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Studien zu einem modularen fortgeschrittenen Reaktor ASRA6C 

Zusammenfassung 

Diese Studie hat zum Ziel, kritische Komponenten eines fortgeschrittenen Stelleratorreaktors 

aufzuzeigen, wobei das dem Stellarator eigene Potential des Dauerbetriebs ausgenutzt wird.Sie 

ist keine vollständige Reaktorstudie (Punktstudie). Aufgrund der komplexen dreidimensionalen 

Magnetfeldstruktur treten kritische technologische Komponenten auf. Die Erste Wand, das 

Blanket und die Abschirmung sind komplexer als bei axisymmetrischen Systemen, doch mittlere 

bis große Aspektverhältnisse, die typisch für einen Stellarator sind, bringen Erleichterung. Meh

rere Blanketoptionen wurden studiert und einem dünnen Blanket (21 cm) der Vorzug gegeben. 

Supraleitende modulare Spulen wurden bzgl. Leiter und mechanischer Struktur untersucht. Aus 

der Berechnung der elektromagnetischen Kräfte und mechanischen Spannungen folgt, daß die 

Spulen baubar sind, wobei jedoch die Beherrschung der Scherspannungen ein kritisches Problem 

sein kann. An Trennsteilen zwischen Kryostatmodulen werden demontierbare Kraftabstützun

gen zwischen den Spulen benötigt. Eine solche Abstützung wurde konstruiert. Die Gesamtausle

gung und die Handhabung eines solchen Reaktors wurden diskutiert. 

Die Plasmaphysik verschiedener Konfigurationen wurde studiert. Dabei wurden theoretische 

Modelle für Transport- und Gleichgewichtsverhalten und experimentelle Ergebnisse zur Extra

polation benutzt. Es zeigt sich, daß das Einschluß- und Gleichgewichtsverhalten ein gezündetes 

Plasma mit einem mittleren Beta-Wert von 5 % zuläßt. Verunreinigungen im Plasma können 

kritisch sein; es wurden mehrere Optionen der Verunreinigungskontrolle untersucht. Gewählt 

wurde ein gepumpter Limiter zur Plasmarand- und Verunreinigungskontrolle, wobei die 

"ergodische Schicht" des Plasmarandes ausgenutzt wird. 

Eine allgemeine Schlußfolgerung dieser Studie ist, daß das Konzept des modularen Stellarators 

im Hinblick auf die Entwicklung stationärer Reaktoren vielversprechend ist. 



Abstract 

This study is directed towards the clarification of critical issues of advanced modular stellarator 

reactors exploiting the inherent potential of steady state operation, and is not a point design 

study of a reactor. Critical technology issues arise from the three-dimensional magnetic field 

structure. The first wall, blanket and shield are more complex than those of axi-symmetric 

systems, but this is eased at moderate to large aspect ratio typical of Stellarators. Several blanket 

options have been studied and a thin blanket (21 cm) was the first choice for the design. Super

conducting modular coils were investigated with respect to the conductor and mechanical 

supports. From the analysis of forces and stresses caused by the electromagnetic Ioads the coils 

are considered to be feasible, although shear stresses might pose a critical issue. Demountable 

intermagnetic support elements were designed for use at separation areas between the cryostat 

modules. A scheme for remote reactor maintenance was also developed. 

The plasma physics issues of different configurations were studied using extrapolations of 

transport behaviour and equilibrium from theory and present experiments. These studies in

dicate that the confinement and equilibrium behaviour is adequate for ignited operation at an 

average value of 5 % beta. lmpurities may pose a critical issue. Several impurity control 

operations were investigated; a pumped limiter configuration utilizing the "ergodic layer" at 

the plasma edge was chosen for edge plasma and impurity control. 

A general conclusion of the study isthat the modular Stellarator configuration offers interesting 

prospects regarding the development towards steady-state reactors. 



