
KfK 4210 
März 1987 

Stress and Lifetime alculations 
for First all and Blanket 

Structural Components 
Part II: 

Crack Propagation in the NET First Wall 

E. Diegele, T. Fett, 0. Munz, H. Stamm 
Institut für Material- und Festkörperforschung 

Projekt Kernfusion 

Kernforschungszentrum Karlsruhe 





KERNFORSCHUNGSZENTRUH KARLSRUHE 

Institut für Material- und Festkörperforschung 

Projekt Kernfusion 

KfK 4210 

STRESS AND LIFETIHE CALCULATIONS FOR FIRST 

WALL AND BLANKET STRUCTURAL COHPONENTS 

Part II: Crackpropagation in the NET First \Va11 

E. Diegele, T. Fett, D. Munz, H. Stamm 

The investigation was performed under NET-contract 155/84-028/T 

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe 



Als Manuskript vervielfältigt 
Für diesen Bericht behalten wir uns alle Rechte vor 

Kernforschungszentrum Karlsruhe GmbH 
Postfach 3640, 7500 Karlsruhe 1 

ISSN 0303-4003 



STRESS AND LIFETIME CALCULATIONS FOR FIRST WALL 

AND BLANKET STRUCTURAL COMPONENTS 

Part II: Crack Propagation in the NET-First Wall 

Abstract 

In this report lifetime results for first wall components of a fusion 

reactor are presented. The aim is to show the general procedure for 

lifetime calculations, to demonstrate the principal mechanical 

behaviour of plasma faced structures, to consider effects of radiation 

on the behaviour of the material and assess lifetimes within the 

framewerk of fatigue crack growth analysis. The treatment of lifetime 

predictions is outlined in case of a first wall concept proposed by the 

NET-team for two materials, an austenitic steel (SS316CW) and an 

martensitic steel (1.4914). In genera1 the results show a superiority 

of martensitic steel compared with austenitic steel. 



SPANNUNGS- UND LEBENSDAUERBERECHNUNGEN FÜR ERSTE WAND­

UND BLANKET-KOMPONENTEN 

Teil II: Rißwachstum in der Ersten Wand für ein NET-Design 

Kurzfassung 

Der Bericht stellt Lebensdauervorhersagen flir Komponenten der Ersten Wand 

eines Fusionsreaktors vor. Es wird die allgemeine Vergehensweise für Lebens­

dauerberechnungen aufgezeigt, das typische mechanische Verhalten von plasma­

nahen Bauteilen unter Berücksichtigung von strahlungsinduziert verändertem 

Materialverhalten demonstriert, und eine Abschätzung für die im Rahmen einer 

Ermüdungsrißwachstumsrechnung zu erwartende Lebensdauer gegeben. 

Die Lebensdauervorhersage wird für ein von dem NET-Team vorgeschlagenes Erste 

Wand Konzept für zwei Materialien, einen austenitischen Stahl (SS316CW) und 

einen martensitischen Stahl (1.4914), durchgeführt. Die Ergebnisse zeigen 

gUnstigere Vorhersagen für martensitischen gegenüber austenitischem Stahl. 
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1. Introduction 

The lifetime of the first wall and blanket system of fusion reactors can be 

limited by different failure modes such as 

- excessive plastic deformation due to exceeding of yield strength or to 

creep 

- creep rupture 

- crack propagation due to cyclic loading 

- wall erosion due to sputtering 

Crack extension by the cyclic operation of a fusion reactor seems to be the 

most important failure mode. Cracks can be generated during fabrication as 

welding cracks, during normal operation as fatigue crack~ or during plasma 

disruptions. 

Because of geometrical boundary conditions restraining the free deformation 

of the wall a complex time dependent stress distribution results by combina­

tion of thermal extension, swelling, irradiation creep and internal pressure. 

These cyclic stresses give rise for crack extension and failure by fatigue. 

In the past, lifetime calculations were performed often for constrained 

plates [1-4). In [5,6] these results were extended for tubes of stainless 

steel SS 316(20%CW). 

The purpose of this investigation is to exhibit the general behaviour of 

first wall and blanket structures, and to provide informations about the 

importance of influencing factors such as swelling, radiation creep, crack 

growth rates and irradiation embrittlement on the lifetime prediction. 

In this study the existence of semi-elliptical surface cracks is assumed 

and both austenitic and martensitic candidate materials are taken into 

account. 

As an example of practical importance the actual NET-Design [7,8] of the 

first wall was chosen. 
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2. Temperature and thermal stresse distributions 

In Chapter 2 calculations of temperature and stress distributions have 

been carried out for a First Wall (FW) concept proposed by the NET 

team applying finite element methods (FEM). All computations throughout 

this chapter are nonlinear, i.e. temperature dependent physical data 

have been used. Stress analyses are (thermo-) elastic and therefore 

can be considered only as first cycle response. Most of the investi­

gations have been carried out for two materials, i.e. for an austenitic 

as well as for a martensitic steel. Some geometric data have been varied 

to study their influence on temperature and stress fields. The effect of 

changing the FW geometry on stress distributions will be presented in 

Appendix B. Temperatures were calculated analytically as well as 

numerically by the Finite Element Method (FEM). The analytical method 

is outlined in detail in the Appendix A. For thermal stress com­

putations only the FE-Method was applied. In Appendix B results 

obtained for changed geometric data are reported. 

In Chapter 3 inelastic effects like irradiation creep and swelling 

will be superimposed to the elastic stress fields which were 

calculated for a reference geometry. This reference geometry will be 

defined in Section 2.1. Calculations of temperature and stress 

fields, on the basis of which computations of fatigue crack growth and 

lifetime analysis have been carried out in the Chapter 3, are the main 

results of this chapter and will be presented in Section 2.5. 

2.1 First Wall geometry 

One of the First Wall designs proposed by NET consists of a panel with 

square coolant channels in poloidal direction. Inside of these square 

channels water cooled tubes are arranged. Liquid Li 17Pb83 serves 

as bonding between the panel and the cooling tubes. The inlet temperature 

of the water is assumed to be 240°C, the outlet temperature is about 

280°C. Figure 1 shows the First Wall design investigated. 

Calculations of temperature and stress distributions have been carried 

out for a set of parameters. Throughout this chapter all results refer 

to (d=8mm, c=Smm, R=6mm). Theseparametersare defined in fig.l. All 

other geometric data, given by the NET team, are held constant and are 

summarized in fig.l . 
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2.2 Finite Element meshes 

Temperature distributions have been ealeulated using the ADINAT FE 

program [9]. For this purpose, the First Wall strueture has been 

idealized by a 2-dimensional mesh with 352 elements and 1169 nodes. 

Thermal stresses have been eomputed with 3D as well as 2D elements 

using the FEeode ADINA [10]. For 3D ealeulations (simulating 

generalized plane strain) the mesh, modelled with 208 3D elements 

(bodies) and 1709 nodes, is shown in fig.2a . 

To simplify the model, eooling tubes and Li
17

Pb83 breeder material 

have been negleeted in stress analysis, assuming no internal pressure in 

the ehannels. Beeause of the good agreement between 2D and 3D ealeula -

tions, see Seetion 2.5, all other eomputations have been earried out using 

a 2D mesh with 208 2D elements (surfaees) and 725 nodes (fig.2b). 

2.3 Thermal loads and material properties 

The plasma side First Wall (outboard side) is exposed to a surfaee heat flux 

Q and in the whole FW an internal heat generation q is eaused from neutrons. 

The eyelie thermal loading is simplified assuming the maximum values of in­

ternal heat generation and surfaee heat flux to be reaehed within 10 se­

eonds after plasma ignition, a burn time of 250 s with eonstant q =15 W/em 3 

' s 
and Q=15W/cm 2

, a linear deerease of the surfaee heat flux and volumetrie 

heating to 0 within lOs after burn off, and a dwell time of 50s. For 

Li
17

Pb
83 

a maximum volumetrie heat generation of qb=20 W/em 3 is assumed. 

