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The paper basically deals \•Tith the aim, to a get a better scientific insight in
to the effects of microstructure and properties of multi-phase and porous mate
rials and to use the results technologically for tailoring those materials. 
First the theory of microstructure-property correlations including both, the 
bound concept and the model concept, is described using conductivity and Youngs 
modulus of elasticity as property examples. Since in the frame of the theoreti
cal derivation no fitting factors have been permitted to be introduced into the 
bound equations and constitutive equations the determination of the microstruc
tural factors by quantitative microstructural analysis is demonstrated in the 
second part of the contribution. By comparing measured and calculated proper
ty values for porous ceramics, graphite and metals as well as cermets, metal
polymer and polymer-ceramic-composites the equations are tested for engineering 
conditions. Finally the dependences of the thermal conductivity and Youngs mo
dulus of elasticity on porosity are used to predict the thermal shock resistance 
of porous glass and to compare the results wi th experimental values. 

INTRODUCTION 

The present paper is written as an introductory guideline to the subject and 

not as a final report. Comprehension is endeavoured, details refer to the refe

rences. Simple spoken style has been choosen due to a workshop lecture, certain

ly not perfect in language, neither in expression nor in grammar and syntax, but 

- this I do hope - useful as an understandable basis for discussion. 

0254-0584/86/$3.50 © Elsevier Sequoia/Printed in The Netherlands 
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Originally the starting point for us to enter the problern of microstructure

property-relations was not only to get a better scientific insight into the be

haviour of multiphase materials but also the need to develop or
1
construct1-

a type of tailor-made-materials in order to substitute less available or ecolo

gically suspicious constituents in conventional engineering materials. 

For doing so we first had to find out about the theoretical correlation bet

ween microstructure and properties of multiphase materials. In this context mi

crostructure refers to the geometry and geometrical arrangement of the materi

als constituents and is already clearly separated from the t atomistic structure1, 

say the materials composition, the X-ray structure as well as the macrostruc

tu~e in a one-dimensional scale (Fig. 1) [20]. 

mocrostructure 

microstructure 

x- ray structure 

otomic 
structure 

I 

I 
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interntornie distances 

dimensions [m l 

Fig. 1. Subdivision of materials structure. 
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Treating properties in their relation to microstructure we found out - also 

from the literature - that the derivation of certain properties is based on the 

same principles and leads to identical results for all of them [1,2,3]. So for 

example, the electrical and thermal conductivity, the electrical permittivity 

as well as the magnetic permeability altogether appear in so called field equa

tions of the same type, which form the basis for the derivation of their - iden

tical - microstructural dependences. This is \vhy we may treat them as one 

group. Other property groups arc given in Fig. 2. The term technical properties 

refers to those, which are of special practical interest and consist theoreti

cally of a mathematical combination of - for instance - field properties and me

chanical properties. An example in this context is the thermal shock resistance 

equation [4] 

Rm 
Rrs = const. -

a. th 
~(1-vl 

E 

STRUCTURE 
MATERIALS 

and PROPERTIES 

atomic structure 

X- ray structure 

microstrudure 

mocrostructure 

thermodynamic properties 

field 

mechanical 

technical 

properties 

properties 

properties 

Fig. 2. Structure and property groups. 

(1) 

for brittle materials as carbon or glass which contains the ratio between ther

mal conductivity (~th) and Young's modulus (E) as a governing term (RTS = ther

mal shock resistance; Rm = rupture strength; ath = coefficient of thermal ex

pansion; v = Poisson ratio). As a consequence, if we want to improve the ther

mal shock behaviour of glass or ceramies by constructing cermet-composites we 

have to do with this ratio between thermal conductivity and Young's modulus 

(Fig. 3), being rather different formetals and ceramics, which form the consti

tuents in cermets. And we have to know ho~1 the microstructure of such a cera

mic-metal-combination effects the conductivity and Youngs Modulus. This is ~1hy 

I now turn to the theoretical derivation of microstructure-property equations 

- for field properties including conductivity and 

- for elastic properties as Youngs modulus. 
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Fig. 3. Thermal conductivity/Youngs modulus for metals, ceramies and polymers. 