STUDIES OF A MODULAR 

ADVANCED STELLARATOR REACTOR ASRA6C 

EXECUTIVE SUMMARY 

Objectives and Framework of the ASRA6C Study 

Advanced Stellarator Reactor studies were initiated at IPP-Garching during the 
construction of the WENDELSTEIN VII-AS experiment and the first scoping studies 
towards its "next step", the larger system WENDELSTEIN VII-X. Since this later 
experiment aims to demonstrate the potential of Stellarators towards their development 
of a fusion reactor, it was regarded as useful in this context to also study critical reactor 
issues of this concept. 

This was done by starting from the W VII-AS geometry, although the W VII-AS 
device was built only for demonstrating the basic properties of Advanced Stellarators 
before optimizing the configuration for stable confinement of high-ß plasmas. This 
optimization was done in parallel to the work presented in this report and, indeed, 
has yielded configurations capable of confining average values of < ß > of 9%. The 
results of this optimization also support the working hypothesis that the modifications 
necessary to apply to the W VII-AS coils for achieving confinement of a high-ß plasma 
are only small changes in coil geometry , so that basic reactor properties of Advanced 
Stellaratorsystems can indeed be studied by starting from the well-known W VII-AS 
configuration. The present ASRA6C study is directed towards the clarification of 
critical issues regarding such systems. It is therefore far from a point design of an 
Advanced Stellarator Reactor . Regarding future commercial power reactors of the 
Advanced Stellarator type, questions of economics, aspects of environmental impact, 
and inherent safety need also to be addressed. 

The present study was initiated at IPP-Garching , and was extended in a Co
operation between KfK-Karlsruhe and IPP-Garching in July 1983 to include ques
tions of superconducting coils and reactor maintenance. The basis of this common 
work was then broadened early in 1985 by a group of Fusion Power Associates (FPA), 
entering the Advanced Stellarator Reactor field in the course of their co-operation 
with the Kernforschungszentrum Karlsruhe. Starting from the magnetic topology of 
WENDELSTEIN VII-AS, several earlier data sets for an Advanced Stellarator Reactor 
(ASR) were developed, considering NbTi for the superconducting coils. An Advanced 
Stellarator Burner experiment (ASB) was scaled from such an early version of an ASR 
by dispensing with tritium breeding and assuming a rather large magnetic induction, 
utilizing Nb3 Sn as superconductor. In TableI relevant data of these two systems are 
compared to those of the present reference case, ASRA6C , the most recent version of 
an ASR. In ASRA6C, as in several preceding Advanced Stellarator Reactor data sets; 
a small number of 6 coils per field period is chosen as a compromise between "magnetic 
field quality" and maintainability, and NbaSn is foreseen as the superconductor. 
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TableI : Characteristics of Advanced Stellarator Burner and Reactor Systems 

Advanced Stellarator Burner Reactor Reactor 
ASB06E ASR25T7 ASRA6C 

Averagemajorradius Ro [m] 15.2 25.5 20.0 
Average coil radius Tc [m] 3.24 5.24 4.57 
Coils per fi.eld period 6 10 6 
Conductor Nb3Sn Nb Ti Nb3Sn 
Effective current density Jeff [MAjm 2

] 18 9.8 15 
Maximum induction at coil Bm [T] 12.6 8.7 10.4 
Stored magnetic energy Wm [GJ] 67 170 117 
Induction on axis Bo [T] 7.0 5.3 5.3 
Rotational transform to 0.53 0.58 0.47 
Average plasma radius Tp [m] 0.9 1.75 1.6 
Distance to coils ß [m] 1.2 >1.8 1.2 
Average ß <ß> [%] 2.5 5 5 
Fusion power PJ [GWJ 0.42 3.8 3.9 

