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Theoretical Assessment of a Proposal for the Simplified Determination of

Critical Loads of Elastic Shells

Summary

Within the context of the stability analysis of the cryostat of a fusion
reactor the question was raised whether or not the rather lengthy conven-
tional stability analysis can be circumvented by applying a simplified
strategy based on common linear Finite Element computer programs. This
strategy involves the static linear deformation analysis of the structure
with and without imperfections. For some simple stability problems this
approach has been shown to be successful. The purpose of this study is to
derive a general proof of the validity of this approach for thin shells
with arbitrary geometry under hydrostatic pressure or dead loading along
the boundary.

This general assessment involves two types of analyses:

(1) A general stability analysis for thin shells; this is based on a
simple nonlinear shell theory and a stability criterion in form of
the neutral (indifferent) equilibrium condition. This result is
taken as reference solution.

(2) A general linear deformation analysis for thin imperfect shells
and the definition of a suitable scalar parameter (B—parameter)
which should represent the reciprocal of the critical load factor.

For both problems approximate solutions are obtained using direct matrix

notation. They are based on the associated variational principles and a

global Ritz ansatz for the displacement components. The solution of the

first problem is restricted to linear prebuckling deformations.

It is shown that the simplified strategy ('B-parameter approach")
generally is not capable to predict the actual critical load factor irres-
pective whether there is a hydrostatic pressure loading or dead loading
along the edge of the shell. This general result is in contrast to the ob-
servations made for some simple stability problems. Nevertheless, the results
of this study do not exclude the possibility that the simplified strategy
will give reasonable approximate solutions at least for a restricted class

of stability problems. This should be a subject of further analyses.




Theoretische Uberpriifung eines Vorschlags zur vereinfachten Bestimmung

kritischer Lasten elastischer Schalen

Zusammenfassung

Im Rahmen der Stabilit#tsanalyse des Kryostaten eines Fusionsreaktors trat
die Frage auf, ob eine in diesem Fall doch recht aufwendige herk&mmliche
Stabilitdtsanalyse nicht vermieden werden kdnnte, indem eine vereinfachte
Vorgehensweise angewandt wird, die auf dem Einsatz {iblicher linearer Finite
Element Rechenprogramme beruht: Diese Strategie beinhaltet die statische,
lineare Deformationsanalyse der Struktur mit und ohne Imperfektionen. Fiir
einige einfache Stabilit#tsprobleme war diese Vorgehensweise erfolgreich.
Der Zweck dieser Studie ist, einen allgemeinen Beweis der Giiltigkeit dieser
Vorgehensweise fiir diinne Schalen beliebiger Geometrie unter hydrostatischer

Druckbelastung oder unter verformungsunabhingigen Randlasten herzuleiten.
Die allgemeine Uberpriifung beinhaltet zwei Arten von Analysen:

(1) Eine allgemeine Stabilit#tsanalyse fiir diinne Schalen: Diese basiert
einerseits auf einer einfachen nichtlinearen Schalentheorie und ande-
rerseits auf dem Stabilit#tskriterium in Form des neutralen (indiffe-
renten) Gleichgewichts. Das Ergebnis wird als die Referenzl&sung an-
gesehen.

(2) Eine allgemeine lineare Deformationsanalyse fiir diinne, imperfekte
Schalen und die Definition eines geeigneten skalaren Parameters (B-Para-
meter), der denKehrwert des kritischen Lastfaktors darstellen sollte.

Fiir beide Probleme werden Niherungsl8sungen gewonnen, die in direkter

Matrizennotation dargestellt werden. Sie basieren auf den zugehdrigen Va-

riationsprinzipien inVerbindung mit globalen Ritz-Ansitzen fiir die Ver-

schiebungskomponenten. Die L3sung des ersten Problems ist dabei auf lineare

Vorbeulverformungen beschrinkt.

Es wird gezeigt, daR im allgemeinen mit der vereinfachten Vorgehens-—
weise ('B-Parameter Verfahren") der aktuelle kritische Lastfaktor nicht er-
mittelt wird, gleichgliltig, ob hydrostatische Druckbelastung oder feste
Randbelastung vorliegt. Dieses allgemeine Ergebnis steht im Gegensatz zu den
Feststellungen, die bei einigen einfachen Stabilitdtsproblemen gemacht wurden.
Dennoch schlieBt das Ergebnis dieser Studie die Mdglichkeit nicht aus, da8
die vereinfachte Vorgehensweise brauchbare Niherungsl8sungen liefert, wenig-
stens fiir eine beschrinkte Klasse von Problemen. Dies sollte Gegenstand wei-

terer Untersuchungen sein.
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1. Introduction and Scope of the Study

Within the context of the stability analysis of the cryostat of a fusion
reactor the question was raised whether or not a classical stability analy-
sis can be circumvented by applying a suitable strategy based on linear
Finite Element computer programs £—1_7. Such a strategy can be motivated by
observations made within the frame of the elastic stability analysis of
straight columns under compressive loading. In the following this simple
example is discussed to some extent, such that the basic philosophy of the
strategy and its inherent assumptions are understood.

The concept of stability in mechanics is ambiguous. Different concepts
based on intuitive arguments are proposed and applied [—2, 3_7 which do
not necessarily give the same results (critical loads). However, basic
research in the past has identified to a large extent for which classes
of problems the wvarious approaches are applicable and under what condi-
tions the different stability concepts give the same minimum buckling load.

The standard methods for the analysis of the stability of an equili-
brium state are the energy method (or the 2. variation approach) and the
equilibrium approach 1—2_7. For conservative problems both approaches give
the same results.

As an introductory example Ziegler 1—3_7 has analysed the straight
column (hinged at both ends) with four different approaches, the two
mentioned above, the imperfection method and the vibration method (kinetic
stability analysis). These approaches are characterized by the following

different questions:

The energy method: What is the value of the load for which the potential

energy of the system ceases to be positive definite?

The neutral equilibrium method: What is the value of the load for which
the systems admits an adjacent equilibrium configuration under the same

loading?

The imperfection method: What is the value of the load for which the static

displacements of a system with slightly different geometry - the imperfect

system - become excessive or even infinite?

The vibration method: What is the value of the load for which the most

general free motion of the system in the vicinity of the equilibrium posi-

tion ceases to be bounded?




The first three approaches are based on static concepts while the fourth
is a kinetic approach. Although there appears to be little connection in
these approaches, the result, the minimum buckling load of the hinged
column is the same Z_3_7.

For the further argumentation the imperfection method is of special
interest. Ziegler applied a compressive load with a small excentricity and
studied the equilibrium in the deformed configuration of the column., Simi-
larly one may subject the column to an initial deflection (ﬁiﬂ: A 77*72,)
of the central line of the column from the line of thrust. The solution of

the linearized equilibrium condition formulated in the deformed configura-

tion gives the following relation between the maximum sinusoidal displace-

ment 2/ and the applied load /'D

79 ¢ EJ
s = ; , 7'2 =7 VL (.1
4 - "re
where
’1¢G maximum initial deflection
W actual maximum deflection measured from the perfectly straight
centre line

72 critical load .

Obviously, for P approaching the value 42 the deflection zd-approaches

infinity. Thus, é? defines the critical load, the buckling load.

For /2?2.<ﬁ:‘7, equ. (1.1)may be developed with respect to ;342 3
keeping terms linear in /34€. only, equ. (1) simplifies to

wzn«{)+m{P/,€

AT, ad, PR (1.2)

where

A
ﬁ"‘ D (1.3)

c
One may easily show that this linearized relation is also obtained if the
equilibrium analysis is done in the undeformed configuration of the columm

subjected to an initial deflection A%g,44§, 27/9%? i.e. an imperfection.




These results show that a linear elastic analysis - ignoring nonlinear terms
in the kinematics and considering the equilibrium conditions only in the
undeformed configuration of an imperfect column - allows to determine the
buckling load of the column. However, here it is important to note that the
"shape of the imperfection" is the same as the eigenfunction of the buckling
load.

This observation may motivate a strategy for the calculation of the
critical loads for structures whose states of deformation are characterized

by a single displacement component:
= Get knowledge about or estimate the buckling mode

= Introduce an imperfection into the structure of magnitude YA (e.g. maxi-

mum imperfection) which is similar to the buckling mode

= Perform a linear elastic boundary value analysis (analytically or numeri-
cally) of the imperfect structures under the same load configuration as

the actual structure

- Determine the "maximum deflection #* " and calculate the quantity

ﬂ= AT = 4% (1.4)
W, P

where % and W, are measured with respect to the actual structure and

where P is the load factor. Then the critical load factor, i.e. the

buckling load™ is given by
7o (1.5)

In cases where the applied load ~ produces displacements (prebuckling defor-

mations) even without the imperfection then equ. (1.2) should read

g = Pk o, - ad, Pﬂ (1.6)

( F%x:deflection of the actual structure due to ;))

and relation (1.4) should be changed to

ﬂ:—: W"/D%"Wo (1.7)
d, P !

= . , .
Corresponding to the chosen imperfection



If numerical methods are used two calculations are necessary in this situ-

ation:

- numerical analysis of the actual ("perfect") structure under load P to
obtain the "maximum deflection (ﬂ%X)"

= numerical analysis of the imperfect structure under load /> to obtain the

"maximum deflection 4",

The above strategy is related” to another approach for the determina-
tion of critical loads of bars as described by Timoshenko and Gere

/12, p. 116 _7:

(o) As a first approximation assume a deflection curve gﬁ, for the bar.
Take this deflection to be an im.perfectionxx of the bar,.

(B) Perform a linear analysis of the imperfect bar which gives a deflection
é?} of the bar under the load ]D .

(Y) A first approximation for the critical load is found by choosing the
load P in such a way that the deflection 9@ and gﬁ are equal
along some sections of the barxxx, e.g. the centre section of the bar.

(0) This procedure may be continued with SQ as a new imperfection of the
bar,

Observing the different notations it may be shown for the simple bar using

a sinusoidal imperfection that the result (1.2) is obtained after a single

step.

Timoshenko and Gere state that this approach is equivalent to an inte-
gration by successive approximations of the differential equation for a
buckled bar o,

The method of sucessive approximations for boundary value as
" well as eigenvalue problems is a well established mathematical method 1_13_7.
However, for stability problems which usually correspond to eigenvalue
problems,the application of this method requires a complete formulation of
this eigenvalue problem 1—13_70 Consequently, it is by no means evident
that the approach as described by Timoshenko and Gere is equivalent to
the method of successive approximations as applied to eigenvalue problems

/ 13_/, if more complex structures are considered.

= . .
This was brought to my attention by S. Raff.

HH . . . .
Timoshenko and Gere do not use the term "imperfection" but their
description can be put in the form as given here.

HRR . . .

Other rules are possible, e.g. averaging the deflections along the
bar before equating.

HARE

The method of successive approximations was first applied to the
buckling problem by Engesser and Vianello.




The strategy by [m1_7, loosely described above, has been applied to

several stability problems where analytical solutions are available, i.e.

- a flat plate under lateral compressive membrane forces and hinged at all
edges and

- a circular ring or long cylindrical shell under hydrostatic pressure.

In these cases exact agreement between the result of the classical stability
analysis and this approach was found. This is partially due to the fact

that the buckling modes of the structure are known in advance or may be
easily guessed. When the buckled shape and thus the imperfection cannot

be characterized by a single function or when only a numerical solution

for the imperfection structure is available then this approach could possibly
be combined with a Fourier analysis and a search for the dominant terms [-4_7
instead of the determination of the "maximum deflection".

Although it was shown that the above strategy works for some simple
stability problems, the basic question remains whether this strategy may be ex—
tended to more complex stability problems, e.g. shells and spatial frames; these
are the primary structural elements of the cryostat envisaged. The defor-
mation of these structures during buckling are characterized by more than
one displacement component, e.g. the normal and the two tangential com—
ponents of the reference surface of a shell. Consequently the first ques-
tion is whether the simple relation (1.7) can be extended to this new
situation., Secondly, it has to be proved or disproved whether this newly
defined scalar quantity "B" is related to the critical load 4? by equ.

(1.5). If an affirmative answer is found then the above strategy is also

applicable to more complex stability problems.

It is evident that an extension of the list of examples to more complex
situations is of limited scientific value. Here a general proof is of inter-
est at least for a certain class of problems of interest. In the following
we will consider thin elastic shells of uniform thickness but arbitrary geo-
metry. Two types of loadings are assumed; uniformly distributed hydrostatic
pressure and dead loading along the edge such that the stability problem in-

volves only a single load factor.

For this class of problems the general pr;of or refutation involves
two types of analyses:
(1) A general stability analysis for thin shells; a prerequisite for this
is a consident, nonlinear shell theory and a stability criterion.
(2) A general linear analysis for thin imperfect shells and a suitable

defipition of the scalar parameter "B".




It is obvious that neither for the first nor for the second part an exaet
solution can be obtained. However, it appears to be feasible to derive
approximate but general solutions based on variational principles for both
types of analyses, Here it is important that all approximations are compat-
ible in both parts of analyses; otherwise their results are not comparable.

Furthermore, for such a general approach it is crucial to apply a
compact symbolic notation since otherwise the overview is immediately lost
in a whirlpool of equations. Therefore the general theory is formulated
using tensor calculus and after introduction of suitable approximations for
the displacement fields direct matrix notation is applied.

