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Theoretical Assessment of a Proposal for the Simplified Determination of 

Critical Loads of Elastic Shells 

Summary 

Within the context of the stability analysis of the cryostat of a fusion 

reactor the question was raised whether or not the rather lengthy conven­

tional stability analysis can be circumvented by applying a simplified 

strategy based on common linear Finite Element computer programs. This 

strategy involves the static linear deformation analysis of the structure 

with and without imperfections. For some simple stability problems this 

approach has been shown to be successful. The purpose of this study is to 

derive a general proof of the validity of this approach for thin shells 

with arbitrary geometry under hydrostatic pressure or dead loading along 

the boundary. 

This general assessment involves two types of analyses: 

(1) A general stability analysis for thin shells; this is based on a 

simple nonlinear shell theory and a stability criterion in form of 

the neutral (indifferent) equilibrium condition. This result is 

taken as reference solution. 

(2) A general linear deformation analysis for thin imperfect shells 

and the definition of a suitable sealar parameter (ß-parameter) 

which should represent the reciprocal of the critical load factor. 

For both problems approximate solutions are obtained using direct matrix 

notation. They are based on the associated variational principles and a 

global Ritz ansatz for the displacement components. The solution of the 

first problern is restricted to linear prebuckling deformations. 

It is shown that the simplified strategy ("ß-parameter approach") 

generally is not capable to predict the actual critical load factor irres­

pective whether there is a hydrostatic pressure loading or dead loading 

along the edge of the shell. This general result is in cantrast to the ob­

servations made for some simple stability problems. Nevertheless, the results 

of this study do not exclude the possibility that the simplified strategy 

will give reasonable approximate solutions at least for a restricted cl'ass 

of stability problems. This should be a subject of further analyses. 



Theoretische Überprüfung eines Vorschlags zur vereinfachten Bestimmung 

kritischer Lasten elastischer Schalen 

Zusammenfassung 

Im Rahmen der Stabilitätsanalyse des Kryostaten eines Fusionsreaktors trat 

die Frage auf, ob eine in diesem Fall doch recht aufwendige herkömmliche 

Stabilitätsanalyse nicht vermieden werden könnte, indem eine vereinfachte 

Vergehensweise angewandt wird, die auf dem Einsatz üblicher linearer Finite 

Element Rechenprogramme beruht: Diese Strategie beinhaltet die statische, 

lineare Deformationsanalyse der Struktur mit und ohne Imperfektionen. Für 

einige einfache Stabilitätsprobleme war diese Vergehensweise erfolgreich. 

Der Zweck dieser Studie ist, einen allgemeinen Beweis der Gültigkeit dieser 

Vergehensweise für dünne Schalen beliebiger Geometrie unter hydrostatischer 

Druckbelastung oder unter verformungsunabhängigen Randlasten herzuleiten. 

Die allgemeine Überprüfung beinhaltet zwei Arten von Analysen: 

(1) Eine allgemeine Stabilitätsanalyse für dünne Schalen: Diese basiert 

einerseits auf einer einfachen nichtlinearen Schalentheorie und ande­

rerseits auf dem Stabilitätskriterium in Form des neutralen (indiffe­

renten) Gleichgewichts. Das Ergebnis wird als die Referenzlösung an­

gesehen. 

(2) Eine allgemeine lineare Deformationsanalyse für dünne, imperfekte 

Schalen und die Definition eines geeigneten skalaren Parameters (ß-Para­

meter), der denKehrwert des kritischen Lastfaktors darstellen sollte. 

Für beide Probleme werden Näherungslösungen gewonnen, die in direkter 

Matrizennotation dargestellt werden. Sie basieren auf den zugehörigen Va­

riationsprinzip ien in Verbindung mit globalen Ritz-Ans ätzen für die Ver­

schiebungskomponenten. Die Lösung des ersten Problems ist dabei auf lineare 

Verbeulverformungen beschränkt. 

Es wird gezeigt, daß im allgemeinen mit der vereinfachten Vergehens­

weise ("ß-Parameter Verfahren") der aktuelle kritische Lastfaktor nicht er­

mittelt wird, gleichgültig, ob hydrostatische Druckbelastung oder feste 

Randbelastung vorliegt. Dieses allgemeine Ergebnis steht im Gegensatz zu den 

Feststellungen, die bei einigen einfachen Stabilitätsproblemen gemacht wurden. 

Dennoch schließt das Ergebnis dieser Studie die Möglichkeit nicht aus, daß 

die vereinfachte Vergehensweise brauchbare Näherungslösungen liefert, wenig­

stens für eine beschränkte Klasse von Problemen. Dies sollte Gegenstand wei­

terer Untersuchungen sein. 
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1, Introduction and Scope of the Study 

Within the context of the stability analysis of the cryostat of a fusion 

reactor the question was raised whether or not a classical stability analy­

sis can be circumvented by applying a suitable strategy based on linear 

Finite Element computer programs L-1_7. Such a strategy can be motivated by 

observations made within the frame of the elastic stability analysis of 

straight columns under compressive loading. In the following this simple 

example is discussed to some extent, such that the basic philosophy of the 

strategy and its inherent assumptions are understood. 

The concept of stability in mechanics is ambiguous. Different concepts 

based on intuitive arguments are proposed and applied L-2, 3_7 which do 

not necessarily give the same results (critical loads). However, basic 

research in the past has identified to a large extent for which classes 

of problems the various approaches are applicable and under what condi­

tions the different stability concepts give the same minimum buckling load. 

The standard methods for the analysis of the stability of an equili­

brium state are the energy method (or the 2. variation approach) and the 

equilibrium approach L-2_7. For conservative problems both approaches give 

the same results. 

As an introductory example Ziegler L-3_7 has analysed the straight 

column (hinged at both ends) with four different approaches, the two 

mentioned above, the imperfection method and the vibration method (kinetic 

stability analysis). These approaches are characterized by the following 

differe.nt questions: 

!~~-~~~E~~-~~~2~~ What is the value of the load for which the potential 

energy of the system ceases to be positive definite? 

!~~-~~~~E~l-~q~i!i~E!~~-~~~~2~~ What is the value of the load for which 

the systems admits an adjacent equilibrium configuration under the same 

loading? 

!~~-i~~Ef~~~!2~-~~~~2~~ What is the value of the load for which the static 

displacements of a system with slightly different geometry - the imperfect 

system - become excessive or even infinite? 

The vibration method: What is the value of the load for which the most ---------------------
general free motion of the system in the vicinity of the equilibrium posi­

tion ceases to be bounded? 
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The first three approaches are based on static concepts while the fourth 

is a kinetic approach. Although there appears to be little connection in 

these approaches, the result, the minimum buckling load of the hinged 

column is the same L-3_7. 
For the further argumentation the imperfection method is of special 

interest. Ziegler applied a compressive load with a small excentricity and 

studied the equilibrium in the deformed configuration of the column. Simi­

larly one may subject the column to an initial deflection { ~ ~ 7i X"'je) 
of the central line of the column from the line of thrust. The solution of 

the linearized equilibrium condition formulated in the deformed configura­

tion gives the following relation between the maximum sinusoidal displace­

ment 411- and the applied load 'f 

I 
( 1. 1) 

where 

~ maximum initial deflection 

~ actual maximum deflection measured from the perfectly straight 

centre line 

~ critical load • 

Obviously, for P approaching the value f;_ the deflection ~ approaches 

infinity. Thus, ~ defines the critical load, the buckling load. 

For P/Pc <c:: 4, equ. ( 1 . I) may be deve loped wi th respect to Pj~ ; 
keeping terms linear in P/fg_ only, equ. (1) simplifies to 

/ttF ~ rtJ 
" 

+ ~ ?/~ 
or 

/lj' ~ -r /[A)() f ;1> ( l. 2) 

where 
A ß~ 
~ 

(I. 3) 

One may easily show that this linearized relation is also obtained if the 

equilibrium analysis is done in the undeformed configuration of the column 

subjected to an initial deflection ~ ~ 7T XJt i.e. an imperfection. 
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These results show that a linear elastic analysis - ignoring nonlinear terms 

in the kinematics and considering the equilibrium conditions only in the 

undeformed configuration of an imperfect column - allows to determine the 

buckling load of the column. However, here it is important to note that the 

"shape of the imperfection" is the same as the eigenfunction of the buckling 

load. 

This observation may motivate a strategy for the calculation of the 

critical loads for structures whose states of deformation are characterized 

by a single displacement component: 

- Get knowledge about or estimate the buckling mode 

Introduce an imperfection into the structure of magnitude ~ (e.g. maxi­

mum imperfection) which is similar to the buckling mode 

- Perform a linear elastic boundary value analysis (analytically or numeri­

cally) of the imperfect structures under the same load configuration as 

the actual structure 

- Determine the "maximum deflection W " and calculate the quantity 

ß= ( 1. 4) 

Mo p 

where Wand ~ are measured with respect to the actual structure and 

where f> is the load factor. Then the critical load factor, i.e. the 

buckling load~ is given by 

p = 
c 

A 

f3 
( 1. 5) 

In cases where the applied load )J produces displacements (prebuckling defor­

mations) even without the imperfection then equ. (1.2) should read 

( 1 • 6) 

( tJ~:deflection of the actual structure due toP) 

and relation (1.4) should be changed to 

( 1. 7) 

~ Corresponding to the chosen imperfection 
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If numerical methods are used two calculations are necessary in this situ­

ation: 

numerical analysis of the actual ("perfect") structure under load P to 

obtain the "maximum deflection ( Poc)" 
numerical analysis of the imperfect structure under load }) to obtain the 

"maximum deflection W", 

The above strategy is related~ to another approach for the determina­

tion of critical loads of bars as described by Timoshenko and Gere 

1-12, p. 1t6_7: 

(a) As a first approximation assume a deflection curve ~~ for the bar. 

Tak h . d 1 . b . . ~~ h b e t 1s ef ect1on to e an 1mperfect1on of t e ar. 

(ß) Perform a linear analysis of the imperfect bar which gives a deflection 

:!/z of the bar under the load ? . 
(y) A first approximation for the critical load is found by choosing the 

load jD in such a way that the deflection ~1 and ~' are equal 
~~~ along some sections of the bar , e.g. the centre section of the bar. 

(cr) This procedure may be continued with :Jz. as a new imperfection of the 

bar. 

Observing the different notations it may be shown for the simple bar using 

a sinusoidal imperfection that the result (1.2) is obtained after a single 

step. 

Timoshenko and Gere state that this approach is equivalent to an inte­

gration by successive approximations of the differential equation for a 

buckled bar~~~~. 

The method of sucessive approximations for boundary value as 

well as eigenvalue problems is a well established mathematical method L-13 7. 
However, for stability problems which usually correspond to eigenvalue 

problems,the application of this method requires a complete formulation of 

this eigenvalue problern {-13_7. Consequently, it is by no means evident 

that the approach as described by Timoshenko and Gere is equivalent to 

the method of successive approximations as applied to eigenvalue problems 

L-13_7, if more complex structures are considered. 

This was brought to my attention by S. Raff. 

Timoshenko and Gere do not use the term "imperfection" but their 
description can be put in the form as given here. 

Other rules are possible, e.g. averaging the deflections along the 
bar before equating. 

The method of successive approximations was first applied to the 
buckling problern by Engesser and Vianello. 
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The strategy by L-1_7, loosely described above, has been applied to 

several stability problems where analytical solutions are available, i.e. 

a flat plate under lateral compressive meiDbraue forces and hinged at all 

edges and 

a circular ring or long cylindrical shell under hydrostatic pressure. 

In these cases exact agreement between the result of the classical stability 

analysis and this approach was found. This is partially due to the fact 

that the buckling modes of the structure are known in advance or may be 

easily guessed. When the buckled shape and thus the imperfection cannot 

be characterized by a single function or when only a numerical solution 

for the imperfection structure is available then this approach could possibly 

he combined with a Fourier analysis and a search for the dominant terms L-4_7 
instead of the determination of the "maximum deflection". 

Although it was shown that the above strategy works for some simple 

stability problems, the basic question remains whether this strategy may be ex­

tended to more complex stability problems, e.g. shellsandspatial frames; these 

are the primary structural elements of the cryostat envisaged. The defor­

mation of these structures during buckling are characterized by more than 

one displacement component, e.g. the normal and the two tangential com­

ponents of the reference surface of a shell. Consequently the first ques-

tion is whether the simple relation (1.7) can be extended to this new 

situation. Secondly, it has to be proved or disproved whether this newly 

defined scalar quantity "ß" is related to the critical load /( by equ. 

(1.5), If an affirmative answer is found then the above strategy is also 

applicable to more complex stability problems. 

It is evident that an extension of the list of examples to more complex 

situations is of limited scientific value. Here a general proof is of inter­

est at least for a certain class of problems of interest. In the following 

we will consider thin elastic shells of uniform thickness but arbitrary geo­

metry. Two types of loadings are assumed; uniformly distributed hydrostatic 

pressure and dead loading along the edge such that the stability problern in­

volves only a single load factor. 

For this class of problems the general proof or refutation involves 

two types of analyses: 

(1) A general stability analysis for thin shells; a prerequisite for this 

is a consident, nonlinear shell theory and a stability criterion. 

(2) A general linear analysis for thin imperfect shells and a suitable 

definition of the scalar parameter "ß", 
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It is obvious that neither for the first nor for the second part an exact 

solution can be obtained. However, it appears to be feasible to derive 

approximate but general solutions based on variational principles for both 

types of analyses. Here it is important that all approximations are compat­

ible in both parts of analyses; otherwise their results are not comparable. 

Furthermore, for such a general approach it is crucial to apply a 

compact symbolic notation since otherwise the overview is immediately lost 

in a whirlpool of equations. Therefore the general theory is formulated 

using tensor calculus and after introduction of suitable approximations for 

the displacement fields direct matrix notation is applied. 

In the following a more detailed description of the approach is given. 

The starting point is a rather simple nonlinear shell theory for small 

strains but moderately large rotations under the Kirchhoff-Love hypothesis. 

Such a theory had been derived in a different context L-5_7 but is reduced 

here to purely elastic material response. An associated variational prin­

ciple is presented using tensorial formulation in the undeformed reference 

configuration of the shell. Two types of conservative loadings are con­

sidered: dead loading along the edge and hydrostatic pressure. It is shown 

that for the hydrostatic pressure to be conservative the kinematic bound­

ary conditions are restricted. For the rest of the analysis these restric­

tions are implied. 

Following the Ritz method a global approximation for the three tensor 

components of the displacement vector is made; here it is assumed that a 

complete set of shape functions satisfying the kinematic boundary conditions 
. '1 ~ 1.s ava1. able. 

Then a matrix representation of the total potential energy functional 

for the nonlinear thin shell is derived. Here the introduction of various 

matrix differential operators and a formal integration of the functional 

over the reference surface is involved. This reduces the functional to a 

nonlinear algebraic expression for a column matrix containing the various 

unknown coefficients of the displacement field approximation. This column 

matrix is denoted by .~ • The fundamental equiiibrium state under the 

given loading is characterized by the vanishing of the first variation of 

the algebraic energy expression (total potential energy). It is generally 

obtained as the solution of a nonlinear algebraic equation for ~ 

~ 
In practice it is preferable to apply a piecewise approximation (the 
Finite Element Method), however, for the purpose intended here this 
would be an unnecessary complication. 
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For the stability analysis of the fundamental state ~ we follow a 

classical concept known as the "neutral equilibrium approach", in conjunc­

tion with the variational principle for the shell. This approach is charac­

terized as follows. 

A neutral or equivalently an indifferent equilibrium state is defined 

by the property that adjacent equilibrium states under the same loading 

are possible L-6_/; this implies nonuniqueness of the solution of the non­

linear equations for the fundamental equilibrium state ~ . The associated 

load factor is called critical. This critical state may characterize the 

transition from stability~ to instability and frequently this is taken 

for granted. Therefore we are actually starting off from a nonlinear in­

difference theory: We have to assess whether there existsan adjacent equi-

librium state under the same loading as the fundamental state ~ but 

characterized by the state ~*: ~ rV where IV issmall compared to ~ . 

For this adjacent state the total potential energy is '71 * -- ej/( ') II II ~ 'f- IV I 

Since this state is presumed to be in equi librium1 the first variation of 

