KfK 4160 Oktober 1986

Zyklische thermische Belastung einer Bree-Platte mit Plattierung unter konstanter Zugbelastung

T. Siebler, H. Stamm Institut für Material- und Festkörperforschung

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE Institut für Material- und Festkörperforschung

KfK 4160

Zyklische thermische Belastung einer Bree-Platte mit Plattierung unter konstanter Zugbelastung

T. Siebler*, H. Stamm

KERNFORSCHUNGSZENTRUM KARLSRUHE GMBH, KARLSRUHE

*Universität Karlsruhe, Institut für Zuverlässigkeit und Schadenskunde im Maschinenbau

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor ٠

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

Inhalt

		Sei
1.	Einleitung	3
2.	Modellbeschreibung	6
2.1	Beschreibung des Systems aus Platte und Plattierung	6
2.2	Mathematische Formulierung des Gesamtproblems	9
3.	Elastisches und Shakedown-Gebiet	14
3.1	Definition des elastischen und Shakedown-Gebietes	14
3.2	Grenzen für das elastische und Shakedown-Gebiet	16
4.	Beschreibung der Spannungsprofile und Gültigkeitsgrenzen	20
4.1	Beispiel für Ratcheting	20
4.2	Beispiel für Wechselplastifizierung	26
5.	Spannungsprofile und Bree-Diagramm für Grundplatte mit Plattierung	30
5.1	Klassifizierung der Spannngsprofile	30
5.2	Von der Untersuchung ausgeschlossene Spannungsprofile	31
5.3	Zusammenstellung der untersuchten Spannungsprofile	32
6.	Berechnungsbeispiel	34
6.1	Wahl der Plattenparameter und der Belastungskombination	34
6.2	Einfluß unterschiedlicher Anfangszustände	36
6.3	Größe der plastischen Zonen bei der Wechselplastifizierung	37
7.	Einfluß der Geometrie- und Werkstoffparameter auf die Grenzen des Shakedown-Gebietes	39
8.	Rechenprogramme für das Bree-Diagramm	40
9.	Zusammenfassung	41
10.	Literatur	44
Anha	ang A	62

Seite

Zyklische thermische Belastung einer Bree-Platte mit Plattierung unter konstanter Zugbelastung

Eine Anordnung aus zwei starr gekoppelten Platten aus unterschiedlichen Materialien wird betrachtet. Es wird elastisch ideal-plastisches Materialverhalten angenommen. Die Belastung dieser Plattenkonfiguration setzt sich aus einer konstanten Zugbelastung und einer zyklierenden thermischen Belastung zusammen.

In Analogie zum sog. Bree-Modell werden die Belastungskombinationen für dieses System ermittelt, bei denen elastisches Verhalten, Shakedownverhalten, Wechselplastifizierung und Ratcheting auftritt.

Cyclic thermal loading of a Bree plate under constant tension

A configuration of two rigidly coupled plates made of different materials is considered. Elastic ideal-plastic material behaviour is assumed. The plate configuration is subjected to cyclic thermal loading superimposed to a constant tensile load. In analogy to the so-called "Bree-model" load combinations leading to elastic and shakedown behaviour, alternating plasticity and ratcheting are investigated. Liste der Bezeichnungen

Dimensionslose Verhältniszahlen zur Beschreibung von Plattierung und Grundplatte:

δ	Verhältnis der Elastizitätsmoduli von Plattierung
	und Grundplatte
φ	Verhältnis der Temperaturausdehnungskoeffizienten
٢	Verhältnis der Wärmeleitfähigkeiten
ω	Verhältnis der Fließspannungen
β	Verhältnis der Plattierungsdicke zur Dicke der Grundplatte
ξ	dimensionslose Wegkoordinate

Beschreibung der Temperaturbelastung

Ţ	Temperatur am Anfang und Ende jedes Belastungszyklus
т ₁	Oberflächentemperatur der Plattierung in der l. Zyklushälfte
T ₃	Oberflächentemperatur der Grundplatte in der 1. Zyklushälfte
ΔΤ	$T_1 - T_{\Delta}$
Ъ	Kopplung von Grundplatte und Plattierung bei T _o
k ₁ , k ₂	Abkürzungen, im Text erklärt

Beschreibung der Spannungs-Dehnungs-Beziehung

ε	Gesamtdehnung
σ _u	Fließspannung der Grundplatte
σ ₁ , Δσ _i	elastische Spannung
E	Elastizitätsmodul
$\varepsilon_u = \sigma_u / E$	Fließdehnung
ε _{ρ1} , Δε _{ρί}	plastische Dehnung
σ _t = ΕαΔΤ·1/2	Maß für die Wärmespannung
$\sigma_0 = E \alpha T_0$	Spannung auf Grund der Anfangstemperatur T _o
σ _A = ΕαΤ _Α	Spannung auf Grund der Temperatur T _A

Dimensionslose Beschreibung der Spannungs-Dehnungs-Beziehung

 $E_1 = \frac{\varepsilon_1}{\varepsilon_u}$ Gesamtdehnung ε_1 nach der 1. Zyklushälfte bezogen auf die Fließdehnung ε_u der Grundplatte

$$\Delta E_i = \frac{\Delta \epsilon_i}{\epsilon_u}$$
Unterschied in der Gesamtdehnung zwischen zwei Zyklushälften
bezogen auf die Fließdehnung der Grundplatte

$$Z_{t} = \frac{\sigma_{t}}{\sigma_{u}}$$
Maß für die Thermospannungen
$$Z_{0} = \frac{\sigma_{0}}{\sigma_{u}}$$
Maß für die Spannung auf Grund der Anfangstemperatur T_o

 $Z_{1} = \frac{\sigma_{1}}{\sigma_{u}}$ Spannung σ_{1} nach der 1. Zyklushälfte bezogen auf die Fließspannung σ_{u} der Grundplatte $|Z_{1}| \leq 1$ für $\xi \geq 0$ und $|Z_{1}| \leq \omega$ für $\xi \leq 0$ ($\omega \cdot \sigma_{u}$ Fließspannung der Plattierung)

$$\Delta E_{pi} = \frac{\Delta \varepsilon_{pi}}{\varepsilon_{u}}$$
Änderung der plastischen Dehnung bezogen auf die Fließspannung der Grundplatte

 $\sigma_p = \frac{F}{1 + \beta \delta}$ Maß für die mechanische Vorspannung der Plattenanordnung $Z_p = \frac{\sigma_p}{\sigma_u}$ Maß für die mechanische Vorspannung, Äquivalent für die Innendruckbelastung

$$Z_A = \frac{\sigma_A}{\sigma_u}$$
 Maß für die Spannung auf Grund der Temperatur T_A

Beschreibung der Spannungsprofile

 P_1 , P_2 , P_3 Zonen der Wechselplastifizierung

1. Einleitung

Bei der Auslegung von Druckbehältern und Rohrleitungen müssen große Temperaturgradienten beim Anfahren und Abfahren des Reaktors in Betracht gezogen werden. Diese Temperaturgradienten induzieren Wärmedehnungen und Wärmespannungen, die sich den vorhandenen Dehnungen und Spannungen aus der Innendruckbeanspruchung überlagern. Die Überlagerung dieser Spannungen kann bewirken, daß die Fließgrenze des Materials erreicht wird und plastische Dehnungen auftreten. Für die Beurteilung der Integrität der Komponenten muß untersucht werden, in welcher Weise eine Kombination aus thermischer Belastung und Innendruck eine Komponente beansprucht.

Bree /1/ hat grundsätzliche Betrachtungen über die Phänomene, die aus dem Zusammenspiel von zyklischer thermischer Belastung und konstantem Innendruck resultieren, aufgestellt. Als Beispiel wird eine Rohrleitung unter konstantem Innendruck gewählt. In der Rohrwand wird in der 1. Zyklushälfte ein linearer Temperaturgradient aufgeprägt, der in der 2. Zyklushälfte wieder ausgeglichen wird, so daß alle Punkte der Rohrwand die selbe Temperatur besitzen.Bree verwendet ein einfaches einachsiges Plattenmodell mit einer ideal plastischen Spannungs-Dehnungs-Beziehung, um eine Abschätzung der Verhältnisse in der Rohrwand durchführen zu können. Die Ergebnisse werden im sog. Bree-Diagramm zusammengefaßt, aus dem jeweils für eine bestimmte Kombination aus Innendruckbelastung und thermischer Belastung entnommen werden kann, ob elastisches Verhalten, Shakedown-Verhalten, Wechselplastifizierung oder Ratcheting vorliegt. Ratcheting bedeutet, daß die Komponente nach jedem vollen Zyklus mit Aufheizen und Abkühlen um einen bestimmten Betrag bleibend gedehnt wird. Dieser Zustand ist zu vermeiden bzw. es muß nachgewiesen werden, daß die akkumulierten Dehnungen während der Lebensdauer der Komponente einen kritischen Wert nicht übersteigen. Für den Fall der Wechselplastifizierung wird in /2/ der Zusammenhang zwischen der ertragbaren Zahl der Temperaturzyklen und den Beträgen der plastischen Dehnung untersucht, der bei der Auslegung der Komponenten berücksichtigt werden muß. Hier ist die Ermüdungsdauer des Materials kurz (low cycle fatigue). Beim Shakedown-Verhalten treten plastische Dehnungen ausschließlich bei den ersten Belastungszyklen auf; danach liegt elastisches Verhalten vor mit deutlich größerer Ermüdungsdauer (high cycle fatigue). Das Bree-Diagramm wird auch in den einschlägigen Regelwerken für die Auslegung von Komponenten bei hohen Temperaturen und Innendruck /3/ verwendet.

Verschiedene Autoren haben das Bree-Modell weiterentwickelt und bei unterschiedlichen Analysen eingesetzt. Miller /4/ untersucht für ein Balkenmodell die Bedingungen, unter denen Ratcheting auftritt und leitet eine Beziehung für die Größe der bleibenden Dehnung pro Temperaturzyklus her. Der Vergleich einer linearen und parabolischen Temperaturverteilung wird durchgeführt. Burgreen /5/ studiert an einem System aus 2 Balkenelementen den Einfluß der Flächenverhältnisse der beiden Balkenelemente auf die Grenzen für das Auftreten von Ratcheting und verallgemeinert sein Modell /6/ auf eine ebene Platte, für die bei linearer und parabolischer Temperaturverteilung die plastischen Dehnungsbeträge ausgerechnet werden. Bree /7/ betrachtet, wie während der Aufheizphase des Temperaturzyklus durch Kriechdehnungen Ratchetingverhalten induziert werden kann. Mulcahy /8/ erweitert das Bree-Modell durch die Annahme eines Materialverhaltens mit kinematischer Dehnungsverfestigung. Die Analyse belegt, daß die Verwendung eines ideal elastisch-plastischen Materialverhaltens zu konservativen Ergebnissen führt. Bei dem Modell mit kinematischer Dehnungsverfestigung wird bei einer bestimmten Temperaturbelastung ein größerer Druck benötigt als beim ideal elastisch-plastischen Modell, um Ratchetingverhalten einzustellen.

Goodman /9/ widmet sich der Frage, in welcher Weise die Berücksichtigung einer transienten Abkühlung die Grenze des Ratchetinggebietes im Bree-Diagramm beeinflußt. Bei der einseitig gekühlten Platte vermindern sich die ertragbaren thermischen Lasten bei einem bestimmten Druckwert, die das Ratchetingverhalten ausschließen. Die Fließgrenze wird als temperaturunabhängig betrachtet.

Phillips /11/ betrachtet für verschiedene Materialmodelle den Einfluß zyklischer, thermischer Belastungen. Dabei wird insbesondere das Kriechen mitberücksichtigt. Die Arbeit von Karadeniz und Ponter /12/ beschreibt den Einfluß von thermischen Transienten auf die Grenzen des Ratchetinggebietes, wobei die Abhängigkeit der Fließgrenze von der Temperatur berücksichtigt wird.Im Vergleich zum Bree-Modell tritt Ratcheting für einen gegebenen Druckwert bei kleineren thermischen Lasten auf. Die Analyse zeigt, daß auch Ratcheting ohne Druckbelastung auftreten kann.

Die Arbeit von Ng und Moreton /10/ vermittelt einen ausführlichen Überblick über die bis zu diesem Zeitpunkt durchgeführten Betrachtungen mit dem BreeModell. Das Bree-Diagramm wird mit experimentellen Daten verglichen. Für die Lage der Grenzlinie im Bree-Diagramm zum Ratcheting-Gebiet liegt eine gute Übereinstimmung zwischen Messung und Rechnung vor, jedoch ist die Übereinstimmung für das plastische Dehnungsinkrement pro Zyklus beim Ratchetingverhalten verhältnismäßig schlecht.

Es werden ferner drei weitere Bree-Diagramme vorgestellt für die Belastungsfälle:

- Temperatur konstant, Druck alternierend
- Temperatur und Druck alternierend, gegenphasig
- Temperatur und Druck alternierend, gleichphasig

Bei realen Kraftwerkskomponenten können Plattierungen vorliegen. Im allgemeinen unterscheidet sich der Plattierungswerkstoff vom Grundwerkstoff in bezug auf Wärmeleitfähigkeit, Ausdehnungskoeffizient, Streckgrenze und Elastizitätsmodul. Die unterschiedlichen Materialparameter wirken sich auf das Verhalten der Komponente aus, wenn eine thermische Belastung und eine Innendruckbelastung aufgeprägt werden. Um diese Auswirkungen studieren zu können, wird im vorliegenden Bericht das Bree-Modell zur Beschreibung plattierter Komponenten erweitert. Das Untersuchungsziel lautet, die Spannungsprofile in dem neuen Plattensystem zu berechnen und die Belastungskombinationen zu benennen, bei denen elastisches Verhalten, Shakedown-Verhalten, Wechselplastifizierung und Ratcheting auftritt.

In Kapitel 2 erfolgt die Modellbeschreibung. Die beiden Platten sind starr gekoppelt und in Längsrichtung frei verschiebbar. Das Materialverhalten ist ideal elastisch-plastisch. Die stationären Temperaturverläufe und die Spannungs-Dehnungs-Beziehungen werden angegeben.