Reference Case ASRA6C 

A schematic view of the generallayout of ASRA6C is given in Figure 1, showing the 
contours of the non-planar modular coils for three of the 5 fi.eld periods, along with 
nested toroidal volumes representing the shield and the blanket, as weil as the last 
closed magnetic surface. Due to the symmetry in the stellarator fi.elds, i.e. a twofold 
mirror symmetry with respect to the beginning (or middle) of each of the fi.eld periods, 
there are three different coil shapes in the whole system. The characteristic difference 
of the reference case ASRA6C is a more compact system size, as compared to that of 
similar previous systems. This reduction in size is made possible by an advanced design 
for the blanket and shield of ASRA6C . Thus the critical distance ß between the first 
wall of the system and the inner contour of the coil winding cross section is considerably 
reduced from the previously adopted value of ß = 2.1 m to 1.2 m. As a consequence, 
the major radius is changed from Ro = 25m to a value of 20m, and the average coil 
radius from Tc = 5.22 m to 4.57 m, keeping other parameters fi.xed, e.g., the average 
plasma radius Tp = 1.6 m, an effective coil current density of Jeff = 15M Ajm2 , and 
the induction at the magnetic axis of Bo = 5.3 T. There are 30 coils with identical 
elliptical bores in the coil system. In each of the 5 fi.eld periods there are three coil 
pairs with different shapes of the toroidal excursion, placed at slightly different values 
of the major radius. All coils carry the same current of 18M A in their reetangular 
winding pack cross section. The maximum induction at the Nb3Sn coils is 10.4 T, and 
the stored magnetic energy is 117 GJ in the whole system. 
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The following reactor data of the reference case ASRA6C are results of one of 
the various transport calculations, made to evaluate start-up and steady state burn 
scenarios. Start-up to ignition is achieved by an effective heating power of Ph = 30 to 
50MW. The fusionpower amounts typically to Pt~ 4 GW at an average < ß > of 
5 % , where ß is the plasma pressure normalized by the magnetic energy density. In 
this scenario, a radiative edge layer of 300 MW can be sustained. It could effectively 
reduce the heat Ioad to the pumped limiters. 

Fig. 1: Advanced Stellarator Reactor: 
Schematic view of plasma, blanket, shield, and coils. 
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Magnetic Field Studies for an Advanced Stellarator 

The characteristic feature of an Advanced Stellarator is a reduction of the secondary 
plasma currents and maintaining a global magnetic well in the vacuum fields. This 
reduction improves the confinement in the Pfirsch-Schlüter and plateau regimes of 
collisionality, and lowers the Shafranov-shift of the plasma at a finite ß. A typical 
geometrical feature of an Advanced Stellarator is a variable shape of the magnetic 
surfaces along the toroidal direction, in contrast to the rotating ellipses of a standard 
f. = 2 Stellarator. 

The magnetic topology of the reference configuration of this study, called ASRA6C, 
is computed from the coil currents, both for vacuum fields and also for finite values of 
ß , up to an average value < ß > ~ 5% which is near the critical ß for equilibrium. 
Then the magnetic axis is shifted by approximately half of the plasma radius. 

Heating and Burn Scenarios 

Heating and burn seenarios for Advanced Stellarator Reactor systems are established 
in numerical computations as sequences of equilibria for neoclassical heat conduction 
and bremsstrahlung as losses, and including electric fields in the 1-D-code. For start
up, an effective heating power of 30 to 50 MW is sufficient. At an increased refuelling 
rate, the reactor is brought to full power, preferentially at a moderate temperature 
of T = 12 keV to 15 keV. In a different computation, an additional radiative power 
loss of 300 MW near the plasma edge can be tolerated at an increased fusion power of 
3.9 G W. In this computation the electron heat losses are reduced by a factor of 2 in 
order to model the improved confinement properties of an Advanced Stellarator . The 
temperature is T ~ 19 keV and the average < ß > amounts to 5 % . Such ß-values 
are also found by equilibrium calculations for the field of ASRA6C . 