At the inner side of the eoolant tubes eonveetion boundary eonditions 

Q = h(T-T ) (1) 
e 

with an environmental temperature T 
e 

for the inlet and outlet eoolant 

water of 240°C and 280°C, respeetively, and a heat transfer eoeffi­

eient of h=3 W/(em 2 K) are allowed. 

As struetural materials austenitie 316 SS and martensitie 1.4914 steels 

are eonsidered. The latter as an alternative to the referenee material 

316SS. The temperature dependenee of the Young's modulus E, thermal 

eonduetivity X, thermal expansion a and volumetrie speeifie heat e 
p 

is illustrated in figs.3, 4 and 5. Data for the Li
17

Pb 83 breeder 

material are shown in fig.6 
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2.4 Temperature analysis 

Transient analyses have been carried out in the following way: The struc­

ture is heated from initial temperatures at 260°C until steady state is 

reached, then cooled during a dwell time of 50s and heated up again from 

minimum temperature. Figures 7 show two contour plots at the end of the burn 

time (t=260s) for the two examined materials. 
0 0 The maximum temperatures, 442 C and 402 C, in the case of austenitic 

and martensitic steels, respectively, were obtained at point A (compare 

fig.1). The minimum temperatures at t=260s are 268°C in both cases. 

The temperature range ßT=T -T . at point A over one burn cycle is 
max m1n 

ßT= 167 K for austenitic steel and ßT = 127 K for martensitic steel, 

respectively. Thus the cyclic temperature variation ßT is 24% smaller 

using martensitic steel than that using austenitic steel. 

2.5 Stress analysis 

A suitable choice for boundary conditions for the FW is generalized 

plane strain. The structure is prevented from bending and for each point 

a 'free' homogeneaus expansion in poloidal (z) direction is prescibed. 

Since 2D generalized plane strain elements are not implemented in the 

FE code ADINA, stress analyses have been carried out using 2D plane 

strain elements, with E (x,y)=O on the FW structure. Therefore 
zz 

compressive stresses OAD across the whole wall occur. 
zz 

The stresses in z-direction oAD given by the ADINA program 
zz 

have been corrected by subtraction of the mean value in z-direction Ö: 

o = J o (x,y) dA I J dA zz 

AD o = o (x,y) zz zz 

These stresses o are in very good agreement with the results 
zz 

obtained by use of a simple 3D mesh as shown in fig. 2, modelling 

(2) 

(3) 

generalized plane strain conditions exactly. Therefore most of the FE 

calculations have been performed using the 2D model. 

In figs. 8 and 9, respectively, results of 2D stress calculations for aus­

tenitic and martensitic steel are given in contour plots for steady state 

conditions. 
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For austenitic steel the stresses C1 vary from -455 MPa to 488 MPa 
zz 

across the wall and the stresses C1 range from -481 MPa to 413 MPa. 
XX 

For martensitic steel the variation of C1 and e1 is from -213 MPa 
zz XX 

to 241 MPa and from -231 MPa to 208 MPa, respectively. Tensile as well 

as compressive stresses and therefore the stress range over the whole 

structure for martensitic steel are almost exactly one half of the 

stresses for austenitic steel. The stresses in y-direction amount less 

than 15% of those in the other directions. 

The first set of boundary conditions assuming generalized plane stain 

the x-y plane, with 'free' expansion in x-direction, but prevented from 

bending with respect to the y-z plane, may be too conservative. 

Therefore the calculations have been repeated with a set allowing 

bending with respect to the y-z plane. In table 1 a comparison between 

boundary conditions which describe expansion in x-direction and 

boundary displacement conditions which additionally describe bending 

is given. There is a strong decrease of 34% for the variation of e1 
XX 

across the wall and a moderate decrease of 17% for the stresses e1 
zz 

2.6 Elastic stresses on boundary lines 

So far the calculated stresses are those of the first cycles. Due to 

irradiation effects stresses besides their cyclic variation are dose 

dependent and, assuming a constant dose, timedependent. These inelastic 

effect are considered in the next chapter. For this development the 

elastical1y calculated stresses on the boundary lines ( 11,12,13,14) 

are needed. From a fitting procedure one obtains temperature and stresses 

in a polynomial form . 

T = 

0 
y 

4 
Y, AT ~V 

v=1 v 

< 10 MPa 

0 
X 

T = o = o = e1 = 0 
X X Z 

o < 1 MPa 
y 

0 
X 

4 
= E Ax ~v 

v=1 v 

with 

4 
E Ax V = K 

v=1 V 

with 

(4) 

for O:Sx:Sb 1 

(5) 

4 
E Az V (6) 0 = K 

z v=1 V 

K=(x-b 2)/(b-b2) for b2:S 

For line 11 and line 12 the coefficients are given in table 2. 

X :S; b 
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3. Time dependent stress development 

Up to now only thermoelastic stresses were considered. Under the conditions 

of reactor operation time-dependent inelastic effects as swelling and creep 

have to be taken into account, influencing the cyclic stress state. 

3.1 Swelling 

The basic effect of swelling is the generation of vacancies and interstitials 

by the displacement of atoms from their regular lattice sites. Such defects 

can interact in two ways. 

Vacancies and interstitials can recombine to annihilate each other, or vacan­

cies can nucleate and grow, producing so-called cavities or "voids." By the 

latter process the volume of the material will increase. The effect of vo­

lume expansion h.V is called "swelling," given by 

S=6.V/V=3b.l/1 ( 7) 

In case of SS316CW swelling is dependent on the temperature and the irra­

diation dose ~t. Various formulaes are known to describe the dependency. 

An empirical expression known from fast breeder technology is (11] 

where 

o:=0.15 
-1 

dpa 

T=5(4.742-0.2326ß+2.717ß 2 ) dpa 

is the so-called "incubation dose." 

(8) 

-1 
dpa 

HORIE et al (12] have proposed a different relationship for SS316CW 
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S/3=1.54 10- 14exp(T/35.5) n3 · 5+ 

-13 +5.94 10 exp(T/46.3)D exp(0.108 D) (9) 

In fig.10 both relations are compared. Fora small dose eq.(8) yields 

higher swelling than eq.(9). At higher dose eq.(8) shows a linear increase 

in swelling while eq. (9) predicts a very rapid acceleration in swelling. 

Both relations will be used in this study. 

Up to now the swelling relations have only described "stress-free swel­

ling" S =S(o=O). In the presence of stresses a different swelling be-
o 

haviour has been observed. It has been found in case of hydrostatic 

stress components oHy~O that 

S(oH )=S (l+BoH ) y 0 y 

The hydrostatic stress is given as 

oH =(o +o +o )/3 y X y Z 

(10) 

(11) 

Values of the factor B have been compiled by EHRLICH [13) and lie in 

the range of 

In this study a mean value of B=0.0025 MPa- 1 has been chosen. As there is 

no reason for negative swelling under high compressive stresses, eq.(10) 

has been used in a modified formulation 

S/S = 
0 { 

0 

for 

for Ba <-1 
Hy 

For martensitic steel 1.4914 swelling can be neglected. The maximum 

swelling rates observed are smaller than 0.07%/dpa 

(12) 
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3.2 Irradiation creep 

A metal subjected to neutron irradiation and non-hydrostatic stresses un­

dergoes inelastic deformation, the so-called "irradiation creep." In 

case of multiaxial stresses the creep law can be expressed by a power law 

(13) 

where Sij is the deviatoric and oeff an effective stress. The dot is 

standing for the derivation with respect to the radiation dose D and not 

for the time derivation. The deviatoric stresses are 

s .. = 0 .. 
lJ lJ 

(14) 

and the effective stress is given by 

(15) 

Results on irradiation creep of SS316 CW are available in the literature 

[12,14,15] and summarized in fig.11 for different temperatures. GILBERT 

and BATES [14] proposed the equation 

(Ecjo)GB= 0.067 D+5.8 10-
3 

exp(-8000/T)[D-8.5 tanh(D/8.5)] (16) 

in 10-5MPa- 1 
and D in dpa 

to describe their measurements. 