In Kapitel 3 werden einfache Beziehungen hergeleitet, um die Belastungskombinationen anzugeben, bei denen elastisches Verhalten oder Shakedown-Verhalten vorliegt.

Die Berechnung der Spannungsprofile sowie die Ermittlung der Grenzlinien für das Bree-Diagramm werden in Kapitel 4 demonstriert. Kapitel 5 enthält die der Untersuchung zugrundeliegenden Spannungsprofile und zeigt die berechneten Bree-Diagramme für das System mit Grundplatte und Plattierung. In Kapitel 6 steht die Frage im Mittelpunkt, in welcher Weise die unterschiedlichen Materialdaten von Grundplatte und Plattierung die Grenze für das Shakedown-Gebiet beeinflussen.

Das Beispiel in Kapitel 7 verdeutlicht die Anwendung des Bree-Diagramms. In Kapitel 8 werden die verwendeten Rechenprogramme vorgestellt.

2. Modellbeschreibung

2.1 Beschreibung des Systems aus Platte und Plattierung

In Bild 2.1 ist das System aus einer Platte der Dicke d und einer Plattierung der Dicke $d^{c} = \beta d$ dargestellt. Die Grundplatte und die Plattierung sind starr gekoppelt; in axialer Richtung ist die gesamte Anordnung frei verschiebbar.

In Anlehnung an die Vorgehensweise in /l/ dient das Modell dazu, um das Verhalten von Rohren und Behältern mit einer Plattierungsschicht bei konstanter Innendruckbelastung und zyklierender thermischer Belastung zu untersuchen. Das Materialverhalten wird als ideal elastisch-plastisch vorausgesetzt und durch die in Tabelle 1 aufgelisteten Materialparameter charakterisiert.

	Grundplatte	Plattierung
[N/mm ²]	E	$E^{C} = \delta E$
[1/K]	α	$\alpha^{\mathbf{C}} = \varphi \alpha$
[kcal/mhK]	λ	$\lambda^{\mathbf{C}} = \chi \lambda$
[N/mm ²]	σ _ú	$\sigma_{u}^{c} = \omega \sigma_{u}$
	[N/mm ²] [1/K] [kcal/mhK] [N/mm ²]	$\begin{array}{c c} & Grundplatte \\ \hline [N/mm^2] & E \\ \hline [1/K] & \alpha \\ \hline [kcal/mhK] & \lambda \\ \hline [N/mm^2] & \sigma_{ij} \end{array}$

Tabelle 1: Materialparameter

Die Parameter für die Beschreibung der Plattierung werden durch die Verhältniszahlen δ , φ , γ , ω und β mit den entsprechenden Werten für die Grundplatte ausgedrückt. Entsprechend Bild 2.1 wird ein Koordinatensystem mit der dimensionslosen Wegkoordinate $\xi = x/d$ eingeführt.

Mit der Kraft F wird im Modell die Innendruckbelastung der zu untersuchenden

- 6 -

Komponenten simuliert. Dieser konstanten mechanischen Last ist eine zyklische, thermische Last überlagert.

Am Anfang und am Ende jedes Belastungszyklus herrscht bei allen Punkten der Plattenanordnung die Temperatur T_A . In der ersten Hälfte eines Belastungszyklus werden an den Außenfasern von Grundplatte ($\xi = 1$) und Plattierung ($\xi = -\beta$) unterschiedliche Temperaturen T_1 und T_3 aufgeprägt und konstant gehalten. Im stationären Fall wird das Temperaturprofil in der Plattenanordnung ausschließlich in Abhängigkeit von der Ortskoordinate ξ beschrieben. Aus der Wärmeleitgleichung

$$\frac{\partial^2 T}{\partial^2 \xi^2} = 0$$

folgt, daß sich ein linearer Verlauf durch die Plattenanordnung einstellt. Unter Berücksichtigung, daß an der Verbindungsstelle $\xi = 0$ zwischen der Plattierung und der Grundplatte die gleiche Temperatur T₂ herrschen muß, ergibt sich mit der Kontinuität des Wärmeflusses

$$\lambda \quad \frac{dT}{d\xi} \quad \left| \begin{array}{c} \lambda \\ \xi = 0^{+} \end{array} \right|^{2} \\ \xi = 0^{-} \end{array} \right|_{\xi = 0^{-}}$$
(2-1)

jeweils das stationäre Temperaturprofil 1 oder 2 (vgl. Bild 2.2)

Mit den Temperaturen $T_1 = T_A + \frac{\Delta T}{2}$ bzw. $T_1 = T_A + \Delta T$ an der Plattenoberfläche und $T_3 = T_A - \frac{\Delta T}{2}$ bzw. $T_3 = T_A$ an der Plattenrückseite lauten mit Gleichung (2-1) die Temperaturprofile 1 und 2

$$T(\xi) = -\frac{\Delta T}{2} \left(\frac{2}{\gamma + \beta} \xi - k_2 \right) + T_{\Delta} \qquad -\beta \le \xi \le 0 \qquad (2-2)$$

$$T(\xi) = -\frac{\Delta T}{2} \left(\frac{2\gamma}{\gamma+\beta} \xi - k_2 \right) + T_{\Delta} \qquad 0 \le \xi \le 1 \qquad (2-3)$$

mit $k_2 = \frac{\gamma - \beta}{\gamma + \beta}$ für das Temperaturprofil 1 und $k_2 = \frac{2\gamma}{\gamma + \beta}$ für das Temperaturprofil 1.

Im folgenden wird als l. Zyklushälfte der Thermobelastung der Zustand bezeichnet, in dem sich das statonäre Temperaturprofil l bzw. 2 ausgebildet hat. Für die 2. Zyklushälfte der Thermobelastung gilt, daß alle Punkte von Grundplatte und Plattierung wieder die Anfangstemperatur T_A besitzen.

Die Gleichungen (2-2) und (2-3) beschreiben die Temperaturprofile beim Aufheizen in der 1. Zyklushälfte. Durch Wechseln des ersten Vorzeichens auf den rechten Seiten von (2-2) und (2-3) wird das Temperaturprofil beim Abkühlen auf der Plattierungsseite in der 1. Zyklushälfte dargestellt. Die gesamten Überlegungen zu den sich einstellenden Spannungsprofilen in der Plattenanordnung gelten sowohl für die Erwärmung als auch die Abkühlung der Plattierungsseite in der 1. Zyklushälfte gemäß (2-2) bzw. (2-3). Für die Berechnungsbeispiele im vorliegenden Bericht wird jeweils angegeben, ob die Erwärmung oder Abkühlung betrachtet wird. In Bild 2.2 ist der Fall gezeichnet, daß in der 1. Zyklushälfte die Plattierung erwärmt wird.

Bree /l/ entwickelt sein einachsiges Modell aus einem zweiachsigen Schalenmodełl. Der Temperaturunterschied∆T in (2-2) bzw. (2-3) repräsentiert die thermische Belastung des einachsigen Modells. Um im Rahmen des einachsigen Modells im Hinblick auf die Höhe der Temperaturspannungen ein zweiachsiges Modell zu simulieren, wird

$$\Delta T = \frac{\Delta T'}{1-\nu} , T_0 = \frac{T_0'}{1-\nu} , T_A = \frac{T_A'}{1-\nu}$$

gesetzt, wobei \vee die Poissonzahl, Δ T' die real auftretende Temperaturdifferenz an der Plattenoberfläche ist und T₀', T_A' die realen Anfangstemperaturen sind. Um die Beschreibung des Verhaltens der Plattenanordnung bei mechanischer und thermischer Bealstung durchführen zu können, werden die aus den Modellannahmen folgenden Voraussetzungen zusammengestellt, die bei der gesamten Untersuchung beachtet werden müssen.

 Für jeden Zeitpunkt der Belastung gilt, wegen der in Bild 2.1 dargestellten kinematischen Randbedingungen, daß alle Punkte der Plattenanordnung dieselbe Gesamtdehnung ε besitzen, d.h.

$$\varepsilon = const.$$
 $-\beta \le \xi \le 1$

(2) Die Spannungen $\sigma_i(\xi)$ des i-ten Zyklus (i = 1, 2, 3, . . .) stehen im Gleichgewicht mit der äußeren Kraft F

$$\int_{-\beta}^{1} \sigma_{i} \cdot (\xi) d\xi = F$$

Mit
$$\Delta \sigma_i (\xi) = \sigma_i (\xi) - \sigma_{i-1} (\xi)$$
 und $\int_{-\beta}^{1} \sigma_{i-1} (\xi) d\xi = F gilt$
 $\int_{-\beta}^{1} \Delta \sigma_i (\xi) d\xi = 0$

- (3) Das Materialverhalten ist ideal-plastisch. In plastischen Zonen nimmt die Spannung in der Grundplatte den Wert der Fließspannung σ_u und in der Plattierung den Wert der Fließspannung σ_u . ω an.
 - $\begin{vmatrix} \sigma \end{vmatrix} = \sigma_u \ \omega & -\beta \le \xi \le 0 \\ | \ \sigma \mid = \sigma_u & 0 \le \xi \le 1 \ \end{cases}$ plastisch

Für die elastischen Bereiche gilt:

2.2 Mathematische Formulierung des Gesamtproblems

Es werden die folgenden Bezeichnungen verwendet:

- ε₁ Gesamtdehnung nach der 1. Zyklushälfte (Aufheizen)
- $\Delta \epsilon_i$ Änderung der Gesamtdehnung beim Wechsel von der (i-1)ten

- 9 ---

Zyklushälfte zur i-ten Zyklushälfte ϵ_i Gesamtdehnung nach der i-ten Zyklushälfte Mit

$$\Delta \epsilon_i = \epsilon_i - \epsilon_{i-1} \qquad i = 2, 3, 4, \dots \qquad (2-4)$$

läßt sich unter Verwendung der bekannten Gesamtdehnung ε_1 und der Anderung der Gesamtdehnung $\Delta \varepsilon_2$ die Gesamtdehnung ε_2 am Ende der 2. Zyklushälfte (Abkühlen) angeben und entsprechend dieser Vorgehensweise lassen sich alle weiteren Thermozyklen analysieren.

Die Gesamtdehnung ε_1 bzw. die Änderung $\Delta \varepsilon_i$ setzt sich im allgemeinen Fall aus einem elastischen $\frac{\sigma_1}{E}$ bzw. $\frac{\Delta \sigma_i}{E}$, thermischen $\alpha T(\xi)$ bzw. $\alpha \Delta T(\xi)$ und plastischen Anteil ε_{pi} bzw. $\Delta \varepsilon_{pi}$ zusammen:

$$\begin{split} \epsilon_{1} &= \frac{\sigma_{1}}{E} + \alpha T (\xi) + \epsilon_{p1} \\ \Delta \epsilon_{i} &= \frac{\Delta \sigma_{i}}{E} + \alpha \Delta T (\xi) + \Delta \epsilon_{pi} \end{split} \qquad \qquad i = 2, 3, 4, \dots \dots$$

Die Größe der thermischen Dehnungsanteile hängt von der Temperaturänderung ab. Beim Wechsel des Temperaturprofiles in der 1. Zyklushälfte (Erwärmung oder Abkühlung der Plattierungsseite) zum Temperaturprofil $T(\xi) = T_A$ in der 2. Zyklushälfte ergeben sich für die Änderung der Temperaturen mit (2-2) und (2-3) die Beziehungen

$$\Delta T (\xi) = \pm \frac{\Delta T}{2} \left(\frac{2}{\gamma + \beta} \xi - k_2 \right) \qquad -\beta \le \xi \le 0 \qquad (2-5)$$

$$\Delta T (\xi) = \pm \frac{\Delta T}{2} \left(\frac{2\gamma}{\gamma + \beta} \quad \xi - k_2 \right) \qquad 0 \le \xi \le 1 \qquad (2-6)$$

wobei das + Zeichen für den Wechsel des Temperaturprofiles gilt, wenn in der 1. Zyklushälfte eine Erwärmung der Plattierungsseite vorgelegen hat und das - Zeichen entsprechend für die Abkühlung der Plattierungsseite in der 1. Zyklushälfte steht.