THEORY OF MICROSTRUCTURE-PROPERTY-CORRELATIONS 

Conductivity 

Bound concept 

To obtain the microstructure-field property interrelationship quantitatively 

__ on a _theoretical basis _ two. concepts. exist_ [ 1] _ 

- the bound concept and 

- the model concept. 
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In case of the bound concept the constituents of the two-phase material are 

considered separately in the respective electrical, magnetic or temperature 

field as shown in Fig. 4 [5,6). 

~------------------~~+ 

two phases. in primary field two phase material 

Fig. 4. Bound concept schematically. 

By field influence the materials take up field energy, where these energy 

terms behave additively, when composing the components to one piece. The result

--ing energy equation proviC!esEWo-soiutions for the efrectrve-neTd property; tne -

solutions themselves depend on the microstructural information to be available 

or assumed to be correct as limiting conditions: 
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for example supposing or knowing nothing rnore, than that the material is two
phased one obtains an utmost upper (~~) and a lower value (~IC, ) bounding all 
possible property quantities in between I order bounds (Fig. 5) so called for 
referring to one single assumption: the number of phases 

lo~1er bounds upper bounds 

I.order '~'rc c '~'t '1'2 
c2'~'1 +! l-c2l<P2 

<Prc c c2<j)2+l 1-c2)<P1 

II. order 
3<jl2+2{1-c2){'l't-'l'2l 

<Pli = 4'2 
3<Pt + 2c2{<P2- <Pt) 

'{>IIC = <P, 3<Pt-l 1-c2)(<jl1- 'l'2l 3'1'2-c2('1'2-<Pt l c 

~?,<1?2 

<Pure- <Po 'PM+ 2 'l'o ljliii-<P ~ Jll.order 1- c 0 = 1- c0 = C D M 

'PM -ljlD <PIIIC+ 2 'l'o '1'1·1-ljlD ~ 
4'o<4',, 

Fig. 5. Bound equations (2+7) of field properties (~1, ~2 = field property va
lues of phase 1,2; ~M, ~D = field property values of phase M,D; c1, c2, cn 
volume content of phase 1,2,D). 

- another couple of equations represents closer II. order bounds (~J.IC' ~IIC) 
being valid for materials 1·1ith two microstructural informations: the material 
is two-phased and the material is isotropic. 

finally, kn01·1ing that the material. is two-phased, isotropic and that one 
phase serves as a continous matrix-phase, whilst the other is included discon
tinuously we get even closer III order bounds (~IIIC' ~IIIC) due to three rni
crostructural assumptions: the number of phases to be two; the type of micro
structure tobe a matrix phase type; the orientation of phases to be statis
tical, representing an isotropic material. 

Plotting the results as concentration function for the conductivity of the 

two-phase material we obtain Fig. 6. Up to here I may say that the bound con

cept does not need definite geometrical assumptions. The bound equations - im

plicitely - refer to 

- a definite number of phases (I order) and 
- isotropic material (II order bounds) and 
- a definite matrix phase structure (III order bounds) 

but do not include any geometrically prescribed microstructural parameter. In 

so far the bound concept keeps closer to reality than modelling and the ques

tion arises, to what .extent the bounds already fulfill our needs. To .answer 

_this question ~le return to the technological aspects I pointed out above. In 

-- ----.th-:i:s- eontexe-the~boun~eoneept-prov-ides-i;w'e--a-Lternat-ives.-to-optimize...microstruc:

tures as shown in Fig. 7: since in-situ microstractures usually refer to pro

perties in betlveen the bounds 
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Fig. 6. I and II order bounds in curves. 

