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Summary 

This KfK report describes the post test investigation of bundle experiment 

ESBU-1. ESBU-1 was the first of two bundle tests on the temperature 

escalation of zircaloy clad fuel rods. The investigation of the 

temperature escalation is part of the program of out-of-pile experiments 

performed within the frame work of the PNS - Severe Fuel Darnage program. 

The bundle was composed of a 3x3 fuel rod array of our fuel rod simulators 

(control tungsten heater, U02-ring pellet and zircaloy cladding). The 
length was 0.4 meter. After the test the bundle was embedded in epoxy and 

cut by a diamant saw. The cross sections are investigated by metallo­

graphic, SEM and EMP examinations. 

The results of these examinations are in good agreement with the seperate 

effects tests investigation of the PNS SFD-Program and inpile experiments 

of the Power Burst Facility. 

The investigations show that liquid zircaloy dissolves U02 by taking away 

the oxygen from the oxide. Depending on the overall oxygen content the 

(U,Zr,O)-melt forms at refreezing 

a) three phases (low oxygen content): metallica-Zry(U), a uranium-rich 
metallic (U,Zr)alloy, and a (U,Zr)02 mixed oxide, or 

b) two phases (high oxigen content): a-Zr(O) and the (U,Zr)02 mixed oxide. 

c) In melt regions where the local oxidation was very severe, such as in 

steam contact, only the (U,Zr)02 mixed oxide is formed already at test 
temperature. Also Zr02 formed during the initial time of the test is 

dissolved by the melt. 



Temperatureskalation in DWR Brennstabbündeln infolge der 
Zircaloy/Dampf-Reaktion: Nachuntersuchung des Bündels ESBU-1. 

Kurzfassung 

Dieser KfK-Bericht beschreibt die metallographische Nachuntersuchung des 
Bündelversuchs ESBU-1. ESBU-1 war der erste von zwei Bündelversuchen für 

die Untersuchung der Temperatureskalation von zirkaloy-umhüllten Brenn­
elementstäben. Die Untersuchung des Eskalationsverhaltens gehört zum 

Programm der out-of-pile-Experimente (CORA), die im Rahmen der Severe Fuel 

Darnage Untersuchungen des PNS durchgeführt werden. 

Das Bündel war in einer 3x3 Anordnung aus den üblichen Brennstab­

simulatorenaufgebaut (zentraler W-Heizer, U02-Ringpellets und Zircaloy­
Hüllrohre). Die Länge betrug 40 cm. Nach dem Versuch wurde das Bündel in 
Epoxidharz eingebettet und mit einer Diamantsäge geschnitten. Die Schnitte 

wurden mit dem Metallmikroskop, dem Rasterelektronenmikroskop und der 
Mikrosonde untersucht. 

Die Ergebnisse dieser Untersuchungen sind in guter Obereinstimmung mit 

Einzeleffekt-Untersuchungen im Rahmen des PNS SFD-Programms und der 

in-pile-Untersuchungen in der Power Burst Facility. 

Die Untersuchungen zeigen, daß flüssiges Zircaloy U02 durch Sauerstoff­
entzug auflöst. In Abhängigkeit vom Sauerstoffgehalt bildet die U,ZrO­

Schmelze beim Erstarren 

a) drei Phasen (bei geringem Sauerstoffgehalt): metallische Zry(O)-, eine 
uranreiche metallische (U,Zr)-Legierung und ein (Zr,U)02-Mischoxid oder 

b) zwei Phasen (bei höherer Sauerstoffkonzentration): a-Zr(O) und 

(U,Zr)02; 
c) bei starker Oxidation, d.h. in direktem Kontakt zum Dampf wird nur das 

Mischoxid gebildet. Auch das am Anfang des Tests gebildete Zrü2 der 
Hülle wird durch die Schmelze angegriffen. 
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1. Introduction 

Within the Project Nuclear Safety (PNS) at the Kernforschungszentrum 
Karlsruhe (KfK), a comprehensive program /1/ for the investigation of 

Severe Fuel Darnage (SFD) is being performed. As part of the overall 

program, out-of-pile experiments (CORA Program /2/) are being conducted at 

the Hauptabteilung Ingenieurtechnik (IT). The tests provide information on 

the mechanisms causing darnage to PWR fuel rods for temperatures up to 

2200 oc. The experiments are designed to give information on the integral 
behaviour of the processes, which are investigated in detail and under 

well defined conditions in the separate effect tests /3,4/ of the SFD­

-program. The out-of-pile experimentsarealso used for the assessment of 

the SFD computer codes which calculate the integral behaviour of the fuel 

rods under Severe Fuel Darnage conditions. In addition, these experiments 
directly complement integral in-pile bundle tests being conducted at PBF, 
ACRR, NRU and PHEBUS. 

Earlier experiments have shown that the behaviour of fuel rods at high 

temperatures is strongly dependent on the degree of cladding oxidation. 
Highly oxidized rods are very brittle and can fragment during operation or 
during quenching, whereas relatively unoxidized cladding melts, dissolves 

U02, and runs down the rod. The extent of oxidation depends, in part, on 
the temperature rise rate, which in turn is influenced by the exotherrnie 
oxidation process. If the heat of reaction is not removed fast enough, the 

exponential increase of the reaction with temperature can give rise to a 

rapid temperature escalation. Therefore, oxidation-induced temperature 
escalation plays an important role in determining fuel behaviour. To 
investigate the temperature escalation and the processes leading to a 

turnaraund of the escalation, a series of single rod and bundle 

experiments with fuel rod simulators are being performed. 

The results of single rod tests are given in the KfK-reports 3507, 3557 

and 3567 /5,6,7/. The bundle tests ESBU-1 and ESRU-2 are described in the 

KfK-reports 3508 and 3509 /8,9/. This paper reports on the posttest 
investigation of the ESBU-1 bundle test. 
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2. Experiment facility 

The testing is performed in the NIELS facility located in the 
Hauptabteilung Ingenieurtechnik at KfK. Figure 1 shows side and top cross 

sections of the 3x3 bundle made with PWR fuel rod simulators. The 

simulators conform as nearly as possible to German PWR dimensions and 

pitch, using zircaloy cladding of 10.75 mm outer and 9.29 mm inner 

diameter, U02 ring pellets of 9.2 mm outer and 6.1 mm inner diameter, and 
a tungsten heater element 6.0 mm in diameter. The overall length of the 
simulators is 400 mm. 

To simulate the exotherrnie reaction energy of neighbouring rods a zircaloy 

shroud is installed araund the 3x3 bundle. To reduce radial heat lasses, 

the shroud is wrapped in a fiber ceramic insulation (6 mm) as shown in the 

inset photograph in Figure 1. Steam is inlet to the bottom of the bundle 
at 16 locations so that the flow is evenly distributed across the bundle 
cross section. Temperatures are measured by two-color pyrometers and 

NiCrNi thermocouples with Inconel sheaths. Additional detailed information 

is given in the test results report /8/. 

3. Test conduct 

The time dependent power input is shown in Figure 2. At the beginning of 

the test, the argon pressure is 770 Torr. An inlet steam flow of about 

1 g/s to the bundle is begun at a time of approximately 41 minutes into 

the test. The steam flow is then held constant through the high 

temperature transient until a time of 66 minutes. 

As seen in Figure 2 the surface temperature of the central rod increases 

at a rate of about 2 oc;s until about 1700 oc is reached. After reaching 

this temperature, the influence of zircaloy oxidation increases the heatup 
rate to about 6 OC/s, the temperature escalates to a peak of 2250 oc and 

then falls rapidly. On the outer rods and the shroud, the initial 

temperature peaking occurs somewhat later and is much lower in 

temperature. At 60 minutes into the test all three temperatures show a 
minimum. During the transient the electric power increases continuously up 
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to 60 minutes, from 60 to 64 minutes the valtage and the resulting 

electric power is constant and finally, at 64 minutes, the power is shut 

off and the experiment terminated. 