Damit können die Spannungs-Dehnungs-Beziehungen für die Grundplatte und die

Plattierung angegeben werden:

$$\varepsilon_{1} = \frac{\sigma_{1}}{E\delta} - \psi \alpha \left[\frac{\Delta T}{2} \left(\frac{2}{\gamma + \beta} \xi - k_{2} \right) - T_{A} \right] + \varepsilon_{p1} \qquad -\beta \leq \xi \leq 0$$

$$\varepsilon_{1} = \frac{\sigma_{1}}{E} - \alpha \left[\frac{\Delta T}{2} \left(\frac{2\gamma}{\gamma + \beta} \xi - k_{2} \right) - T_{A} \right] + \varepsilon_{p1} \qquad 0 \leq \xi \leq 1$$

$$(2-7)$$

$$\Delta \varepsilon_{i} = \frac{\Delta \sigma_{i}}{\delta} \pm \varphi \alpha \frac{\Delta T}{2} \left(\frac{2}{\gamma + \beta} \xi - k_{2} \right) + \Delta \varepsilon_{pi} \qquad -\beta \le \xi \le 0$$

$$\Delta \varepsilon_{i} = \frac{\Delta \sigma_{i}}{E} \pm \alpha \frac{\Delta T}{2} \left(\frac{2\gamma}{\gamma + \beta} \xi - k_{2} \right) + \Delta \varepsilon_{pi} \qquad 0 \le \xi \le 1 \qquad (2-8)$$

Die Gleichungen (2-7) und (2-8) werden mit den Abkürzungen
$$\frac{\alpha \Delta T}{2} = \frac{\sigma_t}{E}$$
,
 $\alpha T_A = \frac{\sigma_A}{E}$ und $k_1 = \frac{2}{\gamma + \beta}$ nach der Division durch $\varepsilon_u = \frac{\sigma_u}{E}$ umgeschrieben
 $\frac{\varepsilon_1}{\varepsilon_u} = \frac{\sigma_1}{\sigma_u \delta} - \psi \frac{\sigma_t}{\sigma_u} (k_1 \xi - k_2) + \psi \frac{\sigma_A}{\sigma_u} + \frac{\varepsilon_{p1}}{\varepsilon_u} - \beta \le \xi \le 0$
 $\frac{\varepsilon_1}{\varepsilon_u} = \frac{\sigma_1}{\sigma_u} - \frac{\sigma_t}{\sigma_u} (\gamma k_1 \xi - k_2) + \frac{\sigma_A}{\sigma_u} + \frac{\varepsilon_{p1}}{\varepsilon_u} 0 \le \xi \le 1$

$$(2-9)$$
 $\Delta \varepsilon_i = \Delta \sigma_i - \sigma_i + (\gamma k_1 \xi - k_2) + \frac{\sigma_A}{\sigma_u} + \frac{\varepsilon_{p1}}{\varepsilon_u} 0 \le \xi \le 1$

$$\frac{\Delta \varepsilon_{i}}{\varepsilon_{u}} = \frac{\Delta \sigma_{i}}{\sigma_{u} \delta} \pm \frac{\varphi}{\sigma_{u}} (\chi_{k_{1}} \xi - k_{2}) + \frac{\Delta \varepsilon_{pi}}{\varepsilon_{u}} - \beta \leq \xi \leq 0$$

$$(2-10)$$

$$\frac{\Delta \varepsilon_{i}}{\varepsilon_{u}} = \frac{\Delta \sigma_{i}}{\sigma_{u}} \pm \frac{\sigma_{t}}{\sigma_{u}} (\chi_{k_{1}} \xi - k_{2}) + \frac{\Delta \varepsilon_{pi}}{\varepsilon_{u}} \qquad 0 \leq \xi \leq 1$$

Die Gleichungen (2-9) und (2-10) enthalten nur noch dimensionslose Größen,

- 11 -

für die neue Bezeichnungen eingeführt werden:

$$E_{1} = \frac{\varepsilon_{1}}{\varepsilon_{u}}$$
 Gesamtdehnung ε_{1} nach der l. Zyklushälfte bezogen auf die
Fließdehnung $\varepsilon_{u} = \frac{\sigma_{u}}{F}$ der Grundplatte

$$\Delta E_{j} = \frac{\Delta \varepsilon_{j}}{\varepsilon_{j}}$$
Unterschied in der Gesamtdehnung zwischen zwei Zyklushälften
bezogen auf die Fließdehnung der Grundplatte

 $Z_t = \frac{\sigma_t}{\sigma_u}$ Maß für die Thermospannungen

 $Z_A = \frac{\sigma_A}{\sigma_u}$ Maß für die Spannung auf Grund der Anfangstemperatur T_A $Z_1 = \frac{\sigma_1}{\sigma_u}$ Spannung σ_1 nach der 1. Zyklushälfte bezogen auf die

$$E_{p1} = \frac{\epsilon_{p1}}{\epsilon_u}$$
 plastische Dehnung bezogen auf die Fließdehnung der Grundplatte

$$\Delta E_{pj} = \frac{\Delta \varepsilon_{pj}}{\varepsilon_{u}}$$
Änderung der plastischen Dehnung bezogen auf die Fließ-
dehnung der Grundplatte

Damit ergeben sich die Spannungs-Dehnungs-Beziehungen in dimensionsloser Form:

$$E_{1} = \frac{Z_{1}}{\delta} - \varphi Z_{t} (k_{1} \xi - k_{2}) + \varphi Z_{A} + E_{p1} - \beta \leq \xi \leq 0$$

$$E_{1} = Z_{1} - Z_{t} (\gamma k_{1} \xi - k_{2}) + Z_{A} + E_{p1} \qquad 0 \leq \xi \leq 1$$

$$(2-11)$$

$$\Delta E_{i} = \frac{\Delta Z_{i}}{\delta} \pm \varphi Z_{t} (k_{1} \xi - k_{2}) + \Delta E_{pi} - \beta \leq \xi \leq 0$$

$$\Delta E_{i} = \Delta Z_{i} \pm Zt (\gamma K_{1} \xi - k_{2}) + \Delta E_{pi} \qquad 0 \leq \xi \leq 1$$

$$(2-12)$$

Die Beziehung

wird mit $F = \sigma_p(1 + \beta \delta)$ nach der Division durch σ_u in die dimensionslose Gleichung für das Kräftegleichgewicht

$$\int_{-\beta}^{1} Zi (\xi) d\xi = Z_{p} (1 + \beta \delta)$$
 (2-13)

$$\int_{-\beta}^{1} \Delta Z_i (\xi) d\xi = 0$$
(2-14)

mit
$$Z_p = \frac{\sigma_p}{\sigma_u}$$
 und $\Delta Z_i = Z_i - Z_{i-1}$

umgeformt.

Um die Modellvorstellung über den Anfangszustand zu erweitern, werden Plattierung und Grundplatte zunächst getrennt betrachtet. Vor der starren Kopplung der beiden Platten soll in jeder Platte ein spannungsfreier Zustand bei der jeweiligen Temperatur T_0 herrschen. Nach der Verbindung der Einzelteile stellt sich die Anfangstemperatur T_A ein, von der aus die zyklischen Thermobelastungen erfolgen sollen. Diese Temperaturverteilung bewirkt nach (2-11) eine Gesamtdehnung

$$E_1 = \frac{Z_1}{\delta} + \varphi Z_A \qquad -\beta \le \xi \le 0$$

$$E_1 = Z_1 + Z_A \qquad 0 \le \xi \le$$

Daraus folgt, daß für die Materialgrößen $\varphi \neq 1$, $\delta \neq 1$ die elastische Spannung Z_1

1

— 13 —

in der Plattierung von derjenigen in der Grundplatte verschieden ist, d.h. auch ohne äußere Belastung liegt bei konstanter Temperatur auf Grund der unterschiedlichen Elastizitätsmoduli und Temperaturausdehnungskoeffizienten eine Spannungsverteilung in der Plattenanordnung vor.

Mit der Abkürzung $\alpha T_{O} = \frac{\sigma_{O}}{E}$ und $Z_{O} = \frac{\sigma_{O}}{\sigma_{U}}$ ergibt sich auf Grund der unterschiedlichen Temperaturen T_A und T_O eine Anfangsdehnung

$$Z_A - Z_0 = \frac{\sigma_A}{\sigma_u} - \frac{\sigma_0}{\sigma_u} = \frac{\alpha (T_A - T_0)}{\epsilon_u}$$

die auf die Fließdehnung ε_{u} der Grundplatte normiert ist und in die Ansätze von (2-11) eingebaut wird:

$$E_{1} = \frac{Z_{1}}{\delta} - \psi Z_{t} (k_{1} \xi - k_{2}) + \psi (Z_{A} - Z_{0}) + E_{p1} - \beta \leq \xi \leq 0$$

$$E_{1} = Z_{1} - Z_{t} (\gamma k_{1} \xi - k_{2}) + Z_{A} - Z_{0} + E_{p1} \qquad 0 \leq \xi \leq 1$$

$$(2.15)$$

3. Elastisches und Shakedown-Gebiet

3.1 Definition des elastischen und Shakedown-Gebietes

Unterschiedliche Kombinationen aus mechanischer und thermischer Last induzieren unterschiedliche Spannungsprofile in der Plattenanordnung. Im folgenden werden die Spannungsprofile des elastischen und Shakedowngebietes beschrieben.

Der Verlauf der Spannungsprofile $Z_i(\xi)$ (1 = 1, 2, . . .) ergibt sich aus den Spannungs-Dehnungs-Beziehungen (2-12) und (2-15) sowie den Kräftegleichgewichten (2-13) und (2-14). Wenn für die Spannung $Z_1(\xi)$ nach der 1. Zyklushälfte $|Z_1(\xi)| < 1$ und $|Z_1(\xi)| < \omega$ erfüllt ist, liegt weder in der Grundplatte noch in der Plattierung ein Überschreiten der Fließspannung vor. In diesem Fall treten keine plastischen Dehnungen auf und nach (2-15) ergibt sich

$$E_{1} = \frac{Z_{1}}{\delta} - \psi Z_{t} (k_{1} \xi - k_{2}) + \psi (Z_{A} - Z_{0}) - \beta \leq \xi \leq 0$$

$$E_{1} = Z_{1} - Z_{t} (\gamma k_{1} \xi - k_{2}) + (Z_{A} - Z_{0}) \qquad 0 \leq \xi \leq 1$$

$$(3-1)$$

Aus (3-1) folgt für die Gestalt des Spannungsprofiles 7_4 (ξ) = F_4 $\delta_1 + in \delta_2 - in \delta_1 + in \delta_2 + in \delta_3 + in \delta_4 - in \delta_4 + i$

$$Z_{1}(\xi) = E_{1} \circ + \psi \circ Z_{1}(k_{1} \xi - k_{2}) - \psi \circ (Z_{A} - Z_{0}) - \beta \leq \xi \leq 0$$

$$Z_{1}(\xi) = E_{1} + Z_{1}(\gamma k_{1} \xi - k_{2}) - (Z_{A} - Z_{0}) \qquad 0 \leq \xi \leq 1$$

$$(3-2)$$

Die Gleichungen (3-2) werden in (2-13) eingesetzt, womit sich die Gesamt-dehnung E_1

$$E_{1} = Z_{p} + (Z_{A} - Z_{0}) \frac{1 + \psi \delta \beta}{1 + \delta \beta} - Z_{t} \frac{\left[\frac{1}{2}\gamma k_{1} - \frac{1}{2} \psi \delta k_{1}\beta^{2} - k_{2}(1 + \psi \delta \beta)\right]}{1 + \delta \beta}$$
(3-3)

ergibt.

Unter der Verwendung von (3-2) und (3-3) liegt das Spannungsprofil für den elastischen Fall fest.

Aus einer entsprechenden Betrachtung für die Änderung der Spannung beim Übergang vom i-ten zum (i + 1)- ten Halbzyklus, wobei für $|\Delta Z_i (\xi)| < 2$ und $|\Delta Z_i (\xi)| < 2 \omega$ keine plastischen Dehnungen auftreten, wird aus (2-12) $\Delta E_i = \frac{\Delta Z_i (\xi)}{\delta} \pm \varphi Z_t (k_1 \xi - k_2) - \beta \le \xi \le 0$ $\Delta E_i = \Delta Z_i (\xi) \pm Z_t (\gamma k_1 \xi - k_2) 0 \le \xi \le 1$ (3-4)

ermittelt.

Analog zu $Z_1(\xi)$ wird mit (3-4) und (2-14) das Spannungsprofil $\Delta Z_1(\xi)$ festgelegt.

Die Kombination eines Spannungsprofiles $Z_1(\xi)$ mit plastischen Zonen nach der 1. Zyklushälfte mit einem $\Delta Z_1(\xi)$ nach (3-4) (i = 2, 3, . . .) ohne plastische Anteile führt zu Shakedown-Verhalten. In Bild 3.1 wird in einem Spannungs-Dehnungsdiagramm der prinzipielle Ablauf bei Shakedown-Verhalten demonstriert.

Die l. Zyklushälfte entspricht der Belastung des Systems von A nach B mit dem plastischen Dehnungsanteil A'B. Die Entlastung und alle weiteren Be- und Entlastungen erfolgen auf der Geraden BC, d.h. nach der l. Zyklushälfte liegt elastisches Verhalten vor.

Diese Definition des Shakedownverhaltens zielt ganz speziell auf das einfache einachsige Bree-Modell ab. Shakedown ist nicht an die Voraussetzung eines einfachen, einachsigen Systems geknüpft. Für allgemeinere Systeme wird in der Literatur (z.B. /15/, /16/) die Frage untersucht, unter welchen zyklischen Belastungszuständen das System mit Shakedownverhalten reagieren kann.

Die Spannungsprofile $Z_1(\xi)$ und $\Delta Z_1(\xi)$ werden von den feststehenden Materialparameterverhältnissen δ , φ und γ , dem Verhältnis der Plattendicken β , den Anfangsbedingungen Z_A , Z_o und den frei wählbaren Belastungsgrößen der mechanischen und thermischen Last Z_p und Z_t bestimmt. Das elastische und Shakedown-Gebiet umfaßt alle Kombinationen von (Z_t, Z_p) für die

Z ₁ (ξ) < ω	$-\beta \leq \xi \leq 0$		
Z ₁ (ξ) < 1	0 <u>≤</u> ξ <u>≤</u> 1		(3-5)
Δ Ζ _i (ξ) < 2ω	- β <u><</u> ξ ≤ 0	shakedown	(3-6)
Δ Z _i (ξ) < 2	0 <u><</u> ξ <u><</u> 1		
gilt.			

3.2 Grenzen für das elastische und Shakedown-Gebiet

Zur Beurteilung der mechanischen Beanspruchung und der zyklischen Thermolast im Hinblick auf die Integrität des Bauteiles ist es von entscheidender Bedeutung, ob eine Belastungskombination (Z_p, Z_t) im elastischen und Shakedown-

— 16 —

Gebiet liegt oder nicht. Belastungskombinationen von (Z_p, Z_t) außerhalb dieses Gebietes führen gemäß der Beschreibung in Kapitel 4 entweder zu Wechselplastifizierung oder zu Ratcheting, wodurch eine Versagenswahrscheinlichkeit des Bauteils stark erhöht wird.

Aus diesem Grund werden die Beziehungen erarbeitet, die für eine beliebige Kombination aus Plattierung und Grundwerkstoff mit den Materialgrößen ω, φ , δ , γ , den Anfangsbedingungen Z_A , Z_O und bei vorgegebener Belastung (Z_p, Z_t) entscheiden, ob elastisches bzw. Shakedown-Verhalten vorliegt oder nicht.

