KfK 4147 EUR 10907 EN Februar 1987

Mesoscale Atmospheric Dispersion Experiments Using Tracer and Tetroons Simultaneously at Kernforschungszentrum Karlsruhe

P. Thomas, S. Vogt, P. Gaglione Institut für Meteorologie und Klimaforschung

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Meteorologie und Klimaforschung

K£K 4147

EUR 10907 EN

Mesoscale Atmospheric Dispersion Experiments Using Tracer and Tetroons Simultaneously at Kernforschungszentrum Karlsruhe

P. Thomas
S. Vogt
P. Gaglione⁺⁾

+) Commission of the European Communities Joint Research Center - Ispra Establishment

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

Abstract

On April 27, 1983, March 29, 1984 and March 23 and 25, 1985 four mesoscale atmospheric dispersion experiments were performed near Kernforschungszentrum Karlsruhe. The experiments comprised:

- Tracking of tetroons by radar up to distances of 111 km.
- Release of the tracer SF_6 at a height of 100 m or 140 m, and downwind sampling at more than 50 locations during up to seven successive periods of 30 min duration each up to source distances of 66 km.
- Meteorological measurements at a 200 m high tower.

The measured data are presented. They have been analysed to obtain dispersion parameters σ_y and σ_z as a function of downwind distance and sampling time. σ_y derived from tracer concentrations and from tetroon trajectories can be well compared, if the duration of the sampling time is taken into account. Vertical wind speeds, turbulence intensities and oscillation periods are determined from tetroon trajectories. The turbulence intensities of the vertical wind component derived from the tetroon's movement can be used to derive the stability category.

- I -

Mesoskalige atmosphärische Ausbreitungsexperimente mit Tracer und Tetroons am Kernforschungszentrum Karlsruhe

Zusammenfassung

Vier mesoskalige atmosphärische Ausbreitungsexperimente wurden am 27. April 1983, am 29. März 1984 und am 23. und 25. März 1985 in der weiteren Umgebung des Kernforschungszentrums Karlsruhe durchgeführt. Die Experimente umfaßten:

- Verfolgung von Tetroons mit einem Radar bis zu Entfernungen von 111 km.
- Freisetzung des Tracers SF_6 in 100 m oder 140 m Höhe mit Probenahme im Lee der Quelle
 - während bis zu sieben aufeinanderfolgenden Perioden von jeweils 30 min Dauer,
 - an mehr als 50 Stellen bis zu Quellenentfernungen von 66 km.
- Meteorologische Messungen an einem 200 m hohen Mast.

Die gemessenen Daten werden angegeben und Ausbreitungsparameter σ_y und σ_z in Abhängigkeit von Quellenentfernung und Sammelzeit abgeleitet. Die auf Tracer Konzentrationen und Tetroon Trajektorien beruhenden σ_y werden miteinander und mit Ergebnissen kurzreichweitiger Tracerexperimente verglichen, die früher am gleichen Standort durchgeführt worden waren. Aus den Tetroon Trajektorien werden vertikale Windgeschwindigkeiten, Turbulenzintensitäten und Schwingungsperioden berechnet. Die Turbulenzintensitäten, die sich auf die Vertikalbewegung beziehen, werden zu den herrschenden Ausbreitungskategorien in Beziehung gesetzt.

- II -

Table	of contents	page
1.	INTRODUCTION	1
2.	EXPERIMENTAL TECHNIQUE	2
2.1	Meteorological measurements	2
2.2	Tracer experiments	2
2.2.1	Performance	2
2.2.2	Release of the tracer	3
2.2.3	Sampling equipment	3
2.3	Tetroon flights	4
2.3.1	Tetroons	4
2.3.2	Radar tracking	5
2.3.3	Data acquisition and evaluation	5
3.	MEASURED DATA	7
3.1	Weather	7
3.1.1	April 27, 1983	7
3.1.2	March 29, 1984	7
3.1.3	March 23, 1985	7
3.1.4	March 25, 1985	8
3.2	Meteorological data	8
3.3	Tracer data	9
3.4	Trajectories of tetroons	10
4.	DATA EVALUATION	11
4.1	Dispersion parameters based on tracer	
	concentrations	11
4.1.1	Horizontal dispersion parameter σ_{i}	11
4.1.2	Vertical dispersion parameter σ_{z}^{y}	12
4.1.3	Dispersion parameters versus sampling time	13
4.1.4	Maximum concentration versus sampling time	14

4.2	Horizontal dispersion parameter $\sigma_{ m v}$	
	based on tetroon trajectories	15
4.3	Evaluation of individual tetroon trajectories	17
4.3.1	Vertical air motion	17
4.3.2	Turbulence intensity	17
4.3.3	Oscillation periods of the tetroons	18
5.	DISCUSSION OF THE RESULTS	18
5.1	Vertical dispersion parameter σ_z	18
5.2	Horizontal dispersion parameter σ_{y}	19
5.3	Dispersion parameters and maximum concentration	
	versus sampling time	20
5.4	Vertical air motion	21
5.5	Turbulence intensity	21

6. REFERENCES

.

23

1. INTRODUCTION

Airborne pollutants are considered to be responsible for health effects of human beings, and for damages at buildings, monuments and forest trees. When investigating the relations between emission of the pollutants and their effects the transport of the pollutants over several hundred kilometers and the turbulent diffusion and chemical reactions are very important. These phenomena are simulated by numerical models. Mesoscale field campaigns using tracers and tetroons furnish some of the measured data that are used as input for the models and to validate the models.

At the Joint Research Centre of Ispra and at the Kernforschungszentrum Karlsruhe (KfK), vertical and horizontal dispersion parameters have been determined as a function of the stability class and emission height by tracer experiments /1,2,3,4/. These experiments covered a downwind range up to about 10 km. Combined long range tracer experiments and tetroon flights can provide more information on atmospheric dispersion in the mesoscale range.

Estimates of plume trajectories have usually been based on wind data obtained at fixed points (Eulerian network). Atmospheric diffusion, however, depends on the movement of individual air parcels (Lagrangian consideration). Although Eulerian wind data are suitable for diffusion estimates over short times and distances, there are important difficulties inherent in this technique for longer durations and distances. Tetroon trajectories provide these Lagrangian-like data for mesoscale diffusion models.

Four mesoscale atmospheric experiments with the tracer sulphur hexafluoride (SF_6) and with tetroons were performed near KfK on

April 27, 1983 March 29, 1984, and March 23 and 25, 1985. The two last campaigns have been performed within the experiment TULLA /5/. With the aid of the experiment TULLA the leading pollutant sulphur dioxide is balanced, it is investigated how the orography influences the near ground airflow and channels the transport of the pollutants. Besides the transport, diffusion and chemical reactions of sulphur dioxide are simulated by numerical models.

2. EXPERIMENTAL TECHNIQUE

2.1 Meteorological measurements

From a 200 m high tower (Fig.1) erected on the KfK site, measurements were performed which provided the vertical profile of the temperature, the wind velocity, the wind direction and the standard deviation of the vertical and horizontal wind directions.

Because of the large number of meteorological instruments and the frequency of recording, the data were collected by on-line data reduction. In /6/ one can find a detailed description of the system and the data handling.

2.2 Tracer experiments

2.2.1 Performance

The tracer SF₆ was released through the

 100 m high stack of the FR2 research reactor of KfK, which was no longer in operation, during the first and second experiment,

- 140 m high stack of the coal fired heating power station West at Karlsruhe during the third and fourth experiment.

The tracer was mixed with the air flow in the stacks. Air was sampled at more than 50 locations downwind of the source during

- 2 -

up to 7 successive periods of 30 min each. The samplers were arranged close to 3 concentric arcs (zones) surrounding the source. The radii of the arcs were between 12 km and 60 km. The angle of the sampling sector was about 90° with its centre-line pointing to the north-east. Fig. 2 shows a map of the sampling sector. Tab. 1 shows the schedule in Central European Time for the release and sampling of the tracer.

2.2.2 Release of tracer

Because of the range of the experiment a tracer release rate of 22 - 29 g/s was estimated to be necessary for its detection above the background level over all the sampling sector. In order to keep the relatively high release rate of the tracer constant for the whole experiment, several cylinders of SF₆ were connected to a single flow-meter, through which the tracer was injected into the stack duct. A constant flow rate was ensured by observing the flow-meter and adjusting the pressure regulators of the cylinders. The tracer emission rate, calculated from the weight of the cylinders before and after the experiment and from the time of release, was kept constant during each experiment and is indicated in Tabs. 7 - 10.

2.2.3 Sampling equipment

Both manual (only during the first two experiments) and automatic sampling units were used to collect air samples (Fig.3). In principle, all samplers inflate a plastic bag by a small pump driven by a battery with a flow rate of about 0.2 l/min. Nevertheless, while each manual sampling unit requires one man for its operation, the automatic devices, once placed in the field, can collect up to 8 air samples, starting form a pre-fixed time and running in sequential progression for fixed pre-selectable time periods. Fig. 2 shows the experimental area with the indication of the tracer release points and the position of some sampling points on 3 different arcs.

- 3 -

After their collection, some of the samples were submitted to preliminary analysis to define approximately the angle of the sector covered by the tracer plume. Then all the air samples taken in this sector were transferred from the plastic bags into evacuated aluminium bottles. This was done to prevent any risk of contamination during the sample transport and storage before the SF₆ analysis at the Ispra laboratory which was performed by gas solid chromatography and electron capture detection /7/.

2.3 Tetroon flights

2.3.1 Tetroons

The balloons used have a tetrahedral shape (Fig.4); they are commonly referred to as tetroons (tetrahedral balloons). The tetroon is manufactured from polyester dyed red film with a skin thickness of 51 µm. Its mass and volume are 470 g and 1m³, respectively (type T-PR51-1.000 from Raven Industries Inc., USA). It is inflated with helium to approximately 10 hPa overpressure and ballasted for the desired altitude. Once a tetroon has been launched it will rise until its buoyancy equilibrium is reached. Then its mean flight level will be on a surface of constant air density.

To facilitate the tracking of the tetroon by a radar it is equipped with an octahedral corner reflector manufactured from aluminium bars and aluminium coated plastic foil (type TD 75/12 from Cirra, France). The tetroons launched on March 25, 1985 bore two of these reflectors to enhance the backscattered signal.

To get rid of the ground clutter a transponder (<u>transmitter</u> - res<u>ponder</u>) was attached to each tetroon launched on March 29, 1984. The transponder characteristics are listed in Tab. 2. The transponder receives the radar pulses and responds at a slightly different frequency. To track the transponder the radar is run in

- 4 -

its secondary mode: The receiving chain of the radar is tuned to the frequency of the transponder. Now the radar is able to discriminate the ground clutter which has the same frequency as the radar pulses emitted /8/. The finder of a transponder is asked to send it back to KfK. So more information about the complete tetroon trajectory is available. The places of discovery have been for

-	MI8401:	Bad Königshofen,	travel	distance	218	km
6 000	MI8402:	Lichtenfels,	travel	distance	245	km
-	MI8403:	not found,				
1000	MI8405:	Eppingen.	travel	distance	54	km

2.3.2 Radar tracking

The mobile radar WF 100-4 built by Enterprise Electronic Corp., Alabama, USA, was used to track the tetroons (Fig.5). The technical characteristics of the radar are compiled in Tab. 2. The owner of this radar is the German Weather Service at Essen. The operating base of the radar was the Galgenberg near Minfeld /8/ situated about 20 km west of KfK. It coordinates are 43° 5′ 3′′ n. Lat., 8° 8′ 30′′ e. Long., 161 m above msl. The tetroons bearing reflectors were launched directly beside the radar; those bearing transponders Southeast (136°) of the radar.

After the balanced tetroon reflector unit was released, it was tracked manually by the aid of a videocamera which was mounted on the radar antenna and a television monitor at the radar control panel. As soon as the echo of the reflector or transponder is seen on the R/A-scope in the control panel of the radar, the radar was switched to the automatic tracking mode.

2.3.3 Data acquisition and evaluation

During tracking of the tetroon by the radar the following data have been printed with a teletype and punched on paper tape every 10 s: - time after release of the tetroon in min and s,

- distance d between radar and tetroon in m,

- elevation angle φ in degrees,

- azimuthal angle ϕ in degrees.

By means of a Fortran computer code averages of d, Φ and α have been calculated off-line using a window of 110 s (i.e. eleven 10-s-values). From these averages the position of the tetroons was calculated for each 10-s-step in x-,y- and z-coordinates. This rectangular system is oriented with the x- and y-axis in the East and North direction, respectively. The origin of the system is identical with the operating base of the radar.

x = d .
$$\cos \Phi \sin \alpha$$

y = d . $\cos \Phi \cos \alpha$
z = d . $\sin \Phi$

Taking into account the earth's curvature the height h of the tetroon relative to the radar is

$$h = z + d^2/2R$$

R = 6378 km is the radius of the earth.

The refraction of the radar beam is also taken into account, but in a crude manner: It is assumed that the radius of the earth can be replaced by an "equivalent radius" of $\frac{4}{3}$ R.

Besides the average values \overline{d} , $\overline{\phi}$, $\overline{\alpha}$, \overline{x} , \overline{y} and \overline{h} the velocities $\overline{u}, \overline{v}$ and \overline{w} , the wind direction in a x-, y-plane and the flight path are calculated for each 10-s-step based on these average values. 3. MEASURED DATA

3.1 Weather

3.1.1 April 27, 1983

Whereas the northern part of Germany was influenced by a small scale low pressure (p = 1001 hPa) over the Netherlands, our region lay in the transition regime of a weekly marked high-pressure (p = 1013 hPa) with its centre over Bavaria (Fig.6). Therefore, winds from south-west with a mean speed of about 5 m/s near ground prevailed. The direction of the winds near ground changed from 220° in the early morning to 244° during the course of the day. After 15:00 CET the wind turned back to a southerly direction and the speed fell off. (All indications of time in the paper are given in Central European Time (CET)). In the morning the sky was only partly clouded, but later a strong activity of thermal induced clouds developed. This fact can be seen in Tab. 3 with the strong change of the net solar radiation after 9:00 CET. Therefore the stability class changed from D to C and even to B.

3.1.2 March 29, 1984

Our region was influenced by a depression over the North Sea. A front (occlusion) has passed the experimental area at midnight (Fig.7). Therefore in the course of the day the wind was turning from south-west to nearly west. The sky was totally clouded in the morning and early afternoon. After 15:00 CET the cloudiness was only 3/8. So the stability class changed from D to the slightly unstable class C.

3.1.3 March 23, 1985

The whole area of Central-Europe was influenced by a depression with its center at the English North Sea coast. Cold air at high altitudes reached the experimental area during the day (Fig.8). The scattered clouds vividly adapted convective character, and in the Rhine Valley/Black Forest region light showers appeared. The general wind direction was south-west. The stability class was D.

3.1.4 March 25, 1985

On this day, the change from the greater weather situation "low British Isles" to the "cyclonal - west" situation started (Fig.9). The transient situation brought a short time clear sky and anti-cyclonal weather situation for Baden-Württenberg. A rise of pressure already started in the evening hours of March 24, which built up a flat high over the ground. The new cumulus clouds which appeared in the morning, when the sun rose and clouds loosened, finally flattened off more and more. So the slightly unstable stability class C was present. The wind blew mainly from south - to south-west. In the early afternoon, the wind turned back to south-east, obviously under the influence of an approaching front over France.

3.2 Meteorological data

The most important meteorological data measured at the KfK tower are listed in Tabs. 3 - 6. The wind direction is measured with a wind vane whereas a cup anemometer² measures the wind speed. The standard deviation of the horizontal and vertical wind directions are generated electronically with a sampling time of 180 s from measured data originating in vector vanes³ at 40 m, 100 m and 160 m heights. On the next line the standard deviation of the horizontal fluctuation of the wind direction is indicated. Unlike the preceding ones, this standard deviation is measured with an ordinary wind vane¹ at 100 m height. The temperature gradient results from the difference in air temperature 4 measured at 30 m and 100 m heights. A double pyrradiometer 5 is used to measure the net radiation 1.5 m above ground.