This relationship is shown in fig.12 as a dashed line. Especially for 

high doses, the data measured are underestimated by eq.(16). 

Therefore we modified this relation by 

c c 
E jo = 10{exp[0.1(E /o)GB]-1} (17) 

For small neutron doses both equations are equivalent as can be shown by a 

power series expansion of eq.(17). At higher doses the exponential term 

causes significantly steeper curves. This behaviour is represented by the 



-10-

dotted curve. The agreement with the experimental results is very good at 

400°C and 450°C. Unfortunately, the results of HORIE et al (12] showhigh 

scatter. A good agreement can also be stated, at least in the comparison 

with the results of GILBERT and BATES (14] as well as with the mean value 

curve describing the results of WALTERS (15]. The "lower series of data 

points" reported in [ 12] is also in agreement with eq. ( 17). 

In-pile creep tests performed on martensitic steel 1.4914 can be des­

cribed by [16] 

• c n 
E = C o exp(-3eV/kT) 

with n=S and C=2·10 6
• 

-1 
dpa (18) 

In fig.l3 measured data of irradiation creep rates as well asthermal creep 

rates are shown. It becomes evident that thermal creep is not important for 

the temperatures considered in first wall problems. 

3.3 Derivation of basic equations 

Under the conditions of generalised plane strain all total strain rates Ex' 

E are independent of the location in y-direction and, consequently, iden­z 
tical to the mean strain rates 

. 1 I f: dy E ~ 
b X X 

(19. 1) 

. 1 I 
. 

dF' E = E 
z F z 

(19.2) 

The total deformation rate of a volume element can be composed by superpo­

sition of elastic, creep and swell strain rates. Neglecting the very low 

stresses in the y-direction as found in the FE-calculations this yields 

(20.1) 

(20.2) 

Integrating eqs.(20) over the wall thickness using (19) yields 
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(21. 1) 

(21.2) 

where 

for cutting line C - D 

(22) 

for cutting line A - B 

Multiplying eq.(21.2) by ~ and adding it to eq.(21.1) gives 

(23.1) 

Multiplying eq.(21.1) by ~ and adding it to eq. (21.2) gives 

(23.2) 

By solution of the system of eqs.(23) the time dependent stresses in the 

whole structure can be determined. Since the stress rates appear in the in­

tegrals on the right hand side ,too, an iterative procedure is required. 

3.3.1 Solution for the simplified problern 

The problern can be substantially reduced when the small variation of 

Young's modulus E in the interesting temperature range of 300°C~T~500°C 

is taken into account. According to the data of Section 2. a mean value 

E~1.8•10 5 MPa can be chosen which deviates less than ±3% from the experi­

mental curve. 

Neglecting the temperature dependence of E has only a small influence 

because the deviations in both directions will compensate each other. 

Using the temperature independent average Young's modulus, (1-~ 2 )/E can 

be put in front of the integrals. Due to the absence of normal forces, 

i.e. J ~xdy=O ,eq.(23.1) is reduced to 

(24.1) 



-12-

By integrating eq.(20.2) over the total x-y-cross section instead of over 

the thickness only and considering the equilibrium conditions 

J o dF'=O and J o dF'= J [1 0 dy ]dx=O 
z X X 

one obtains 

. 
E[-Ec 1· 1 l(Ec + ls)dF'J 

. 
(24.2) 0 = - -s + + ~0 z z 3 F z 3 X 

The numerical solution of the system, eq.(24.1) and eq.(24.2), becomes 

much simpler. 

3.4 Numerical results 

The following calculations are carried out for the state of constant ope­

ration. From figs.l4-20 the complete stress history can be understood. 

The results will be shown e.g. for the stress component o 
X 

Immediately after the start of operation the stress state is given by the 

thermoelastic stresses (the internal pressure in the channels can be neg­

lected). Thesestresses become very high because the bending deformations 

are fully restrained. 

Due to irradiation creep the thermal stresses start to relax against zero. 

After swelling becomes noticeable for SS316CW compressive stresses are 

generated in high temperature regions and tensile stresses in low tempera­

ture regions because swelling at high temperatures is higher than swelling 

at low temperatures. The swelling effect is responsible for the moderate 

increase of stresses for a dose ~t>25dpa, as shown in fig.14 for diffe­

rent locations. Here the neu- tron flux in the rear part of the first wall 

was assumed tobe equal to the flux at the front parts. 

Figure 15 shows the stress distribution through the thickness of the wall 

along the line 1-2,3-4 for both a homogeneaus neutron flux distribution 

and a reduced neutron flux in the rear part. 

The influence of a reduced neutron flux in the rear wall part on the time 

dependent stresses is demonstrated in fig.16 . If the neutron flux in 

the rear wall is reduced by less than 30% of the neutron flux in the 

front wall all effects of shading can be neglected. 

From fig.l7 the influence of the choice of a special swelling formula can 

be judged. Calculations based on the swelling formula eq.(8) as reported by 

WATSON [11] indicate an insifignantly earlier and more pronounced stress 

increase. This becomes quite clear from fig.10 because for the fluences 
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considered here eq.(8) causes higher swelling than eq.(9) proposed by 

HORIE et al [12]. 

Finally the effect of the chosen creep law is demonstrated in fig.18 . Here 

the difference is shown which exists between eq. (17) as used in all other 

calculations and the creep formula eq.(16) proposed by GILBERT and BATES 

[14]. The small deviations observed can be easily understood from the 

curves in fig.12. For 400 and 450°C it can be seen that substantial de­

viations between both formulas will not appear below 30dpa. 

For the martensitic steel 1.4914 appreciable stress reduction during the 

first SOdpa occurs only in the hattest zone at the plasma faced surface (fig. 

19) Apart from small stress changes, which are due to the condition of 

equilibrium the stresses in the rest of the structure remain nearly con-

stant (fig. 20). 

3.5 Cyclic stresses in the wall 

In most fusion reactors the plasma is heated by direct-current, with the 

plasma acting as a secondary winding of a transformer. The magnetic field 

varies constantly in time and produces a constant current in the plasma. 

Before the magnetic field reaches the saturation the reactor operation has 

to be interrupted. Therefore reactors are operating cyclically. 

As a cosequence of these cycles the thermal stresses change periodically. 

If the burn-off times are lang enough, the temperature in the whole wall 

will become nearly equal to the temperature T 
0 

of the coolant medium. 

Due to this temperature changes AT = T - T , cyclic thermoelastic stresses 
0 

occur. For shorter interruptions the assumption of complete temperature ba-

lance in the wall becomes a warst case assumption with respect to crack 

growth behaviour. 

Figure 21 represents the cyclic stresses at locations G) and ®. For the 

sake of clarity the duration of the cycles is not given on the correct scale. 

4. Calculation of stress intensity factors 

Cyclic stresses are responsible for crack growth. In welded structures 

e.g. the rear part of the first wall, pre-existing cracks cannot be ex­

cluded because only defects above a minimum size can be detected. But also 

in the plasma faced surface cracks are generated by melting of surface 

layers during plasma disruptions [17]. 

The fracture mechanical loading quantity characterizing the stress state at 

the crack tip is the stress intensity factor K. Very often it may be suffi-
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cient to describe the surface crack as a semi-ellipse with the axes a and 

c and just to know the stress intensity factor at the deepest point KA 

and at the surface KB (fig.22). Thesestress intensity factors in a plate 

of thickness t are dependent on the aspect ratio a/c, the relative crack 

depth a/t, and the stress field o in the uncracked plate. 