Maximaler Z_p-Wert:

Wird $Z_t = 0$ gesetzt, ergibt sich aus (3-1) für die Gesamtdehnung E_1

 $E_{1} = \frac{Z_{1}(\xi)}{\delta} + \psi (Z_{A} - Z_{0}) - \beta \leq \xi \leq 0$ $E_{1} = Z_{1}(\xi) + Z_{A} - Z_{0} \qquad 0 \leq \xi \leq 1$ Wobei wegen $E_{1} = \text{const und } (Z_{A} - Z_{0}) = \text{const die dimensionslose Span-nung } Z_{1}(\xi) \text{ selbst unabhängig von } \xi \text{ ist.}$ (3-7)

Der maximale Z_p-Wert folgt aus der Bedingung, daß das Kräftegleichgewicht (2-13) erfüllt sein muß. Eine Steigerung von Z_p ist solange möglich, bis sowohl in der Grundplatte als auch in der Plattierung die jeweilige Fließspannung anliegt, d.h.

 $Z_{1} = \omega \qquad -\beta \leq \xi \leq 0$ $Z_{1} = 1 \qquad 0 \leq \xi \leq 1$ (3-8)

stellt die Grenzlast des Systems dar.

Bei einem weiteren Zuwachs von Z_p kann die Spannung Z₁ wegen des ideal elastisch-plastischen Materialverhaltens nicht mehr erhöht werden und die Plattenanordnung wird plastisch fließen. Wegen der unterschiedlichen Materialparameter wird die Fließgrenze entweder zuerst in der Grundplatte oder in der Plattierung erreicht. Die Größe des maximalen Z_p -Wertes ergibt sich mit (2-13) und (3-8) zu

$$Z_{p,max} = \frac{1+\omega\beta}{1+\beta\delta}$$
(3-9)

Maximaler Z_t-Wert:

Es wird vorausgesetzt, daß die plastischen Zonen bei der Spannungsänderung $\Delta Z_i(\xi)$ zuerst an den Außenfasern $\xi = 1$ bzw. $\xi = -\beta$ der Plattenanordnung auftreten. Die Beziehung (3-6) vereinfacht sich mit dieser Annahme zu

$$|\Delta Z_i (\xi = -\beta)| < 2\omega$$

$$|\Delta Z_i (\xi = 1)| < 2$$
(3-10)

Die Annahme, daß die plastischen Zonen entweder bei $\xi = 1$ oder $\xi = -\beta$ beginnen, stellt keine Einschränkung im Hinblick auf in der Praxis übliche Materrialkombinationen dar. Die damit von der Betrachtung ausgeschlossenen Spannungsprofile werden in Kapitel 5 diskutiert. Aus (3-4) folgt für die Spannungsänderung $\Delta Z_2(\xi)$:

$$\Delta Z_{2} (\xi) = \Delta E_{2} \quad \delta + Z_{1} \quad \delta \ \varphi (k_{1} \ \xi - k_{2}) \qquad -\beta \leq \xi \leq 0$$

$$\Delta Z_{2} (\xi) = \Delta E_{2} + Z_{1} (\gamma k_{1} \ \xi - k_{2}) \qquad 0 \leq \xi \leq 1$$

$$(3-11)$$

(3-11) eingesetzt in (2-14) führt auf die Anderung der Gesamtdehnung

$$\Delta E_{2} = Z_{t} - \frac{\frac{1}{2} \chi k_{1} - k_{2} - \delta \psi \beta (\frac{1}{2} k_{1} \beta + k_{2})}{1 + \delta \beta}$$
(3-12)

Mit (3-12) liegt die Spannungsänderung $\Delta Z_i(\xi)$ in (3-11) fest und aus Gleichung (3-10) kann derjenige Z_t -Wert berechnet werden, bei dem noch Shakedown-Verhalten zu beobachten ist.

Zunächst werden die beiden möglichen $Z_{t,max}$ -Werte berechnet, und zwar für den Fall der ersten plastischen Zone bei $\xi = -\beta$

$$Z_{\mu,\text{max}} = \frac{\frac{2\omega}{\chi} (1 + \beta \delta)}{\frac{1}{2} \chi k_1 - k_2 (1 - \phi) + \beta \phi k_1 + \frac{1}{2} \beta^2 \phi \delta k_1}$$
(3-13)

und für den Fall der ersten plastischen Zone bei ξ = 1

$$Z_{t,max} = \frac{\frac{2\omega}{\delta} (1 + \beta \delta)}{\frac{1}{2} \gamma k_{1} + \delta \beta \gamma k_{1} - \delta \beta [k_{2} (1 - \phi) - \frac{1}{2} \phi k_{1} \beta]}$$
(3-14)

Danach muß entschieden werden, welcher der beiden Z_{t,max}-Werte (3-13) bzw. (3-14) für das vorliegende Plattensystem gilt.

$$\Delta Z_2 (\xi = 1) = \Delta E_2 + Z_1 (\gamma k_1 - k_2) \ge -2$$
 (3-15)

erfüllt ist. Trifft das nicht zu, muß mit den getroffenen Voraussetzungen der ^Zt,max⁻Wert (3-14) Gültigkeit besitzen und die Gleichung

$$\Delta Z_2 \left(\xi = -\beta\right) = \Delta E_2 \quad \delta - Z_t \quad \delta \ \psi \left(k_1 \beta + k_2\right) \le 2\omega \tag{3-16}$$

muß erfüllt sein.

Der $Z_{t,max}$ -Wert (3-13) bzw. (3-14) hängt nicht von der Druckbelastung Z_p ab. Im nächsten Schritt muß festgelegt werden, bis zu welchem Druckwert Z_{pM} diese Z_t -Werte die Grenzlinie des elastischen und Shakedown-Gebietes markieren.

Die Gleichung für diesen Druckwert Z_{pM} lautet mit Z_t aus (3-13) bzw. (3-14):

$$Z_{pM} = \left[1 + \omega\beta - Z_{t} \frac{\gamma k_{1}}{\gamma (1 + 2\delta\beta)} \left(1 + 2\delta\beta - \frac{2\delta\beta}{\gamma k_{1}} \left[k_{2} (1 - \varphi) - \frac{1}{2}\varphi k_{1}\beta\right]\right)^{2}\right] \frac{1}{1 + \beta\delta} \quad (3 - 17)$$

Bei der Herleitung dieser Gleichung in Kapitel 4 wird ferner aufgezeigt, daß durch die lineare Verbindung von (Z_t, Z_{pM}) und $(0, Z_{p,max})$ der elastische und Shakedown-Bereich vollständig erfaßt ist, vgl. Bild 3.2, wobei Z_t aus (3-13) bzw. (3-14) stammt.

Die Lage des elastischen und Shakedown-Gebietes läßt sich mit den bekannten Parametern ω , β , φ , δ und γ aus den Formeln (3-9), (3-13) bzw. (3-14) und (3-17) leicht gemäß Bild 3.2 konstruieren.

Diese Bestimmungsgleichungen sind unabhängig von den Anfangsbedingungen Z_A und Z_o . Spätestens ab der 2. Zyklushälfte führt jede Belastungskombination

J

 (Z_p, Z_t) aus diesem Gebiet zu einem linearen Verhalten, d.h. es treten keine plastischen Dehnungen mehr auf.

4. Beschreibung der Spannungsprofile und Gültigkeitsgrenzen

Die Analyse des Systemverhaltens bei zyklischer Thermobelastung und konstantem Innendruck gliedert sich in mehrere Schritte auf. Im ersten Schritt muß untersucht werden, welche relevanten Typen von Spannungsprofilen auf der Basis der Spannungs-Dehnungs-Beziehungen, des Kräftegleichgewichts und der Voraussetzung, daß die plastischen Zonen bei der Spannungsänderung Δ Z_i(ξ) an den Randfasern der Plattenanordnung beginnen sollen, konstruiert werden können. Der zweite Schritt umfaßt die Charakterisierung der Belastungskombinationen (Z_p, Z_t), die zu einem bestimmten Spannungsprofiltyp führen. Dazu müssen diejenigen Belastungskombinationen (Z_{pm}, Z_t) herausgefunden werden, bei denen ein bestimmter Typ gerade noch Gültigkeit besitzt. Beim Überschreiten dieser Grenzlinie der Belastungskombinationen (Z_p , Z_t) bildet sich dann ein anderer Spannungsprofiltyp aus. Die Ergebnisse der Analyse können in einem sog. Bree-Diagramm zusammengefaßt werden (vgl. z.B. Bild 5.5). In diesem Diagramm sind die Grenzlinien der Belastungskombinationen für die untersuchten Spannungsprofile eingetragen. Damit läßt sich für eine beliebige Beanspruchung Z_p, Z_t aus dem Bree-Diagramm ablesen, welches Spannungsprofil. sich einstellen wird und insbesondere kann damit die Frage geklärt werden, ob elastisches und Shakedown-Verhalten, Wechselplastifizierung oder Ratcheting vorliegt.

Der Anhang A verschafft einen Einblick in die Zahl der untersuchten Spannungsprofile. Die Fülle der Fälle verbietet es, die individuelle Analyse jedes einzelnen Profiles hier auszuführen. Die Beschreibung der Profile und die Festlegung der entsprechenden Belastungskombinationen verläuft für alle Profile nach dem gleichen Schema. Aus diesem Grund reichen die beiden folgenden Beispiele aus, um die Handhabung dieser Spannungsprofile zu erläutern.

4.1 Beispiel für Ratcheting

Es werden die Spannungsprofile in Bild 4.1 betrachtet (Erwärmung der Plattierung in der 1. Zyklushälfte). Nach dem Aufheizen liegt für A $\leq \xi \leq 1$ in der Grundplatte eine plastische Zone vor. Nach dem Abkühlen herrscht in der Plattenanordnung die jeweilige positive Fließspannung vor bis auf den elastischen Bereich V $\leq \xi \leq 1$. Die Spannungsänderung zwischen den beiden Zyklushälften unterscheidet sich von der Spannungsänderung im Shakedown-Fall durch den Bereich A $\leq \xi \leq V$, in dem die Spannungsänderung $\Delta Z_i(\xi) = 0$ beträgt.

Nach (2-15) ergibt sich mit dem Spannungsprofil in Bild 4.la) für die Gesamtdehnung E_1

$$E_{1} = \frac{Z_{1}(\xi)}{\delta} - \varphi Z_{1}(k_{1} \xi - k_{2}) + \varphi (Z_{A} - Z_{0}) - \beta \leq \xi \leq 0$$

$$E_{1} = Z_{1}(\xi) - Z_{1}(\gamma k_{1} \xi - k_{2}) + (Z_{A} - Z_{0}) - \beta \leq \xi \leq 0$$

$$E_{1} = Z_{1}(\xi) - Z_{1}(\gamma k_{1} \xi - k_{2}) + (Z_{A} - Z_{0}) + E_{p1}(\xi) - \xi \leq 1$$

$$(4-1)$$

Die Kontinuität des Spannungsverlaufes in der Grundplatte erfordert in der elastischen Zone $Z_1(\xi = A) = 1$, d.h.

$$E_1 = 1 - Z_t (\gamma k_1 A - k_2) + (Z_A - Z_0)$$
Aus (4-1) und (4-2) lassen sich die Spannungen $Z_1(\xi)$ formulieren.
(4-2)

$$Z_{1} (\xi) = \delta [1-Z_{t} (\chi k_{1} A-k_{2}) + Z_{A}-Z_{0}] + Z_{t} \phi \delta (k_{1} \xi-k_{2}) - \phi \delta (Z_{A}-Z_{0}) - \beta \leq \xi \leq 0 0 \leq \xi \leq A Z_{1} (\xi) = 1 + Z_{t} \chi k_{1} (\xi - A) Z_{1}(\xi) = 1$$

$$A \leq \xi \leq 1$$

$$(4-3)$$

(4-3) eingesetzt in das Kräftegleichgewicht (2-13) liefert die Bestimmungsgleichung für A:

$$A = -\delta\beta + \sqrt{\delta^2\beta^2 + \frac{2}{Z_t\gamma k_1}} \left[1 + \delta\beta - Z_p \left(1 + \delta\beta\right) + (Z_A - Z_0)(1 - \varphi)\delta\beta\right] + \frac{2\delta\beta}{\gamma k_1} \left[k_2 \left(1 - \varphi\right) - \frac{1}{2}k_1\beta\varphi\right]$$

$$(4 - 4)$$

Nach (2-12) ergibt sich mit der Änderung des Spannungsprofiles in Bild 4.1b) für die Änderung der Gesamtdehnung ΔE_2 :

$$\Delta E_{2} = \frac{\Delta Z_{2}(\xi)}{\delta} + Z_{t} \varphi (k_{1} \xi - k_{2}) + \Delta E_{p2} (\xi) - \beta \leq \xi \leq 0$$

$$\Delta E_{2} = \Delta Z_{2}(\xi) + Z_{t} (\gamma k_{1} \xi - k_{2}) + \Delta E_{p2} (\xi) \qquad 0 \leq \xi \leq A$$

$$\Delta E_{2} = 0 + Z_{t} (\gamma k_{1} \xi - k_{2}) + \Delta E_{p2} (\xi) \qquad A \leq \xi \leq V$$

$$\Delta E_{2} = \Delta Z_{2} (\xi) + Z_{t} (\gamma k_{1} \xi - k_{2}) \qquad V \leq \xi \leq 1$$

$$(4-5)$$

Die Kontinuität der Änderung des Spannungsverlaufes in der elastischen Zone erfordert $\Delta Z_2(\xi = V) = 0$, d.h.

$$\Delta E_2 = Z_1 (\gamma k_1 V - k_2)$$
(4-6)