ß 

- we may either save rare or ecologically risky phase materials at constant 
properties 

- or we may achieve a higher conductivity at constant phase concentration 

by microstructural constructions. Both games1 are the more effective, the 
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bigger the difference is between the properties of the pure phases as for exam

ple in Fig. 8, But exactly in these cases the bound concept frequently does not 

provide a sufficient engineering tool to construct tailor-made materials because 

the bounds are far too far from each other. For paraus materials the lower 

bounds even fail becoming zero for all porosities. This is why·apart from the 

microstructological or general scientific interest we continue to obtain an 

equation providing closer bounds or even singular values, where sufficient 

microstructural information is available. 

Model concept 

On thissecondtheoretical way, the model concept helps, leaving behind, how

ever, the premise of no geometric assumptions, What '"e assume is the spheroidal 

Substitution of the real microstructure, not been chosen, ho~1ever, arbitrarily: 

t:l1_e _!>l?J:l:."'J:OiQ_~ mode! ____ _ 

- permits to approach real shapes on the basis of respective surface-to-volume 
ratios by altering the ratio of rotation axis and minor axis steadily; shapes 
as fibres, spher.es and platelets are included (Fig. 9) 
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Fig. 9. Spheroidal shape variation. 

- permits to .. calculate the respective spheroids from_ two-dimensional sections 
stereologically 

- permits to calculate the stray fields induced by spheroidal inclusions. 

In Fig. 10 the premises assumed for the model concept are summarized. 

1. number of phoses e.g. two...:, three-, multiphosed 
premise: 

thermochemicol equ [librium 

implicite 2. type of microstructure premise: 
porometers motrix phose continuum principle 

microstructure 

interconnecting phose 
microstructure 

3. volume froction of phose premise: 
( concentro tion foctor) - spheroidol model 

explicite volume x number of the meon values 

porameters phose portides 

4. shope of phose porticles 
( shope foctor) 

5. orientation of phose 
portides 
(orientotion foctor) 

Fig. 10. Model concept premises. 
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So what we consider from now is the Substitution of the real microstructure of a 

two phase material by a spheroidal based model microstructure with mean sized, 

shaped and oriented spheroidal inclusions in a matrix phase. This is what we 

cal-l mean -value-premicse-.- Fur-ther:more..we. assume_that _the_ continuum_principle __ 

holds true for the material and that the material is in thermochemical equili-

brium, that is to say, no interaction occurs at the phase boundaries. 
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The derivation itself 
1 

in summary 1 is as follo~Ts [ 1 1317181 9] : for spheroi

dal inclusions it is possible to calculate the respective stray field for _the 

inclusions (Fig. 11) which depends on. their shape and orientation and may be 

two phase material with model micros truc ture 

3 W. 3'+r• k "" .73 

+ + + + + + + + + + + + + + + + + + + + + + + 

R 5 M&M*&#*' 

+ + + + + + + + + + + + + + + + + + + + + + + + 

+ + t++ + + 

+ + + + + + + + f + + + + f + + + + + + + + + + 
- Fi<F 1-1-~-Mode-1-corrcept- schemat±cal-ly---

- substituting of real particles by spheroids (above) -
- single phased material in a primary field (middle) -
- two-phased model material in a primary field (belo~T) -

I 

I 
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superimposed on the original primary field mathematically. The resulting consti

tutive microstructure-field property equations (general 8; simplified 9, -10) 

can be solved in terms of conductivity, where the effective conductivity of the 

two-phase material is given as a function of the phase conductivities, the 

phase concentration factor, the shape factor and the orientation ,factor 

(8) 

h,g,k = f (F 0 ,cas1 flo) 

(9) 

cos1 a 0 -1_ cos 2 a 0 

F0 1- 2F0 
(10) 

0 .:5 cos 2 a 0 .:5 

(~ = field properties; c, M, D = subscripts for the two-phased material, the 

matrix phase, the included phase; cD = volume content of included phase = con

centration factor; FD = shape factor of- the included phase; cos 2 aD = orienta

tion factor of the included phase. 