For brittle fracture the question arises whether unstable fracture occurs if 

the maximum K-valüe applied along the crack front exceeds Kic' It is also 

conceivable that a K-value averaged in some way along the crack front has to 

be used taking into account the smaller K-values near the point of maximum K. 

The same question arises if fatigue crack growth is considered. 

GRUSE and BESUNER [18] have outlined the calculation of averaged stress in­

tensity factors. For the deepest point A and the surface point B (fig.23) 

the averaged K-values are calculated according to 

( 25 . 1) 

(25.2) 

In case of symmetric Ioad o(x,y)=o(x,-y) eqs.(25) can be written [18] 

H 4 
c a'"k 

aur 
KA = 

KrA 
I I o(x,y) dxdy 

1TC 
y=O x=O 

aa 
(26.1) 

H 4 
c a"k 

aur 
KB = 

KrB 
I I o(x,y) dxdy Tia y=O x=O 

ac 
(26.2) 

with 
i'; ..! 

a = a[1-(y/c) 2
]

2 

and 

H JE for 

= lE/(1-v 2) for plane strain 

plane stress 

In order to evaluate eq.(26) the averaged stress intensity factors for a 

reference Ioad KrAand KrB as weil as the crack opening displacement 

field u (x,y) for the reference loading case have to be known. 
r 
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Following a suggestion by MATTHECK et al [19] the crack opening field can 

be described by 

~~ N ~·~ v+.! 
u = /8 Eo FA(a) a l: C (1-(x/a )) 2 

r H v=O v 
(27) 

with N=1. The integrals in eqs.(26) can be solved analytically if the 

stress distribution is assumed to be given by a power series 

o(x) = l: A (x/t)~ 
jJ ll 

The evaluation of eqs.(26) yields, as shown in [20] 

K = 
8/2t 2 0 0 d 

FA l: (D +C
1
E )(a/t)ll+2 

A KrATI da ll ll 
ll 

K = 8/2t 2 0 0 d 
FA l: (D +C

1
E )(a/t)ll+2(c/a) B KrBTI dc ll ll 

ll 

with the coefficients 

D = A 2ll+2 f 2 C~/2+2)f(ll+1)f(3/2) 
ll ll rcll+4)fCll+5/2) 

E = A 2~+2 f 2 (ll/2+2)r(ll+1)f(5/2) 
ll ~ f(}l+4)f(}l+7/2) 

The function 

can be computed using the condition of selfconsistency, where 

TI/2 

Fz = ~ J F2 sin2cp dcp A TI 0 

TI/2 

F2 = ~ J F2 cos 2 cp dcp B TI 0 

(28) 

(29.1) 

(29.2) 

(30.1) 

(30.2) 

(31) 

(32.1) 

(32.2) 

Pure tension was used for the reference load case. For the geometric func­

tion we applied the solution given by NEWMAN and RAJU [21]. With the geo­

metric data of fig.22 we obtain 
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(33) 

M1= 1.13-0.09(a/c) g=1+(0.1+0.35(a/t) 2 ](1-sino) 2 

M2 =-0.54+0.89/(0.2+a/c) f 4

0
=(sin 2 o +(a/c) 2 cos 2 o] 

24 1.65 1/2 M3 = 0.5-1/(0.65+a/c) + 14(1-a/c) ~=(1+1.464(a/c) J 

Introducing this formula into eqs.(32) and (31) one obtains after a fitting 

procedure (20] 

4 J.1 4 ).1-1 4 4 ).1- 2 2v (34) 
C = L A0 (a/c) + L A

1 
(a/c) (a/t) 2 + r r A (a/c) (a/t) 

1 0 J.l 0 J.l v=2 ).1=0 VJ.I 

for O<a/t<l and O.l<a/c<1 with the coefficients 

A00=-0.087852 

A
01

=-0.016774 

A
02

=-o.oo9208 

A03= 0.021931 

A04=-o.oo9636 

A
10

=-0. 053532 

A
11 

= 0. 581998 

A12= 0.342860 

A
13

=-0. 46 7154 

A
14

= 0.201806 

A
20

= o.o78357 

A
21

=-0.754132 

A
22

=-0.486732 

A
23

= 0.939698 

A
24

=-0.405997 

A
30

=-0.076659 

A
31

= 0.613202 

A
32

= 0.314256 

A
33

::::-0.682336 

A
34

= 0.316057 

A
40

= o.o26680 

A
41

=-0.178372 

A
42

=-0.133334 

A
43

= 0.178721 

A
44

=-0.095833 

Using eqs.(29) and (31) the stress intensity factors of semi-e1liptic sur­

face cracks for time dependent stress distributions can be computed. 

5. Fatigue Crack growth and lifetime ca1culations 

The propagation of cracks in cyclically loaded structures is mainly a conse­

quence of plastic deformations at the crack tip. These deformations and hence 

the crack growth rate are controlled by AK. Other crack growth mechanisms 

caused by static load in a corrosive environment will be excluded. For AK­

controlled crack growth numerous relationships have been developed since the 

early 1960s. Taking into account a threshold AK , below which no crack 
0 

growth occurs, and an acceleration of crack growth rate near the critical 

stress intensity factor Kic' a modified Forman equation proposed by 

SPEIDEL (22] seems to be most appropriate. It reads 

da= C1 Am(fAK-AK 0 ]n 
dN Kic -AfAK 

(35) 



where 

).. = 

and 

1 
1-R 
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R =K . /K m1n max 
(36) 

(37) 

is a correction factor to model the temperature effect caused by the tem­

perature dependent Young's modulus. T
1 

is the room temperature. Eq.(35) 

was applied for both points A and B of the crack contour. 

~K is given by the difference between the maximum (K ), and minimum 
max 

value (K . ) during each cycle 
ffilll 

~K = K K . 
max m1n (38) 

The material constants for SS316CW are taken from WATSON[11] for air 

environment 

-9 
C1 = 3.122·10 

n = 2.95 

r 1-0. 31R-1. 23R 2 

m -~ 

l1.88 

(for da/dN in m/cycle) 

MPafiTI 

for R>O 

for R<O 

8K 0 = 
I 5.4(1-0.9R) MPalffi for R>O 

l 5.4(1-0.2R) MPalffi for R<O 

(39) 

The wall may fail when K is bigger than a critical value Kic' the max 
plane strain fracture toughness. Because of irradiation embrittlement 

Klc is not a constant, but decreases with the neutron dose. 

Unfortunately, not enough data on Klc as a function of the neutron 

dose are available in the literature. Therefore, we make use of models 

to calculate Klc from tensile test data on irradiated specimens. Ase­

miempirical relation is given by the HAHN and ROSENFIELD model as 
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(40) 

where n is the work hardening exponent, oy the yield strength, and Ef the 

fracture strain. Evaluations of tensile tests by ODETTE and FREY [23] using 

(40) resulted in the curves depicted in fig.24a. From this set of curves 

WATSON [11] fitted the equation • 

Kic = 115 exp(-0.25~t) + 35 exp(-0.0134~t) (41) 

for T=500°C. This relation which we used in earlier studies [6,8], does not 

seem to be the best representation of the curves, as can be seen by cero­

paring the dotted line with the solid lines in fig.24a. 

For the calculations presented here a relation for slightly lower tempera-

tures is of more interest. 

A formula -fitted to the results of fig.24a for the total range 400°C~ 
0 

T~600 C- can be expressed by 

with 

= K
1 

[0.585 exp(-0.264D*) + 0.15 exp(-0.05D*)] 
CO 

u~·~ = D exp[-0.094(T-400)] , D=~t , 

K
1 

= 180 - 0.15 T 
CO 

The agreement with the results of [23] can be judged from fig.24b. 