 $\begin{array}{l} \text{Mit}\,\Delta Z_2 \,=\, Z_2 \,-\, Z_1 \,\, \text{und} \,\, Z_2 \,=\, \omega \,\, \text{für} \,\, -\,\, \beta \,\leq\, \xi \leq\, 0 \,\, \text{und} \,\, Z_2 \,=\, 1 \,\, \text{für} \,\, 0 \,\, \leq \xi \,\, \leq \, \forall \,\, \text{folgt} \\ \text{mit} \,\, Z_1 \,\, \text{aus} \,\, (4-3) \,\, \text{für} \,\, \text{die} \,\, \text{Spannungsänderungen} \,\, \Delta \, Z_2(\xi) \colon \\ \end{array}$

$$\Delta Z_{2}(\xi) = \omega - \delta \left[1 - Z_{t}(\gamma k_{1} A - k_{2}) + Z_{A} - Z_{0}\right] + Z_{t} \psi \delta(k_{1}\xi - k_{2}) - \psi \delta(Z_{A} - Z_{0}) - \beta \leq \xi \leq 0$$

$$\Delta Z_{2}(\xi) = - Z_{t} \gamma k_{1}(\xi - A) \qquad 0 \leq \xi \leq A$$

$$\Delta Z_{2}(\xi) = 0 \qquad A \leq \xi \leq V$$

$$\Delta Z_{2}(\xi) = Z_{t} \gamma k_{1}(V - \xi) \qquad V \leq \xi \leq 1$$

$$(4-7)$$

(4-7) eingesetzt in Gleichung (2-14) liefert die Bestimmungsgleichung für V:

$$V = 1 - \sqrt{\frac{2}{Z_{f} \gamma k_{1}} \left[1 + \omega \beta - Z_{p} \left(1 + \beta \delta \right) \right]}$$
(4-8)

Für die Spannungen $Z_2(\xi)$ ergibt sich gemäß (4-3) und (4-7) die Darstellung (vgl. Bild 4.1c)):

$$\begin{array}{c} Z_{2} \left(\xi\right) = \omega & & -\beta \leq \xi \leq 0 \\ Z_{2} \left(\xi\right) = 1 & & 0 \leq \xi \leq V \\ Z_{2} \left(\xi\right) = 1 - Z_{1} \left(\chi \right) k_{1} \left(V - \xi\right) & & V \leq \xi \leq 1 \end{array} \right)$$
 (4-9)

Die nächste Änderung des Spannungsprofiles vom abgekühlten Zustand in Bild 4.lc) zum aufgeheizten Zustand erfolgt nach Bild 4.lb), wobei die Spannungsänderungen nach (2-l2) das Vorzeichen wechseln. Die Lage des Knickpunktes des Spannungsverlaufes in der Grundplatte ist für den 2. Zyklus zunächst unbekannt und wird mit A₁ bezeichnet (vgl. Bild 4.l).

$$\Delta E_{3} = \frac{\Delta Z_{3}(\xi)}{\delta} - Z_{t} \varphi (k_{1} \xi - k_{2}) - \beta \leq \xi \leq 0$$

$$\Delta E_{3} = \Delta Z_{3}(\xi) - Z_{t} (\gamma k_{1} \xi - k_{2}) - \beta \leq \xi \leq 0$$

$$\Delta E_{3} = 0 - Z_{t} (\gamma k_{1} \xi - k_{2}) + \Delta E_{p3}(\xi) - \zeta_{t} (\gamma k_{1} \xi - k_{2}) - \zeta_{t} (\gamma k_{1} \xi - k_{2}) + \Delta E_{p3}(\xi) - \zeta_{t} (\gamma k_{1} \xi - k_{2}) - \zeta_{t} (\gamma k_{1} \xi - k_{2}) - \zeta_{t} (\gamma k_{1} \xi - \lambda + \zeta_{t}) - \zeta_{t} (\gamma k_{1} \xi - \lambda + \zeta_{t}) - \zeta_{t} (\gamma k_{1} \xi - \lambda + \zeta_{t}) - \zeta_{t} (\gamma k_{1} \xi - \lambda + \zeta_{t}) - \zeta_{t} (\gamma k_{1} \xi - \lambda + \zeta_{t}) - \zeta_{t} (\gamma k_{1} \xi - \lambda + \zeta_{t}) - \zeta_{t} (\gamma k_{1} \xi - \lambda + \zeta_{t}) - \zeta_{t} (\gamma k_{1} \xi - \lambda + \zeta_{t}) - \zeta_{t} (\gamma k_{1} \xi - \lambda + \zeta_{t}) - \zeta_{t} (\gamma k_{1} \xi - \lambda + \zeta_{t}) - \zeta_{t} (\gamma k_{1} \xi - \lambda + \zeta_{t}) - \zeta_{t} (\gamma k_{1} \xi - \lambda + \zeta_{t}) - \zeta_$$

Die Kontinuität der Änderung des Spannungsverlaufes in der elastischen Zone erfordert für $\Delta Z_3(\xi = A_1) = 0$, d.h.:

$$\Delta E_3 = - Z_t (\gamma k_1 A_1 - k_2)$$
(4-11)

Mit $\Delta Z_3 = Z_3 - Z_2$ und $Z_3 = 1$ für $A_1 \leq \xi \leq 1$ folgt mit $Z_2(\xi)$ aus (4-9) für die Spannungsänderungen $\Delta Z_3(\xi)$

- 23 -

,

(4-12) eingesetzt in Gleichung (2-14) liefert die Bestimmungsgleichung für A_1 :

$$A_{1} = -\delta \beta_{(\frac{t}{2})} \sqrt{\delta^{2} \beta^{2} + \frac{2}{Z_{t} \gamma k_{1}}} \left[1 + \omega \beta - Z_{p} (1 + \delta \beta) \right] + \frac{2\delta\beta}{\gamma k_{1}} \left[k_{2}(1 - \phi) - \frac{1}{2}k_{1}\beta\phi \right] (4 - 13)$$

Die Spannungen $Z_3(\xi)$ ergeben sich mit (4-12) und (4-9) zu

$$Z_{3}(\xi) = \omega - \delta [Z_{t}(\gamma k_{1} A_{1}-k_{2})] + Z_{t} \phi (k_{1}\xi-k_{2}) - \beta \leq \xi \leq 0$$

$$Z_{3}(\xi) = 1 + Z_{t} \gamma k_{1} (\xi - A_{1}) \qquad 0 \leq \xi \leq A_{1}$$

$$Z_{3}(\xi) = 1 \qquad A_{1} \leq \xi \leq 1$$

$$(4-14)$$

Die nächste Zyklushälfte umfaßt die Abkühlung vom aufgeheizten Zustand, wobei die Änderung der Gesamtdehnung nach (4-5) abläuft und damit die Gesamtdehnung ΔE_4 mit ΔE_2 identisch ist. Die konsequente Berechnung von ΔE_4 , $\Delta Z_4(\xi)$, V und $Z_4(\xi)$ usw. zeigt, daß ab der 3. Zyklushälfte keine Änderung in den Spannungsprofilen in Abhängigkeit von der Zykluszahl auftaucht. Ab der 3. Zyklushälfte nehmen die Spannungsprofile nach dem Aufheizen die Form (4-14) und nach dem Abkühlen die Form (4-9) an. Diese Spannungsprofile (4-9) und (4-14) werden im folgenden als stationäre Profile bezeichnet.

Bei den Knickpunkten V und A_l dieser stationären Profile spielen die Anfangsspannungen Z_A und Z_o keine Rolle, d.h. die von der Zykluszahl unabhängigen Profile sind unbeeinflußt von den Anfangsspannungen.

Die stationären Spannungsprofile stellen sich schon nach relativ geringer Zykluszahl ein. Für eine Beurteilung der zyklischen Belastung in bezug auf die Integrität der Plattenanordnung werden ausschließlich diese stationären Profile herangezogen.

Die Änderung in der plastischen Dehnung berechnet sich aus der Gesamtdehnung ΔE_i und der Änderung $\Delta Z_i(\xi)$. Für das Beispiel $\Delta E_{P3}(\xi)$ werden die Gleichungen (4-10), (4-11) und (4-12) benötigt:

$$\Delta E_{p3} (\xi) = -Z_t \gamma k_1 (A_1 - \xi) \qquad A_1 \leq \xi \leq V$$

$$\Delta E_{p3} (\xi) = Z_t \gamma k_1 (V - A_1) \qquad V \leq \xi \leq 1$$

$$(4-15)$$

Beim Aufheizen verlängert sich die Plattenkonfiguration im stationären Fall um den Betrag ΔE_2 , beim Abkühlen schrumpft sie um den Betrag ΔE_3 .

Wenn ΔE_i und ΔE_{i+1} die Dehnungsänderungen bei zwei aufeinanderfolgenden Zyklushälften im stationären Fall bedeuten, liegt Ratchetingverhalten vor falls gilt

$$\Delta E_g > 0$$
 mit $\Delta E_g = \Delta E_i + \Delta E_{i+1}$ (i geradzahlig) (4–16)

Die charakteristische Besonderheit des Ratchetingverhaltens kommt durch die Tatsache zum Ausdruck, daß nach jedem vollständigen Zyklus mit Aufheizen und Abkühlen ein bleibender Dehnungszuwachs für die Plattenanordnung zu verzeichnen ist.

Im folgenden wird untersucht, unter welchen Belastungskombinationen (Z_p, Z_t) das in Bild 4.1 demonstrierte Ratchetingverhalten auftritt. Wie am Beispiel des elastischen und Shakedown-Gebietes erkennbar ist, müssen im allgemeinen mehrere Grenzlinien ermittelt werden, um das vollständige Gebiet zu charakterisieren, in dem eine bestimmte Belastungskombination zu einem bestimmten Spannungsprofil führt. Der folgende Untersuchungsschritt beschränkt sich auf die Analyse der Grenzlinie zwischen Ratchetinggebiet und elastischem und Shakedown-Gebiet.

Aus (4-16) leitet sich für das Ratchetingprofil gemäß Bild 4.1 die Beziehung

$$\Delta E_{g} = Z_{t} \chi k_{1} (V - A_{1})$$
(4-17)

ab. Im Grenzfall $\Delta E_g = 0$ führt (4-17) auf den Ausdruck

$$V - A_1 = 0$$
 (4-18)

Diese Gleichung enthält die Bedingung für die Kombinationen (Zp, Z_t), die gerade die Grenze zwischen dem elastischen und Shakedown-Gebiet und dem Ratchetinggebiet definieren.

Der gesamte Zusammenhang zwischen Zp und Z_t ergibt sich nach entsprechender

— 25 —

Umformung, indem (4-8) und (4-13) in die Beziehung (4-18) eingesetzt werden.

$$Z_{t} = \frac{8 (1+2\delta\beta)}{\gamma k_{1}} [1 + \omega \beta - Z_{p} (1 + \beta \delta)] \frac{1}{(1+2\delta\beta - \frac{2\delta\beta}{\gamma k_{1}} [k_{2} (1-\phi) - \frac{1}{2}\phi k_{1}\beta])^{2}} (4-19)$$

Mit (4-19) wird eine lineare Beziehung zwischen Z_t und Z_p für die gesuchte Trennungslinie gefunden. Bei $Z_t = 0$ fällt der Z_p -Wert mit $Z_{p,max}$ aus (3-9) zusammen. Werden die Z_t -Werte aus (3-13) bzw. (3-14) in (4-19) eingebracht, ergibt sich der Z_p -Wert zu Z_{pM} gemäß (3-17). Damit ist die Eingrenzung des elastischen und Shakedown-Gebietes nach Bild 3.3 - wie in Kapitel 3.2 beschrieben - hergeleitet.

4.2 Beispiel für Wechselplastifizierung

Es werden die Spannungsprofile in Bild 4.2 betrachtet (Erwärmung der Plattierung in der 1. Zyklushälfte). Nach dem Aufheizen liegt in der gesamten Plattierung und an beiden Rändern der Grundplatte eine plastische Zone vor. Nach dem Abkühlen verbleibt die plastische Zone in der Plattierung in vollem Umfang, wohingegen sich die plastischen Bereiche an den Rändern der Grundplatte verringert haben.

Nach (2-15) ergibt sich mit dem Spannungsprofil in Bild 4.2a) für die Gesamtdehnung E_1 :

 $E_{1} = \frac{Z_{1}(\xi)}{\delta} - Z_{t} \varphi (k_{1} \xi - k_{2}) + \varphi (Z_{A} - Z_{0}) + E_{p1}(\xi) - \beta \leq \xi \leq 0$ $E_{1} = Z_{1}(\xi) - Z_{t}(\gamma k_{1} \xi - k_{2}) + (Z_{A} - Z_{0}) + E_{p1}(\xi) - \xi \leq 0$ $E_{1} = Z_{1}(\xi) - Z_{t}(\gamma k_{1} \xi - k_{2}) + (Z_{A} - Z_{0}) - \xi \leq 0$ $E_{1} = Z_{1}(\xi) - Z_{t}(\gamma k_{1} \xi - k_{2}) + (Z_{A} - Z_{0}) - \xi \leq 0$ $E_{1} = Z_{1}(\xi) - Z_{t}(\gamma k_{1} \xi - k_{2}) + (Z_{A} - Z_{0}) + E_{p1}(\xi) - \xi \leq 1$ (4-20)

Die Kontinuität des Spannungsverlaufes in der Grundplatte erfordert in der elastischen Zone für $Z_Z(\xi = G) = -1$ und $Z_1(\xi = H) = 1$:

$$E_{1} = -1 - Z_{t} (\gamma k_{1} G - k_{2}) + Z_{A} - Z_{0}$$

$$E_{1} = 1 - Z_{t} (\gamma k_{1} H - k_{2}) + Z_{A} - Z_{0}$$

$$(4-21)$$

Aus (4-20) und (4-21) lassen sich die Spannungen $Z_1(\xi)$ formulieren:

$$Z_{1} = -\omega - \beta \le \xi \le 0$$

$$Z_{1} = -1 - 1 - \xi \le 0$$

$$Z_{1} = -1 + Z_{1} + \xi + 0 - 0 - \xi \le 0$$

$$G \le \xi \le 0 - \xi \le 0$$

$$G \le \xi \le 0 - \xi \le 0$$

$$H \le \xi \le 1 - \xi \le 1$$

(4-22) eingesetzt in das Kräftegleichgewicht (2-13) liefert mit (4-21) die Bestimmungsgleichungen für G und H:

$$G = \frac{1}{2} \left[1 - \omega \beta - Z_{p} \left(1 + \beta \delta \right) \right] - \frac{1}{Z_{t} \gamma k_{1}}$$

$$H = \frac{1}{2} \left[1 - \omega \beta - Z_{p} \left(1 + \beta \delta \right) \right] + \frac{1}{Z_{t} \gamma k_{1}}$$
(4-23)