~~~~ ~) with respect to \1 should vanish. If this condition 

admits a nontrivial solution for \V with a given 2t then the state ~ is 

neutral. Since the additional displacement matrix IV is small, third and 

V ~* fourth order terms in \ may be neglected in the potential energy // . 

The vanishing of the first variation ct1ftr for all variations diV 
then leads to a !!~~~E-~~~~~~~~~~~ equation for W . This equation admits a 

nontrivial solution \Y if the coefficient matrix)which depends on the 

fundamental solution ~ , is singular. It may be shown that this equation 

is also obtained if the second variation 

vanish for all variations r &. 

fl2.. ljJ 
0/J. ff(lL.) is required to 

The evaluation of the above indifference condition implies knowledge 

of the fundamental state ~ • As mentioned above ~ is generally 

governed by a nonlinear equation. However, if the prebuckling deformations 

are small this equation may be linearized and ~ is obtained by inversion 

of a linear matrix equation. Thus the fundamental state ~ is a linear 

function of the applied loading. This assumption is inherently implied in 

the further analysis. 

Here, in rather loose terms an equilibrium state is said to be stable· 
whenever in the motion following a sufficiently small initial disturb­
ance (e.g. in the load) the response of the structure (in terms of dis­
placements and velocities) remains as small as desired for all later 
times. 
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With this assurnption the indifference condition for the case of hydro­

static pressure loading is given by a quadratic eigenvalue problern where 

the pressure p is the eigenvalue. Further linearization simplifies this to 

a linear eigenvalue problern involving only symmetric rnatrices. From this 

the reciprocal of an eigenvalue ~ may be obtained as the reciprocal of 

the Rayleigh quotient in terms of the corresponding eigensolution Wz 

This completes the stability (indifference) analysis of the fundamental 

state and this result is used as the reference solution. 

The further analysis has to show whether the proposed simplified 

strategy - linearized analysis of an imperfect shell and a suitable defini­

tion of the scalar quantity "ß" - gives a ß-value which is exactly equi­

valent to the inverse Rayleigh quotient of the reference solution. Here 

it is irnplied that the irnperfection of the middle surface of the shell, -characterized by the column rnatrix ~ , is equivalent to the eigen solu-

tion IV; 
The first step is the derivation of a linear theory for slightly irn­

perfect shells. This means essentially a general tensorial forrnulation of 

the associated total potential energy where the configuration of the actual 

("perfect") shell is used as reference configuration. Naturally, the "per­

fect" configuration is identical to the undeformed configuration of the 

shell whose stability is to be analysed. This derivation involves careful 

order of rnagnitude estirnations of the kinernatical quantities which rnust be 

compatible with corresponding assumptions in the previous derivation of 

the nonlinear theory. 

Application of the Ritz method with the same shape functions for the 

displacernents and the imperfections as in the nonlinear case allows to 

develop the appropriate matrix forrnulation of the total potential energy. 

The vanishing of the first variation of this potential gives the equilibriurn 

state of the perfect (i .e. Z = 0 ) as well as the imperfect ( :i ':/:: 0) 

shell under the prescribed (e.g. hydrostatic) loading. Because of the 

linearity of the problern the solution rnay be obtained explicitly by rnatrix 

inversion. 

Finally a suitable scalar factor "ß" is defined by inspection of the 

above result and the inverse Rayleigh quotient. Although a partial agree­

ment between "ß" and the inverse Rayleigh quotient rnay be obtained, it is 

shown that the simplified strategy generally is not capable to determine 

the critical load factor, whether there is a hydrostatic pressure loading 

or dead loading along the edges of the shell. This general result is in 
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cantrast to the observations made for the above mentioned simple stabili­

ty problems. The study closeswith a discussion of these results. 
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2. Fundamentals of a Nonlinear Elastic Shell Theory 

The nonlinear theory for an elastic shell to be used is subject to the 

following restrictions: 

the Kirchhoff-Love hypothesis is assumed to be applicable, 

strains are small but rotations are moderately large, 

(I) 

(II) 

(III) the rotation around the normal to the middle surface (reference 

surface) is assumed to be small compared to the other two 

rotations, 

(IV) the wall thickness is small compared to the minimum radius of 

curvature so that in conjunction with the other approximations 

the metric of the shell space can be approximated by the metric 

of the middle surface. 

2.1 Geometrie and Kinematic Preliminaries 

The undeformed configuration of the middle surface (reference surface) of 

the shell is defined by the position vector L R !lf• A curvilinear coordinate 

net wi th coordinate s e ~ o(_,: /I, Z (surface Coordinates) is embedded. The 

base vectors of this coordinate system are defined by 

'dR -
AIJI. . - Rio< cX. J!Z '1,' , - = (2. 1) 

{)f!Jol i 

which are tangential to the coordinate lines. They define a unit vector ~ 
normal to the reference surface 

such that 

R" x R~ : = (2 .2) 

- _I~ X 3ll 
R

11 
IJJ., and H~ represent a right handed system of base vectors. 

The contravariant base vectors of the reference surface are then given by 

-., 
t1 = (2. 3) 

I 

R (2.4) 

!lf The quantity l is a s~ale factor of dimension "length"; consequently the 
length of the vector /( is dimensionless. 
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such that 

=(: (2.5) 

-o< 
The contravariant base vectors )9 define a unit normal vector 

(2.6) 

which is the same as (2.2) 
-J -P = HJ . (2.7) 

The line element of the reference surface is given by 

~ d~ = ~ r<,,~. de ti =- ~ ao( de ~ 
L - - l r,;~ /1 

~ 1:>112 ·da~ ~ llo<ß d& d& 
-

fl rJ. (J. ::- A c.L ~ f-1 /!.> I 

) 

~(2.8) 

J 
here ff~~ are the contravariant components of the metric tensor of the 

undeformed reference surface. The contravariant components are 

(2.9) 

such that 

t;, (2. 10) 

The metric coefficients relate co- and contravariant base vectors: 

(2. 11) 
I 
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where 1-,' 
ot(J is the Christoffel symbol with respect to the reference sur-

face 

I) f' 

r:ß - (2. 13) 

and ~~ß are the coefficients of the second fundamental form 

BottJ :=. B~Q{ =- - ~ · ~ 13 :: - ~ • ~~"' ~ ~ 0 

11r;y/J 

3 ~ = fl ~er e d'fJ I ß cLß-:::- R «I !3: I 

(2. 14) 

Let 1r be a surface vector field, i.e. a vector field tangential to the 

reference surface 

(2. 15) 

12 
Its partial derivative with respect to the surface coordinate ~ is given 

by 

ol. -
+ V flo~I(.J 

t 
Rr B«fl 1J fJl fl ~ =- 17:(J -1-

(2. 16) 

-.y + 73ot vot R$ - ?)ftß fJ ß 

where 
II 

d' ~ I' er 
G( 

1}- : ß != V ;IJ + ()(fj '1) 

II (2. 17) 

rz}cJ'tfo ·-. - -1)/)ß ~~ ~t(. 

is the covariant derivative of the contravar,iant or covariant components 

of the surface vector 1t; those quantities are the components of a 2nd 

order surface tensor. Similarly the covariant derivative of a 2nd order 

surface tensor ß1 -
M c: 11 OlfJ R()l ~ Aß 

may be defined 



etc. 

11 O(ß ,, + 

-

13 

(2. 18) 

The position vector ~ of a material point in the shell space for the 

reference configuration may be represented by 

(2.19) 

where 

: dimensionless thickness coordinate 

: scale factor, e.g. rninimum radius of curvature 

wall thickness 

dimensionless wall thickness 

Parallel to the reference surface other surfaces may be embedded in 

the shell space; tagether with the thickness coordinate lines they span 

a coordinate net in the shell space. The covariant base vectors of this 

system are given by 

where 

so< 
ß 

-- -· p 
.le~. 

(2.20) 

(2.21) 

The covariant components of the metric tensor in the shell space are then 

given by 

- l !I I 
G~ · Gf1. =- (.t) S(l( S 13 R!tr 

- {.t/ [ lfotß - 2" & ß~fl +(rle/ E(J' fJ: ] 
-..... -

6.l 0 

l 

(2.22) 
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the corresponding contravariant components are 

G "P .. (1/[!t olfJ t- .2 t~e o o((j t- .1 (,;e/ s"' s; '"··} 
GKJ :;;· 0 

GJ:1 <= {fi/. 

A volume element in the shell space is given by 

d I) ::: !Gd& ~drJ l tl&J 

G e dd (G~t., ) . = (1L)'l dd- ( G~IJ) 
and a surface element in the middle surface 

= lt)L(;/ de"dtJ 1 

~r ( R(J(/J) • --

}(2 .22) 

~(2. 23) 

I 

I 
J 

~ 
I 
i 

(2.24) 

r(2 .25) 

J 

If 1D is the position vector in the deformed configuration then the dis­

placement of a material point, wi th coordinate (;) _,1 (9 l. I (!9 in the 

reference configuration, is generally given by 

-= jöfe~~t) .-.P(e~t;1)6 (2.26) 

According to the Kirchhoff-Love hypothesis the displacement vector can be 

represented by 

(2. 27) 
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here 

1ffe1tJ (2.28) 

-
is the dimensionless displacement vector of the reference surface and ~ 

the unit normal vector of the deformed surface. 

The coordinate lines ~~ = const. are now considered to be convected 

with the material. Then the covariant base vectors of the deformed middle 

surface are given by 

(2.29) 

With the use of (2.19), (2.26) and (2.27) we obtain 

(2.30) 

This allows to give a representation of the unit normal vector ~J of the 

deformed surface in terms of surface displacements: 

(2.32) 

For arbitrary displacements of the reference surface this represents a 

rather complex nonlinear expression. From the kinematics of shells under 

infinitesimal displacement gradients it is well known, that flti. repre­

sents the two rotations of the normal of the rniddle surface with respect 

to the base vectors ft~ ; further, the rigid body rotation of a middle 

surface elernent araund the normal f:IJ is given by 
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I 

finally the infinitesimal middle surface strains are represented by 

Assurne that the curvilinear coordinates 

B()((l , J/ot:/3 and J/0(. are dimensionless. 

Now, it is important to note that for most stability problems it is 

sufficient to introduce certain order of magnitude restrictions on the 

above kinematic quantities; these restrictions 
5(5( . are . 

~ IV ;; c::_c. 1 

i(~:(J - r/J:K) 1"'\,; Lri/ (2.33) 

J_(~s(J wf ~; 61 - ~flß"!l) f"v (;})l 

i.e. the (linearized) strains as well as the rigid rotation araund the nor-
1Ä-

mal are small in the order of ~ • The rotations of the normal are only 

moderately small of order A 
From the last two conditions it follows that 

(2. 34) 

Calculation of the vector product (2.32) and dropping all terms of the 
11)1. order of LA or less one gets 

(2.35) 

..... 
Thus to a first approximation a.J will become 

.r w~ i!b( , (2.36) 

If the e ot. represent the arc lengths then the scaling factor L 
should be used to obtain dimensionless coordinates. 

Exluding large prebuckling strains and rotations and the analysis 
of the post buckling behavior . 
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It is noted that ClJ is a unit vector except for terms of the order of 

())~. Conbining (2.27) and (2.36) gives 

(2.37) 

This approximate displacement field is equal to that of engineering shell 

theories under infinitesimal displacement gradients /-5, 7 7. 
If dP and ijö denote the infinitesimal dista~ce ve:tors of two 

material points of the referential and the present configuration then the 

Lagrangian strain tensor i: is given by 

dfö·dfO- dP.c(fJ - .t dPC. dP 1 

- 1 (2.38) g. = E.HA/ G H(}SJ G N .= E 144 GM@ GA/ 4 

With (2.24) one has 

and the right hand side of (2.38) 1 gives 

l d )5 E J~i5 .::: ,Z d&h Eh/tl d9N 

== 2. { d e" ;= ll'/1 c:/9"' 

From (2.26) we obtain 

-
d-? = dü r- dP 

+ rlt9" EdJ d& 3 
f ci19'2E.;(Jt d&o~. 