(42) 

In cantrast to the dramatically decreasing K
1
c-values WOLFERand JONES [24] 

found a much more moderate dose dependency. Whilst the Hahn-Rosenfeldmodel 

is based on the concept of homogeneaus plastic deformation at the crack tip, 

WOLFER and JONES considered flow localisation and subsequent channel frac­

ture. Their consideration carried out for 420°C yields the dash-dotted 

line in fig.24a. It can be expressed by 

K
1

c= 130[0.315 exp(-0.2 D)+ 0.685 exp(-0.019 D) ] 

This result is also used in this study. 

Obviously there is a great uncertainty in Kic for irradiated material. 

This has tobe kept in mind for assessing the lifetime calculations. 

(43) 
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Fatigue crack growth measurements were not available for martensitic steel 

1.4914, but from other martensitic steels the crack growth behaviour can 

be estimated. Figure 25 shows fatigue measurements carried out with diffe­

rent martensitic steels [25). In addition, the crack growth rates for 

SS316CW represented by the modified Foreman equation are plotted as so­

lid line. Because of the good agreement with the results of martensitic 

steels, we used eq.(35) for both the austenitic and martensitic steel. 

For 1.4914 the embrittlement due to irradiation seems to be not as impor­

tant as in case of SS316. Nevertheless, for a conservative calculation 

the same decrease of Kic with neutron dose was assumed. 

The lifetime calculations were performed in the following way: 

Calculation of the purely elastic thermal stresses using the FEM. 

By solution of eq.(23) or (24) the time-dapendent stress distri­

butions were determined step by step, using the FEM results as ini­

tial conditions. 

Using a fitting procedure the stresses were expressed by 4th order po-

lynomials. Their coefficients A 
V 

(v=O, ... ,4) had tobe determined 

for each time step separately. In the first time step these coeffi-

cients are identical to the thermal values A of eqs.(4,6). 
V 

Starting with the initial geometric data (a.,c.) of assumed pre-
1 1 

existing cracks, the weighted averaged stress intensity factors were calcu-

lated for points A and B by use of eqs.(29) and (30). 

From eqs.(38) and (36) the crack growth parameters ßKA, ßKB, RA , 
and RB were obtained. 

This gave the crack extensions ßa at point A and ßc at points B 

for the first cycle by introducing ßKA' RA or ßKB' RB into eq.(35). 

• The crack increments were added to the old values 

a ~ a+ßa 

c ~ c+Ac 

and the shape of the crackwas assumed to remain semi-elliptical. 
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For the following cycles the whole procedure had to be repeated un­

til the maximum averaged K-factor reached the dose dependent frac­

ture toughness Kic or the crack tip at point A penetrated the struc­

ture. In this cycle failure of the wall was stated. 

5.1 Results of lifetime calculations 

Lifetime calculations were carried out for various initial crack depths a. 
1 

and several aspect ratios a./c .. To characterise the crack extension the 
1 1 

maximum averaged stress intensity factors KA or K are plotted as 
,max B,max 

a function of the time of operation. 

The calculations are based on the following data: 

N= 10 cycles/h 
' 

~= 20 dpa/yr 

T~ 450°C assumed to bc constant in the front part 

T= 350°C assumed to be constant in the rear part 

In fig.26 the development of a semi-circular crack situated at the plasma 

faced surface is represented in detail. The maximum and minimum values of 

KA and KB as well as the crack depth a , the aspect ratio a/c, the R 

-ratio, and the related AK-value have been plotted (fig.26b). 

Figure 27 shows the development of a semi-circular crack with a.=0.2mm 
1 

and ci=0.2mm for the different Kic-dependencies given by eqs.(41), (42) 

and (43). 

As expected from fig.24 the maximum crack extension results using eq.(42). 

Tobe conservative eq.(42) was used for a worst case consideration. 

The influence of the crack geometry is outlined in detail for cracks 

assumed to exist in the front part of the wall. 

In fig.28 the influence of the initial crack depth is represented for semi­

circular cracks situated at the plasma faced surface. Failure of the wall 

occurs at the intersections with the Kic-curve, where the maximum 

K-value reaches the fracture toughness. These intersections are marked by 

small circles. It is evident that the lifetime resulting from these con­

ditions increases with decreasing crack size. 

The effect of the aspect ratio ajc can be seen from fig.29. Maximum life­

times are found for semi-circular cracks. 

The development of the crack shape during crack growth is represented in 

fig.30. Whilst semi-circular cracks become more and more elliptic with in­

creasing crack depth, semi-elliptical cracks first change into a more 

semi-circular shape, and with increasing crack size the shape becomes 
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elliptic again. This behaviour is well-known in fracture mechanics for 

specimens with stress gradients, i.e. for bending tests [26]. 

In fig.31 the lifetimes due to cracks at the plasma faced surface are com­

pared with lifetimes due to cracks situated in the rear wall part. The real 

lifetime of the FW-structure for a given initial crack size is determined 

by the lower one of the two curves. The crack growth behaviour depends on 

crack size and can be understanded from fig.32 . 

For small cracks the 6K-values are below the threshold 6K . Therefore no 
0 

crack extension appears and failure is only caused by reducing the Kic due 

to irradiation embrittlement. This is the case for front wall cracks as 

well as for rear wall cracks. 

Large cracks yield short lifetimes for both wall regions. But in case of a 

medium crack size a different behaviour is observed for front and rear 

wall cracks. 

Whereas at the front side Lhe cracks grow continuously because of increasing 

KA max at the rear side the cracks grow only in the first time of ope-

ration when KA is relative high. With increasing time the maximum stress max 
intensity factor decreases and the initially growing crack stops. Failure is 

then caused by reduced toughness. 

According to fig.24 the calculated lifetimes at the rear wall side are 

shorter because the lower temperatures are responsible for a higher 

irradiation embrittlement. Another reason for faster crack growth is the 

positive R-ratio that occurs in the rear wall from the beginning of 

operation. 

A comparison between lifetimes calculated for austenitic steel SS316CW and 

martensitic steel 1.4914 is shown in fig.33 Because of the influence 

of the significantly lower thermal stresses due to the lower coefficient of 

thermal expansion and the higher thermal conductivity it was expected that 

martensitic steel should be superior to austenitic steel. 

At least for front wall cracks this superiority can be seen in fig.33 where 

the lifetimes for martens itic steel are compared with the results obtained 

for austenitic steel. But for rear wall cracks the lifetimes are nearly 

identical. There are two effects responsible for this result: 

- The irradiation creep data for the martensitic steel from [16) 

-measured at relatively high temperature (fig.13)- were extrapolated to 

the distinctly lower operation temperature using an activation energy 

of 3eV. So irradiation creep in the temperature range 300°C<T<450°C 

becomes small and the martensitic structure is nearly unaffected by 
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irradiation creep. For this reason the high positive R-ratio remains 

almost constant in the rear wall part and crack growth is not delayed 

by an decreasing maximum stress intensity factor as found for SS316CW. 

From this point of view a better knowledge of irradiation creep in the 

range 300°C< T <450°C is absolutely necessary. 

- The unfavourable embrittlement· data of the austenitic steel were em­

ployed for the martensitic steel too. 

6. Summary 

In this report lifetime results for a proposed first wall structure are 

presented. The aim was to show the general procedure for lifetime calcu­

lations, to demoostrate the principal behaviour of plasma facing structures, 

to explain the irrradiation effects and to give a first idea of the expected 

lifetimes from the view point of fatigue. 

The treatment of lifetime predictions for the first wall of a fusion reac­

tor was outlined in case of an actual NET-design: 

- Temperature distribution and elastic stresses due to thermal loading were 

calculated elastically by FE-methods assuming generalized plane strain. 

- The change of stresses during operation caused by irradiation creep and 

swelling was considered. 

Cracks of different geometry were assumed to exist in the front and in 

the backward parts of the wall. 