- 2 Cup anemometer, type 114H, Rosenhagen 3 Vector vane, model 1053 III-2, Meteorology Research Inc. 4 Ventilated double PT 100 measuring sensor, Friedrichs

¹ Wind vane, type 1466H, Lambrecht

⁵ PD-type, Physikalisch-Meteorologisches Observatorium of Davos, Switzerland .

The stratification of the atmosphere is described by 6 stability classes based on the classification system by Pasquill /9/. The last four lines show the stability classes which where determined by four different methods /10/. The first method is based on the standard deviation of the fluctuatuon of the vertical wind direction measured by a vector vane at 100 m height. The second method is based on the standard deviation of the fluctuation of the horizontal wind direction measured by a wind vane¹ at 100 m height. The third method refers to the differences of temperature at 30 m and 100 m and the wind velocity at 40 m height. The fourth method is based on meteorological observations and closely follows the classification recommended by Manier /11/. The information concerning the degree of cloudiness, the type of clouds and the wind velocity was taken from the daily weather report of the Karlsruhe Weather Station. This station records the observations at intervals of 3 hours, but experimental periods often lie between the hours of observation. Consequently, the stability classes had to be defined by interpolation when the weather conditions changed with time. The stability classes listed in Tabs. 3-6 were averaged over a sampling period. Data have been marked by stars if instruments failed.

3.3 Tracer data

Tables 7-10 show the polar coordinates of the sampling locations and the tracer concentrations measured at these locations. From these concentrations the mean background concentration has already been subtracted. The mean background amounted to 11 ng/m³ during the first and to 12 ng/m³ during the other experiments. The concentration data and the polar coordinates R and ALPHA are expressed in ng/m³, m and degrees of arc, respectively. The angle ALPHA is measured relative to the northern direction and counted clockwise. The error of the angle ALPHA is less than one degree, the error of the downwind distance R is smaller than 50 m in zone I and smaller than 200 m in zones II and III. Bars in the column of concentration data refer to samples not evaluated. These samples

¹ Wind vane, type 1466H, Lambrecht

had either not been switched on or had been located too far from the centre of the plume or the samplers had failed. The limits of detection are indicated. The tables also show the emission rate and the time at which sampling was carried out.

Figs. 10 - 27 show the local distribution of the tracer concentrations for periods with simultaneous sampling in all zones. The isolines of constant concentration were interpolated from measured data and plotted by a computer. The isolines are labelled by the concentration values in $\mu g/m^3$. The sampling locations are plotted as open squares. The downwind distance of the sampling locations are shown on the ordinate. The step curve plotted on the periphery indicates the frequency distribution of transport direction. The transport direction refers to the mean wind direction measured during the sampling period at 100 m height above the ground. The azimuthal position of the sampling field is indicated at the step curve.

3.4 Trajectories of tetroons

The relevant flight data are shown in a condensed manner in Tabs. 1 and 11. The trajectories of all flights are plotted in three different types of graphs in Figs. 28 - 42.

Figs. 28 to 31 show the projection of the flight path into the x-, y-plane. The x-axis is pointing to the East, whereas the y-axis is pointing to the North. The trajectories have been plotted either in a handdrawn map with isolines of the topography and some landmarks or in an original ordinance survey map.

Figs. 32 to 35 show the height profile of the tetroon as a function of travel distance. The length scale is 10 times larger for the flights in the years 1983 and 1984 and 15 times for the flights in 1985 than the height scale. The profile of the terrain passed by the tetroon is indicated as a cross-hatched area.

Figs. 36 to 39 show the projection of the trajectories into the plane perpendicular to the mean transport direction looking down-stream. Tetroon positions are marked at 5 min intervals by circles.

4. DATA EVALUATION

.

4.1 Dispersion parameters based on tracer concentrations

4.1.1 Horizontal dispersion parameter σ_v

The double Gaussian function describing the concentration C(x,y) close to the ground level at the field point P(x,y) downwind of the source reads:

$$C(x,y) = \frac{\chi(x,y)A}{u} = \frac{A}{\pi u \sigma_{y}(x)\sigma_{z}(x)} \exp \left[-\frac{y^{2}}{2\sigma_{y}^{2}(x)} - \frac{H^{2}}{2\sigma_{z}^{2}(x)}\right]$$
(1)

This follows from the diffusion equation for steady-state conditions, constant emission rate and reflection of the tracer at ground level, where

A emission rate in g/s
u mean wind velocity in m/s

$$\chi(x,y)$$
 normalized diffusion factor in m⁻²
x downwind distance in m
Y crosswind distance in m
H emission height in m
 σ_y, σ_z horizontal and vertical dispersion parameters, respectively,
in m

The foot of the source coincides with the origin of the Cartesian coordinate system.

Equation (1) may be written as

$$C(x,y) = \hat{C} \exp \left[-\frac{y^2}{2\sigma_y^2}\right]$$
 (2)

$$Y(\overline{R}_{i}) = \overline{R}_{i} \sin(\alpha_{i} - \alpha_{o})$$
(3)

- 12 -

where

 $\widehat{C}(\overline{R}_{i})$ maximum concentration,

 $\alpha_{o}(\overline{R}_{i})$ azimuthal position of maximum concentration at arc i surrounding the source with mean radius \overline{R}_{i} . From Eqs. (2) and (3) \hat{C} and σ_{y} are calculated for the three arcs i and the different periods by a least squares fit.

The results of the individual periods are combined by forming the geometric mean values of the σ_y parameters. These mean values and their standard deviations are plotted in Figs. 40 and 41 versus the downwind distance on a double logarithmic scale.

In Figs. 40 and 41 the σ_y parameters of the mesoscale experiments are compared to those of the short-range tracer experiments performed in the environment of KfK at emission heights of 160 m and 195m /12/. The results of the short-range experiments, that correspond also to a sampling time of 0.5 h, are indicated in dashed lines. These dashed lines are extrapolated beyond a downwind distance of 10 km. During the mesoscale experiments the tracer SF₆ was released at a height of 100 m or 140 m only. Because of the great downwind distances of the sampling points the tracer plume rose considerably and was influenced only slightly by the roughness of the terrain. Therefore, the dispersion parameters derived are compared to those of the short-range experiments with emission heights of 160 m and 195 m.

4.1.2 Vertical dispersion parameter σ_{z}

Referring to Eq.(1)

$$\hat{C} = \frac{\hat{A}}{\pi u \sigma_y \sigma_z} \exp \left[-\frac{H^2}{2\sigma_z^2}\right] \approx \frac{\hat{A}}{\pi u \sigma_y \sigma_z}$$
(4)

This approximation is valid, if H<< σ_z . This is true for great downwind distances as in our experiment. From Eq.(4) the verti-

cal dispersion parameter σ_z can be assessed for the three arcs and the different periods. The wind speed u is taken from the tetroon trajectories

- MI8310, u = 6.1 m/s,

$$-$$
 MI8403 , u = 12.8 m/s ,

- TU8505 and TU8506,
$$u = 9.65 \text{ m/s}$$
,

$$- TU8509$$
, $u = 6.8 m/s$,

respectively, as compiled in Tab.11. σ_y and C are the results of the least squares fit as described in Chapter 4.1.1 . Again the σ_z corresponding to the individual periods are combined by calculating the geometric mean values. These mean values and their standard deviations are plotted in Figs. 42 and 43 versus the downwind distance in a double logarithmic scale. Again the dashed lines in Figs. 42 and 43 refer to the short-range tracer experiments performed at KfK earlier /12/. The σ_z -parameters do not increase infinitely with the downwind distance but approaches a constant value. This is indicated in Figs. 42 and 43 for stability classes A to D by the horizontally dashed lines.

4.1.3 Dispersion parameters versus sampling time

The increase of σ_y with sampling time is investigated by summing up the tracer concentrations of successive sampling periods. The σ_y - values are calculated by a least squares fit as outlined in Ch. 4.1.1 for sampling times τ that are multiples of 0.5 h.

A power function

$$\sigma_{y}(\tau)/\sigma_{y}(\tau_{1}) = (\tau/\tau_{1})^{\alpha}$$
(5)

is chosen /13/ for the dependence of σ_y on sampling time τ , with $\tau_1 = 0.5$ h. The exponent α is evaluated by a linear regression technique.

The relations $\sigma_y(\tau)/\sigma_y(\tau_1)$ are plotted versus the relation τ/τ_1 in a double logarithmic scale in Figs. 44 and 45 for the three downwind distances of the arcs of sampling. The exponents α and the corresponding correlation coefficients are compiled in Tab. 12.

As described in Ch. 4.1.2 σ_z values have been calculated as a function of sampling times τ too. In this procedure σ_y - and C-values are used in Eq.(4) corresponding to sampling times that are multiples of 0.5 h. The results are plotted versus the sampling time in Figs. 46 and 47. For the greatest sampling time during one experiment (number of periods times 0.5 h) only one σ_z -value is available for each arc. In this case no error bars are plotted in Figs. 46 and 47.

4.1.4 Maximum concentration versus sampling time

The maximum concentration C (see Eq.2) is calculated as a function of sampling time τ as described in Chs. 4.1.1 and 4.1.3. A power function

$$\hat{C}(\tau)/\hat{C}(\tau_1) = (\tau/\tau_1)^{-\beta}$$
(6)

is chosen /17/ for the dependence of C on τ , with $\tau_1 = 0.5$ h. The exponent β is evaluated by a linear regression technique. β is tabulated with the corresponding correlation coefficients in Tab. 13. 4.2 Horizontal dispersion parameter σ_y based on tetroon trajectories

As reported in /13/ lateral diffusion can be estimated from successive tetroon flights. This technique of estimating atmospheric diffusion is adequate as far as the diffusion of a continuous point source is considered. Panofsky and Brier /14/ showed that the best estimate of the variance of tetroon trajectories (σ_v^2) is given by:

$$\sigma_{y}^{2} = (N-1)^{-1} \sum_{i=1}^{N} (y_{i} - \overline{y})^{2}$$
(7)

where N is the number of trajectories, y_i is the position of tetroon No.i on the y-axis, and \overline{y} is the mean position of the N tetroons on the y-axis. The square root of this lateral variance is the horizontal dispersion parameter σ_y in the Gaussian dispersion formula.

According to this procedure, circles with equal radii are drawn and the distances between points of intersection of the trajectories with these circles are measured yielding σ_y -values at individual downwind distances x. The spacing of the downwind distance is 1 km starting at x = 2 km. All trajectories of one series are extrapolated up to the longest trajectory of this series.

If this procedure is applied no monotonous change but only oscillations of the wind direction should occur during the launch of the first and the end of tracking of the last tetroon of one series of trajectories. This time interval corresponds to the sampling time of the tracer experiment if o_y-values of both experimental techniques are compared.

According to this procedure σ_y - parameters are calculated that are based on trajectories of tetroon listed in Tab. 1. The

trajectories of TU8504 and TU8508 are omitted as their flight levels are very high as is indicated in Tab. 11. The results are plotted as solid lines in Figs. 40 and 41. If only two trajectories are available they may cross one another. The σ_y -values near the corresponding downwind distance are very low and even zero at the crossing point. This is the case for the experiment on March 25, 1985. This effect is eliminated by a smoothing procedure as in reality plumes are expanding with increasing source distance.

For the σ_y -parameters obtained in this way, the dependence on distance (x-axis) is described by

$$\sigma_{y} = \sigma_{o} x^{p}, \qquad (8)$$

as used in /3,4/, in order to compare the results with those of the tracer experiments. By means of a least squares fit σ_0 and p are evaluated and compiled in Tab. 14.

As described above for the downwind distance x the horizontal dispersion parameter σ_y is also evaluated as a function of time t. In this procedure x is replaced by t. t=0 is the launching time of each tetroon of one series. The spacing of the time steps depends on the flight time and is 60 s or 180 s starting at t = 4 min. The results are plotted in Figs. 48 and 49 versus the time being elapsed since the tetroon has been launched.

By analogy to Eq.(8) σ_v is described as a function of time t by

$$\sigma_{\rm y} = \sigma_{\rm o} t^{\rm p} \tag{9}$$

The results are also listed in Tab. 14.

4.3 Evaluation of individual tetroon trajectories

4.3.1 Vertical air motion

Unless one is interested in precise estimates of vertical air speed at specific points in space, it is permissible to use the vertical tetroon speed as first-order estimate of vertical air speed, as is shown in /15/. However, because of the buoyancy force acting to return the tetroon to its equilibrium level, the tetroon's vertical speed is not usually that of the air in which it is embedded, i.e. the tetroon "slips" relative to the ambient air. To overcome this problem, a procedure has been published $\frac{11}{15}$ to calculate the vertical air speed from the tetroon's vertical speed, the equilibrium level and the actual displacement of the tetroon from this level. Although in /15/ the computation has been done for the standard atmosphere less than 4 cm/s air speed deviation will result for either adiabatic or isothermal lapse rates with a tetroon displaced 600 m from its equilibrium level. Obviously, the lapse rate is of little consequence in deriving vertical air speeds from tetroons.

Figs. 50 and 51 show by example the vertical speed of tetroons MI8310 and TU8507 and the derived vertical air speed. Flights MI8310 and TU8507 are representative for unstable and stable stratification. Derived vertical air speeds are depicted to scale as vertical arrows along the height profile of the tetroon trajectory.

4.3.2 Turbulence intensity

The turbulence intensity i_u , i_v , i_w of the three components of wind speed u, v, w are a good measure of the behaviour of the atmosphere in dispersion processes. So the intensities have been calculated over a time of 1 h up to 4 h depending on the duration of the individual flights:

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} &$$

Where w is the absolute value of the tetroon velocity. The results are compiled in Tab. 15.

4.3.3 Oscillation periods of the tetroons

To determine the periods of vertical and horizontal oscillations the trajectories were evaluated by a Fourier analysis. By way of example the power spectra has been plotted for three different flights(Fig.52). The periods of the oscillations in the three dimensions of all flights are listed in Tab. 15. The wave length in x-direction is the product of the oscillation period times the mean transport speed. In z-direction it is the product of the oscillation period times the mean of the amount of the vertical velocity. The power spectra show several maxima. Therefore, periods with the highest energy density are underlined.

5. DISCUSSION OF THE RESULTS

5.1 Vertical dispersion parameter σ_{2}

The stability classes that prevailed during the mesoscale experiments are compiled in the following table. The classes are derived from the standard deviations σ_{ϕ} and σ_{θ} of the vertical and horizontal wind directions measured by a vector vane 100 m above ground.

Date of experiment	σ_{ϕ}	σ_{θ}
April 27, 1983	В	С
March 29, 1984	D	D
March 23, 1985	C/D	D
March 25, 1985	В	B/C

As vertical dispersion is more influenced by σ_{φ} , the following conclusion can be drawn from Figs. 42 and 43:

- Extrapolation of σ_z from the short-range experiments to downwind distances greater than 10 km is validated by the mesoscale experiments. An exception is the 4th experiment: The σ_z -parameters from this mesoscale experiment are about 50% smaller than the extrapolated values of the short-range experiments.

5.2 Horizontal dispersion parameter σ_v

Horizontal dispersion is more influenced by σ_{θ} . From this matter and quite generally the following conclusions can be drawn referring to Figs. 40 and 41:

- Extrapolation of σ_y from the short-range experiments to distances greater than 10 km is validated by the mesoscale experiments.

- The slopes of the σ_y -parameters based on tetroon trajectories and short-range tracer experiments are approximately equal.

- With the exception of the 4th experiment the σ_y -parameters based on tetroon trajectories are greater than those based on the tracer experiments. This is due to the following facts:

- The σ_y -parameters of the 4th experiment are based only on two trajectories. This result may be fortuitous.
- As is shown by Tab. 1 tetroons and the tracer have not been tracked and sampled simultaneously.
- The sampling time of the tracer was 0.5 h. The corresponding time of the tetroons, the time interval between the launching of the first one and the end of tracking the last one, was longer than 7 hours (see Tab. 1). This difference will be discussed in Ch. 5.3.