+- d&J E.J, dB; } . 

(2.39) 

:::. ~o<. de ()/ r ~J deJ r ~ dt;ot +- ~ d'e J (2.40) 
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Consequently, the left hand side of (2.38) 1 may be developed with respect 

to coordinate differentials 

dfo·df dfJ·di5' 

= [ ~. tt.l~ + Gtl ' ~ o( -f ~11( , u 1/J 7 t!B~GJ4 

-
, u")J 

Comparing (2.39) and (2.41) yields 

E rxtJ 1 L-~,t G;;, -= , u..Jß ..;.. ~ u/ot 
.,. 

1 { äei. ~J 
-;= c + 63. ~ot f - «J 

--
From (2.37) one obtains 

k1a~. = -t[ ( Y~..: -11!3: ~,1e !/~,)~ 
- ~ s~ ~ 7 

1:0J = ~ r ~ t~, 1r 1, 

' 
J 

' 

~(2.43) 

) 

With (2.24) and (2.43) one obtains the following explicit representation 

for the covariant Lagrangian strain components ~n terms of a power series 

expansion of ( ,16)) 



- 19 -

E«f3 = f (2/( ~~ß -1-it.,,_. - 2 Nf3o~;; l 
f tle [ ~~fJ +- ~~ ()( - 3J ((,~ 13 - Alßtfl) 

- B ~ (V, I ct - II 13 J~) J 
-(.1 e} [ 8 N II ~ ß +- 8! 13 II ~· ~>' ] 

1.~) z - - } 
f- le; ~fJt .. u)(J 

~.t. c.,/J =(,1) I~ ~· f (t;:~ -/lß!:,..)(Y{fl-lle~) 

.;(de) [ ~~Dl (Y~fJ -f/ß ~)~~/J Ir:~ -1/!J~) 
- fl 9 81 0(. ~ - II f ts .r 13 llo~. ] 

f~&/[ fls:" ~~~tl + ;.II (j!" r/d' %~] J 
Eo(3 = EJ« "' f_ f.t) ( tl ( (~~ - IJ 13~) ~ 

t- J (dr;) [ II ~ g/ ~ ] j 

(2. 44) 

The order of rnagnitude assurnptions (2.33) and (2.34) and the assurnption 

that ~tfl is of the order of d , reduces the Lagrangian strain corn­

ponent c to 
tifl 

(2.45) 
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(2.46) 

tJotfJ s: 1 ( flw 1 (J + )~ '"') . 

Thus' only terms quadratic in A are kept in this expression and "~. u:IJ 
is approximated by 

(2. 4 7) 

This is the only nonlinear term in Etl(l • With the above assumptions the 

shear strain Eo(, :'.$ and the .thickness strain E.J.:J are of the following 

orders of magnitude 

t: ()(J ..._ (,J/ (2. 48) 

cJJ '"" (~ ).'~- I 
J 

A rigorous application of the Kirchhoff-Love hypothesis (2.27) yields 

application of this exact expression to calculate the thickness strain 

yields 

=- ~..l ' u ).J ..t-

:; (/J)l ( ~. ä_:s -

-- 0 
) 

a result which is trivial since it is implied in the formulation of (2.27). 

Similarly the shear strains ~~J should vanish. The result ~2.48) 
is due to the fact that the relation (2.36) for the unit normal aJ is 

only approximate. 
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2.2 The Energy Functional of the Shell 

The further development of the shell equations is based on the Hellinger­

Reissner variational principle (mixed variational principle) in the frame 

of a Lagrangian large displacement formulation L-5_7. The Hellinger­

Reissner variational principle implies a simultaneaus variation of the 

displacement field and the stress field; due to the additional assumption 

with respect to the stresses further simplifications may be introduced in 

a mathematical consistent way. This approach has been followed in {-5_7 
within the context of a nonlinear viscoelastic shell and these results may 

be used here, ignoring the viscous material response. 

In this approach the neglection of the stress power of the shear 

stresses normal to the reference surface and of the thickness stress is 

an important assumption. The resulting variational principle is of the 

mixed type involving the membrane force and bending moment tensors as well 

as the reference surface displacements V ot and fV , 
Following usual procedures of variational calculus the mixed varia­

tional principle may be transformed to a variational principle involving 

only Variations of the displacement field 1/.J... , f/. In general terms 

this variational principle has the following form (virtual work form) 

! f ~(f/~lf)p/t/1- ji.Jti-e~ dtil- jf.Jii dt;: = o 
?4 t4 Cr= (2.49) 

Here &t is the strain energy function for the elastic shell 

(2.50) 

"" -
Further., F is the prescribed s tress vector acting on the boundary strip 

Cr (Fig. 1). This externally applied stress is assumed tobe independent 

of the displacement and rotation of the boundary strip (edge of the shell). 

Thus, the variational operator cf~·) can be extracted from the virtual 

work expression 
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-- (2 .SI) 

Following the derivation in {-8, p. 229 ff_/ the area element ti~ of 

the boundary strip may be represented by 

ol er = (flce) ";z. J .t tiB dC 

u h D 1~ 1
2 1/n l. /f) )'j 2 .52) 

fT ~ t! == /1 -- ;E C7 'Occ + U:::7/ L (V Pc) + lD('e_. ; 

here l3c~ , ~VC are components of the second fundamental form in the co­

ordinate frame spanned by unit vectors Y and C (Fig. 1) and dC is an 

element of the arc length along the boundary curve C . 
If the edge loading is defined to be 

"" 
+ 'h 

IYot ::::::: rl/ j ( 1/,'-t' ;; · ßot d& 
- ~.t 

f"I'L 

""' ~ 

/ {lfc,/' j · P" (2.53) 
)1ot {~)1 r7dB ::::; 

-'1;4-

.; 1
1t """ 

J 

"" J { lla/k f. ß1 d8 () - 4.f ... 

- ?I&-

then 

" .e f! ~ v" t lt .. fl-< + in!} d(1 
c 

here the displacement field representation (2.3?) is implied. The term 

may be partially integrated~ (see ref. L-5_/) to give 

~ Th' ' 1' l.S 1mp 1es 
ary curve t! 
is given by 

--

a continuous distribution of M P< fett Y r along the bound­
• The permutation tensor t!S.IlfJ in the reference surface 

~ 

e c - e 211 .. lii' 
I /l. -1 'l Je 
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=- f[H•(ß:~ f 

c 

Thus 

V c 

(2.55) 

'Ii 

where Q is the ersatz shear force 

f\; 

Q (2.56) 

In the virtual work expression (2.49) ~ is the resultant force per unit 

area acting on the middle surface~. If a hydrostatic pressure ~ is 

applied to the shell then 

, 
I 

(2.57) 

here tl~~~ is the ratio of the deformed and undeformed middle surface 

element. Following the derivation in L-5_7 and ignoring terms less than 
/ 1)L 
(/V one obtains 

(2.58) 

~ The shell is considered to be thin such that the surface forces may be 
assumed tobe acting on the middle surface. 
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Obviously this loading depends on the present configuration of the shell. 

Therefore, the variational operator cf(•) cannot simply be extracted from 

the virtual work expression 

Nevertheless, under suitable assumptions this is possible. With (2.58) 

the virtual work expression is 

J i-. liie,.o tl/1 & _e /PI~ fV"-~- f(l v~ot/'1 
tA C11 {' 

:_ t ( Jl- j/3: fNJ) (2.59) 

~~" /;./} ,( r4' 

For the following it will be assumed that the hydrostatic pressure p is 

uniform; this allows to extract P from the above surface integral. Then 

the first term on the right hand side may be partially integrated by appli­

cation of the Green-Gauß theorem for surfaces 

(2.60) 

The virtual work expression (2.59) may now be given the following form 

= -tp I /(1 Y' 8.,1 Y"'-fAI-111:rwJJ 
14 

-Y~ot II j dA 
(2.61) 
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Except for the line integral in (2.61) the right hand side has the form of 

the first variation of a functional. However, under suitable displacernent 

boundary condition 

i.e. 

or (2.62) 

this line integral vanishes. The clarnped and the hinged edge are exarnples 

which satisfy these conditions. 

Furthermore, if the shell is a closed one under hydrostatic pressure 
5{ 

then no line integral appears on the right hand side of (2.61) • 

For the following it will be assumed that the one or the other con­

dition applies such that the virtual work of the hydrostatic pressure can 

be represented by the first variation of the potential f/p 

. -·-

(2.63) 

f ~~I ( ;/(Af (~,)-J NIJ: 11-J~ ;}'"~} drA 
r4 

(2.64) 

At this place it should be noted that Koiter L-9_7 has calculated the 

increase in external potential energy of a closed shell under uniform 

hydrostatic pressure by considering the volume change of the closed shell. 

Under due consideration of the different notations the result (2.64) is 

the same as Koiter's for a closed shell. 

The virtual work formulation (2.49) can now be transformed to a 

variational principle: There exists a functional Cj{ , the total potential 

energy, 

5f: 
A closed surface may be devided into two parts but continuously connec-
ted. For each part a line integral along the fictions edge is obtained; 
they are equal except for the sign. 
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//(V~W) 

== 1 !)z drA 
r/1 (2.65) 

7i; t-1;J jf W/uY~~J-J;!ß"1111-JY411 V~ dr/i 

7i; "= --1 f/!i?-!~ 9tf}~ -lll'~l}j~ 
c .; Qttfl) dC j 

whose first variation with respect to an admissible displacement field 

voL) w vanishes: 

171 ::= 0 . (2.66) 

This principle (2.66) states /-5 7 that among all admissible displacements 
~ - -V 1 J,./ of the middle surface which satisfy the prescribed geometrical 

boundary conditions, the actual displacements make the total potential 

energy stationary. This statement is equivalent to the equilibrium and 

dynamic boundary conditions of the shell L-5_7. However, thesewill not 

and need not be considered here. 
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3. Derivation of an Approximate Stability (Indifference) Condition 

3. 1 Displacement Field Approximation and Matrix Representation of 

Kinematic Quantities 

Following the strategy sketched in chapter (1), in a first step we trans­

form the total potential energy functional (2.65) into an algebraic expres­

sion with a finite nurober of degrees of freedom. This is based on an 

approximate ausatz for the three displacement functions. For this formu­

lation the direct matrix notation is used. 

For the present restricted purpose it would be unduly complicated to 

follow the finite element philosophy. A global approximation for the dis­

placements (Rayleigh-Ritz approach) is sufficient, although in practice 

it may be difficult to find suitable ausatz functions which satisfy the 

essential boundary conditions, i.e. the kinematic boundary conditions. 

We assume that certain kinematic boundary conditions are prescribed 

on the edge ~ or part of it, compatible with one or the other restriction 

in (2.62). The total potential energy is formulated in terms of the tensor 

calculus. Therefore and for the purpose of generality and simplicity a 

transformation of the tensor components of the displacement functions into 

their physical components is avoided. Thus, the Rayleigh-Ritz ausatz is 

done directly with respect to the covariant components: 

H , 

VQ( ;::_ IV 

"::::: c (rX.) 7f ~ fe!J o{-:::A,t 
' J 

A,- tr;. A 

I( • (3. 1) 

w ~ 
;t.. - c fi (t?!) 

I 
"'L:::;"/ 

We prefer to use the covariant components ~ instead of v?l( since ~ 
is amenable to a simple geometric interpretation~. In the above ausatz it 

is understood that the prescribed functions lfo( ( f) f) and ~· ( e :J 
belang to a complete set of functions L-10_7 and satisfy all boundary con­

di tions. 

~ is the reetangular projection of ?/ on the base vector 

I/ ,1) I RA} 
V()( Ul, 

-f/pl. , . 
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The three displacement components (3.1) are assembled tagether in the 

colunm matrix 

(3.2) 

I ; 

,c, ""' 

Further, the unknown coefficients C(«) and C are assembled in the 

colunm matrix 
.-1 

c.(-1) 

: . 
M c ('1) 
.. z - c (.t) (3.3) 
, 
I 

14 

c (~) 
-1 c 
• • N 
c 

Then the relations (3.1) have the following matrix representation 

lU fe'J Nte') 
(3.4) - ~ ) 

where 
t1 M 

't)fe? ... ß,) (e' 0 . . , 0 0 . .. 0 

"' N 

#r&; ~ 0 ,, , 0 Yr't)f&V (4fr;') 0 , .. 0 (3.5) ... 
I 1 il 

{) 0 0 0 r(ef rr~~; l .. , •• t ••• 

The covariant components of the middle surface strain tensor (2.46) I may 

be split into a linear and nonlinear part such that 

()(ß! 
-=. ~~ f' fJif 

fJp~ 1(1/;J,, ~ljl - z w~13$) 
(3.6) 

I= -f 

1/Jrt ' ;: 1~1/, 
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The two surface tensors Bp! and Pßs are synnnetric. Here the question 

arises in which way the components of each of these tensors may be arranged 

in a column matrix. Two choices are indicated 

e - I(~~ ~- C1,) 

~t, 

01( 

I 

3. 7) 

The first choice~ has important advantages compared to the other; this 

will become evident in the following. Thus we introduce the following 

column matrix 

e = 
(3. 8) 

With unessential differences this is also the arrangement used in 
L- 11 , s • 42 1_?. 
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According to the definition of the covariant derivative (2.17) 2 

1(,:-f ~1 --

t{L = r;l -
~~-~ - ~," -

~~l. ::;;; ~.t 

- ,A r;.;f ~ 
t) r;; v; 

tJ re: ~ 
(I 

~; v; 

0 t7 

.:=. Jl:. !' A ~~ I' J. 1/ 
4;1 - """" ." - .",.., Yz. 

0 rJ. 
~2. K 
9 2 

r;1~ 
II l. V. - r:z. J 

we have 

(3.9) 

These relations suggest to introduce a differential Operator ~ such 

that (3.8) is represented by the following direct matrix notations: 

The operator W is given by a 3 x 3 matrix 

Jl 
I 
! 

Now, lJ is given by the matrix product (3.2) and thus 

I 

) 

(3.10) 

-L!J .." 