4. Posttest appearance (Fig. 3-11) 

The appearance of the test assembly following the test with the insulation 
and shroud still in place is shown in Figure 3. The insulation and shroud 

were intact following the test. However, both were severely embrittled, as 

seen during the removal of the insulation from the shroud. The insulation, 

originally a flexible mat, broke into many pieces. Even though removal of 

the insulation was done carefully, pieces of the shroud broke off as is 
seen in Figure 4. The shroud was severely oxidized over the center region 

of the bundle and broke away in several places revealing the fuel rod 
Simulators. 

Figures 5 and 6 show the fuel rod simulators afterremoval of the shroud. 

The cladding from all nine rods has melted over the center portion of the 

bundle, liquefied some of the U02 fuel and formed a malten mixture which 

flowed down the rods. The malten mixture has frozen in a solid mass near 
the bottarn of the bundle which substantially blocks the coolant flow 

channels. The upper end of the bundle contains intact but oxidized 

zircaloy cladding. In the middle region, only a thin layer of U02 and some 

fragments of pellets stuck to the tungsten rod can be seen. Figure 6 shows 
the 1 ower part of the bundl e after removal of the shroud from above and 

below the blockage. In this figure one can seemetallic looking zircaloy 

near the steam inlet changing to oxidized zircaloy near the blocked 
region. 

Figures 7 and 8 show the detail of the lower bundle region as seen from 

below. Oxide spalling is evident as are refrozen drops of liquefied 

material. The frozen melt shows poor wetting of the solid surface as 

indicated by the large wetting angles and small contact areas. Melt 

viscosity, oxygen content, and the relatively cold fuel rod simulators 

probably influenced the behaviour in this region. 
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The appearance of the blocked region from above is shown in Figures 9 

through 11. The frozen melt has a smooth surface and has wet what is 

remaining of the simulators rather well (small wetting angle and large 
contact surface). This is clear evidence of an interaction of the melt 

with the oxidized fuel rod simulators. The composition of the melt and 

these interactions are the primary subject of the posttest examination. A 

large amount of powdery rubble, not shown in these photographs, was found 
on top of the blockage. 

From the post test appearance of the bundle and shroud, the following 

conclusions are reached regarding the behaviour of the test bundle and 

shroud during the high temperature transient. During the initial heatup to 

high temperature, a layer of Zr02 formed on the outer cladding wall after 
the introduction of steam into the test chamber. Once the melting point of 

zircaloy was reached, the inner region of the cladding, which had not yet 

been oxidized started to melt. The malten zircaloy in contact with the 
fuel pellets took up oxygen from the U02 and started to dissolve the 

pellets. The Zr02 layer that had formed was apparently tothin to retain 

the malten material and the malten material broke free and flowed down 

towards the lower part of the bundle sweeping the oxide layer along with 
it. The malten core material then froze in the lower cooler part of the 
bundle in a series of layers. 

The smooth upper surface of the blocked region (Fig. 11) with loose powder 

lying on top of the blockage indicates that the powder must have fallen 

down onto the melt after it was frozen and that the fragmentation of the 

upper part of the bundle happened during cooldown. 

5. Posttest sectioning (Fig. 13-20) 

The bundle was encapsulated in epoxy after the test and cut into sections 

as shown in Figure 13. Figure 14 shows a summary of the six bundle cross 
sections made in the blocked region. Figures 15 through 19 are 

enlargements of the cross sections starting above the blockage at 129 mm 
elevation and going below the blocked region to 15 mm elevation. 
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Note that the photographs at 15 mm (Figure 19) and at 119 mm, and 129 mm 

(Figure 15) are left-right reversed with respect to the other photographs 

because they were taken from the bottom rather than top of the sections. 
The photographs at 119 and 116 mm (Figures 15 and 16) are of the bottom 

and top surfaces, respectively, of adjacent cross sections and are 
separated only by the 3 mm saw kerf. 

The right hand photgraph in Figure 15 shows the cross section at 119 mm, 
corresponding to the bottom of section 2. The cross section is less than 

10 mm below the upper surface of the refrozen melt. The white circular 

areas are the tungsten heaters, surrounded by black U02 ring pellets. The 

outer radius of the U02 ring pellets have been reduced to about 4.2 mm 
from 4.6 mm, indicating dissolution of U02 by liquid zircaloy. The 
cladding has essentially disappeared and only faint rings at the original 

cladding boundaries can be recognized for some rods. A large coherent lump 

of frozen melt has filled the space between pellets and shroud. 

The frozen material consists of molten zircaloy from the high temperature 

region of the bundle containing U02 from dissolved fuel pellets. When the 

melting temperature of zircaloy was reached, the inner unoxidized cladding 
melted and ran into the gap between the cladding and the U02 pellets. The 
malten zircaloy ran down, further dissolving U02. The first droplets froze 

in the lower part of the blocked region. Melt running down later froze on 
top of the melt which had rundown and frozen earlier. The appearance of 

the cross section at 119 mm indicates that at that elevation the melt 
froze at the same time. 

The hole in upper left part of the cross section at 119 mm is the only 

channel 1 eft open for steam fl ow. The dark seam areund thi s channel i s 
melt oxidized by steam, which forms a (U, Zr)02 mixed oxide. Similar 

oxidation of the melt is seen in Figures 16 and 17 (116-86 mm). 

With decreasing elevation the hole size increases and oxidized cladding 

fonns .Part of the boundary of the channel. At the 106 mm elevation a 

second hole is seen in the lower part of the cross section. A comparison 

to the 116 mm cross section shows that no steam flow was possible there. 
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Stagnant steam or perhaps a hydrogen bubble may have been responsible for 

the second hole. Consequently there was no steam flow through this hole 

and only minor oxidation is evident. 

The first evidence of oxidized cladding appears at 106 mm, and this 
becomes moreevident at lower elevations. Above 106 mm the oxidized 

cladding appears to have been completely dissolved by the melt. Below 
106 mm the cladding attack decreases with decreasing elevation and 
temperature. 

The cross sections shown in Figure 17 provide evidence that the 

interaction history was not necessarily the same in different regions of 

the same cross section. In the channel between the four rods on the upper 
left the low contact angle betwen the melt and the cladding outer surface 

shows that there was no appreciable interaction here between the melt and 

the oxidized cladding. 

This is in cantrast to what is seen in the channel between the four rods 

in the lower right hand quadrant. Here the contact angle between the melt 

and the cladding surface is high and it is evident that the melt has 

interacted with the cladding. The structure of the different cross 
sections indicates that droplets of varying lengths have frozen at 

different times in the channels between the rods. The droplets may have 
also been at different temperatures. When the droplets arrived and froze 

later in a particular position, the time available for cladding oxidation 

was longer and the melt time available for interactionwas shorter. 

The centerrod at 96 mm (Figure 17) illustrates four distinct cladding 
regions, beginning clockwise from the lower right: (a) strong cladding/ 
melt interaction suchthat the two are visually indistinguishable, 

(b) weaker cladding/melt interaction, with the interface still visible, 

(c) oxidized cladding/melt contact with very little interaction, and 
(d) severely oxidized cladding with no melt contact. 
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Figure 18 at 76 mm shows severe oxidation of all nine rods. From the 

oxidation visible along the edges of the melt, one concludes that most of 

the oxidation occurred after the melt ran down and refroze. Figure 18 at 

66 mm and Figure 19 at 51 mm show successively less oxidation until, in 

Figure 19 at 15 mm, almost no oxidation is visible. Since the steam flow 

was obviously ample, the temperatures in this region must have been much 

1 ower. 

6. Microstructural Examination of the Damaged Test Bundle (Fig. 21-93) 

6.1 Overview: 

Figures 20 through 93 show photographs of the microstructures obtained 

with a metallurgical microscope or in some cases a microprobe. The results 

of the point analysis by the microprobe are included. 

The figures can be separated into the following groups: Figures 20 to 68 

are a systematic series of pictures taken from the location where the 

cladding is in contact with U02 or relocated melt. Eight subgroups are 

given for the cross sections at the different elevations above the lower 

end of the bundle. 

