KfK 4145 Februar 1987

Datenbericht REBEKA-7

K. Wiehr, U. Harten Institut für Reaktorbauelemente Projekt Nukleare Sicherheit

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE Institut für Reaktorbauelemente Projekt Nukleare Sicherheit

KfK 4145

Datenbericht REBEKA-7

K. Wiehr, U. Harten

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

Zusammenfassung:

REBEKA-7 ist ein out-of-pile Hüllrohrverformungsexperiment in einer 7x7-Stabanordnung voller Druckwasserreaktorstablänge mit Fluten. In diesem Experiment herrschten in der Wiederauffüll- und Flutphase gleiche Strömungsrichtungen des Kühlmittels.

Der vorliegende Bericht ist eine graphische Zusammenstellung aller im REBEKA-7-Experiment gemessenen Versuchsdaten als Ergänzung zum REBEKA-7 Ergebnisbericht.

Eine detaillierte Meßstellenbeschreibung ermöglicht dem Benutzer des Datenmaterials eine eindeutige Zuordnung der Meßstellen. Für eine Detailauswertung stehen dem Interessenten alle Meßinformationen des Experimentes in einer Datenbank selbsterklärend zur Verfügung.

Die Versuchsanlage wird erläutert und die Betriebszustandswerte während des Versuchsablaufs werden mit Hilfe einer graphischen Zusammenstellung beschrieben.

Im Bündel werden die Druck- und Temperaturverläufe eines jeden Stabes in 2100 mm axialer Höhe, bzw. an einigen besonders instrumentierten Stäben in 2100 mm und 1850 mm axialer Höhe dargestellt.

Tabellarische Zusammenstellungen der Meßstellen und wichtiger Meßergebnisse geben dem Benutzer einen Überblick über den Versuchsablauf.

Darüber hinaus enthält der Bericht Vermessungskurven über die axialen Dehnungsprofile jedes einzelnen Zircaloyhüllrohres und Kühlkanalversperrungsprofile für Teilbereiche des Bündels sowie des gesamten Bündels. Die lokalen Berststellen der Zircaloyhüllen sind angegeben und können den Meßebenen zugeordnet werden.

Data Report REBEKA-7

Abstract

REBEKA-7 is an out-of-pile cladding deformation experiment with reflooding in a 7x7 bundle configuration of full length of a pressurized water reactor fuel element. This experiment was carried out with the same flow direction of the coolant during the refill- and reflood phases of a LOCA. This data report is a graphic summary and includes all essential measured data of the REBEKA-7 test. It is a supplement to the final REBEKA evaluation report.

A detailed description of the measuring points is given. All measured data of the experiment are available at a data bank.

Pressure and temperature transients of all individual rods at the axial elevation of 2100 mm and partly of 1850 mm are plotted.

The data report contains also measured axial strain profiles of the individual Zircaloy cladding tubes as well as calculated cooling channel blockages for subchannels and the whole bundle. The points of burst of Zircaloy claddings and their position relative to the measuring points are given.

Inhaltsverzeichnis

		Seite
1.	Einleitung	1
1.1	Problemstellung	1
1.2	Allgemeine Zielsetzung	ľ
1.3	Spezielle Zielsetzung	2
2.	Versuchsanlage und Versuchsablauf	3
2.1	Testkreislauf für Bündelexperiment	3
2.2	Teststrecke	4
2.3	Stromversorgung	4
2.4	Brennstabsimulatoren (BSS)	4
2.5	Instrumentierung der Teststrecke	5
2.6	Instrumentierung des Bündels	5
2.7	Angaben zur Meßgenauigkeit	6
2.8	Versuchsvorbereitungen	6
2.9	Versuchsablauf	7
3.	Versuchsdaten	16
3.1	Systemdaten der Versuchsanlage	16
3.2	Überblick über Versuchsablauf	22
3.3	Temperatur- und Druckgeschichte aller 49 Einzelstäbe	24
3.4	Alle Heizstabhüllentemperaturverläufe in axialer	
	Mittelebene	50
3.5	Axiale Temperaturen über die volle Stablänge	60
3.6	Axialer Temperaturverlauf am Bündelkasten (Abb. 101)	60
3.7	Fluidtemperaturen am Abstandshalter (AH)	60
3.8	Umfangsdehnungen der Zircaloy-4-Hüllrohre	65
4.	Zusammenstellung wichtiger Meßstellen (Tab. 1)	97
	Zusammenstellung der Versuchsergebnisse (Tab. 2)	98
5.	Kanalliste und Datenzuordnung für REBEKA-7	99
6.	Faltblatt der Abbildung 7	109
7.	Literaturangaben	111

Verzeichnis der Abbildungen

Abb. Nr.

1	Versuchskreislauf für Hüllrohrverformungsexperimente	
	Bündel Tests.	8
2	Phasenbelegung der Transduktoren	9
3	Konstruktionszeichnung des Brennstabsimulators mit	
	Stufenheizleiter	10
4	Nennmaße des Brennstabsimulators	11
5	Axiales Leistungsprofil des BSS und Abstandshalteranordnung	12
6	Schaltbild der Teststrecke mit Temperatur-, Druck-,	
	Niveau- und Durchflußmeßstellen	13
7	Instrumentierungsplan des Bündels	14
8	Thermoelementanbringung	15
9	Elektrische Phasenleistung des Bündels	17
10	Drücke in der Teststrecke	17
11	Wasserstände in der Teststrecke und Behälter 5	18
12	Temperaturen in der Teststrecke	18
13	Druck, Temperatur und Dampfmenge in Blende Dl	19
14	Druck, Temperatur und Dampfmenge Blende D2	19
15	Druck, Temperatur und Dampfmenge Blende D3	20
16	Druck, Temperatur und Dampfmenge Blende D6	20
17	Massendurchsätze in der Versuchsanlage	21
18	Temperaturverläufe der 25 Innenstäbe	23
19	Druckverläufe der 25 Innenstäbe	23
20-68	Druck und Temperaturverlauf aller 49 Einzelstäbe	25-49
69-86	Heizstabhüllentemperaturverläufe in	
	axialer Mittelebene	51-59
87-88	Axiale Hüllrohrtemperaturverläufe	61
89	Axialer Temperaturverlauf am Bündelkasten	62
90-93	Fluidtemperaturen am Abstandshalter	63-64
94	Berstdehnungen und Berstlagen	65
95-143	Dehnungsprofile von Stab 37 bis Stab 13	67-91
144	Dehnungsprofile der 49 Stäbe	92
145	Dehnungsprofile der 25 Innenstäbe	92
146	Dehnungsprofile der 9 Innenstäbe	93
147	Kühlkanalversperrung durch 49 Stäbe	94

Seite

148	Kühlkanalversperrung durch 25 Innenstäbe	94
149	Kühlkanalversperrung durch 9 Innenstäbe	95
150	Faltblatt von Abb. 7	109

Seite

.

1. <u>Einleitung</u>

1.1 Problemstellung

Bei einem Kühlmittelverluststörfall (KVS) mit doppelendigem Bruch im kalten Strang einer Hauptkühlmittelleitung, dem Auslegungsstörfall eines Druckwasserreaktors, können die Brennstabhüllen Temperaturen erreichen, bei denen sie unter der Wirkung des inneren Überdruckes aufblähen bzw. bersten, und somit zu einer lokalen Verengung der Kühlkanäle führen.

Im Rahmen des Projektes Nukleare Sicherheit wird zum analytischen Nachweis einer ausreichenden Nachkühlbarkeit des Reaktorkerns das Programmsystem SSYST-3 /1/ entwickelt. Aufgabe des im folgenden beschriebenen Vorhabens ist die Bereitstellung experimenteller Informationen zur Verifikation und Weiterentwicklung dieses Programmsystems.

1.2 <u>Allgemeine Zielsetzung</u>

Das out-of-pile Versuchsprogramm zum Aufblähvorgang von Zircaloy-Brennstabhüllen in der Wiederauffüll- und Flutphase eines KVS wird ebenfalls im Rahmen des Projektes Nukleare Sicherheit der KfK durchgeführt. Es trägt den Namen REBEKA. (REaktortypische Bündel Experimente KArlsruhe).

Die Versuche haben zum Ziel, den Aufblähvorgang von Zircaloy-Brennstabhüllen an Einzelstäben sowie in Bündelgeometrien voller Länge zu untersuchen. Wesentliche Merkmale der Versuche bestehen darin, daß die Wechselwirkung zwischen Hüllrohrverformung und Kernnotkühlung berücksichtigt und eine meßtechnische Erfassung des zeitabhängigen Aufblähvorganges der Zircaloy-Hülle durchgeführt wird.

Die Versuche haben im einzelnen folgende Ziele:

- Ermittlung des zeitabhängigen Aufblähvorganges an Einzelstäben,
- Ermittlung der Beeinflussung des Aufblähvorganges durch die einsetzende Kernnotkühlung,
- Untersuchung der thermischen und mechanischen Wechselwirkung benachbarter Stäbe beim Aufblähen im Stabbündel,
- Gewinnung von Aussagen über eine mögliche Versagensfortpflanzung sowie
- Untersuchungen über Ausmaß und Verteilung von Kühlkanalversperrungen.