(3.12) 

this relation shows the linear dependence of th'e colunm matrix e on the 

unknown coefficients contained in 2.. . 
The two rotations ~ of the middle surface normal are assemb led in 

the column matrix 
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~ ~1 -t' 8~ VJI 
lW = - --Wz. s: ll.v 

(3. 13) 

ti2_ + .. 

The introduction of another differential operator allows two wri te 

w c. Wv (3,14) 

where 

81 
"" 'o/;,) ·-,_ 

13~ 
(3. 15) 

The nonlinear parts of the middle surface strain are assembled in the 

column matrix 

4 

t 

w:,w, 

1[ ~.~ + ~ ~] 
~Wz. 

Now it is important to note that (3.16) may be written as the matrix 

product 
I \ 

0 ~ 
1 

:::::. -t i~ w" wk 

(3. 16) 

(3. 1 7) 

The components N" and ~ may be related to W by the following 

matrix products 
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1 

where ~ and f are 

~ "" [ ~ J 
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= er (ff?N)z 
"1 

With (3.18) the 2 x 3 matrix in (3.17) is now given by 

w~ 6 

6(Z.) 
, - 1 

1~ JN; , - -t 

0 Wz. 
.... 

~r(fl/N)z 0 

:::::; 1 1 t:r(WIH)~ 1 ffr(WIN)2 )!, .t~,. 

() ~r(WIN)~ . 
/ 

Thus, with these notations (3.17) may be written as 

(3. 18) 

(3.19) 

(3.20) 

(3.21) 

The change of curvature tensor G)Kß (2.46) 2 is assembled in the column 

matrix 

4)"'1 ~/1 

w - f( f.J1L -f Ui~ - 1( N,,t ~t1) (3.22) - +-

t:Jll- Wzil 
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where the covariant derivatives are given by 

() c:> l ) 

~/4 - Jv;/1 r;" 4 ~ ;:~ I 

/) " w .w,;,l ~ r:;w, - rz~ 
f: 2 

::::: 1L .t (3.23) 
~ 

d 

~~.,; w:~ r~: w; (').; 
~ - .t1 

fJ 
p 

00.: c ,::;. H;,z, r" fl, r;: M 12 

Analogaus to (3.10) we introduce the differential operator such that 

w=Ww (3.24) 

where W' is a 2 x 3 matrix 

4 . - -
I- L (3.25) 

This operator consists simply of the first two columns of ~. With (3.14) 

we obtain from (3.24) 

w-

here 

~) , 
f 

This gives finally 

w == ~v - (W IN)~ 

W!N = V/(W'!N). 

(3.26) 

(3. 27) 

(3.28) 
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Summarizing the main results we have 

e"." 
e = !(f:d ,t e. ) == W rv - ( {f' N) z 

.t '.f .l, "' ., 

~t 

N:, fl., 

{(11.,~ f ~ }/.,) := 6(~/"' 
~w;_ 

l 
! 

>(3. 29) 

1 ( tJ"l + cJl.,) 

u~_, 

=- Ww =- W(~v)=(WN)~ 

This completes the matrix operator representation of the kinematic 

quantities. 

I 

j 
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3.2 Matrix Formulation of the Strain Energy Function for the Thin Shell 

The matrix representation of the kinematic quantities is based on the 

covariant tensor components of the displacements and generalized strains 

o(~~ and ~~ß . In terms of these quantities the strain energy 

function ~ may be written in the following form5{ 

with the 4. order elasticity tensor 

With the Separation (3.6)
1 

the first term on the right hand side of 

(3.30) is 

f 

(3.30) 

(3. 31) 

(3. 32) 

The explicit evaiuation of the first term on the right hand side gives 

(3.33) 

~ 
It. should be kept in mind that all tensors and operations are defined in 
the undeformed referential configuration of the shell. 
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and 

This is combined analogaus to (3.33). It is then obvious that 

!~J;l 

eJ';J 1-1 e 1 ()( 
..__ 

where 

11114~ 
; 

IH :==- (fl~ ;/7 
i 

I 
l 

l 

fJrHe 

(!I*M,t ;(l ~; ! 11
1U1 

( fl 1'l1~ fll~t"/ 

-~- II"" u. .f fl "0.1) 

I 

I /, 4~2'2. U21 j 
1 (11 +fl J 
I 

f/uu .. 

(3.34) 

(3.35) 

(3.36) 
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With the definition (3.31) and the symmetry of the contravariant metric 

coefficients f("· 13 
we see that the 3 x 3 matrix /H is symmetric 

~ r;'/H() - (f)T/Htz 

.:: 1rj T IH 11? 

and for the deformation energy due to curvature changes we get 

Consequently, the strain energy function te is 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

With (3.29) the explicit representations of the right hand terms are 

T 

l e' 1H e ~ "&:.r (r!N) IH f~ IN) Z, 

fJ'H'? - il-T ('W N/ IH 4 (W'N) z I 2) 
I 

?!?T H (/) Z
7 
(ff/ N/ {):1:) /H (W N) Z 

1 

.::. 

1 
(3.41) 

'f"H'? - zr(W 1Nft4~ 11-/ fi~) (~M 4. I . 

I 

zr(fYN)r IH (Will) z. 
I 

tuT lfl fl.u - J 
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The total strain energy potential is according to (2.65) 2 

- (3.42) -
Here all terms depending on the surface coordinates have to be integrated 

over the whole middle surface of the shell in the undeformed configuration. 

This integration leads to the following matrices 

/!J(tJ,rJ) •= I OYNf /fl (V IN) irA 
C4 

'417 ~) := j fVIN/If! Cr:v (ff'IN) dt-'1 
rA 

'"' Jrw-N)r 6~/fl fV/ IN) dtA "'1+:2) 
V# 

(3.43) 

Pr~,~) := j (I~ !J.I/r!fi!; /H lfz) f~N) Jr) 
u 

40"/ I~~ f;/ (rfN/ H (WIN) d ~ 
t4 

With these definitions the strain energy potential is 

(3.44) 

+- IJr<>,oJ } 2 . 

It should be noted that this is not a quadratic form in ~ since some of 

the matric.es depend linearly or quadratic on Z . The matrix [". j is 

symmetric. 
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3.3 Matrix Representation of the Hydrostatic Pressure Potential 

The potential energy of the hydrostatic pressure p is according to 

(2.65)3 

w; = 1- tp j( 11 (4f r~o~)- 1 f/8.._" II- 1 II ~"ß iljarA 
(;II 

(3.45) 

The trace V'~ is given in explicit terms by 

- V,/,., !l# fi '~l tl ;n 
f V,;,l owl- ~ :4 fJ + ~:'.t !) 

tJ ~ 

- ( ~J" f7A~ ~ - r l_ Ii ) R "ft 
41 1.. 

t-(~ll 
rJ ; 

0 

Vz) 11"'-f7 ?;", ~ - ;:~ 

f (Vt, ~ 
Cl 1 

/:" ~ 
()J 

~~ ~) fJ z~ 

f (~IL 
(;1 f (> 

0t ~ 0~ K) Ii 2L 

Introducing a suitable differential Operator w the trace v~D{ may be 

represented as 

(3.46) 

where 



Vr.J := 

l 

and 
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L- { ·~, /!, 1 J 11'1 -f~ R"" I 
- 41 R I I 0 

11 

lf)'l] "''-
[(.)I). - f:l R 

() 

-/7., /Iu 
.l4 

- ;7 I! fl.lt 

'" 

A 

A 

1 
1 

I I 
I 
I " I 

-f'.L f/"z. lo 1;" 
I I 

I 11 t .l4 I 
: ft·J#I- 1;1)/l 10 
I I I 
I I I 
'[(.J - j7l ]111.'1 0 ' -1.,& l .z, I 

l 

( 3. 4 7) 

(3.48) 

The normal displacement component ~ is singled out from the matrix t1 
by the product 

ST f/~ji rNr 
W= ·lU - ~ § .:::::::: -

J J J 
(3.49) 

with 

l 0 

~ ::::. 0 

J J 4 
(3.50) 

Thus, the first term in the integrand of (3.45) is 

(3.51) 
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With (3,49) we obtain for the second term 

The third term is 

f zr(IN1.s B: srN)~. 
~-----' 

symmetric 

and this may be put in the following form 

with 

ßA~ e/'1._ 0 

I!< ~ (3~1 13 lJ.. 0 - /kr 

0 0 D 

(3.52) 

(3.53) 

(3.54) 

The integration over the middle surface leads to the following matrices, 

which are independent of the surface coordinates 

. -I>-

/E ;c J NT(§ tE_} (f'/N) rJt/( 

t/1 
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It should be noted that the matrix ~ is nonsymmetric. The potential ener­

gy of the hydrostatic pressure is then given by 

(3.56) 
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3.4 Matrix Formulation of the Boundary Loading Potential 

The transformation of potential energy of the boundary loading (2.65) 4 is 

a straight forward matter. With~ 

(3. 57) 

--

we get 

(3.58) 

The definition.of the column matrix zf is obvious from the above. Again 

it is noted that this integration is to be done in the undeformed reference 

state. 

~ The coordinate )) is the arc length along. the outer normal V of _;he 
boundary curve ~ (Fig. 1) and ~ is arc length along the curve ~ 
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3.5 The Total Potential Energy and the Fundamental Equilibrium State 

The total potential energy of the shell in terms of the column matrix ~ 

which contains all unknown parameters characterizing the displacement field 

is given by 

A 

2 i 1.440/ f- /Jrq ~) f /)(~ O) f 1)··~14.) -
l (3.59) 

I 

f IBrolo) } Z 

+-'?(zt,p 
1(-

r-2Ell.} - 1 ~'/1(2 
c:--

For various values of ~ the total potential // takes different values. 

For the equilibrium state of the shell the potential ~ assumes a sta­

tionary value, i.e. the first variation of ~ with respect to 4l vanishes: 

0 (3.60) 

This state is called the fundamental equilibrium state and it clearly de­

pends on the loading P and i . From the stationary condition (3.60) we 

obtain the fundamental equilibrium state as follows. Formost of the terms 

in (3.59) the derivation of the first variation is a straight forward 

matter: 

cf(~ r 7!;) 

( llLr;(D 
lf ~ 

- .,!;; A lz 7 kl "! 2T/k da. - -_z 
~ 

zrlle J (3.61) 

t t~r!Ez f 

I diL~ f 

- 1;/[-t;/fD -kJ. + (ftE')zj- llt] -
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c 
The first variation of the strain energy ~~ deserves a more detailed 

analysis because of the non-quadratic terms. The first variation of these 

terms gives 

cl/1 "l. r [/!Jr0 2.} -f lJr.,_, o) 1 lJa, ~J J i2. j 
= J ( 1-l.r 4v,a) 2:. r zr I(!J((J,~ ~) 

-;-· ~.r lfz,q; ! i2. 1- tf ("J!: r ~(~,")) 4 

t- J( L.r lJr~,a) ~). 

With the definition (3.43) 2 we have 

(3.62) 

+j(W!N//1-1 6-r~/,.-IN)!a. JrA (3.63) 

t1 

Observing (3.29) 3 we see that 

(3.64) 

such that ~(,fl) may be written as 
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<er rßw 0 
1 

6-(f"k.) 
rl 

1. re'lw 1 rfr Iw .:i::" -
~ /" 2, ,(", .., . (3.65) I 

tJ 
rer !w 
~ 

thus 

Grh/WIN) it - {;trfaJ w · = 6rz) Jw 

= 6/ (W N) !z 
( ~) 

(3.66) 

since 

\ 

0 0 

r Fw, l 
i<3.67) 

, I 

d~'{j 

Consequently, we have the important result 

(3 .68) 
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This "exchange rule" applies to any two column matrices Y and \V which 

have the same dimension as ~ : 

(3.69) 

This simple rule is closely related to the specific assembly of tensor 

cornponents 1!K.ß in the column matrix ~ ; the other alternative shown 

in (3.7) does not lead to such a simple relation. Thus we have 

Similarly we find 

I( Zr /!Ja./u) - d ~T 4--;;,o; .f i}. r }(!'«,o) 

- ~ ~~ r /Jr~/11) 
and generally 

Finally 

cf' ( a_T 1Dt:t
1
2) ~) ==- fl.r /Jrz,ZJ l t ~r /Jr1~, 2Jd 

+ ~r 1/112/ tlz; ä .r ~r lfz,z.; ~' 

(3.70) 

(3.71) 

(3.72) 

(3.73) 

Observing the definition of !!i~/l) and following the same argument as 

above one finds 

~(3.74) 
I 
j 
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In general terrns we have 

rT j)r~~ YJ - IY //) ry, o/ J 
(3.75) 

IJ) ry, w J )Y - lJry/ r) \V' 
With this exchange rule (3. 73) reduces to 

(3. 76) 

These results are cornbined to give an explicit expression of the right 

hand side of (3.62) in terrns of ~~ 

I ( i a' [ I!J;o,.1;J f lJr~"oJ o~- lJrii/4/J~J 

.:.: ( I~ r [ ( /)ro, ~; + l/)~ ~;) ~ .f Pr~,·'!) Z 

-1- .l l!Jr~, lLJ ~ ] / 

(3 0 77) 

The derivation of the first variation of the quadratic terrns in the strain 

energy is a simple matter which needs not to be elaborated here. For ef~ 
we get finally 

Since 

rf if. r / f /J~P,f); t- (LftJ,~J ~" JJ!~,a) -f-/Jr-a.,") 

+ L !/Jr~~ zJ -1- 81~,(}] ~ 
lf 

+ lfJ[ ;o- IK~ + (EfE)~] 

-Li I 

0 ) 

(3.78) 

(3.79) 
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we obtain the condition that the bracket [., j in (3.78) must vanish. 

From this we get the following nonlinear algebraic problern for the unknown 

column matrix 2 

f ( i)(tJI "i.) 1- D:O!i:.)) f lf~IO) (3.80) 

*"" +,t;:;(IE r/lr -I/( ).}1:_ 

Two observations should be made, Firstly, the contribution of the hydro­

static pressure to the square matrix [ ... ] on the left side is symme­

tric since Jf is symmetric and only the symmetric part of ~ is involved. 

Secondly, the matrix l){2 ,o) is nonsymmetric. However, the expression 

~~,cJ) ~ can be transformed to read 

~ 

lJft!) 2. --
where symmetric. This derivation will be given later when it 

is needed in a different context. 