Blanket Design for ASRA6C 

Four different blanket options have been investigated. A thin blanket of 21 cm 
thickness is proposed as preferred option for ASRA6C. The first wall is a structural 
part of the blanket and is shaped similar to the contours of the outer magnetic surfaces, 
or, preferentially, can have identical elliptic cross sections. In this case the average 
neutron load at the first wall is 1.4 MW jm2 at a fusion power of P1 = 3.8 GW with 
local peaks up to 2.4 MW jm2 • The local enhancement of the neutron load at the first 
wall is caused by the Shafranov-shift of the finite-ß plasma. In addition to neutrons, 
the first wall is also loaded by radiation and plasma losses. The losses of trapped a.
particles as well as the amount of local sputtering remain to be quantified. All these 
effects depend also on the efficiency of the pumped limiters. 

The preferred blanket option uses slowly circulating Li11Pbaa as breeding material 
with Be as moderator and neutron multiplier, and He gas as coolant in a HT-9 ferritic 
steel structure. An overall breeding ratio of 1.05 (including penetrations) is computed. 
The required pumping power for the circulating breeding material is smaller than 0.5 % 
of the fusion power. A low tritium inventory of about 5 g in the coolant and breeder is 
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obtained. Tritium removal is accomplished in an external tritium oxideremoval system 
from the slowly circulating breeder material and the helium coolant. 

Shield Design and Optimization 

The breeding ratio and the shielding of the superconducting coils are optimized 
by utilizing a composite system of materials: breeding, neutron multiplication and 
moderation in the 21 cm thick blanket is aided by a 44.2 cm thick HT-9 reflector 
inside of the 25.5 cm thick B4G and 6.3 cm thick Pb shields. Local effects of the six 
He gas manifolds are seen within their poloidal angles of 10° . They amount to a factor 
of 5 above the 0.11 mW j cm3 of nuclear heating seen at the outside midplane where 
the first wall neutron load attains its local maximum value of 2.4 MW jm2 • At these 
particular positions, the fast neutron fl.uence amounts to 1.4 X 1023 m- 2 leading to a 
dose of 1010 rad in the GFF Polyimide insulator. The above numbers correspond to 
20 full-power years. 

Coil Engineering 

Engineering considerations of the coils for the present Advanced Stellarator Reac
tor systems cover the evaluation of magnetic forces and optimization of the resulting 
stresses and strains by iterative improvement of the support system. The mutual 
support of mechanically connected coils is treated. Besides the forces caused by the 
toroidal geometry, a characteristic feature of non-planar coil systems is that there are 
lateral forces with local maximum values comparable to the maximum radial compo
nent. Within a field period the lateral forces are balanced. 

The coils in ASRA6C provide an axis field of Bo = 5.3 T; the total stored mag
netic energy amounts to W = 117 GJ. Local peak fields of Bm = 10.4 T exist in 
ASRA6C at particular points at the coil surface. The force distribution within the 
coils yields a local maximum force density of 155MN/m3

• The mechanical stress and 
strain distributions are investigated inside the coils by finite-element calculations using 
the SAP V (2) program system. Using orthotropic material data of the LCT-coils, a 
maximum of the equivalent (von Mises) stress of O'vM =135M Pa is obtained, associ
ated with a shear stress of usT = 50MPa. The tangential strain amounts to about 
0.2% for this case. Although these shear stresses are considerable, the coils seem tobe 
feasible. The stresses in the coil housing and the mutual coil support elements arenot 
found to be critical. 
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Coil Considerations 

Coil considerations performed for the superconducting coils of ASRA6C have been 
concentrated on investigations of the conductor design, emphasizing the influence of 
the minimum bending radius. The associated strain imposed by the winding procedure 
might be kept within tolerable Iimits when using a cable-in-conduit conductor with 
comparatively small dimensions. An inside insulation is foreseen within a stainless 
steel mantle. A coil current of 18 kA is proposed as a compromise between the winding 
pack cross section and the turn number, when considering the peak field at the coil, 
its insulation in an emergency discharge, and the stationary cooling to counteract the 
nuclear heating. Laser welding of the compacted conductors are considered in the 
winding procedure. 