Nach (2-12) ergibt sich mit der Änderung des Spannungsprofils in Bild 4.2b) für die Änderung der Gesamtdehnung ΔE_2 :

$$\Delta E_{2} = \frac{\Delta Z_{2}(\xi)}{\delta} + Z_{1} \varphi (k_{1} \xi - k_{2}) + \Delta E_{p2}(\xi) - \beta \leq \xi \leq 0$$

$$\Delta E_{2} = \Delta Z_{2}(\xi) + Z_{1}(\gamma k_{1} \xi - k_{2}) + \Delta E_{p2}(\xi) \qquad 0 \leq \xi \leq K$$

$$\Delta E_{2} = \Delta Z_{2}(\xi) + Z_{1}(\gamma k_{1} \xi - k_{2}) \qquad K \leq \xi \leq L$$

$$\Delta E_{2} = \Delta Z_{2}(\xi) + Z_{1}(\gamma k_{1} \xi - k_{2}) + \Delta E_{p2}(\xi) \qquad L \leq \xi \leq 1$$

$$(4-24)$$

$$\Delta E_{2} = 2 + Z_{t} (\gamma k_{1} K - k_{2})$$

$$\Delta E_{2} = -2 + Z_{t} (\gamma k_{1} L - k_{2})$$

$$(4-25)$$

Mit (4-24) und (4-25) lauten die Spannungsänderungen $Z_2(\xi)$:

$$\Delta Z_{2} (\xi) = 2 \omega \qquad -\beta \leq \xi \leq 0$$

$$\Delta Z_{2} (\xi) = 2 \qquad 0 \leq \xi \leq K$$

$$\Delta Z_{2} (\xi) = 2 - Z_{1} \chi k_{1} (\xi - K) \qquad K \leq \xi \leq L$$

$$\Delta Z_{2} (\xi) = -2 \qquad L \leq \xi \leq 1$$

$$(4-26)$$

(4-26) eingesetzt in Gleichung (2-14) liefert mit (4-25) die Bestimmungsgleichungen für K und L:

$$K = \frac{1}{2} (1 - \omega \beta) - \frac{2}{Z_{t} \gamma k_{1}}$$

$$L = \frac{1}{2} (1 - \omega \beta) + \frac{2}{Z_{t} \gamma k_{1}}$$
(4-27)

Mit $\Delta Z_2(\xi) = Z_2(\xi) - Z_1(\xi)$ und $\Delta Z_2(\xi)$ aus (4-26) und $Z_1(\xi)$ aus (4-22) folgt für $Z_2(\xi)$:

$$Z_{2} = \omega \qquad -\beta \leq \xi \leq 0$$

$$Z_{2} = 1 \qquad 0 \leq \xi \leq K$$

$$Z_{2} = 1 - Z_{f} \gamma k_{1} (\xi - K) \qquad K \leq \xi \leq G$$

$$Z_{2} = \frac{1}{2} \gamma k_{1} (1 + \beta \delta) Z_{f} Z_{p} \qquad G \leq \xi \leq H$$

$$Z_{2} = 3 - Z_{f} \gamma k_{1} (\xi - K) \qquad H \leq \xi \leq L$$

$$Z_{2} = -1 \qquad L \leq \xi \leq 1$$

$$Z_{2} = -1$$

Die nächste Änderung des Spannungsprofiles vom abgekühlten Zustand in Bild 4.2c) zum aufgeheizten Zustand verläuft nach Bild 4.2b), wobei die Spannungsänderungen nach (2-12) das Vorzeichen wechseln.

Die Größen G, H, K und L verändern sich nicht, weswegen mit (4-25) gilt

$$\Delta E_{3} = -2 - Z_{t} (\gamma k_{1} K - k_{2})$$

$$\Delta E_{3} = 2 - Z_{t} (\gamma k_{1} L - k_{2})$$

$$\Delta E_{3} = -\Delta E_{2}$$

$$\Delta Z_{3} (\xi) = -\Delta Z_{2} (\xi)$$

$$(4-29)$$

$$(4-29)$$

$$(4-29)$$

Aus der Beziehung $\Delta Z_3(\xi) = Z_3(\xi) - Z_2(\xi)$ läßt sich unter Verwendung von (4-30) und der Beziehung $\Delta Z_2(\xi) = Z_2(\xi) - Z_1(\xi)$ zeigen, daß $Z_3(\xi) = Z_1(\xi)$ gilt. Damit liegen die stationären Profile für den in Bild 4.2 dargestellten Fall mit (4-22) und (4-29) fest.

Mit $\Delta E_3 = -\Delta E_2$ und $\Delta Z_3(\xi) = -\Delta Z_2(\xi)$ ergibt sich aus dem Vergleich von (4-24) mit (4-29) $\Delta E_{p3}(\xi) = -\Delta E_{p2}(\xi)$

Bezeichnen $\Delta E_{P(i+1)}(\xi)$ und $\Delta E_{P_i}(\xi)$ die plastischen Dehnungsänderungen zweier aufeinanderfolgender Zyklushälften im stationären Fall, liegt Wechselplastifizierung vor falls gilt

 $\Delta E_{p (i+1)} (\xi) + \Delta E_{p i} (\xi) = 0$ (4-31)

Die Addition der plastischen Dehnungen aus einem vollen, stationären Zyklus mit Aufheizen und Abkühlen ergibt den Wert null.

Die Analyse des Spannungsprofils in Bild 4.2 kann abgeschlossen werden, wenn die Belastungskombinationen (Z_p, Z_t) bekannt sind, die zu diesem Spannungsprofil führen. Analog zu Kapitel 4.1 wird eine Grenzlinie beispielhaft untersucht. Ausgewählt wird das Profil in Bild 4.2a). Es wird untersucht, bei welchen Z_p, Z_t -Werten zum erstenmal bei $\xi = 0$ eine plastische Zone in der Grundplatte auftritt. Die Bedingung für diese Forderung lautet G = 0 und mit (4-23) ergibt sich für diese Grenzlinie

$$Z_{t} = \frac{1}{\frac{1}{2} [1 - \omega \beta - Z_{p} (1 + \beta \delta)] \gamma k_{1}}$$
(4-32)

5. Spannungsprofile und Bree-Diagramm für Grundplatte mit Plattierung

Die Berechnung eines Spannungsprofils und die Ermittlung der Grenzlinien für die Belastungskombinationen (Z_p, Z_t), bei denen ein bestimmtes Spannungsprofil auftaucht, wurden in Kapitel 4 vorgestellt. Um eine Aussage treffen zu können, wie sich eine Plattenkonfiguration bei einer bestimmten zyklischen Thermobelastung mit mechanischer Vorspannung verhält, müssen alle relevanten Typen von Spannungsprofilen und deren jeweiliger Gültigkeitsbereich bekannt sein.

Die Auswahl und die Zusammenstellung der bei der Untersuchung berücksichtigten Spannungsprofile wird im folgenden aufgezeigt. Die Zuordnung dieser Spannungsprofile zu einer bestimmten Belastungskombination (Z_p , Z_t) erfolgt durch das Bree-Diagramm (vgl. Bild 5.5). In diesem Diagramm sind die Gültigkeitsbereiche der untersuchten Spannungsprofile eingezeichnet, so daß für jede Belastungskombination identifiziert werden kann, welches Spannungsprofil in diesem Fall in der Plattenkonfiguration vorherrscht. Das Bree-Diagramm wird entsprechend der in Kapitel 4 beschriebenen Vorgehensweise durch ein Rechenprogramm ermittelt (vgl. Kapitel 8).

<u>5.1 Klassifizierung</u> der Spannungsprofile

Das elastische und das Shakedowngebiet zeichnet sich dadurch aus, daß beim Wechsel von einer Zyklushälfte zur nächsten Spannungsänderungen ohne plastische Dehnungen entstehen. Auf diesen Bereich bezieht sich die Einteilung der Spannungsprofile in Klassen nicht. Diese Einteilung betrifft ausschließlich die Bereiche der Wechselplastifizierung und des Ratchetings. Die Nummer der Klasse bezieht sich auf die möglichen Spannungsprofile, die bei einer bestimmten Plattenanordnung auftreten können (vgl. Kapitel 5.3). Die Klassifizierung der Spannungsprofile nimmt ihren Ausgangspunkt bei den Profilen, die die Differenz der Spannungen zwischen zwei aufeinanderfolgenden Zyklus-
hälften beschreiben.

Die plastischen Zonen bei der Änderung der Spannungsprofile sollen an den Außenfasern $\xi = -\beta$ und $\xi = 1$ der Plattenanordnung beginnen. Die Einteilung der Profile in die drei Klassen Nr. 1 bis Nr. 3 erfolgt durch die Ermittlung der Reihenfolge, in der die einzelnen Beziehungen

$$\left| \Delta Z_{i}(\xi) \right| = 2 \omega \qquad -\beta \leq \xi \leq 0$$

$$\left| \Delta Z_{i}(\xi) \right| = 2 \qquad 0 \leq \xi \leq 1$$

$$(5-1)$$

erfüllt sind:

Tritt das erstmalige Plastifizieren in der Plattierung bei $\xi = -\beta$ auf und erstreckt sich diese Zone über die gesamte Plattierungsbreite $-\beta \leq \xi \leq 0$, ohne daß sich in der Grundplatte eine Zone der Plastifizierung aufgebaut hat, liegt die Klasse Nr. 1 vor, vgl. Bild 5.1.

Tritt die erste plastische Zone der Plastifizierung in der Plattierung bei $\xi = -\beta$ auf und erstreckt sich diese Zone nicht über die gesamte Plattierungsbreite $-\beta \leq \xi \leq 0$ beim ersten Auftauchen einer Zone der Plastifizierung in der Grundplatte bei $\xi = 1$, liegt die Klasse Nr. 2 vor, vgl. Bild 5.2.

Tritt die erste plastische Zone der Wechselplastifizierung in der Grundplatte bei $\xi = 1$ auf, liegt die Klasse Nr. 3 vor, vgl. Bild 5.3.

5.2 Von der Untersuchung ausgeschlossene Spannungsprofile

Die beiden Bilder 5.4 a) und b) beziehen sich auf die Änderung der Spannung zwischen zwei aufeinanderfolgenden Zyklushälften und können gleichermaßen sowohl für den Fall einer Erwärmung als auch den Fall einer Abkühlung ausgeschlossen werden. Im vorliegenden Bild 5.4 ist die Änderung der Spannungsprofile gezeichnet, wenn die erwärmte Plattierung abgekühlt worden ist.Das Bild 5.4 c) bezieht sich ausschließlich auf den Fall, daß das System in der 1. Zyklushälfte auf der Plattierungsseite erwärmt wird.

In Bild 5.4 a) und b) beginnt sich in der Grundplatte bei der Spannungsänderung $\Delta Z_{i}(\xi)$ eine zweite plastische Zone der Wechselplastifizeriung bei $\xi = 0$ auszubilden, ohne daß die Plattierung vollständig plastisch ist. In diesem Zustand führt die Gesamtverschiebung der Plattenanordnung zu dem Aufbau der plastischen Bereiche bei $\xi = 1$ und $\xi = 0$ in der Grundplatte, während die Plattierung noch nicht vollständig plastisch ist bzw. sich noch vollständig elastisch verhält. Damit kommt zum Ausdruck, daß eine erheblich größere Dehnung bei der Plattierung im Vergleich zur Grundplatte benötigt wird, um die Fließgrenze in der Plattierung zu erreichen. Ein derartiges Verhalten (vgl. Bild 5.4 a), b)) der Plattierung im Vergleich zur Grundplatte bei der Änderung der Spannungsprofile wird als nicht repräsentativ für die technische Praxis angesehen und deshalb nicht in die Untersuchung miteinbezogen.

Im Spannungsprofil in Bild 5.4 c) wird die Fließspannung in der Plattierung nicht an der Außenfaser bei $\xi = -\beta$ sondern bei $\xi = 0$ erreicht. Die Gesamtdehnung für die entkoppelte Plattierung und Grundplatte beträgt beim Erreichen der jeweiligen Fließspannung Z₁ = ω bzw. Z₁ = 1 nach (2-15):

$$E_{1} = \frac{\omega}{\delta} + \varphi (Z_{A} - Z_{0}) - \beta \le \xi \le 0$$
(5-2)

$$E_{1} = 1 + (Z_{A} - Z_{0}) 0 \le \xi \le 1$$
(5-3),

wenn die Temperaturbelastung außer acht gelassen wird. Nach der Division von (5-3) durch (5-2) liegt das Verhältnis der Fließdehnungen von Plattierung und Grundplatte fest:

$$E_{pG} = \frac{\frac{\omega}{\delta} + \psi (Z_{A} - Z_{0})}{1 + (Z_{A} - Z_{0})}$$
(5-4)

Bei $E_{pG} < 1$ kann eine entsprechend große Druckbelastung zu einem Plastifizieren der Plattierung führen, während die Grundplatte elastisch bleibt. Der Fall, bei dem die Spannung bei $\xi = 0$ in der Plattierung die positive Fließspannung erreicht, während die restliche Plattierung elastisch bleibt, wird nicht untersucht. Für Werte $E_{pG} > 1$ muß in der Grundplatte schon die Fließspannung vorherrschen, wenn die Plattierung an der Elastizitätsgrenze angelangt ist.