5.3 Dispersion parameters and maximum concentration versus sampling time

Vertical barriers to dispersion, under quasi steady-state meteorological conditions, act to make σ_z independent of sampling time for sufficiently large travel distances. This also is true for our experiments as can be seen from Figs. 46 and 47.

In general σ_y increases with sampling time /16,17/. This is shown quite generally by Figs. 44 and 45 and by Tab. 12. But the following more detailed conclusions can be drawn from Figs. 44 and 45 and Tab. 12 within one experiment and for one downwind distance:

- The correlation between $\sigma_{\mbox{y}}$ and sampling time based on a power function is very high, but
- the increase of σ_y with sampling time as qualified by the exponent α varies considerably within the limits of 0.11 and 0.70, and

- there is no clear dependence of α on downwind distance.

The arithmetic mean value of α is 0.39; it is higher than the exponent of 0.25 published in /18/. The decrease of maximum concentration \hat{C} with sampling time τ is described by the exponent β compiled in Tab. 13. As in the case of σ_y the correlation between \hat{C} and τ is very high within one experiment and for one downwind distance. But there is no clear dependence of β on downwind distance, and β varies considerably within the limits of 0.10 and 0.71. The arithmetic mean value of β is 0.33 as compared to 0.50 published in /18/.

Applying Eq.(5) and using the exponent α from Tab. 12 the σ_y -parameters corresponding to a sampling time of 0.5 h are extrapolated to sampling times corresponding to the tetroons as compiled in Tab. 1. These extrapolated σ_y -parameters are plotted in Figs. 40

and 41 by crosses. They are quite identical to the results corresponding to the tetroons for the 3rd and 4th experiment. During these experiments three tetroons have been tracked more or less simultaneously with tracer sampling.

5.4 Vertical air motion

It is important to note from Figs. 50 and 51 that, while the difference between vertical speeds of tetroon and air is fairly large in isolated instances, in general the tetroon gives a reasonably good overall picture of the variation of vertical speed along the trajectory. Consequently, it is permissible to use the vertical tetroon speeds as first-order estimates of vertical air speeds, particularly in view of uncertainties in determining the real equilibrium flight level, unless one is interested in precise estimates of vertical air speed at specific points in space.

From these two examples and considerations in /15/ it can be stated that the tetroon does a better job in delineating the vertical motion when the amplitude of the vertical oscillation is large.

5.5 Turbulence intensity

In order to enable other experts to compare their results with our tetroon data, we have calculated turbulence intensities for the whole range of stability classes. Based on our earlier flights /8/, /19/, /20/ the Fig. 53 was created. No appropriate tetroon flight in very stable situation was available, so only five stability classes (A to E) are considered. In general more than five flights per stability class have been used. The mean values as well as the standard deviation of the turbulence intensity i_w are plotted versus the stability classes. With the exception of TU8510 the results in Tab. 15 are in a reasonable agreement with the findings of Fig. 53. A comparison with tetroon flights over quite different areas shows good results, too: In /21/ an average intensity $i_w=0.35$ is reported for daytime flights at Yucca Flat in a desert region in Nevada, U.S.A.

References

- /1/ Schüttelkopf H., Thomas S., Vogt S., De Bortoli M., Gaglione P.; Experimental determination of the atmospheric dispersion parameters. Experiment performed July 2, 1980 at the Karlsruhe Nuclear Research Centre, EUR 7577EN (1981).
- /2/ Bacci P., Carboni G., De Bortoli M., Gaglione P., Thomas P., Vogt S.; Atmospheric diffusion experiments performed in October 1980 at the Turbigo ENEL Power Plant, EUR 8334EN (1982).
- /3/ Thomas P., Nester K.; Experimental determination of the atmospheric dispersion parameters at the Karlsruhe Nuclear Research Centre for emission heights of 60 and 100 m, Nucl. Techn. 68/3, pp. 293 (1985).
- /4/ Thomas P., Nester K.; Experimental determination of the atmospheric dispersion parameters at the Karlsruhe Nuclear Research Centre for 160 m and 195 m emission heights. Part 2: Evaluation of measurements, KfK 3457 (1983).
- /5/ Vogt S., Fiedler F.; Compilation of measuring activities
 of the TULLA-experiment, KfK 4176 (1986).
- /6/ Von Holleuffer-Kypke R., Hübschmann W., Süss F., Thomas P.; Meteorologisches Informationssystem des Kernforschungszentrums Karlsruhe, Atomkernenergie Kerntechnik 44/4, pp. 300 (1984).
- /7/ De Bortoli M., Gaglione P., Thomas P., Vogt S.; Experimental determination of atmospheric dispersion in the mesoscale by tracer and tetroons, EUR 9598EN (1984).
- /8/ Vogt S., Thomas P.; Untersuchung mesoskaliger Luftströmungen in der Umgebung des Kernforschungszentrums Karlsruhe mit radar-verfolgten Tetroons, KfK 3565 (1984).

- /9/ Pasquill F., Smith F. B.; Atmospheric diffusion, J. Wiley & Sons, London (1983).
- /10/ Nester K.; Statistically equivalent systems for the determination of dispersion categories. Seminar on radioactive releases and their dispersion in the atmosphere following a hypothetical reactor accident, RISØ, April 22-25, 1980, Commission of the European Communities (1980).
- /11/ Manier G.; Vergleich zwischen Ausbreitungsklassen und Temperaturgradient, Meteorol. Rdsch. 28, pp. 6-12 (1975).
- /12/ Hübschmann W., Nester K., Thomas P.; Auswertung von Ausbreitungsversuchen, in Jahresbericht 1979 der Hauptabteilung Sicherheit, KfK 2939, pp. 183 (1980).
- /13/ Slade D. H. (Editor); Meteorology and Atomic Energy, TID-24180, pp. 180 (1968).
- /14/ Panofsky H. A., Brier G. W.; Some applications of statistics to meteorology, Pennsylvania State University, University Park, Penn. (1958).
- /15/ Hoecker W. H.; Universal procedure for deploying constantvolume balloons and for deriving vertical air speeds from them, J. of Appl. Met. Vol. 14, pp. 1118 (1975).
- /16/ Hanna L. R., Briggs G. R., Hosker R.P.; Handbook on atmospheric diffusion, DOE/TIC-11223 (1982).
- /17/ Mueller L. R., Reisinger L. M.; Measured plume width versus sampling time: A look beyond 10 km, Atm. Env. 20/5, pp. 895-900 (1986).
- /18/ Hino M.; Maximum ground-level concentrations and sampling time, Atm. Env.2, pp. 149-165 (1968).
- /19/ Hübschmann W. G., Thomas P., Vogt S.; Tetroon flights as a tool in atmospheric meso-scale transport investigation. 13th Int. Techn. Meeting on Air pollution modelling and its application. Ile des Embiez, France, 14-17 Sept. (1982).

- /20/ Vogt S., Thomas P.; Investigation of meso-scale atmospheric transport by means of radar tracked tetroons during PUKK. Contr. Phys. Atmosph. 55/4, pp. 409-416 (1982).
- /21/ Angell J. K., Pack D. H.; Estimation of vertical air motions in desert terrain from tetroon flights. Monthly Weat. Review, pp. 273-283 (Aug. 1961).

Acknowledgement

The authors would like to thank the following persons who have contributed to the preparation of this report. The work carried out in the field was performed by Dr. Bär, Mrs. Honcu, D. Met. Nester, D. Met. Verenkotte, D. Met. von Holleuffer-Kypke and D. Ph. Wittek from KfK Karlsruhe and by Mr. Bassetti, Mr. Cadario, Mr. Cuzzolin, Mr. Pasqualini and Mr. Pfeiffer from the JRC-Ispra. Mrs. Honcu also wrote the computer programs to evaluate and plot the experimental data. Mr. Pecchio performed the SF₆ analysis at the JRC-Ispra.

Date	Release of tracer	Sampling of tracer	Tetroons		
			No.	Start	End of tracking
27.04.83	10:00 - 13:30	1st arc: 10:30 - 13:30	MI8307	7:15	8:48
		2nd arc: 11:00 - 14:00	MI8308	9:10	10:50
		3rd arc: 12:00 - 15:00	MI8310	12:03	14:26
29.03.84	11:00 - 14:00	1st arc: 10:30 - 14:00	MI8401	8:00	9:50
		2nd arc: 11:00 - 14:30	MI8402	10:00	10:23
		3rd arc: 12:00 - 15:30	MI8403	11:00	12:04
			MI8505	13:30	15:04
23.03.85	11:00 - 15:55	all arcs: 13:00 - 16:00	TU8505	12:00	13:55
			TU8506	14:03	17:10
			TU8507	17:43	20:10
25.03.85	10:30 - 15:20	all arcs: 13:00 - 15:30	TU8509	11:49	16:42
			TU8510	17:05	20:45

Table 1: Time table in Central European Time (CET), Tetroons TU8504 and TU8508 are omitted and have not been used for $\sigma_y^{}-$ calculations.

	Radar	Transponder
Diameter of antenna	1.2 m	
Dimensions	5.85x2.08x3.05 m ³	15x8x8 cm ³
Weight	6.3 t	450 g
Gain of antenna	38 dB	5 dB
Polarization	linear, vertical	
Frequency	9375 MHz	9212 MHz
Peak power	60 kW	180 mW
Pulse repetition frequency	800 Hz	800 Hz
Pulse repetion length	0.25/1.0 µs	1.0 µs
Range	> 50 km	
Operating time	> 5 km	

Table 2: Technical details of Radar and transponder
		I HEIGHT							Tir	ne in (Cet							
		i (M)	7.30	7.40	7.50	8.00	8.10	8.20	8.30	8.40	8.50	9.00	9.10	9.20	9.30	9.40	9.50	10.00
WIND DIRECT	ION	40 60 100 160 200	231 226 222 224 229	222 217 216 220 225	223 220 218 221 226	223 217 215 218 224	232 223 221 225 229	227 222 217 223 227	223 220 218 222 227	225 222 221 223 228	229 222 218 225 231	230 227 224 224 229	226 226 225 226 226 229	239 232 233 227 229	240 235 226 225 227	233 226 223 224 228	224 217 213 222 229	222 219 219 224 229
WIND SPEED (M/S)		I 40 I 60 I 100 I 160 I 200	**** 6.1 6.9 7.9 8.7	5.4 6.5 7.5 8.2 - 8.6	6.0 6.7 7.6 8.6 9.2	6.3 6.8 7.5 8.7 9.2	**** 7.0 8.2 9.2 9.7	**** 6.7 8.4 9.6 9.9	**** 7.4 9.2 10.2 10.4	**** 7.0 8.2 9.1 9.7	4.6 4.9 5.7 6.7 7.4	6.6 7.4 8.7 9.5 9.9	5.8 6.0 6.7 8.2 8.4	4.6 5.1 5.9 6.5 6.9	**** 5.6 6.4 6.8 6.7	**** 5.2 6.2 6.4 6.7	**** 5.9 7.1 7.7 8.1	**** 6.3 7.6 8.8 9.2
STANDARD DEVIATION OF	I VER.	1 1 40 1	9.7 21.1	10.0 20.9	10.6 22.6	10.7 23.5	11.4 25.8	12.8 27.6	12.6 25.6	12.2 25.6	12.7 26.1	13.3 26.1	12.4 24.6	12.7 27.1	12.9 26.5	12.8 26.7	12.5 27.8	12.6 26.7
WIND DIR. VECTOR VANE	I VER.	I I 100	6.3 9.3	6.6 9.3	6.4 9.6	7.1 10.4	7.2 11.3	7.1 11.0	6.5 10.2	6.5 10.1	7.9 10.7	8.4	8.6	9.0 13.0	9.5 13.4	9.4 14.2	9.4 15.1	9.0 13.8
(DEGREE)	I VER.	1 1 1 160	4.7	5.1 2.9	5.2 3.1	6.1 3.9	6.1 3.3	5.7 2.8	4.8 2.4	4.7	5.9 4.5	6.3 2.6	6.6 3.4	7.1	7.9	8.5 4.8	9.1 5.0	7.9
STAND. DEVIA HOR. WIND DI WIND VANE ([ATION OF IRECTION DEGREE)	I I 100 I	8.5	8.3	8.8	12.5	9.0	9.6	7.0	9.4	13.1	7.6	13.6	12.6	15.9	16.3	15.7	9.6
TEMPERATURE GRADIENT (K/100M)		 30/100 	-1.2	-1.2	-1.2	-1.4	-1.4	-1.3	-1.3	-1.4	-1.4	-1.7	-1.5	-1.6	-1.7	-1.3	-1.3	-1.4
NET RADIATIO	DN (M	W/CM**2)	1 3.0	7.6	6.1	13.9	12.6	10.5	11.6	16.9	20.0	26.7	25.5	23.0	22.9	13.5	12.1	18.6
DIFFUSION 1	USION 1 VER. FLUCTUATION			D			С			D			С			С		
CATEGORY	TEGORY I HOR. FLUCTUATION			D			D			D			D			С		
BASED	TEMP. GR	ADIENT		С			С			C			C			****		
ON	SYNOP. O	BSERV.		D			D			D			D`			D		

Table 3/1: Meteorological data measured at KfK-site on April 27, 1983

Table 3 - continued

		і неіснт	 -							 Tim	e in C	 ET						
		I (M)	1 10.10	10.20	10.30	10.40	10.50	11.00	11.10	11.20	11.30	11.40	11.50	12.00	12.10	12.20	12.30	12.40
WIND DIRECT (DEGREE)	ION	40 60 100 160 200	224 219 221 224 228	227 224 221 226 232	234 231 228 233 236	240 237 233 233 235	240 233 230 230 233	235 231 227 227 231	216 211 211 221 227	217 217 216 217 223	219 217 212 223 228	233 230 227 228 231	244 242 247 246 250	255 253 248 244 248	237 233 228 231 235	277 269 261 256 255	230 227 221 228 233	258 254 248 247 247 247
WIND SPEED (M/S)		40 60 100 160 1200	**** 5.9 6.6 7.1 7.5	**** 6.4 7.5 8.6 9.1	**** 5.7 6.8 7.8 8.5	**** 7.1 8.3 8.3 8.6	**** 6.5 7.7 8.2 8.5	**** 5.9 6.4 7.5 7.8	**** 6.7 7.9 8.5 8.8	**** 6.2 7.2 8.3 8.5	5.0 5.2 6.2 7.2 7.6	4.8 4.6 5.5 6.1 6.3	5.0 5.1 5.3 5.6 6.0	**** 5.0 5.3 5.8 6.0	**** 6.5 7.1 7.8 8.0	4.5 5.1 5.4 5.7	**** 4.1 4.8 5.3 5.6	4.7 5.2 5.5 5.6
STANDARD DEVIATION O	I VER. I I I F I HOR. I	40	12.7 27.1	13.3 28.1	12.7 26.7	12.3 27.3	12.3 25.0	11.7 23.7	12.4 24.9	12.3 29.3	13.1 31.8	13.6 32.5	12.7 28.6	12.8 27.1	12.5 25.8	12.7 27.7	14.7 29.3	13.7 34.5
WIND DIR. VECTOR VANE	I VER. I	100	1 8.6 1 13.0	8.5 13.7	8.7 13.3	8.3 12.3	7.7 11.4	8.1 11.5	9.4 13.4	10.1 14.4	11.1 15.9	11.9 16.7	12.1 16.0	12.1 15.6	11.2 14.2	10.9 15.1	12.5 14.8	11.3 16.4
(DEGREE)	I VER. I	160	7.8 1 1 4.2	7.6 3.2	7.4 3.8	6.8 2.8	6.7 3.2	7.4 4.2	8.1 3.9	8.8 4.2	9.6 5.1	9.8 3.8	10.3 4.8	11.1 5.0	10.4 2.7	9.3 3.5	10.2 4.8	9.4 3.4
STAND. DEVI HOR. WIND D WIND VANE (ATION OF I IRECTION I DEGREE)	100	 15.3 	11.9	11.4	9.1	8.8	17.9	15.7	18.2	17.1	17.2	22.6	16.4	15.7	13.1	20.4	13.5
TEMPERATURE GRADIENT (K/100M)		30/100	 -1.4 	-1.5	-1.4	-1.5	-1.5	-1.7	-1.9	-1.7	-2.0	-1.6	-1.4	-1.9	-1.8	-1.7	-1.8	-1.6
NET RADIATI	ON (MH	√/CM**2)	1 18.8	20.0	18.7	24.6	25.3	35.3	39.6	43.1	44.3	30.9	40.9	46.9	46.6	30.9	45.2	40.3
DIFFUSION	FFUSION VER. FLUCTUATION					С			С			В			В			В
CATEGORY	HOR. FLUC	CTUATION	D			D			с			c			С			с
BASED	TEMP. GRA	ADIENT	****			****			****			В			****			****
ON	SYNOP. OF	BSERV.	i c			C			С			B			В			В