In the following a more detailed description of the approach is given.
The starting point is a rather simple nonlinear shell theory for small
strains but moderately large rotations under the Kirchhoff-Love hypothesis.
Such a theory had been derived in a different context [_5m7 but is reduced
here to purely elastic material response. An associated variational prin-
ciple is presented using tensorial formulation in the undeformed reference
configuration of the shell, Two types of conservative loadings are con-
sidered: dead loading along the edge and hydrostatic pressure. It is shown
that for the hydrostatic pressure to be conservative the kinematic bound-
ary conditions are restricted. For the rest of the analysis these restric-
tions are implied.

Following the Ritz method a global approximation for the three tensor
components of the displacement vector is made; here it is assumed that a
complete set of shape functions satisfying the kinematic boundary conditions
is available.” ‘

Then a matrix representation of the total potential energy functional
for the nonlinear thin shell is derived. Here the introduction of various
matrix differential operators and a formal integration of the functional
over the reference surface is involved. This reduces the functional to a
nonlinear algebraic expression for a column matrix containing the various
unknown coefficients of the displacement field approximation. This column
matrix is denoted by .2 . The fundamental equilibrium state under the
given loading is characterized by the vanishing of the first variation of
the algebraic energy expression (total potential energy). It is generally

obtained as the solution of a nonlinear algebraic equation for Z .

X . . . . . . .
In practice it is preferable to apply a piecewise approximation (the
Finite Element Method), however, for the purpose intended here this
would be an unnecessary complication.




For the stability analysis of the fundamental state & we follow a
classical concept known as the "neutral equilibrium approach", in conjunc-
tion with the variational principle for the shell. This approach is charac-
terized as follows.

A neutral or equivalently an indifferent equilibrium state is defined
by the property that adjacent equilibrium states under the same loading
are possible [—6_7; this implies nonuniqueness of the solution of the non-
linear equations for the fundamental equilibrium state Z . The associated
load factor is called critical. This critical state may characterize the
transition from stabilityx to instability and frequently this is taken
for granted. Therefore we are actually starting off from a nonlinear in-
difference theory: We have to assess whether there existsan adjacent equi-
librium state under the same loading as the fundamental state 2 but
characterized by the state éZ*= Z * WV where W 1is small compared to Z .

. W T
For this adjacent state the total potential energy is A A/(/ZZ W),
Since this stateis presumed to be in equilibrium, the first variation of
27222'*'“4) with respect to ¥ should vanish. If this condition
admits a nontrivial solution for W with a given 7Z then the state Z is
neutral, Since the additional displacement matrix W is small, third and
fourth order terms in W may be neglecteg~%9 the potential energy 55-* .

The vanishing of the first variation “,” for all variations v

then leads to a linear homogeneous equation for V . This equation admits a

nontrivial solution W if the coefficient matrix, which depends on the
fundamental solution 2 , is singular. It may be shown that this equation
is also obtained if the second variation C{é 77212) is required to
vanish for all variations 53&2 .

The evaluation of the above indifference condition implies knowledge
of the fundamental state Z ., As mentioned above Z is generally
governed by a nonlinear equation. However, if the prebuckling deformations
are small this equation may be linearized and Z is obtained by inversion
of a linear matrix equation. Thus the fundamental state £ 1is a linear
function of the applied loading. This assumptiom is inherently implied in

the further analysis.

= Here, in rather loose terms an equilibrium state is said to be stable
whenever in the motion following a sufficiently small initial disturb-
ance (e.g. in the load) the response of the structure (in terms of dis-
placements and velocities) remains as small as desired for all later
times,



With this assumption the indifference condition for the case of hydro-
static pressure loading is given by a quadratic eigenvalue problem where
the pressure £ is the eigenvalue. Further linearization simplifies this to
a linear eigenvalue problem involving only symmetric matrices. From this
the reciprocal of an eigenvalue ?%% may be obtained as the reciprocal of
the Rayleigh quotient in terms of the corresponding eigensolution V;

This completes the stability (indifference) analysis of the fundamental
state and this result is used as the reference solution.

The further analysis has to show whether the proposed simplified
strategy - linearized analysis of an imperfect shell and a suitable defini-
tion of the scalar quantity "B" - gives a B-value which is exactly equi-
valent to the inverse Rayleigh quotient of the reference solution. Here
it is implied that the imperfection of the middle surface of the shell,
characterized by the colum matrix éé , 1s equivalent to the eigen solu-
tion W; .

The first step is the derivation of a linear theory for slightly im—
perfect shells, This means essentially a general tensorial formulation of
the associated total potential energy where the configuration of the actual
("perfect") shell is used as reference configuration. Naturally, the 'per-
fect" configuration is identical to the undeformed configuration of the
shell whose stability is to be analysed. This derivation involves careful
order of magnitude estimations of the kinematical quantities which must be
compatible with corresponding assumptions in the previous derivation of
the nonlinear theory.

Application of the Ritz method with the same shape functions for the
displacements and the imperfections as in the nonlinear case allows to
develop the appropriate matrix formulation of the total potential energy.
The vanishing of the first variation of this potential gives the equilibrium
state of the perfect (i.e. 2? = @ ) as well as the imperfect ( éi ?9 Q)
shell under the prescribed (e.g. hydrostatic) loading. Because of the
linearity of the problem the solution may be obtained explicitly by matrix
inversion.

Finally a suitable scalar factor "B" is defined by inspection of the
above result and the inverse Rayleigh quotient. Although a partial agree-
ment between "B" and the inverse Rayleigh quotient may be obtained, it is
shown that the simplified strategy generally is not capable to determine
the critical load factor, whether there is a hydrostatic pressure loading

or dead loading along the edges of the shell., This general result is in




contrast to the observations made for the above mentioned simple stabili-

ty problems. The study closeswith a discussion of these results.




2. Fundamentals of a Nonlinear Elastic Shell Theory

The nonlinear theory for an elastic shell to be used is subject to the

following restrictions: »

(1) the Kirchhoff-Love hypothesis is assumed to be applicable,

(I1) strains are small but rotations are moderately large,

(III) the rotation around the normal to the middle surface (reference
surface) is assumed to be small compared to the other two
rotations,

(1IV) the wall thickness is small compared to the minimum radius of
curvature so that in conjunction with the other approximations
the metric of the shell space can be approximated by the metric

of the middle surface.

2.1 Geometric and Kinematic Preliminaries

The undeformed configuration of the middle surface (reference surface) of

the shell is defined by the position vector‘Z’Q ® A curvilinear coordinate
o

net with coordinates e y K= 2 (surface coordinates) is embedded. The

base vectorsof this coordinate system are defined by

- . ;)25 —
/qo( a DE* = ’Qm , =72 (2.1)

which are tangential to the coordinate lines. They define a unit vector /9;

normal to the reference surface
oo, _ (LXF

* » = — -
/R, x A,

such that ;z/ /25 and ;;L represent a right handed system of base vectors.

(2.2)

The contravariant base vectors of the reference surface are then given by

=7 = ~ A = A ) 7
G- BB RGP e

/

A= dtBF) = [A (A xR)] Y e

X . . . .
The quantlty-é is a scale factor of dimension "length"; consequently the
length of the vector A is dimensionless.




such that

N A8 _ A _ 4 ot =/
A A g /0 e 2.5)

The contravariant base vectors /qoadefine a unit normal vector
/C_;J _ /?4)( -@’&
(R’ x A%

which is the same as (2.2) .

P = A, 2.7

The line element of the reference surface is given by

LdR = LR, A0 = £ & dE”
L5 AR = L By dO A O

((2.8)

(2.6)

~

—

/Qo(/l = Ay /-?ﬂ

[
4

here ;an are the contravariant components of the metric tensor of the

undeformed reference surface. The contravariant components are

VoL Sy 7 5% (2.9)

such that
ol

dﬁ D
H Hﬁd’ = IJ) . (2.10)
The metric coefficients relate co- and contravariant base vectors:

- =y - -
/Qa( = HM! /9 /9 *e H“d’ﬁ( , (2.1D)

The partial derivatives of the covariant base vectors are given in the

/

formulae of Gauss and Weingarten
o P %J’ = =
Fop = 265 = Vs Py + Bus P
?(2.12)

i

N 3/5.3 .d""
'L?dzoﬁ = 2269°< - égo< /%}




/%‘r

where is the Christoffel symbol with respect to the reference sur=-

face

K4 A e
[en = 57 (Prop + Rene = Aen,s ) 219
and <E%¢3 are the coefficients of the second fundamental form

bup = Bow = <F Hhs = ~ -4 m = APy
olf3 oLy
29;: = /G’dd’@%na Zg = ;? 2%{

/

(2.14)

/
Let T be a surface vector field, i.e. a vector field tangential to the

reference surface

~ = el
T = f&"/@d = YUy A, (2.15)
69/?
Its partial derivative with respect to the surface coordinate is given
by .
- é>é; Pr ) od D
— = 2 * A
ﬂD;/s = 296;7‘3 4 )73 /Z?ot + o, /3
Y A o N (2.16)
== ?):ﬂ /Qd; -+ gxﬂ Y /'?3
= W{‘.ﬂ R + 8/3 7, 03
vhere \
g ¢ -7
v ¢ pE= 9 20 + / dﬂG 1)
® 2 (2.17)

Y

of
de,,/z i= ¢,nr - /; "j°<

74

is the covariant derivative of the contravariant or covariant components

-4

of the surface vector ¥ ; those quantities are the components of a 2nd

order surface tensor. Similarly the covariant derivative of a 2nd order

surface tensor _/qj
/r/ = M o /'?(x e /9/3

may be defined




@

74 o A /7 g, dS
M "d’; M‘f("/?‘d'/% +/??J’M (2.18)

ete. =

The position vector /D of a material point in the shell space for the

reference configuration may be represented by

/5(6°;:9) = LR(BY) +.£1& /Q:/ﬁ‘() (2.19)

where
3 1,
= “ N/ 2 /s
& ! dimensionless thickness coordinate 2 & 6 = <
4? ! scale factor, e.g. minimum radius of curvature
A/&‘f) ; wall thickness
/Q = 4{/4( : dimensionless wall thickness .

Parallel to the reference surface other surfaces may be embedded in
the shell space; together with the thickness coordinate lines they span
a coordinate net in the shell space. The covariant base vectors of this
system are given by 3

- 5 € 5

ggmn

é’x - /5/ ___[(7 /Q_; - 5(2.20)

J

el

where
7

o

The covariant components of the metric tensor in the shell space are then

given by

G

it

Gut &p = (6) S S% By
< ()[R - 270 8eg +(06) Beg BA T

- - $(2.22)




!
t

Gss = g: ’ 53 = (‘7)[)2/ | }(2'22)

the corresponding contravariant components are

G“= Ze///‘? + 2408 + 3048) 3“"/@&) e J)
60(3 = O |

‘ 1(2.23)
6* = (%)

A volume element in the shell space is given by

Q/V = /é’ﬂa/&;/ﬁ é/ﬁs | | (2.24)
& = At /é/u)‘: /45)20/&"/6«,3)

element in the middle surface

and a surface
r

dA =&) [ aeae’ z(
2.25)
A = et (Fug) Jr

ft

If fa is the position vector in the deformed configuration then the dis-
9 .
@,@1/ & in the

placement of a material point, with coordinate

reference configuration, is generally given by

Zreset) = POYEE —PBLE), .

According to the Kirchhoff-Love hypothesis the displacement vector can be

represented by

Z =A% +£40(a;-F;), @2




here

P(O%t) = V“/e.if/ A, o+ //Ké"ft//z (2.28)
ol .

o

is the dimensionless displacement vector of the reference surface and 523
the unit normal vector of the defbrmed surface.

The coordinate lines éa¢== const., are now considered to be convected
with the material. Then the covariant base vectors of the deformed middle

surface are given by

&d ) /99 ©=0 = ,? /75;“)@:0 N

With the use of (2.19), (2.26) and (2.27) we obtain
&“ = Ho/ R A (2.30)

The component representation of 7*’(equ.(2.28))and the covariant deriva-
tive yields

Va6 A - KA, ]

)(2.31)

A/0("3'"/h//o<"" 85@)

{
|
!
/
This allows to give a representation of the unit normal vector 523 of the

deformed surface in terms of surface displacements:

. ez

— a, x A
a&.? = : -—'L/ ¢ (2.32)
/&, xa,

For arbitrary displacements of the reference surface this represents a
rather complex nonlinear expression. From the kinematics of shells under
infinitesimal displacement gradients it is well known, that ;/Q repre=~
sents the two rotatiqgs of the normal of the middle surface with respect
to the base vectors ;ax ; further, the rigid body rotation of a middle

surface element around the normal i?: is given by




7 Vsr ) = A= detlAep)
,a/lé,z 21/ f57 (B s J
finally the infinitesimal middle surface strains are represented by

g/%x:ﬁ ‘“}é:x - 2/1/3«4/3),

4
. as . . . %
Assume that the curvilinear coordinates o are dimensionless , then

E3¢73 R P&;ﬁz and /V& are dimensionless.
Now, it is important to note that for most stability problems it is
sufficient to introduce certain order of magnitude restrictions on the

. . ‘s . e RE
above kinematic quantities; these restrictions are

'/"/c:( | Y ;) <= /
E/Kffﬂ - /ﬂ"") v Z/))z (2.33)
Wy +Viorw = 2Wbs) ~ ()

7

i.e., the (linearized) strains as well as the rigid rotation around the nor-
. 4 .

mal are small in the order of A . The rotations of the normal are only

moderately small of order P

From the last two conditions it follows that _
2
ié;/g - /\/@,m ~ //9) , (2.34)

Calculation of the vector product (2.32) and dropping all terms of the
2
order of (7) or less one gets

G,x @, = /Z //;; # /\/u'gu), (2.35)

Thus to a first approximation C%! will become

@y, ~ f, + W Ky (2.36)

* If the G9°< represent the arc lengths then the scaling factor Af
should be used to obtain dimensionless coordinates.

xx Exluding large prebuckling strains and rotations and the analysis

of the post buckling behavior .