5.3 Zusammenstellung der untersuchten Spannungsprofile

Die in der Untersuchung verwendeten Spannungsprofile sind in Anhang A zusam-

mengestellt. Es werden jeweils stationäre Spannungsprofile im Sinne der am Ende von Kapitel 4.1 gegebenen Definition dargestellt. Die Zwischenprofile sind im Prinzip für den Fall der Abkühlung und der Aufheizung in der ersten Zyklushälfte gleich und können jeweils durch Spiegelung an der Linie $\Delta Z_i(\xi)$ = 0 ineinander übergeführt werden. Die Anfangsprofile beschreiben den Spannungsverlauf in der Plattenanordnung für die 1. Zyklushälfte. Aus den Endprofilen kann der Spannungsverlauf entnommen werden, der sich in der folgenden Zyklushälfte einstellt. Die Anfangsprofile werden sowohl für den Fall einer Erwärmung der Plattierungsseite als auch einer Abkühlung in der Anlage A gezeichnet mit den sich daraus ergebenden Endprofilen. Im Fall des Ratcheting liegt eine besondere Situation vor. Das Anfangsprofil beim Aufheizen der Plattierungsseite entspricht dem Endprofil beim Abkühlen der Plattierungsseite und das Endprofil beim Aufheizen entspricht dem Anfangsprofil beim Abkühlen. Die Ratchetingprofile Nr. 1 bis Nr. 7 in Anhang A können in zwei Richtungen gelesen werden: wird das linke Profil als Anfangsprofil genommen, liegt Aufheizen vor, während bei der Wahl des rechten Profils als Ausgangsprofil Abkühlen vorliegt.

Für die restlichen Spannungsprofile erfolgt die Zuordnung der Belastungsart zu der Nummer der Spannungsprofile durch Tabelle 2.

Nr. des Spannungsprofils	Verhalten der Plattenanordnung	Belastungsart in der 1. Zyklushälfte
1 - 7	Ratcheting	Abkühlen/Aufheizen
8 - 24	Wechselplastifizierung	Aufheizen
25 - 31	elastisches und Shakedownverhalten	Aufheizen
32 - 40	Wechselplastifizierung	Abkühlen
41 - 46	elastisches und Shakedownverhalten	Abkühlen

Tabelle 2: Zuordnung der Belastungsart zu der Nummer des Spannungsprofils in Anhang A

Für den Fall des Aufheizens werden alle 3 Klassen (vgl. Kapitel 5.1) betrachtet. Bei jeder dieser Klassen kann jeweils eine unterschiedliche Auswahl aus der Gesamtheit der Spannungsprofile in Anhang A im Bree-Diagramm auftreten. Diese Auswahl ist aus Tabelle 3 ersichtlich.

Fall Nr.	Profil Nr. (vgl. Anhang A)			
	elastisches u. Shakedown-Gebiet	Wechselplastifizierung	Ratcheting	
1	25 - 31	8 - 15, 23, 24	1 - 5	
2	25 - 31	8-10, 13-15, 20-24	1,2,4,5,6	
3	25 - 31	13 - 22	1,4,5,6,7	

Tabelle 3: Zuordnung der Spannungsprofile zu den in Tab. 2 angegebenen Fällen.

In den Bree-Diagrammen in den Bildern 5.5 bis 5.7 sind die Gebiete mit elastischem und Shakedownverhalten, Wechselplastifizierung und Ratcheting für die Klassen 1 bis 3 benannt.

Für den Fall der Abkühlung wird ausschließlich die Klasse Nr. 1 berücksichtigt. In Bild 5.8 wird ein Bree-Diagramm für den Fall einer Abkühlung in der ersten Zyklushälfte vorgestellt. Die aktuell eingesetzten Parameter für die Materialdaten γ , δ , ω , und ϕ , die Anfangsbedingungen Z_A , Z_0 , die Plattendicken β sowie das verwendete Temperaturprofil (vgl. Kapitel 2.2) sind jeweils in den Bildern 5.5 bis 5.10 dokumentiert.

6. Berechnungsbeispiel

6.1 Wahl der Plattenparameter und der Belastungskombination

In /13/ und /14/ wird das berechnete und gemessene Verhalten eines Druckbehälterstutzens bei Thermoschockbelastung vorgestellt. Der Stutzen ist mit einer Plattierung versehen und aus /13/ werden die folgenden Plattenparameter

— 34 —

		Grund- platte	Plattie- rung	Platten- parameter
Elastizitätsmodul	[N/mm ²]	190 000	181 000	δ = 0,95
Temperaturausdehnungskoeffizient	[1/K]	$13 \cdot 10^{-6}$	$17 \cdot 10^{-6}$	$\varphi = 1,31$
Wärmeleitfähigkeit	[kcal/m h K]	36	16,6	γ = 0,46
Fließspannung	[N/mm ²]	500	444	$\omega = 0,89$
Plattendicke	[mm]	105	8	$\beta = 0,08$

Tabelle 4: Ausgewählte Plattenparameter

entnommen:

Bei der Thermoschockbelastung des Stutzens muß in diesem Beispiel ein konstanter Innendruck von 106 bar berücksichtigt werden. Diese Innendruckbelastung bewirkt eine Spannungsverteilung, die in /14/ mittels der Finiten Elemente Methode berechnet wurde. Für die Umfangsspannung auf Grund des Innendrucks mit Stutzen wurden Werte zwischen 170 N/mm² und 340 N/mm² ermittelt. Mit diesen beiden Spannungswerten läßt sich eine Eingrenzung der mechanischen Vorspannung für die Bree-Platte durchführen. Mit Z_p = $\frac{\sigma_p}{\sigma_u}$ ergibt sich mit der Fließspannung σ_u der Grundplatte

 $Z_p = \frac{170}{480} = 0.3542$ bzw $Z_p = \frac{340}{480} = 0.7083$

Die Temperatur an der Außenseite der Plattierung wird zyklisch zwischen 300° C und 30° C variiert. Ein Δ T = 290°C führt zu einer konservativen Abschätzung der Temperaturbelastung gemäß

$$Z_{t} = \frac{\sigma_{t}}{\sigma_{u}} = \frac{E \cdot \alpha \cdot \Delta T}{2 \cdot \sigma_{u}} = 0.8014$$

6.2 Einfluß unterschiedlicher Anfangszustände

Das Bree-Diagramm kann gezeichnet werden, wenn neben den Plattenparametern ω , δ , γ , ϕ und β der Anfangszustand z_A , z_0 benannt wird:

$$Z_{A} = \frac{\sigma_{A}}{\sigma_{u}} = \frac{E \alpha T_{A}}{\sigma_{u}}$$
$$Z_{0} = \frac{\sigma_{0}}{\sigma_{u}} = \frac{E \alpha T_{0}}{\sigma_{u}}$$

Bei der Temperatur T_O werden Grundplatte und Plattierung im spannungsfreien Zustand starr gekoppelt. Danach erreicht die Temperatur der Plattenanordnung den Wert T_A , von dem aus die Thermoschockbelastung erfolgt.

Die Änderung von T_A und T_O induziert jeweils konstante Spannungen in Grundplatte und Plattierung auf Grund der unterschiedlichen Wärmeausdehnungskoeffizienten, ohne daß eine äußere Belastung aufgeprägt wird. Mit

$$E_1 = \frac{Z_1}{\delta} + \varphi \left(Z_A - Z_0 \right) \qquad -\beta \le \xi \le 0$$

$$E_1 = Z_1 + (Z_A - Z_0)$$
 $0 \le \xi \le 1$

und aus dem Kräftegleichgewicht für die Gesamtdehnung ${ t E}_1$

$$E_{1} = \frac{(Z_{A} - Z_{0}) (1 + \psi \delta \beta)}{1 + \delta \beta}$$

lassen sich in Abhängigkeit von T_A und T_0 die Spannungen in Grundplatte und Plattierung angeben.

Die in Tabelle 5 angegebenen Fälle gelten für $T_A - T_O = 670$ K, 570 K und 20 K.

ZA	Zo	Grundplatte		Plattier	ung
		Z ₁ [-]	σ ₁ =Z ₁ σ _u [N∕mm²]	Z ₁ [-]	$\sigma_1 = Z_1 \sigma_u [N/mm^2]$
3,57	0,153	0,0625	30,0	-0,9420	-450
2,55	0,153	0,0439	21,1	-0,6608	-317
0,255	0,153	0,0047	2,3	-0,0703	-33,7

Tabelle 5: Einfluß der Anfangstemperatur

Die Wahl von Z_A und Z_O beeinflußt nach (2-15) die Grenzlinien des Bree-Diagrammes innerhalb des elastischen und Shakedown-Gebietes; die Grenzlinien außerhalb dieses Bereiches sind unabhängig von diesen Größen (vgl. 2-12).

Das Bree-Diagramm mit den Plattenparametern aus Kapitel 6.1 ist in Bild 5.8 gezeichnet für den Fall einer Abkühlung in der 1. Zyklushälfte. Der Einfluß der unterschiedlichen Anfangsbedingungen auf die Grenzlinien im Innern des elastischen und Shakedown-Gebietes wird in Bild 6.1 demonstriert:

Bei $T_A = 700^{\circ}$ C wird gerade die Fließgrenze in der Plattierung erreicht. Eine Vergrößerung von T_A würde zu plastischen Dehnungen in der Plattierung vor dem eigentlichen Thermoschock führen.Dieser Fall wird nicht behandelt. Bild 6.1 verdeutlicht, daß mit wachsendem T_A der Bereich vergrößert wird, in dem die Plattierung vollständig durchplastifiziert ist (Spannungsprofil Nr. 31). Der Fließbeginn in der Grundplatte bei $\xi = 1$ wird in der Weise beeinflußt, daß mit wachsendem T_A die Größe des Gebietes verkleinert wird, in dem bei $\xi = 1$ die Fließspannung unterschritten wird.

Für die in Kapitel 6.1 festgestellten Belastungskombinationen ergeben sich bei den Anfangsbedingungen $T_A = 700$ °C und $T_A = 500$ °C die Spannungsprofile in Bild 6.2. Die Vergrößerung der plastischen Zone beim Abkühlen der Plattierung in der Grundplatte durch die Erhöhung von Z_p kann direkt aus Bild 6.1 abgelesen werden. Die Belastungskombinationen führen zum Shakedown-Verhalten. Bei der ersten Abkühlung bilden sich in der Plattierung und in der Grundplatte plastische Zonen aus. In den folgenden Zyklen verhält sich die Plattenanordnung elastisch.

6.3 Größe der plastischen Zonen bei der Wechselplastifizierung

Die Zwischenprofile $\Delta Z_i(\xi)$ beschreiben die Änderungen der Spannungen zwischen

den Zyklushälften der thermischen Belastung. Für eine bestimmte Stelle der Plattenanordnung liegt Wechselplastifizierung vor, wenn am Anfang des Zyklus die positive und am Ende des Zyklus die negative Fließspannung vorhanden ist oder entsprechend am Anfang die negative und am Ende die positive Fließspannung und die auftretenden plastischen Dehnungen aus zwei aufeinanderfolgenden Zyklushälften sich gerade zu Null addieren. Die Stellen dieser Wechselplastifizierung können damit aus den Zwischenprofilen $\Delta Z_i(\xi)$ mit der Bedingung $|\Delta Z_i(\xi)| = 2\omega bzw. |\Delta Z_i(\xi)|= 2$ identifiziert werden.

In Bild 6.3 sind die möglichen Bereiche der Wechselplastifizierung eingezeichnet.

Die Zwischenprofile der Spannungsänderung $\Delta Z_i(\xi)$ hängen nicht von der Druckbelastung Z_p ab, da sowohl am Anfang als auch am Ende des Belastungszyklus das System mit dem konstanten Druck im Gleichgewicht steht (vgl. Kapitel 2). Damit wird die Größe der plastischen Zone neben den Plattenparametern ω , δ , φ, γ und β von der thermischen Belastung Z_t bestimmt. Die Kenngrößen der plastischen Zonen für die Spannungsprofile der Klasse Nr. 1 (vgl. Kapitel 5.1) sind in Tabelle 6 zusammengestellt.

Plastische Zone	Lage der plastischen a	Zone	Maximale Größe (Z _t ─► ∞)
			· · ·
P ₁	1 <u>></u> ξ	·· .	$1 - 1/2 (1 - \omega \beta)$
P ₂	ο <u><</u> ξ	·	1/2 (1-ωβ)
P ₃	-β <u><</u> ξ <u><</u> ο		ß

Tabelle 6: Beschreibung der plastischen Zonen

Mit den Parametern aus Tabelle 4 ergeben sich die in Bild 6.4 dargestellten plastischen Zonen. Die Größe der Temperaturbelastung Z_t ist über der Größe der plastischen Zone für die Bereiche P₁, P₂ und P₃ aufgetragen.

7. Einfluß der Geometrie- und Werkstoffparameter auf die Grenzen des Shakedown-Gebietes

Durch die Gleichung (2-13) bzw. (2-14) wird gemäß Bild 3.2 der Grenzwert $Z_{t,max}$ für die thermische Belastung festgelegt, für den bei vorgegebener Innendruckbelastung gerade noch Shakedown-Verhalten zustande kommt. Um die Lage dieser waagerechten Grenzlinie in Abhängigkeit von den Plattenparametern zu zeigen, werden die Plattenparameter des Berechnungsbeispiels in Kapitel 6.1 herangezogen. Das Verhältnis β der Plattendicken wird als variable Größe angenommen.

Die Veränderung eines einzigen Parameters bewirkt eine Abweichung des Grenzwertes Z_{t,max} in Abhängigkeit von , während die restlichen Parameter jeweils konstant gehalten werden. Die Verhältniszahlen von Plattierung/Grundwerkstoff

- δ (Elastizitätsmodul)
- φ (Wärmeausdehnungskoeffizient)
- Y (Wärmeleitfähigkeit)
- ω (Fließspannung)

zwischen Grundplatte und Plattierung werden in dem Bereich von 0,4 bis 3 variiert. Der Wertebereich des Plattendickenverhältnisses β erstreckt sich jeweils zwischen 0,02 und 0,5. Die gewählten Plattenparameter führen zu einem Verhalten entsprechend der Klasse Nr. 1 (vgl. Kapitel 5.1), d.h. bei $\xi = -\beta$ wird zum ersten Mal die negative Fließspannung erreicht. Die Ergebnisse der Analyse sind in den Bildern 7.1 und 7.2 dargestellt.

