of the large scale wind field. The effect of meandering according to /HA82/ can be estimated as follows:

$$
\begin{equation*}
\overline{\mathrm{o}}_{\mathrm{y}_{\mathrm{m}}}=\bar{\sigma}_{\Theta_{\mathrm{m}}} \quad \mathrm{x} \quad \mathrm{f}_{\mathrm{y}} \tag{13}
\end{equation*}
$$

with

$$
\begin{equation*}
\bar{\sigma}_{\Theta_{m}}=(N-1)^{-1} \sum_{i=1}^{N}\left[\theta_{\dot{i}}(x)-\bar{\theta}(x)\right]^{2} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\Theta}(x)=\frac{1}{N} \sum_{i=1}^{N} \theta_{i}(x) \tag{15}
\end{equation*}
$$

$\bar{\sigma}_{\Theta}$ is the mean standard deviation in radians, N is the number of ${ }^{m}$ tetroons within one flight series. $\bar{\theta}_{i}(x)$ is the wind direction derived from the i-th tetroon flight path between the point of launching and the relevant downwind distance x.

Values of the total diffusion $\bar{\sigma}_{y_{\text {to }}}$ for two flight series have been calculated according to formila (12) and are shown in Tab. 3.

In the case of series No. 1 the diffusion values estimated from successive releases (first method) differ only by 7% on the average from the values calculated according to Eqs. (12) and (13). Therefore, the assumption of Gifford to split up the diffusion into two separate scales is justified for this series.

But in the case of series No. 2 the differences amount to nearly 45% on the average between the σ_{y}-values estimated from such successive releases (first method) and those calculated according to Eqs. (12) and (13). This is due mainly to the low σ_{y}-values based on single trajectories (second method).

The conclusion of this chapter is that both methods (successive releases and single trajectories) can be adopted to estimate lateral diffusion. But only the first method takes into account the large scale of turbulence (several hours) whereas the second method is appropriate if only the small scale of turbulence (minutes) is of interest.
6. Dispersion Under Weak Wind and Calm Conditions

Normally one distinguishes between low wind conditionsthe mean vector wind speed \mathbb{W} is between 0.5 and $1 \mathrm{~m} / \mathrm{s}$ - and situations with nearly no mean wind speed ($V<0.5 \mathrm{~m} / \mathrm{s}$) /US77/.

6.1 Lateral Diffusion Estimates Under Weak Wind and Calm Conditions

The wind shear of the wind direction with height is often so effective, that abrupt changes of the flight direction of tetroon trajectories will take place. The flights made on Nov. 27 (see Figs. 4,5 and 8) are an excellent example for such conditions. As already stated in Chapter 5.1, it is impossible to estimate lateral diffusion from successive tetroon releases in such situations.

Nevertheless,diffusion estimates from a single trajectory are possible. The concept is to divide one single tetroon trajectory into several (k) parts, then to estimate an individual $\sigma_{y, i}$ for each part and,finally, to calculate an effective horizontal dispersion parameter $\sigma_{y, \text { eff }}$ according to /VO80/:

$$
\begin{equation*}
\sigma_{y, \text { eff }}=\left(\sum_{i=1}^{k} \sigma_{y, i}^{2}\right)^{1 / 2} \tag{16}
\end{equation*}
$$

For example, the whole trajectory of tetroon SI8508. (see also Fig. 5) can be divided into three parts. Each part has its own mean transport direction.

For the flights made on Nov. 27 effective horizontal dispersion parameters have been calculated according to Eqs. (7) and (16). As Tab. 4 shows, σ_{y} is much higher in the vicinity of the source than the corresponding values of the Pasquill-Gifford curve of category B. With increasing downwind distance the difference decreases.

6.2 Wind Direction and Turbulence Intensity Under Calm Conditions

The magnitude and periods of the fluctuations in wind direction are functions of the intensity of atmospheric turbulence. So the standard deviation of fluctuations in wind direction in the lateral direction σ_{θ} and the turbulence intensities $i_{X^{\prime}}, i_{y}$ and i_{z} have been calculated for time periods with $V<0.5 \mathrm{~m} / \mathrm{s}$. V is the mean vector wind speed within the time period and it is assumed that v is equal to the mean transport speed of the tetroon. The turbulence intensity along each axis is defined by

$$
\begin{align*}
& i_{x}=\left(\frac{\overline{u^{2}}}{\mathbf{w}^{2}}\right)^{1 / 2} \tag{17}\\
& i_{Y}=\left(\frac{\overline{v^{\prime 2}}}{V^{2}}\right)^{1 / 2} \tag{18}\\
& i_{z}=\left(\frac{w^{\prime 2}}{\mathbb{V}^{2}}\right)^{1 / 2} \tag{19}
\end{align*}
$$

The orthogonal coordinate system is orientated in such a way that u is the component of the wind along the x-axis and coincides with the mean vector wind direction, V is the component in the y-direction, and w is the component along the z-axis. The averaging time is between 1 min and 10 min , so only a portion of the turbulence spectra is taken into account in equation (17) to (19).