Figures 21-26: 119 mm 
II 27-31: 116 mm 
II 32-37: 106 mm 
II 38-50: 96 mm 
II 51-62: 86 mm 
II 63-65: 76 mm 
II 66-6 7: 66 mm 
II 6:3: 51, 15, 7 mm 

Figure 20 gives an overview of the positions of the micrographs at the 

different elevations. Also, in each of the figures from 21 to 68, there is 

a small picture of the respective cross section included and the positions 

presented in each figure are marked. 
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The cross sections were photographed with normal camera while the micro­

graphs were made using a metallographic microscope and the micrographs are 

left-right reversed in relation to the photographs showing the whole cross 

sections. 

Figures 69-71 and 72-76 show enlarged representations of areas with 
oxidized cladding from the cross sections at 106 mm and 86 mm 

respectively. These pictures illustrate the attack of the melt on 
initially oxidized cladding. 

Figure 77 demonstrates the interaction between molten Zry and U02 at 

different areas from the elevations 119 mm and 106 mm. 

Figures 81 through 88 show the results of the microprobe analyses made of 

various locations on cross section 4 (106 mm elevation). Figure 78 shows a 

SEM-picture of the interface between U02 and Zircaloy at 106 mm. The point 

analysis of the three phases found are given. This figure is representative 
of the interaction between U02 and liquid zircaloy. 

The distribution of the three phases at different elevations are given in 
Figures 79 and 80. 

Figures 82 and 83 show the results of the analysis of the three phases in 

cross section 4. The SEM pictures with the point analysis results of 

material oxidized in stagment and flowing steam are given in Figures 84 to 
86. Figure 87 shows a SEM photograph with the point analysis results of an 
area, where previously oxidized cladding was covered with melt (see also 

Figure 69 area A). Finally a summary of the point analysis results is 
given in Figure 88. 

Figure 89 to 93 show the variation in microstructure of the refrozen melt 

with elevation. In these figures a series of micrographs are shown which 

were taken at the same cross sectional position of the array at different 

elevations. The elevations range from 15 mm to 116 mm above the lower end 

of the cladding and the micrographs were taken at magnifications ranging 
from 50 x to 500 x. 
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6.2 Discussion of figures 20 to 68 

The micrographs from elevation 119 mm are given in figures 21 to 26. 

Position 1 gives the region of the former shroud in contact with the melt. 

This region is shown in the upper half of Figures 21 and 22. The outside 
of the shroud corresponds in Figure 21 to the upper part of the pictures 

and in Figure 22 to the left side of the picture. The pictures show that a 

relatively small oxide layer has formed on the outside surfaces of the 
shroud. Inside this oxide layer we can recognize two main phases, the 
bright a-zircaloy matrix and the grey inclusions. The inclusions consist 

of (U,Zr)02. The presence of mixed uranium zirconium oxide in the frozen 

melt shows that most of the shroud must have been molten at high 
temperature. 

The two lower photographs in Figure 21 are from location 2, the area in 

the neighbourhood of the U02 pellet of rod 7. The U02 is the dark region 

in the picture in the lower part of the left side (50x magnification). The 

U02 is not visible in the picture on the right side. The frozen melt also 
contains the two phases here, the white matrix of -zircaloy and the 

frozen mixed oxide which is present as grey inclusions. The dark areas 

correspond to positions where material has broken away from the cross 

sections. The refrozen melt in the neighbourhood of the fuel pellet can 
also be seen at the positions 3, 4, 5, 6 and 7, given in figures 23, 24 

and the upper half of 25. The position of the U02 in these figures is 

always at the lower end of the photographs. 

Position 8 and 9 in figures 25 and 26 show the frozen melt in direct 

contact with the steam channel. In these pictures the steam channel is in 

the direction of the lower end of the photographs. The micrographs show 
that the region next to the steam channel is completely oxidized. This 
region corresponds to the dark ring which is seen in the overview picture. 

The micrographs of the cross section at 116 mm are given in figures 27 to 

31. As one can see in figure 13 the cross section at 119 mm is the surface 

above the saw cut and the cross section at 116 mm is the surface below the 

saw cut. This means that the overview pictures from the cross section 119 mm 

are left-right reversed to the overview pictures of the cross section at 116 mm. 
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This is also seen in the position of the steam channel. Consequently the 

positions marked on cross section 116 mm are on the other side of the 
bundle compared to the positions on the cross secitons at 119 mm 

elevation. 

Location 1 is the region containing the former shroud. On this side of the 
bundle much less oxidation is found than on the other side 3 mm higher. 

The frozen melt in areas 2, 3, 4, 5 and 6 is shown in figures 27 to 29. 

The attack of the melt on the U02 pellet can be clearly seen in locations 

4, 5 and 6 which show the melt U02 pellet interfaces at higher 

magnification. One cann see how little particles are broken away from the 

pellettobe dissolved into the melt. This process is discussed in more 

detail in a following section. 

Figure 30 shows two micrographs taken from location 7. At this location 

and elevation, the U02 ring pellet is missing. The test rod here was not 

heated and extended only part way up the bundle to allow temperature 
measurements of the central rod with the two color pyrometer. The test rod 

contained a part length tungsten rod to position the test rod. During the 

high temperature transient, the cladding melted and filled the gap at this 

elevation between the cladding and the tungsten rod. The piece of tungsten 
fell out of the section during cutting and the hole left by the tungsten 

rod is filled with epoxy. 

As a consequence of this location 7 shows a cross section of the refrozen 

melt consisting of zircaloy matrix and refrozen melt. 

Area 8 gives the region of the melt directly next to the steam channel. 

Here one can see that the melt is completely oxidized. This region 

corresponds to the dark ring in the overview picture. This layer was 

probably already sol idified during the test at high temperature. 
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The micrographs of cross section 4 at 106 mm elevation are given in 
Figures 32 to 37. This cross section corresponds to the upper surface of 

segment 4 and it is equivalant to the cross section from 119 mm elevation. 

The shroud is located at position a in these cross sections. Due to the 

fact that the melt had not covered the inner surface of the shroud at this 

elevation we find much more oxidation of the zircaloy than is observed in 

the cross section 30 mm higher. 

In Figure 32, location 1 shows the region of fonner cladding which was not 

covered by melt. The outer highly oxidized surface of the cladding is seen 

in the upper part of the picture. Location 2 shows the opposite side of 

the test rod. Here the cladding is completely covered with melt and has 

been completely dissolved. Section 2 shown on Figure 32 is the region 

where the U02 and melt are in contact. 

The micrographs taken of locations 3 b and c in Figures 32, 34 and 35 

respectively show areas of previously oxidized cladding which were not 

completely dissolved by the melt at the end of the test. One can see here 

how the zirconium is attacked by the melt through cracks in the oxide 

layer. This attack of the melt on the oxidized zircaloy is discussed in a 

later chapter. Figures 69 to 71 show enlarged views of the same regions. 

Location 4 shows a region of the cladding which was in direct contact with 

the steam channel. The cladding is completely oxidized at this position. 

The oxidation process was much stronger here than in location 1. The fuel 

rod at location 1 had only access to stagnant steam at this elevation. 
Area d shows the melt in direct contact to the steam channel. In this 

picture the steam channel is on the right side and one recognizes the 

oxidized melt by its much darker appearance. 