Einfluß von δ (Bild 7.1 a):

Für Werte $\delta < 1$ verläuft der lineare Ast im Spannungs-Dehnungsdiagramm der Plattierung flacher als bei der Grundplatte. Da die restlichen Parameter unverändert bleiben, muß für $\delta < 1$ die Gesamtdehnung erhöht werden, um in der Plattierung Fließen zu erzeugen. In der Praxis ist jedoch ein Unterschied im Elastizitätsmodul zwischen Grundplatte und Plattierung von $\delta = 0,4$ nicht relevant. Durch ein Absinken der δ -Werte vergrößert sich das Shakedowngebiet. Eine Vergrößerung der Plattierungsdicke wirkt sich besonders für $\beta <$ 0,1 aus und für sehr große bzw. sehr kleine δ -Werte.

Einfluß von φ (Bild 7.1 b):

Der Parameter φ steuert das Verhältnis der Wärmespannungen in Grundplatte und Plattierung. Für das Erreichen der Fließspannung bei $\xi = -\beta$ wird eine bestimmte Wärmedehnung in der Plattierung benötigt. Bei $\varphi < 1$ treten bei gleicher Temperaturänderung in der Plattierung geringere Wärmedehnungen auf als in der Grundplatte. Sinkt die Wärmedehnung durch die Verkleinerung von φ , muß ein größerer Temperaturgradient aufgeprägt werden, um den Beginn der plastischen Zone bei $\xi = -\beta$ zu initiieren. Damit vergrößert sich das Shakedowngebiet mit sinkenden Werten von φ . Der Einfluß der Plattendicke ist bis auf sehr kleine Werte von φ nicht signifikant in bezug auf Z_{t.max}.

Einfluß von ω (Bild 7.2 a):

Je größer die Fließspannung in der Plattierung im Verhältnis zur Grundplatte ausfällt, umso größer muß die Gesamtdehnung werden, um bei $\xi = -\beta$ die Fließgrenze zu erreichen. Der größeren Gesamtdehnung entspricht eine Erhöhung in der ertragbaren thermischen Belastung Z_t, bevor Shakedown-Verhalten auftritt. Der Einfluß der Plattierungsdicke ist nicht signifikant.

Einfluß von γ (Bild 7.2 b):

and the second second

Bei sehr kleinen Werten von β hängt die Größe des Shakedown-Gebietes praktisch nicht von der Wärmeleitfähigkeit ab. Mit wachsender Plattierungsdicke verstärkt sich der Einfluß der Wärmeleitfähigkeit. Im vorliegenden Beispiel weitet sich der Shakedown-Bereich im allgemeinen aus, wenn die Wärmeleitfähigkeit in der Plattierung angehoben wird.

8. Rechenprogramme für das Bree-Diagramm

Vor der Ermittlung des Bree-Diagrammes muß bekannt sein, wie die

- Materialparameter $\omega, \varphi, \delta, \gamma$
- Anfangsbedingungen Z_A, Z_O
- Verhältnis der Plattendickenβ

der zu untersuchenden Plattenanordnung lauten. Für Untersuchungen mit dem Bree-Modell stehen die folgenden Programme zur Verfügung:

- Berechnung der Grenzlinien für das Bree-Diagramm mit Plattierung
- Zeichnen des Bree-Diagrammes mit der Ausgabe der Grenzlinien, der Eingabeparameter, der gültigen Klassen-Nr. und des verwendeten Temperaturprofiles
- Zeichnen der Spannungsprofile für eine ausgewählte Belastungskombination
- Größe der plastischen Dehnungen im Fall der Wechselplastifizierung bei Abhängigkeit der Temperaturbelastung Z_r

Die Programme sind im Rechenzentrum des Kernforschungszentrums Karlsruhe installiert.

9. Zusammenfassung

In der Praxis kommen druckbelastete Komponenten wie Druckbehälter und Rohrleitungen vor, die zyklischen thermischen Belastungen ausgesetzt sind. Die elastische Berechnung der Spannungen aus thermischer Last und Innendruck kann ein Überschreiten der Fließspannung des Materials anzeigen. Eine elastoplastische Berechnung der Beanspruchung (z.B. mit der Methode der Finiten Elemente) ist schwierig und aufwendig. Aus diesem Grund wird an einem einfachen Modell untersucht, wie sich eine Innendruckbelastung und eine zyklische thermische Belastung im allgemeinen Fall auswirken, wenn die Fließspannung überschritten werden kann.

Als Modell wird in Erweiterung des sog. Bree-Modells /l/ eine Plattenanordnung aus Grundplatte und Plattierung gewählt. Die Plattenanordnung ist in Längsrichtung frei verschieblich gelagert und jeder Punkt eines bestimmten Querschnittes muß dieselbe Gesamtdehnung erfahren. Das Materialverhalten wird als elastisch ideal-plastisch angenommen. Die jeweiligen Verhältnisse δ , ϕ , γ U. ω von Elastizitätsmodul, Temperaturausdehnungskoeffizient, Wärmeleitfähigkeit und Fließspannung zwischen Plattierung und Grundplatte definieren mit dem Verhältnis β von Plattierungsdicke zu Dicke der Grundplatte die Plattenanordnung.

Die Belastung der Plattenkonfiguration setzt sich zusammen aus einer konstanten Zugkraft, die eine Innendruckbelastung simuliert, und einem linearen, stationären Temperaturfeld in Grundplatte und Plattierung. Für diese Beanspruchung werden die dimensionslosen Kennzahlen Z_t für die thermische Belastung und Z_p für die Innendruckbelastung eingeführt. Auch ohne äußere Beanspruchungen liegen zu Beginn Spannungen in der Plattenanordnung vor, die auf Grund der unterschiedlichen Temperaturausdehnungskoeffizienten in Plattierung und Grundplatte entstanden sind. Mit diesen Anfangsspannungen und den Verhältniszahlen δ , φ , γ , ω und β und Belastungsgrößen (Z_p , Z_t) läßt sich das Verhalten der Plattenanordnung durch eine einachsige Beanspruchung beschreiben, die jeweils für Grundplatte und Plattierung aufgestellt wird. Unter Verwendung der Kompatibilitätsbedingung und des Kräftegleichgewichts wird in folgender Weise vorgegangen:

Es werden verschiedene Spannungsverteilungen vorgegeben, so daß die Addition der elastischen, thermischen und plastischen Dehnungsanteile die Kompatibilitätsbedingung erfüllt. Danach werden die Belastungskombinationen (Z_p, Z_t) berechnet, für die das jeweilige Spannungsprofil gültig ist. Diese Ergebnisse werden in einem sogenannten Bree-Diagramm zusammengefaßt. Für eine bestimmte Plattenanordnung kann für jede Belastungskombination (Z_p, Z_t) aus diesem Diagramm entnommen werden, ob elastisches Verhalten, Shakedownverhalten, Wechselplastifizierung oder Ratcheting vorliegt und welches Spannungsprofil bei diesem Verhalten zugeordnet werden muß.

Für die Beurteilung der Integrität eines druckbelasteten Bauteils mit zyklischer thermischer Last ist es von entscheidender Bedeutung, ob eine Belastungskombination (Z_p, Z_t) zu elastischem oder Shakedownverhalten führt. Liegt Wechselplastifizierung vor, kann nach einer relativ geringen Zyklenzahl Versagen auftreten (low cycle fatigue). Ratchetingverhalten zeichnet sich dadurch aus, daß mit jedem Belastungszyklus das System um einen bleibenden Betrag gedehnt wird. In diesem Fall ist sicherzustellen, daß die auftretenden bleibenden Längenänderungen des Systems dessen Funktionsfähigkeit nicht beeinflussen. Im Shakedownverhalten wird durch Spannungsumlagerungen in den ersten Zyklen erreicht, daß sich für alle weiteren Zyklen elastisches Verhalten ausbildet. Mit dem Bree-Diagramm können die Belastungskombinationen (Zp, Z_t) identifiziert werden, die zu elastischem oder Shakedownverhalten führen. Bei diesen Beanspruchungen wird die Zahl der ertragbaren Zyklen am größten sein (high cycle fatigue). Die Größe dieses Bereiches im Bree-Diagramm hängt nicht von den im allgemeinen unbekannten Anfangsspannungen in der Plattenanordnung ab.

Die Erstellung der Bree-Diagramme erfolgt durch ein Rechenprogramm, das im Kernforschungszentrum Karlsruhe installiert ist. Als Eingabegrößen werden die

Verhältniszahlen δ , φ , γ und ω der Materialwerte von Plattierung und Grundplatte, das Dickenverhältnis β und die Vorgabe über die Anfangsspannungen verwendet. Mit diesen Größen werden die Grenzlinien der Belastungskombinationen (Z_p, Z_t) berechnet, für die elastisches oder Shakedownverhalten, Wechselplastifizierung oder Ratcheting auftritt und in das Bree-Diagramm eingezeichnet. 10. Literatur

/1/ J. Bree:

Elastic-plastic behaviour of thin tubes subjected to internal pressure and intermitted high-heat fluxes with application to fast-nuclear-reactor fuel elements Journal of Strain Analysis vol. 2, no. 3, 1967 (S. 226-238)

/2/ Coffin, L.F.

A study of the effect of cyclic thermal stresses on a ductil metal TRANS. AM. SOC. MECH. ENGRS. 1954, 76, 931

- /3/ ASME Boiler and Pressure Vessel Code Case N-47-21, Appendix T, Rules for strain, deformation and fatigue limits at elevated temperatures
- /4/ D.R. Miller

Thermal-stress ratchet mechanism in pressure vessels Journal of Basic Engineering, Trans. ASME, vol. 8, no. 2, June 1959

/5/ D. Burgreen

The thermal ratchet mechanism Journal of basic engineering, September 1968 Trans. ASME, Series D, vol. 90 (319-324)

/6/ D. Burgreen

Structural growth induced by thermal cycling Journal of basic engineering, December 1968 Trans. ASME, Series D, vol. 9, (469-485)

/7/ J. Bree

Incremental growth due to creep and plastic yielding of thin tubes subjected to internal pressure and cyclic thermal stresses Journal of strain analysis, vol. 3, no. 2, 1968 (122-127) /8/ T.M. Mulcahy

Thermal ratcheting of a beam element having an idealized Bauschinger effect.

J. of Engineering Materials and Technology Trans. ASME, vol. 98, 1976 (264-271)

/9/ A.M. Goodman

The influence of rapid thermal transients on elastic-plastic ratchetting Eng. Struct., 1981, vol. 3 (17-26)

/10/ H.W. Ng, D.N. Moreton

The Bree-Diagram - origins and literature - some recent advances concerning experimental verification and strain-hardening materials Recent advances in creep and fracture of engineering materials and structures Wilshire B. (eds.) Pineridge Press, 1982, p. 185-230

/11/ J. Phillips

The effect of infrequent thermal overloads the behaviour of plates subjected to cyclic thermal loading Journal of Pressure Vessel Technology, vol. 106/87, February 1981 (86-92)

- /12/ S. Karadeniz, A.R.S. Ponter The influence of transient thermal loading on the Bree-plate; a simplified method of analysis Nuclear Engineering and Design 80 (1984) (359-374)
- /13/ HDR-Sicherheitsprogramm, Technischer Fachbericht 53-84 Untersuchungen zu Rißbildung und Rißfortschritt bei zyklischer Thermoschocklast an einem Druckbehälterstutzen Januar 1985, Kernforschungszentrum Karlsruhe
- /14/ HDR-Sicherheitsprogramm, Technischer Fachbericht 35-83 Untersuchungen zu Rißbildung und Rißfortschritt bei zyklischer Thermoschocklast zu einem Druckbehälterstutzen Juli 1983, Kernforschungszentrum Karlsruhe

/15/ D.A. Gokhfeld, O.F. Cherniavsky Limit analysis of structures at thermal cycling Sijthoff u. Noordhoff, 1980

/16/ J.B. Martin Plasticity MIT Press 1975

١

Temperaturprofil 1

Temperaturprofil 2

Bild 2.2 Temperaturprofil 1 und 2 (Aufheizen)

Elastisches- und Shakedown-Gebiet

- 48 ---

Bild 4.2 Beispiel eines Spannungsprofils (Wechselplastifizierung)

Bild 5.1 Definition von Klasse Nr.1 ΔΖ_i (ξ)

Bild 5.2 Definition von Klasse Nr.2 ΔZ_i (§)

Bild 5.3 Definition von Klasse Nr.3 ΔZ_i (§)

Bild 5.4 Von der Untersuchung ausgeschlossene Spannungsprofile

Bild 5.5 Bree-Diagramm

Bild 5.6 Bree-Diagramm

Bild 5.7 Bree-Diagramm

Bild 5 8 Bree-Diagramm

Bild 5.9 Bree-Diagramm

— 56 —

$$Z_{A} = 0.35$$

 $Z_{A} = 1.50$

 $Z_{A} = 3.5$

Bild 6.1 Verschiebung der Grenzlinien durch die Anfangsbedingungen

Spannungsprofil bei den ausgewählten Belastungskombinationen

Bild 7.1

Einfluß der Plattenparameter δ und ϕ auf die Grenze des Shakedowngebietes

Anhang A

Untersuchte Spannungsprofile

Ratcheting – Profil 1 bis 4

Ratcheting – Profil 5 bis 7

. (

Wechselplastifizierung 8 bis 11 (Aufheizen)

Wechselplastifizierung 12 bis 15 (Aufheizen)

Wechselplastifizierung 16 bis 19 (Aufheizen)

Wechselplastifizierung 20 bis 23 (Aufheizen)

Wechselplastifizierung 24 (Aufheizen)

Elastisches- und Shakedown-Verhalten 25 bis 28 (Aufheizen)

Elastisches- und Shakedown-Verhalten 29 bis 31 (Aufheizen)

Wechselplastifizierung 32 bis 35 (Abkühlen)

Wechselplastifizierung 36 bis 39 (Abkühlen)

.

Wechselplastifizierung 40 (Abkühlen)

Elastisches- und Shakedown-Verhalten 41 bis 44 (Abkühlen)

Elastisches- und Shakedown- Verhalten 45 bis 46 (Abkühlen)