It is noted that %3 is a unit vector except for terms of the order of

A
[A)°. comining (2.27) and (2.36) gives

{[-/Vd'*‘z)@ h/d/)/;x + /’ﬁ//z;?;]‘ ‘ (2.37)‘

This approximate displacement field is equal to that of engineering shell
theories under infinitesimal displacement gradients / 5, 7_7.

If dlo and 449 denote the infinitesimal distance vectors of two
material points of the referential and the present configuration then the

Lagrangian strain tensor éi is given by

AR d o - dﬁoo/ﬁ = 2%/34;%5

— A — — — (2.38)
E=E£, GCwc"-E"6 &G, .
| J
With (2.24) one has
ﬂ//s = 6/( ﬂ/gk
and the right hand side of (2.38)] gives
- - ' N
L ARE AP - zw“/:’,w oe
/1
(2.39)

+dB"E,, //92&#9 £, dO”
+ A E,, 467 }

From (2.26) we obtain

ﬁ/7'5 = odle r oA
- - - = d
&, do” +a@,do’r G dE" + E,dD" .o

=

= (/-'O‘ e -—Az 5#“59 “ *+ (/2323 e Z:;Qg/)d%/é;>3




Consequently, the left hand side of (2.38)1 may be developed with respect

to coordinate differentials
Afp-dps - AR -od P
- _ - - — PPV
= [G«' “o 7 gﬁ“‘m 7w '“/’37”/9”/9
- _ - . _ ~ o
*1[64{,«)3 *édo&(,/d ,Lﬁfxoﬂ)&]ﬁ/gﬂ/ﬁ

2 Gyl - R, R, ] AOAE

2 (2.41)

Comparing (2.39) and (2.41) yields

[T e - L }
~ - ~— ’
Eug = 5 Z Cu by + Gp ' #y* Uy “’3]

H
i

/_: = :’[ v e “ 3.4{70( 7‘”»4‘“1.3_7}(2'42)

o®3 2 of /3
- - o
E\}g = GJ ’ %3 7* ;3 L,LJ ¢y
J

From (2.37) one obtains

lo =40 (V5 -WBL «A6 W5, )5,
- /‘{f 55 @; 7 ,(2.43)
4713 = /[/7) /\/: ﬁ;];

With (2.24) and (2.43) one obtains the following explicit representation

/

for the covariant Lagrangian strain components in terms of a power series

expansion of /}369)
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Edﬁ = g////;{(:ﬂ 7‘//%,”4 - 2'%/8«/5 ]
7‘/5[/’@/3 *%:d - 8;//;,%'/1/@;,4)
~ 8% (Vou- "85 )]
GO 8o M+ Bep Wi ]
*[ez/z 2P ]
0 =) W Wy # (i =W )V - HE])
%Je)[//m/V —HWBI)I (e -HBs)
- W8 My - WE¥Byy Wy ]
109 [ W //i,z - WG W]

?(2 JAb)

Evr=Evc= 2000 4(Vie-WELH,
F10489) [ W*, //,]/

E = F0) )W,

The order of magnitude assumptions (2.33) and (2.34) and the assumption
that AQ;/Q is of the order of (9 , reduces the Lagrangian strain com-

o t t
ponen Eiq% 0

(2.45)



o = O ( Ky +AO ) |

4/%:{:/2 T /2 % hZMEo/,a //%) b(2.46)
//»,,,p - Wow).

_
Thus, only terms quadratic in f) are kept in this expression and
is approximated by

‘ZM“‘;A
- _ A
‘w,,. t,, = (/) /\/“//,e

(2.47)

This is the only nonlinear term in ézﬂ . With the above assumptions the

shear strain éi(a and the thickness strain ésgg are of the following
orders of magnitudg

N
EW' ~ //1)) | ((2.48)
¢
és}J ~ (CJ/)W ’

égh? = ,/[’? /25; = /?3 ) ;

application of this exact expression to calculate the thickness strain
yields .

A rigorous application of the Kirchhoff-Love hypothesis (2.27) yields

- ,
E.?g = 63'(")3 +

7 ,3' /3)
//'7) (A ay-1) + ) (4, - 9:)‘/4\7
= 0

Y

a result which is trivial since it is implied in the formulation of (2.27)
Similarly the shear strains éi(l should vanish. The result_52.48)

1s due to the fact that the relation (2.36) for the unit normal 523 is

only approximate. |




2.2 The Energy Functional of the Shell

The further development of the shell equations is based on the Hellinger-
Reigsner variational principle (mixed variational principle) in the frame
of a Lagrangian large displacement formulation 1—5_7. The Hellinger-
Reissner variational principle implies a simultaneous variation of the
displacement field and the stress field; due to the additional assumption
with respect to the stresses further simplifications may be introduced in
a mathematical consistent way. This approach has been followed in / 5_/
within the context of a nonlinear viscoelastic shell and these results may
be used here, ignoring tﬁe viscous material response.

In this approach the neglection of the stress power of the shear
stresses normal to the reference surface and of the thickness stresslis
an important assumption. The resulting variational principle is of the
mixed type involving the membrane force and bending moment tensors as well
as the reference surface displacements V’d and /b/.

Following usual procedures of variational calculus the mixed varia-
tional principle may be transformed to a variational principle involving
only variations of the displacement field P/* R /V/. In general terms

this variational principle has the following form (virtual work form)

{é/ﬁ/wmdﬁ /Tc/’a A - /FJM/C

Herecal is the strain energy function for the elastic shell

7 £ d B v e ,u
ﬁl.m&;;—y——-[%ﬂo(d + _——_—//'U o(f&)(/‘v

(2.49)

o~
Further, F is the prescrlbed stress vector actlng on the boundary strip
sz (Fig. 1). This externally applied stress is assumed to be independent
of the displacement and rotation of the boundary strip (edge of the shell).
Thus, the variational operator C/?/ﬁj can be extracted from the virtual

work expression



9{;0{34’2 p([:: = cyf/g'fdf,:, (2.51)
Cr Ce

Following the derivation in L_S, p. 229 ff¥7 the area element 612;; of

the boundary strip may be represented by

Al = (W) 26 48 dC
oo = 4= 268, + () /18,) +@e) ], [*

/

\

here ZB zgyc are components of the second fundamental form in the co~
Ce s mp

ordinate frame spanned by unit vectors Y and € (Fig. 1) and 5%: is an

element of the arc length along the boundary curve C: .

If the edge loading is defined to be \
~ e ., o
/ — a—
W = Al [ (H)" F Ae 46
- |
~ 2 ;e 7w o= = \(2.53)
. <)t [ )t FoR, 6d6 '
o
~ *’/t 7Y X o
G -ae [ (w) Pyt
<7

Foa dt, - z///g VEr MK e QWY A
Cr ¢

here the displacement field representation (2.3?) is implied. The term
o of - /
MW = M Me=-M"(H ot BusV)

may be partially integrated” (see ref. [-5_7) to give

o . . . . . X A% [ 4
* This implies a continuous distribution of M §?N} Yy along the bound=
ary curve € . The permutation tensor ;?«p in the reference surface
is given by
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(2.54)
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Thus
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d 923 J]

'["‘;“VM]%}V * &3’//‘“{

i
14!

"\\-\‘7(2

(2.55)

#

where é? is the ersatz shear force

s

~ o gy
Q= O - (M €.y vie), (2.56)

In the virtual work expression (2.49) 7/ is the resultant force per unit
. . % ,
area acting on the middle surface” . If a hydrostatic pressure

applied to the shell then

e

[

= 72
PR g

(2.57)

here 6la¢é?0$ is the ratio of the deformed and undeformed middle surface

element Following the derivation in / 5 / and ignoring terms less than

(ﬂg) one obtains
_.,/g/ //‘“[} .4(4*1/.0( /8 )/4] (2.58)

® . . .
The shell is considered to be thin such that the surface forces may be
assumed to be acting on the middle surface.



Obviously this loading depends on the present configuration of the shell.
Therefore, the variational operator Cf?') cannot simply be extracted from

the virtual work expression
J/( 7 oftiiﬁaro 4{6%9 ,
Va

Nevertheless, under suitable assumptions this is possible. With (2.58)

the virtual work expression is

ST by df =£//o//»j/“ W dive, v
A 7

‘_f[/\/~;—’82‘/ﬁ//2) (2.59)
VW Ad.

For the following it will be assumed that the hydrostatic pressure A is
uniform; this allows to extract P from the above surface integral. Then
the first term on the right hand side may be partially integrated by appli-

cation of the Green—-GauB theorem for surfaces

[H, v i = §Wn dv de
“ [ K A

The virtual work expression (2.59) may now be given the following form

[T it =20 /276, v -0
A
~V WA

(2.60)

(2.61)

hp O Wy SV AL,




Except for the line integral in (2.61) the right hand side has the form of
the first variation of a functional. However, under suitable displacement

boundary condition
i.e. //:0 Ou (

or (2.62)

w0 ol

this line integral vanishes. The clamped and the hinged edge are examples
which satisfy these conditioms.

Furthermore, if the shell is a closed one under hydrostatic pressure
then no line integral appears on the right hand side of (2.61)x.

For the following it will be assumed that the one or the other con-
dition applies such that the virtual work of the hydrostatic pressure can

be represented by the first variation of the potential Aco

/7': iy, dA - /7/; (2.63)
-

(]

(’;/; i *l/g///’//”* /j“)_ch}/g:;/_;/xgwf;/dﬁ
9

(2.64)

At this place it should be noted that Koiter 1_9_7 has calculated the
increase in external'pétential energy of a closed shell under uniform
hydrostatic pressure by considering the volume change of the closed shell.
Under due consideration of the different notations the result (2.64) is
the same as Koiter's for a closed shell.

The virtual work formulation (2.49) can now be transformed to a
variational principle: There exists a functional /4 , the total potential

energy,

=% . .
A closed surface may be devided into two parts but continuously connec-—
ted. For each part a line integral along the fictions edge is obtained;
they are equal except for the sign.
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whose first variation with respect to an admissible displacement field
o
V /N vanishes:

ﬁ
c/// = O (2.66)

This principle (2.66) states 1-5_7 that among all admissible displacements
Vx/ W of the middle surface which satisfy the prescribed geometrical
boundary conditions, the actual displacements make the total potential
energy stationary. This statement is equivalent to the equilibrium and
dynamic boundary conditions of the shell [_5_7. However, these will not

and need not be considered here.




3. Derivation of an Approximate Stability (Indifference) Condition

3.1 Displacement Field Approximation and Matrix Representation of

Kinematic Quantities

Following the strategy sketched in chapter (1), in a first step we trans-
form the total potential energy functional (2.65) into an algebraic expres-
sion with a finite number of degrees of freedom. This is based on an
approximate ansatz for the three displacement functions. For this formu-
lation the direct matrix notation is used.

For the present restricted purpose it would be unduly complicated to
follow the finite element philosophy. A global approximation for the dis-
placements (Rayleigh-Ritz approach) is sufficient, although in practice
it may be difficult to find suitable ansatz functions which satisfy the
essential boundary conditions, i.e. the kinematic boundary conditions.

We assume that certain kinematic boundary conditions are prescribed
on the edge C or part of it, compatible with one or the other restriction
in (2.62). The total potential energy is formulated in terms of the tensor
calculus. Therefore and for the purpose of generality and simplicity a
transformation of the tensor components of the displacement functions into
their physical components is avoided. Thus, the Rayleigh-Ritz ansatz is

done directly with respect to the covariant components:

k; =

‘\/l:q
AT

() }é,( (©%) ;K=

& A

N

(3.1)

N:

M

E g ey

Q
L}
3

' A
We prefer to use the covariant components Vé instead of V’ since M;
is amenable to a simple geometric interpretationx. In the above ansatz it
is understood that the préscribed functions }fw [557 and % /93)
belong to a complete set of functions L—i0_7 and satiéfy all boundary con-

ditions.