Table 3/2: Meteorological data measured at KfK-site on April 27, 1983

		I HEIGHT	 ! !				Tim	e in C	ET									
		i (M)	12.50	13.00	13.10	13.20	13.30	13.40	13.50	14.00	14.10	14.20	14.30	14.40	14.50	15.00	15.10	15.20
WIND DIRECT (DEGREE)	ION	40 60 100 160 200	261 256 246 239 235	244 242 241 238 237	219 217 216 221 221	222 216 213 219 223	224 219 220 223 228	245 239 234 233 234	235 230 233 232 236	228 225 221 222 231	217 215 221 226 232	244 240 239 237 239	228 226 226 227 231	246 241 236 233 234	243 239 233 233 233 237	236 230 227 229 233	242 237 231 231 233	236 228 226 228 228 231
WIND SPEED (M/S)		40 60 100 160 200	**** 4.7 5.0 5.2 5.2	**** 3.9 4.0 4.3 4.5	4.1 4.5 5.1 5.5	**** 6.1 6.3 6.6 6.9	**** 4.6 5.1 5.7 6.0	**** 5.5 5.6 5.6 5.7	**** 4.0 4.5 4.9 5.2	**** 4.5 5.3 5.8 6.0	**** 4.9 5.1 5.5 5.8	**** 5.4 5.6 6.0 6.2	**** 5.1 5.6 6.1 6.3	**** 4.6 5.0 5.2 5.5	**** 4.7 5.5 5.7 5.8	+*** 4.2 5.0 5.5 5.8	**** 4.4 4.9 5.8 6.2	4.4 4.8 5.2 5.7 6.0
STANDARD	I VER.	I 1 40	13.7	12.3	13.2	12.3	12.7	13.2	12.5	12.9	13.7	12.4	11.9	12.0	12.0	11.5	11.1	11.7
DEVIATION O	EVIATION OF I HOR. I I		28.6	24.3	25.4	27.2	28.7	28.1	24.1	25.1	29.1	28.6	24.7	26.1	24.1	24.2	25.8	26.5
WIND DIR.	i VER.] I 100	11.9	10.9	12.7	12.0	11.8	12.6	11.9	12.3	12.4	13.0	11.8	11.0	9.8	8.9	8.3	9.4
VECTOR VANE	i HOR.	1	14.5	13.9	15.7	16.5	16.7	15.4	14.5	14.4	14.9	14.4	12.7	13.0	11.9	11.3	11.8	12.7
(DEGREE)	I VER.	1	10.2	9.9	11.6	11.0	10.4	9.9	10.3	10.2	11.3	12.6	11.3	10.0	8.7	7.7	7.0	7.6
	I HOR.	1	4.3	3.8	4.6	4.1	2.8	4.6	3.7	3.6	4.9	3.8	3.4	3.9	1.8	2.8	2.8	3.1
STAND. DEVI HOR. WIND D WIND VANE (1	ATION OF IRECTION DEGREE)	 100 	1 16.8	14.8	20.8	16.4	18.2	11.7	17.3	9.9	16.0	13.9	14.4	11.5	8.4	12.9	12.3	14.2
TEMPERATURE GRADIENT (K/100M)		 30/100 	1 -1.3	-1.4	-1.4	-1.4	-1.8	-1.6	-1.5	-1.6	-1.6	-1.8	-1.5	-1.4	-1.5	-1.5	-1.5	-1.5
NET RADIATI	ON (P	1W/CM**2)	1 32.8	25.1	29.5	34.5	38.7	35.9	26.9	36.3	30.6	41.3	24.1	18.8	19.8	17.4	20.5	19.5
DIFFUSION I	IFFUSION I VER. FLUCTUATIO				В			В			В			В			С	
CATEGORY I HOR. FLUCTUATI		ICTUATION			С			с			С	<i>.</i>		D			С	
BASED I TEMP. GRAD		ADIENT			****			****			****			****			С	
ON I	SYNOP. (BSERV.	 		В			B			В			С			C	

Table 3/3: Meteorological data measured at KfK-site on April 27, 1983

-31 -

		I HEIGHT							' 'I	ime in	CET							
		і (М)	8.10	8.20	8.30	8.40	8.50	9.00	9.10	9.20	9.30	9.40	9.50	10.00	10.10	10.20	10.30	10.40
WIND DIRECT (DEGREE)	ION	40 60 100 160 200	223 217 215 218 223	226 220 217 219 224	227 221 219 221 221 226	223 219 220 222 226	224 221 220 223 229	221 217 218 219 225	220 216 215 218 225	222 219 217 220 225	222 221 216 220 226	230 226 225 227 233	240 237 234 236 239	239 238 236 237 240	236 237 234 236 240	238 238 234 239 242	248 249 243 242 245	236 238 236 238 241
WIND SPEED (M/S)		40 60 1 100 1 160 1 200	4.9 6.1 8.0 9.6 10.4	5.0 6.1 7.9 10.0 11.3	5.9 6.5 8.7 10.9 11.7	5.9 7.2 9.1 11.0 12.1	5.7 7.1 9.3 11.1 11.8	5.7 6.8 8.4 10.0 10.9	5.9 7.3 9.2 11.1 12.0	6.0 7.5 9.8 11.4 12.4	5.9 7.5 9.9 11.8 12.6	5.8 7.4 9.3 11.0 11.8	6.4 7.6 9.3 11.4 12.0	7.2 8.1 10.0 11.8 12.4	5.6 6.7 9.3 11.0 11.4	7.0 8.5 10.7 11.9 12.6	6.9 8.1 9.7 10.7 11.9	7.9 9.3 11.7 13.5 14.6
STANDARD DEVIATION 0	I VER.	1 I 40 I	12.5 16.6	13.5 16.7	13.6 16.3	14.2 16.5	13.9 17.2	13.9 16.2	14.1 17.1	14.0 16.7	14.3 17.3	14.7 17.8	14.0 17.2	13.0 16.0	12.9 15.4	12.9 17.2	12.6 16.8	12.6 15.8
WIND DIR.	I VER.	I 100	5.7	5.9	6.4	6.3	6.5	6.8	7.2	7.0	6.7	6.6	6.7	6.6	6.4	6.6	6.6	6.8
VECTOR VANE	HOR.	 	8.3	8.7	9.4	8.8	8.8	8.7	9.2	9.0	8.5	9.0	9.8	9.5	8.8	10.1	9.9	9.5
(DEGREE)	I VER. I I HOR.	1 160 1	4.5 8.3	4.4 8.2	4.7 8.4	4.8 8.0	4.7 7.9	4.6 7.5	4.5 7.8	4.5 7.5	4.4 7.3	4.4 7.8	4.7 8.4	4.6 8.4	4.4 7.8	4.9 8.9	5.3 9.2	5.2 9.4
STAND. DEVI HOR. WIND D WIND VANE (ATION OF IRECTION DEGREE)	I I 100	7.9	9.2	10.4	8.4	7.6	10.7	8.2	8.2	7.9	10.4	10.4	8.9	10.9	9.5	10.9	10.8
TEMPERATURE GRADIENT (K/100M)		 30/100 	-0.8	-0.9	-0.9	-1.0	-0.9	-0.9	-0.9	-0.9	-0.8	-0.8	-0.9	-0.9	-1.0	-0.9	-1.0	-1.0
NET RADIATI	ON (M	W/CM**2)	1 2.1	3.6	4.5	4.8	3.0	2.1	1.4	1.0	1.1	1.7	2.7	2.6	2.4	1.7	2.1	1.0
DIFFUSION I	VER. FLU	CTUATION		D			D			D			D			D		
CATEGORY	ATEGORY I HOR. FLUCTUATION			D			D			D			D			D		
BASED I TEMP. GRADIENT				D			D			D			D			D		
ON I	SYNOP. O	BSERV.	1	D			D			D			D			D		

Table 4/1: Meteorological data measured at KfK-site on March 29, 1984

		I HEIGHT							Time	in CE	T							
		i (M)	1 10.50	11.00	11.10	11.20	11.30	11.40	11.50	12.00	12.10	12.20	12.30	12.40	12.50	13.00	13.10	13.20
WIND DIRECT (DEGREE)	ION	I 40 I 60 I 100 I 160 I 200	1 236 1 238 1 235 1 238 1 238 1 242	239 238 234 236 241	235 234 232 235 238	230 227 227 229 235	232 231 228 232 238	237 232 233 235 239	239 238 236 238 242	239 238 235 241 245	243 244 240 243 248	245 246 242 244 248	244 243 240 242 244	240 241 239 241 246	250 249 245 246 251	254 252 249 252 256	250 251 251 254 257	259 256 253 257 259
WIND SPEED (M/S)		40 60 100 160 200	9.4 10.7 13.7 15.0 15.3	6.8 8.4 10.4 12.1 12.5	8.7 10.4 12.9 13.8 14.1	8.3 9.7 12.4 13.9 14.2	8.9 10.6 13.0 14.6 14.7	7.7 9.0 11.7 13.8 14.6	7.5 9.0 11.6 12.8 13.2	6.3 7.4 8.9 10.8 11.6	5.5 6.5 8.3 9.7 10.3	5.9 7.1 8.5 9.7 10.5	5.2 6.4 7.8 9.1 9.7	5.0 5.7 7.3 8.8 9.7	5.0 5.8 7.3 8.5 9.4	5.3 6.4 8.1 9.3 10.0	5.1 6.0 7.4 8.6 9.2	5.0 5.9 7.3 8.3 9.3
STANDARD	I VER.	1	1 12.8	13.4	13.1	13.1	12.8	12.7	13.0	12.9	12.7	12.6	12.7	13.6	13.2	13.0	12.6	12.2
DEVIATION O	F I HOR.	 	1 15.9	16.2	16.6	15.7	15.7	15.7	15.9	15.5	14.6	14.6	14.3	15.8	15.1	14.6	14.6	15.4
WIND DIR.	I VER.	i i 100	6.3	6.5	6.3	6.0	5.7	5.8	5.8	6.0	6.2	6.4	6.5	6.8	7.1	6.9	6.7	6.6
VECTOR VANE	I HOR.	1	1 8.9	8.7	8.9	8.3	8.2	8.3	8.3	8.1	8.4	8.6	8.9	9.8	10.0	9.5	9.1	9.4
(DEGREE)	I VER.	I I I 160	1 4.5	4.8	4.8	4.6	4.1	4.0	3.9	4.0	4.2	4.4	4.8	5.2	5.3	5.4	5.2	5.3
	I HOR.	1	1 8.6	8.0	8.4	7.9	7.7	7.4	7.3	7.8	7.9	7.8	8.4	9.2	9.3	9.7	9.4	9.9
STAND. DEVI HOR. WIND D WIND VANE (ATION OF IRECTION DEGREE)	 100 	1 1 7.0	11.8	7.1	8.0	8.0	9.5	7.0	9.3	9.0	9.1	11.3	11.4	9.3	10.4	7.8	11.4
TEMPERATURE GRADIENT (K/100M)		 30/100 	1 1 -1.0	-1.1	-1.2	-1.1	-1.1	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-0.9	-0.9	-1.0
NET RADIATI	ON (M	1W/CM**2)	1 3.4	4.5	3.2	2.6	2.2	3.7	2.2	1.5	1.9	2.2	1.5	1.0	1.3	1.2	1.0	3.7
DIFFUSION I VER. FLUCTUATI			I D			D			D			D			D			D
CATEGORY	HOR. FLU	JCTUATION	I D			D			D			D			D			D
BASED I TEMP. GRADIEN			I D			D			D			D			D			D
ON I	SYNOP. (DBSERV.	i D			D			D			D			D			D

		I HEIGHT	 				Time	e in CE	 T						
		i (M)	113.30	13.40	13.50	14.00	14.10	14.20	14.30	14.40	14.50	15.00	15.10	15.20	15.30
WIND DIRECT (DEGREE)	I ON	40 60 100 160 200	I 255 I 259 I 255 I 256 I 256 I 257	256 255 256 256 259	253 252 252 257 257 259	256 257 251 257 259	259 259 260 260 260	247 247 246 245 248	253 251 251 253 255	261 262 259 262 262	265 261 261 266 266	264 264 263 265 266	267 265 262 263 263	264 261 259 260 259	270 266 262 262 262 262
WIND SPEED (M/S)		40 60 100 160 200	6.1 6.9 8.5 9.6 9.8	6.3 7.0 7.9 9.1 9.3	5.0 6.2 7.4 8.5 9.0	4.4 4.6 6.0 7.0 7.8	4.6 5.5 5.9 6.5 7.2	4.0 4.7 5.8 6.8 7.3	5.3 6.4 7.4 8.1 8.2	4.8 5.8 6.9 8.0 8.5	5.7 6.4 7.6 8.9 9.7	7.4 8.1 9.1 10.1 10.4	5.3 6.3 6.9 7.4 8.1	3.9 4.7 5.4 6.4 7.2	4.5 5.0 5.7 6.3 6.9
STANDARD	I VER.	I 1 1	1 12.1	12.1	12.6	12.4	12.6	13.0	12.2	11.5	11.3	11.2	11.5	12.7	12.8
DEVIATION O	IATION OF I HOR. I		1 15.1	15.5	15.6	15.2	15.5	16.3	16.3	15.3	13.9	13.4	13.0	15.5	17.7
WIND DIR.	DIR. I VER. I		6.8	7.2	7.3	7.6	7.9	7.5	6.7	6.1	6.3	6.9	6.7	7.3	7.4
VECTOR VANE	HOR.	 	9.6	9.6	10.1	9.4	10.8	10.7	10.3	9.0	8.2	8.8	7.8	8.9	10.4
(DEGREE)	I VER.	1	5.0	5.2	5.4	5.6	6.3	6.9	6.1	5.1	5.0	5.2	4.9	6.1	6.7
	HOR.	1 100	9.2	9.9	9.6	9.4	10.3	11.0	10.3	9.0	8.1	8.6	8.0	9.2	10.5
STAND. DEVI HOR. WIND D WIND VANE (1	ATION OF IRECTION DEGREE)	 100 	1 1 9.4	10.4	11.5	12.4	10.0	14.5	7.3	9.3	8.8	8.6	10.4	14.2	13.3
TEMPERATURE GRADIENT (K/100M)		I I 30/100 I	 -1.1 !	-1.1	-1.1	-1.3	-1.3	-1.1	-1.1	-1.2	-1.3	-1.3	-1.3	-1.4	-1.3
NET RADIATI	ОМ (М	W/CM**2)	1 5.0	6.1	8.7	15.3	8.4	2.9	2.7	3.1	14.3	14.7	14.4	13.4	10.9
DIFFUSION I	IFFUSION I VER. FLUCTUATIO				С			С			D			С	
CATEGORY	I HOR. FLUCTUATI				D			D			D			С	
BASED I	BASED I TEMP. GRADIENT				C			С			С			С	
ON I	SYNOP. O	BSERV.			D			С			D			С	