The micrographs of cross section 5 at 69 mm elevation are given in 

Figures 38 to 50. Locations 1, 10 and 11 in Figure 38 show oxidized 

cladding in direct contact with steam which has been nearly completely 

oxidized. In Figure 39 locations 2, 3, 4 and 5 show regions of former 

cladding which are covered by melt. 
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The melt between locations 2 and 3 appears to have rundown much earlier 

than the melt between location 4 and 5 for much less zirconium oxide is 
found in areas 2 and 3. In Figure 40 locations 6, 7, 8 and 9 show cladding 

which has had direct access to the steam channel. In comparison to the 

oxidized cladding in Figure 38 which reacted under the condition$ of 

stagnant steam, a quite different oxide structure is found. In Figure 40 
typical large grains of zirconium oxide are found. Location a, c and d in 

Figures 41, 43 and 44 respectively show regions of oxidized cladding on 

the same rods which are covered by melt. Here one can clearly see the 

reaction of the melt with the zirconium oxide as well as the sharp 

boundary line between the outside surface of the oxidized cladding and the 

region of the melt. In all the micrographs one can see a high concentra­
tion of oxide phases. This appears as a seam araund the former boundary of 

the cladding. Location b in Figure 42, location e in Figure 45 and 

location f in Figure 46 shows the melt next to the fuel rod and in direct 
contact with the steam channel. Here the melt adjacent to the U02 pellets 

is in direct contact with the steam and is completely oxidized. In Figure 

42 on the right side of the lower picture one can see the U02 pellet. On 

the lower side of the picture, one sees completely oxidized melt which is 
in direct contact with the steam channel. And in the upper photograph a 

mixture of -zircaloy and oxidized inclusions is seen. In Figure 45, the 

U02 pellet is again seenon the right side, but in this picture the 
completely oxidized melt is at the top. In Figure 46, the U02 pellet once 
again is on the right side, but the fully oxidized region appears in the 

lower part of the picture. In Figure 47 position g shows a region of 

former cladding in direct contact with the steam. The cladding is nearly 
completely oxidized. Position h on Figure 48 gives the melt in direct 
contact to the steam. One can see here how the oxidation forms a layer on 
the surfce of the melt. Positions i and k in Figures 49 and 50 show the 
oxidized shroud. 

The micrographs of the cross section from the 86 mm elevation are given in 

Figures 51 to 62. In Figure 51 positions 10 and 11 show the oxidation of 

the cladding which had access to stagnant steam without being covered by 

the melt. We find more oxidation in positions 10 and 11 than in position 1. 

This may be due to the fact that the rods at position 10 and 11 were in 

contact with more melt from the upper region at this elevations and extra 

heating of these rods may have occurred at this elevation. 
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In Figure 52 positions 2, 3, 4 and 5 are given. At these locations, 

oxidized cladding was covered by the melt, running down from the upper 

part of the bundle. One can recognize in all of the pictures that the 

oxide is attacked by the melt. The thickness of the different oxide layers 

show that the oxidation behaviour clearly depends on the arrival time of 

the melt from the upper part of the bundle. If one compares positions 2 

and 3 which are adjacent locations on neighbouring rods one finds nearly 

the same oxide layer thickness although the oxide layer in position 3 is a 

little bit thicker than in area 2. This is expected as position 3 is 

located on a side rod sitting between two corner rods and this rod should 

run a little higher in temperature than a corner rod. If one compares 

positions 3 and 4 which are on opposite sides of the same rod but 
otherwise equivalent, a marked difference is seen in the thickness of the 

oxide layer. This means the melt between the positions 2 and 3 must have 

come down much earlier than the melt between the positions 4 and 5 and 

thus in locations 2 and 3 the cladding had a shorter time for oxidation. 
The thinner oxide layers of area 2 and 3 which were in contact for a 

langer time with the melt arealso more strongly attacked by the melt. 

In Figure 53, positions 6, 7, 8 and 9 show areas of cladding which were 

not covered by melt. In these areas the cladding was in direct contact 

with the steam channel and is fully oxidized. In these pictures, the 

cladding surface exposed to the flowing steam is at the top and the U02 is 
located in the lower section. 

A detailed view showing the oxidation of the shroud is given in Figures 54 

and 62. Here, the oxide layer on the inside of the shroud is much thicker 

than the oxide layer on the outside of the shroud. This is because the 
inside of the shroud had better access to the steam. 

Positions b and c on Figures 55 and 56 compare the location on the same 

fuel rod in which the first location remains uncoverd during the test and 
the second location is covered by the melt from the upper part of the 

bundle. Figure 56 shows that a strong attack of the oxidized cladding by 

the 1nelt has occurred. The outer surface of the oxidized cladding is also 

clearly defined. Positiondon Figure 57 shows a region of oxidized 

cladding which is strongly attacked by the surrounding melt. 
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In this micrograph the cladding is on the left side of the figure and the 

U02 is seen on the right side. 

Positions e and f in Figure 58 show positions in which the melt over the 
cladding is in direct contact with the steam channel. Here one can see a 

region in which the previously oxidized zirconium is attacked by the melt 

and also a region in which the material over the U02 is completely 
oxidized. For position e the completely oxidized melt is located on the 
right side of the picture. In position f the completely oxidized region is 

on the left side of the picture. In both cases the U02 is seen in the 

lower end of the picture. 

Figure 59 shows position g and h on the central rod. Here one can see that 

at position g much less attack on the zirconium oxide has occurred than at 

position h. In location h the oxidized cladding has completely 
disappeared. This means that the melt in this region must have moved down 
much earlier than in the region corresponding to position g. 

In location 1 shown in Figure 61 the oxide layer has completely dis­
appeared. For the regions i, k and m in Figures 60 and 61, the melt is in 

direct contact to the steam channel and the melt covering the U02 in 

contact with the steam is nearly completely oxidized. In the region where 

the melt had no direct access to the steam, the Zr02 layer has 

disappeared. The fully oxidized region is shown on the right side of the 
picture for position i and m and for position k on the left side of the 
picture. 

The micrographs of the cross section at 76 mm are shown in Figures 63 to 

65. Position 1 shows the oxidation of the cladding with no melt present. 

Region 5 on Figure 65 shows the thickness of the oxide layer on the 

central rod. The oxide layer here is nearly three times larger than at 
position 1 on the outer rod. Area 3 in Figure 64 shows the region of the 
former cladding on the central rod which was covered by melt. One can 
recognize here that the oxide layer has disappeared completely. Region 4 

in Figure 64 shows the transition from the covered to uneavered region. 
The uneavered region is on the left and the covered is on the right. Once 
again no oxidized cladding is left in the covered region. The upper left 
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hand side of the pictures shows the oxidized melt. Areas 7,8 and 9 in 

Figure 65 show the thickness of the oxide layer of three outer fuel rods. 

The oxide layers in these rods can be compared to the thickness of the 
oxide layer on the central rod in location 5 shown on the same figure. As 

these four rods 1 ie next to the same sub-channel, the avail abil ity of 

steam should be the same for all four. Consequently the difference in 

oxide thicknesses is due to the difference in the temperature of the 

central fuel rod. 

The micrographs of cross section 8 at 66 mm are given in Figures 66 and 

67. The thicknesses of the oxide layer araund the upper right sub-channel 
are shown in position 2,4, 5 and 6. As expected, the oxide layer of the 

central fuel rod simulator is the thickest. If one compares the oxide 

layers at the two equivalent positions 4 and 6, the oxide layer, at 

location 6 is much thicker. This means this fuel rod must have been 

somewhat higher in temperature. A thicker oxide layer was found on this 
fuel rod simulator 10 mm higher at 76 mm in Figure 65. 

Finally Figure 68 shows cross sections from 51, 15 and 7 mm elevations. 

One recognizes here that at 51 mm only a thin oxide layer has formed. At 

the two other elevations the temperature was too low for the formation of 

an oxide layer. 

6.3 Interaction between liquid zircaloy and UOz. and the phases present in 

t he frozen me l t 

Under high temperature conditions, U02 is not stable in contact with 

zircaloy. Zircaloy reduces U02 to form oxygen stabilized a-Zr(O) and 

metallic uranium. The process of U02 dissolution has been investigated in 
detail in separate effect tests by P. Hofmann /3/. Dissolution of the U02 

by malten zircaloy occurred in test ESBU-1 and the dissolution process is 

shown in figures 77 and 78. In these figures the malten zircaloy is seen 

pentratino into cracks at the U02 surface. The U02 is reduced by the 

malten zircaloy and forms metallic uranium along the grain boundaries of 
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the U02. When this occurs, U02 particles are separated from the solid U02 
pellet and are dissolved into the melt forming a (U,Zr,O) mixture. As the 
oxygen concentration increases, the high temperature melt becomes a 

1 iquid/solid mixture consisting of malten (U,Zr,O) and (U,Zr)02 particles. 