Due to cyclic operation of the reactor cyclic stresses occur in the whole 

structure causing fatigue crack growth. 

Weighted averaged stress intensity factors were calculated using the 

weight function method for semi-elliptical surface cracks. 

- Crack extension computations by means of a modified Forman equation allow 

to predict the time to failure. 

The candidate materials, an austenitic (SS316 CW) and martensitic steel 
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(1.4914) are considered. 

The results show a superiority of martensitic steel compared with austeni­

tic steel due to the lower thermal expansion coefficient of martensitic 

steel. 

All fracture mechanical failure calculations are strongly influenced by 

the irradiation embrittlement of the structural material. Whilst fracture 

toughness data are available for unirradiated and for thermal aged ma­

terials, data of irradiated materials are deduced indirectly from tensile 

test results. Here a source of error will remain as lang as reliable 

K1c-measurements on irradiated material arenot available. 

Therefore the lifetimes calculated in this report should be considered 

as rather rough estimates. 

Nevertheless the importance of influencing factors can be demonstrated 

by the parametric studies given here. 



-24-

Figur es 

Fig.l First wall , geometric data 

Fig.2 Finite element meshes used in 2D and 3D calculations 

Fig.3 Temperature dependence of Young's moduli 

Fig.4 Temperature dependence of thermal conductivity 

Fig.S Temperature dependence of the coefficient of thermal expansion 

Fig.6 

Fig.7 Temperature distribution at the end of plasma burn, 

a) austenitic steel 

b) martensitic steel 

Fig.8 Thermal stress distributions, austenitic steel, steady state 

a) stresses in x- direction 

b) stresses in z- direction 

Fig.9 Thermal stress distributions, martensitic steel, steady state 

a) stresses in x- direction 

b) stresses in z- direction 

Fig.lO Comparison of swelling formulas for SS316CW 

Fig.11 Literature data on irradiation creep for SS316CW 

Fig.12 Description of irradiation creep data by eqs.(16) and (17) 

Fig.13 Creep measurements on martensitic steel 1.4914 [16] 

Fig.14 Stress development at various locations of the wall 

for SS316CW 

Fig.15 Stressdistributions in the wall for an unshaded and 

a 50% shaded neutron dose in the rear wall part (316CW) 
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Fig.16 Influence of partially shaded neutrondosein the rear 

wall part on the stresses (SS316CW) 

Fig.17 Stresses at two locations for different swelling formulaes 

Fig.18 Stresses at two locations calculated with radiation 

creep laws eq. 06) and (17) 

Fig.19 Stressdistribution in the wall for 1.4914 

Fig.20 Dose dependent stresses in the wall for 1.4914 

Fig.21 Cyclic stresses in the wall (SS316CW) due to cyclic 

reactor operation 

Fig.22 Modelareal surface crack by a semi-elliptic crack 

Fig.23 Crack increments during crack extension 

Fig.24 Irradiation embrittlement for SS316CW concluded from 

tensile test data 

a) dependencies proposed by ODETTE and FREY [23] and 

WOLFER and JONES [24] 

b) comparison with eq.(42) 

Fig.25 Fatigue crack growth results for martensitic steels [25] 

compared with the results for SS316 [11] 

Fig.26 Development of a semi-circular surface crack situated 

at the plasma faced surface 

Fig.27 Influence of the embrittlement formulation on the maximum 

averaged stress intensity factor KA for SS316CW max 

Fig.28 Influence of the crack depth on lifetime for SS316CW 

Fig.29 Influence of the initia1 aspect ratio a./c. on life 
l l 

time for SS316CW 

Fig.30 Change of ellipticity during crack extension 
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Lifetime in dependence of the initial crack size a. for 
l 

cracks situated in the front and rear part of the first wall 

for SS316CW 

Fig.32 Maximum K-values and normalized crack sizes for cracks in 

the front"part (a) and cracks in the backward part (b) of 

the wall (SS316CW) 

Fig.33 a) Lifetime diagramm for 1.4914 

b) Camparisan of lifetime data SS316CW/1.4914 
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Appendix A: Analytical temperature distribution 

Al. Influence of surface heating 

Al.l The boundary value problern 

Figure Al shows a part of a first wall with internal cooling cannels. Be­

cause of the periodicity of channels only one segment must be considered as 
• depicted in fig. Alb. If Q is the heat flux at the wall surface and T is 

0 

the temperature of the cooling channel surface -assumed as constant- the 

steady-state temperature distribution in the wall is given by solution of 

the stationary heat conduction equation 

11 T (Al) 

satisfying the boundary conditions 

aT • = QA for y=O O~x~a 1/ A = heat conductivity ay ' 

aT 
0 for y=b O~x~a = 

ay 

aT 
0 for x=O o~~b 1 = ax 

x=a o~~b 1 
x=O b2~~b 

x=a b2~~b 

and 

T= T 
0 

for y=b 1 
O~x~a 1 

y=b 1 
a2~x~a 

y=b 2 
O~x~a 1 

y=b 2 
a2~x~a 

x=a 
1 bl~~b2 

x=a
2 bl~~b2 

Since each constant temperature T0 satisfies eq.(Al) automatically here only 
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only T0=0 is taken into account. For simplifying the mixed boundary problern 

the element of periodicity is divided in three regions I, II, III as shown in 

fig. Al. 

A1.2 Solution of the boundary value problern 

A1.2.1 Solution in region I 

The general procedure of solution is outlined in detail for region I. Here 

the boundary conditions are 

aT . 
= QA for y=O o::;x::;a I.l 

ay 

aT 
0 for x=O o::;y::;b

1 
I.2 = 

ax 

x=a o::;y::;b
1 

T= 0 for y=b 
1 

O:S;x::;a
1 

I.3 

y=b 
1 

a
2

::;x::;a I.4 

T~O for y=bl a 1 <x<a 2 

The unknown temperature distribution at y=b 1 is described by a Fourier 

power series with unknown coefficients. Equation (Al) can be solved by in­

sertion the usual set up 

T(x,y) = U(x)•V(y) (A2) 

Inserting eq.(A2) into eq.(Al) yields 

(A3) 

As the left-hand side is not dependent on y and the right-hand side 

does not depend on x, both sides must equal tobe a constant (-m 2
). 

From boundary condition (I.2) follows 

U = C cos m x 
V 

m =2v'IT/a 
V 

v=integer 

From the right-hand side of eq.(A3) it results 

(A4) 
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From the boundary condition (I.l) 

V = A cosh my 
m \1 

can be derived. 

The v-th solution can be written 

T = A cosh(m y) cos(m x) 
\) \) \) \) 

and from the symmetry and boundary conditions it follows for m=O 

T = -AQ y 

and 

T = const. = t 

The general solution is found to be 

00 . 
T = t - AQ y + E A cosh(m y) cos(m x) 

v=l v v v 

A1.2.2 Solution in region II 

The boundary conditions in region II are 

T=O 

T=T(x, bd 

T=T(x,b2) 

for x=a 1 

x=a 2 

for 

for 

bl~r-:;b2 

bl~r-:;b2 

a 1 ~x~a 2 

a 1 ~x~a 2 

II .1 

II. 2 

II. 3 

(AS) 

(A6) 

(A7) 

(AB) 

This Dirichlet boundary problern is treated in [Al]. \Hth the abbreviation 
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the result can be written 

00 

T = r (B sinh a (b 2 -y) + C sinh a (y-b 1 )) sin a (x-a 1 ) 
n= 1 n n n n n 

C =2_ [sinh 
n a 2 -a 1 

A1.2.3 Solution in region III 

The mixed boundary value problern is described by 

a (x-a 1 ) dx 
n 

ar 
0 for y=b o::;x::;a III .1 = ay 

ar 
0 for x=O b2::;x::;b III. 2 = ax 

x=a b 2 ::;x::;b 

{ 0 for o::;x::;al a 2::;x::;a 

T(x,b 2 ) = 

f(x) for a 1 ::;x::;a2 

By use of a similar procedure as outlined in Al. 2. 1 it yields 

00 

T = r D cosh m (b-y) cos m x 
v=O 

\) \) \) 

with 

2 
[cosh 

-1 a 
T(x,b2) dx D = m (b-b

2
)] ! cos m x 

\) a \) 0 \) 