® . . Py )
bé is the rectangular projection of V' on the base vector /Zx :

T

bc% = ’{; ’ }?M




The three displacement components (3.1) are assembled together in the

column matrix

v =V ‘ (3.2)

’ ’
2 A

Further, the unknown coefficients C;u)and C are assembled in the

column matrix

(¢ , (3.3)

Then the relations (3.1) have the following matrix representation

(3.4)

Usgsy = /‘//5’) z
where

r/ M
Gle) e ) O o O O . O

M

4
2o w o0 F69.. § O e O .
///97 MY, fﬁ/e/ (3.5)

, p Y
O . O 0 . 0 fp.. Vo)
/

The covariant components of the middle surface strain tensor (2.46)l may

N

be split into a linear and nonlinear part such that
\

Kps = @/’S’ ” Tas

5(3.6)
@ﬁf r= f/%{;;y 7 VS!/Z "Zh/gﬂf)
o e £ Wk




The two surface tensors 6/63 and ?ﬂg are symmetric. Here the question
arises in which way the components of each of these tensors may be arranged

in a column matrix. Two choices are indicated

/

O=\il6.+9,) ® | & || g,

@2’ @2, J | @2, ) }3.7)

?44‘ \ g 744 W /?47
T+ ok | 7 | wo

~S
n

72
- y ??L | . ! ?12 J 'J

The first choice” has important advantages compared to the other; this

will become evident in the following. Thus we introduce the following

column matrix

g, ) [ V. - W8,
2/71L+gf4 _Z//gk) (3.8)
Vi

'Mgat J :

i

&S
i

21/@,2 * ‘94'¢>
o

)

® . . . . .
With unessential differences this is also the arrangement used in

[ 11, s, 421/,




According to the definition of the covariant derivative (2.17)2 we have

A 74 ¢
&4244_/14&;%1_/44%—/;1{
04 0&
Kh& = V?,g - /_’:2 K - /’:2 K 1(3.9)
(4

§
o~
1
N
N ow
-~
{
'\H LY
L
NN

2 5 %22

/
These relations suggest to introduce a differential operator V such

that (3.8) is represented by the following direct matrix notations:

O = [‘74/ , (3.10)

The operator V is given by a 3 x 3 matrix
( \

(-] 4

de) =TT -aln s,

V( "2’4 [()/z, } /-:12’ B /j,,’]f[?),, -/j;&- ﬂ:z]; u/é’zfé'] (3.11)

i

> | 5070
~2/ )=l |

Now, &) is given by the matrix product (3.2) and thus

O = /VW)Z J (3.12)

this relation shows the linear dependence of the column matrix @ on the
unknown coefficients contained in Z .

The two rotations M of the middle surface normal are assembled in

the column matrix
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/4

ﬁyjz- ~+ Z;;V VQ’J
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’

(3.13)

The introduction of another differential operator g allows two write

w =V =(WN 2z

where

W.) ¢

s
=

By

(),

/’)N,)

(3.14)

(3.15)

The nonlinear parts of the middle surface strain are assembled in the

column matrix

;?-_-

4
z

(W, W,

kmM

I Wp, + W, W]

J 4

(3.16)

Now it is important to.note that (3.16) may be written as the matrix

product

n =

A
Z

;W<L A

W,
W' |

(3.17)

The components /%6 and /WE may be related to W by the following

matrix products



>(3.18)

2
A ”,
- e= (3.19)
? { O £ -1 o
With (3.18) the 2 x 3 matrix in (3.17) is now given by
¢ ‘ \
W, 6
- 7
= - 7 z
6/Z) Z |2 w, i W
o M / (3.20)

e'(VN)z 0
TNz  FE(VN)z
o) e’/ VN)z

< /

ft
?w(4\
dsla
D

Thus, with these notations (3.17) may be written as

- 6(z) (VW2 . .(3.21)

n = w
(z)
The change of curvature tensor Cﬁ%qe (2.46)2 is assembled in the column
matrix ,
/
\
CU%1 /&Gi4

(3.22)

]

2w, %) /M, * WMo |
“or h/é:z

N\
N

<
if
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where the covariant derivatives are given by
o ., \i
Hoy = My = Lo W= LM |
v -
, _ e
712 = /A'/”M -'/:ZM "’LM/“ (3.23)
o /32'
Wy = Wy, = (7500 =10 W,
) v e .
a £
S AR SN )

Ny

ch; 2 =

Analogous to (3.10) we introduce the differential operator & such that

w = WW (3.24)

where ‘;7 is a 2 x 3 matrix | v ‘ 2
([ 2[), ~/337i 4/
) a 2
Lo
#”
2/,

Z

&
~

e (a

V., =

[(' 4 [/')M 4 /7 ] (3.25)
. ;Z[[),z'/vzi]

\
This operator consists simply of the first two columns of &; With (3.14)

we obtain from (3.24)
w = \V/W&l/) *‘—'(WV)(V:C’/; (3.26)

(3.27)

here
W) S W/V())

This gives finally

(VN 2
Wy = W)
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Summarizing the main results we have

N
i

S
i

\

;—.WZ

E/wn * Uz«)
oo

J

- Ve =(VWN 2

3(3.29)

|

=6, =y (LBTMZ

' |
-Fw = V/V«/)JVM%
- J

This completes the matrix operator representation of the kinematic

quantities.




3.2 Matrix Formulation of the Strain Energy Function for the Thin Shell

The matrix representation of the kinematic quantities is based on the
covariant tensor components of the displacements and generalized strains
O(aﬁ and A%gﬂ . In terms of these quantities the strain energy

function 74 may be written in the following form™

$XyL

PPN e /3
A = g{%s,e H Lpa " 4%/)/ Weg H wd”df (3.30)

with the 4, order elasticity tensor

3 £ S« _ ¢p3 % B A Vo
/7/ N 4//9 A+ /,_V"/Z} Z ) (3.31)

A4V

With the separation (3.6)1 the first term on the right hand side of
(3.30) is

SAY
H

Xea Kyt

s 48
= (—)5'3 H @d'“ (3.32)

wyp L7
+ G H T F Ton H " G
Xy
H

X

Vs

The explicit evaluation of the first term on the right hand side gives

S Y13
e H

Aol 1 144 Lol sy

A4 /L/ 7 @42 /L/ + 4 /7/ * 92). H (3.33)
g iyl Loty ey
= O il Q)W) rg b

x ’ » *
It should be kept in mind that all tensors and operations are defined in
the undeformed referential configuration of the shell.
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and
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This is combined analogous to (3.33). It is then obvious that
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(3.35)

(3.36)
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With the definition (3.31) and the symmetry of the contravariant metric

. . ;?“’“ . /V . ,
coefficients we see that the 3 x 3 matrix is symmetric

//L‘/ = /H T, (3.37)

Similarly we may write

Oy H™ Jra = ”?T/‘/@ =0 Hy
Dsi H W = T

7(3.38)

and for the deformation energy due to curvature changes we get

R - |
CJ% H Ly = U /{[7/@) (3.39)

Consequently, the strain energy function C2Z is

& = /0" He »oHy + iy He
+ 77’7/—/77 + jz//)/zwr//v/w/z ,

(3.40)

With (3.29) the explicit representations of the right hand terms are

o He = z’/VN/yﬁ/VN) z

6 I n = 2.7/\‘7/\///‘/ @z) (UN) 2 '
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e Hew = ZT/VMTW/VW/ z
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The total strain energy potential is according to (2.65)2

/ﬁl oAd A (3.42)
A4

Here all terms depending on the surface coordinates have to be integrated
over the whole middle surface of the shell in the undeformed configuration.

This integration leads to the following matrices

- / (CN) H (TN ud =),

/a, 9)

Dizy = | (VN)'H G,,, (BN L4
A4

Dy = / (WN 6L H WM s -1,

r(3.43)

//W ) H G (W) dd =)

/z,z/ 2 )

Bor= it ) (FH) H (W) 4 - B,
Y J

With these definitions the strain energy potential is

aT s
A/dz - AE’ Z (?/422307 f.zgzz@ZZLJfL 772/0)/)
* iz, * /B/O/D/ jZ .

It should be noted that this is not a quadratic form in £ since some of

(3.44)

the matrices depend linearly or quadratic on £ . The matrix /n.] is

symmetric.




3.3 Matrix Representation of the Hydrostatic Pressure Potential

The potential energy of the hydrostatic pressure © 1is according to
20
(2.65) 4

T = v dp [{H10 V)~ FWEN - 5V BV
12

(3.45)
o

The trace 2 1is given in explicit terms by
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Introducing a suitable differential operator W the trace V,'a( may be

represented as

‘“@We€ Ve =€ (VN =z 3.4

where
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and r P
A
6 = 4 ‘ (3.48)
7

The normal displacement component lV/ is singled out from the matrix &

by the product

7 7
W = §T'W = Wr}g = Z N§§ (3.49)
with
2
§ = |0 | (3.50)
3 4J'

Thus, the first term in the integrand of (3.45) is

W4t V5, ) = Zr//\/7‘§ > Zr//\/g aET/N))z

(3.51)
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With (3.49) we obtain for the second term

ZZW5:W: ! T///VS SW)Z (3.52)
| o symmetrlc | ' \

LB Yy =3/ 87+ V87 » V8" + 8%/

and this may be put in the following form
7,
e =10 Kv =22 NkNe (.59

with ( .
o AT AT
g B ©

K = B B o |= //(T (3.54)

!

O O
© )

The integration over the middle surface leads to the following matrices,

which are independent of the surface coordinates
r )
=///V§0[ﬁ)
v
A

T

= /[WT///(* :§5;§7)/\/]”‘/0§):/ L(s.ss)
A

E o= [Nise) (VW dd .
i




It should be noted that the matrix AE? is nonsymmetric., The potential ener-

gy of the hydrostatic pressure is then given by

(/Zz"[/‘Q/Zt/D — Z/Zr/kl 7427'/[2/‘ (3.56)




3.4 Matrix Formulation of the Boundary Loading Potential

The transformation of potential energy of the boundary loading (2.65)4 is

L] . x
a straight forward matter. With

w908 w00 D s
ov v »°  av aé’g/§w)
(3.57)

ol 9! 3.58
L] S 2] e

+ &V*v@r//\// z dC
=tttz .

The definition of the column matrix &% is obvious from the above. Again

it is noted that this integration is to be done in the undeformed reference

state.

* The coordinate VY 1is the arc length along the outer normal V of the
(Fig. 1) and € 1is arc length along the curve

boundary curve



3.5 The Total Potential Energy and the Fundamental Equilibrium State

The total potential energy of the shell in terms of the column matrix YA

which contains all unknown parameters characterizing the displacement field

is given by

77;2)" (//:’:- *77;+7/:

_ o y |
2 ZTZ@/W‘ * ﬁ/czz) ’L@/z,o) *@/2,2) (3.59)

*B/QO)]Z

7 7 r'*‘ 7
rdp{2p - 32Kz » ZE2
-4 2.

(\
For various values of & the total potential AV takes different values.

F
For the equilibrium state of the shell the potential 4/ assumes a sta-

tionary value, i.e. the first variation of Zr’with respect to £ vanishes:

(_\o
»J///Z) = 0, ' (3.60)

This state is called the fundamental equilibrium state and it clearly de-
pends on the loading A~ and f' . From the stationary condition (3.60) we
obtain the fundamental equilibrium state as follows. For most of the terms

in (3.59) the derivation of the first variation is a straight forward

HT, T
= //O/J’ZT,/D —j{/z'//;z 327k 2
l ¢+ 427 Ez + 275/2/
- 2Je
=27 [ tpfp - Ko + (E+E)2f - L]

(3.61)
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(/M'
The first variation of the strain energy /;Z deserves a more detailed
analysis because of the non-quadratic terms. The first variation of these

terms gives

//g Zr[@a,z:) 4 @(z,a,) "/9(2,24)]2/
=f//z’@w)z ” Zr//@ma/ z)
- Zrﬁ/z,()/ Jz # JJ/Z rﬂ/z,o)) Z

+ J/Zrﬁfz,z) Z/)o

(3.62)

With the definition (3.43)2 we have

’(8,., 2)- ”/ (TN H G, (W M)z d

JIGNH Gg)( VW2 48 o0
A

= 0,

4

P

+ 4
i 2 " Dy v
Observing (3.29)3 we see that

OP\V\/ = /WA/) o‘nZ, (3.64)

such that (/z) may be written as




Qogy

QVF\

@/0, dz) Z

- L6 -

e " Jinv

gr/lw

I
S
N

]

Consequently, we have the important result

(o, &)

; (3.65)

(3.66)
\
&)
()
7
o,
7 (3.67)
2 % ;‘)
aN,,)
.
W )
)
(3.68)




This "exchange rule' applies to any two column matrices SY and. VY which

have the game dimension as y4 :

Deyyr v = Leyur Y. (3.69

This simple rule is closely related to the specific assembly of tensor
components ?Zga in the column matrix %? ; the other alternative shown

in (3.7) does not lead to such a simple relation. Thus we have

>
J’/ﬁ/ 2) = 20/42/ /2, (3.70)

gz)

Similarly we find

”Q(}?7—é:>2749/) B éf}z7'4§%?/q) ’ &27:é2zﬁ2/0)

(3.71)

I_ 7
and generally

;
a4 D/y,ﬂ) = >V ﬁ(\&/,o)' (3.72)

Finally

JYZT@/Z,Z) z)= fzrﬁ/z/z)z *27@/2,2/2

(3.73)

,
T2 @/z,sz - ZT@/z,m 2.

Observing the definition of ZZVZ) and following the same argument as

above one finds

ZTD//z/z/ = 0/’2’@@/2) |

D/z//z) z = D2 Jz . J
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In general terms we have

yr @/\V;\W = \V@/\y,\y)

\(3.75)

0[}\/, v) Y = ﬁ/y, y) V. j

With this exchange rule (3.73) reduces to

~0/)/Z,r @/2/2) Z,) = Y 0(')27 @/2,2)2' (3.76)

These results are combined to give an explicit expression of the right

hand side of (3.62) in terms of OPEE

L32[ Oy * Dezor # ﬁfz,z‘/]Z/
- r

= //ZrZ /@/0,2/ 2 @/0,&))2 y @/74,'0/2 (3.77)
7 £ @/Z,Z/Z]/.