Besides the values of turbulence intensity and σ_{θ}, Tab. 5 also shows the corresponding stability categories according to the criterion given by US NRC /US72/, information about the minimum and maximum of the wind speed, and the differences between the maximum and minimum of the lateral wind direction $\left(\Delta \Theta=\Theta_{\max }-\Theta_{\min }\right)$ and the ratio of $\Delta \theta / \sigma_{\theta}$.

The following conclusions can be drawn from Tab. 5:

- the atmosphere is not isotropic under calm conditions. The lateral turbulence intensity is a factor of 1.2 higher than the vertical components.
- The turbulence intensities in the three directions show a large variation in such calm situations. But the mean turbulence intensities, especially the vertical component, are similar to those found in other tetroon flights under unstable conditions /TH86/.
- The variation of σ_{θ} is also large; it ranges from 13.3° to 71.6° 。
- The ratio of $\Delta \Theta / \sigma_{\Theta}$ is about 3. This is about half of the value reported by IAEA/IA80/. But in/IA80/the sampling time is 3600 s , whereas in our case the mean sampling time is only 213 s .

6.3 Wind Direction and Turbulence Intensity Under Weak Wind Condition

Table 6 shows the same information as Tab. 5, and the conclusions drawn from Tab. 6 are similar to those in the previous chapter. However, there are some differences:

- The turbulence intensities are in general smaller, especially the components i_{x} and i_{Y}.
- The lateral turbulence intensity is by a factor of 0.77 smaller than the vertical intensity.
- The average value of σ_{Θ} is smaller than that in the calm situation.
- The variation of σ_{θ} is larger: it ranges from 5.5° to 64.5°.

7. Conclusion

Radar tracked tetroons are an effective tool:

- to investigate the dispersion processes in a Lagrangian manner,
- to evaluate the horizontal dispersion parameter with different methods according to different scale of turbulence,
- to derive selected turbulence parameters even under special conditions, i. e. low wind speed and wintry situations (temperature below $0{ }^{\circ} \mathrm{C}$).

Nevertheless it is not possible to draw general conclusions from the evaluations presented for similar meteorological situations because of the specific site and the relative small number of tetroon flights.

8. Literature:

/B084/	Bortoli. M.D., Gaglione, P., Thomas, P., Vogt, S.; Experimental Determination of Atmospheric Dispersion in the Mesoscale by Tracer and Tetroons. EUR 9598 EN (1984)
/GI59/	Gifford, F.A.; Statistical Properties of a Fluctuating Plume Dispersion Model, in Advances in Geophysics, Vol. 6 pp. 117-138 F.N. Frankiel and P.A. Sheppard (Eds) Academic Press, New York (1959)
/HA82 $/$	Hanna, S.R., Briggs, G.A., Hosker, R.P.; Handbook on Atmospheric Dispersion, DOE/TIC-11223 (1982)
/IA80/	IAEA, Atmospheric Dispersion in Nuclear Power Plant Siting, Safety Series No. 50-SG-S3 (1980)
/IR79/	```Irwin, J.S.; Estimating Plume Dispersion - A Recommended Generalized Scheme. Proceedings of 4th Symp. on Turbulence, Diffusion and Air Pollution, Reno,Jan 15-18 (1979)```
/UC69 /	McElroy, Joi A Comperative Study of Urban and Rural Dispersion, J. of Appl. Meteorol. 8 No. 1, pp 15-31 (1969)
/PA58/	Panofsky, H.A., Brier, G.W.; Some Applications of Statistics to Meteorology, Pennsylvania State University (1958)
/SL68/	Slade, D.H.; Meteorology and Atomic Energy, USAEC Report TID-24190, Env. Science Series Administration (1968)
/TH85/	Thomas, P., Nester, K.; Experimental Determination of the Atmospheric Dispersion Parameters at the Karlsruhe Nuclear Research Center for Emission Heights of 60 and 100 m, Nuclear Technology 68/3, p. 293 (1985)
/TH86/	Thomas, P., Vogt, S., Gaglione, P.; Mesoscale Atmospheric Dispersion Experiments by Tracer and Tetroons at the Karlsruhe Nuclear Research Center. KfK-report, to be published in 1986.