1.3 Spezielle Zielsetzung

Das Bündelexperiment REBEKA-7 stellt im wesentlichen eine Duplizierung des REBEKA-6-Experimentes dar. Die thermohydraulische Simulation der Wiederauffüll- und Flutphase erfolgte wie bei REBEKA-6 ohne Strömungsumkehr. Durch geeignete Maßnahmen sollte eine ungestörte und maximale Wechselwirkung zwischen den Zircaloyhüllrohren im Bündelverband ermöglicht werden, mit dem Ziel, die größtmögliche Kühlkanalversperrung bei Hüllrohrverformung in der Flutphase eines Kühlmittelverluststörfalles zu erreichen.

Beim Bündelexperiment REBEKA-6 enthielt das 49 Stabbündel einen unbeheizten Zentralstab als Thermoelementführungsrohr für Fluidthermoelemente. Zwei Brennstabsimulatoren des Bündels wurden nur mit einem He-Innendruck von 5 bar gefüllt, so daß die Zircaloyhüllen im Experiment unverformt blieben. Vier Hüllrohre wiesen Lokalbeulen auf /1/. Es bestand damit Grund zur Annahme, daß sich durch diese Fakten keine maximale mechanische Wechselwirkung mit einer möglichen Versagenspropagation zu höheren Kühlkanalversperrungen hin eingestellt haben könnte. Folgende Maßnahmen wurden daher durchgeführt:

Alle Heizstäbe der Brennstabsimulatoren wurden überarbeitet, d. h. geglättet und um etwa 5/1000 mm im Außendurchmesser verringert. Damit wurde die Gefahr klemmender Ringpellets und die Entstehung von Lokalbeulen verringert. Im Bereich der erwarteten Berststellen wurden nur sehr wenige Thermoelemente auf der Zircaloy-4-Hülle aufgepunktet. Die Hauptmeßebene für den Leistungsabgleich vor dem Experiment befand sich 150 mm unterhalb der axialen Bündelmitte. Eine mögliche Beeinflussung durch zu viele Thermoelemente im Bereich der maximalen Hüllrohrverformungen konnte damit ausgeschlossen werden.

Alle 49 Brennstabsimulatoren wurden vor Versuchsbeginn mit 60 bar He-Innendruck beaufschlagt.

Diese Maßnahmen ließen eine ungestörte und maximale Wechselwirkung der Zircaloy-Hüllen und ein ähnliches Bild der axialen Hüllrohrverformungen mit möglicherweise höherer maximaler Kühlkanalversperrung wie bei REBEKA-6 erwarten.

Die mit dem REBEKA-7-Experimente erzielten Ergebnisse und deren Bewertung sind in /2/ beschrieben.

2. Versuchsanlage und Versuchsablauf

Gegenüber dem Experiment REBEKA-6 wurde für REBEKA-7 eine weitere Modifikation vorgenommen, nämlich am Dampfverteiler, auf die im folgenden Kapitel noch näher eingegangen wird. Dadurch ergaben sich im Versuchsablauf geringfügige Unterschiede zu REBEKA-6.

2.1 <u>Testkreislauf für Bündelexperiment</u>

Die Abbildungen 1 und 6 zeigen das Schema des Testkreislaufs. Vom Dampfkessel (9) kommend, teilt sich der Dampfstrom nach dem Überhitzer in zwei Teilströme. Der eine Teilstrom nimmt seinen Weg über Ventil 1.2 direkt zum Dampfumformer (4). Der zweite Teilstrom strömt über Ventil 7.2 durch einen Dampfverteiler in das untere Plenum der Teststrecke. Der Dampf tritt unmittelbar oberhalb des Wasserspiegels im unteren Behälterplenum in die Teststrecke ein. Ein Teil dieses zweiten Dampfteilstromes durchströmt nun das Testbündel während der Anfahr- und Aufheizphase von unten nach oben. Da während dieser Zeitphasen auch bereits das Flutwasser in die Teststrecke eingespeist wird (Flutwasserdruck, -temperatur und -menge werden eingestellt und konstant gehalten), der Wasserspiegel in der Teststrecke jedoch nicht steigen darf, wird das Ventil 7.3 so weit geöffnet, daß alles in die Teststrecke eingespeiste Wasser wieder abfließen kann. Ein Teil des über Ventil 7.2 zuströmenden Dampfes verläßt die Teststrecke jedoch auch durch das Ventil 7.3, so daß nur ein bestimmter, aus Mengenbilanzen zu bestimmender Anteil des Dampfteilstromes 2 die Teststrecke von unten nach oben durchströmt. In der Anfahrphase werden alle Dampf- und Wasserwerte (Druck, Temperatur und Mengen) eingestellt und konstant gehalten. In der Wiederaufheizphase wird das Bündel elektrisch aufgeheizt und bei Erreichen einer bestimmten Hüllrohrtemperatur im Bündel die Ventile 7.2 und 7.3 geschlossen. Damit wird die aufwärtsgerichtete Dampfströmung unterbrochen, und das Bündel wird von unten zwangsgeflutet.

Nicht verdampftes Wasser wird im Kopf der Teststrecke 1 und in einem Zyklonabscheider des Wasserauswurfsammeltanks (2) abgeschieden und aufgefangen. Der Containmentsimulator (3) ist ein leerer Pufferbehälter, der dazu dient, Druckstöße im System zu dämpfen. Die Bezeichnungen I bzw. II an den Pfeilen in Abbildung 1 geben die Strömungsrichtung des Dampfes und/oder Wassers während der Wiederauffüll- bzw. Flutphase des Experimentes an.

2.2 Teststrecke

Für REBEKA-7 wurde die Bündelteststrecke geringfügig modifiziert. Ein neuer Dampfverteiler im unteren Plenum der Teststrecke ermöglicht die aufwärtsgerichtete Dampfströmung während der Aufheizphase des Bündels. Zusätzlich wurde der Wasserspiegel in der Teststrecke um etwa 3 cm abgesenkt, so daß keine Wassertropfen mehr aus der Wasseroberfläche während der Wiederaufheizphase in das Bündel mitgerissen wurden, wie dies bei REBEKA-6 der Fall war (siehe Temperaturschriebe der Hüllrohrtemperaturen /1/). Das äußere Druckrohr (153 x 3 mm) hat einen Innendurchmesser von 153 mm Ø. Im Druckrohr sitzt der quadratische Bündelführungskasten aus Edelstahl mit Innenabmessungen 101 x 101 mm und einer Wandstärke von 1 mm, in dem sich das Bündel befindet. Zwischen dem Bündelführungskasten und dem Druckrohr steht stagnierender Wasserdampf.

2.3 Stromversorgung

Die erforderliche Leistung für das 49-Stabbündel liefern zwei dreiphasige Transduktoren von je 600 kVA sowie ein kleiner 40 kVA-Transduktor. Jede Phase der großen 3-phasigen Transduktoren wurde mit 8 parallel geschalteten Stäben belegt. Der dritte einphasige 40 kVA-Transduktor versorgte den Zentralstab (s. Abb. 2).

2.4 Brennstabsimulatoren (BSS)

Die Brennstabsimulatoren (BSS) mit kontinuierlichem, cosinusförmigen Leistungsprofil wurden bereits im REBEKA-6 Experiment verwendet (Abb. 5). In Abbildung 3 ist der konstruktive Aufbau des Brennstabsimulators mit stufenförmigem axialen Leistungsprofil dargestellt. Er unterscheidet sich lediglich durch die Ausführung im Profil des Heizleiters. Die Gasvolumina im BSS entsprechen weitgehend denen eines DWR-Brennstabes. Sie betragen:

Volumina	bei 20 ^O C	Heizstab ist 600 ^o C warm
oberes Plenum alle Spalte mit Pelletphasen unteres Plenum Vol. der Anschlußröhrchen mit Druckaufnehmer	8,5 ccm 10,0 ccm 17,5 ccm 4,0 ccm	8,5 ccm 10,0 ccm 16,5 ccm 4,0 ccm
Gesamtvolumen	40,0 ccm	39,0 ccm

Der Heizstab ist oben im BSS fest aufgehängt und schiebt bei Erwärmung in das

untere Plenum (Unterschied des unteren Plenumvolumens bei 20 °C und 600 °C Heizstabtemperatur). Die Feder, die die Pellets zusammenschiebt, sitzt im oberen Plenum (s. Abb. 3).