The derivation of the first variation of the quadratic terms in the strain
—
energy is a simple matter which needs not to be elaborated here. For dﬂ”

we get finally

dj7/q= Opzr/[@/&,@ . /ﬁ/ﬂ,?z) "ﬂ/:,a))* @/z,a)

*Zp/z,z) * &M/Z (3.78)
veplp-Ke » (E+ED2]

_/f/,

d’”/‘/\‘ = O v4 fz (3.79)

?

Since
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we obtain the condition that the bracket Zc"J( in (3.78) must vanish.
From this we get the following nonlinear algebraic problem for the unknown

column matrix & :

[ @/w) . B/o, o)
ra
7L/@/a,jzz) 7 @/0,2)) ? ﬁfz,o) 7 Z»'O/Z,Z) 3-60)

i dp(E+ET-K) Tz = L(t-pp),

Two observations should be made, Firstly, the contribution of the hydro-
static pressure to the square matrix ZP"~_7 on the left side is symme-
tric since V; is symmetric and only the symmetric part of AEZ is involved.
Secondly, the matrix ZQﬁZdU is nonsymmetric. However, the expression
AZ}ZL¢V & can be transfé;med to read
4
/:

“
Z,0) z = @/z/ Z

where 4Z2?2) is symmetric. This derivation will be given later when it
is needed in a different context.

If the response of the shell is clearly nonlinear in the pre-buckling
state then nonlinear terms have to be included. We will not discuss this
case here but assume that in the pre-buckling state the deformations are

sufficiently small such that (3.80) reduces to the linear problem
/ [z = LT - pp),
[ﬁ/&/oj 6/0’0) /0 (3.81)

The solution of this linearized problem is

- =7
Z=2 ° //@/«w/ ’ ﬁ/m/] t-pp) (3.82)

For a class of problems this approximation may be sufficient. The solution
of (3.80) or the approximate solution..%z (3.82) defines the fundamental

state whose stability properties are to be analysed.



3.6 Evaluation of the Stability (Indifference) of the Fundamental State

3.6.1 General Evaluation

The equilibrium state, whose stability is to be analyzed, i.e. the funda=-
mental state, is characterized by the displacement matrix Z , the solu-
tion of (3.80). Now it is assumed that the fundamental state is in a state
of neutral equilibrium which characterizes the transition from stability to
instability. Consequently, one has to assess whether there exists an ad-
jacent equilibrium state under the same pressure loading /3 and boundary

loading é‘ but characterized by the state
AL
z" =z +rV (3.83)

where \/ is small®compared to 2Z . Here it should be pointed out that the
shape functions 125“ and ﬁz in the ansatz (3.1) are sufficient general
to include all possible modes of deformation; thus, buckling modes may

also be described by the series approximation (3.1).

For the adjacent state the total potential energy is

(/T)6 = (/7/2’*) = C/T(zﬂv), (3.84)

e
Since this state is in equilibrium, the first variation of AQ/Z??‘“/)

with respect to W must vanish (Fig. 2):

< ~
0[\; N(z+v) = o, Vv, (3.85)

(“'«
Before this variational condition can be evaluated the potential Nlzrw)
Qgi to be represented in term of powers of V' . The general expression of
///2) for any column matrix & is given by (3.59). According to the defi-

nition of the various matrices we have
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ﬂ/@ zrv) Livar * Doov) |
@/Z%\V,vj = /D/z,a) 7 2/0’/0)
,@/z,qy, zrv) = ﬁ/z_/ z+¥) 7 Z/% z#v) b (3.86)

7‘@/2, z) ",@/z,w "2/07 z) 7 &/ ¥

7 > A #
(z+v) /K%/zw) = Z //\”#2 eVikz r vV kv

/ZHV)T/E (2+W) = 2" Ez + VIE+F)z + u/rfjv,

After some lengthy algebraic calculations the following representation is

obtained

%zm// = ?/7/2) 7

gy

1. order

\\/7/ [ Drpo) *5/0/01 +@/0,Z/ ’Lﬁfz,a)) "‘j/z:,ﬂ) #< 2/2,2) inV
A Z/&/E%/f?'-—//\ﬁ/a o //0/0 -—-/[?‘/+

(3.87)

1
VT Dty #8 1By D) ¢ 4 Bui* | .

in V

Ap V[ E - 2”//?]\\/ +

[\)/70/”/2) V/ %\\/T@/MO)Z 7 VTﬁAZZ)Zj"L

.
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3. order

4, order

7
7V 522/04 V) “/’, in V

Since & characterizes the fundamental equilibrium state it satisfies
equ. (3.80) and thus the term linear in V' vanishes identically, If we

neglect the 3. and 4. order terms the first variation of ///Z #lV)

with respect to W gives
o Viz+v) =
ﬂ")\\/TZ @/au) ’LB/J,(}/ 7~ @/0, 2) *2/2/0} 7 y@z,z)]‘/ 7

//a/°;V7[E+E’— /;é]\v +
T [ Doz r Dz ]V + (3.88)

/\V’[/D//V,d/ *Z/u/,z)]“/ *

| \y//ﬁ//uf,o/ g ﬁ/o,fw]“/ = ©

and observing (3.72) and (3.75) this may be combined to give

—
dc/ / /22 AW) =

y
C\yr/[pfq‘o‘/ +£/ﬂ/ﬂj *2'@/22) *Zﬁ/Z/") (3.89)
X
¢4 Dr2,2 7‘40/{"(57’/’0]\\/

+[2@/\y/u) 7‘2@/%2)]2/ = 0
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for all fu/ . Thus, the column matrix in the bracket /:uj has to wvanish:

[@/M) ’Lgfw) * 2 /ﬁ/@ z) *@/z,a)) * 4”/2/2) s
///O /fv’c’fr*//(’f)]\s/ + (3.90)
[Z.@/v,o) » 2 Dy, a)] z

This is a linear homogeneous equation for the additional displacement
matrix V' |, The last term contains V' in an implicit form not suitable
for the further analysis. Therefore we transform this expression in such a

way that V' appears explicitely in a matrix product. With

@/uy,a) = @/&, W)

and the defining expression (3.43)2 for Z/p, V) we have

Diy 2 - / (5N Gy (TN 2 doA

column matrix

\

(Er/WN)\V 21 (N v O  (3.91)
r - j ! 4
& (V) 2 ,
o MWW eEn V]
) )
The column matrix HAWMZ may be represented by
» 1 / T 7\
SN2 [7ewHs
(3.92)

HEWz - o HIENz - |2 (7 1H'S

§T//¥/\\37W)'z) 2T H s
\ \ /




(3.93)

6/; H(TN)z =
IENH's MMy + 27O H's § €T
TN 16 WY + 2 (00 15 s e7Pn)v

§QL§

T v (3.94)

ZlgnH's 2P 51 |letemv
SN s |[Ermy

/X

It

Ay

Consequently, the introduction of the symmetric matrix AE;ZU
SHTMZ  7§H (PN

Fy, i= ? | 3.95
L \4sTH (P1)z SHVN 2 o

/

allows to write (3.94) in the following form

o PNz =Fry(WVWv. 3.96)

With this result the right haﬂd side of (3.91)l may be written as

#
Ly e = Ly

(3.97)




where

= §5 -

@jz) = //WN)T ﬁz) /\VW) AddA, (3.98)

2

The matrix @/Z} is symmetric

% ¢ 7 |
D(Z/ = @(Z) , (3.99)

In an analogous way the matrix product ﬁ/v/ z}z is transformed. We get

observing (3. 43)4

/0/24)2 ﬁWM 6/\\/) H@z)/VW)Z A9 (3.100)

and

column matrix

6& Gy, (FH)z =

ez
=3

7
L

= ﬁz,z/ /\\?W)\V

Z(TN] Gy 15 2Ny + Z10M) Ly s €000

\

2101 6y 5 € (TN v+ G5 3 ETFY

(3.101)
Here the symmetric matrix
£,
= (3.102)
‘[/ 2,2)

2,2)

is introduced




§THE,, (WN)z  25THG, (012

/;Z‘ 4 (3.103)

\j’ /2)/}(5//(/)2 §7H6/2//WW)Z/

Qe 2y
Mm

and consequently

j//\ﬁ// Z) ﬁzz z) (3. 104)

where

Dip sy = JOOW Frpy) (BN did 0
g

is symmetric. With these transformations the indifference condition (3.90)

has the desired mathematical structure

[@/0,0) 7ts@/m}) *Z//)mz) #ﬁfz.oj)"'%ﬁ(@Z)
b Lo (E v £~k )+ 2Dyt Bra )/ 0

(3.106)

This is a homogeneous linear equation for the unknown column matrix \"4
Non-trivial solutions are obtained if the coefficient matrix Z:”‘;7
is singular for certain loading situations.

It should be noted that the coefficient matrix does not depend expli-
citly on the prescribed boundary loading but on the hydrostatic pressure P.
On the other hand these loadings determine the fundamental state Z anyhow.
Finally, the derivation of (3.90) suggests t?gg this result is equivalent
to the condition that the 2nd variation of ”KZJ should vanish, i.e.

f27/72)"0

for all O/EZ . This may be easily confirmed.




To reduce the complexity of the stability problem the hydrostatic pressure

loading and the boundary loading are treated seperately.

3.6.2 Pure Hydrostatic Pressure Loading

Since a pure hydrostatic pressure loading is applied to the shell the

boundary loading is set to zero in (3.80):

t- O.

Further, it is assumed that the pre-buckling deformation is rather small

such that the solution (3.82) of the linearized problem applies:

-
Z = oz = - [/O[ﬁ/w) +£/0,0/‘7/@ =+//9£ (3.107)

where
-
Z = - [ﬁ/o,a) 7 6/0,0/]/0 (3.108)

is independent of the pressure [P . Inserting this result into (3.106) we

obtain

g
[@muj * 6/0,0/ * ’//0 /Z«ﬁ/@ z) ’ZZ@/Z‘W/ * Zﬁ/i)

(3.109)

- X2 #
¢t EE K)o e lyg 5y 2 Dis )T v = 0.

Now, the hydrostatic pressure appears explicitly in the coefficient matrix
and it is the only parameter which controls the singularity of this matrix.
It is obvious that the indifference condition is a quadratic eigenvalue
problem,

The pre-buckling deformation was assumed to be small and therefore it
seems to be reasonable to ignore the terms quadratic in 2% . Tﬁen (3.109)

reduces to a general linear eigenvalue problem

[RH~AC]v =o




where A is the eigenvalue

A== ALp

nd
-
/'7“: @/9,0/ ” 6/0,0) = //Z?

Ci=ipg)+2Drgm + z@@ Kol E)- C]

Assume that this eigenvalue problem has 2/”/’” distinct eigenvalues

)L: = -—[IO[ and eigenvectors \\/1: . Then

[R-). L]V, = o

and the reciprocal of the associated Rayleigh quotient is

4 A “/;7[\5/{

P Ay
explicitly we have for the reciprocal of the cri‘tical pressure
- ¥ ; ¥
4 _,\VL'T/Z ﬁ/o,z’) 2 p(z’,a) +ZD/2°) +[%[»//§/\v.;
20, T
5 Vi [ Dpoy # By ] v .

The lowest eigenvalue ,)min defines the critical buckling pressure /OL

N o

i

(3.110)

If the corresponding eigenvector \\/min is known then (3.110) allows to

calculate the buckling pressure /Dc or its reciprocal.

3.6.3 Pure Boundary Loading

If no hydrostatic pressure is present but only loading along the boundary

then the equilibrium condition for the fundamental state 2 reads

[ @/M, ’Lﬁfaaj . @/zm > @fz/o/ "'D/z,o/ +Z @/a, z,)] Z
=+L1

(3.111)




Complete linearization simplifies this to

[@/W/ t Booy Jz = /¥ (3.112)

We assume now that the various contributions to the boundary loading change
proportionally such that

t = Tt (3.113)

la’4

o

where Zﬁ is a variable load parameter and zf a fixed setting of the

boundary loading. Then the solution & of (3.112) is linear in .
5]

-7
. " o
Z = a [»@/p/a) %ﬁ/@g/]’é{. = ,/( Z (3.114)
)
where

=7
Za L = [@/0/0) 7 @/&,o)]z ! (3.115)

With these results and definitions the general indifference condition

(3.106) deduces to

.
[ﬂmw fﬁ/w ¢ Z?é/ﬁ/y, 2) *ﬁ/zé’,o) *ﬁ/é’/]\v:@;

(3.116)
o
here, the terms quadratic in & are neglected such that a linear eigen-

value problem is obtained. The reciprocal of the corresponding critical

load factor is then given by

.
1 . _ V;r[ ¢ Dni) * 2Dz *é@/f{] %

e
5 v / Dny + 5/»0) ;/\V,'

~
where /i =4 (. and \é are eigenvalues and eigenvectors of (3.116).