General Layout and Maintenance 

In the KfK design for the generallayout of ASRA6C and its maintenance, a blanket 
option with variable thickness is used. The contour of the first wall is assumed at 
some distance outside of the last closed magnetic surface. The blanket accomodates 
space for structure and provides a breeding ratio of 1.05 without the use of Be as 
moderator/neutron multiplier. A system of many pumped limiters is chosen for edge 
control of the plasma. A high heat transfer rate is required at the regions of intense 
contact with the edge plasma. This heat Ioad is assumed to be reduced by edge 
radiation. The choice of pumped limiters is a result of magnetic field studies near and 
outside of the separatrix of such systems where a rather complicated spatial structure 
of field lines outside of the last closed magnetic surface was found. 

Note that Stellarators in principle allow a steady state burn, provided that refuelling 
and ash removal can be accomodated appropriately, and that the impurities in the 
system do not pose serious problems. After start-up the operrings for the initial heating 
can be closed with shield material. 

Maintenance of the ASRA6C reactor is assumed at regular intervals depending on 
the performance of the first wall. The pumped limiters are considered to be individu
ally maintainable during short reactor shut-downs. Maintaining of the first wall and 
exchange of the blanket requires discharge of the magnets also. With the help of de
mountable cold intermagnetic support elements, the superconducting magnets can be 
kept at their operation temperature. One separation area per field period is considered 
for a short exchange time of the removable blanket units. After a radial motion of a 
whole field period, the two removable blanket units are replaced by new ones from 
both ends, utilizing appropriate service systems. 
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Conclusions 

The Advanced Stellarator scheme offers interesting prospects regarding the develop
ment towards steady state reactors. For ASRA6C , the approach of a thin blanket has 
allowed a considerable reduction in the size and in the stored magnetic energy of the 
system as compared to previous systems. 

Critical issues regarding technology may arise from the three-dimensional field struc
ture. The in:fiuence of ferromagnetic material on the magnetic topology needs to be 
quantified. First wall, blanket, and shield may call for more complex structures as com
pared to those of axisymmetric systems, but this is eased at moderate to large aspect 
ratio. At separation areas between the cryostat modules demountable intermagnetic 
support elements between coils might pose a critical issue. Proposed solutions are 
under study. 

Transport (heat conduction and particle Iosses) as extrapolated from present exper
iments and theory appears to be of the right order of magnitude for reactor-grade 
plasmas, but this needs experimental verification in large devices. As in the case of 
other steady state magnetic fusion systems with good confinement, impurities may 
pose a critical issue. Equilibrium-ß values as obtained by modern 3D-codes are ad
equate for reactor operation; the experimental proof depends on the performance of 
forthcoming or planned machines. For ASRA6C the average ß-value for equilib
rium, < ßeq >= 4.7%, is about the same as the computed value at reactor operation, 
< ß >= 5%, in a scenario where an additional edge radiation of 300 MW is included 
at a totalfusionpower of 3.9 G W. 

Regarding the question of the stability- ß in these systems, theory predicts lower 
values. Innovative configurations, called "HELlAS", have been published recently, 
which are stable up to a value < ß > l=::l 9% according to resistive interchange modes. 
Their geometrical characteristics are a helical magnetic axis and some indentation of 
the magnetic surfaces at those particular toroidal positions where the toroidal curvature 
has a maximum. Modular non-planar coils for such configurations are being developed. 
Detailed studies of critical reactor issues of these new configurations have still to be 
performed. It is pointed out, however, that the general results obtained in the above 
ASRA6C studies remain valid also for these innovative systems. This is due to the 
generic similarity of the non-planar modular coil systems which, by proper choice of 
their dimensions and shapes, introduce the respective magnetic topology. 
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1. Objectives and Framework of the Study 

A steady state fusion reactor has attracted the attention of physicists from the be
ginning of fusion research in the fifties. Stellarators offer the chance of steady state 
operation. In early stellarator experiments helical windings were used. Large super
conducting helical windings, however, seem to pose several difficulties for maintenance 
andrepair under reactor conditions. The modular coil stellarator is an improvement to 
these early conventional stellarators. This holds true not only with respect to critical 
technical issues; it also allows a large variety of magnetic field configurations which are 
difficult to achieve with helical windings. 