Da bei REBEKA-6 vier Brennstabsimulatorhüllen Lokalbeulen aufwiesen, verursacht durch auf dem Heizstab klemmende Ringpellets /3/, wurden vor Wiedermontage der Brennstabsimulatoren die Heizstäbe um etwa 5/1000 mm im Durchmesser heruntergehämmert. Dies führte zu einer Verlängerung der beheizten Länge der Heizstäbe von bis zu maximal 4 cm Länge. Da die inneren Thermoelemente (in den Heizstabhüllen eingelegt) in der axialen Stabmitte sitzen, wurden die Stäbe so im Bündelverband verschoben, daß alle Innenthermoelemente in der axialen Bündelmitte in einer gemeinsamen Ebene saßen. Dies hatte zur Folge, daß einzelne Brennstabsimulatoren mit ihrer beheizten Länge bis zu 2 cm über das eigentliche untere beheizte Bündelende (axiale Position 3900 mm) hinausragten.

Der Leistungsabgleich von 49 Brennstabsimulatoren erfolgte wie bei REBEKA-6 /4/. Der Zentralstab wurde mit einem kleineren 40 kVA-Transduktor gespeist. Die Sollwertvorgabe der Leistung wurde ebenfalls aus dem Vergleich der Temperaturtransienten bestimmt, erfolgte jedoch ohne Widerstandsbandvorschaltung direkt am Sollwertsteller des Leistungsreglers. Die zum Zwecke der Kalibrierung mit Thermoelementen instrumentierte Ebene befand sich jedoch 150 mm unterhalb der axialen Bündelmitte (2100 mm).

2.5 Instrumentierung der Teststrecke

Die Instrumentierung der Teststrecke ist bezüglich der Temperatur-, Druck-, Niveau- und Mengenmessungsmeßstellen unverändert gegenüber REBEKA-6 /4/.

2.6 Instrumentierung des Bündels

Abb. 7 zeigt die Bündelgeometrie mit Stabdurchmesser, Stabmittenabstand, Abstandshalterstärke, Kasteninnenmaß und Kastenwandstärke sowie die Positionierung der Thermoelemente in der Draufsicht im Bündel.

In den Kreisen sind neben den Stabnummern Punkte mit den Zahlen 1, 2 und 3 eingezeichnet, die die radiale Position der Innenthermoelemente (0,36 mm ØMantelthermoelemente NiCr/Ni in der Heizleiterhülle eingelegt, s. Abb. 8) angeben. Die Punkte außen an den Kreisen zeigen Winkelpositionen der Außenthermoelemente an (0,5 mm \emptyset Mantelthermoelemente NiCr/Ni mit Platinhülse auf Zr-4 gepunktet, s. Abb. 8). Die Punkte am Abstandshaltergitter mit "AH" bezeichnet, sind Fluidtemperaturmeßstellen, die 5 mm unterhalb und 15 mm oberhalb der Abstandshalterbleche angeordnet sind. Der oberste Abstandshalter im Bündel ist AH 1, die oberhalb und unterhalb der axialen Mittelebene sitzenden Abstandshalter sind AH 4 und AH 5 (s. Abb. 5). Der unterste Abstandshalter ist mit AH 8 bezeichnet. Die auf der Kastenaußenwand befestigten Thermoelemente sind mit K 1 - 10 bezeichnet. Sind mehrere Thermoelemente auf einer Mantellinie auf verschiedenen axialen Höhen angeordnet, so stehen an den Punkten mehrere Zahlenwerte, z. B. 1 - 10. Die Tabelle auf Abb. 7 gibt die Stabposition, die Stabnummern, die axialen Positionen der Innen-, Mantel- und Kastenthermoelemente an sowie die Gesamtzahl der TE's, die auf jedem Stab angebracht sind. Z. B. enthält Stab 49 ein Innen-TE (TI) auf 1950 mm Höhe (axiale Mitte) und 9 Mantelthermoelemente (TE) auf -150, 150, 500 ... 3900 mm Höhe.

Die axialen TE-Positionen werden von oben nach unten gezählt, wobei sich das obere beheizte Bündelende bei 0 mm und das untere beheizte Bündelende bei 3900 mm befindet.

Die Bezeichnungen auf den Kurvenabbildungen sind wie folgt zu lesen: z.B. TH 49/9 = das 9. Thermoelement auf Stab 49 von oben gezählt, also auf Position 3900 mm = unteres beheiztes Ende.

2.7 Angaben zur Meßgenauigkeit

Ausführliche Angaben zur Meßgenauigkeit des Rechners, der Temperaturen, der Mengen- und der Druckmessungen werden in /4/ gemacht.

2.8 Versuchsvorbereitungen

- Die Einstellung des in der Wiederauffüllphase aufwärts durch das Bündel strömenden Dampfmassenstromes und der Eintrittstemperatur erfolgte wie bei REBEKA-6 durch Bestimmung aus Massenstromdifferenzen.
- Die Voreinstellung der Flutwassersteiggeschwindigkeit (der kalten Flutrate) für die Zwangseinspeisung des Notkühlwassers in der zu simulierenden Flutphase erfolgte ebenfalls wie bei REBEKA-6 /4/.
- Bei REBEKA-6 befand sich der Dampfverteiler unmittelbar oberhalb des

Flutwasserspiegels in Höhe der axialen Position 3900 mm, d. h. des unteren beheizten Endes des Bündels. Bedingt durch diese Anordnung wurden in der Wiederauffüllphase (Aufheizphase des Bündels) Wassertröpfchen aus der bewegten Wasseroberfläche durch den Dampfstrom in das Bündel mitgerissen. Sicheres Indiz für die Richtigkeit dieser Annahme war der teilweise verzögerte Anstieg (einige Sekunden) der Hüllrohrtemporaturen zu Beginn der Aufheizphase. Zur Vermeidung eines derartigen Wassermitrisses wurde, wie bereits erwähnt, für REBEKA-7 der Dampfverteiler geändert und der Flutwasserspiegel vor Flutbeginn durch konstruktive Maßnahmen um etwa 3 cm abgesenkt. Dies hatte zur Folge, daß für das Ansteigen des Wasserspiegels vom Schließen des Ventils 7.3 bis zum Erreichen der axialen Höhenposition 3900 mm eine gewissen Zeit verstreicht. Um möglichst ähnliche Verhältnisse zu REBEKA-6 herzustellen, wurde das Eindringen des Flutwasses in das Bündel von der axialen Position 3900 mm aus als Flutbeginn definiert. Zu diesem Zeitpunkt wurde die Leistung abgesenkt. Die Auffüllzeit vom abgesenkten Flutwasserspiegel bis zum Erreichen dieser Position wurde in einem Flutversuch mit unbeheiztem Bündel zu 6 sec. ermittelt.

2.9 Versuchsablauf

Das Bündel wurde bei etwa 4 bar Systemdruck mit Dampf von etwa 160 °C von unten nach oben durchströmt. Der eingestellte Massendurchsatz durch das Bündel betrug 14 g/s. Nach Erreichen einer konstanten Temperatur im Bündel erfolgte die Druckaufgabe auf die Stäbe mit 60 bar Helium. Danach erfolgte die Aufheizung des Bündels mit einer Leistung von etwa 7.8 kW/Stab. Sechs Sekunden vor Erreichen einer Hüllrohrtemperatur von 765 °C in der axialen Ebene 1850 mm wurden die Ventile 7.2 und 7.3 geschlossen. Bei Erreichen der Hüllrohrtemperatur von 765 °C wurde die Leistung der Stäbe auf 6.6 kW/Stab abgesenkt (s. Abb. 9). Dies war der Zeitpunkt des "definierten Flutbeginns". Die eingestellte kalte Flutrate betrug 3 cm/s (Massenstromdurchsatz 173 g/s).

Leistung und Flutrate wurden bis zum Versuchsende konstant gehalten. Kriterium für die Leistungsabschaltung war das Wiederbenetzen der obersten Stabenden.

œ

I Wiederauffüllphase II Flutphase

Abb. 1 REBEKA 7

Versuchskreislauf für Hüllrohrverformungsexperimente, Bündel – Tests

Abb. 2 REBEKA 7 Phasenbelegung der Transduktoren

Abb. 3 REBEKA 7

Konstruktionszeichnung des Brennstabsimulators mit Stufenheizleiter

10 -

Abb. 4 Nennmaß des Brennstabsimulators

Abb. 5 Axiales Leistungsprofil des Brennstabsimulators und der Abstandshalteranordnung

6 REBEKA 7 Schaltbild der Teststrecke mit Temperaturund Druckmeßstellen

— 13 —

oberes beheiztes Bündelende = 0 mm unteres beheiztes Bündelende = 3900 mm

TE-Positinen werden in axialer Richtung von obeninach unten angeben, z.B. TH 14/3-Stab 14, 3. TE in Tabelle auf 500 mm