A1.3 Determination of the Fourier coefficients 

(A9) 

(AlO) 

(All) 

(A12) 

Because of the conditions of continuity for the temperatures T and their 

first derivatives ar;ay at the boundaries y=bl and y=b2 four relations 

between the unknown Fourier coefficients are given and all coefficients A , 
\) 
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B , C , D are evaluable. A detailed representation is only outlined for 
n n v 

boundary y=b 1 • At this line it holds 

"" L B sinh a (b 2 -b 1 ) sin a (x-a 1 ) 
n=l n n n 

00 

T(x,b1) = L A cosh m b 1 cos m
0

x = 
].!=0 ].1 ].1 r 

for a 1 <x<a2 

0 else 

(A13) 

Multiplying both sides by cos(m x) and integration from x=O to x=a yields 
'\) 

a "" 
A cosh m b 1 \) \) 

J (cos m x) 2 dx= r B sinh a (b 2 -b 1 ) A 
0 \1 n=l n n nv 

with the abbreviation 

r 
~1 

2 
1T 

l ( 2n- J ) 2 _ ( 2n) 2 ( 1 
a 2 -a 1 a 

2n-1 cos 
a2-al a2 

A = J sin a (x-a 1 ) cos m x dx nv n v 
al 

-Ha 2 -a!)sin mva 1 

For a fixed given n the coefficients A 
\) 

result 

where 

A = 
nv 

for 

for 

v=O 

v>O 

if 2n-1 
a2-al 

A = r A 
\1 nv 

n 

From the derivative in the interval a 1 ~x~a 2 one obtains 

00 

~Ty(b 1 )= -AQ + r A m sinh m b 1 cos m x = 
v=l v v v v 

00 

(A14) 

m val 

(AlS) 

2v 
= a 

(A16) 

(A17) 
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Multiplying eq. (A17) by sin a (x-a,) and integration from x=a 1 to x=a 2 yields V . 

" 
C = B cosh a (b 2 -b 1 ) - ZAQ (A ja2 ) 

n n n 2n-1 nv 
+ ~ A 4v ~vnsinh m b 1 v=l nv 2n-1 a v 

Introducing eq.(A16) 

By similar calculations at the boundary line y=b 2 one can conclude 

and 

6 -1 
D =- C [cosh m (b-b 2 )] sinh a (b 2 -b 1 )A nv a n v n nv D = E D v nv 

n 

Combination of eqs.(A19) and (A20) yields 

00 

K = 8 
sinh a (b 2 -b 1 ) L V A2 tanh m (b-b 1 ) 

n (2n-1)a 2 n v=1 nv V 

00 

1 = 8 
sinh a (b 2 -b 1 ) L V A2 tanh m b 1 n (2n-l)a 2 n v=1 nv V 

The coefficients C can be evaluated from eq.(A20), the A from eq.(A16) 
n V 

and the D from eq.(A21). Figure A2 shows the stationary temperature 
V 

distribution for T0 , a 1=0.2, a 2 =0.8, a=l, b 1=0.4, b 2 =0.8 and b=1. 

A1.4 Plate with slot shaped cooling channels 

(AlB) 

(A19) 

(A20) 

(A21) 

(A22) 

A simplified first wall construction with slot shaped cooling channels at the 

back side is shown in fig.A3a . Figure A3b describes an element of periodi­

city which is divided in two regions I and II as shown in fig.A3c. Similar 

treatment as given in 11.2 and 11.3 yields eq.(A8) and 
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. 

00 

T = }; 
n=1 
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B cosh a (b-y) sin a (x-a 1 ) n n n (A23) 

B = 
n ( 2~~~)TIAOn[sinh ~n(b-b 1 )+ (Zn-~)a 2 cosh ~n(b-b 1 ) L VA

2
nvtanh ~vb 1 )- 1 

v= 1 (A24) 

The temperature distribution resulting from eqs.(A8), (A23) and (A23) is de­

picted in fig.A4 . 

Al.S Plate with rear cooling channels 

A further simplification is given in fig.S where cooling pipes are welded on 

the back side of the first wall. In this case it results eq.(A8) with 

aAQ -1 ... = -1 
A = 2:iT AOn[cosh m bt) L A ( L v A2 tanh m b 1 ) 

v v n= 1 nv v= 1 nv v (A25) 

The accompanying temperature distribution is plotted in fig. A6. 

A2. Gontributions of volumetric heating 

If W is the density of heat production caused by Volumetrie heat sources 

and . . . 
q = W/A = WA (A26) 

the stationary heat conduction equation can be written 

. 
t.T + q = 0 (A27) 

This Poisson equation has to be solved for a boundary value problern as de­

scribed in fig. A7. By introducing 

(A28) 

into (A27) it can be verified that (A28) is a particular solution of eq. 

(A27). From symmetry and boundary conditions follows 
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(A29) 

and C5 = 0 (A30) 

Salutions of the homogeneaus differential equation are given in Section 

A1.2 

A2.1 Solution for region I 

In region I the boundary conditions are 

arl arl 
ay y=O= ax x=O 

= arj 
ax 

x=a/2 
= 0 (A31) 

The constants of eq.(A28) are determined from 

ar\ = 0 -l> c3 = 0 
ay =o 

ar ~ = 0 -l> Cl = 0 
ay x=O 

(A32) 

ar4 = 0 -l> c2 = 0 
ay x=a/2 

and the total solution has the form 

00 

(Co-·h2
) 

fV 

T = q + E A cos m x cosh m y 
v=l v \) \) 

(A33) 

where 

1 
a 

Co = t b2 + qa 
J T(x,b 1 ) dx 
0 

(A34) 

(A35) 

A2.2 Solution for region II 

In this case the boundary conditions are given by 
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aTI = Tl = o 
ax x=a/2 x=al 

They are satisfied by homogeneaus solutions similar to eq.(A9). The 

constants of the inhomogeneaus solutions become 

~~I = 0 
x=a/2 

The total solution in region II is written 

00 

+ I T 
n=l n 

T = (B sinh a (b 2 -y) + C sinh a (x-b 1 )) sin a (x-a 1 ) n n n n n n 

with 

and 

"" c = n 

A2.3 Solution for region III 

This region is described by 

aTI aTI aTI 0 ax = ax = a = 
x=O x=a/2 y y=b 

The coefficients of eq. (A28) become 

aTI = 0 -+ Cl 0 
ax x=O 

= 

aTI 0 Cz 0 = = ax x=a/2 

aTI 0 Cl -2bC 4 = b = = 
ay y=b 

(A36) 

(A37) 

(A38) 

(A41) 

(A42) 
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consequently, the total solution is given by 

. 
- ty2) -T = q (C 0 + by + E T 

v=l 
\) 

N 

Tv>O = D cosh m (b-y) cos m x 
\) \) \) 

where 

1 
a 

Co = -!h 2 z -bb2+ aq J T(x,b 2 ) dx 
0 

and 

N 2 -1 a 
D = -[cosh ct (b-b2)] J T(x,b 2)cos ct X dx 

\) a \) 0 \) 

The unknown coefficients A , B , C , D can be determined in 
v n n v 

the same way as mentioned in section Il.3 . 

A3. First wall with rear connected cooling channels 

As an example the special case of a first wall with connected cooling 

channels at the rear part (fig.A8) is considered. 