Reactor sturlies of modular stellarators have been published by various authors. 
Miller and Krakowski [1] have investigated a modular i = 2 stellarator MSR with 
reactor dimensions. The UWTOR-M study [2] considers the corresponding i = 3 
version. Both reactor concepts are the equivalent to the continuous coil i = 2 or 
i = 3 stellarator. The divertor as means of impurity control was a key feature of the 
UWTOR-M concept. 

The present study considers some special problems of the modular stellarator reactor 
based on the Advanced Stellarator principle. This principle will be studied in the 
WENDELSTEIN VII-AS experiment, which will start operation in Garehing in 1987. 
The particular property of this confi.guration is the reduction of the secondary currents 
(Pfirsch-Schlüter currents) in order to minimize the particle drift and at the sametime 
the radial Shafranov-shift of the plasma column. This reduction of secondary currents 
also improves plasma confinement. In terms of Fourier harmonics the magnetic field of 
the WENDELSTEIN VII-AS device is a superposition of i = 0, 1, 2, and 3 components, 
which would be difficult to realize with conventional helical windings. With modular 
coils, however, such a superposition can be easily achieved. 

In extrapolating the WENDELSTEIN VII-AS configuration to reactor dimensions 
several questions arise which are of particular interest for this specific type of magnetic 
field confi.gurations : 

- The available space for blanket and shield between plasma and coils; 
- Geometry of the coils, maximum field at the coils, and forces and stresses in 

the coils; 
- Maintenance procedure of blanket, shield, and coils; 
- Boundary layer between plasma and first wall; 
- Confinement properties of the plasma. 

The question of plasma stability has not been given major importance in working 
out the configurations treated in this study. Theory predicts a comparatively low 
stability Iimit of < ß >~ 2% for the configuration realized in the experimental device 
WENDELSTEIN VII-AS which is too low for an economic fusion reactor. On the other 
hand, theoretical efforts have succeeded in finding stellarator configurations with much 
higher stability Iimits up to < ß >= 9% . These HELlAS configurations [3] exhibit 
many of the features of the WENDELSTEIN VII-AS configurations, in particular 
the use of non-planar modular coils. Therefore it is believed that many solutions 
found in investigating a reactor version of WENDELSTEIN VII-AS can be transferred 
to the HELlAS confi.guration, to the Bean-shaped Advanced Stellarator , or to any 
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other modular stellarator with high ß-limits, and that the well-known W VII-AS 
configuration can be taken as basis for this study. 

In extrapolating WENDELSTEIN VII-AS towards reactor dimensions, the condition 
for sufficient space for blanket and shield was the determining factor for the overall 
geometrical size. In a first concept, a minimum distance of 2.1 m between the plasma 
boundary and the coil winding pack led to a device with 25m major radius, a value 
similar to that of other stellarator reactor designs like UWTOR-M or MSR. Compared 
to other concepts of fusion reactors such as tokamaks, these devices arerather large. 

Therefore a major task of the present study was to reduce the main dimensions of 
the reactor by making use of a more compact blanket. This has led to the reference 
configuration ASRA6C . To a certain extent the blanket has to be adjusted to the 
geometry of the plasma and the coils, thus leading to a three-dimensional geometry. 
As will be described in chapter 5 , an appropriate three-dimensional blanket can be 
constructed with a breeding ratio above 1 . A solution could be found for exchanging 
the blanket on a routine basis with the interface between the blanket and shield being 
of constant elliptic cross section. This allows replacing the blanket in a torus section by 
horizontal movements only. It is hoped that the solution of the maintenance problern 
found for ASRA6C can also be applied to other Advanced Stellarators. 