The constitutive microstructure-field-property equation simplifies for large 

differences in the phase properties as for cermets or porous materialsl but de

monstrates generally that the effective field property of a two phase material 

depends on implicit microstructural parameters and explicit microstructural 

factors (Fig. 10). 

Implicite parameters govern the type of the constitutive equation but do hot 

appear explicitly, while the explicit factors are defined as such in the 

equation. I might additionally mention that I have here considered only the 

equations for matrix phase structures, but that an analogousequation for inter

connecting phase microstructure ( compare Fig. 12) is already available [ 10 ]. 

Kn'owing now about the bound concept and the model concept we have to ask for· 

the feedback between the model equations based on geometrical assumptions and 

the bound equations being free from such assumptions. If, for example, the 

orien~ati~~ fa~-;_:-~~~ 2aD-~~-ilie-~~-~-~q~~~ion i;;-~~~- to -b~F-~hf-~h ~ef~;~ to 

isotropic microstructures in terms of the model and the equation is then solved 

with respect to the shape factor for highest and lowest effective conductivities 
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Fig. 13. Table of special solutions (equations 11 - 17) of the model concept. 

and if we put these two extreme shape factors into the constitutive microstruc

ture property equation, we get two bound equations being identical with the II 

order bounds of the bound concept (Fig. 13), This is valid for other bounds too 

and is an important theoretical verification for the validity 6f the two con

cepts to the sarile -probTem. Both converge .rnto each -other -as scnemaE:CcaUy cre:.-

monstrated in Fig. 14. ·Via the model concept it became also possible to provide 

the missing lower bounds in the bound concept for porous materials [11,12,13). 
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Youngs Modulus of Elasticity 

Turning nm~ to Young's modulus of elasticity we follow the same line of theo

retical consideration: applying stresses to a t\w-phase system, which are belo~l 

the yield strength of the two phases, elastic deformation takes place as a con

sequence of the stress-strain-field. Variational principles in theoretical me

chanics permit to derive an equation providing the effective elastic deforma

tion energy taken up by the system and its phases (14,15;1-6]. Agai; solvi~g

this energy equation for the effective elastic constants b1o solutions result, 

providing upper and lo~1er bounds of different order (Fig. 15). I order bounds 

again refer to systems about which nothing else is known with respect to their 

microstructure than that they are formed by two phases. II. order bounds refer 

to two-phased and isotropic materials. In order to get definite values for a 

more definite microstructure theoretically again the model like characteriza-

tion of the microstructure is necessary (Fig. 16). The spheroidal model chosen 

for the same reasons as explained for the field properties is slightly modified 

for the derivation: after substituting the real microstructure by the spheroi-
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Fig. 15. Bound equations (18 - 24) for Young~ modulus. 

Fig. 16. Model scheme for Youngs modulus. 

dal model finite elements are subdivided in small prismatic columns. In them 

the two phases are arranged in series with respect to the stress direction adapt

ing by different strains the constant stress. Putting the columns tagether in 

one piece columns with different effective Youngs moduli are arranged parallel 

strains fo~ each column but different stresses. This mathematical procedure 

yields to a constitutive equation for Youngs modulus of elasticity which - as 
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an engineering approach - is not yet as far developed as for the conductivity 

but restrictiveless reliable up to about So% by volume of the phases [17]. Its 

simplified form valid for big differences bet~1een the moduli of the phases as in 

the case of porous ceramies for example, is 

El1l_E [ 1 _ 11 ,~/9P2.~' P - M V 16n2 x ( pores) (25) 

-11) - [ 21~, 
tp "' t 11 i - i,2i P - J for P:;, 0. 5 ( spherical pores) (26) 

(E(l) 
p Youngs modulus for the paraus material, lst ·approach; EM = Youngs modu

lus for the matrix material; z 

ing spheroidal pores; 
2 

cos aD = orientation 

X 

~ = shape 
X 

factor of 

= rotation axis and minor axis of the substitut-

factor; P = porosity = concentration factor; 

the spheroidal pores). 