If the response of the shell is clearly nonlinear in the pre-buckling 

state then nonlinear terms have to be included. We will not discuss this 

case here but assume that in the pre-buckling state the deformations are 

sufficiently small such that (3.80) reduces to the linear problern 

(3.81) 

The solution of this linearized problern is 
-.; 

- ,t !- 14{);&)) I 8(41J) l (tf - fJ jlJ) I (3.82) 

For a class of problems this 

of (3.80) or the approximate 

approximation may be sufficient. The solution 

solution 2.. (3. 82) defines the fundamental 
0 

state whose stability properties are to be analysed. 
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3.6 Evaluation of the Stability (Indifference) of the Fundamental State 

3.6.1 General Evaluation 

The equilibrium state, whose stability is to be analyzed, i.e. the funda­

mental state, is characterized by the displacement matrix l the solu­

tion of (3.80). Now it is assumed that the fundamental state is in a state 

of neutral equilibrium which characterizes the transition from stability to 

instability. Consequently, one has to assess whether there exists an ad­

jacent equilibrium state under the same pressure loading p and boundary 

loading i but characterized by the state 

(3. 83) 

where \V is small'Xcompared to 

shape functions n Q(. and ~ 
to include all possible modes 

~ . Here it should be pointed out that the 

in the ansatz (3.1) are sufficient general 

of deformation; thus, buckling modes may 

also be described by the series approximation (3.1). 

For the adjacent state the total potential energy is 

(3. 84) 

(7,-

Since this state is in equilibrium, the first variation of // (~-,1- \V) 

wi th respect to \V mus t vanish (Fig. 2) : 
r.;-
11 (z o~- v) 0 

) (3. 85) 

~ 

Before this variational condition can be evaluated the potential //(~~~V) 

has to be represented in term of powers of ~ . The general expression of 

<hf~ for any column matrix ~ is given by (3.59). According to the defi-

nition of the various matrices we have 

~ Actually we consider !!!!.~~~~~~~~~! additional displacements V. 
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l/)(-z -1 1)(1 ~ f IY') - ])(.Z:_ 1 7Lof IY) f- lJ ( IJ/; 'R:. fiV) ~ (3. 86 ) 

r lfg:.
1 

q:_) -1 !Jrz,IJ-J ~l},r; zJ r !Jr,r; IY) 

r * 1~r r~ TA'" j 
(z H') 1K (-z f v) = ~ //( .1:. + .t v /!( z t IV J tVI 

I 

('Z.ftv) /E (z.-11YJ::: ~rlz. -1 v(E..r/lVz. -r- \V~It-~ 
j 

After some lengthy algebraic calculations the following representation is 

obtained 

v'(fl/)(qO) rtß(o,o) +(JJ)(O,ä) +4~,Q))-f _}(z_,tJ} .f,?~./,il) ~~:rder 
.f -tp ( E +F'- K; '(2._ -f /l'fJ - --tltj + 

1( v'[ 1Dt4(); f&-,v; llJrq ?t.) +1Jrl:,";) ~ ,~,~-JJ1~~~J':J f ~ 
(3.87) 

2. order 

Jf 

.r{p 'VT{![ -lK }\V+ 
in V 

.;-. ... 



- 52 -

T 
-1 'V ~~~~\V) \V I 

Since 2. characterizes the fundamental equilibrium state it satisfies 

equ. (3.80) and thus the term linear in ~ vanishes identically. If we 
~ 

neglect the 3. and 4. order terms the first variation of (/(~ ,tiV) 

with respect to 'V gives 

D c.-" 
c)'Y 1/ ( .72 .f \V) =-

~·\vT L-lD(C;I)) + .ßrrl,()J -f 1/Jr~"i?) -rlJrz;()) -f '1/)ll;ä)]\V r-

lflivr[ E +Er- !K ]\V + 

ci\vT [ /)(0; '&- r-7/Jr& /tl)] V i­

llvT [ l/)(~rJ) =f /J(IV/2)} ij/ f-

\YT [ lJ(ItY, o) -!- j)(o, cf'IY)} IV ---- 0 

and observing (3.72) and (3.75) this may be combined to give 

dv T(a" \V) -

c"wr ( [ /Jrq,.cJJ -f t!;,V) f 2/4&,eJ r 2 ~2,•J 
f II /)(it,?t) -1- /;:; ( E f E T_ K) }\V 

(3.88) 

(3. 89) 

0 
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for all d lV' • Thus
1 

the column matrix in the bracket (..} has to vanish: 

[l!J(~o) f /Jrrl,v) .; 2 (IJ(cV?L) ~-J2fl1o)) + lflJ(~"~) f 

/lt (IE+ Er-/.) }\V +- <3.9o) 

~_- .z .iiJ (W', 0) f 2 lJ) (~ 71.) J 2. I 

This is a linear homogeneaus equation for the additional displacement 

matrix \V • The last term contains \\1 in an implicit form not suitable 

for the further analysis. Therefore we transform this expression in such a 

way that \y/ appears explicitely in a matrix product. With 

and the defining expression (3.43)
2 

for lJ;~ \V) we have 

r 
6rrv; 

= /(lW' lN/ 6/.v1 11-/ IV: IN h,) rA 
fA column matrix 

( e '(ff lf.l) tv 
.1 I ., 

- .Zl 

0 

0 

The column matrix 11-/{WIN) l. may be represented by 

( ~T 11-1 (\\fiN)l' 
! /1 

IH(Ilq,;IN)z = srH(WN)z. ,= 
~ l 

~ f H (\f()'N)li j 

l lr(~!N~TH:~ ~ zr(ffN)H § 

l2(ln/Hfj 

(3.91) 

(3.92) 
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(3.93) 

Thus 

(3.94) 

-- 4 --
~ 

Consequently, the introduction of the symmetric matrix ~~) 

f J'/1-1 (ft'N)~ . 
z 

(3.95) 

allows to write (3.94) in the following form 

(3.96) 

With this result the right hand side of (3.91) 1 may be written as 

* 
[)(U!;v) ~ == 7/) (i} lV 

(3.97) 
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where 

4z; :>=- 1(\lf'Nf Fiz) (\WN) d ~. (3.98) 

~ 

* The matrix l)(~ is symmetric 

;f; tri 

lf)(z_) = /) (iJ) I 

(3.99) 

In an analogaus way the matrix product //)~ ?t.) l is transformed. We get 

observing (3.43) 4 

(3. 100) 

and 

6:VJ ll-16rz; (lff~N) l. ~ 

-z~N/6~ Hf ( (if!7N)v.,. .l~N)G!~~~~f 1li1?iti)IY 
_4 

-
2 z'(W~tv/4~1 #-ljl((lff!Aßvnl(W'Aij{;;/Hj {(lrN)1v 

(3.101) 

Here the symmetric matrix 

(3.102) 

is introduced 
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(3. 103) 

and consequently 

11.-

[Jf'v, Z:.! ~ /)ZI?L) V (3. 104) 

where 

~ j(ff'N/ ffz/4.) ([YN) d Jl lJr~,2J 
(3. 105) ,_ ,-

rA 
is symrnetric. With these transformations the indifference condition (3.90) 

has the desired mathematical structure 

This is a homogeneaus linear equation for the unknown column matrix ~ • 

Non-trivial solutions are obtained if the coefficient matrix [ '"] 

is singular for certain loading situations. 

It should be noted that the coefficient matrix does not depend expli­

citly on the prescribed boundary loading but on the hydrostatic pressure P. 
On the other hand these loadings determine the fundamental state 2 anyhow. 

Finally, the derivation of (3.90) suggests that this result is equivalent 
c;;-

to the condition that the 2nd variation of b(~) should vanish, i.e. 

!271( il:.) . ~ 0 

for all or~ . This may be easily confirmed. 
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To reduce the complexity of the stability problern the hydrostatic pressure 

loading and the boundary loading are treated seperately. 

3.6.2 Pure Hydrostatic Pressure Loading 

Since a pure hydrostatic pressure loading is applied to the shell the 

boundary loading is set to zero in (3.80): 

f= 0. 
Further, it is assumed that the pre-buckling deforrnation is rather srnall 

such that the solution (3.82) of the linearized problern applies: 

(3. 107) 

where 
_"" 

~ ;:::. - [ JJ(~,()j f 13(0,())} fD (3.108) 

is independent of the pressure /). Inserting this result into (3.106) we 

obtain 

'lt 

{ /)(tJ1V) 1-/ß(o,o) + -lj (ZlJo, i.J 1.2/J;-;,o/ f l/)(J) 
(3. 109) 

+ l +-Er -i) +(frl( 11- IJr;,-; J '2 br1,.; ;)] v ""' o . 

Now, the hydrostatic pressure appears explicitly in the coefficient rnatrix 

and it is the only parameter which controls the singularity of this rnatrix. 

It is obvious that the indifference condition is a quadratic eigenvalue 

prob lern. 

The pre-buckling deforrnation was assurned to be srnall and therefore it 
0 

seems tobe reasonable to ignore the terms quadratic in ~, Then (3.109) 

reduces to a general linear eigenvalue problern 
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where ~ is the eigenvalue 

and 

Assurne that this eigenvalue problern has 2/1;-A/ distinct eigenvalues 

At : -L P;. and eigenvectors \Vt . Then 

{ fl - ) • t[ J 'Vr· := (D 
t. 

and the reciprocal of the associated Rayleigh quotient is 

4 A ~ r tf. \Vt· -- - --J, ...... • 
- ,-{j~ v.r Ii \\1. 

) 

4 

't " 

explicitly we have for the reciprocal of the critical pressure 

- lf - ~ 

Wt.
7 !L !/)~, i) f-2 /);, ()) + l Ot-i) -1-- [ 1-[

1

-- /1( \V: 
(3.110) 

\V/ [ IDo,~; f IBr~,q;) \V: 

The lowest eigenvalue ·~ . defines the cri tical buckling pressure f{)L • m~n r• 
If the corresponding eigenvector W . is known then (3. 110) allows to 

mn 
calculate · the buckling pressure Pe. or i ts reciprocal. 

3.6.3 Pure Boundary Loading 

If no hydrostatic pressure is present but only +oading along the boundary 

then the equilibrium condition for the fundamental state ~ reads 

(3.111) 
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Complete linearization simplifies this to 

(3.112) 

we assume now that the various contributions to the boundary loading change 

proportionally such that 

II - (3.113) 

where ( is a variable load parameter and f a fixed setting of the 

boundary loading. Then the solution ~ of (3. 112) is linear in ~: 
" - '/ 

2-
0 

f f' [ j)(tJ~o; f- J31v,P)]! ::; /( C Z (3. 114) 

where 

(3. 115) 

With these results and definitions the general indifference condition 

(3,106) deduces to 

{ IJttJ-P; f IJ1o,u; f .ti ;_( !J/(}, iJ f j)li, tJ) f _f;-; )}v = ~; 
(3.· 116) 

" here, the terms quadratic in ~ are neglected such that a linear eigen-

value problern is obtained. The reciprocal of the corresponding critical 

load factor is then given by 
'lf 

'V,;T r~ /)(P,i) f t/)tf,o)f_~~ri~lv. 
= 

( 3. 1 17) 

where ). ::: -/ '[. and V, are eigenvalues and eigenvectors of (3. 116). 
-1 ... "' 
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4. The Total Potential Energy Functional of an Imperfect Shell for. Infini­

tesimal Strains and Rotations 

4. I Derivation of the Energy Functional with the Initial State of the 

Perfeet Shell as Reference Gonfiguration 

The shell whose stability is analysed in chapter (3) is called the. "perfect" 

shell; its initial configuration is denoted by J{ . We may consider now a 
(J 

slightly different "imperfect" shell with the initial configuration 

free of initial stresses and strains. These imperfections refer only to 

the geometry of the middle surface. It is assumed that the imperfect shell 

may be obtained by subjecting the middle surface of the perfect shell to 

a displacement field - the imperfection - compatible with all kinematic 

boundary condi tions of the perfect shell. According to the strategy des­

cribed in chapter (I) the imperfect shell is loaded by the same hydro-
~ static pressure and the same boundary forces and moments. 

The energy functional (2.65) is valid for any isotropic elastic shell 

whose initial configuration is free of stress and strain and whose geo­

metric boundary conditions are compatible with (2.62).~~ Thus the energy 

functional of the imperfect shell has the sameform as (2.65), however, 

here the reference configuration is that of the imperfect shell, Following 

the strategy described in chapter (I) the response of the imperfect shell 

under the loading has to be calculated with a linearized theory. Conse-

quently, ~!!_!!~!!!i!!!:~E-E.!:~~-i!!_E.!!!:-~!!!:ESl_f!:!!!~E.i~!!~!-~!-!!!~-i'!!!2~Ef~~E.-~!!~!! 
!!~~~-!~-~~-!!~S!~~E,~~~ Thus, the energy functional of the imperfect shell 

has the following form 

71 r,;-
r- 7r 7[ ..:: /, -f 

/I 1 C'l. 1 p 4 c (4. I) 

where 

1 71 ~ jq[ cl_r/l 
/1 tk 4 

rf 
~ 

For a precise definition see page 79 

~~ 
Existence of a potential for the hydrostatic pressure. 
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7[ - + '~" j~ dtj 1f 

rfl I 
I 

l 

71 -~ f ( [ ()«- ;j ~ ~ f ~ l ><4. 2) 
I 

.::.. l 1 c \ 

I C . l A 

II I l ~ol dfl 
T- d*'/;) d c - 11 ~1] ';})/ 

"" "' 1 , .A 

and 

a " ~ 9o(t(1 1 ~ ~~~ 11 - z 1 f(J. lj t{-JrJ. -t 1t (d) ~!tl lj ~~" . 1 

i t'd'/3 * * * "/( (4.3) 

E.f. ( F)gocf)f/1 + J) 8!{J f!d''')' li - ,4 -v 
" /lfv "' "" 

Here f.-(1(13 and ~()({3 are the linearized middle surface strain and the 

change of curvature tensors~ of the deformed imperfect shell measured with 

respect to the initial undeformed configuration ~ of the imperfect shell. 