The solution of this problern is given by adding (A8) and (A33). The 

coefficients A are given in eq.(A25) and substituting AQ by qb 1 
\) 

follows. 

(A43) 

(A44) 

(A45) 

(A46) 

In fig.A9 the isothermal lines for pure surface heat flux and pure Volumetrie 

heating are represented for a 1=0.4 , a 2 =0.6 and a=l 

For first wall constructions exposed to surface heat flux and volumetric 

heat sources due to neutron radiation the stationary temperature distribu­

tion can be computed by Superposition of solutions for each heat source. 

A4. Approximative relations for maximum temperature 

The highest temperatures occur 

10 shows the temperature T 
max 

at the wall surface (y=O, x= a/2). Figure 

normalized on dWb 2 A in case of pure 
2 1 

volumetric heating for the structure shown in fig.A9 for different values 
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of 2a 1/a and b 1 /a. The curves can be approximated by 

• 
Tmax ~~Abi [1+(0.35~1+ 0.25(~1)2)(1- 2:1)2] (A47) 

In case of pure surface heat flux same calculations depicted in fig.A11 

yield 

. 
Tmax ~ r bl[1+(0.177 ~ 1 + 0.12 (~ 1 ) 2 )(1- 2

: 1
)

2] (A48) 

In addition the maximum temperatures were computed in case of pure surface 

heat flux for two other geometries represented in fig.A12. Because the 

deviations of the results were less than 2% the curves plotted in fig.A12 

represent both cases and one can write 

. 
Tmax ~ r b 1[1+(0.0775 ~~ + 0.052 (~~) 2 )(1- 2:1)2] (A49) 
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Appendix B 

Influence of geometric shape on temperature and stress distribution 

In this appendix results of temperature and stress calculations for different 

geometric First Wall shapes are presented. Stresses are mainly influenced by 

the thickness d of the FW front side and the thickness c of the FW rear 

side. So, besides the reference geometry 

case 1 ( d= Bmm 
' 

c = Smm ), 

the combinations 

case 2 d= Smm c - 5mm ) ' 
case 3 ( d= Bmm c = Bmm ) ' 
case 4 d= 5mm c = Bmm ) , 

have been considered. 

Results for temperature distributions, distributions of stress fields o 
XX 

and o are given in contour plots in figs.B1-B3 for austenitic steel and in 
zz 

in figs.B4-B6 for martensitic steel, respectively. Stresses in y-direction 

are of an amount of 10% up to 15% of that in the other directions and 

therefore not plotted. 

In table 3 for austenitic and martensitic steel and the four different geo­

metries maximum and minimum values are summarized. This table shows that 

stresses are decreasing with decreasing thickness d of the front plate 

and with increasing thickness c of rear side. So the best combination 

with respect to a minimization of thermal stresses is case 4. 

Next the curvature radius R has been modified. The variation of o (R) 
XX 

is shown in fig.B7 A range of R from 0 to 6mm causes a range in o of 

less than 11% . In y and z direction the deviation is at the most 15 and 

7 MPa, respectively. The most suitable case is R=2mm, where o =(504 
xx,max 

MPa/-463MPa). On the other hand, R= 6mm leads to o =(601/-459MPa) xx,max 
and R=O results in o =(517/-459 MPa). Although there is a change 

xx,max 
in the stresses for varying R , the influence is negligible in comparison 

to an improvement in stresses, which is available by broadening the FW 

behind the cooling channels. 
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Fig. Al First wall element with inner cooling channels affected by 

surface heat flux 

Fig. A2 Normalized stationary temperature distribution in a first 

wall with inner cooling channels for surface heating 

Fig. A3 First wall element with slot shaped cooling channels 

affected by surface heat flux 

Fig. A4 Normalized stationary temperature distribution in a first 

wall with slot shaped cooling channels for surface heating 

Fig. A5 First wall element with rear connected cooling channels 

affected by surface heating 

Fig. A6 Normalized stationary temperature distribution in a first 

wall with rear connected cooling channels for surface 

heating 

Fig. A7 First wall element with inner cooling channels affected 

by volumetric heating 

Fig. A8 First wall element with rear connected cooling channels 

affected by volumetric heating 

Fig. A9 Isotherms in a first wall with rear connected cooling 

channels for volumetric heating 

Fig. AlO Maximum temperature for the structure of fig. A8 for diffe­

rent geometrical portians (volumetric heating) 

Fig. All Maximum temperature in a first wall element with rear 

connected cooling channels for several geometrical 

proportians (surface heating) 

Fig. A12 Maximum temperature in a first wall with inner channels 

and slot shaped channels, respectively (surface heating) 
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Fig. Bl Gontour plots of temperature distributions for austenitic 

steel (cases 2,3,4) 

Fig. B2 Gontour plots of thermal stress distributions 0 for 
XX 

austenitic steel (cases 2,3,4) 

Fig. B3 Gontour plots of thermal stress distributions 0 for 
zz 

austenitic steel (cases 2,3,4) 

Fig. B4 Gontour plots of temperature distributions for martensitic 

steel (cases 2,3,4) 

Fig. BS Gontour plots of thermal stress distributions Cl for 
XX 

martensitic steel (cases 2,3,4) 

Fig. B6 Gontour plots of thermal stress distributions Cl for zz 
martensitic steel (cases 2,3,4) 

Fig. B7 Haximum tensile stresses in x-direction versus curvature 

radius R 
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I 
----- eq. (41) 

- [23] 
[24] 
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Fig.24 Irradiation embrittlement for SS316CW concluded from 

tensile test data 

a) dependencies proposed by ODETTE and FREY [23] and 

WOLFER and JONES [24] 

b) comparison with eq.(42) 
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by volumetric heating 
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T A B L E S 



0 
XX 

0 
zz 

Ta"ble 1 

case 1 

-4551 488 

-4811 413 

-107-

case 1b 

-2871 325 

-3931 346 

MPa 

MPa 

Stress ranges comparing different boundary conditions ('free 

expansion' against 'free expansion and bending' ) 

Coefficients of eq. ( 4) 

SS316 20~~ c\v 1. 4914 

T 0 0 T 0 0 
X z X z 

Ao 442.0 -448. -481. 402. -209. -230. 

Al -71.3 460. 416. -41. 7 196.3 145. 

Az -9.3 -200. -251. -54. -28.7 96. 

AJ -44.7 544. 699. 58.7 122.7 11. 

A4 21.3 -256. -331. -32. -53.3 

Coefficients of eg. ( 6) 

SS316 20?~ cw 1. 4914 

T 0 0 T 0 0 
X z X z 

Ao 300. 445. 412. 297. 220. 210. 

Al 22.3 -265.7 196.7 15.6 -109.3 -105.3 

Az 6.7 -60.7 -125.3 -5. -62.7 9.3 

A3 -37.3 154. 7 458.7 -5.9 85.3 53.3 

A4 31.3 -53.3 298.6 3.2 -21.3 -21.3 

Table 2 



austenitic 

steel 

0 
XX 

0 
zz 

T 

martensitic 

steel 

0 
XX 

0 
zz 

T 

Table 

Stress 

3 

rang es 

case 

case 

case 

case 

case 1 

-4551 488 

-4811 413 

2681 442 

-2131 241 

-2311 208 

2681 402 

for several 

1 ( d = 
2 ( d = 
3 ( d = 
4 ( d = 

-108-

case 2 case 3 case 4 

-3111 269 -4451 395 -2811 244 MPa 

-3451 259 -4631 346 -3071 238 MPa 

2661 389 2691 437 2681 390 °e 

-1491 134 -2111 194 -1341 117 MPa 

-1711 137 -2261 173 -1521 119 Mpa 

2681 366 2721 402 2721 366 °e 

geometries and two materials 

8 mm c = 5 mm), reference geometry 

5 mm c = 5 mm) 

8 mm c = 8 mm) 

5 mm c = 8 mm) 