Again the equations are based on two implicit parameters as the number of 

phases and the type of microstructure, not appearing explicitely in the consti

tutive microstructure-Youngs modulus equation and the explicit microstructural 

factors for the concentration, shape and orientation of the included phase, 

since the here given equation refers to matrix phase microstructure. 

In case of the elastic constants we have not yet verified the convergency 

between the bound equations and the constitutive microstructural-property-equa

tions in general - as we did already in the case of field properties; but spe

cial cases work - and ~~e 11ork about the general verification also for the ela

stic properties. 

Summarizing what I did up to this point I may conclude, that from a theoreti

cal point of view - refusing definite geometrical assumptions for microstruc

ture property-correlations - restricts the result to bounds of a certain degree, 

For the derivation of
1
higher degrees,of such a correlation- as unique pro

perty values - ~1e had to accept geometrical assumptions being, hov1ever, compa

tible with the less definite but assumptions free bounds of lower order. Al

though this is the present theoretical state-of-the-art in our 1·1ork, it is not 

yet finally decided, that the microstructural factors in constitutive equations 

are undoubtedly linked to a definite geometrical model instead of becoming glo

bal microstructural parameters in the future [18]. The following consideration 

about how to determine microstructural factors will even more clarify, why 1·18 

think so. 

DETERMINATION OF MICROSTRUCTURAL FACTORS BY QUANTITATIVE MICROSTRUCTURAL 

ANALYSIS 

in the constitutive microstructure-property equation refers simply to the volume 

fraction of one phase which- according to Delesse's principle [19,22,24,25] -
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may directly be measured as areal fraction in sections through the material con

sidered. The phase concentration factor therefore is a global microstructural 

parameter [18]. 

The more sophisticated shape factor itsel.f is identical with the depolariza

tion factor for field properties well known from physics when including sphe

roids in a homogeneaus electrostatic or temperature field [21]. As such- and 

exclusively for spheroids - it was derived as a function of the axial ratio 

~ of the spheroid shm•m in Fig. 17, v1here z is the rotation axis generally [ 22]. 
X 
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Fig. 17. Depolarization factor: shape factor. 

- For Youngs modulus the shape factor is more simple and refers directly to the 

spheroid~ axial ratio [17]. Theorientation factor, although expressedas cosi

nus of the average angle betv1een the rotation axis and the electromagnetic or 

-tefuperature fi€üd ;:. or t:nesfress-st:rainfiela-fOr -erasficproperfies- .;.;--mayarso 

be determined exclusively by measured axial ratios in prescibed sample sections 

[22,26]. 
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(27) 

(28) 

(cos
2
a,, = orientation factor in case of prolate spheroids; cos2a = orienta-

tion factor in case of oblate spheroid_s; 1~\ 
'x~.!....!' 

a' b' and oblate spheroids 1 respectively; (h')AI (ä')A 

(~) = ~xial ratios of prolate 
X= 

averaged axial ratios of 

ellipses measured in section A, ~ig, 18). 

Fig. 18. Orientation factor: model explanation. 

When measuring for example the axial ratios in the front section A1 this quan

tity will change by orientation. In the picture the orientation is almost paral

lel to the field and therefore the areal ~ial ratio is 1 for circles. Changing 

the orientation it becomes different to one 1 v1here the difference provides the 

tool to calculate quantitatively the orientation factor from axial ratios by 

equations (27) and (28). 