Position	Stab Nr.	Ti-Position	IE-Position	Anza
1/1	37	- ISING	2100	1
1/2	19		2100	1
1/3	16		2100	1
1/4	74		2100	1
1/5	23	2 1950	1850 2100	- 1
1/6	<u> </u>	24 17 50	2100	
1/7			2100	1
2/1	61		2100	
2/1		1, 1950	-150 150 500 1000 1850 2100 2900 3/00 3900	10
2/2	18	1 1/30	2100	10
2/1	66	3 1950	2100	
2/5	35		2100	1
2/6	22		2100	1
2/0	80		2100	
3/1	56		2100	4
3/7	10	2x 1950	2100	
3/3	25	2x 1950	2100	د ر
3/1	23	2 1950	2100	د
3/5	20	3 1950	2100	
3/6	20	0000170	2100	<u>4</u> -
3/7	21		2100	
1/1	11		2100	
4/1	17	2 1950	2100	<u>ا</u>
1/3	4/	24 1950	2100	
4/5	12	2 1950	1850 2100	
1/5	12	24 1050	2100	4
4/5	2	1, 1050	2100	- 4
4/0	40			
5/1	29		2100	1
5/7	20	2.1050		
5/2		1. 1950	1950,2100	<u> </u>
5/5	40	2.1050		3
5/4 E/E		24 17 30	2100	4
5/3	34	· · · · · · · · · · · · · · · · · · ·	2100	
5/0	29		2100	1
- 3/1	20	·	2100	
6/1	17		2100	1
0/2	15		2100	
_ 0/3	51	1- 1950	2100	
0/4	30	IX 17.5V	2100	Z
0/5	1/.	2 1950		1
0/0	57	241750	-130, 130, 300, 1000, 1030, 2100, 2700, 3400, 3700	
7/1	 [.g	₹v 1950	1050 2100	<u> </u>
-1/1		JULI N	2100	<u> </u>
	0			
1/3			2100	
1/4	- 04 -	·	2100	1
1/5			2100	1
	17		2100	
1/7	13			1

150,500,1000,1950,2900, 3400,3750,3x1950 Abstandshalter 1, 4,5,8 Smm unterhalb/AH 1,4,5,1Smm oberhalb Fluid

Instrumentierungsplan des Bündels (Temperaturmeßstellen)

74

Thermoelement in Heizstabhülle eingebettet (TI)

Thermoelement mit Platinhülse auf Zircaloy-Hülle aufgepunktet (TH) ភ

Abb. 8 Thermoelementanbringung

3. Versuchsdaten

- 3.1 Systemdaten der Versuchsanlage
- Elektrische Phasenleistungen des Bündels (Abb. 9)

- Drücke in der Teststrecke (Abb. 10)

- Wasserstände in Teststrecke und Behälter 5 (Abb. 11)

- Temperaturen in der Teststrecke (Abb. 12)

- Drücke, Temperaturen und Massendurchsätze in den Blenden D1, D2, D3, und D 6 (Abbn. 13 - 16)

- Massendurchsätze in der Versuchsanlage (Abb. 17)

Elektrische Leistungen der Transduktoren, bzw. der Phasenleistungen

REBEKA 7 31.10.84 Abb:10 Drücke in der Versuchsanlage

— 17 —

— 18 —

- 19 -

Abb:17 Massendurchsätze in der Versuchsanlage

3.2 <u>Überblick</u> über Versuchsablauf

- Temperaturverlauf der 25 Innenstäbe (Abb. 18)

- Druckverlauf der 25 druckbeaufschlagten Innenstäbe (Abb. 19)

Da die äußere Reihe der Brennstabsimulatorhüllen durch den Einfluß der kälteren Kastenwand unter azimutalen Temperaturunterschieden verformte, werden für die Beurteilung des Versuchsablaufs nur die Drücke und Temperaturen der inneren Stäbe der 5x5 Anordnung dargestellt.

Die Temperaturmeßstellen befinden sich in der axialen Höhe von 2100 mm, d.h. 150 mm unterhalb der axialen Mittelebene des Bündels. Die Stäbe Nr. 23, 49, 12, 69, 29, 46, 4, 14 und 48 sind zusätzlich mit Temperaturmeßstellen in der axialen Höhe von 1850 mm, d. h. 100 mm oberhalb der axialen Mittelebene des Bündels instrumentiert. Die Temperaturverläufe dieser Meßgeber sind zusammen mit den Druck- und Temperaturverläufen der 2100 mm Meßebene des jeweiligen Stabes dargestellt.

and the second secon

REBEKA 7 31.10.84

REBEKA 7 31.10.84 Abb: 21 Druck-und Temperaturverlauf von Stab Nr: 19

Abb: 23 Druck-und Temperaturverlauf von Stab Nr: 34

REBEKA 7 31.10.84 Abb: 25 Druck-und Temperaturverlauf von Stab Nr: 41

KIKIT

Abb: 27 Druck-und Temperaturverlauf von Stab Nr: 61

Abb: 29 Druck-und Temperaturverlauf von Stab Nr: 18

Abb: 31 Druck-und Temperaturverlauf von Stab Nr: 35

REBEKA 7 31.10.84

Abb: 32 Druck-und Temperaturverlauf von Stab Nr: 22

REBEKA 7 31.10.84 Abb: 33 Druck-und Temperaturverlauf von Stab Nr: 80

— 32 —

— 33 —

— 34 —

Abb: 41 Druck-und Temperaturverlauf von Stab Nr: 11

— 38 —

REBEKA 7 31.10.84

Abb: 48 Druck-und Temperaturverlauf von Stab Nr: 38

Abb: 49 Druck und Temperaturverlauf v.Stab Nr: 29 in 1850 u. 2100 mm ax. Höhe

— 39 —

REBEKA 7 31.10.84 Abb: 52 Druck-und Temperaturverlauf von Stab Nr:44

REBEKA 7 31.10.84 Abb: 53 Druck-und Temperaturverlauf von Stab Nr: 36

- 41 ---

- 42 ---

REBEKA 7 31.10.84 Abb: 57 Druck-und Temperaturverlauf von Stab Nr: 15

Abb: 59 Druck-und Temperaturverlauf von Stab Nr: 30

REBEKA 7 31.10.84 Abb: 61 Druck-und Temperaturverlauf von Stab Nr: 57

Druck-und Temperaturverlauf von Stab Nr: 8 Abb: 63

Abb: 64 Druck-und Temperaturverlauf von Stab Nr: 59

REBEKA 7 31.10.84 Abb:65 Druck-und Temperaturverlauf von Stab Nr: 64/

- 47 ---

REBEKA 7

' 31.10.84 Druck-und Temperaturverlauf von Stab Nr: 26 Abb: 66

31.10.84 REBEKA 7 Druck-und Temperaturverlauf von Stab Nr: 81 Abb: 67

- 48 -

REBEKA 7 31.10.84 Abb: 68 Druck-und Temperaturverlauf von Stab Nr: 13 (Abbn. 69 - 86)

- 54 ---

3.5	Axiale	Temperaturen	über	die	volle	Stablänge
-----	--------	--------------	------	-----	-------	-----------

Stab 49 (Abb. 87) Stab 14 (Abb. 88)

3.6 Axialer Temperaturverlauf am Bündelkasten (Abb. 89)

3.7 Fluidtemperaturen am Abstandshalter

 AH 1
 (Abb. 90)

 AH 4
 (Abb. 91)

 AH 5
 (Abb. 92)

 AH 8
 (Abb. 93)

REBEKA 7 31.10.84 Abb: 89 Axialer Temperaturverlauf Bündelkasten

— 64 —

3.8 Umfangsdehnungen der Zircaloy-4-Hüllrohre

Nach Entfernen des Bündelkastens werden die Brennstabsimultoren bezüglich ihrer Position im Abstandshaltergitter, bzw. im Bündelverband markiert und die Abstandshalterbleche demontiert.

Die Umfangsdehnung der einzelnen Stäbe wird durch Messung des Durchmessers oder des Umfanges bestimmt. An axialen Stellen, an denen der Querschnitt der gedehnten Hüllrohre kreisförmig ist, wird der Mittelwert von zwei um 90 ^O versetzten Durchmessern herangezogen. An den Stellen, an denen das Hüllrohr gequetscht oder geborsten ist, wird der Umfang mittels eines Meßstreifens ausgemessen.

An den Öffnungen der Berststellen zählt dabei der Umfang von Berstlippe zu Berstlippe unter Aussparung der Öffnung.