/US77/ USNRC, Regulation Guide 1.111 (1977)
/V078/ Vogt, K.J., Geis, H., Polster, G.; New Sets of Diffusion Parameters Resulting from Tracer Experiments in 50 m and 100 m Source Height, 9 th Int. Meeting on Air Pollutions Modelling and its Application, Toronto (1978).
/VO80/ Vogt, K.J., Geiss, H., Straka, I.; A Model for Calculating the Dispersion of Accidental Discharges in Varying Weather Conditions. EG-Seminar on Radioactive Release and their Dispersion in the Atmosphere Following a Hypothetical Reactor Accident, Ris ϕ, Denmark, April 22-25 (1980).
/V083/ Vogt, S., Thomas, P.i Analysis of Tetroon Flights Performed during the PUKK Meso-scale Experiment. 14th Int. Techn. Meeting on Air Pollution Modelling and its Application. Copenhagen,Denmark,Sep. 27-30 (1983)

Tetroon	Launch time CET	Stabi- lity cate- gory	Mean flight level above launching site	Mean transport speed	Mean wind direction ${ }^{* *}$		$g \mathrm{e}$	Site of touchdown
						flight distance tracked	duration of flight	
$\begin{aligned} & \text { SI8501 } \\ & \text { SI8502 } \\ & \text { SI8503 } \end{aligned}$	$\begin{array}{ll} 15.11 & 10: 10 \\ 15.11 & 11: 37 \\ 15.11 & 12: 25 \end{array}$	$\begin{aligned} & D \\ & D \\ & D \end{aligned}$	$\begin{aligned} & 400 \mathrm{~m} \\ & 250 \mathrm{~m} \\ & 300 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 3.3 \mathrm{~m} / \mathrm{s} \\ & 3.4 \mathrm{~m} / \mathrm{s} \\ & 4.3 \mathrm{~m} / \mathrm{s} \end{aligned}$	$\begin{aligned} & 69^{\circ} \\ & 88^{\circ} \\ & 75^{\circ} \end{aligned}$	$\begin{array}{r} 9.8 \mathrm{~km} \\ 6.4 \mathrm{~km} \\ 10.8 \mathrm{~km} \end{array}$	$\begin{aligned} & 0: 49 \mathrm{~h}: \mathrm{min} \\ & 0: 31 \mathrm{~h}: \mathrm{min} \\ & 0: 42 \mathrm{~h}: \mathrm{min} \end{aligned}$	Rumisberg Olten Hägendorf
$\begin{aligned} & \text { SI8504 } \\ & \text { SI8505 } \\ & \text { SI8506 } \\ & \text { SI8507 } \end{aligned}$	$\begin{array}{rr} 17.11 & 9: 21 \\ 17.11 & 10: 46 \\ 17.11 & 11: 48 \\ 17.11 & 13: 14 \end{array}$	$\begin{aligned} & D \\ & D \\ & D \\ & D \end{aligned}$	$\begin{gathered} 300 \mathrm{~m} \\ 550 \mathrm{~m} \\ <700 \mathrm{~m}^{*} \\ 150 \mathrm{~m} \end{gathered}$	$\begin{aligned} & 5.5 \mathrm{~m} / \mathrm{s} \\ & 5.4 \mathrm{~m} / \mathrm{s} \\ & 4.7 \mathrm{~m} / \mathrm{s} \\ & 3.8 \mathrm{~m} / \mathrm{s} \end{aligned}$	$\begin{aligned} & 80^{\circ} \\ & 71^{\circ} \\ & 71^{\circ} \\ & 69^{\circ} \end{aligned}$	$\begin{gathered} 10.6 \mathrm{~km} \\ 14.1 \mathrm{~km} \\ 4.5 \mathrm{~km} \\ 4.2 \mathrm{~km} \end{gathered}$	$0: 32 \mathrm{~h}: \mathrm{min}$ 0:44 h:min 0:16 h:min 0:19 h:min	Rickenbach Highway intersection Härkingen Kappel Dulliken
$\begin{aligned} & \text { SI8508 } \\ & \text { SI8509 } \\ & \text { SI8510 } \end{aligned}$	$\begin{array}{ll} 27.11 & 10: 15 \\ 27.11 & 11: 47 \\ 27.11 & 14.40 \end{array}$	$\begin{aligned} & \text { B } \\ & \text { A } \\ & \text { D } \end{aligned}$	$\begin{aligned} & 300 \mathrm{~m} \\ & 150 \mathrm{~m} \\ & 300 \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1.2 \mathrm{~m} / \mathrm{s} \\ & 1.0 \mathrm{~m} / \mathrm{s} \\ & 1.5 \mathrm{~m} / \mathrm{s} \end{aligned}$	$\begin{array}{r} 256^{\circ} \\ 83^{\circ} \\ 229^{\circ} \end{array}$	$\begin{aligned} & 2.9 \mathrm{~km} \\ & 5.1 \mathrm{~km} \\ & 6.4 \mathrm{~km} \end{aligned}$	$\begin{aligned} & 0: 42 \mathrm{~h}: \min \\ & 1: 24 \mathrm{~h}: \min \\ & 1: 11 \mathrm{~h}: \min \end{aligned}$	Thalheim Wintnau bei Olten Auenstein