During cooling the melt decomposes into a-Zr(O) and a uranium-rich (U,Zr) 
a ll oy. 

Figure 78 shows the U02 pellet on the right side. On the left side of the 
region where there was formerly cladding, frozen melt is seen. At the 

boundary of the pellet small areas which are darker than the U02 are 

visible. The point analysis (1) of one of these areas shows that it is 

mainly metallic uranium. The oxygen values have the tendency tobe to 
high, due to oxygen contamination of the surface. The matrix (2) of the 
refrozen melt consi sts of a -Zry. In thi s matrix we also find two 

a d d i t i o n a 1 p h a s es , a ur an i um r i c h ( U, Zr) a ll o y i n ( 3 ) an d ur an i um 

z i r c o n i um o x i d e ( U , Zr) 0 2 i n ( 4 ) • 

Along the pellet edge one can see particles which have just separated from 

the pellet. Figure 77 shows this process, the formation of small U02 

particles, for different rods at two different elevations. 

The distribution of the three different phases in the refrozen melt is 

shown in Figures 79 to 83. Figure 79 shows the position in the frozen melt 
where SEM-micrographs were made at three different elevations. The 

micrographs and the analysis of the phases are given in Figure 80. Once 

again the matrix is formed of -Zr. The black phase is the uranium rich 
(ll,Zr) alloy and the grey phase is (U,Zr)02 mixed oxide. At the higher 

elevations the melt was at high temperature for a langer time and larger 

inclusions could form. Figures 82 and 83 show SEM-micrographs of the 

frozen melt at six different positions from cross section 4 at 106 mm 
el evati on. The same three phases are found once agai n. The 11 Whi te 11 a -Zry 

matrix, the uranium rich (U,Zr) alloy and the (U,Zr)02 mixed oxide. The 

uranium rich alloy is only a minor component at this location. 

In Figure 88, the results of the point analysis are represented in a (U, 

Zr,O) diagramm. One sees that the oxides lie in the neighbourhood of the 

l ine connecting U02 and Zr02. The zircaloy rich phase is found in the 

nei ghbourhood of the a -Zr(O). The urani um rich all oy has an unexpectedly 
high oxygen content. It appears that for this phase the measurement was 

influenced strongly by oxygen contamination of the surface. 
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6.4 Dissolution of oxidized cladding by the melt 

During the initial escalation to high temperature, the cladding in the 

high temperature zone reacted with the inlet steam forming a thick layer 

of ZrOz. Figures 69 to 76 and figure 87 show the interaction of the Zr02 

with the UOz-Zircaloy melt. In Figure 69, fragments of oxidized cladding 

pieces from the four rods labeled A,B, C and D can be seen. Thesepieces 

were oxidized during the initial heating and then covered by the malten 
zircaloy-fuel mixture. Enlarged photographs of these pieces are shown in 

Figures 70 to 71. The photographs in Figures 70 to 71 were made with the 

microscore and are left right reversed to the cross section shown in 

Figure 69 which was made with a normal camera. Figure 87 shows a SEM 

picture of a region of rod A where a miereprobe analysis was made and the 
positions are marked in this picture by black dots. These are numbered 

from 1 to 11 starting in the frozen melt close to the UOz pellet. The 

results of the miereprobe analysis are shown in the bargraphs. In the 

region of the of the oxidized cladding fragments, analyses were made at 
three points (St7, St8 and St9). The middle white layer of ZrOz (St8) is 

sandwiched on both sides by a-Zry (St7 and St9). It is assumed that the 

whole region had oxidized to ZrOz-x during the initial phase of the test. 

When the melt came into contact with the Zr02 cladding fragments, 

reduction of the ZrOz back to a-Zr(O) occurred. The reduction started on 

the inner and outer surfaces of the oxidized cladding and progressed 

toward the middle. The analyses made at points St4, St5 and St6 show the 

formation of three layers of (U,Zr)Oz mixed oxide next to the a-Zr(O) 
layer, St7. These three layers were formed of (Zr,U)Oz with a varying 

ratio of zircaloy to uranium. These layers appear to have precipitated 

from the melt when the uptake of oxygen increased their melting point. The 

composition of the melt appears to have changed with time. The minimum 
value of uranium in the middle layer may be explained by the change of' the 

melt composition due to vertical movement. 

The melt in this region which was molten at test temperature, contains two 

recognizable phases after cooldown: The a-Zry-matrix (St1, St3 and St11) 

and the (Zr,U)Oz inclusions (St2, St10). 
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In the enlarged view of the Zr02 remnants from rods A, B, C, D in Figures 
70 and 71 one can see the attack of the melt on the oxide. These figures 

clearly show the penetration of the oxide along the cracks. In the light 
microscope pictures here, the oxide appears darker than the metallic 
phase. 

The attack of the melt on the Zr02 can also be clearly seen from the 
comparison of different locations on the same rods. These locations were 
selected as they had the same oxidation history, until one of the regions 

was covered with melt. This is seen in the cross section at 86 mm 

elevation. The overview of this cross section is given in figure 72. The 

comparison of 4 rods at this elevation is found in figures 73 to 76. This 
comparison clearly demonstrates the attack of the melt on the Zr02 at the 
macroscopic scale. 

6.5 Oxidation of the melt 

Figures 84 to 86 show the SEM pictures from oxidized regions under 
different conditions. In fig. 84 region 1 from fig. 81 is investigated. 

This cavity was blocked from above and only stagnant steam was available, 

which left primarily hydrogen after reaction with the zircaloy. If we 

start from the right side of Figure 84, the outer layer consists of Zr02 
(St2) with some a-Zry incursions (St1). 

On the inner side of this Zr02 layer a three fold layered structure of 

(Zr,U)02 (St2, 3, 4, 5) has precipitated. This layer sol idified at the 
test temperature. The next layer, a mixture of a-Zry (St6) and (U,Zr)02 
(St7) formed during cooldown. The final layer next to the U02-pellet is 

formed of a -Zry and Zr02. 

Figure 85 shows the oxidation of melt which is separated from the steam 

flow by an oxide layer which formed during the initial heatup. Figure 85 

is the enlargement of area A in Figure 81. On the right side of the figure 

we find the Zr02-layer (St1), which formed during the initial heatup. 
After reaching the melting point of zircaloy the inner part of the 
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cladding melted and started to dissolve the U02 forming a (Zr,U,O) melt. 
The oxygen diffusing through the Zr02 skin increased the oxygen content in 

the region close to the oxide layer leading to the precipitation of a 

(Zr,U)02 layer (St2 and St3) at the test temperature. The layer appears to 

be homogenous, but the concentration of uranium changes with location. 

Between the homogenaus layer and the U02 pellet we find a region with a 
fine structured appearance. The analysis of the region (St4 and St5) gives 
nearly the same oxygen concentration as in the homogenaus layer, but the 

zirconium-concentration is increased and the uranium concentration 

decreased. It is assumed that this layer froze during cooldown. 

In Figure 86, a SEM picture of a region between two rods is given where 

the melt was in direct contact with the steam. The mark (St5) in figure 81 

should be somewhat higher. The right side of Figure 86 corresponds to the 

dark seam at the surface of the steam channels. Analysispoints St4 to 8 

show that this is a fully oxidized region. This layer appears to have 

formed at high temperatures during the test. One can recognize a fine 

structure within this oxide layer. Due to the bright and dark appearance 

of the components one may assume that a separation of the (Zr,U)02 into 

ZrO and U02 has taken place. From the phase diagramm of the U,Zr,O system 
this is expected to occur at equilibrium conditions. 

With increasing distance from the steam channel the degree of oxidation 

decreases. In the region of the positions St1, St2, St3 we find two phases 

after cooldown: a-Zry with a small U-concentration and (Zr,U)02. As was 

discussed early at greater distances from a steam source an additional 

third phase is found, uranium rich metallic U,Zr-alloy. 
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9. List of Figures 
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two-color pyrometers. 
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145 mm from the upper end of cladding compared to the electric 
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and 25 mm (UPB and UPD) and 145 mm (MI) from the upper end: 
ESBU-1. 