Table 4/3: Meteorological data measured at KfK-site on March 29, 1984

I 34

		I HEIGHT	 !								 Tim	e in C	 ET					
		I I (M)	1 1 9.40	9.50	10.00	10.10	10.20	10.30	10.40	10.50	11.00	11.10	11.20	11.30	11.40	11.50	12.00	12.10
WIND DIRECT	TON	40 60 100 160 200	216 217 220 218 221	221 218 219 219 222	213 212 217 216 219	221 221 228 225 226	216 215 223 223 226	233 231 235 235 237	236 238 242 240 240	233 235 241 238 239	235 236 240 239 239	229 229 233 231 231	223 224 232 230 231	219 222 228 230 232	223 223 227 228 231	228 229 231 231 232	234 234 235 232 232	222 220 224 223 226
WIND SPEED (M/S)		1 40 1 60 1 100 1 160 1 200	6.8 8.3 9.6 10.7 11.2	5.6 7.3 8.7 9.0 9.5	5.8 6.5 8.0 9.3 9.8	6.0 7.1 8.7 10.1 10.7	6.3 7.7 9.3 9.8 9.9	7.5 8.6 10.7 11.2 11.2	6.7 8.3 9.8 10.6 10.7	7.1 8.0 10.2 11.2 11.7	6.9 8.4 11.0 12.1 12.3	8.6 10.1 13.2 14.5 14.7	3.9 5.5 7.4 9.4 10.6	3.4 4.4 6.1 8.6 10.0	3.5 4.4 6.5 8.9 10.4	5.1 6.3 7.7 8.9 10.1	7.0 7.8 8.9 10.3 11.3	7.1 8.3 9.4 10.3 10.6
STANDARD DEVIATION C	I VER.	1 40 	14.3 117.5	14.6 17.8	15.5 18.1	15.4 17.8	15.8 18.3	15.3 17.7	14.3 15.6	14.5 16.1	14.2 16.7	14.0 15.9	13.9 15.7	15.6 17.3	14.6 16.4	14.8 16.3	14.2 16.1	13.5 15.4
WIND DIR. VECTOR VANE	I VER.	1 1 100	7.2 8.5	7.2 9.1	7.3 9.4	7.9 10.0	7.6 9.3	7.7 9.7	6.4 7.8	7.1 8.3	6.1 7.4	5.5 6.7	5.3 6.5	5.8 7.3	6.3 8.1	6.9 9.4	7.4 9.0	6.7 7.9
(DEGREE)	I VER.	1 1 160 1	5.5	6.2 8.8	6.3 9.0	6.6 9.3	6.4 8.5	6.0 8.9	5.1 7.6	5.5 7.7	4.6 6.9	3.9 6.1	3.4 6.0	3.3 5.8	3.7 6.4	4.4 7.5	5.2 7.8	5.0 7.4
STAND. DEVI HOR. WIND C WIND VANE (ATION OF DIRECTION DEGREE)	 100	 8.3 	9.9	9.7	11.9	8.0	`8.1	8.6	9.3	5.6	6.9	7.0	8.4	8.9	10.0	9.0	6.1
TEMPERATURE GRADIENT (K/100M)		I I 30/100 I	 -1.4 	-1.5	-1.6	-1.5	-1.6	-1.2	-1.3	-1.4	-0.8	-0.9	-0.6	-0.5	-0.5	-0.7	-0.8	-0.9
NET RADIATI	ON (M	1W/CM**2)	1 23.3	25.9	29.4	24.2	17.6	7.2	15.6	9.3	7.9	2.6	13.4	21.0	20.8	27.6	37.2	21.7
DIFFUSION I	VER. FLU	ICTUATION	! !	с			с			D			D			D		
CATEGORY I	HOR, FLL	ICTUATION	 	D			D			D			D			D		
BASED	TEMP. GF	RADIENT] 	С			с			D			D			D		
ON I	SYNOP. C	DBSERV.	İ	D			D			D			D			D		

Table 5/1: Meteorological data measured at KfK-site on March 23, 1985

၊ 35 1

		I HEIGHT									 T	ime in	CET					
		I I (M)	1 12.20	12.30	12.40	12.50	13.00	13.10	13.20	13.30	13.40	13.50	14.00	14.10	14.20	14.30	14.40	14.50
WIND DIRECT (DEGREE)	ION	40 60 100 160 200	221 220 222 219 222	219 212 220 220 222	219 216 221 218 220	211 207 214 212 215	218 216 221 217 218	203 200 206 201 202	208 205 208 206 209	203 204 210 208 211	217 215 219 217 217	241 231 228 227 227	250 247 242 233 229	226 225 227 225 225 222	220 215 220 220 221	216 215 220 220 221	221 219 222 221 222	217 218 221 217 221
WIND SPEED (M/S)		40 60 100 160 200	5.8 7.1 8.6 9.7 10.0	6.7 7.8 9.4 10.7 11.1	5.9 7.1 8.4 8.9 9.1	5.0 5.7 6.8 8.1 8.7	5.6 6.4 7.5 8.5 8.6	5.3 6.4 7.2 7.4 7.1	4.3 5.2 6.3 7.0 7.0	5.2 6.0 7.3 7.5 7.5	5.1 5.9 7.0 7.6 7.9	4.1 4.5 5.1 6.4 6.9	3.6 4.3 5.3 5.5 5.5	3.0 3.6 4.5 5.4 5.5	4.0 4.8 5.9 6.6 6.9	4.1 4.9 6.1 6.5 6.6	4.6 5.1 6.3 7.0 7.2	5.3 6.0 7.1 7.7 7.8
STANDARD DEVIATION C	I VER. I OF I HOR.	1 1 40 1	1 13.5 1 1 16.0	14.1 17.5	13.9 16.9	14.2 17.0	14.0 17.7	11.7 17.4	**** 20.2	**** 19.0	**** 21.3	13.9 20.2	12.1 17.4	9.8 13.1	10.5 14.9	11.9 15.2	12.7 15.4	13.1 16.3
WIND DIR. VECTOR VANE	I VER.	100	6.1 6.1	6.6 8.0	6.2 8.1	7.6 9.0	7.7 9.5	7.4 8.8	7.7	7.2 9.2	7.5 9.2	7.7 9.5	7.3 9.7	6.3 8.4	6.4 9.6	6.1 8.4	6.4 8.5	6.9 9.1
(DEGREE)	I VER. I I HOR.	1 160	4.5 1 1 6.9	4.6 7.0	4.5 6.8	5.9 7.8	6.0 7.8	5.6 7.7	6.1 9.3	5.5 7.9	5.8 8.4	5.6 8.3	5.9 8.8	5.8 8.9	5.2 9.8	4.4 8.1	4.4 7.2	4.9
STAND. DEVI HOR. WIND D WIND VANE (ATION OF DIRECTION DEGREE)	I I 100 I	 8.6 	7.9	7.5	12.6	11.3	12.7	18.7	7.1	10.5	11.1	6.9	16.2	8.0	6.6	9.6	8.7
TEMPERATURE GRADIENT (K/100M)		 30/100 	 -1.0 	-1.3	-1.3	-1.2	-1.2	-1.6	-1.8	-1.6	-1.4	-1.0	-0.1	0.2	-0.3	-0.9	-1.1	-1.5
NET RADIATI	ON (M	W/CM**2)	1 15.7	34.8	17.5	8.8	10.8	34.0	34.9	18.5	9.4	3.8	2.0	7.4	12.6	9.8	20.6	25.1
DIFFUSION	VER. FLU	CTUATION	I D			с с			С			с			D	******		D
CATEGORY	HOR. FIU	CTUATION	I D			D			с			D			D			D
BASED	BASED I TEMP. GRADIENT		i D			с			В			D			D			С
ON	SYNOP. O	BSERV.	i d	~		С			С			С			С			С

Table 5/2: Meteorological data measured at KfK-site on March 23, 1985

- 36

		I HEIGHT								 Ti	me in	CET						
		I (M) I	15.00	15.10	15.20	15.30	15.40	15.50	16.00	16.10	16.20	16.30	16.40	16.50	17.00	17.10	17.20	17.30
WIND DIRECT	1 ON	1 40 1 1 60 1 1 100 1 1 160 1 1 200 1	215 209 214 211 213	200 199 207 207 210	204 202 209 208 209	197 194 200 196 198	184 190 193 190 192	191 189 193 190 191	191 190 196 195 198	193 195 200 198 200	193 192 198 193 195	212 208 209 204 202	198 200 206 208 210	209 205 208 207 208	207 204 209 212 216	216 213 217 215 218	218 213 220 218 221	216 215 221 221 221 225
WIND SPEED (M/S)		40 60 100 160 200	5.4 6.2 7.1 7.3 7.3	5.8 7.0 8.4 9.1 9.1	5.7 6.6 8.5 9.3 9.4	6.2 7.5 9.0 9.3 9.1	4.9 5.4 6.2 6.7 7.2	5.7 6.3 6.5 8.0 7.6	4.8 5.5 6.3 7.1 6.8	4.6 5.4 6.2 6.7 6.6	4.4 5.6 6.5 7.1 6.9	4.6 5.5 6.1 6.6 6.6	4.0 5.1 6.6 7.0 7.4	3.3 3.9 5.1 6.3 6.6	3.0 3.9 5.2 6.1 6.8	4.7 5.8 6.9 7.6 8.0	3.4 4.4 5.7 6.7 6.7	3.1 3.7 5.1 5.8 5.7
STANDARD DEVIATION O	I VER.	1 40 1 1 40 1	12.3 15.6	12.4 16.0	13.4 16.4	14.1 16.8	13.9 19.9	13.4 18.4	14.2 17.9	14.5 16.5	14.3 17.6	14.2 17.1	14.0 15.8	14.8 18.1	15.6 19.0	14.9 18.8	15.1 18.2	14.9 17.9
WIND DIR. VECTOR VANE	I VER.	100	6.7 8.5	6.5 8.7	6.2 8.0	5.8 7.2	7.1 9.9	7.4 10.1	7.2 9.6	7.2 9.6	6.2 8.7	6.1 9.3	5.9 8.4	6.0 8.4	7.2	7.1 10.8	6.7 9.5	6.6 8.8
(DEGREE)	I VER.	1 160	5.3 7.7	5.4 8.4	4.9 7.5	4.8 7.2	6.0 9.3	6.8 9.7	6.4 9.6	6.4 9.4	5.3 8.5	5.4 9.9	5.1 9.0	5.1 8.2	6.0 10.0	5.5 9.6	4.9 8.6	4.5 7.9
STAND. DEVI HOR. WIND D WIND VANE (ATION OF IRECTION DEGREE)	I I 100 I	11.1	8.3	9.4	7.0	16.1	9.1	9.0	10.5	8.1	8.9	8.9	10.5	16.2	7.4	8.7	8.8
TEMPERATURE GRADIENT (K/100M)		 30/100	-1.3	-1.2	-1.3	-1.3	-1.9	-1.6	-1.7	-1.7	-1.3	-1.1	-1.1	-1.0	-1.1	-1.2	-1.0	-0.9
NET RADIATI	ON (M	W/CM**2)	9.8	14.9	11.2	12.5	29.9	19.8	16.9	15.9	4.4	3.4	3.3	3.6	8.9	3.9	-0.1	-0.2
DIFFUSION I	VER. FLU	CTUATION			D			с			D			D			D	
CATEGORY	HOR. FLU	CTUATION			D			D			D			D			D	
BASED I TEMP. GRADIENT			 		с			В			с			С			С	
ON I	SYNOP. O	BSERV.			C C			С			С			С			С	

Table 5/3: Meteorological data measured at KfK-site on March 23, 1985

37 -

l

		I HEIGHT	!								Tim	e in C	ET					
		I I (M)	1 17.40	17.50	18.00	18.10	18.20	18.30	18.40	18.50	19.00	19.10	19.20	19.30	19.40	19.50	20.00	20.10
WIND DIRECT	Í I ON	40 60 100 160 200	243 232 220 217 220	209 206 214 212 215	197 195 206 210 216	201 204 213 220 225	209 210 219 222 225	208 210 220 226 231	203 208 216 221 228	196 201 214 218 225	208 212 223 228 234	210 215 229 234 235	187 198 216 224 228	182 191 211 220 226	205 211 224 230 233	247 243 246 245 246	228 235 245 247 246	224 228 234 226 227
WIND SPEED (M/S)		40 60 100 160 200	1 1.7 1 2.4 1 3.6 1 5.1 1 6.0	7.1 8.9 11.5 12.4 12.7	4.2 5.7 7.9 8.9 9.5	2.6 3.8 5.9 7.1 7.9	2.6 4.1 5.8 7.1 8.0	3.7 5.3 6.8 7.8 8.3	3.5 5.1 6.8 8.0 8.4	3.1 4.8 6.3 7.5 8.2	3.9 5.5 6.9 7.9 8.5	3.4 5.0 6.5 7.6 8.3	3.0 4.2 5.7 6.9 7.9	2.8 4.2 5.5 6.5 7.1	3.6 5.0 7.1 9.4 10.5	4.1 5.4 7.1 8.3 9.1	2.8 3.8 5.2 6.0 6.3	2.4 3.0 3.8 4.5 4.8
STANDARD DEVIATION C	I VER I DF I HOR	. 40 .	15.1 20.9	13.9 20.1	12.9 18.1	11.2 15.8	10.1 13.6	8.1 10.3	7.6 9.2	7.1 8.8	7.3 9.4	6.7 8.0	5.7 6.3	5.1 7.3	5.3 7.8	6.3 9.7	7.3 9.3	6.5 9.0
WIND DIR. VECTOR VANE		. 100	I 7.6 I 11.4	6.7 10.3	5.3 8.1	4.3 7.4	3.4 6.1	2.5 4.5	2.0	1.7 2.9	1.7 3.2	1.7 2.6	1.9 2.3	1.9 3.7	2.0 4.1	3.2 5.7	3.7 5.6	3.4 4.7
(DEGREE)	I VER	 . . 160 .	1 5.0 1 8.6	4.5 8.4	4.0 7.4	3.5 7.3	2.8 6.5	2.2 5.5	1.7 4.3	1.5 4.2	1.6 4.7	1.7 4.3	1.7 4.0	1.6 4.7	1.6 4.6	2.6 5.8	2.8 5.7	2.3 4.8
STAND. DEVI HOR. WIND E WIND VANE (ATION C DIRECTIC DEGREE)	F I N I 100 I] 17.5 	7.4	4.7	6.9	3.5	2.1	2.3	2.5	4.4	2.8	9.0	7.0	6.7	9.5	6.3	8.4
TEMPERATURE GRADIENT (K/100M)		 30/100 	 -0.7	-0.4	0.2	0.7	1.1	1.2	1.4	1.5	1.5	1.5	1.3	1.1	1.0	0.6	0.4	0.2
NET RADIATI	I O N	(MW/CM**2)	I -0.5	0.0	0.6	0.2	-1.9	-3.1	-3.6	-3.5	-1.6	-2.3	-2.1	-0.4	0.0	-0.5	-0.8	-1.5
DIFFUSION	VER. F	LUCTUATION		D			D			F			E			E		
CATEGORY I	HOR, F	LUCTUATION	 	D			F F			F			E			D		
BASED I TEMP. GRADIENT		1	D			٤			F			F			E			
ON	SYNOP.	OBSERV.	i 	D			D			E			Е			E		