The actual task therefore arising from the theoretically obtained definitions 

of the microstructural factors is to calculate spatial as well as areal axial 

ratios from areal quanti ties measured in tlw-dimensional sections. This 1 however 1 

may be done by stereological relationships especially available for the case of 

spheroids 1 which was one crucial reason to prefer this model. 
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Let us now follow for a moment the quantitative microstructural analysis in 

practice to make the method lucid [22,24,25,26,27]. The arealaxial ratios of a 

real material are determined as demonstrated in Fig. 19 by measuring the area 

and the perimeter of the real features. The adaptation to the model is achieved 

by substituting the real features by ellipses with respective area-to-perirneter 

ratios. From them we get a rnean axial ratio of the ellipses, which is trans

formed stereologically into the axial ratio of the respective spheroid as poin

ted out graphically in fig. 20 [22,26]. This, in short cut, is the principle of 

· field direction 

Fig. 19. Substituti,pg ellipses in sections. 
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deriving the microstructural factors, which result from constitutive microstruc

ture-property-equations. Those, which are related to geometrical assumptions, 

altogether result from axial ratios, say ratios of lineal features. Wehave 

started meanwhile to investigate, wether we may substitute the axial ratios by a 

normalized intercept length·; In case of success, the shape factor as well as the 

orientation factor would become functions of global parameterB and the spheroi

dal model 1·1ould just play the role of a fictive aid to reflect reality fairly 

correctly during derivation. For the moment, however, I have to let this be an 

open question and turn to check first the prior question, if the theoretical 

equations at all satisfy the demands of - at least - an engineering approach by 

comparing calculated and measured values of field properties and Youngs modulus 

for real tv10-phase materials. 

COMPARISON OF CALCULATED AND MEASURED VALUES OF TWO-PHASE MATERIALS 

In order to keep within the frame of this publication I restriet the de

monst.rat::Lon.- ra · selecrea·-measurea··a.na----ca:ra:na:t:ea-Enerma:l-·conductivit1e-s-arrd· Youngs 

moduli of elasticity of two-phase metals, ceramies and composites as well as po

raus materials, where pores are treated as a secend gaseaus phase. Only a few 
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examples of the electrical conductivity and magnetic permeability of two-phase 

materials are included therefore in the follmving plots. Others,however, are 

already published in large nurober [1o,11,12,1J,23,28,29,Jo,31,32,33,36]. 

Let us first consider I order bounds for the thermal conductivity and expe

rimental values, then continue 'qith higher order bounds and Csingular1 values 

and finally repeat this for Youngs modulus. In Fig. 21, I order bounds are com

pared with measured thermal conductivities for two-phased ceramic materials. 'l'he 
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Fig. 21. MgO-BeO, I order bounds, thermal conductivity. 

same is done for different cermets at different temperatures in Fig. 22. I. order 

bounds not only for thermal conductivities (T•~·) but also for electrical conductivi

ties (E-.C;) and magnetic permeabilit<tes (M.P.) as well arc indicated in fig. 23 to'3e

ther with experimental values for porous metals. In Fig. 24 the comparison is given for 

measured thermal conductivities of polymer-metal composites and III orderbounds 

assuming polymer matrix phases. As comes out for some of them the presupposition 

is not fulfilled without. exceptions However, the experimental values of ther-

mal conductivity in Figs. 25, 26 and 27 fit into higher order bounds, where in the 

case of porous ceramies the majority of experimental values is bound by III 

-order ·curves-due--to ·c:J:osed-porosity-;-The- rest--refers-to-interconnected -porosi-ty-.-

The same is valid for the thermal (T.C.) and electrical (E.C.) conductivity 

of porous graphite (Fig. 28). 
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Let us now glance at some 'singular' curves and the respective experimental 

thermal conductivities as given in Fig. 29 for resin matrix-metal composites, 

where the metal inclusions approach spherical shape or in Fig. 30, where glass 

spheres are embedded in polymer matrices. For spherical pores in graphi te {Fig. 

31) the measured and calculated thermal conductivities fit as v1ell as for orien-

ted graphite fibres in Fig. 32. 