3.117)




4, The Total Potential Energy Functional of an Imperfect Shell for: Infini-

tesimal Strains and Rotations

4.1 Derivation of the Energy Functional with the Initial State of the

Perfect Shell as Reference Configuration

The shell whose stability is analysed in chapter (3) is called the 'perfect"
shell; its initial configuration is denoted by ZZ’. We may consider now a
slightly different "imperfect" shell with the initial confiéuration

free of initial stresses and strains. These imperfections refer only to

the geometry of the middle surface. It is assumed that the imperféct shell
may be obtained by subjecting the middle surface of the perfect shell to

a displacement field - the imperfection = compatible with all kinematic
boundary conditions of the perfect shell. According to the strategy des-
cribed in chapter (1) the imperfect shell is loaded by the same hydro-
static pressure and the same boundary forces and moments .,

The energy functional (2.65) is valid for any isotropic elastic shell
whose initial configuration is free of stress and strain and whose geo=
metric boundary conditions are compatible with (2.62).xx Thus the energy
functional of the imperfect shell has the same form as (2.65), however,
here the reference configuration is that of the imperfect shell. Following
the strategy described in chapter (1) the response of the imperfect shell

under the loading has to be calculated with a linearized theory. Conse-

has the following form

-— o o o |
- /Q # 7//,3 - 4//6 o 4.1)
where , |
o .
[, = | &4 44
a 4 7 ‘ ‘
A - i

For a precise definition see page 79

=R . . . .
Existence of a potential for the hydrostatic pressure.
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Here ‘SCMﬂ and éodﬂ are the linearized middle surface strain and the
change of curvature tensors™ of the deformed imperfect shell measured with
respect to the initial undeformed configuration :ZC of the imperfect shell.
Further, the elasticity tensor é%fu!lg is defined in the configuration
EZZ . It is obvious that the linearisation affects only the deformation
measures and the potential Eﬁ;

It is noted that a formulation which uses tensorial quantities defined
only in configuration~2¥ masks the fact that the imperfect shell is only
slightly different from the actual "perfect" shell: Such a formulation does
not explicitly show a parameter which measures the difference between the
two shells. Therefore the energy functional (4.1) is transformed such that
all tensorial quantities and operations are defined in the "perfect" con-

figuration 2? S

These quantities are normalized.

®K
This is a prerequisite for the comparison of the results of chapter (3)
with the results to be derived for the imperfect shell.



e T

Let ZD and Z> be the position vectors of a point of the "perfect" and

"imperfect" shell (configurations i? and i? )
P = L(R +16FR)
(R +40h),

- (4.4)
P

<

ft

>

%g and f; _are the dimensionless position vectors of the two middle sur-
faces and /?3 and Fig are the corresponding unit normal vectors (Fig. 3).
Note that the thickness parameter A= 4/ and the scale factor £
are taken to be the same} furthermore the surface coordinate of the two
middle surfaces and the thickness coordinate are denoted by the same
symbols, i.e. C7d and © s respectively. Naturally, the normalized base

vectors of the two systems are different and given by
q - 28 5 Axlh

/ p— ! ey
° 22 °3 (A xA,l
o o

and (4.5)

= %o /:;m‘

It is possible to consider a fictious deformation process which maps the

D)

R
‘%\
*b ‘

perfect configuration JK— into the configuration JZ were the coordinate
lines ( €7d C7 const) are convected. The appropriate displacement vector

of a point having the same coordinates in the two configurations is then

defined by

5= Plete) - Z—’/@i 8)
_ _ - _ (4.6)
=t Ry - Rler) + 1o (Acey - A.lev)
The dimensionless displacement of the middle surfaces is denoted by
4.7)




The component respresentation of this vector with respect to the configu-

ration {6 is

~ ~o = ~oo
’&’=£y5x+£é/ﬁ3' (4.8)

4

where <€A is a measure for the lmperfectlon" (the difference between
the perfect and imperfect shell) and V h/ are "shape functions'". This
representation allows to formulate the base vectors of configuration Z,'{
in terms of "9(,() 53 and & V ffN . With (4.5), (4.7) and (4.8) we
get

A=R, -(8+%), |

A )l

B e[V -8R, A e
ﬁ‘m/«;e:'//)zd’”?f“??);

o A /

b {
here DV,'O( is the covariant derivative of bV in the coordinate system

of configuration Zé

v:iooa ' /7 V"y (4.10)
(]

and {;3&( are the covariant coefficients of the second fundamental form

for A . -

[
The unit normal vector {,% of the imperfect shell is obtained from

(4.5). The vector product H /7 observing (4.9),is given by

/Z? +5[Nf7 /l/ A/B)/-?]
/ s//w”z B R WE)E
(V- WB)-H -8R

4., 4.11)

A, x

a7

s\"
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(AR /

In analogy to the order of magnitude approximations (2.33) and (2.34) it is

(4.11)

assumed that the displacement field 7 characterizing the imperfection
obeys the following order of magnitude estimations:
~ f << A 1

EW

o ol

2 g/LZ/;/} oﬂ'd) ’Vfl
1/‘!7o(:ﬂ _'L}ZJMZ —25\75010) ~ ?L

(4.12)

—

5[%%“5/?%) - ~f )

Then all terms quadratic in & on the right hand side of (4.11) are of the
order of f’ and hlgherx. In addition,the second term linear in &€ is of
order éL . Dropping all terms of order ? and higher,equation (4.11)
simplifies to

— - /7 -~ . "~ bo(/

ﬁ/) X /.‘92 N /? /? 7 & é\/'; 5 ! (4.13)
= Pa

From this we find ,ﬁg neglecting all terms of order ? and higher:

I o e X 7

73 0

58 . ,
It should be noted that the surface coordinates @ can be chosen such
that the base vectors are unit vectors.




2
This is a unit vector expect for terms of order ? and higher. The same

result is obtained from (4.11) ignoring the order of magnitude estimations

(4.12) but dropping all terms quadratic in & .
We are now in the position to derive the co- and contravariant metric
Y

coefficients (Txp and % in similar terms. The covariant metric co-
efficients are

o = B/

A A«
= # &L o Vo =2 b ] w
e P - BB, W) ¢ KK,

6

14
The term linear in & is of the order ?and the term quadratic in & is
of the order éa and higher. Thus, keeping all terms quadratic in g the
following approximation is obtained
. r

o tE/ Vs, ? -24i8 ,,]7‘5%/

a of ﬁ%/z </ @V"('/J’ uV/;"x o o %" 6 % oh
But here we have to follow the assumptions in chapter (1) which demand

that terms only linear in & need to be retained; we get

M. = 4 5[1/ x JA/&,/] (4.16)

/;9(/4, 00(/),

This approximation is certainly not consistent with the order of magnitude
estimation (4.12); however, it will be seen later that this is of no
consequence,

“f
The contravariant components /9 are defined by

e o
ﬁsﬂ jim - fﬁ'

1

Starting from (4.16) and neglecting all terms nonlinear in & we get

R e B /@ﬂy[p;;/,, +0& le/gﬂ]ﬂm (4.17)
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For the transformation of the strain energy function f@. the deformation
measures géa(ﬂ and 5-%//3 have to be given the appropriate form. Under
the action of the pressure and the boundary loading the imperfect shell
will be deformed; its configuration will change from ~776 to a new configu-
ration Z‘ﬁ . It is assumed that this deformation obeys the Kirghhoff—Love
hypotheses. Thus, in full analogy to (2.27) the displacement (L of a

material point from configuration ;,7{ to ZZ may be represented as

Zz:(/’b{ V‘f?@/ia‘ﬁ?)); (4.18)

A
here ¥ is the dimensionless displacement vector of the middle surface

and C—% £ 53. the unit normal vector of the deformed imperfect shell,
The position of the deformed middle surface may also be measured with
respect to the perfect shell surface in configuration *Zz (Fig. 4); this

leads to a new displacement vector
A gl = = - o —
N s _D)=p_
7 P+ B _/,/fQ a:i)#—(f ,/’Q) er a/?/ (4.19)

Since the coordinate frame of configuration '? is the reference frame

the following coordinate respresentations apply

A A of = A= | W
o=V R + WA |
o 0 o ©
(4.20)
-— o A 2]
v = pv ?o( + é/f]_? ,
If the configuration Zf is used as reference frame we have
A Aoz/; A‘;—) 2
Vo= ,}/ " - ,’A/,, J (4.21)
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Thus with (4.19) and (4.8) we get

/\o< o ~
Ve = V - sV
) 17

o (4.22)
A (ad
A/ = A/\ - 5 /V/l
o 0 4

The deformation of the imperfect shell from configuration‘éz to %E:
imposes certain strains into the shell. If 6(;5 denotes the infinitesimal
distance vector of two material points in the deformed configuration

then analogous to (2.38) we have
- - ES' 5 = , o) Ve =
Apdp - ﬁ/é .&//q <2 p/.: £ c//?

where éf is the Lagrangian strain tensor which characterizes the deforma-

tion of the imperfect shell., The relevant components of é; are éi%g H

7
according to (2.42)1 they are given by
"C i, G
£ — ”Zé.g - o & _7 (4.23)
7z ¥A T 2 a % ) A 78 %

A

A
if the nonlinear term aﬁx’ ¢4 is dropped according to the strategy of
chapter (1), With (4.4)2 and (4.18) we have

<

pre—

73 ://,{Qm ’L”)ﬁﬁfm’)

i

ﬂ/d
(4.24)

2, =A% +16(3e-F.))

Substituting this in (4.23) and arranging according to powers of [CJ&%)

the following expression is obtained

= = // ¢ a) 0 -4 ) oé-/?
fg;(/e T2 L Zf/’fig 713 * 5533 2
= _ = - - 4 = A
AL fu Ty #50 B + B, B 1B,
(A, 1, *%’ﬂw ]

(4.25)



The right hand side has to be formulated in terms of quantities which are
entirely defined in the coordinate system of the perfect shell (configu-

ration Zf ). ﬂd and ﬂ‘; are given by (4.9) and (4.14) and thus

=

=/5//’ B, +éA/ A, . (4.26)

4J/0L ag“ 03 /

further with (4,20)] we deduce

A A - A -
9 § _
/Ul/:o( - ﬁ\/ég«)’f?r é/a( ’,{—}3 (4.27)

v

o,

It remains to derive an expression for the unit normal vector QJ of the
deformed imperfect shell (configuration fo ) compatible with the order
of magnitude assumptions., The base vectors of the middle surface in con-
figuration Z?: are

ﬁz@‘:’o@m

P Y

~
R

o ’f'c A
where (4.28)
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here (4.5)] and (4.20)2 are implied. Then the unit vector 4‘3 ﬁg

is given by
- A
Q.z = /“‘
7,

7 s (4.29)

&\\U‘f Z\ |

The explicit evaluation of this expression follows along the same lines

as before (see (2.32) and (4.5)). We obtain
- = DAy o «)pn
[ B = 1 {R B (VW B
2 2707
T8 B 4B

4 (4.30)




A W W) - V- W B
(4.30)

’L[(DV/; ’é‘/%?vv)/[:fé/?:)
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It is now essential to introduce order of magnitude estimations for the

rotations, middle surface strains etc. produced by the displacement

s

field ?*,

For these quantities the same assumptions as (4.12) are made
A ~ €
/I/)/'ﬂ“}/ﬁ:d) N?L
WYy + Lo "”/dﬁ) ~ f°
Wy = 1 dua) ~ £

N

(4.31)

é\/oéx/; N? '

Keeping only terms of order f in (4.30) we get the usual approximate

/

expression
— A gy
4.3 = 5)3 + él/ /7)a¢ . (4.32)

Thus analogous to (4.26)
/
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We are now in a position to evaluate the expression (4.25). Observing the

definition (2.45) we put

=/ z/f((m + 6 5)%,3 7‘/4}@/2;0(/3) (4.34)

1/ 5 2 5 .5 \
Lop 1= 5 ﬂ(./&;ﬂ *ﬁﬂ'/”/x)
A ) D , ;5
9)1’(/3 £ = 2’//,’,42(' ?,/3 7 ﬁﬁ a’.?,oz
— A — A
A A ) (4.35)
*Q?/d Y a . f?d’,/& Y, o
~Pop + B Fo) F
.- 1)D = ) 5 A, D
t T 4{&?# ‘/au;a 'ﬁaﬂ) * ﬁw (%o ﬁ/o)/],

With the above results the first term in the power series (4.34) is given

by

Koap = /Vou/,z (,/J:d -,g/&BM
fg[;/{ mw][y A/&,),]
16l Vi - W8 ][Vg, W8]

+g[ﬁ2< :ﬁ LAY é‘/“‘]/

(4.36)

With the order of magnitude assumptions (4.31) and (4.12) and with the
relations (4.22) it may be shown that the following estimations apply:

W, ~ £

,a.-g ) ~ fa 5 (4.37)
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(4.38)
%/ol :f3 ~ ; p

Thus, the expression (4.36) may be simplified if terms only up to the
2
order of ﬁ are retained; then with the relations (4.22) equation

(2.36) reduces to

Xep = g(//[“w + Varu -2 4805

<

(4.39)

It should be noted that the above order of magnitude estimation and the
restriction to terms of order _g& does not allow to drop the term
quadratic in the imperfection & . Nevertheless, the simplified strategy
for the buckling analysis requires that the terms quadratic in & are

ignored. Consequently

Gp = 1 (Verp # Voiu =28 Bun ’
’5/,,2(.—/2 I 4 f/ago//)) (4.40)
A AN

One should also be aware of the fact that the expression (4.40) does not
contain all tgrms which are of the order fL because the nonlinear
term 37'94 0 Q//g has been dropped at the start.