Further, the elasticity tensor ft~~(~ is defined in the configuration 
' 1 

Ji. . It is obvious that the linearisation affects only the deformation 
4 rr.-

measures and the potential ~P 
1 

It is noted that a formulation which uses tensorial quantities defined 

only in configuration ~( masks the fact that the imperfect shell is only 
"' slightly different from the actual "perfect" shell: Such a formulation does 

not explicitly show a parameter which measures the difference between the 

two shells. Therefore the energy functional (4. 1) is transformed such that 

all tensorial quantities and operations are defined in the "perfect" con­
figuration J( ~~ 

() 

These quantities are normalized. 

This is a prerequisite for the comparison of the results of chapter (3) 
with the results to be derived for the imperfect shell. 
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0 and 

"imperfect" 
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~ be the position vectors of a point 

shell (configurations ~ and J7i ) 
0 1 

+ ~eAJ 
J 

of the "perfect" and 

(4.4) 

-
~ and 9 ... are the cümensionless position vectors of the two middle sur-

faces and /j.J and ;;;.J are the corresponding unit normal vectors (Fig. 3). 

Note that the thickness parameter A = -l/.e and the scale factor ,f 
are taken to be the same; furthermore the surface coordinate of the two 

middle surfaces and the thickness coordinate are denoted by the same 

symbols, i.e. ~~ and ~ , respectively. Naturally, the normalized base 

vectors of the two systems are different and given by 

-R(l( 
0 

and 

) 

R= 
0 3 

!Jif X &a 
I '31 X fj, I 

(l, J( $1_ 

IH1 X H,_/ 
"" ",., 

(4.5) 

It is possible to consider a fictious deformation process which maps the 

perfect configuration -.7".{ into the configuration ?;'- were the coordinate 

lines ( ~' 6i = const) are convected. The appropriate displacement vector 

of a point having the same coordinates in the two configurations is then 

defined by 

The dimensionless displacement of the middle surfaces is denoted by 

-R (4.7) 
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The component respresentation of this vector with respect to the configu­

ration 7(, is 
0 

(4. 8) 

where E .cc. ;f is a measure for the "imperfection" (the difference between 
N t"J 

the perfect and imperfect shell) and VOI.. , fll are "shape functions". This 
" I) 

representation allows 

in terms of /iol RJ 
to formulate the base vectors of configuration ~< 

"'o( ,., 

() ) D 
and ~ r I ~ Jj . With (4.5), (4. 7) and (4.8) we 

get 

1 

f'V ) 

here v.:~ is the covariant 
" 

derivative of the coordinate system 

of configuration Jt. 
t> 

( 4. 10) 

and i3f~ are the covariant coefficients of the second fundamental form 

for r{f _ 
The unit normal vector fJs _ of 

(4.5). The vector product Ä ;t (-l. , 
., 1 1 l. 

the imperfect shell is obtained from 

observing (4.9),is given by 

~ /ift;J 7- c.[~ R~ (~~ -iiB~o<)~] 
o!~ ()fllo t>:"' 0 () 0 

.." ... "" ,.; -
I .F'/(Jj,(f,2;. -{!~:)-~ (/:~- f f/))/j 4 

+ II! 

(4. 11) 
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'" T ((V;1 -{I ~,•J(f/z -(!§:) 

- (f;~ -i)§41J(f: -[I ~;))~s} I 
(4.11) 

In analogy to the order of magnitude approximations (2.33) and (2.34) it is 
:::! 

assumed that the displacement field ~ characterizing the imperfection 

obeys the following order of magnitude estimations: 
"" 

E_~ rv f ~< "" 

g 1 ( I!~:(J 
N 

y;:s,a~) /V fl 

rp .. : ll 
N 

.... 2 il ßoi{J) l 4 
-f ~~~ ~ i L l 

tl () () 

(4. 12) 

and 

Then all terms quadratic in ~ on the right band side of (4. II) are of the 

order of Jz.. and higher!lf. In addi tion, the secend term linear in C. is of 
' ~t order ~ • Dropping all terms of order r and higher,equation (4.11) 

simplifies to 

(4. 13) 

2.. 

From this we find ~ neglecting all terms of order p and higher: 

-A 
1 J 

I 

(4.14) 

!lf 
It should be noted that the surface coordinates 

o( 

e9 can be chosen such 
that the base vectors are unit vectors. 
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2.. 
This is a unit vector expect for terms of order r and higher. The same 

result is obtained from (4.11) ignoring the order of magnitude estimations 

(4.12) but dropping all terms quadratic in C . 
We are now in the position to derive the co- and contravariant metric 

A R(l(f3 
coefficients 

1 
r;(ß and 1 in simi lar terms. The covariant metric co-

efficients are 

l. 

The term linear in € is of the order fand the term quadratic in C. is 

of the order J l. and higher. Thus, keeping all terms quadratic in f the 

following approximation is obtained 

But here we have to follow the assumptions in chapter (1) which demand 

that terms only linear in E.. need to be retained; we get 

(4. 16) 

This approximation is certainly not consistent with the order of magnitude 

estimation (4, 12); however, it will be seen later that this is of no 

consequence. 

The contravariant components 
n"'/3 
'/ are defined by 

Starting from (4. 16) and neglecting all terms nonlinear in ~ we get 

(4. 17) 
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For the transformation of the strain energy 

rneasures ~~ß and ~«~ have to be given 

function U't the .., 
the appropriate 

deformation 

form. Under 

the action of the pressure and the boundary loading the imperfect she 11 

will be deformed; its configuration will change from ~ to a new configu­

ration 7{. . It is assumed that this deformation obeys the Kirchhoff-Love 
~ A 

hypotheses. Thus, in full analogy to (2.27) the displacement ~ of a 

material point from configuration -?( to {.l. may be represented as 

( 4. 18) 

1\ -
here 2f is the dimensionless displacement vector of the middle surface 

and ~ ~ ~J the unit normal vector of the deformed imperfect shell. 

The position of the deformed middle surface may also be measured with 

respect to the perfect shell surface in configuration ;7! (Fig. 4); this 
" leads to a new displacement vector 

1) - (4. 19) 

Since the coordinate frame of configuration ~ is the reference frame 

the following coordinate respresentations apply 

If the configuration 7(. is used as reference frarne we have 
'1 

~ A 
~ VotR l(.flJ t1/ .:::- +-

." .""t 
"" 

., 

VKfl NRJ /V- ::: +-
", .", !)(, .., f 

I 
I 

(4.20) 

I 
! 

t (4.21) 

I 
I 

) 
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Thus with (4. 19) and (4. 8) we get 

1\ "-' 

ycX 
t:::: 

VK e.. VM 
~ () 0 

(4.22) 
.A -w ,_ fl - E. f/, -

() 0 
() 

The deformation of the imperfect shell from configuration ~~ to ~~ 
imposes certain strains into the shell. If dp denotes the infinitesimal 

distance vector of two material points in the deformed configuration 

then analogaus to (2.38) we have 

where €. is the Lagrangian strain tensor which characterizes the deforma-
1 

tion of the imperfect shell. The relevant components of E. are !}ct;J. ; ..., 
according to (2.42) 1 they are given by 

(4.23) 

" .... 
if the nonlinear term U-M • U1A is dropped according to the strategy of 

chapter (1). With (4.4) 2 and (4.18) we have 

(4.24) 

Substituting this in (4.23) and arranging according to powers of ~)t9) 
the following expression is obtained 

(4.25) 
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The right hand side has to be formulated in terms of quantities which ar~ 

entirely defined in the co~rdinate system of the perfect shell (configu­

ration ?C ) . f?o~ . and r;/I.J are given by (4.9) and (4. 14) and thus 

(4.26) 

further with (4.20) 1 we deduce 

A 

(4.27) 

It remains to derive an expression for the unit normal vector ~ of the 

deformed imperfect shell (configuration 7( ) compatible with the order 
l. 

of magnitude assumptions, The base vectors of the middle surface in con-

figuration ]( are 
2 

where (4. 28) 

here (4.5) 1 and (4.20) 2 are implied. Then the unit vector ~ ~ l 
is given by 

f/4 ~ fil 

~t;,f X t!t I (4.29) 

The explicit evaluation of this expression follows along the same lines 

as before (see (2.32) and (4.5)). We obtain 

+ ,,, (4.30) 
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(4.30) 

It is now essential to introduce order of magnitude estimations for the 

rotations, middle surface strains etc. produced by the displacement 

field ..:r;... 
For these quantities the same assumptions as (4. 12) are made 

/V'~ 
() ()( f""V f 

1 ( t:;J ~:~) """' fL 
~ 

1( t ~:(1 -1- ~.'oL - ~J/~ß) "...", fL 
(4.31) 

(~ -':(J II' IJc~tJ) (""\-' fL 
0 1,) 

Keeping only terms of order jf in (4.30) we get the usual approximate 

expression 

(4.32) 

Thus analogaus to (4.26) 

(4. 33) 
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We are now in a position to evaluate the expression (4.25). Observing the 

definition (2.45) we put 

tfo</) 

1-- of{J> 

Cf K /J 

- ,/ l( 1dfl + rle ~«!] + &e/f "IJ ) 

. -, -
t ::::;. 

, -. -

4 (- ~ 
A 

- ,1J 1- ~ .,V ) ~ ~ IIJ ji>l 

-r(-.a f!ß' 
-

2 {lo<. .11/J. + a_-1;~ 
A A 

f ljJio/. • ~ ;j f- (/JI/J I ~ o( 

-~fZ b A)(J + ~ . FJI~) J 
1 { BJ/.t '(llJ, fJ - A/J) -f {is,!l'(äJ, r ~rX1, 

(4. 34) 

(4.35) 

With the above results the first term in the power series (4.34) is given 

by 

~olß -1( i.(J + y(J,., -_e {I §«ß 
""" A A fE[f;" -lj§:J{(t,p-1;/{;ll} 

i l [ v~(J - ilz; J [ ~ .. «- ;;!J!"] 
D ll() 0 0~ 

(4.36) 

+~[(to(~+~~Jj. 

With the order of magnitude assumptions (4.31) and (4.12) and with the 

relations (4.22) it may be shown that the follo~ing estimations apply: 

A Nf I lf~ 
111 1( A ~~~ ) - j L .z (ott(J (4.37) 

j 
A -t( ~ -~-?:«. -;1/~.tfJ) -r-i (v:fl 
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A hlß L 

~:~ - f 0 0 tX/J 

"' 
voL :(J f. (4.38) 

".... 

Thus, the expression (4.36) may be simplified if terms only up to the 
:;,J order of _r are retained; then with the relations (4.22) equation 

(2,36) reduces to 

~p(p - 1! ft,;J + ~:ol -21/ §.~!3 ) 
'V ;v ('/ 

- ~ ( ~ :p + r:s: ~ - ,Z Jl §(;(I~ ) 
(4.39) () p 0 

~E([i: u IV 

H;) +~ () 

ftl( ;;Cl~ """" ;/;)}. +~ 0 () 

It should be noted that the above order of magnitude estimation and the 
~~-restriction to terms of order r does not allow to drop the term 

quadratic in the imperfection [. , Nevertheless, the simplified strategy 

for the buckling analysis requires that the terms quadratic in ~ are 

ignored. Consequently 

1/ ft,;J + (t,d 
- f ( f;,;J + f/1'" -2 f! ~~IJ) 

ft(f/., ~ -1- ;f; ~)} 
(4.40) 

One should also be aware of the fact that the expression (4.40) does not 

contain all terms which are of the order f
L 

because the nonlinear 
"'-- .t;5. 

term ~(){ ' ~1 11 has been dropped at the s tart. 

In a similar way a simplified expression is derived for fJK~ . With 

the same order of magnitude assumptions it may be seen that the right hand 

side of (4.25) 2 contains terms of the order f 1 f l. and fJ. Since ~«/J 
is multiplied with the small number ) , and possibly d"' f , only the 
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terms of order } are kept. This assures that only terms of comparable 