Table 5/4: Meteorological data measured at KfK-site on March 23, 1985

38 1

I

		I HEIGHT	 !							Ti	me in	CET						
		I I (M)	I I 8.00	8.10	8.20	8.30	8.40	8.50	9.00	9.10	9.20	9.30	9.40	9.50	10.00	10.10	10.20	10.30
WIND DIRECT (DEGREE)	ION	40 60 100 100 160 1200	I 193 I 196 I 210 I 213 I 215	198 200 214 215 217	199 206 216 216 219	203 204 206 208 211	197 199 201 209 210	213 211 211 206 208	227 214 217 216 214	218 216 218 212 214	218 217 220 217 216	215 213 213 213 213 216	221 217 220 219 218	217 217 214 208 206	209 209 212 215 217	228 232 227 223 223	221 221 225 223 223	222 219 223 217 218
WIND SPEED (M/S)		40 60 100 160 200	1.9 2.8 4.3 5.9 7.0	1.5 2.5 3.6 5.2 6.0	1.0 1.8 3.4 4.6 5.4	1.9 2.5 2.8 3.7 4.7	1.8 2.3 3.0 4.1 4.6	1.7 2.3 2.6 3.0 3.5	2.0 2.7 2.8 3.8 4.4	3.3 4.0 4.9 5.1 5.4	3.5 3.9 4.4 5.1 5.5	3.4 4.3 5.3 6.0 6.1	4.0 4.5 5.3 5.9 6.1	2.8 3.2 3.7 4.1 4.1	3.3 3.5 3.8 4.1 4.4	3.6 3.9 4.5 5.0 5.4	3.8 4.4 5.3 5.6 5.8	3.3 3.7 4.2 4.5 4.6
STANDARD	I VER.	1 40	9.6	9.5 13.5	9.4 13.2	12.2 17.7	14.6 19.5	14.9 21.7	16.9 19.7	16.5 20.8	15.2 18.0	15.2 17.6	14.2 15.7	13.6	12.8	14.4 21.1	14.9 19.4	15.8 19.1
WIND DIR.	I VER.	 100	5.6 7 0	5.4	5.4	6.4 8 h	7.8	8.6	9.4	8.7	8.2	9.1	8.9	8.3	9.2	10.8	10.8	11.5
(DEGREE)	I VER.	1	4.2	4.0	3.6	4.7 8 4	5.8	7.3	8.0	8.4	7.7	7.1	6.8	6.8	8.8	9.6	9.4	9.6
STAND. DEVI HOR. WIND D WIND VANE (ATION OF IRECTION DEGREE)	l l 100 l	5.9	6.9	9.3	16.1	18.9	21.1	18.7	14.2	12.0	14.4	8.2	16.1	13.5	14.7	13.4	16.4
TEMPERATURE GRADIENT (K/100M)		 30/100 	 -0.1 	-0.1	-0.3	-0.6	-0.6	-0.9	-0.9	-1.1	-1.2	-1.1	-1.0	-0.9	-1.1	-1.3	-1.4	-1.2
NET RADIATI	ON (M	IW/CM**2)	1 1.4	3.3	10.7	12.1	14.9	18.7	15.3	20.5	16.8	13.7	11.6	22.0	21.9	27.5	26.8	23.8
DIFFUSION 1	FFUSION 1 VER. FLUCTUATION		1	D			С			С			С			C		
CATEGORY	ATEGORY I HOR. FLUCTUATION		i l	D			С			С			С			С		
BASED TEMP. GRADIENT			i !	Е			D			с			C			C		
ON i	SYNOP. O	BSERV.	i	С			С			С			С			С		

Table 6/1: Meteorological data measured at KfK-site on March 25, 1985

.

-39

HEIGHT Time in CET (M) 10.40 10.50 11.00 11.20 11.30 11.40 11.50 12.00 12.10 12.20 12.30 12.40 12.50 13.00 13.10 WIND DIRECTION 40 221 218 219 223 233 230 241 242 225 226 212 216 213 225 219 225 (DEGREE) 100 12.18 215 217 221 223 233 234 236 216 215 216 213 225 219 225 216 213 226 216 215 216 215 226 216 215 216 225 226 226 226 216 <																		
		I I (M)	10.40	10.50	11.00	11.10	11.20	11.30	11.40	11.50	12.00	12.10	12.20	12.30	12.40	12.50	13.00	13.10
WIND DIRECT	TION	40 60 100 160 200	221 224 223 218 218	218 215 217 213 215	218 214 221 218 217	222 218 225 221 221	235 233 235 229 231	230 229 233 231 234	241 240 244 240 237	242 238 240 236 234	225 219 221 216 218	226 219 220 215 217	212 210 214 214 217	216 212 218 225 228	213 217 220 215 217	225 223 228 224 224 224	219 214 209 206 211	254 251 246 237 237
WIND SPEED (M/S)		40 60 100 100 160 1200	3.5 3.8 4.3 4.7 4.9	3.6 4.4 5.6 6.1 6.2	5.0 5.7 6.5 6.9 7.1	3.4 3.8 4.7 5.5 5.9	4.8 5.6 6.8 7.3 7.6	4.5 5.6 6.7 7.2 7.3	3.9 4.3 4.9 5.4 5.7	3.6 4.5 5.2 5.8 5.9	3.8 4.2 4.6 5.4 5.5	3.8 4.3 4.6 5.5 5.8	4.8 5.3 5.6 6.1 6.5	3.0 3.3 3.8 3.9 4.1	5.1 5.4 6.0 6.4 6.6	4.1 4.8 5.5 5.9 6.2	3.6 4.1 4.5 5.2 5.4	3.5 4.0 4.2 4.4 4.2
STANDARD DEVIATION (I VER. I DF I HOR.	1 1 40	16.7 20.4	16.5 20.8	16.8 19.8	17.3 19.2	16.7 20.0	16.7 19.1	15.4 18.6	15.8 20.6	16.7 20.3	18.0 20.6	18.3 20.7	18.1 19.6	17.0 18.9	15.7 18.2	17.4 19.2	18.5 23.8
WIND DIR. VECTOR VANE	I VER.	100	11.3 14.3	10.9 14.1	9.8 12.3	9.6 12.0	9.6 12.9	8.3	8.0 10.8	8.6 11.3	9.6 12.9	10.9 16.6	11.6 16.5	11.5 15.6	10.4 14.8	9.6 13.3	9.8 11.9	11.3 14.7
(DEGREE)	I VER.	160	9.7 12.0	9.9 12.0	8.6 10.6	8.4 10.3	8.1 10.8	7.1	6.9 9.2	7.2 9.6	8.1 10.7	9.3 12.5	9.7 12.4	10.1 13.0	9.1 12.1	9.2 11.9	9.7	11.4 14.1
STAND. DEV HOR. WIND I WIND VANE (ATION OF DIRECTION (DEGREE)	I I 100 I	16.7	13.9	7.7	19.8	13.5	8.4	16.4	16.4	17.3	18.4	17.9	20.0	13.8	12.1	13.2	23.5
TEMPERATURI GRADIENT (K/100M)		 30/100 	-1.2	-1.3	-1.4	-1.5	-1.4	-1.4	-1.2	-1.5	-1.3	-1.4	-1.5	-1.1	-1.7	-1.5	-1.4	-1.4
NET RADIAT	ION (M	W/CM**2)	21.9	20.2	25.4	37.7	21.1	17.2	28.3	38.4	39.1	41.2	37.5	25.9	32.9	28.7	29.9	35.0
DIFFUSION	I VER. FLU	CTUATION	в I			С			с			В			С			В
CATEGORY	I HOR. FLU	CTUATION	і с I			С			с			С			С			с
BASED	I TEMP. GR.	ADIENT	і с І			с			с			С			с			В
ON	SYNOP. 0	BSERV.	i B			В.			С			С			С			В

Table 6/2: Meteorological data measured at KfK-site on March 25, 1985

- 40

I

		I HEIGHT	 !							ſi	ne in	CET						
		i (M)	1 13.20	13.30	13.40	13.50	14.00	14.10	14.20	14.30	14.40	14.50	15.00	15.10	15.20	15.30	15.40	15.50
WIND DIRECT	FION	40 60 100 100 160 1200	241 235 239 235 238	235 230 234 230 230	223 224 237 236 236	235 234 238 232 229	233 230 237 236 237	237 239 241 240 243	213 217 240 241 235	210 206 211 208 209	201 203 218 214 213	219 203 215 213 208	231 221 220 214 206	155 158 173 178 176	122 121 141 139 143	119 118 131 128 133	128 125 134 134 138	123 118 122 117 120
WIND SPEED (M/S)		40 60 100 100 160 1200	1 3.6 1 3.9 1 4.1 1 4.9 1 5.1	4.1 4.6 5.0 5.4 5.4	3.5 3.9 4.1 4.5 4.7	3.8 4.4 4.8 4.8 4.8	2.9 2.9 3.3 3.7 4.0	2.4 2.9 2.8 3.1 3.0	1.8 2.2 2.7 3.1 3.0	3.4 3.8 4.1 4.1 4.2	3.3 3.7 3.8 4.0 4.1	1.8 2.3 2.4 2.7 2.8	2.1 2.4 2.7 3.3 3.3	2.1 2.4 2.4 2.6 2.6	3.4 3.9 4.2 4.3 4.0	4.1 4.8 4.8 5.1 5.1	3.1 3.4 3.8 4.2 4.3	2.4 2.8 2.8 2.7 3.1
STANDARD DEVIATION C	I VER. I I I DF I HOR. I	ц ц ц	1 17.2 1 20.3	17.4 19.3	17.7 20.0	16.4 17.4	14.8 16.7	14.7 17.6	18.1 21.4	17.9 20.9	17.9 19.7	17.5 17.2	17.9 21.0	15.1 16.8	15.6 18.9	13.7 16.6	12.7 16.1	12.5 14.6
WIND DIR. VECTOR VANE	 VER. E HOR.	100	10.9 111.6	11.9	11.1	10.1 11.4	10.1	11.3	14.4 17.7	12.0	11.7 10.2	11.6 10.1	12.1 10.8	11.4	11.6	9.3	8.4	8.2
(DEGREE)	 VER. HOR.	160	10.9 113.3	11.1 12.6	10.2 12.8	9.4 10.7	9.9	11.2	14.0 17.2	11.6 15.3	12.1 14.6	12.7 15.9	11.4 16.7	11.8	11.2 17.0	8.9 13.9	 8.5 11.5	8.4 10.4
STAND. DEVI HOR. WIND D WIND VANE (ATION OF I DIRECTION I DEGREE)	100	 14.6 	14.0	19.8	10.1	18.4	28.9	27.4	9.4	16.5	19.0	25.1	28.1	17.6	12.3	11.0	14.3
TEMPERATURE GRADIENT (K/100M)		 30/100 	 -1.3 	-1.5	-1.6	-1.3	-1.2	-1.4	-1.0	-1.6	-1.6	-1.1	-1.3	-0.9	-1.5	-1.5	-1.2	-1.0
NET RADIATI	ION (M)	√/CM**2)	1 31.4	28.6	27.2	19.9	20.7	29.7	19.4	32.8	25.7	14.6	19.6	22.2	25.4	18.1	10.7	2.8
DIFFUSION	VER. FLUG	CTUATION	 		В			В			В			В			с	
CATEGORY	CATEGORY I HOR. FLUC		 		С			В			С			В			С	
BASED	I TEMP. GRA	ADIENT	 		В			В			A			В			С	
ON	I SYNOP. OF	BSERV.	i 		В			В			В			В			В	

Table 6/3: Meteorological data measured at KfK-site on March 25, 1985

		I HEIGHT	 !							Time	in CEI	- [
		I I (M)	1 1 16.00	16.10	16.20	16.30	16.40	16.50	17.00	17.10	17.20	17.30	17.40	17.50	18.00	18.10
WIND DIRECTIO	л. Эм	40 60 100 160 200	I 113 I 111 I 117 I 115 I 120	132 128 133 130 140	90 90 100 99 107	2 67 99 172 177	115 111 126 138 152	152 152 165 162 170	107 122 138 142 162	102 98 112 119 133	133 121 144 148 169	126 130 148 164 178	116 114 134 161 173	119 118 142 169 181	145 146 170 181 190	144 150 172 180 186
WIND SPEED (M/S)		40 60 100 1160 1200	2.1 2.3 2.2 2.3 2.5	1.7 1.9 2.0 2.2 2.3	1.4 1.6 1.6 1.8 1.8	0.8 1.0 1.1 1.4 1.2	1.6 1.9 2.0 2.0 2.1	1.5 1.7 2.0 2.1 2.3	0.9 1.0 1.2 1.1 0.9	1.5 1.6 1.5 1.3 1.3	0.7 1.0 1.0 1.3 1.1	1.1 1.3 1.3 1.7 2.0	1.3 1.6 1.6 1.9 1.9	1.5 1.7 1.7 1.6 1.7	1.7 2.0 2.2 2.5 2.8	2.0 2.4 2.8 2.8 3.2
STANDARD DEVIATION OF	I VER. I I HOR.	1 1 40 1	12.3 14.3	12.1 14.5	14.9 15.3	16.9 ****	16.7 ****	13.5 ****	11.8 ****	11.7 ****	9.0 ****	7.3 ****	5.2 ****	4.1 ***	3.9 7.5	3.5 6.1
WIND DIR.	I VER.	100	8.5	7.5	8.3	9.4	8.1	7.8	8.3	7.8	6.3	4.9	3.9	3.9	4.7	4.1
(DEGREE)	I VER.	160	7.9 111.4	6.7 11.1	****	***** ****	****	****	 **** ****	+5.4 +*** ****	****	**** ****	****	****	3.4	3.3
STAND. DEVIAT HOR. WIND DIF WIND VANE (DE	ION OF RECTION GREE)	 100 	1 16.0	14.4	25.9	****	12.2	14.5	45.1	8.9	22.9	13.2	14.4	13.0	10.0	6.4
TEMPERATURE GRADIENT (K/100M)		 30/100 	 -1.0	-1.0	-1.1	-1.2	-1.0	-0.8	-1.0	-0.9	-0.8	-0.8	-0.6	-0.5	-0.2	0.0
NET RADIATION	(M)	H/CM**2)	1 10.0	8.2	21.1	7.5	-1.1	3.7	6.2	-1.1	-0.3	-0.7	-1.1	-0.2	-1.0	-0.8
DIFFUSION	ER. FLU	CTUATION		С			с			с			D			D
CATEGORY I	IOR. FLUG	CTUATION		С			С			В			С			D
BASED 1	EMP. GRA	ADIENT]	C			С			D			D			Ε
ON 1 S	SYNOP. OI	BSERV.		В			С			C			С			D

Table 6/4: Meteorological data measured at KfK-site on March 25, 1985

- 42 -

		I HEIGHT							Time	in CEI					
		I I (M)	118.20	18.30	18.40	18.50	19.00	19.10	19.20	19.30	19.40	19.50	20.00	20.10	20.20
WIND DIRECT	10N	40 60 100 160 200	142 145 165 176 183	132 133 156 167 176	128 125 144 157 171	128 126 145 156 169	135 131 150 165 176	145 141 161 174 183	166 167 189 201 207	206 206 208 208 210	222 219 222 224 226	218 214 220 221 224	211 209 220 222 226	234 237 243 245 246	260 260 264 262 258
WIND SPEED (M/S)		40 60 100 160 200	2.3 2.6 2.9 3.4 3.6	2.1 3.0 3.0 3.3 3.3	2.6 3.5 3.4 3.4 3.3	2.8 3.5 3.5 3.6 3.4	2.5 3.5 3.5 3.6 3.5	2.8 3.8 3.9 4.1 4.2	3.4 4.1 4.8 6.7 7.5	4.5 5.8 7.8 8.6 8.8	4.3 5.5 7.0 8.0 8.4	5.6 7.0 8.8 9.9 10.1	3.4 4.2 5.9 7.1 7.7	7.6 9.4 12.2 13.4 13.7	6.9 8.1 9.6 10.8 11.5
STANDARD	I VER.	1	3.4	4.0	3.9	3.5	3.6	4.5	6.3	9.5	10.7	11.4	11.4	11.6	11.3
DEVIATION O	F I HOR.	1 40 	5.7	5.9	5.5	4.5	4.9	6.1	7.9	15.0	15.4	15.2	15.0	15.8	14.1
WIND DIR.	I VER.	1 100	3.6	2.9	2.2	1.8	1.4	1.2	1.7	4.3	5.8	6.1	6.2	5.7	5.1
VECTOR VANE	i HOR.	1	6.5	5.3	3.9	3.2	2.5	2.2	3.4	5.9	7.5	7.3	7.4	7.3	5.6
(DEGREE)	I VER.	1	2.8	2.3	1.8	1.6	1.4	1.2	1.7	4.2	5.3	5.8	6.0	5.1	4.3
	i HOR.	1	9.3	7.8	6.7	6.2	6.0	5.6	7.2	9.4	11.1	10.9	10.6	9.9	7.9
STAND. DEVI HOR. WIND D WIND VANE (ATION OF IRECTION DEGREE)	1 1 100 1	 6.1 	7.0	2.5	2.3	3.6	3.4	18.0	16.3	13.2	10.9	7.3	13.2	6.0
TEMPERATURE GRADIENT (K/100M)		 30/100 	1 -0.1	0.3	0.7	0.9	0.8	0.9	0.7	0.1	-0.3	-0.4	-0.2	-0.2	-0.4
NET RADIATI	ON (M	W/CM**2)	1 -0.7	-0.9	-1.5	-0.9	-1.0	-0.8	-0.7	-0.7	-0.6	-0.8	-0.9	-0.9	-1.1
DIFFUSION I	VER. FLU	CTUATION	1		E			F			D			D	
CATEGORY I	HOR. FLU	CTUATION			F			D			С			D	
BASED I	TEMP. GR	ADIENT	1		E			E			D			D	
ON I	SYNOP. O	BSERV.	1		E			E			E			D	