Fig. 3: Bundle ESBU-1 with insulation after the test. 

Fig. 4: Four orientations of the ESBU-1 shroud after removal of the 
insul ation. 

Fig. 5: 3x3 bundle of ESBU-1 ater removal of the upper part of the 
shroud. 

Fig. 6: Lower region of ESBU-1 after removal of the shroud. 

Fig. 7: Appearance of the blocked region of ESBU-1 as seen from below. 

Fig. 8: Details of oxide spalling and refrozuen melt of ESBlJ-1 below 
blocked region. 

Fig. 9: Appearance of the blocked region of ESBU-1 as seen from above. 

Fig. 10: Details of blocked region of ESBU-1 showing the refrozen melt 
from above. 

Fig. 11: Enlargement of the blocked region of ESBU-1 illustrating the 
wetting behaviour of the melt. 

Fig. 13: Schematic diagram showing axial elevations of the ESBU-1 cross 
sections. 

Fig. 14: Bundle cross section summary. The following figures·give deta il . 

Fig. 15: Cross sections of ESBU-1 at 129 and 119 mm above the bottom of 
the bundle. 

Fig. 16: Cross sections of ESBU-1 at 116 and 106 mm above the bottom of 
the bundle. 

Fig. 17: Cross sections of ESBU-1 at 96 and 86 mm above the bottom of the 
bundle. 

Fig. 18: Cross sections of ESBU-1 at 76 and 66 mm above the bottom of the 
bundle. 

Fig. 19: Cross sections of ESBU-1 at 51 and 15 mm above the bottom of the 
bundle. 

Fig. 20: Positions of micrographs gi ven in figures 21-67. 
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Fig. 21: Details of the cross section at 119 mm. 

Fi g. 22: Details of the cross section at 119 mm. 

Fig. 23: Details of the cross section at 119 mm. 

Fig. 24: Details of the cross section at 119 mm. 

Fig. 25: Details of the cross section at 119 mm. 

Fig. 26: Details of the cross section at 119 mm. 

Fig. 27: Details of the cross section at 116 mm. 

Fi g. 28: Details of the cross section at 116 mm. 

Fig. 29: Details of the cross section at 116 mm. 

Fi g. 30: Details of the cross section at 116 mm. 

Fig. 31: Details of the cross section at 116 mm. 

F i g. 32: Details of the cross section at 106 mm. 

Fig. 33: Details of the cross section at 106 mm. 

Fig. 34: Details of the cross section at 106 mm. 

Fig. 35: Details of the cross section at 106 mm. 

Fi g. 36: Oetail s of the cross section at 106 mm. 

Fig. 37: Details fo the cross section at 106 mm. 

Fi g. 38: Details of the cross section at 96 mm. 

Fig. 39: Details of the cross section at 96 mm. 

Fig. 40: Details of the cross section at 96 mm. 

Fig. 41: Details of the cross section at 96 mm. 

Fig. 42: Details of the cross section at 96 mm. 

Fig. 43: Details of the cross section at 96 mm. 

Fi g. 44: Details of the cross section at 96 mm. 

Fig. 45: Details of the cross section at 96 mm. 

Fi g. 46: Details of the cross section at 96 mm. 

Fig. 4 7: Details of the cross section at 96 mm. 

Fig. 48: Details of the cross section at 96 mm. 

Fig. 49: Details of the cross section at 96 mm. 
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Fig. 50: Details of the eross seetion at 96 mm. 

Fig. 51: Details of the eross seetion at 86 mm. 

Fig. 52: Details of the eross seetion at 86 mm. 

Fig. 53: Details of the cross seetion at 86 mm. 

Fig. 54: Details of the eross seetion at 86 mm. 

Fig. 55: Details of the eross seetion at 86 mm. 

Fig. 56: Details of the cross seetion at 86 mm. 

Fig. 57: Details of the eross seetion at 86 mm. 

Fig. 58: Details of the eross seetion at 86 mm. 

Fig. 59: Details of the eross section at 86 mm. 

Fig. 60: Details of the eross seetion at 86 mm. 

Fig. 61: Details of the eross seetion at 86 mm. 

Fig. 62: Details of the eross seetion at 86 mm. 

Fig. 63: Details of the eross seetion at 76 mm. 

Fig. 64: Details of the eross seetion at 76 mm. 

Fig. 65: Details of the eross seetion at 76 mm. 

Fig. 66: Details of the eross section at 66 mm. 

Fig. 67: Details of the cross seetion at 66 mm. 

Fig. 68: Details of eross seetions at 51, 15 and 7 mm at the positions 
shown. 

Fig. 69: Positions of enlarged views of the eross section at 106 mm given 
in the following figures, ESBU-1. 

Fig. 70: Enlarged view of former cladding region A of the cross section 
at 106 mm above the bottom of the bundl e (ESBU-1). 

Fig. 70a: Details of former cladding region A in the cross section at 
106 mm elevation (ESBU-1). 

Fig. 71: Enlarged views of former cladding regions B, C, D of the cross 
section at 106 mm above the bottom of the bundle (ESBU-1). 

Fig. 72: Positions of enlarged views of the cross section at 86 mm for 
the eomparison of surfaee regions eovered and uneavered with 
mel t (ESBU-1). 

Fig. 73: Comparison of oxidized parts of eladding from same rod. t~elt 
eovered regions (A) and uneavered regions (G) shown from eross 
section at 86 mm ESBU-1. 
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Fig. 87: 

Fig. R8: 

Fig. 89: 
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Camparisan of oxidized parts of eladding from same rod. Melt 
eovered regions (B) and uneavered regions (E) shown from eross 
seetion at 86 mm, ESBU-1. 

Camparisan of oxidized parts of eladding from same rod. Melt 
eovered regions (C) and uneavered regions (F) shown from eross 
seetion at 86 mm, ESBU-1. 

Camparisan of oxidized parts of eladding from same rod. Melt 
eovered regions (D) and uneavered regions (H) shown from eross 
seetion at 86 mm, ESBU-1. 

Dissolution of U02 by malten zry for different positions of 
eross seetions 2 (119 mm) and 3 (109 mm). (ESBU-1). 

Miereprobe results of the rhases in the refrozen melt at 
position 2 in the eross seetion at 106 mm, uneorreeted 0-values 
(ESBU-1). 

Positions of the miereprobe analysis of the 3 phases in the 
refrozen melt for Fig. 80. 

Miereprobeanalysis of the 3 phases in the refrozen melt for the 
elevations 3 (116 mm), 9 (51 mm) and 11 (7 mm above the bottom) 
at the position given in Fig. 79. 

Loeations of miereprobe investigations from eross seetion 4 
(106 mm) of ESBU-1). 

Miereprobeanalysis of the 3 phases in the refrozen melt. 

Miereprobe analysis of the 3 phases in the refrozen melt. 

Oxidation in stagnant steam. 

Oxidation of eladding in eontinuous steam flow. 

Oxidation of melt in direet eontaet with steam. 

Miereprobeanalysis of remaining oxidized eladding in eontaet 
with refrozen melt. 

Summary of eompositions found by miereprobe measurements at 
eross seetion 4 (106 mm) of ESBU-1. 

Position of microsope pietures in the following Fig. 90-93. 

Strueture of the refrozen melt for different elevations at the 
position given in Fig. 89 with a magnifieation 50x (ESBU-1). 

Strueture of the refrozen melt for different elevations at the 
position given in Fig. 89 with a magnifieaiton lOOx (ESBU-1). 

Strueture of the refrozen melt for different elevations at the 
position given ing Fig. 89 with a magnification 200x (ESBU-1). 