In a similar way a simplified expression is derived for 5)04/_; . With
the same crder of magnitude assumptions it may be seen that the right hand
side of (4.25), contains terms of the order f, fa and f‘g. Since s)a/;i
is multiplied with the small number // , and possibly /)"‘f , only the




terms of order jé are kept. This assures that only terms of comparable

order of magnitude are retained in (4.35)2. Thus
~
Qg = /// -,A//“, 5//‘/ /J:), (4.41)

It may be shown that the quantity ,fxp is of order ‘ﬁ . Thus the
1

third term in (4.34) can be neglected compared to the others since it

/’

involves the small factor /{& . Therefore the power series (4.34) may be

simplified to read

E / e/g(m Y %)M)} (4.42)

vz
L ] - L » /)
this expression contains only terms of order f if and F are com=

parable, This completes the derivation of the linearized strain measures

g(;ﬂ and ézxﬁg .
The strain energy function &%Z (4.3), involves the elasticity
; 9 1
}/BMJVG
4

tensor

J/L/.chf/{: /Qfo(/gdjﬂ __Z_ ﬁ?ﬂﬂd}d] (4.43)

1ty AV T

An approximate expression will be derived for this tensor on the basis of
the approximate relation for the contravariant components of the metric
tensor f?dﬁ (4.17).

With the definition

0 .= 7/)/0///3 o Vs -2 /\//3‘,('4) 9ﬂ,< (4.44)
we may write
ﬁ/“ 4 /Z/-),av ’/9/’4“ é; /f?) Z
A = o - &4 % 4B o (4:49)
Inserting this into (4.43) we get

SX ¢/ 9= J’/J V. pse ndl
/L/ = //7‘V //Q /fVV o ﬂ
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_gz/. ﬁ 7%,/;0 5@7@;“

Y (4.46)
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The term quadratic in & has to be dropped according to the simplified

(4.46)

buckling analysis strategy. Putting

s g0 oo o
)
L /m/ / A AT+

(4.47)

o

we obtain from (4.46)

o o f 3 “
f/f & = § M ZQ 750 ﬁ’),? #fﬂf ] (4.48)

0

With these results the transformation of the strain energy function gzz

may be performed. We consider first that part of : which represents

the strain energy due to stretching of the middle surface, i.e.
o H

cf o€

At this point it is convenient to split ff%vg into three terms

g (4.49)

] 17(4.50)




On the right the assumed order of magnitudes consistent with (4.31) and
(4.12) are indicated.

After some algebra we find

S ¢
,O,C%’ 67/ ﬁ(/o( =

Sy
Q@’/J {,L/ @/(x
s ~ 77

e[, WO, + O G
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“26[@,6 /ﬁ?9é/ﬁda’ﬂ+ ?6’47/565/ 2, %]

cstl ],

The usual procedure demands todrop the term quadratic in & . Furthermore,

(4.51)

if the order of magnitude assumption indicated in (4.50) is accounted for

the fourth row on the right of (4.51) should be neglected. Therefore

fo(m s gL
Ié&/ ,,J’a( = @fﬁ H @x
-~ Sa(d?ﬂ - fut 3 ~
EZ@ H (QJ"AH ?/«-/ (4.52)
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4 g[%ﬂ Ere + &y, i 7#/

This result clearly indicates that, aside from dropplng terms quadratic

in &, the elasticity tensor f% a7 is approximated by the tensor

[(_/ fo(dz/s

The second part of the strain energy

2
; %
APl s A




is due to the change of curvature of the middle surface of the imperfect

With (4.41) the change of curvature tensor is split into two parts

shell.
[ = €. —£ gjw (4.53)
e Ny D
_ 4 ~ )
Ses "z/é/f,« *é/ﬂff) ; e

:’(67!% * %’?) ~ %

In agreement with (4.31) and (4.12) the order of magnitude assumptions

are indicated. Upon substituting this and observing (4.48) we get analogous

to (4.52)
X yf3 SUff

g.)fﬁ é—/ ,4;)!‘( = Sop é7/ Spu (4.55)
7 L
“'EZ’gg/g )ﬁf fd’d + 5_?[3 H 53“‘7

2
again terms quadratic in & are dropped; keeping terms of order ?

only, (4.55) simplifies to
5&4/ =g/
Yoo 117"t = S5 117 54
—N _fo(d)ﬁ fd*ﬂ‘v
"észﬁ H Spe +?J°ﬂé—/ gfa7

Here again the remark following (4.52) applies.

of the strain energy g in terms of Qo(ﬁ, é‘(ﬁ/ yd/?) fmand Sjazﬂ

(4.56)

)

The final representation
~

is
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This completes the transformation of f&“. The strain energy potential ;7

given by (4.2)l involves the integration over the surface %Y . This
process has to be represented in the configuration 2? . The surface ele- |

ment CKOJ is given by

Adcd = /’%7 726" de "
f - allfur i) = dblB)

7
Analogous to Z_S, p. 37_7 the ratios 5{4;i4§43? of the surface elements

may be formulated as

6[649 ‘ u - od
v = sV, -WE] (459

wvhere terms quadratic in & are ignored. The right hand side differs

from one by a term linear in & of order EZE. Thus
: ~ N
ot K]/
[ A +£[0V"0‘ —f‘/pr 4/0:7, (4.60)

Upon using this in the integral jvdz (4.2)] and observing (4.57) we

see that extra terms linear in & will appear in the integrand. However,
, . ® ,
1f only the dominand terms™ proportional to are kept then these

extra terms should be dropped; in other words the approximation

® P
Here, it is assumed that E ~ A



&/ofi? = /0047 | (4.61)

I3

applies in this case .

M, ~ |00 dd s
A 4 -

o

where ‘fz is given by (4.57).
The potential of the hydrostatic pressure given by (4.2)2

Vo - *‘//9/'5‘7’/%‘77
i

A A
is transformed as follows. The quantity év/ is the normal component of 7
with respect to the basis in configuration zz , 1.e.
A A
51/ = A /’,‘QJ | (4.63)

Substituting from (4.20)1, (4.22) and (4.14) we get
A ~ . ~°( ~
4%/:/@/~£éx//+é([¢—égjé\/o(. (4.64)

Together with (4.60) the potential ” may then be written as

o
¢ ” (4.65)
o(

where according to the usual procedure the quadratlc € -terms have been
dropped. Analogous to (2.60) the term é%; v/ may be partially integrated
to give

o~ ~

A/ +8 8,V ’/V A4 (4.66)
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(4.66)

6

The original stability problem is subject to the kinematic restrictions
(2.62), which assures the existense of a hydrostatic pressure potential
in the nonlinear case. These conditions have to be transferred to the

linearized problem of the imperfect shell, The conditions are here

As N
A/"—'-’ o and /\/g ) on [
4 o 7]
or N £(4.67)
VO(VM:O and )éz/(:O on o[' J
v

Therefore, the boundary integral on the right vanishes:

xN
ftl{,l///a/(=0, (4.69)
v ¢ o

c

o
This allows to write the hydrostatic potential in the following form:

27; - 4"//5“*%%?&*?/2/
A

W e Y B ] A,

(4.69)

(ad
Since the term é'é/w in the integrand of (4.65) is a constant and any
constant may be added to the functional of a variational problem, this
term is deleted. This completes the transfofmation of ZZ; . At this
point the reader is invited to compare this with the hydrostatic poten-

tial (2.64) of the actual stability problem.




It remains to transform the potential (2.2)3 of the boundary loading.

For the stability problem to be analyzed it is assumed that the bound-
ary loading is gﬂeadgr Actually, the boundary loading consists of surface
stress vector F = /;: along the boundary strip CF = g,c *  Generally,
under such "dead" surface loading the material particles constituting an
infinitesimal portion of a surface will always be subject to the JSame total
vector force. This means that the differential force ;;5{5;. E’QF&{Q:f
on the boundary strip 4; = gjﬁl is constant throughout the deformation of
the shell from the initial to the fundamental state and to the adjacent
state, This fact has to be reflected in the formulation of the boundary
loading potential 27; s equ. (4.2)3.

So far, the expression on the right hand side of (4.2)3 is of purely
formal nature since the membrane forces, moments etc. have not been defined
yet in terms of an appropriate surface stress on the boundary strip 5:; .

We denote this surface stress by ﬁF . Then the virtual work of these stresses

on the strip S:F is given by

~

My A

Eooi dC- (4.70)
P 7 ¢

Cr

We now recall that the imperfect shell in configuration Z? may be obtained

by a fictitious deformation of the perfect shell in configuration Z? ; this

deformation will later be related to the actual buckling modes of the per-

fect shell, In this deformation process the surface elements C{[; 5-5/225

and 615;‘ are materially related to each other.

The assumption of dead loading along the boundary strip now implies

(= d
that the differential force f:&fgk is the same as the boundary load in

the actual stability problem, i.e.

Fde = Fag z A

i}

(4.71)

/

Thus, the virtual work (4.70) may be written as

‘

= N A Z 4 A
rda a’{F :j{/: dﬁ;'&‘ ﬁ/gf : -7
Cr

/. z

-

® . . . . . .
We introduce the subscript /;) to distinguish more clearly the configu-
ration (o) and (4)



The right hand side may be immediately transformed into an integral where

all operations are done in configuration {? 3 we get
NO/)A
C~
7 ~
Since é: is constant the variational operator may be extracted from this

-5,
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expression such that
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Except for the displacement field LL this expression is identical to

sy oo e etk st 1o
o= =g/ [ 7 fie b,
S TM ]2

* éx&! fdg (4.74)
——/%/M - 581

_[/@dyd/]gf/ # 65*5/ d¢

£ o

® Note that the integration is done in conflguratlon}Z therefore the dis-
placement vector has to be referred to the base /? etc,
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This completes the evaluation of the boundary loading potential i

4.2 The Matrix Formulation of the Energy Functional of the Imperfect Shell

In the following we will derive the matrix representation of the three
contributions (4.2) to the energy functional of the imperfect shell. Ana-
logous to the argumentation on page (27)  global apggoximations are made
for the two displacement fields, i.e. kﬁx and é/ describing the im-
perfections and the displacement components k/“ and é/ characterizing
the deformation of the imperfect shell measured from the perfect shell
configuration 2?: . It is now important to note that the same shape func-
tions Sfx (@3), /‘f /99/ must be used as in (3.1), i.e. the approximate

ansatz is

&

'
(S

g(ot) %o( (%)

fl
_r\/fzt

S

€ L =7
o= 3 ¢ u ey
N = . é;
0 iiq © ;{ 3(4.75)
(% A ~ . :
oi/"( = 4% g(ﬂ) %0( /6’ / i
. v
A=

Furthermore, it is obvious that the shape functions Z?a and ;e mus t
v
satisfy all kinematic boundary conditions which are compatible with (4.67).

Consequently, we have the following column matrix representations
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where the shape function matrix W is given by (4.5) and

(4.77)

—_ -

\/
S X = <

~ ~

SUp - InY o VY

-

o
o~ TWJo U R

/

]

2N

A
Ctry
M

c
[

~Uo :a:HC@ YUag ---XUs




Note that for reasons of convenience the subscript (o) which should be

attached to € and &€ is deleted. Analogous to (3.29) we define
\

6 -\:.+a) - Vv = (VN z

(:L4 _
106,06, = Vo =(VN)Z
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=Ww =WV Vo :/WN)Z,

With these definitions and relations the mathematical analogy with the
derivations in chapter (3.2) allows to present the strain energy

- ifeoHe
[ He + 6"HE]
+§[y7"7’@ . T/Hy]
1/ r
"L;;z“/?' Ho
-2/ §7H 9 +?T/LW//,

(4.82)
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Here the matrix AL{ is the same as (3.36) since the components é/
S
and // ¢A refer to the same configuration %ﬁf )
Substitution of the relations (4.78) to (4.81) in (4.82) gives

AN

eHe = ZT(HW/)TH (WN) z
e - Z1FNH N 2
OHé - Z(FN)H (VN) 2
VHO =22 (W) bz, H(N) 2
OHY = 220N HG;) (V) 2
oHe = 2" (WN)H (W) 2
He = 27PN H (N2
THS =27 (WK H(WN)Z

fy

(4.83)

i

The integration (4.62) is done in the same two-dimensional space as that
in (3.42). Consequently we may apply the definition (3.43) for the formal
integration of Cz; (4.62) when the relations (4.83) are observed. The

’ . . T
final result is with ﬁL¥ = AL¥

7 r 7 -
) 0 ‘Z{Z to @+ 2 bpw 2
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w22 By 2427 Uz 2 f |

(4.84)




The potential of the hydrostatic pressure is given by (4.69). The corres-
ponding matrix representation may be derived on the basis of definitions

used in chapter (3). We et” observing (3.47), (3.48), (3.50) and (3.54)
g

\

W=all's -V

Ve -e(PN)z | Vi-€(VN) z

WB - 27N B W) 3
I 8%y, = 27 (NKN)Z ;

Upon using this and (3.55), we may write the hydrostatic potential (4.69)

after integration also as

’(
C/-/; = //9 /zr/@ vi 527’/[‘7‘11“9% ’az’//(z” f (4.86)
a

r:nﬂ
The potential ﬁ; of the boundary loading is transformed similarly to
the analysis in chapter (3.4)., With the same ‘definition as in (3.58) and

observing (4.77) we obtain from (4.74) finally

:/Tc __;,[j‘?:z' 4 jé‘i (4.87)

Note, that the second term is constant and thus may be dropped from the

potential energy functional.

The results (4.84), (4.86) and (4.87) imply that the energy functional (4.1)

of the imperfect shell has the following matrix representation

® . . 72
It should be noted that the coefficients éS«p are the same as Z)Nﬁ
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5. General Solution of the Linearized Shell Problem with and without Initial

Imperfections on the Basis of the Matrix Variational Formulation

According to the strategy described in chapter (1) two linearized problems

have to be solved:

(a) the perfect shell under a prescribed loading
(b) the imperfect shell under the same loading but acting on the

imperfect structure-.