So much for the comparison between measured and calculated thermal conducti

vities. 
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And nm~ a fe1~ similar examples for the effective Youngs modulus of· two-phased 

materials. In Fig. 33 we have I order bounds and the experimental values of 

Young's modulus for a two-phase carbide-ox.ide ceramic material and in Fig. 34 

for a ceramic-graphite composite material. Also for porous ceramies (Fig, 35) 

the measured Youngs-moduli fit -into the preliminary I.orderbounds:-Finaily-II 

order bounds are compared with experimental data in Fig. 36 for an isotropic 

two-phased silicate and in Fig. 37 for WC-Co hard metals. Least and last in 
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Fig. 38 measured Youngs moduli for porous ceramies with closed spherical poro

sity are compared to the respective theoretical curve, permitting the statement, 

that the theoretical microstructure-property correlations have passed the engi

neering test of comparison with experimental data. 

With that more general result let me once more return to what I mentioned at 

the beginning by the term 1technical properties: the thermal shock resistance 

and their microstructural dependences. For demonstration I refer just to porous 

ceramics. As mentioned before the thermal shock resistance of non-poraus cera

mies is proportional to the rupture strength, the thermal expansion coefficient, 

the thermal conductivity and Youngs modulus of elasticity {eq. 1) [4]. Two 

of these terms - conductivity and modulus - we may now substitute by porosity 

functions from the above constitutive microstructural property-equations.We have 

done it approaching spherical pores [34] 

Rrs(P)=const. Rm( 1-Plx 
ath (P) 

4>th(1-P)3/2 ·(1-V) = cons~. ~-~·(1-Y)· (1-P)312+x 
E(1-1.21·P213 ) ath E 1-1.21·P213 

Rrs (P) = (1-P)31 z.x 

Rrs 1-1.21· p213 
(spherical porosity) 

{29) 

{30) 
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In eqn. (30) a possible porosity influence on Poisson's ratio is neglected. 

The thermal expansion coefficient of porous materials does not depend on poro

sity [35] and the rupture strength although unknO\'m as a quantitative function 

of porosity in form of a microstructure-property-equation, empirically follows 

an exponential equation 

R (P) 
m RmP ;;; R (1-P)x 

m 
(3 i) 

11here x is 1 just taking into account the reduction of cross section by pores, but 

where x usually becomes > 1 due to stress concentrations (x % 2 for spherical pores) . 

In plots we get for the various terms of thermal shock resistance as a poro

sity function what is shown in Fig. 39 (compare eqn. 29). As you may notice, 

the ratio of thermal conductivity/Youngs modulus controls the degree of compen

sation for the rupture strength term and leads to the slope of the thermal shock 

resistance curve versus spherical porosity as shown in Fig. 40. There the theo

retical curve is calculated assuming x = 1 in eq. (30). In reality due to 

x > 1 the maximum of thermal shock resistance is to be expected at lo~1er poro

sities and with different heights, as - indeed - is demonstrated by experimental 

values for porous glass in Fig. 41. Assuming now 1•1e fill the pores of the po

rous ceramic by metal inclusions achieving interface bonding between them, the 

ratio of thermal conductivity/Youngs modulus increases rapidly with the metallic 

filler, l"hilst the other terms change little. As an example this situation is 

given for SiC-Si cermets in Fig. 42 as function of definite microstructure 

(spherical) versus Si-concentration. The resulting tentative slope for the 

thermal shock resistance of SiC-Si-cermets predicts fairly well real values for 

silicon infiltrated silicon carbide, which for about 15 vol.% silicon provides 

approximately a 20 % improved thermal shock resistance. The thermal shock resis

tance of present day Si-SiC-composites is already even higher since by excellent 

Wettability bet~reen the phases silicon forms the matrix phase already at--low 

concentrations. 

This is what we do in order to get a better insight into the materials behaviour 

by microstructure-property-correlations and to use these correlations to improve 

this behaviour, as for example to ductilize brittle ceramics. 
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