Strueture of the refrozen melt for different elevations at the 
position given in Fig. 89 with a magnifieation 500x (ESBU-1). 
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FIGURE 3: BUNDLE ESBU-1 VITH INSULATION AFTER THE TEST 
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FIGURE 4: FOUR GRIENTATIONS OF THE ESBU-1 SHROUD AFTER 
REMOVAL OF THE INSULATION 
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UPPER PART OF THE SHROUD 
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FIGURE 6: LOVER REGION OF ESBU-1 AFTER REMOVAL 
OF THE SHROUD 
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FIGURE 10: DETAILS OF BLOCKED REGION OF ESBU-1 SHOVING THE REFROZEN MELT FROM ABOVE 
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FIGURE 11: ENLARGEMENT OF THE BLOCKED REGION OF ESBU=l 
ILLUSTRATING THE WETTING BEHAVIOR OF THE MELT 
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FIGURE 13: SCHEMATIC DIAGRAM SHOYING AXIAL ELEVATIONS 
OF THE ESBU-1 CROSS SECTIONS. 
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FIGURE 14: BUNDLE CROSS SECTION SUMMARY. THE FOLLOVING FIGURES GIVE DETAIL 
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129 mm 119 mm 

- -- ~ 
FIGURE 15: CROSS SECTIONS OF ESBU-1 AT 129 AND 119 MM ABOVE THE BOTTOM OF THE BUNDLE 
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116 mm 186 mm 

-- - --

FIGURE 16: CROSS SECTIONS OF ESBU-1 AT 116 AND 106 MM ABOVE THE BOTTOM OF THE BUNDLE 
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51 mm 15 mm 

======================~~ 

FlGURE 19: CROSS SECTIONS OF ESBU-1 AT 51 AND 15 MM ABOVE THE BOTTOM OF THE BUNDLE 
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119mm 96mm 

116mm 86mm 

76mm 
106mm 

66mm 

=========================P=NS=~=I=T========~ 
Fig.20 Positions of m1cro graphs g1ven 1n figures 21-67. 
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50x 100x 

FIG.21 DETAILS OF THE CROSS SECTION AT 119 MM AT POa 

SHOVN IN THE OVERVIEV FIG.20 <ESBUpl) 

2 



46 

Position 

FIG.22 DETAILS OF THE CROSS SECTION AT 119 MM AT POS. 

SHOUN IN THE OVERVIEV FIG.20 <ESBU~l) 
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3 

50x 100 X 

FIG.23 DETAILS OF THE CROSS SECTION AT 119 MM AT POS. 

SHOVN IN THE OVERVlEV FIG.20 (ESBU·l) 
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5 

50 X 100x 

FIG.24 DETAILS OF THE CROSS SECTION AT 119 MM AT POS. 

SHOVN IN THE OVERVIEV FIG.20 <ESBU-1) 
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SOx 

FIG. 25 DETAILS OF THE CROSS SECTION AT 

SHOVN IN THE OVERVIEV FIG.20 <ESBUwl) 

7 



50 

50x 

, 100 X 

9 

FIG. 26 DETAILS OF THE CROSS SECTION AT 119 MM AT POSITIONS 
SHOVN IN THE OVERVIEV FIG.20 (ESBU·l) 



51 

50x 100x 

FIG. 27 DETAILS OF THE CROSS SECTION AT 116 MM AT POS 

SHOVN IN THE OYERYTEV FIG.20 (ESBU-1) 



50x 

52 

FIG.28 DETAILS OF THE CROSS SECTION AT 116 MM AT POa 
SHOVN IN THE OVERVIEV FIG.20 (ESBU·l) 

3 

1 lOOx 
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6 

5 

FIG.29 DETAILS OF THE CROSS SECTION AT 116 MM AT POS. 

SHOUN IN THE OVERVIEU FIG.20 <ESBU-1> 
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Position 7 

FIG.30 DETAILS OF THE CROSS SECTION AT 116 MM AT POS. 

SHOVN IN THE OVERVIEV FIG.20 (ESBU·l) 
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FIG.31 DETAILS OF THE CROSS SECTION AT 116 MM AT POS~ 
SHOVN IN THE OVERVIEV FIG.20 <ESBU·l) 
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1 2 

3 4 

FIG. 32 DETAILS OF THE CROSS SECTION AT 106 MM AT POS. 

SHOVN IN THE OVERVIEV FIG.20 <ESBU-1) 
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l l 

Position a 

FIG. 33 DETAILS OF THE CROSS SECTION AT 106 MM AT POS. 

SHOVN IN THE OVERVIEV FIG.20 <ESBU-1) 
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Position b 

FIG.34 DETAILS OF THE CROSS SECTION AT 106 MM AT POS. 

SHOVN IN THE OVERVlEV FIG.20 <ESBU-1> 
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Position c 

f=IG. 35 DETAILS OF THE CROSS SECTION AT 106 MM AT POS. 

SHOVN IN THE OVERVIEV FIG.20 <ESBU-1> 
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FIG.36 DETAILS OF THE CROSS SECTION AT 106 MM AT POS 
SHOVN IN THE OVERVIEV FIG.20 <ESBUpl) 
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Position e 

FIG. 37 DETAILS OF THE CROSS SECTION AT 106 MM AT POS. 

SHOVN IN THE OVERVIEV FIG.20 <ESBU·l) 
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62 

FIG.38 DETAILS OF THE CROSS SECTION AT 96 MM AT POSITIONS 
SHOVN IN THE OVERVIEV FIG.20 <ESBU-1) 
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2 3 

FIG.39 DETAILS OF THE CROSS SECTION AT 96 MM AT POS. 
SHOVN IN THE OVERVIEV FIG.20 <ESBU~l) 
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64 

FIG. 40 DETAILS OF THE CROSS SECTION AT 96 MM AT POS 
SHOVN IN THE OVERVIEV FIG.20 <ESBU~l) 
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FIG. 41 DETAILS OF THE CROSS SECTION AT 96 MM AT POS 

SHOVN IN THE OVERVIEV FIG.20 CESBU·l) 

Position a 



Position b 

FIG.42 DETAILS OF THE ION AT MM AT POS. 

SHO\JN IN THE OVERV I E\J F I G. 20 ( ESBU -1> 
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Position c 

FIG. 43 DETAILS OF THE CROSS SECTION AT 96 MM AT POS. 
SHOVN IN THE OVERVIEV FIG.20 <ESBU~l) 
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FIG. 44 DETAILS OF THE CROSS SECTION AT 96 MM AT POS 

SHOVN IN THE OVERVIEV FIG.20 <ESBU·l) 
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Position e 

FIG.45 DETAILS OF THE CROSS SECTION AT 96 MM AT POS. 
SHOVN IN THE OVERVIEV FIG. 20 <ESBU~l) 



FIG. 46 DETAILS OF THE CROSS SECTION AT 96 MM AT POS. 
SHOVN IN THE OVERVIEV FIG.20 <ESBU-1> 
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Position g 

FIG. 47 DETAILS OF THE CROSS SECTION AT 96 MM AT POS. 
SHOVN IN THE OVERVIEV FIG.20 (ESBU-1> 
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Position h 

FIG. 48 DETAILS OF THE CROSS SECTION AT 96 MM AT POS .. 

SHOUN IN TH~ OVERVIEU FIG.20 CESBU·l) 
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Position 

FIG.49 DETAILS OF THE CROSS SECTION AT 96 MM AT POSITIONS 
SHOVN IN THE OVERVIEV FIG.20 <ESBU·l) 
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Position k 

FIG. 50 DETAILS OF THE CROSS SECTION AT 96 MM AT POSITIONS 
SHOVN IN THE OVERVIEV FIG.20 <ESBU~l) 
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FIG.S1 DETAILS OF THE CROSS SECTION AT 88 MM AT POSITIONS 
SHOVN IN THE OVERVIEV FIC.20 (ESBU·l) 

11 



76 

2 3 

FIG. 52 DETAILS OF THE CROSS SECTION AT 86 MM AT POS. 