Berstdehnungen und Berstlagen	(Abb. 94)
Umfangsdehnungsprofile	
- aller Hüllrohre einzeln	(Abbn. 95 - 143)
- aller 49 Hüllrohre zusammen	(Abb. 144)
- der Hüllrohre der 25 Innenstäbe	(Аъъ. 145)
- der Hüllrohre der 9 innersten Stäbe	(Abb. 146)

Kühlkanalversperrung

	durch	49	Stäbe	(Abb.	147)
6-0	durch	25	Innenstäbe	(АЪЪ.	148)
	durch	9	Innenstäbe	(Арр.	149)

⁽¹⁾ nicht geborsten.
⁽²⁾ Berststelle nur kleines Loch

Abb. 94 REBEKA 7 Berstdehnungen und Berstlagen

Abb.: 95 Dehnungsprofil von Stab: 37

REBEKA 7

Abb.: 96 Dehnungsprofil von Stab: 19

Abb.: 98 Dehnungsprofil von Stab: 34

REBEKA 7

Abb.:100 Dehnungsprofil von Stab: 41

- 69 ---

Abb.:102 Dehnungsprofil von Stab: 61

Abb.:104 Dehnungsprofil von Stab: 18

Abb.: 106 Dehnungsprofil von Stab: 35

Abb.: 108 Dehnungsprofil von Stab: 80

- 74 -

Abb.:112 Dehnungsprofil von Stab: 2

---- 75 ----

Abb.: 114 Dehnungsprofil von Stab: 27

Abb.:116 Dehnungsprofil von Stab: 11

Abb.: 118 Dehnungsprofil von Stab: 1

REBEKA 7 Abb.:120 Dehnungsprofil von Stab: 5

Abb.: 122 Dehnungsprofil von Stab: 69

--- 80 ---

Abb.: 124 Dehnungsprofil von Stab: 29

Abb.: 128 Dehnungsprofil von Stab: 36

Abb.: 130 Dehnungsprofil von Stab: 77

Abb.:132 Dehnungsprofil von Stab: 15

Abb.: 134 Dehnungsprofil von Stab: 30

Abb.:136 Dehnungsprofil von Stab: 57

Abb.: 138 Dehnungsprofil von Stab: 8

Abb.:140 Dehnungsprofil von Stab: 64

Abb.: 145 Dehnungsprofile der 25 Innenstäbe

Abb.: 148 Kühlkanalversperrung durch 25 Innenstäbe

4. Zusammenstellung wichtiger Meßstellen (Tab. 1)

Tabellarische Zusammenfassung der Versuchsergebnisse (Tab. 2)

- 5. Kanal-Liste und Datenzuordnung
- 6. Faltblatt der Abb. 7

Tabelle l:	Zusammenstellung	wichtiger	Meßstellen
------------	------------------	-----------	------------

	<u> </u>	r1					
Bauteil	Nr.	Meßgröße u. Meßort	Meßstel- lenbe- zeichnung	Meßwertgeber	Meßbereich	Medium	Bemerkungen
Teststrecke	2	Druck im oberen Plenum	P2.2	DMS-p-Aufnehmer	0-10 bar	Dampf/Wasser	
		Temp, im oberen Plenum	(2x)T2.2	NiCr/Ni-TE	0-1000 °C	Dampf/Wasser	
		Temp, in Dampfaus- trittsleitung 07	т2.3	NiCr/Ni-TE	0-1000 °C	Dampf/Wasser	
		Druck im unteren Plenum	P2.1	DMS-p-Aufnehmer	0-10 bar	Dampf/Wasser	
		Temp, im unteren Plenum	T2.1	NiCr/Ni-TE	0-1000 °C	Dampf/Wasser	Kollabierter Wasserstand
		Differenzdruck über Teststrecke	N2	DMS-Ap-Aufnehmer	0-5 mWs	Dampf/Wasser	(incl.Strömungsdruck- verlust)
Bündel (BSS)		Hüllrohrtemperaturen	THn	NiCr/Ni-TE ¢ 0.5 mm	0-1000 °C		
		Druck im Stabinnern	PJn	DMS-p-Aufnehmer	0-130 bar	Helium	
		Temp, Heizstabhülle	TIn	NiCr/Ni-Te \$ 0.36 mm	0-1000 °C	Wasser/Dampf	
		Fluidtemp, a. Ab- standshalter	TAHn	NiCr/Ni-TE ¢ 0.5 mm	0-1000 ^o c	Wasser/Dampf	
		Temp. BE-Kasten	TKn	NICT/NI-TE ¢ 0.5 mm	0-1000 °C	Wasser/Dampf	
Rohrleitung Dampfver- teiler	07	Druck Dampfeintritt Temp. Dampfeintritt Differenzdruck an Blende Dampf- eintritt	PD2 TD2 D2	DMS-p-Aufnehmer NiCr/Ni-Te DMS-∆p- Aufnehmer	0-10 bar 0-1000 ^o C 0-2.5 m Ws	Dampf Dampf Dampf	Dampfmenge Dampfverteiler Eintritt Teststrecke
Behälter (Wasseraus- Wurf-Sammel- behälter)	5	Differenzdruck	N5	DMS-ap-Aufnehmer	0-2.5 m⊮s	Wasser	Wasserstant
Rohrleitung	02	Druck Flutwasser Temp. Flutwasser Differenzdruck an	P6 T6.4	DMS-p-Aufnehmer NiCr/Ni-TE	0-25 bar 0-1000 ^o C	Wasser Wasser	Flutwassermenge
		Blende Flutwasser	D6	DMS-∡p-Aufnehmer	0-2,5 mWS	Wasser	
Rohrleitung	06	Druck Dampfeintritt Temp. Dampfeintritt	PD1 T3	DMS-p-Aufnehmer NICr/Ni-TE ,	0-10 bar 0-1000 °C	Dampf Dampf	Dampfmenge Eintritt
		Blende Dampfeintritt	Di	DMS- op-Aufnehmer	0-5 mWS	Dampf	Versuchsanlage
Rohrleitung	09	Druck Dampfaustritt Temp. Dampfaustritt Differenzdruck an	P3.2 T3	DMS-p-Aufnehmer NiCr/Ni-TE	0-10 bar 0-1000 ^o C	Dampf Dampf	Dampfmenge Austritt Versuchen lage
		Blende Dampfaustritt	03	DMS-Ap-Aufnehmer	0-2,5 m₩S	Dampf	, er ancugantaké

REBEKA	7
--------	---

Tabelle 2:	Zusammenstellung	der	Versuchsergebnisse
·······			

Stab Nr.	Berst- zeit	Hüllrohr- temp- 2100 mm	Berst- druck	Dehnung 2100 mm ax. Höhe	Berst- dehng.	Berst- stelle axial	Berst- winkel	Berst- folge	Wiederbe- netzungs- zeit	Wiederbe- netzungs- folge	Bem.	Hüllrohr- temp. in 1850 mm	Dehnung in 1850 mm ax. Höhe
	s		bar	%	%	non			s	in 2100 mm		ax. Höhe ^O C	%
37	168	760	61.0	12.76	27.3	2034	135	30	232	38			5.97
19	132	762	64.0	9.45	38.5	1948	130	18	238	40			10.13
16	-	-	-	27.31	-	-	-	-	206	26	*		6,29
34	137	765	60.5	13.82	39.2	1950	135	21	190	17			10.53
23	167	750	54.5	22.51	49.5	1988	140	29	202	22			7.46
41	190	720	54.5	23.55	61.4	1952	60	33	251	41			8.45
7	159	780	63.5	15.07	30.9	2040	210	27	236	39			9.04
61	134	772	61.0	8,65	31.7	1855	120	20	228	36			31.77
49	129	785	58.0	11.69	43.6	1965	120	16	180	9		756	24,90
18	133	772	60.0	12.66	47.5	1950	145	19	151	2			16.80
66	129	780	59.5	10.73	42.1	1895	45	16	180	9			30,98
35	124	787	58.5	8.62	49.2	1925	35	12	186	15			32.80
22	123	779	58.5	8.68	64	1790	205	11	214	31			26.24
80	154	.765	61.0	13.88	37.7	2038	220	24	198	20			11.42
56	119	800	64.5	8.33	34.4	1853	35	7	183	12			33,25
10	122	781	60.6	10.43	48	1853	135	10	180	9			48.05
25	93	760	73.0	1.06	65.8	1832	150	1	230	37	Kuge1-		14.0
2	118	800	58.5	8.61	53	1792	125	6	202	22	beule		27.66
20	117	778	59	8.91	46	1840	135	5	210	28			42.13
27	125	785	58.5	11.50	54.6	1985	80	13	161	4			21.44
21	132	781	62.4	.8.68	33.3	1980	225	18	118.5	1	Löch- lein		17.07
11	138.5	765	62.5	9.07	30.8	1873	95	23	203	23			23.70
47	114	787	62,5	8.03	42.1	1848	125	2	227	35			42.13
1	121	787	59.5	10.33	59.8	1895	90	9	175	6	ļ .		27.28
12	125	785	58.7	11.01	55.5	1910	135	13	171	5		700	24.08
5	117	800	57.0	8.61	71.1	1830	40	5	230	37			54.86
6	120.5	799	56.5	8.94	61.7	1810	90	8	192	19			32.94
69	-	-	-	15.54	-	-	-	-	190	17	*		17.22
38	116	786	66.5	8.97	33.2	1937	105	4	203	28			9.25
29	121	786	58,5	10.84	56,9	1785	125	9	205	25		745	32.88
46	130	799	55.5	13.28	45 ·	1970	55	17	156	3		693	37.79
4	117	805	57.5	11.08	59.8	1935	145	5	161	4		815	26.27
44	115	820	62.0	10.39	54	1785	215	3	207	27			18.39
36	122	800	61.8	9.83	43.3	1865	145	10	220	33			39.17
28	123	785	63.5	8.83	33,3	1822	235	11	210	28			27.35
77	-	-	-	18,75	-	-	-	-	216.5	32	₩ .		20.09
17	117	788	62.5	8.04	60.5	1825	40	5	182	11			37.30
15	123	785	59.0	9.58	43.6	1908	315	11	191.5	18			33.90
54	128	770	53	13.33	59.3	1952	115	15	189	16			40.07
30	127	787	57	10.93	52.5	1850	25	14	181	10			52.49
14	127	785	55.0	11.28	86.5	1790	225	14	224.5	34		821	36.86
57	137.5	760	61.0	12.49	43.6	1919	315	22	204	24			23.19
48	157	782	63,5	13.22	28.8	2040	35	25	201	21			8.70
8	172.5	770	60.0	28.45	48	2072	30	32	176	7			7.68
59	-	-	-	25.87	-	-	-	-	183.5	13	*		10,26
64	169	715	55	35.47	62.9	2050	35	31	178.5	8			8.70
26	165	760	58,5	21.27	36.2	2052	325	28	211	29			9.79
81	157.5	764	56.5	19.33	50.4	2015	0	26	184	14			15.00
13	157	755	64.0	16.88	31.8	2055	45	25	212	30			8,96

Anmerkung: Alle Zeitangaben beziehen sich auf Beginn der Wiederaufheizphase.