order of magnitude are retained in (4.35) 2 • Thus 

~~~f.l '"' 11 ~;~:,(J -~- f!fl", - ~ ( a.fl f ~~"J l (4.41) 

It may be shown that the quanti ty f l(f.J is of order j . Thus the 

third term in (4.34) can be neglected compared to the others since it 

involves the small factor At . Therefore the power series (4.34) may be 

simplified to read 

(4.42) 

this expression contains only terms of 

parable. This completes the derivation 

order f L if A and f are com-

of the linearized strain measures 

?(1113 and f:J~A . 
(4.3) 1 involves the elasticity 

j) 

A-V (4.43) 

An approximate expression will be derived for this tensor on the basis of 

the approximate relation for the contravariant components of the metric 
no~..fJ 

tensor rr (4.17). 
'1 

With the definition 

J(tt 
1'\; 

-~ i} §«/))= ~~" """' 
erXfl ·- + ~~~~ .- (4.44) 

we may write 

R~t ll f/t(l V -
. fU~ N Ji v(.l 

:::::::::. t. ~ lj e~{J 
A " " 

(4.45) 

Inserting this into (4.43) we get 

E" I Rjo( !J."f.l + V 
/f tl () () /f-l) 

- E .t[ &. f? 1~fl 'Y-l JJJ + ~ R fiJ ;:;''4t"-
!P r:J o 6 o ~~ (/ o o 

.,.. ,, , (4.46) 
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(4.46) 

+ t
1

[ ••• ] }· 

The term quadratic in C has to be dropped according to the simplified 

buckling analysis strategy. Putting 

(4.47) 

we obtain from 

(4.48) 

With these results the transformation of the strain energy function ~ 
may be performed. We consider first that part of (}l which represents"' 

"' the strain energy due to stretching of the middle surface, i.e. 

/f .!o<t (J 

2 C:sfJ tl ~ te{ , 

At this point it is convenient to split ~J~ into three terms 

""V 

6}t1 - ~ 9s13 + e ~!fJ 
(4.49) 

ef..l 
/'' : =- 1 ( {s:; + ~: f - 1 t/ 9 !{1 ) "' f 

/V 

(~ ~ 
- j_ 1/ #f(J ) "' tlf_ (4.50) 

Q 1' . . - i (!:j3 + ~:f JtJ , -

tfB 1/. + ~ ~) 
2.. 

J!(J , - ~ f;i . - t)(J 
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On the right the assurned order of rnagnitudes consistent with (4.31) and 

(4.12) are indicated. 

After sorne algebra we find 

(4.51) 

The usual procedure dernands to drop the terrn quadratic in l. . Furthermore, 

if the order of rnagnitude assurnption indicated in (4.50) is accounted for 

the fourth row on the right of (4.51) should be neglected. Therefore 

This result 

in E. , the 
I I .!olf/3 r;t I 

clearly indicates that, aside frorn dropping terrns quadratic 

H ~o!.J(!. 
elasticity tensor is approxirnated by the tensor .., 

The second part of the strain energy 

rll 



- 75 -

is due to the change of curvature of the middle surface of the impe.rfect 

shell. With (4.41) the change of curvature tensor is split into two parts 

(V 

f. ~ .. - 'f_ - ~ ~A (4. 53) 
.·) ;r'~ -· •: I - -~y~/:.-... #,. 

~!(J 
,_ -1 ( f/t:fl + 1;/tJ,,) - J . -

"" (4.54) 
pJ 

~:f) ~ 
N 1 ( ~t(J fj!(J + 'V 

I .:::: 

In agreement with (4.31) and (4. 12) the order of magnitude assumptions 

are indicated. Upon substituting this and observing (4.48) we get analogaus 

to (4.52) 
1tX(f3 

~Js;.; /j ~~,( 

~z. 
~gain terms quadratic in ~ are dropped; keeping term8 of ~rder ~ 

only, (4.55) simplifies to 

Here again the remark following (4.52) applies. The final representation 

of the strain energy tJl in terms of ~tJ I etifJ I ;;ttf1 > .fot(<Jand f ~(l 
is 
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(4.57) 

r.:­
This completes the transformation of fl . The strain energy potential fl fJt, 

given by (4.2) 1 involves the integration over the surface 1 . This 

process has to be represented in the configuration ~ The surface ele­

ment d eil is gi ven by 

" a v'l ~ FR_, rl e ~ ti & 13 
1 .., 

- -)- /lf ) R :;; ctJ ( ~ , /1;
1 

_ dd-r ~ ~,a . (4.ss) 
" .-1 11 

Analogaus to l-5, p. 37 7 the ratios tf~;6{~ of the surface elements 

may be formulated as 

(4.59) 

where terms quadratic in f are ignored, The right hand side differs 

from one by a term linear in l. of order f t... Thus 

I"' -

( A + ~ ry~ot -J;I[3K~])d'fl, (4.60) 

c;-:-' 

Upon using this in the integral !/ h. (4. 2) 1 
see that extra terms linear in ~ will appear in 
. f 1 d . * . ~tf ~ On y the OIDLnand terms proportLonal to J 

and observing (4.57) we 

the integrand. However, 

are kept then these 

extra terms should be dropped; in other words theapproximation 

* Here, i t is assumed that f IV ,..l 



app lies in this case ,' 

J ~J dcfi L o 
(;61 -'1 

0 

where tZ ~s given by (4.57). 
-1 
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The potential of the hydrostatic pressure given by (4.2) 2 

I -f;J j 1:( d cf 
v5l 'I 

(4.61) 

(4. 62) 

i\ -is transformed as follows. The quantity ~ is the normal component of 17 

with respect to the basis in configuration ~~ , i .e. 

/1 

'I - (4.63) 

Substituting from (4.20) 1, (4.22) and (4.14) we get 
A ~ ~~ N 

w·= (W-Ew) +~(~-LV)~. 
1 0 () 0 0 0 

(4.64) 

c::-' 
Tagether with (4.60) the potential j/p may then be written as 

(4.65) 

where according to the usual procedure the quadratic ! -terms have been 
;v ~ 

dropped. Analogaus to (2 .60) the term ~ V may be partially integrated 
c 0 

to gi ve 

(4.66) 

... 
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-f 
N 

~ II 1/o~ dC 
0 () () 

c 
0 

(4.66) 

The original stability problern is subject to the kinernatic restrictions 

(2.62), which assures the existense of a hydrostatic pressurepotential 

in the nonlinear case. These conditions have to be transferred to the 

linearized problern of the irnperfect shell. The condi tions are here 

and 
"" 

1 f/:: 0 on c 
(,) () 

1\..~ 
·~( 4. 6 7) 

~ v : o on t 
() 0 ) 

or 

ot. 
JJ~J( = 0 

C) 

and 

Therefore, the boundary integral on the right vanishes: 

f ,\:::;;. 0 
I 

(4.68) 

0 

This allows to write the hydrostatic potential in the following form: 

(4.69) 

,.., 
Since the terrn E6/ in the integrand of (4.65) is a constant and any 

constant rnay be added to the functional of a variational problern, this 

term is deleted. This cornpletes the transforrnation of 7/;, . At this 
•I 1 

point the reader is invited to cornpare this with the hydrostatic poten-

tial (2.64) of the actual stability problern. 
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It remains to transform the potential (2.2)
3 

of the boundary loading. 

For the stability problern to be analyzed it is assumed that the bound­

ary loading is ~ead~ Actually, the boundary loading consists of surface 

stress vector F = i[ along the boundary strip CF :;; r; r ~. Generally' 

under such "dead" surface loading the material particles constituting an 

infinitesimal portion of a surface will always be subject to the same total - :..-' 
vector force. This means that the differential force F dc;: ;:; t d (r 
on the boundary strip CF : &=r is constant throughout the deformation of 

the shell from the initial to the fundamental state and to the adjacent 

state. This fact has to be reflected in the formulation of the boundary 
c;;-

loading potential tlc , equ. (4.2) 3 . 

So far, the expression on the right hand side of (4.2) 3 is of purely 

formal nature since the membrane forces, moments etc. have not been defined 

yet in terms of an appropriate sur~ce stress on the boundary strip ~r . 
"" We denote this surface stress by f= . Then the virtual work of these stresses 

" on the strip CF is given by 
1 

f j, Jd d(= (4.70) 
II II 

Cf 
"., 

We now recall that the imperfect shell in configuration ~( may be obtained 

by a fictitious deformation of the perfect shell in configuration ~C ; this 

deformation will later be related to the actual buckling modes of the per­

fect shell. In this deformation process the surface elements cltF : ~~r 
and ti~f are materially related to each other. 

The assumption of dead loading along the boundary strip now implies 

that the differential force ~ tf~F is the same as the boundary load in 

the actual stability problem, i.e. 

/V 

(4.71) 

Thus, the virtual work (4.70) may be written as 

f (4. 72) 

2{ We introduce the subscript (o) to distinguish more clearly the configu­
ration (o) and ( /1) 
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The right hand side rnay be irnrnediately transforrned into an integral where 

all operations are clone in configuration ~ ; we get 

= 

Since ~ is constant the variational operator rnay be extracted frorn this 

expression such that 

1 
Cp 
" 

and 

II 
1 c 

C;:: 
0 A 

Except for the displacernent field lL this expression is 

(2.55). Therefore we rnay write~ observing (4.22) 

f II I 

(4.73) 

identical to 

(4.74) 

~ Note that the integration is clone in configuration~; therefore the dis-
-o 

placernent vector has to be referred to the base B etc. 
()(I( 
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(4. 74) 

~ 

This completes the evaluation of the boundary loading potential {/c 

4.2 The Matrix Formulation of the Energy Functional of the Imperfect Shell 

In the following we will derive the matrix representation of the three 

contributions (4.2) to the energy functional of the imperfect shell. Ana­

logaus to the argumentation on page (27) global approximations are made 

for the two displacement fields, i.e. v~ and tl describing the im-
0 0 

perfections and the displacement components J( o<. and Jl characterizing 
f) () 

the deformation of the imperfect shell measured from the perfect shell 

configuration 7C 
0 

tions 'f"" (es) ' 
'1.. 

. It is now important to note that the same shape fune­

lf (9~ must be used as in (3.1), i.e. the approximate 

ansatz is 

M " I ! 
1..- I 

vo( L.. ~ (QL) (i (1( re~J I 

0 I 
"-1.. :::: /1 

IV I 
1.-

fl - z c ~ (G~ 0 ;{, :: /1 
0 I 

>(4.75) 
I 

11 -1 
'V 

'V 

V~ ~ z c((JJ) r.~re~) -() ,t,..! 1 
Ci .,. 

N I 
N " 2 

,...., 

(tJ:J tv -::: c ~ ' 
(.) () i 

A. :::<? ) 

Furthermore, i t is obvious that the shape functions ~o< and lt must 

satisfy all kinematic boundary conditions which are compatib le wi th (4.67). 

Consequently, we have the following column matrix representations 
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v-1 ) 
0 

lU - v~ I!Vt&'J z 
0 

f/ 
(4.76) 

'V 

1 y,f I 
' 

Nterr) i V~ 
I 

"" I 

V ::::. 

I --I!') 

w I 
) 0 

where the shape function matrix /N is given by (4.5) and 

/1 
A "..., 

~ (4) f (1) 

M 
11 c (-1} ~ (4) 0 

" "' -c; (~) c (.t) 
0 

,." 

z :::: 
' z :::: (4.77) 
• 

I J1 I 

M 
,..,. 

c (l) I 
c(Jt) 
0 () 

-1 
4 I -c c 

0 I () 

I I 
• I ;.r . 

l "' ""' c c 
t> (.) ) \, 
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Note that for reasons of convenience the subscript (o) which should be ,... 
attached to 2 and 2 is deleted. Analogaus to (3.29) we define 

@...,., 

e ~ i(f4L ~01J 

CJ.z .2. J 
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N 

::;",..., ~~ 

J(~z +t,) "" ~ Pz ~) y :::::; i(~ ~ ;::::;;; 

if:n "" w. ~ 0 ~ j 
N 

~ 0 '\ 

~ 
= ~·1 2 Gt~ w "' f N 

1Jiz 
-

i,~ ä.) 

~L ." 

() ~ 

I 

~(4. 80) 

".. 

tpr(\'f/N)z ~ 0 0 
0 

6;i) "'1 
4""' 1 !"V t1 1((WN)i lf~'fN)'i il/t i~ =z 

f'v 

0 ~ 0 r!!{[f/IJ) i 
2 ' 

I 

j 
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( 
·t;~~ .. ., 

~ 
I 9,-~1 I 
I ! 
l 

(jJ ~ltf~., + s~1) 1( ~~1/~ + M,1J \ 
) 

9u Jl<,z_ 
\ 

- W(W u) ::- 'W v = (W!N) z I 
• 1 

) 

With these definitions and relations the mathematical analogy with the 

derivations in chapter (3.2) allows to present the strain energy 

without a detailed derivation in the following form 

i(t:IHe 

(4.81) 

- ~ [ iJT H ([) f (/} T #-! {:) J 

+r:[ yrHe + e'/Hy] 
~2( 

(4.82) 

+--- crHo 
d.Z ) ) 

-e{fHy +~rJ-IfJ)}. 
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11-1 !-!~~ Here the matrix is the same as (3,36) since the components 
0 

H!«( fl "7./ 
and refer to the same configuration J~ • 

{) 

Substitution of the relations (4.78) to (4,81) in (4.82) gives 

r 
~ z'(WIN) H (ff!N) z 

T 

i T(~IIV) H (llY/N) (L 

. T 

z'([f!N) H (\'f!N) z e'He 8 

r 
y' He ~ ;, zr (\\7 II) 6rzJ H (WIN) z 

(f//Hy ~ .z 2t(~WliHGriJ (WIN) z 

= Z
7 

(\WN)
7 H (\~lAI) z 

/ 

T - z.r {\'PIN) H CrN) z 

Jrf/ 9 ~ Zr ~fVN}r H (~N) i I 
) 

(4. 83) 

The integration (4.62) is clone in the same two-dimensional space as that 

in (3.42). Consequently we may apply the definition (3.43) for the formal 

integration of ~ (4.62) when the relations (4.83) are observed. The 

final result is :i th fH = /f-1 T 

(4.84) 
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The potential of the hydrostatic pressure is given by (4.69). The corres­

ponding matrix representation may be derived on the basis of definitions 

used in chapter (3). We get~ observing (3.47), (3.48), (3.50) and (3.54) 

I 

N 

w -
() 

z.rNr~ 
3 

vo~ 
() : rJ_ 

::; t'(W!N) i 
I 

~ (4.85) 

wso(il =- ~T(N§ B~ f/N) i i 
0 ()0( () I -3 0 J I 

(l(pj "' ~r (N'f< !N)i 
! 
i 

~ B V;3 = J (J () 0 

Upon using this and (3,55), we may write the hydrostatic potential (4.69) 

after integration also as 
;f 

Lt {~/ f .;- E ar(!f 1- IE)Z - C.. ;i'/K i }. (4.s6) 

c;-
The potential {/~ of the boundary loading is transformed similarly to 

the analysis in chapter (3,4), 1Jith the same definition as in (3 • .58) and 

observing (4.77) we obtain from (4.74) finally 

(4.87) 

Note, that the second terrn is constant and thus may be dropped from the 

potential energy functional. 

The results (4.84), (4.86) and (4.87) imply that the energy functional (4.1) 

of the imperfect shell has the following matrix representation 

~ It should be noted that the coefficients ~a((J are the same as B(t(fl 
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t-lE. e
1 lfe~oJ z ..; 2E ?L' /JmiJ 2 

-1-4:1 ~(Otli) ~ - 2 E 4:.
1 &~ .v i} 

~ 

-~- ,~~ /z) -~- E ~rt ~ E'J~ -[ a.' IK i J 
T --f/t(z_- E ~) 

= i 4--T { /Jra,o) + L [ lJre~, iJ + l [ !Jri,") 1 IJ11,o) ]"l. 

- g ~r [ IJ(o1 ~J t- 13/fJ;oJ J Z 

t!pfl~ -.i~rj{;_ tr~('tfllJi} 

- f tf( i- - t: i_) 

(4.88) 