Table 6/5: Meteorological data measured at KfK-site on March 25, 1985

TABI	Е7,	/1: RESU	ULTS OF E	XPERI	MENT	NO.	77	DATE	: 8	3- 4-2	27		
PERI	ODS	1 TO	5 FRO	M 10.	.30 TC) 13.0	00						
TRAC	ER:	SF6	EMISSI	ON RA	ATE:	22	2.60 1	NG/S	EMI	SSION	HEIGH	T 100	M
		POS	ITION		Г	RACE	R CONC	CENTRA	ATION	IN NO	G/M**3		
		R	ALPHA	SAME	PLING	SAM	PLING	SAMI	PLING	SAMI	PLING	SAMI	PLING
		(M)	(DEGREE)	PERI	OD 1	PER	IOD 2	PER	IOD 3	PERI	IOD 4	PERI	[OD 5
Ι	А	10600	18	≤	11	≤	11	≤	11	≤	11	≤	11
	В	12000	37		-	≤	11		44	≤	11		45
	С	12200	45		-		51		220	≤	11	≤	11
	D	11800	49		-		784		392		179		167
	E	11900	54		718		772		748		712		695
	\mathbf{F}	12000	62		60		380		327				801
	G	11500	70		2		2		68		178		20
	Н	12200	79	≤	11	\leq	11				-		62
	Ι	12100	91	≤	11	≤	11	≤	11		4	≤	11
II	A	22600	14		63	≤	11	≤	11	≤	11	≤	11
	В	24700	50				54		-		-		15
	С	24800	52		+12		309		-		108		26
	D	26000	64		65		32		114		280		327
	Е	24800	67		-		7		422		179		238
	F	25400	72		-		-		380		9		29
	G	24200	91						-	≤	11		12
III	A	43200	51		-		-		-		9		-
	В	43000	55		-		-		-		131		36
	С	42600	59		-		-		-		315		238
	D	46200	65		W 50		-		-		102		191
	Е	48200	72		-		-		-		-		48

TABI	Е7,	/2: RESU	ULTS OF E	XPER	IMENT	NO.	77	DATE : 83	8- 4-27	
PERI	ODS	6 TO	9 FRO	M 13	.00 TC) 15.0	00			
TRAC	ER:	SF6	EMISSI	ON RA	ATE:	2:	2.60 N	IG/S EMIS	SION HEIGHT	100 M
		POS	ITION		1	RACEI	R CONC	ENTRATION	IN NG/M**3	
		R	ALPHA	SAMI	PLING	SAMI	PLING	SAMPLING	SAMPLING	
		(M)	(DEGREE)	PER	IOD 6	PER	IOD 7	PERIOD 8	PERIOD 9	
Ι	А	10600	18	≤	11		_	-	-	
	В	12000	37		2		**		828	
	С	12200	45		20			-	-	
	D	11800	49		191		-	64	-	
	E	11900	54		902		-	-		
	F	12000	62	-	1849		-		2 2	
	G	11500	70		37		-	_	625	
	Н	12200	79		4		-	-		
	Ι	12100	91	≤	11			-	-	
II	А	22600	14	≤	11	≤	11	pai		
	В	24700	50		30		7	-	-	
	С	24800	52	≤	11		26	~	-	
	D	26000	64		399		315	-	-	
	Е	24800	67		197		197	-	-	
	F	25400	72		18		4	-	-	
	G	24200	91	≤	11	≤	11	153		
III	A	43200	51		4		9	16	25	
	В	43000	55		8		13	7	66	
	С	42600	59		72		60	143	167	
	D	46200	65		309		238	-	179	
	E	48200	72		2		11	10	16	

TABI	E8,	/1: RESU	JLTS OF EX	XPERI	MENT	NO.	78	DATE	: 84	4- 3-2	9		
PERI	ODS	1 TO	5 FRO	M 10.	30 TO	13.0	0						
TRAC	ER:	SF6	EMISSI	ON RA	TE:	22	.30 N	IG/S	EMIS	SSION	HEIGH	T 100	M
		POSI	TION		Т	RACER	CONC	ENTRA	TION	IN NO	6/M**3		
		R	ALPHA	SAMP	LING	SAMP	LING	SAMP	LING	SAME	LING	SAMP	LING
		(M)	(DEGREE)	PERI	OD 1	PERI	OD 2	PERI	OD 3	PERI	OD 4	PERI	OD 5
т	٨	11500	0.0		10		10		10		10		10
Т	A. D	10000	20	2	12	2	12	2	12	2	14	2	10
	В	12000	37	5	12	<u> </u>	12	2	12		1 0	2	12
	C	12200	45	S	12	\leq	12	-	//	2	12	2	12
	D	11800	49	\leq	12		456	2	579		148		-
	Е	11800	49		601		456	2	556		302		6
	\mathbf{F}	11900	54	\leq	12		71	1	150		391		136
	G	11900	54		-		77	1	245		421		130
	Н	12000	62	≤	12		16		385	4	406	2	573
	I	12000	62		-				243	4	412	2	407
	K	11500	70		-		17		71		1 231		enid
	L	11500	77	<	12	5	12				#109		
	M	12200	80	<	12	<	12	<	12	<	12	<	12
	N	12500	87	<	12	<	12	-		<	12		
	.,	12300	07		14	-	14				- -		
II	А	24700	50		121	≤	12		154		65		9
	В	24800	52		est	≤	12		F 9		510		39
	С	24100	59		***		7		59		694		332
	D	24100	59		-		3		47		682		397
	Е	26000	64		-	<	12		53		71		
	н Т	24800	67		-	<	12	<	12		23		332
	r n	25400	70		_	~	12	<	12		13		14
	ы ч	25400	75				12	<	12		5		
	T	232600	7.5 9.1				10	~	12	<	12		37
	L V	23400	01			-	12	~	12	-	10	~	12
	л т	23100	07		-	<u> </u>	10	-	12	2	10		10
	Ц	24200	91			7	12	2	12	2	14	2	12
III	А	45200	46		-		674		-	<	12	≤	12
	В	43200	51		*5		-		63		18		8
	С	43000	55		-		54		1001		368		124
	D	42600	59		400		-		63		154		557
	E	46200	65		-		R22		_				
	F	46900	68		-		-		-	<	12		71
	, L	48200	70		-					emi			• •==+
	ъ ц	40200	7 Z. 7 J.		_		_		_	<	12		43
	11 T	4/300	74						-	1	77	1	10
	ע ע	43300	/0				100		-		20	2	14 C
	ĸ	46000	83		100		52		1634		20	/	2 10
	<u>با</u>	46900	88		-		109		63			7	12
	М	47300	93				63		829		600	5	12

,

TABLE 8/2: RESULTS OF EXPERIMENT NO.78DATE : 84- 3-29PERIODS6 TO 10FROM 13.00 TO 15.30

TRACER: SF6EMISSION RATE:22.30 NG/SEMISSION HEIGHT 100 M

		POSI	TION		Т	'RACER	CONC	ENTRA	ΓΙΟΝ	IN NG	/M**3	ł	
		R	ALPHA	SAMF	PLING	SAMP	LING	SAMP	LING	SAMP	LING	SAMP	LING
		(M)	(DEGREE)	PERI	OD 6	PERI	OD 7	PERI	SD 8	PERI	OD 9	PERI	OD10
Ι	А	11500	28	\leq	12	≤	12		-		-		-
	В	12000	37	≤	12	≤	12		-		533		
	С	12200	45	≤	12	\leq	12				-		-
	D	11800	49		19		5		-				-
	Ε	11800	49				12				-		-
	\mathbf{F}	11900	54	≤	12	≤	12		-				-
	G	11900	54		-		-		en		-		-
	Н	12000	62		59	≤	12		-				-
	Ι	12000	62		****		~		ext		-		-
	Κ	11500	70		400	1	304		638		-		103
	L	11500	77		608		***		63		-		-
	М	12200	80		6		379						
	N	12500	87	≤	12	≤	12		-				-
II	A	24700	50	≤	12	≤	12	≤	12		-		-
	В	24800	52	≤	12	≤	12	≤	12		. =		-
	С	24100	59		18		21	≤	12		-		-
	D	24100	59		20	≤	12	≤	12		***		-
	Е	26000	64		753		83	≤	12		-		
	\mathbf{F}	24800	67		711		190		7		-		LD
	G	25400	72		231	1	.370	:	249		-		-
	Η	25900	75		142		617	1	138		-		-
	Ι	23400	81		16		113		237				-
	Κ	23100	87	≤	12		37		24		-		-
	L	24200	91	≤	12	2	12	≤	12		-		-
III	A	45200	46	≤	12	≤	12	≤	12	≤	12	\leq	12
	В	43200	51		***	≤	12	≤	12	≤	12	≤	12
	С	43000	55		3	≤	12		6		12		3
	D	42600	59		172		38	\leq	12	≤	12	<u> </u>	12
	E	46200	65		539		196		46		3	2	12
	F	46900	68				-		8736		-		~
	G	48200	72		95						95		34
	Н	47500	74		21		172	4	445		172		
	1	45300	78		-				142		808		581
	ĸ	46000	83		5		11		27		17		569
	L	46900	88		3		16		172		24		89
	М	47300	93	≤	12	≤	12		-				18

TABLE 9	e : RES	ULTS OF E	XPERIMENT	NO. 79				
PERIODS	5 1 TO	6 23-	3-85	FROM 13.00	TO 16.00			
TRACER	SF6	EMISSI	ON RATE:	28.12 G	S/S			
POSITIC	DN R (M)	ALPHA (DEGREE)	SAMPLING PERIOD 1	TRACER CON SAMPLING PERIOD 2	CENTRATION SAMPLING PERIOD 3	IN NG/M** SAMPLING PERIOD 4	3 SAMPLING PERIOD 5	SAMPLING PERIOD 6
I A B C D E F G H I K L M	$\begin{array}{c} 11200\\ 10600\\ 12800\\ 10600\\ 11900\\ 13000\\ 13300\\ 14000\\ 14000\\ 14000\\ 14000\\ 14800\\ 14800\\ 14800\end{array}$	15 18 22 24 26 28 34 40 46 49 54 56	2052 2682 494 888 414 492 - 78 18 14 40 15	3252 3666 2970 2586 2814 1650 660 390 12 13 ≤ 12 ≤ 12	1776 1896 1938 2712 2274 1860 1416 1260 336 17 ≤ 12 ≤ 12	$ \begin{array}{r} 1644 \\ 1914 \\ 2166 \\ 2412 \\ 2232 \\ 1944 \\ 810 \\ 144 \\ 240 \\ 75 \\ 28 \\ \leq 12 \end{array} $	$ \begin{array}{r} 138\\ 1032\\ 1494\\ 2118\\ 1860\\ 1920\\ 1374\\ 312\\ 63\\ 33\\ 31\\ \leq 12 \end{array} $	$2580 \\ 1890 \\ 210 \\ 31 \\ 13 \\ 84 \\ 138 \\ 96 \\ 23 \\ \leq 12 \\ 43 \\ \leq 12$
II A B C D E F G H I K L M N O P Q R S	34800 34300 33500 33500 33900 34000 34000 34500 34500 34500 35500 35600 35600 35600 36700 34400 34700	16 20 21 25 28 31 33 36 39 40 43 45 47 51 53 56 58 61	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\leq 12 \leq 12 42 41 90 282 600 492 132 84 72 48 20 \leq 12 22 \leq 12 \leq 12	- 186 264 270 228 300 276 174 150 90 43 78 22 13 ≤ 12 ≤ 12 ≤ 12 ≤ 12	$\begin{array}{c} - \\ 432 \\ 228 \\ 270 \\ 121 \\ 87 \\ 90 \\ 84 \\ 24 \\ 36 \\ 20 \\ \leq 12 \end{array}$	54 234 534 546 450 390 240 85 150 108 90 78 63 46 38 25 ≤ 12	12 222 276 336 360 378 150 210 126 102 108 42 - - 15 18
III A B C D E F G H I K L M N O P Q R S	64600 65600 62000 60400 59000 60200 58200 58200 53600 53800 53600 53600 53800 53800 55000 55000 56200	9 11 15 17 20 22 27 31 32 33 37 39 44 47 50 53 57 61	$ \leq 12 \\ 20 \\ 28 \\ \leq 12 \\ \leq 12 \\ - \\ \leq 12 \\ 12 \\ 12 \\ - \\ 13 \\ \leq 12 \\ 12 \\ 5 \\ 312 \\ 378 \\ 492 \\ 294 \\ 42 $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \leq 12 \\ 32 \\ 33 \\ \leq 12 \\ 16 \\ - \\ 12 \\ \leq 12 \\ 12 \\ 54 \\ 150 \\ 210 \\ 144 \\ 15 \\ \leq 12 \\ 31 \\ \leq 12 \\ \leq 12 $	≤ 12 ≤ 12 ≤ 12 ≤ 12 ≥ 12 ≤ 12 - ≤ 12 - 174 96 30 33 15 ≤ 12 ≤ 12	$ \leq 12 \\ 15 \\ \leq 12 \\ \leq 12 \\ \leq 12 \\ \leq 12 \\ - \\ 78 \\ 96 \\ 144 \\ 140 \\ 84 \\ 66 \\ 24 \\ 31 \\ 22 \\ 24 \\ \leq 12 \\ 15 $	\leq 12 12 35 150 34 - 108 60 66 81 96 66 43 132 54 30 216 \leq 12