* nicht geborsten.

Die Daten wurden digital mit einer Frequenz von 10 Zyklen pro Sekunde von einer PDP 11/03 erfaßt. Für die Umrechnung von Rohmeßwerten in physikalische Einheiten, den Datentransfer und die graphische Darstellung sind Programme geschrieben worden.

Kanalliste und Datenzuordnung für REBEKA-7

Kanal No	Datenzuordnun Meßstellenang		9	Be n	zeich- ung	Einheit	Meß- winkel	Abb. Bem.			
24	Vergleichstem	perat	ur	Kupf	erpla	tte	τv	/3	°c		1)
25	Temperatur un	teres	Te	stst	recke	n-					
	plenum						т2	• 1	°c		
26	Temperatur ob	eres	Tes	tstr	ecken	-					
	plenum West						т2	•2W	°C	0 ⁰	
27	Temperatur ob	eres	Tes	tstr	ecken	-					
	plenum Nord						Т2	•2N	°c	270 ⁰	
28	Dampfaustritt	stemp	.(V	ersu	chsan	1.)	T2	. 3	°c		
29	Temp. Flutwas	ser				i	Т6	• 4	°C		
30	Hüllrohrtemp.	Stab	37	bei	2100	mm	TH	37	°c	135°	
31	11	11	19	11	2100	mm	TH	19	°C	135°	
32	11	11	16	11	2100	mm	TH	16	oC	225 ⁰	
33	11	11	34	11	2100	mm	TH	34	°C	225 ⁰	
34	Temperatur He	izsta	bhü	11e							
		Stab	23	bei	1950	mm	Ti	23/1	°c	180°	
35	11	11	23	11	1950	mm	Ti	23/2	°c	300°	
36	Hüllrohrtemp.	11	23	Ħ	1850	mm	TH	23/1	°C	. 180 ⁰	
37	11	11	23	11	2100	mm	TH	23/2	°C	180°	
38	**	11	41	11	2100	mm	TH	41	°c	225 ⁰	
39	11	11	7	11	2100	mm	TH	7	°C	225. ⁰	
40	"	11	61	11	2100	mm	TH	61	°C	135 ⁰	
41	Temperatur Hei	lzstal	bhü:	lle							
		Stab	48	11	2100	mm	Ti	49/2	°C	135 ⁰	
42	Hüllrohrtemp.	Ŧŧ	49	11	-150	mm	тн	49/1	°c	135 ⁰	
Kanal No	Datenzuordnung Meßstellenangab	en					Be: nui	zeich- ng	Einheit	Meß- winkel	Abb Bem
-------------	-----------------------------------	------	----	-----	-----------------------------	----	------------	--------------	----------------	------------------	------------
					- 1205-07-17-17-07-07-17-1-						
43	Hüllrohrtemp. S	tab	49	bei	150	mm	ТН	49/2	°C	135°	
44	11	11	49	bei	500	mm	ТН	49/3	°C	135 ⁰	
45	11	. 11	49	bei	1000	mm	TH	49/4	°C	135 ⁰	
46	11	11	49	bei	1850	mm	TH	49/5	°C	135°	
47	11	11	49	bei	2100	mm	TH	49/6	°C	135 ⁰	
48	11	"	49	bei	2900	mm	TH	49/7	°C	135 ⁰	
49	11	11	49	bei	3400	mm	TH	49/8	°C	135 ⁰	
50	Ħ	11	49	bei	3900	mm	Ti	49/9	°C	135°	
51	H	11	18	bei	2100	mm	ТН	18	°C	135°	
52	Temp.Heizstabh.	11	66	bei	1950	mm	Ti	66/1	°C	135 ⁰	
53	н	11	66	bei	1950	mm	Ti	66/2	°C	255 ⁰	
54	11	11	66	bei	1950	mm	Ti	66/3	°C	15 ⁰	
55	Hüllrohrtemp.	11	66	bei	2100	mm	TH	66	°C	135°	
56	11	11	35	bei	2100	mm	ТН	35	°C	225 ⁰	
57	11	11	22	bei	2100	mm	TH	22	°C	135 ⁰	
58	11	"	80	bei	2100	mm	TH	80	°C	315°	
59	H	н	56	bei	2100	mm	TH	56	°c	1350	
60	nicht belegt										
61	Temp.Heizstabh.	"	10	bei	1950	mm	Ti	10/2	°C	225 ⁰	
62		**	10	bei	1950	mm	Ti	10/9	°c	15 ⁰	
63	Hüllrohrtemp.	11	10	bei	2100	mm	TH	10	°C	135 ⁰	
64	Temp.Heizstabh.	"	25	bei	1950	mm	Ti	25/2	°c	315 ⁰	
65		"	25	bei	1950	mm	Ti	25/3	°c	90 ⁰	
66	Hüllrohrtemp.	11	25	bei	2100	mm	TH	25	°c	315°	
67	Temp.Heizstabh.	11	2	bei	1950	mm	Ti	2/2	°c	135 ⁰	
68	11	11	2	bei	1950	mm	Ti	2/2	°C	135 ⁰	
69	Hüllrohrtemp.	n	2	hei	2100	mm	 Тн	2	°c	1350	
70	Temp Hoigstabh	н	20	boi	1050	mm	~** T-1	- 20 / 1	о _с	2250	

— 101 —	

Kanal No	Datenzuordnung Meßstellenangaben	Bezeich- nung	Einheit	Meß- winkel	Abb. Bem.
71	Temperatur Heizstabhülle Stab 20 bei 1950 mm	Ti 20/2	°C	315°	
72	" 20 bei 1950 mm	Ti 20/3	oC	135°	
73	Hüllrohrtemp. " 20 bei 2100 mm	тн 20	°C	225 ⁰	
74	" 27 bei 2100 mm	TH 27	°C	225 ⁰	
75	" 21 bei 2100 mm	TH 21	°C	315°	
76	" 11 bei 2100 mm	TH 11	°C	135 ⁰	
77	Temp.Heizstabh." 47 bei 1950 mm	TH 47/1	°c	45 ⁰	
78	" 47 bei 1950 mm	Ti 47/2	°C	135 ⁰	
79	Hüllrohrtemp. " 47 bei 2100 mm	TH 47	°C	45 ⁰	
80	Temp.Heizstabh." 1 bei 1950 mm	Ti 1/2	°C	135 ⁰	
81	" " l bei 1850 mm	Ti 1/3	°c	255 ⁰	
82	Hüllrohrtemp. " 1 bei 2100 mm	TH 1	°C	135 ⁰	
83	Temp.Heizstabh." 12 bei 1950 mm	Ti 12/1	°C	315°	
84	" 12 bei 1950 mm	Ti 12/3	°c	180 ⁰	
85	Hüllrohrtemp. " 12 bei 1850 mm	TH 12/1	°C	315°	
86	" 12 bei 2100 mm	TH 12/2	°c	315 ⁰	
87	Temp.Heizstabh." 5 bei 1950 mm	Ti 5/1	°c	315°	
88	" 5 bei 1950 mm	Ti 5/2	°C	75 ⁰	
89	" 5 bei 1950 mm	Ti 5/3	°C	195°	
90	Hüllrohrtemp. " 5 bei 2100 mm	TH 5	°c	315 ⁰	
91	Temp.Heizstabh." 6 bei 1950 mm	Ti 6/1	°c	225 ⁰	
92	nicht belegt				
93	nicht belegt				
94	Hüllrohrtemp. " 6 bei 2100 mm	TH 6	°C	225 ⁰	
95	" 69 bei 1850 mm	TH 69/1	°c	225 ⁰	
96	" 69 bei 2100 mm	TH 69/2	°C	225 ⁰	
97	" 38 bei 2100 mm	TH 38	°C	135 ⁰	
98	Temp.Heizstabh." 29 bei 1950 mm	Ti 29/1	°C	45 °	