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5. General Solution of the Linearized Shell Problem with and without Initial 

Imperfections on the Basis of the Matrix Variational Formulation 

According to the strategy described in chapter (I) two linearized problems 

have to be solved: 

(a) the perfect shell under a prescribed loading 

(b) the imperfect shell under the same loading but acting on the 

imperfect structure· 

The equilibrium state for these two cases may be obtained from the condi­
~ 

tion that the first variation of the energy functional j with respect 

to Z shouldvanish, i.e. 

:? r.:-
0 II = o (5. 1) 

"' e---
Il \vas derived for the imperfect shell but naturally the case of the per­., 
fect shell is included by simply putting C ~ 0 , 

In the following we will distinguish between a pure hydrostatic pres­

sure loading and pure boundary loading. 

5.1 Salutions for the Pure Hydrostatic Pressure Loading 

The first variation of (4.88) gives 

o')?T 171 [;; l/)(()1()) ~ ( l;, (tJ,O) - dE. 
" 

f! t /j)fZ;oJ ~ + .,(, [ Jfd/ iJ l 

f 8(~0) ~ I 
(5. 2) 

~ /](010) i 

where 

T 

/Jri,o) = /)(0 lL) 
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is used, The requirement (5.1) has to be satisfied for all variations Jl:.. . 
The necessary and sufficient condition for this requirement is 

-f l [ ( lJ{2"-,o) +-]}q i;)j (2_ 

f- E(/E~~)i. - i !1(-;:.} (5. 3) 

This is a system of linear inhomogeneaus equations for the components of 

the column matrix ~ which characterize the equilibrium state of the 

shell. For the perfect shell we have ~ :O ; thus (5.3) reduces to 

the corresponding solution is 

.:) 5t 
Introduction of the vector ~ 

(5. 4) 

allows to write the solution for the perfect shell in the following form 

~ = lp i. 
p 

(5. 5) 

For the imperfect she 11 ( E. .:/:=-o) the solution of (5.3) is a nonlinear 

function of [.. . Since we are only interested in the linear dependence 

on E we derive an approximate solution for small ~ • We put 

1F1 : = 4o, o; + f3tu,o) 

/F 1 "'" 1. (!Jß,oJ + 'D(d, ~)) } 

5t This is the solution for the perfect shell for unit scale factor ~ 
and unit pressure ~ 
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then we may derive 

~1 -1 

tE!RFifll 
including terms linear in c only the solution is 

_., 

~;; ( 11-0?1) .{- /IJ[rJr~)) p 
-1 -~ 

+ ~ L;; f {lfo,o) f 44,) {/lJ~o) 1!}.,i){IJ~.) f-J+a;o)fD 
- 1 

+{1Jr&,o;f-f3w} { ~- (EIE)}i: j. (5.6) 

Substituting the solution for the perfect shell, equ, (5.5) reduces to 

-1 

l (.4 { J4o,o; "'ßto,o) J [ /)(i,oJ -f /)(v, ~;} -ff) i_ (5. 7) 

-1-/p [ 1/J(o,o; 1- Bro,oj { lf -1-[
7 -!K J i} 

This result has a similar mathematical structure as (1.6), the conjectured 

one dimensional (scalar) relation. The first term on the right of (5.7) 

represents the imperfection measured with respe~t to the perfect configu­

ration, the second term is the displacement of the perfect structure due 

to the pressure loading and the third term, linear in the measure ~ of 

the imperfection and linear in the pressure ? is the essential term 

which should contain the information needed to predict the buckling load. 

This questionwill be analysed in chapter (6). 
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5.2 Solution for the Pure Boundary Loading Case 

The first variation of (4.88) with respect to ~ for vanishing hydrostatic 

pressure p gi ves 

[ l/)(o
1
o) f 1Bro,v) i- 2 t ( lJrio) -1 l/)(tJ1 iJ) J~ 

=- /t tt + E (/)o,o) f /!3r0 ()J) i . 

We introduce a load factor ~ such that 

tf-=Tt!. 
"V' 

Then the solution of (5. 8) for the perfect shell E.. =D is 

With 

- I 

~ : = [ 1/J;~I()) -f B(rJ,tJ) ] ! 
we may write for (5.10) 

(5. 8) 

(5.9) 

(5.10) 

(5. II) 

(5. 12) 

With the same argumentation as in chapter (5.1) the solution for the imper­

fect shell including only terms linear in c is 

- -1 

f2 - <Ei -1 -< r i JJ~,()) t- ß1~o/J! 
t.-«-t 

-1 ·1 

-? / r f f4tJ,tJ) i- /;(o,ti)J [!Jti,uJ f #/), :;;Ji{/14,/&.,J! 
""" f!) 

(5.13) 

~ cZ -t-;{Tz. 
--f 

- l (1 { I.Oro.o) f !J(tJ,v) { J)fi,o) f ~(P, ~) J ,/'Cl} 
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This expression has a completely analogaus structure as (5.7) except for 

the last term on the right of (5.7). 
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6. Definition of a Suitable Norm as a Measure for the Critical Load and 

Comparison wi th the Rayleigh Quotient of the Actual Stabi lity Problem 

The conjecture described in chapter (I) involves scalar relations since we 

restricted our attention to buckling problems which are characterized by a 

single load factor. These scalar relations were immediately applicable to 

define a parameter which could be related to the critical load. However, 

the solutions for the perfect and imperfect shells are matrix relations. 

For the purpose of comparison with the scalar Rayleigh quotient a suitable 

scalar quantity, a norm, has to be defined involving the various column 
- (J 

matrixes ~ 
1 

2 1 ~ etc. On the basis of the solutions (5. 7) or (5. 13) 
e-....-

this norm may then be brought into a form which allows a comparison with 

the inverse Rayleigh quotient (3.110) or (3.117). In this course the column 
rv 

matrix 2 , which contains the weighting factors for the shape functions of 

the imperfection, must be the same as one of the eigensolutions of the 

actual buckling problem, 

) 

. 
~.e. 

preferably the one which corresponds to the lowest critical load. 

(6. I) 

At first we consider the pure hydrostatic pressure loading. In ana­

logy to (I. 7) we calculate the expression (I; - ~ Z - L' ,Pi) 
which is according to the linearized solution (5.7) 

(6. 2) 

Applying the theorem (3. 69) - the exchange rule .- and the relation (3. 97) 

in (6. 2) , '"e therefore wri te 

- " -c!~-./;;z. --
-- - E_ i?f r [ J)(O,O) +-

(6. 3) 
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Guided by the mathematical structure of the inverse Rayleigh quotient 

(3.110) we introduce a fictitious load matrix 

f I-
I- [ /1,10) f ß(Q,O)] i / (6. 4) 

thus 
.... f - [ /)IMiJ + l3r~,.)] P 2_ .:::::. 

(6. 5) 

Scalar multiplication of (6.3) with ~ give~ 

fi(~ - <fi - fjJ 2) :=. 

- lf 

- ~ .t1 [ i r L 2 lDrz.) + ..z lJrv.i.J 

+lfi/E
7

- ;K) i. }. 
(6. 6) 

Since 

(6. 7) 

relation (6.6) may be written in a form which involves only symmetric 

matrices 

tf(~; -ei -lpi) = 

~ ~~ ( i i [ J. Dri) -f ( /)((!,..:) ; _)!;/, P)) 

+(IE+ tV- kji}, 

(6. 8) 
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An expressionanalogaus to (1.7) is obtained if we define the parameter 

as 

/3 
( ·­·- J~T ( '~ ---~--~-------{~-~ )_ ,....". 

f tp ~ /P ~ 
(6.9) 

With the definition (6.4) and the result (6.8) we may transformthe right 

side to read 

~ - ~ 

i 'l-1 !Jri; r l/Jrv,i; 1 lJ(i,oJ f f-~- { '--/1< J i 
(6. 10) 

z.' [ !Jr11 ()) -f /J1~P) ]i 
An analogaus expression can be,. deri ved for the case of dead loading along 

the boundary of the shell. Following the same procedure but using solution 

(5,13) instead of (5.7) we obtain 

J / 
. -. -

-

0 

-lf-

i r {;_!Jri; f !J(c,i) f lJd,o) J Z 
.... .---------

i T [IJ (OiiJ) -t IB(()It/) J i 

where ~ is defined by (5. II). 

We are now in the position to compare the scalar quantities ;3 

(6. 11) 

equ. (6.10) and (6.11), with the associated inverse critical ~oa,ds (3.110) 
. . 2f 

and (3. I 17), respectively, if we remernher that (6.1) should hold. 

M It should be kept in mind thaf the solutions 4. as well as the eigen­
solutions Vt are different for the case of pure hydrostatic pressure 
and dead loading along the boundary. 
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For the case of ~l2!2~~~~b~_E!~~~~E~_!2~~~~& we obtain 

Jt- .. T.l4 

\Vir { J/)m-!.J 1- l!Jri,()J -t-2 !J)IiJ +/Er/[ p Jl(j \V"· 
- - -----·------·---· -•·~-~r-~~ .... --.----------..-.-·--,..--• ._.. .. ,~.~ •• .......-~- ~r~-- -·--·- ·~·-· 

--

\'/;_T [ /j)l()
1

fJ) f 18 t~~ ~) ]\~· 

'lf-

~ T _[ f}(P.~ __ i:}_~ ]f)(i~-~----~.~-l/j{4/!IVJ 
~.r [ llJ to, fJ) + Er<), o) ] \'/;· 

(6.12) 

(6. 13) 

Comparison of (6.12) and (6. 13) with the corresponding reciprocals of the 

critical load factors, equ. (3. 110) and (3,117) respectively, shows simi­

larity to a large extent, but nevertheless it is obvious that there is 

no exact agreement for both loading situations, e.g. 

(6.14) 

Thus, even if the imperfection ~ is chosen identical to one of the eigen­

solutions of the actual stability problem, the parameter ~ does not 

represent the reciprocal of the critical load factor corresponding to the 

eigensolution. The difference is solely to be seen in the factor (2) of 

the symmetric matrix [!J)(~ -J.J .,_ Dti;o) ]. 

~ Except for the scale factor ~ • 
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7. Discussion and Conclusions 

At first sight the difference between the reciprocal of the critical load 

and the ß-parameter - solely due to the factor (2) in one of the terms -

appears to be trivial error in one of the equations. However, the analysis 

has been checked several times but no error was found. If we accept the 

results obtained so far the conclusion is that in general the ß-parameter 

approach will not give results which represent the actual critical load. 

On the other hand at least in some applications to s,imple stability 

problems (chapter (1)) the ß-parameter approach has been shown to be success­

ful; but it should be noted that those analyses were not based on the equa­

tions presented in this report. Thus, there exists a restricted class of 

stability problems \vhere the ß-parameter approach gives exact predictions. 

This suggests to ask for those conditions under which agreement can be ob­

tained. In the following this question will be discussed to some extent. 

At fi rst we analyse a few formal aspects. Comparing the reciprocal of 

the critical load factors (3.110) and (3.117) with the ß-parameter (6.12) 

and (6. 13) respectively, it is obvious that agreement is assured if for 

some column matrix 

which implies 

r 
l/)(o;i; 

The matrix !Jr()l i.) 
represented as follows 

{) 
C) 

depends linearly on 2. and i ts element s may be 

- . -
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The vanishing of all elements of ~(01 ~) implies that either 

for all lff, U ( orthogonali ty) 

or 

d~u~ = t[} for all #1 and ~ 
or a suitable combination. 

For the secend case it may be shown that then 

plies a "degeneration" of the linearized eigenvalue 

(3. 116); here the quadratic matrices /Jri., i.J and 

included in the eigenvalue problem. But then the /Z 
would be inapplicable anyhow. 

1(-

JJ(2{): iJ. This im-

problem (3. 109) or 

i/Jri,iJ should be 

-parameter approach 

However, in the first and third case it cannot be shown that the 

matrix ~;r~) necessarily vanishes in conjunction with ])(~~) . This 

appears to be a peculiar situation whose physical implications need to be 

explored. 

Further, agreement between the reciprocal of the critical load factor 

and the ;3 -parameter may be obtained if an orthogonality condi tion is satis­

fied, i.e. 

= 0 

such that the mapping /f1u, iJ \\!;· gives a nonzero column matrix \~ which 

is orthogonal to \Vi 

0 
/ 

Again, this appears tobe a very special situation and it remains tobe analysed 

whether reasonable physical conditions can be attached to it. 

We conclude the discussion of formal aspects by commenting the case 
~ ~ 

that solely the term ~ 1 /D(iJ \Yc: vanishes. Then the reciprocal of the 

critical load factor and the /~ -parameter agre~ except for a factor of (2). 

On the first sight one may suggest to redefine the j3 -parameter such that 

complete agreement is obtained. However, such a formal approach is not ad­

missible since the analogy between the new ß -parameter and (1.7) is lost. 

A further remark is made concerning the discrepancy bet\veen the general 

result derived and the observation made for several specific stability 

problems. The agreement obtained for the three simple stability problems 

(chapter (I)) suggests to ask for a common property of the structural 
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models used. Here it should be pointed out that the axes of the rod or the 

middle surface of the plate or shell was assumed tobe inextensible. Defi­

nitely, this assumption is not implied in the two general analyses presented 

in this study. Therefore, further attention should be put to this property 

as a possible explanation and as a first step in this direction it is recom­

mended to apply the derived mathematical formalism to one of those simple 

problems. 

The results presented so far do not exclude the possibility that the 

simplified strategy will give reasonable ~E~E2~i~~!~ predictions at least 

for a limited class of stability problems. This question remains a subject 

for further analyses. 
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-

CF: Boundary stri p 

C : Boundary curve 

A3, c, v : Unit vectors 

c : arc length along C 

v: arc length along v 

Fig. 1: Coordiante system along the boundary of the shell 
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Fundamental state 

Adjacent state 

Öf 

============================~~IRE~===== 
Fig. 2: Variations of the fundamental and adjacent equilibrium 

in the state space 
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iti l co igur tion of 
-- .. Perfect"middle surface 

ul perfect"middle surface 

Fig. 3: "Perfect" and "imperfect" middle surface 
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__ .. __ _ 
.. --............. .. 

---
-·-

' Initial configuration of perfect middle ·surface 
.. .. .. imperfect .. .. 

Deformed ., .. imperfect .. .. 

Fig. 4: Middle surface configurations and associated displace­

ment vectors 