SHOUN IN THE OVERVIEU FIG.20 (ESBU-1) 
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6 7 

8 9 

FIG.53 DETAILS OF THE CROSS SECTION AT 86 MM AT POS. 
SHOUN IN THE OVERVIEU FIG.20 (ESBU-1) 
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Position a 

FIG. 54 DETAILS OF THE CROSS SECTION AT 86 MM AT POS. 
SHOUN IN THE OVERVIEU FIG.20 (ESBU-1) 
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Position b 

FIG. 55 DETAILS OF THE CROSS SECTlON AT 86 MM AT POS. 

SHOUN IN THE OVERVIEU FIG.20 CESBU-1> 



80 

Position c 

FIG.56 DETAILS OF THE CROSS SECTION AT 88 MM AT POS. 

SHOVN IN THE OVERVIEU FIG.20 <ESBU-1> 
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Position d 

FIG.57 DETAILS OF THE CROSS SECTION AT 86 MM AT POS. 

SHOUN IN THE OVERVIEU FIG.20 <ESBU·l) 



82 

Position e 

50x 100x Position f 

FIG.S8 DETAILS OF THE CROSS SECTION AT 86 MM AT POS. 
SHOUN IN THE OVERVIEU FIG.20 <ESBU·l) 
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Position g 

50x 

FIG.59 DETAILS OF THE CROSS SECTION AT 86 MM AT POS. 
SHOUN IN THE OVERVIEU FIG.20 (ESBU~l> 
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Position 

50x 

FIG. 60 DETAILS OF THE CROSS SECTION AT 86 MM AT POS. 
SHOVN IN THE OVERVIEV FIG.20 <ESBU·l> 



85 

Position 

FIG · 61 DETAILS OF THE CROSS SECTION AT 86 MM AT POS. 

1N THE OVERVIEU FIG. 20 <ESBU~l) 



86 

Position n 

FIG.62 DETAILS OF THE CROSS SECTION AT 86 MM AT POSITIONS 
SHOUN IN THE OVERVIEV FIG.20 <ESBU·l) 
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100x 

2 
50x 

FIG.63 DETAILS OF THE CROSS SECTlON AT 76 MM AT POS. 
SHOVN IN THE OVERVIEV FIG.20 tESBU~l> 
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3 

FIG. 64 DETAILS OF THE CROSS SECTION AT 76 MM AT POS. 

SHOVN IN THE OVERVIEV FIG.20 (ESBU"l) 
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7 

8 

5 9 

FIG.65 DETAILS OF THE CROSS SECTION AT 76 MM AT POS. 

SHOVN IN THE OVERVIEV FIG.20 (ESBU-1) 



FIG.66 DETAILS OF THE CROSS SECTION AT 66 MM AT POS. 
SHOUN IN THE OVERVIEU FIG.20 (ESBU-1) 
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4 

5 

6 

FIG.67 DETAILS OF THE CROSS SECTION AT 66 MM AT POS. 

SHOVN IN THE OVERVIEV FIG.20 (ESBU-1> 
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FIG.69 : POSITIONS OF ENLARGED VIEUS OF THE CROSS SECTION AT 

AT 106 MM GIVEN IN THE FOLLOUING FIGURES. ESBU-1 
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Fig.70 Enlarged View of former cladding region A of the cross section 
at 106mm above the bottom of the bundle. (ESBU-1) 
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Fig.70a Details of former cladding region A in the cross section 
at 106mm elavation. (ESBU-1) 
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Fig.71 Enlarged Views of former dadding regions B, C, 0 of the 
cross section at 106mm above the bottom of the bundle 
IESBU-1) 



97 

E F 

FIG. 72 : POSITIONS OF ENLARGED VlEUS OF THE CROSS SECTION AT 8S MM FOR THE COMPARISON 

OF SURFACE REGIONS COVERED AND UNCOVERED UJTH MELT. (ESBU-11 
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G 

FIG. 73 COt1PARISON OF OXIDIZED PARTS OF CLAOOING FRON SAI1E ROQ. NELT COVERED REGIONS 

<A> AND IJNCOVERED REGIONS UD SHOIIN FROM CROSS SECTION AT 86 NM ESBU·l. FIG. 
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E 

FIG. 74 COMPARISON OF OXIDIZED PARTS OF CLADDINC FROM SAME ROD. MELT COVEREil REGIONS 

(8) AND UNCOVERED REGIONS (E) SHOUN FROM CROSS SECTION AT 8S 1111 ESBU·l, FJG. 



HU?.I 

F 

FIG. 75 COMPARISON OF OXIDIZED PARTS OF CLAOOINC FROI1 SAME ROD. tELT COVERED REGIONS 

(C) AND IJNCOVERED REGlONS (F) SHOVN FROH CROSS SECTION AT 88 111 ESBU· 1. FIG. 
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OF OXIDIZED PARTS OF ClADOINC FROM SAME ROD. t1El T COVERED REGIONS 

<D> AND UNCOVERED REGIONS CH) SHO\JN FROM CROSS SECTION AT 85 1111 ESBU·l, FIG. 

0 
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sv;ffll;z 
==============H=A=GE=N=ET=A=L=.=KF=K-=RE=P=OR=T=3=76=9===============P==NS ~~=IT============ 

Fig.77 Dissolution of U02 by mol ten z ry for differenr positions 
of cross sections 2 (119mm) and 3 (109mml. (ESBU~ 1) 
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Fig.78 Microprobe results of the phases in the refrozen melt 
at position 2 in the cross section at 106mm, uncorrected 
0-values (ESBU-1) 
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Fig.79 Positions of the miereprobe analysis of the 3 phases in 
the refrozen melt for fig.BO 
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Fig.80 Miereprobe analysis of the 3 phases in the refrozen melt for the elavations 3 (116mm), 
9 (51mm) and 11 (7mm above bundle bottom) at the position given in fig.79. 
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Fig.81 Locations of miereprobe investigations from cross section 
4 l106mml of ESBU-1. 
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MICROPROBE ANALYSIS OF THE 3 PHASES IN THE REFROZEN MEL T 
IESBU-1: CROSS SECTION 4(106MM ABOVE BOTTOM) LOCATIONS SEE PHOTO; SEE FIG. 81 
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FIG. 83: MICROPROBE ANALYSIS OF THE 3 PHASES IN THE REFROZEN MELT 
ESBU-1: CROSS SECTION 4 ( 106 mm ABOVE BOTTOM) LOCATIONS SEE PHOTO; SEE FIG. 81 
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FIG. 84: OXIDATION IN STAGNANT STEAM 
ESBU-1: LOCATION 1 OF CROSS SECTION 4 (106mm} UNCORRECTED 0-VALUES; SEE FIG. Bl 
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Fig. 88: 
SUMMERY Of COMPOSITIONS 
FOUND BV MICROPROBE 
MEASUREMENTS AT CROSS 
SECTION 4 ( 160 M M ) 
Of ESBU -1. 
o : LOC. 1 
X : LOC. 2 
*: LOC.3 
6: LOC.4 
c: LOC. 5 
• : LOC. 6, 7, 8, 9, 10 u. 11 

ur ,f V <'i>)D x"VY 'bV V V <V V ,.y i 'Y ,y V ,·y\ JYJv' <'V tN Va •V· >V ''' 

...... ...... 
w 



114 

116 mm 

Fig.89: Position of m1croscop pictures in the following figures 90-93 
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116mm 66mm 

86mm 51mm 

76mm 15mm 

Fig.90: Structure of the refrozen melt for different elevations 
at the position given in Fig.89 with a magnification SOx (ESBU-1} 
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116mm 66mm 

86mm 51mm 

76mm 15mm 
Fig.91: Strudure of the refrozen melt for different elevations at the 

position given in Fig.89 with a magnification 100x (ESBU-1) 
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116mm 66mm 

86mm 51mm 

76mm 15mm 

Fig.92: Structure of the refrozen melt for different elevations at the 
position given in Fig.89 with a magnification 200x (ESBU-1) 
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116mm 66mm 

86mm 51mm 

76mm 15mm 

Fig.93: Structure of the refrozen melt for different eievatians at the 
po_sition given in Fig.89 with a magnification SOOx IESBU-1) 