Kanal No	Datenzuordnung Meßstellenangaben	Bezeich- nung	Einheit	Meß- winkel	Abb. Bem.
99	Temperatur Heizstabhülle				
2	Stab 29 bei 1950 mm	Ti 29/2	°C	165 ⁰	
100	" 29 bei 1950 mm	Ti 29/3	<mark>о</mark> С са	285 ⁰	
101	Hüllrohrtemp. " 29 bei 1850 mm	TH 29/1	°C	45°	
102	" 29 bei 2100 mm	ТН 29	°C	45°	TE defekt
103	nicht belegt		1		
104	Temp.Heizstabh." 46 bei 1950 mm	Ti 46/3	°C	3150	
105	Hüllrohrtemp. " 46 bei 1850 mm	TH 46/1	°C	45°	
106	" 46 bei 2100 mm	TH 46/2	°C	45 °	
107	Temp.Heizstabh." 4 bei 1950 mm	Ti 4/1	°C	135°	,
108	" 4 bei 1950 mm	Ti 4/2	°c	255°	<i>i</i> i se
109	" 4 bei 1950 mm	Ti 4/3	oC	15 ⁰	
110	Hüllrohrtemp. " 4 bei 1850 mm	TH 4/1	°C	135°	
111	" 4 bei 2100 mm	TH 4/2	°c	135 ⁰	1
112	" 44 bei 2100 mm	TH 44	o ^C	135°	TE defekt
113	" 36 bei 2100 mm	TH 36	°C	225 ⁰	
114	" 28 bei 2100 mm	TH 28	°C	315°	
115	" 77 bei 2100 mm	TH 77	oC	135°	-
116	" 17 bei 2100 mm	TH 17	°c	45°	,
117	" 15 bei 2100 mm	TH 15	, o, ^C	2250	
118	Temp.Heizstabh." 54 bei 1950 mm	Ti 54/2	°C	45°	i i
119	Hüllrohrtemp. " 54 bei 2100 mm	TH 54	°C	45 ⁰	
120	" 30 bei 2100 mm	TH 30	°C	45 ^{°O}	1 I
121	Temp.Heizstabh." 14 bei 1950 mm	Ti 14/1	° °C	3150	
122	" " 14 bei 1950 mm	Ti 14/3	°C	1950	14 - C
123	nicht belegt	• -		1. 19 A.	· · ·
124	Hüllrohrtemp. " 14 bei -150 mm	TH 14/1	oC and a	315 ⁰	
125	" " 14 bei 150 mm	TH 14/2	°c	315°	
126	" " 14 bei 500 mm	TH 14/3	°c	3150	
			-	-))

Kanal No	Datenzuordnung Meßstellenangaben			Bezeich- nung	Einheit	Meß- winkel	Abb. Bem.
127	Hüllrohrtemp. Stab	14 bei 1000	mm	TH 14/4	°C	315°	
128	11 11	14 bei 1850	mm	TH 14/5	°c	315 ⁰	
129	11 11	14 bei 2100	mm	TH 14/6	°C	315°	
130	11 11	14 bei 2900	mm	TH 14/7	°c	315 ⁰	
131	11 11	14 bei 3400	mm	TH 14/8	°C	315°	
132	17 11	14 bei 3900	mm	TH 14/9	°C	315 ⁰	
133	11 11	57 bei 2100	mm	ТН 57	°c	315°	
134	Temp.Heizstabh."	48 bei 1950	mm	Ti 48/1	°c	45 ⁰	
135	. 11 11	48 bei 1950	mm	Ti 48/2	°c	165 ⁰	
136	11 11	48 bei 1950	mm	ТН 48/3	°c	285 ⁰	
137	Hüllrohrtemp. "	48 bei 1850	mm	TH 48/1	°c	45 ⁰	
138	11 11	48 bei 2100	mm	ТН 48/2	°C	45 ⁰	
139	11 11	48 bei 2100	mm	ТН 8	°C	45 ⁰	
140	19 89	59 bei 2100	mm	ТН 59	°c	45 ⁰	
141	11 II	64 bei 2100	mm	ТН 64	°C	450	
142	11 11	26 bei 2100	mm	ТН 26	°c	45 ⁰	
143	11 11	81 bei 2100	mm	TH 81	°c	45 ⁰	
144	11 11	13 bei 2100	mm	TH 13	°c	315 ⁰	
145	BE-Kastenwandtempe	catur					
	.tr	l bei 150	mm	ТК 1	°C	N	
146	11 · · · 11	2 bei 500	mm	ТК 2	°c	N	
147	. 11	3 bei 1000	mm (тк з	°c	N	
148	11 11	4 bei 1950	mm	тк 4	°C	N	
149	11 11	5 bei 2900	mm	ТК 5	°C	N	
150	11 11	6 bei 1850	mm	тк б	°C	N	
151	11 11	7 bei 3700	mm	ТК 7	°c	N	
152	11 IT	8 bei 1950	mm	TK 8	°C	0	
153	11 11	9 bei 1950	mm	тк 9	°c	N	
154	11 11	10 bei 1950	mm	Tu 10	°C	W	
			1				

Kanal	Datenz	uordnung				Beze	eich-	Einheit	Meß-	Abb.
No	MeRete	11enanga	hen			1 111	7 · · ·		winkel	Bem.
				nung			· ·	WINKEI		
							·····			
155	Fluid	TE Absta	ndshalter			24				
			I bei	9	mm	ТАН	1/2/2u	°C	к.	
156	- 11 -		I bei	67	mm	TAH	1/2/20	°c		
157	с. ц	¥	I bei	. 9	mm	TAH	1/5/40	°C		
158	1.11		· I bei	-67	mm	ТАН	1/5/4u	°C		
159	II.	a	IV bei	1644	mm	TAH	4/2/20	°C	s.	
160			IV bei	1702	mm	ТАН	4/2/2u	°C		
161	H.		IV bei	1644	mm	ТАН	4/5/40	°c		
162	11		TV bei	1702	mm	ТАН	4/5/411	°C		
163	11		V bei	2188	mm	ТАН	5/2/20	°C		
164	- 11		V bei	2246	mm	ТАН	5/2/211	°C		:
165	11		V hei	2188	mm	ТАН	5/5/40	°c		
166	II I		V bei	2246	mm	ТАН	5/5/41	°C		1
167	5 H		VIII bei	3881	mm	ТАН	8/2/211	°c		
168	.11		VIII bei	3881	mm	ТАН	8/4/211	°c		
169	TT:		VIII bei	3881	mm	ТАН	8/4/51	°c		
170	Dampft	emneratu	r Druckrohr	500.	ŗ	TDR	1	°c		
171	11	- mpcracu	I DIUCKIONI II			TDR	2	°C		
172							-			n.bel
173	II :		11			TDR	3	°c		
174	H S		11			TDR	4	oC		
175	11		11			TDR	5	oc		
176		:	1. S.		. 1		-			n.bele
177										n.bele
178		•		i.						n.bele
179			τ,	. ,						n.bele
180		j								n.bele
181	· ·	·								
	i	,								T De Te

	105	

Kanal No.	Datenzuordnung Meßstellenangaben	Bezeich- nung	Einheit	Meß- winkel	Abb. Bem.
182					n.belegt
183					11
184					11
185					17
186					11
187					ΪT
188					11
189					11
190					11
191					н
192					11
193					11
194					IT
195					11
196					11
197					11
198					11
199					11
200					11
201					11
202					tf
203					11
204		-			11
205					11
206					11
207					11
208					11

Kanal No.	Datenzuordnung Meßstellenangal	ben		ч.		Be	zeich- ng	Einheit	Meß- winkel	Abb Bem
				A. 1982 (<u> </u>		
209	Stabinnendruck	von	Stab	37	•	PJ	37	bar		2)
210	IT	11	11	19		TJ	19	bar		
211	11	11	11	16	•	PJ	16	bar		
212	11	11	11	34		PJ	34	bar		
213	11	"	11	23		PJ	23	bar		
214	**	Ħ,	11	41		PJ	41	bar		
215	19	11	11	7		PJ	7	bar		
216	11	"	11	61		PJ	61	bar		
217	11	11	11	49		PJ	49	bar		
218	11	11	11	18		PJ	18	bar		
219	11	"	11	66		PJ	66	bar		
220	11	11	11	35		PJ	35	bar		•
221	77	"	11	22		PJ	22	bar		
222	11	11	11	80		PJ	80	bar		
223	17	11	11	56		PJ	56	bar		
224	tr	11	11	10		PJ	10	bar		
225	11	"	11	25		PJ	25	bar		
226	11		11	2		PJ	2	bar		
227	11	11	11	20		PJ	20	bar		
228	11	**	11	27		PJ	27	bar		
229	ŦŦ	"	11	21		PJ	21	bar		
230	11	11	**	11		PJ	11	bar		
231	7 7	11	11	47		PJ	47	bar		
232	Ħ	11	11	1	1	PJ	1	bar		
233	**	11	"	12		PJ	12	bar		
234	Dampfdruck an M	leßb1	ende	2		PD	2	bar		
235	Stabinnendruck		Crah	6		DT	6	han		