${ }^{*}$) mean flight level not reached within tracked distance
${ }^{* *)}$ derived from tetroon flight data

Tab. 1 Tetroon flight data

Method of calcualtion σ_{y}	No of series	Tetroon used	Range of flight	σ_{0}	p	Correlation coefficient
From successive tetroon releases	1	$\begin{aligned} & \text { SI8501 } \\ & \text { SI8502 } \\ & \text { SI8503 } \end{aligned}$	6.0 km	0.430	0.853	0.868
	2	$\begin{aligned} & \hline \text { SI8504 } \\ & \text { SI8505 } \\ & \text { SI8506 } \\ & \text { SI8507 } \end{aligned}$	4.0 km	7.850	0.499	0.847
From a single trajectory		$\begin{aligned} & \text { SI8501 } \\ & \text { SI8502 } \\ & \text { SI8503 } \\ & \text { SI8504 } \\ & \text { SI8505 } \\ & \text { SI8506 } \\ & \text { SI8507 } \end{aligned}$	6.0 km 6.0 km 6.0 km 4.0 km 4.0 km 4.0 km 4.0 km	$\begin{aligned} & \hline 0.053 \\ & 0.017 \\ & 1.095 \\ & 0.203 \\ & 0.022 \\ & 0.077 \\ & 0.056 \end{aligned}$	$\begin{aligned} & \hline 1.103 \\ & 1.219 \\ & 0.692 \\ & 0.804 \\ & 1.185 \\ & 0.901 \\ & 1.030 \end{aligned}$	$\begin{aligned} & \hline 0.967 \\ & 0.951 \\ & 0.971 \\ & 0.989 \\ & 0.978 \\ & 0.982 \\ & 0.994 \end{aligned}$
Combination of several single tetroon trajectories	1	$\begin{aligned} & \text { SI8501 } \\ & \text { SI8502 } \\ & \text { SI8503 } \end{aligned}$	6.0 km	0.099	1.005	
	2	$\begin{aligned} & \text { SI8504 } \\ & \text { SI8505 } \\ & \text { SI8506 } \\ & \text { SI8507 } \end{aligned}$	4.0 km	0.066	0.980	

Tab. 2 的 - evaluation based on different method $\left(\sigma_{y}=\sigma_{o} x^{p}\right)$.

Series	Method to calculate σ_{y}	Downwind distance x in m					
No.		1000	2000	3000	4000	5000	6000
1	$\begin{aligned} & \sigma_{y 1}= 0.430 x^{0.853} \text { (first method, } \\ & \text { successive trajectories) } \\ & \sigma_{y 2}= 0.099 \mathrm{x}^{1.005} \text { (second method, } \\ & \text { combination of single tra- } \\ & \text { jectories) } \\ & \overline{\sigma_{y m}} \\ & \sigma_{y t o t}=\left(\sigma_{\mathrm{y} 2}^{2}+\bar{\sigma}_{\mathrm{ym}}^{2}\right)^{1 / 2} \end{aligned}$	155	281	389	508	614	718
		102	205	309	412	515	619
		120	155	120	203	278	298
		158	257	331	450	586	687
	$\Delta \sigma_{y}=\frac{\left(\sigma_{y t 0 t}-\sigma_{y 1}\right)}{\sigma_{y 1}} \cdot 100$	+1.9\%	-8.5\%	-16.8\%	-9.6\%	-4.6\%	-4.3\%
2	$\sigma_{y 1}=7.850 x^{0.499}$	250	350	430	492	-	-
	$\sigma_{y 2}=0.066 \dot{x}^{0.980}$	58	114	169	224	-	-
	$\bar{\sigma}_{\mathrm{ym}}$	91	189	190	161	-	-
	$\sigma_{\text {ytot }}$	108	221	254	276	-	-
	$\Delta \sigma_{\mathrm{y}}$	-56.8\%	-36.9\%	-40.9\%	-43.9\%	-	-