The equilibrium state for these two cases may be obtained from the condi-
tion that the first variation of the energy functional ‘y with respect

to & should vanish, i.e.

Ty 4 i (5.1)
d ! = ) ¢ 22 , .
s

z/ was derived for the imperfect shell but naturally the case of the per-

fect shell is included by simply putting &£ =0 .
In the following we will distinguish between a pure hydrostatic pres-

sure loading and pure boundary loading.

5.1 Solutions for the Pure Hydrostatic Pressure Loading

The first variation of (4.88) gives
DT } T /e -~
Ol = e /j/,wz — & Do) 2
>

L€ @/z"’,ojz > Zzﬂ/ﬂ,ijz

# @/0,0) 2. — & ﬁ/o,o/ z /

(5.2)

+Lp 0/)27//@ +£/[%[7/2—£ //?2

Ll

/

@/20) = ﬁ/d,%/ ) }(0,2’/ = ﬁz/éz":&/
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is used. The requirement (5.1) has to be satisfied for all variations fy?d .

The necessary and sufficient condition for this requirement is

[y + buy + 25 (Dis) “ D)) 2
=—//o/p fE/f*fQﬁ—é//éi/ ey
T & /@/M/ 4 3/0,0))2’ ‘

This is a system of linear inhomogeneous equations for the components of
the column matrix € which characterize the equilibrium state of the

shell. For the perfect shell we have £ = ¢ ; thus (5.3) reduces to

[ﬂ/a,a/' *ég/a,a/jz = ~Lpp .

the corresponding solution is

. 1
% = — //3 Zﬁ/ﬂ,o/ + 6/0,0)]/6 '

P
Introduction of the vector & ®

2:-‘- - [’.@(0,0) * (/g/o,o) 7/0 (5.4)

allows to write the solution for the perfect shell in the following form
o

z = 4p z, (5.5)

P

For the imperfect shell /Eiéo) the solution of (5.3) is a nonlinear
function of & . Since we are only interested in the linear dependence

on & we derive an approximate solution for small & . We put

;= 0(0,0) - B/a,a)
F:= ’2/@/2‘,0/ * Z)@Z)) j

x . © L] T
This is the solution for the perfect shell for unit scale factor £
and unit pressure ye



then we may derive

(H v & F/M o /17”7» £ /477%'%7?

including terms linear in & only the solution is
-7
fz = 52 - //O /@/&,ﬂ) "‘gfafoz/p
- -1
* E//O/z [@/a,w *&40)]170/2,0) ’Lﬁ/o, 2")7[@/0,0) Hg/o,o)]/@
iy * (5.6)
%[0«20)"6/@07[/\/“ /f*fW? :

Substituting the solution for the perfect shell, equ. (5.5) reduces to

o

2 = £2 4@ Z
-1
- & /Z [«/D/o,oz +£/a,o)7[@(72/0) +/D/0’ ?;/]//0 Z 6D

” 'Z/O [@0,0} ’LB/M)]- [[’LET '/)2‘772/7

This result has a similar mathematical structure as (1.6), the conjectured
one dimensional (scalar) relation. The first term on the right of (5.7)
represents the imperfection measured with respect to the perfect configu-
ration, the second term is the displacement of the perfect structure due
to the pressure loading and the third term, linear in the measure &  of
the imperfection and linear in the pressure P is the essential term
which should contain the information needed to predict the buckling load.

This question will be analysed in chapter (6).




5.2 Solution for the Pure Boundary Loading Case

The first variation of (4.88) with respect to & for vanishing hydrostatic

pressure O gives

[@(0/0/ t Dy TRE (Dezo) # @(45/)/‘74
=Lt + (Lo * Brn) 2

(5.8)

We introduce a load factor ?J such that

=71 . (5.9)

(24

Then the solution of (5.8) for the perfect shell £ <=0 is
vy = 7
(\ 1,
AL [@fw) * gfﬂ,ﬂ)./ j ‘ (5.10)

With

-7
‘72 &= [/D/M) 7 g/d”)] j (5.11)

we may write for (5.10)

> = /'Z’Zp . (5.12)
Je

With the same argumentation as in chapter (5.1) the solution for the imper-

fect shell including only terms linear in & 1is

,Z = €2 + L7 Z%a}**gfﬂa,/]%

Lt

wa
—sL (/5 10,0) ﬁ/ﬂ,u/]/@/i/) 4 Z/ﬁ, i)]/ﬁ/wﬁﬂ/w]f

(5.13)

It

sz + LT

—é/z[ﬁ/w) 6/00/-7/0/2”) *ﬁ/&w]/c Z}




This expression has a completely analogous structure as (5.7) except for

the last term on the right of (5.7).




6. Definition of a Suitable Norm as a Measure for the Critical Load and

Comparison with the Rayleigh Quotient of the Actual Stability Problem

The conjecture described in chapter (1) involves scalar relations since we
restricted our attention to buckling problems which are characterized by a
single load factor. These scalar relations were immediately applicable to
define a parameter which could be related to the critical load. However,
the solutions for the perfect and imperfect shells are matrix relations.
For the purpose of comparison with the scalar Rayleigh quotient a suitable
scalar quantity, a norm, has to be defined involving the various columm
matrixes ;Z/ 2?/ g? etc., On the basis of the solutions (5.7) or (5.13)
this noréﬁaay then be brought into a form which allows a comparison with
the inverse Rayleigh quotient (3.110) or (3.117). In this course the column
matrix é?, which contains the weighting factors for the shape functions of

the imperfection, must be the same as one of the eigensolutions of the

actual buckling problem, i.e.

o

Zz = \. y 6.1)

L

preferably the one which corresponds to the lowest critical load.
At first we consider the pure hydrostatic pressure loading. In ana-
ad o
logy to (1.7) we calculate the expression (“Z“- -&2 - [ﬁ z)

which is according to the linearized solution (5.7)

v

L

= ‘“E[ﬁ/é['ﬁ/a,a) *8@0)][@[2/) 7‘2@2}]20 (6.2)
-/
# B+ Boo] [E+E-K]3 ]

Applying the theorem (3.69) = the exchange rule - and the relation (3.97)

Z - EZ —4pZ =

in (6.2), we therefore write

- *
= - éf&é}o Z[ZTZQQ%Q) + ég;@q);szzgéZ}ii) 4 5Z2€22£)
%f;ET-—Ié’]ZA:/ ' (6.3)

2z -sz2-4pz =
b




Guided by the mathematical structure of the inverse Rayleigh quotient

(3.110) we introduce a fictitious load mairix

/3 = [ﬁﬂw * 5/@4,]2). 6.4)

thus .
Z = [@/M; + B/a,o)] P 6.5)
Scalar multiplication of (6.3) with /;D gives
Flzg-<7-14p2) -
= - /,a{ z r[Z é/f/ * 2Dz 6.6)
bELE-KR]E ]

4+

Since
~ s ~ ~ 4 o 7 7 A
ZT@/@;)Z ’/Zrﬁ/p,i/ 2) = & ﬁ/ai)z

= ’%7@/2’,0) z )

6.7)

relation (6.6) may be written in a form which involves only symmetric

matrices
/UT/K. g2 -4p2) =

- - é//o /27[2@*/@ ”'/p/ﬁ,é’) ,;‘_@/Zo,”}) (6.8)
+E+ E) '/‘?]i/



An expression analogous to (1.7) is obtained if we define the parameter
as

, P (Z-c2-4p2)
~ B , (6.9)
iz //0 & P 7 .

With the definition (6.4) and the result (6.8) we may transformthe right
side to read

- x v % -
D 77120z s 7‘@(«i@/ K]z
7 o~
ZzQ%w*zﬁwjz -

An analogous expression can bq‘derived for ;he'case of dead loading along

(6.10)

the boundary of the shell. Following the same procedure but using solution
(5.13) instead of (5.7) we obtain:

iy ) S 7 (6.11)
_z 2D @mﬂ *Z/)(e’,a/] z
ZT[.@/M) 4 B/WJZ

e
e

o
where &€ is defined by (5.11).

We are now in the position to compare the scalar quantities /3
equ. (6.10) and (6.11), with the associated inverse critical loads (3.110)

and (3.117), respectively, if we remember that (6.1) should hold.®

¥ ©

It should be kept in mind that the solutions Z as well as the eigen-

solutions V¢ are different for the case of pure hydrostatic pressure
and dead loading along the boundary.




For the case of hydrostatic pressure 1oading we obtain

[@mz) ”'@(io) +2 @/2) *f"[ Kj Vi

ﬂ~ = T (6,12)
L Vi [D/o,a) * BMD) -7“/‘

B e e v v s e v e s Bk s < o e s

4 = T[ﬁ/o, ') *@/z,o{ + &@/z/]li/

S (6.13)

/,,,- o : V [@/00) -+ B/ow)]

Comparison of (6.12) and (6.13) with the corresponding reciprocals of the

critical load factors, equ. (3.110) and (3.117) respectively, shows simi-
larity to a large extent, but nevertheless it is obvious that there is

no exact agreement for both loading situations, e.g.

A

(4.) 4 2 .10
o (6.12) yx

Thus, even if the imperfection Z is chosen identical to one of the eigen-

solutions of the actual stability problem, the parameter /3 does not

represent the reciprocal of the critical load factor corresponding to the

eigensolution, The difference is solely to be seen in the factor (2) of

the symmetric matrix [@/0 i/ - @/Zo,o) ]o
/

£
Except for the scale factor 46'



7. Discussion and Conclusions

At first sight the difference between the reciprocal of the critical load
and the B-parameter - solely due to the factor (2) in one of the terms -
appears to be trivial error in one of the equations. However, the analysis
has been checked several times but no error was found. If we accept the
results obtained so far the conclusion is that in general the B-parameter
approach will not give results which repreéent the actual critical load.

On the other hand at least in some applications to simple stability
problems (chapter (1)) the B-parameter approach has beeqqshown to be success=-
ful; but it should be noted that those analyses were not based on the equa-
tions presented in this report. Thus, there exists a restricted class of
stability problems where the B-parameter approach gives exact predictions.
This suggests to ask for those conditions under which agreement can be ob-
tained. In the following this question will be discussed to some extent.

At first we analyse a few formal aspects. Comparing the reciprocal of
the critical load factors (3.110) and (3.117) with the B-parameter (6.12)
and (6.13) respectively, it is obvious that agreement is assured if for

some column matrix

D) = 2
which implies
~ 0
'@/0,20) /D/Zo/o) - '

The matrix 22@;25) depends linearly on

represented as follows

v
Z and its elements may be

-

/ 7_ = o
d. z d,z
T o T o ,
@M,}g d, 2 d,z i




0
The vanishing of all elements of @/0,2) implies that either

0
- d)m 7@ 2 but - dﬁhz =0 for all M, % (orthogonality)
or
- dm =@ for all M and
or a suitable combination. X

For the second case it may be shown that then 5Z%2§)=’49. This im-
plies a "degeneration" of the linearized eigenvalue problem (3.109) or
(3.116); here the quadratic matrices @/Z"/ Z") and /Zo,i) should be
included in the eigenvalue problem. But then the/ég -parameter approach
would be inapplicable anyhow,

However, in the first and third case it cannot be shown that the
matrix @(Z‘) necessarily vanishes in conjunction with -@/0,29) . This
appears to be a peculiar situation whose physical implications need to be
explored.

Further, agreement between the reciprocal of the critical load factor
and the /3 -parameter may be obtained if anorthogonality condition is satis-

fied, i.e.
r "D e -

such that the mapping ‘@/19 ") \V" gives a nonzero column matrix \V\/; which
/

is orthogonal to V[

viw =0 , W, = Do) Ve .

Again, this appears to be a very special situation and it remains to be analysed

whether reasonable physical conditions can be attached to it.

We conclude the discussion of formal aspects by commenting the case
that solely the term \%Tﬁ(zf’)% vanishes. Then the reciprocal of the
critical load factor and the /@ -parameter agree except for a factor of (2).
On the first sight one may suggest to redefine the [3 -parameter such that
complete agreement is obtained. However, such a formal approach is not ad-
missible since the analogy between the new (3 —parameter and (1.7) is lost.

A further remark is made concerning the discrepancy between the general
result derived and the observation made for several specific stability
problems. The agreement obtained for the three simple stability problems

(chapter (1)) suggests to ask for a common property of the structural
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models used. Here it should be pointed out that the axes of the rod or the
middle surface of the plate or shell was assumed to be inextensible. Defi-
nitely, this assumption is not implied in the two general analyses presented
in this study. Therefore, further attention should be put to this property
as a possible explanation and as a first step in this direction it is recom—
mended to apply the derived mathematical formalism to one of those simple
problems.
The results presented so far do not exclude the possibility that the

for a limited class of stability problems. This question remains a subject

for further analyses,
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Ce: Boundary strip ¢ : arc length along C
C : Boundary curve v: arc length along V

A5, €, 9 : Unit vectors

Fig, 1: Coordiante system along the boundary of the shell.
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Fundamental state

6z Adjacent state

ov

mmﬁ

Fig. 2: Variations of the fundamental and adjacent equilibrium

in the state space
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Initial @@ﬁ%agus’@im of

“Perfect"middle surface
s “spmm 'middle surface

mms

Fig. 3: '"Perfect" and "imperfect" middle surface
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— Initial configuration of perfect middle surface
——= L v imperfect L

—-— [Deformed + imperfect o

Fig. 4: Middle surface configurations and associated displace-~

ment vectors