236 St 237 Da 238 " 239 " 240 St 241 " 242 " 243 "	tabinnendruck von ampftemperatur MeR ' ' tabinnendruck von '' '' ''	Stab Sblendo ' Stab ''	69 e 2 1 3 38 29	PJ 69 TD 2 TD 1 T 3 PJ 38	bar ^o C ^o C ^o C	
236 St 237 Da 238 " 239 " 240 St 241 " 242 " 243 "	tabinnendruck von ampftemperatur MeR ' ' tabinnendruck von '' '' ''	Stab Sblendo ' Stab ''	69 e 2 1 3 38 29	PJ 69 TD 2 TD 1 T 3 PJ 38	bar °C °C °C	
237 Da 238 " 239 " 240 St 241 " 242 " 243 "	ampftemperatur Meß ' tabinnendruck von '' '' ''	Sblend ' Stab ''	e 2 1 3 38 29	TD 2 TD 1 T 3 PJ 38	°C . °C	
238 " 239 " 240 St 241 " 242 " 243 "	' tabinnendruck von " " "	Stab "	1 3 38 29	TD 1 T 3 PJ 38	°C	
239 " 240 St 241 " 242 " 243 "	tabinnendruck von " " "	Stab "	3 38 29	T 3 PJ 38	°C	
240 St 241 " 242 " 243 "	tabinnendruck von " "	Stab "	38 29	PJ 38		
241 " 242 " 243 "	11 11 11	11	29		bar	
242 " 243 "	"			PJ 29	bar	
243 "			46	PJ 46	bar	
			4	PJ 4	bar	
244 "	**	11	44	PJ 44	bar	
245 "	**	11	36	PJ 36	bar	
246 "	11	11	28	PJ 28	bar	
247 "	.,	11	77	PJ 77	bar	
248 "	11	**	17	PJ 17	bar	
249 "	11	11	15	PJ 15	bar	
250 "	**	11	54	PJ 54	bar	
251 "		11	30	PJ 30	bar	
252 "	11	11	14	PJ 14	bar	
253 "	11	11	57	PJ 57	bar	
254 "	11	11	48	PJ 48	bar	
255 "	11	11	8	PJ 8	bar	
256 "		**	59	PJ 59	bar	
257 "	**	11	64	PJ 64	bar	
258 "	11	11	26	PJ 26	bar	
259 "	**	"	81	PJ 81	bar	
260 "	**	11	13	PJ 13	bar	
261 "	**	11	5	PJ 5	bar	

Kanal Nr.	Datenzuordnung Meßstellenangaben	Bezeich- nung	Einheit	Meß- winkel	Abb. Bem.
262	Dampfdruck an Meßblende l	PD 1	bar		
263	Druck im unteren Plenum d. Teststr.	P 2.1	bar		
264	Druck im oberen Plenum d. Teststr.	P 2.2	bar		
265	Dampfdruck an Meßblende 3	P 3.2	bar		
266	Druck Flutwasser	P 6	bar		
267	Differenzdruck an Meßblende l	D 1	kg/s		
268	" " 3	D 3	kg/s		
269	" " 6	D 6	g/s		
270	" Teststrecke	N 2	m Ws		
271	" an Meßblende 2	D 2	kg/s		
272	" Wasserauswurfbehälter	N 5	m Ws		
273	E1.Phasenleistg.Transduktorl,Phasel	L 1	kW		
274	" " 1, " 2	L 2	kW		
275	"" 1, "3	L 3	kW		
276	" " 2, " 1	L 4	kW		
277	" " 2, " 2	L 5	kW		
278	"" 2, "3	L 6	kW		
279	" " 3	L 7	kW		

1. Vergleichstemperatur (TV/3): 3,

da 3 Meßfühler auf Cu-Platte in Reihe geschaltet.

 He-Gas zur Simulation des Spaltgasinnendruckes von frischen Brennstäben.

37 19 16 34 23 41	axial	axial mm 2100 2100 2100 2100	
37 19 16 34 23 41 7	2 1950	2100 2100 2100	1
19 16 34 23 41 7	<u>ک ۱۹۶۵</u>	2100 2100	
16 34 23 41 7	2 1950	2100	•
34 23 41 7	2 1950		1
23 41 7	2 1950	2100	1
41		1850, 2100	- 4
7		2100	1
		2100	1
61		2100 -	1
49	1x 1950	-150 150 500 1000 1850 2100 2900 3400 3900	10
18		2100	
- 66	Tr 1950	2100	<u> </u>
- 30		2100	
		2100	
		2100	
		2100	
10	<u></u>	2100	<u>3</u>
25	<u>2x 1950</u>		
2	<u>2x 1950</u>	2100	3
20	<u>3x 1950</u>	2100	4
	·	2100	1
21		2100	1
11		2100	1
47	2x 1950	2100	3
1	2x 1950	2100	3
12	2x 1950	1850,2100	4
5	3x 1950	2100	4
6	1x 1950	2100	1
69		1850 2100	1
38		7100	1
29	7 1950	1850 2100	<u> </u>
16	1v 1950		
	2 1950		- ,
		2100	4
		2100	
		2100	
		2100	
		2100	<u> 1 </u>
15		2100	
	1x 1950	2100 -	2
30		2100	1
<u> 14 </u>	<u>2x 1950</u>	-150, 150, 500, 1000, 1850, 2100, 2900, 3400, 3900	_11
57		2100	1
48	3x 1950	1850,2100	5
8		2100	1
59		2100	1
64		2100	1
76		2100	1
81		2100	
13		- 2100	I
		<u></u>	
	66 35 22 80 56 10 25 20 27 21 11 47 1 12 5 6 69 38 29 46 44 36 28 77 15 54 30 14 57 48 8 59 64 26 81 13	10 1950 35 22 80 56 10 $2x$ 1950 25 $2x$ 1950 22 1950 20 $3x$ 1950 20 $3x$ 1950 20 $3x$ 1950 21 11 47 $2x$ 1950 12 $2x$ 1950 5 $3x$ 1950 6 $1x$ 1950 6 $1x$ 1950 46 $1x$ 1950 44 36 27 28 77 17 17 15 54 $1x$ 1950 44 36 27 21 77 17 17 15 54 $1x$ 1950 30 -14 $2x$ 1950 57 48 $3x$ 1950 8 59 64 -26 81 -13 13 $-5, 8$ <td>10 100 35 2100 35 2100 22 2100 80 2100 56 2100 25 21950 26 2100 27 2100 28 21950 29 21950 20 3x 1950 21 2100 27 2100 21 2100 21 2100 21 2100 11 2100 12 21950 150 2100 12 21950 1850 2100 6 1x 1950 2100 2 24 1950 38 2100 29 3x 1950 1850 2100 44 2100 17 2100 18 2100 19 1850 2100 2100</td>	10 100 35 2100 35 2100 22 2100 80 2100 56 2100 25 21950 26 2100 27 2100 28 21950 29 21950 20 3x 1950 21 2100 27 2100 21 2100 21 2100 21 2100 11 2100 12 21950 150 2100 12 21950 1850 2100 6 1x 1950 2100 2 24 1950 38 2100 29 3x 1950 1850 2100 44 2100 17 2100 18 2100 19 1850 2100 2100

oberes beheiztes Bündelende = 0 mm unteres beheiztes Bündelende = 3900 mm

TE-Positinen werden in axialer Richtung von oben nach unten angeben, z.B. TH 14/3-Stab 14, 3. TE in Tabelle auf 500 mm

Instrumentierungsplan des Bündels (Temperaturmeßstellen)

Faltblatt von Abb.7

7. Literaturangaben

- /1/ K. Wiehr, F. Erbacher, U. Harten, W. Just, P. Schäffner, IRB: Untersuchungen zur Wechselwirkung zwischen aufblähenden Zircaloyhüllen und einsetzender Kernnotkühlung. Auswertung von REBEKA-6 für Deutsches Standardproblem Nr. 7 PNS-Jahresbericht 1983, KfK 33450, Juni 1984, S 4200/94-4200/162
- /2/ K. Wiehr, F. Erbacher, U. Harten, W. Just: Auswertung des REBEKA-7-Experiments, PNS-Jahresbericht 1985, KfK 4000, Juli 1986, S 4200/5-4200/44
- /3/ K. Wiehr, A. Emling, F. Erbacher, U. Harten, W. Just, H. J. Neitzel, P. Schäffner, He. Schmidt, E. Vogel; IRB: Untersuchungen zur Wechselwirkung zwischen aufblähenden Zircaloyhüllen und einsetzender Kernnotkühlung Auswertung von REBEKA-5 PNS-Jahresbericht 1982, KfK 3350, Juli 1983, S 4200/94-4
- /4/ K. Wiehr, U. Harten: Datenbericht REBEKA-6, KfK 3986, März 1986