Tab. $3 \sigma_{y}$ - values in m estimated by different methods

Part of trajectory	Duration of flight (s)	Flight path (m)	Downwind distance (m)	$\sigma_{\mathrm{YK}}=\sigma_{\mathrm{V}} \cdot \mathrm{tf} \mathrm{F}_{\mathrm{Y}}$	$\sigma_{Y ; e f f}=\left(\sum_{i=1}^{K} \sigma_{y, i}^{2}\right)^{1 / 2}$	$\sigma_{\mathrm{Y}, \mathrm{PG}}{ }^{(B)}{ }^{*)}$
K_{1}	339	256	-164	70	70	
K_{2}	370	407	101	83	109	18
K_{3}	$\begin{array}{r} 439 \\ 830 \\ 1180 \\ 1600 \end{array}$		$\begin{array}{r} 503 \\ 1000 \\ 1500 \\ 2001 \end{array}$	$\begin{array}{r} 35 \\ 100 \\ 154 \\ 171 \end{array}$	$\begin{aligned} & 115 \\ & 152 \\ & 216 \\ & 275 \end{aligned}$	$\begin{array}{r} 76 \\ 141 \\ 203 \\ 263 \end{array}$

${ }^{*} \sigma_{y}$-value of the Pasquill-Gifford curves for category B
Tab. 4: σ_{y}-evaluation based on tetroon SI8508

Tetroon	Flight time CET	Duration (s)	Vector wind $\vee(\mathrm{m} / \mathrm{s})$.			Turbuience intensity			Fluctuation of wind direction (degree)		$\Delta \Theta / \sigma_{\Theta}$
			mean	\min	max	i_{x}	i_{Y}	i_{z}	σ_{θ}	$\Delta \Theta$	
SI8509	12.17.10-12.28.40	90	0.43	0.36	0.50	0.068	0.346	0.224	18.43	57.26	3.11
	12.37.10-12.46.50	580	0.39	0.24	0.57	0.219	0.190	0.156	14.19	63.10	4.45
	12.48.10-12.50.50	160	0.36	0.19	0.48	0.256	0.469	0.267	24.65	57.10	2.32
	12.56.20-12.58.40	140	0.47	0.38	0.59	0.170	0.435	0.148	26.46	79.80	3.02
SI8510	13.42.50-13.44.10	80	0.35	0.24	0.45	0.271	0.073	0.073	13.34	42.58	3.19
	13.51.10-13.55.00	230	0.32	0.16	0.50	0.545	0.557	0.929	71.56	255.20	3.57
Average		213	0.39	0.26	0.52	0.255	0.348	0.299	28.11	92.51	3.28

Tab. 5: Wind conditions and turbulence intensity under calm oonditions

Tab. 6: Wind conditions and turbulence intensity under weak wind conditions

Fig. 2 Trajéctories of flights on November 15, 1985

Fig. 3 Trajectories of flights on November 17, 1985

Fig. 4 Trajectories of flights on November 27, 1985

Fig. 5 Enlargement of Fig. 4 for flights SI8508 and SI8510

Fig. 6 Profile of tetroon flights on November 15, 1985

Fig. 7 Profile of tetroon flights on November 17,1985

Fig. 8 Profile of tetroon flights on November 27,1985

Fig. 9 Trajectories in the vertical-lateral plane looking downstream for the flights on November 15, 1985

Fig. 10 Trajectories in the vertical-lateral plane looking downstream for the flights on November 17, 1985

Fig. 11 Trajectories in the vertical-lateral plane looking downstream for the flights on November 27, 1985

Fig. 12 Horizontal dispersion parameter σ_{y} as a function of downstream distance