TABL	E 10	: RESU	ULTS OF E	XPERIMENT	NO. 80			
PERI	ODS	1 TO	5 25-	3-85	FROM 13.00	TO 15.30		
TRAC	ER:	SF6	EMISSI	ON RATE:	28.51 G	/S		
POSI	TION	R	атрна	SAMPLING	TRACER CON	CENTRATION SAMPLING	IN NG/M** SAMPLING	3 SAMPLING
		(M)	(DEGREE)	PERIOD 1	PERIOD 2	PERIOD 3	PERIOD 4	PERIOD 5
Ι	A B C D	11200 11200 10600 12800	10 15 18 22	198 22 ≤ 12	48 ≤ 12 - ≤ 12	24 14 132 ≤ 12	60 630 774 636	1824 2280 2118 1038
	E F G H I K	11900 13000 13300 14000 14000 14000	26 28 34 40 46 49	46 72 594 1086 738 564	≤ 12 ≤ 12 222 552 1398 1560	330 192 438 852 762 930	1122 1404 1752 594 516 438	1068 1002 318 114 300 54
	L M N O	14800 14800 14000 13900	54 56 58 65	126 ≤ 12 192 29	630 45 12 29	1008 39 26 150	438 978 12 12	20 606 21 72
ΙI	A B C D E F G H I K L M N O P Q R S	33700 34800 34300 33500 33900 34000 34000 34500 34500 34500 34500 35500 35600 34800 35600 36700	6 16 20 21 25 28 31 33 36 39 40 43 45 47 49 51 53 56	54 ≤ 12 102 84 29 120 229 264 232 396 492 390 396 200 150 144 192 54	\leq 12 \leq 12 126 126 126 70 114 180 330 426 336 372 318 210 93 39 17 12 29	$ \begin{array}{r} 144\\ \leq 12\\ 72\\ 24\\ 89\\ 162\\ 211\\ 126\\ 162\\ 444\\ 498\\ 396\\ -\\ 111\\ 167\\ 19\\ 26\\ 150\\ \end{array} $	$ \begin{array}{r} 18\\ \leq 12\\ \leq 12\\ 85\\ 33\\ 108\\ 180\\ 240\\ 498\\ 496\\ 285\\ 192\\ 59\\ 110\\ 53\\ 48\\ 12\\ 12\\ 12\\ \end{array} $	24 45 96 192 240 246 324 180 174 84 29 60 59 13 12 18 21 72
III	A B C D E F G H I K L M N O P Q R S	64600 65600 62000 60400 59000 60200 58200 58200 53600 53800 53600 53600 53600 53600 53600 53600 53600 53600 53600	9 11 15 17 20 22 27 31 32 33 37 39 44 47 50 53 57 61	≤ 12 35 44 - 14 43 100 69 ≤ 12 62 84 93 144 252 78 62 138 ≤ 12	≤ 12 29 ≤ 12 - 50 84 82 50 69 85 186 234 228 101 97 ≤ 12 - 26	$\begin{array}{r} 22\\ 93\\ \leq 12\\ 18\\ 42\\ 249\\ 45\\ 27\\ -\\ 124\\ 240\\ 270\\ 186\\ 216\\ 138\\ 114\\ 144\\ 144\\ 12\end{array}$	$ \begin{array}{r} 28\\ 101\\ \leq 12\\ 37\\ 53\\ 93\\ 82\\ 270\\ -\\ 246\\ 408\\ 234\\ 192\\ 240\\ 77\\ 12\\ 12\\ 29\\ \end{array} $	\leq 12 54 \leq 12 108 119 240 480 246 - 198 288 66 43 90 60 72 162 72

Tetroon	Lau	ınch	Data aver	aged over trac	ked distance	Т	'rack	ed up to
	Date	Time	Height	Speed	Direction			
MI8307	27.4.83	7 : 15	200 m	9.3 m/s	41°	52	km	1 h 33 min
MI8308	27.4.83	9 : 10	400 m	9.4 m/s	42°	56	km	1 h 40 min
MI8310	27.4.83	12:03	300 m	6.1 m/s	63°	51	km	2 h 23 min
MI8401	29.3.84	8:00	300 m	12.1 m/s	48°	78	km	1 h 50 min
MI8402	29.3.84	10:10	600 m	14.6 m/s	61°	23	km	0 h 26 min
MI8403	29.3.84	11:00	400 m	12.8 m/s	66°	46	km	1 h 04 min
MI8405	29.3.84	13:30	350 m	8.3 m/s	80°	53	km	1 h 34 min
TU8504	23.3.85	9:26	1100 m	12.9 m/s	51°	51	km	1 h 07 min
TU8505	23.3.85	12:00	700 m	10.4 m/s	54°	71	km	1 h 55 min
TU8506	23.3.85	14:03	750 m	8.9 m/s	47°	98	km	3 h 07 min
TU8507	23.3.85	17 : 43	450 m	9.5 m/s	29°	84	km	2 h 27 min
TU8508	25.3.85	8:51	1600 m	11.0 m/s	59.°	111	km	2 h 51 min
TU8509	25.3.85	11:49	600 m	6.9 m/s	12.°	111	km	4 h 53 min
TU8510	25.3.85	17:05	550 m	6.8 m/s	29.°	87	km	3 h 40 min

Table 11: General information about tetroon flights

J	· · · · · · · · · · · · · · · · · · ·										
Downwind distance	27.04	4.1983	29.	03.1984	Downwind distance	23.0	3.1985	25.0	3.1985		
	α	R	α	R		α	R	α	R	α	
12 km	uncol	related	0.61	0.943	13 km	0.25	0.968	0.53	0.969	0.46	
25 km	0.18	0.989	0.70	0.997	35 km	0.42	0.990	0.14	0.961	0.36	
45 km	0.11	0.985	0.51	0.973	60 km	0.64	0.969	0.23	0.957	0.37	
α	0.15		0.61	+		0.44	+	0.30	+	0.39	

Table 12: Linear regression of the increase of σ_y with sampling time $\tau \sigma_y(\tau)/\sigma_y(\tau_1) = (\tau/\tau_1)^{\alpha}$, $\tau_1 = 0.5$ h

$$\sigma_{y}(\tau)/\sigma_{y}(\tau_{1}) = (\tau/\tau_{1})^{u}, \tau_{1} = 0.5$$

Downwind distance	27.04.1983		29.03.1984		Downwind distance	23.03.1985		25,0		
	β	R	β	R		β	R	β	R	β
12 km	0.18	0.962	0.38	0.999	13 km	0.14	0.944	0.41	0.978	0.28
25 km	0.34	0.970	0.71 0.999		35 km	0.39	0.985	0.10	0.942	0.38
45 km	0.42	0.968	0.32	0.956	60 km	0.48	0.980	0.13	0.956	0.34
rs 2	0.31		0.47		-	0.33		0.21		0.33

Table 13: Linear regression of the decrease of maximum concentration \hat{C} with sampling time τ

 $\hat{c}(\tau)/\hat{c}(\tau_1) = (\tau/\tau_1)^{-\beta}, \tau_1 = 0.5 \text{ h}$

Date	Stability class	Sampling time	Dependence	e on dist	ance ¹⁾	Dependence on time ²⁾				
			Total distance	σ _o	p	Total time	σο	р		
27.04.1983	C/D	5.0 h	55 km	0.501	0.924	2h 3min	3.903	0.896		
29.03.1984	D	5.5 h	70 km	0.669	0.910	1 h 46 min	4.693	0.927		
23.03.1985	D	5.7 h	91 km	0.145	1.040	3h 6min	1.238	1.058		
25.03.1985	C	5.3 h	110 km	0.020	1.307	4 h 34 min	0.033	1.353		

1) $\sigma_y = \sigma_0 x^p (\sigma_y \text{ and } x \text{ in } m)$ 2) $\sigma_y = \sigma_0 t^p (\sigma_y \text{ in } m, t \text{ in } s)$

Table 14: Horizontal dispersion parameter σ based on tetroon trajectories y

53 -

I

Flíght number	Time considered	Stabili- ty class	Vertical speed (m/s)			Os	Oscillation periods*			Wave length*		Turbulence intensities		
	(CEI)		upwards		downwa	rds				ļ				
			Medium	Maximum	Medium	Maximum	Ľ _x	t _y	tz	1_x ^(km)	1 ₂ (w)	^î u	iv	i _w
MI8307	7:36 - 8:36	с	0.68	2.78	- 0.44	- 1.36	<u>30.0</u> 7.5	30.0 <u>10.0</u> 3.3	<u>20.0</u> 9.2 3.2	<u>16.7</u> 4.2	672 309	0.152	0.097	0.079
MI8308	9:25 - 10:25	с	0.45	2.15	- 0.50	- 2.01	30.0 <u>20.0</u> 5.5	<u>12.0</u> 6.0	<u>7.5</u> 3.0	16.9 <u>11.3</u> 3.1	<u>418</u> 86	0.110	0.073	0.067
MI8310	12:14 - 14:14	В	0.72	2.31	- 0.69	- 2.64	24.0 <u>15.0</u>	<u>60.0</u> 17.1 7.5	20.0 13.3 3.2	8.8 <u>5.4</u>	<u>559</u> 134	0.169	0.171	0-165
MI8401	8:08 - 9:38	D	0.43	1.98	- 0.51	- 2.04	45.0 <u>11.3</u>	22.5 <u>11.3</u>	12.9	32.7 <u>8.2</u>	364	0.110	0.091	0.052
MI8403	11:05 - 12:05	פ	0.53	1.84	- 0.69	- 2.13	30.0 <u>15.0</u>	30.0 <u>7.5</u>	8.5	23.0 11.5	311	0.073	0.101	0:062
MI8405	13:35 - 15:05	C/D	0.58	1.77	- 0.56	- 2.17	45.0 4.5	<u>45.0</u> 7.5 4.5	22.5 7.8 3.8	22.4 2.2	<u>770</u> 267 130	0.167	0.111	0.083
TU8505	12:12 - 13:42	с	0.58	2.33	- 0.50	- 2.03	22.5 <u>10.0</u>	45.0	15.0	6.2	486	0.104	0.095	0.067
TU8506	14:18 - 17:48	C/D	0.44	2.21	- 0.55	- 2.14	<u>105.0</u> 30.0	<u>35.0</u> 13.1	35.0 15.0	<u>56.1</u> 1.8	<u>1040</u> 446	0.144	0.082	0.074
TU8507	17:52 - 19:52	E	0.27	1.43	- 0.39	- 1.28	60.0	20.0	7.1	34.6	141	0.081	0.060	0.045
TU8509	11:58 - 15:58	в	0.53	2.56	- 0.76	- 2.30	40.0 15.0 7.7	120.0 7.7	21.8 12.0	16.6 6.2 <u>3.2</u>	<u>850</u> 468	0.386	0.394	0.136
TU8510	17:17 - 20:17	C≁D≁E	0.31	2.03	- 0.50	- 2.04	90.0 36.0 13.8	99.0 36.0 16.4	20.0	<u>36.7</u> 14.7 5.6	490	0.343	0.257	0.086

* the maximum is underlined

Table 15: Results of the evaluation of the individual tetroon trajectories

Fig. 1 - Meteorological tower at KfK - Karlsruhe.

0 2 5 40 20 km

Fig. 3: Automatic air sampler

Fig. 4: Tetroon with a corner reflector

Fig. 5: Mobile radar WF 100-4

Fig. 6: Surface weather map on April 27, 1983, 13:00 CET

Fig. 7: Surface weather map on March 29, 1984, 13:00 CET

Fig. 8: Surface weather map on March 23, 1985, 13:00 CET

Fig. 9: Surface weather map on March 25, 1985, 13:00 CET

FIG. 10: CONCENTRATION DISTRIBUTION IN 1/10××6 G/M××3 EXPERIMENT ON APRIL 27, 1983, 4TH PERIOD

FIG. 11: CONCENTRATION DISTRIBUTION IN 1/10**6 G/M**3 EXPERIMENT ON APRIL 27, 1983, 5TH PERIOD

— 62 —

FOR DETAILED INFORMATION SEE FIG. 11

FIG. 13: CONCENTRATION DISTRIBUTION IN 1/10**6 G/M**3 EXPERIMENT ON MARCH 29, 1984, 4TH PERIOD FOR DETAILED INFORMATION SEE FIG. 11

FIG. 14: CONCENTRATION DISTRIBUTION IN 1/10××6 G/M××3 EXPERIMENT ON MARCH 29, 1984, 5TH PERIOD FOR DETAILED INFORMATION SEE FIG. 11

FOR DETAILED INFORMATION SEE FIG. 11

FIG. 17: CONCENTRATION DISTRIBUTION IN 1/10××6 G/M××3 EXPERIMENT ON MARCH 23, 1985, 1ST PERIOD FOR DETAILED INFORMATION SEE FIGURE 11

FIG. 18: CONCENTRATION DISTRIBUTION IN 1/10××6 G/M××3 EXPERIMENT ON MARCH 23, 1985, 2ND PERIOD FOR DETAILED INFORMATION SEE FIGURE 11

FIG. 19: CONCENTRATION DISTRIBUTION IN 1/10××6 G/M××3 EXPERIMENT ON MARCH 23, 1985, 3RD PERIOD FOR DETAILED INFORMATION SEE FIGURE 11

FIG. 20: CONCENTRATION DISTRIBUTION IN 1/10××6 G/M××3 EXPERIMENT ON MARCH 23, 1985. 4TH PERIOD FOR DETAILED INFORMATION SEE FIGURE 11

FIG. 21: CONCENTRATION DISTRIBUTION IN 1/10××6 G/M××3 EXPERIMENT ON MARCH 23, 1985, 5TH PERIOD FOR DETAILED INFORMATION SEE FIGURE 11

FIG. 22: CONCENTRATION DISTRIBUTION IN 1/10××6 G/M××3 EXPERIMENT ON MARCH 23, 1985, 6TH PERIOD FOR DETAILED INFORMATION SEE FIGURE 11

FIG. 23: CONCENTRATION DISTRIBUTION IN 1/10××6 G/M××3 EXPERIMENT ON MARCH 25, 1985, 1ST PERIOD FOR DETAILED INFORMATION SEE FIGURE 11

— 74 —

FIG. 24: CONCENTRATION DISTRIBUTION IN 1/10××6 G/M××3 EXPERIMENT ON MARCH 25, 1985, 2ND PERIOD FOR DETAILED INFORMATION SEE FIGURE 11

FIG. 25: CONCENTRATION DISTRIBUTION IN 1/10××6 G/M××3 EXPERIMENT ON MARCH 25, 1985, 3RD PERIOD FOR DETAILED INFORMATION SEE FIGURE 11

FIG. 26: CONCENTRATION DISTRIBUTION IN 1/10××6 G/M××3 EXPERIMENT ON MARCH 25, 1985, 4TH PERIOD FOR DETAILED INFORMATION SEE FIGURE 11

FIG. 27: CONCENTRATION DISTRIBUTION IN 1/10××6 G/M××3 EXPERIMENT ON MARCH 25, 1985, 5TH PERIOD FOR DETAILED INFORMATION SEE FIGURE 11

Fig. 28: Projection of tetroon trajectories, April 27, 1983

- 79 -

Fig. 29: Projection of tetroon trajectories, March 29, 1984.

Fig. 30: Projection of tetroon trajectories, March 23, 1985.

Fig. 31: Projection of tetroon trajectories, March 25, 1985.

— 83 —

Fig. 33: Profiles of tetroon trajectories on March 29, 1984.

Fig. 34: Profiles of tetroon trajectories on March 23, 1985.

Fig. 35: Profiles of tetroon trajectories on March 25, 1985.

.

Fig. 36: Projection of trajectories into a plane perpendicular to the mean transport direction on April 27, 1983.

Fig. 38: Projection of trajectories into a plane perpendicular to the mean transport direction on March 23, 1985.

- 89 -

Fig. 39: Projection of trajectories into a plane perpendicular to the mean transport direction on March 25, 1985.

mesoscale tracer experiment, sampling time : 0.5h (\clubsuit) and 5h (x)

---- short range tracer experiment at KfK /12/

----- tetroon trajectories

mesoscale tracer experiment, sampling time : 0.5h (\clubsuit) and 5h (x)

Fig. 42: Vertical dispersion parameter σ_z ---- short range tracer experiment at KfK /12/ → mesoscale tracer experiment, sampling time: 0.5 h

— 94 —

function of sampling time

function of sampling time

FIG. 48: HORIZONTAL DISPERSION PARAMETER σ_y BASED ON TETROON TRAJECTORIES AS A FUNCTION OF TIME (1983 AND 1984)

FIG. 49: HORIZONTAL DISPERSION PARAMETER σ_y BASED ON TETROON TRAJECTORIES AS A FUNCTION OF TIME (1985)

Fig. 50: Tetroon-derived vertical air speeds for flight MI8310. The traces at the top show the comparison between tetroon vertical speed and the vertical air speed.

Fig. 51: Tetroon-derived vertical air speeds for flight TU8507. The traces at the top show the comparison between tetroon vertical speed and the vertical air speed.

Fig. 52: Normalized power spectra of the three wind components.

— 103 —

Fig. 53: Vertical turbulence intensity as a function of stability class.