Another particular issue of the Advanced Stellarator reactor is the complex shape 
of the coils with strongly curved sections. The minimum radius of curvature is below 
1m in ASRA6C. This challenges the manufacturing of the coils and supporting the 
stress loads. These questions are addressed in Chapters 7 and 8. 

In the field of plasma engineering, heating and steady state burn seenarios have been 
developed and several options of impurity control have been considered. 

It is legitimate to scale the confinement in stellarators towards reactor size assuming 
neoclassical collisional processes, which are large for the electrons and just adequate to 
balance the fusion power production. Any anomalaus processes must become rather 
large before they become comparable to the neoclassical processes and begin to deteri
orate the confinement and aggravate ignition. Since neoclassical confinement depends 
critically on the details of the magnetic field, it is of particular interest to prove that the 
Advanced Stellarator reactor confi.guration meets the requirements of the ignition con
dition. Anomalaus transport in stellarators is known experimentally only in a limited 
parameter range. Therefore it would be speculation to include anomalaus transport 
coefficients in the heating and burn scenarios. In case that the scaling laws for anoma
laus transport found in the smaller WENDELSTEIN VII-A experiment remain valid 
in high temperature plasmas, this effect would be negligible at fusion temperatures. 

Other critical issues are plasma wall interaction and impurity control. Since the last 
closed magnetic surface in an Advanced Stellarator reactor is surrounded by a layer 
of ergodie magnetic field lines rather than by a well defined open magnetic topology, 
a divertor with a well separated chamber can not be realized. Several options of 
Controlling exhaust and impurity infl.ow are discussed in chapter 4; the main candidate 
for controlling plasma outfl.ow is a pumped limiter system. 

The present study concentrates mainly on the reference case ASRA6C, which among 
all versions of a modular Advanced Stellarator reactor studied so far seems to be an 
optimum with respect to geometric, magnetic, and mechanical parameters. The aim of 
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the study is to identify the critical issues of this reactor concept and to find solutions. 
Problems which are common to all toroidal fusion concepts arenot evaluated in detail. 
The question of plasma stability has not been given major importance in working 
out the configurations treated in this study. Economic issues like mass utilization of 
the blanket and shield are discussed shortly in chapter 5. An overall analysis of the 
economics of a stellarator reactor, however, is beyond the scope of this study. 

References to Chapter 1 : 

[1]: Miller, R.L., Bathke, C.G., Krakowski, R.A., Heck, F.M., Green, L., et al., 
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Reactor, University of Madison Report UWFDM-550, Madison, USA (1982) 
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Resistively Stahle Stellarator Equilibria by ß Iteration, 
8th Eur. Conf. on Comput. Physics, 10 D, 57, 
Eibsee, Germany, 1986 
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2. Overview of the ASRA6C Reference Case 

2.1. Introduction 

This chapter gives an overview of the characteristic features and data for the ref
erence case ASRA6C of an Advanced Stellarator Reactor, and a comparison to the 
preceding configuration ASRA6B. The main difference between these two data sets 
is the system size, which could be reduced in ASRA6C by employing an advanced 
design for the blanket and shield, keeping other parameters unchanged or adjusted 
appropriately. 

In section 2.2 a short description of the physics data is given, including the geomet
rical dimensions and some information on the superconducting coils. The magnetic 
field properties of ASRA6C are briefiy described in section 2.3. The vacuum fields 
are compared to those at < ß >~ 5%, where < ß > is the average plasma pressure 
of the burn state n9rmalized by the magnetic field energy density. In section 2.4, the 
reactor data of ASRA6C are derived by summarizing the results of heating and burn 
scenarios. In section 2.5 four options of the breeding blanket are listed, and the shield 
is described. The generallay-out of the reactor system is introduced in section 2.6. 

2.2. Physics Data 

A schematic view of an Advanced Stellarator Reactor, such as ASRA6C, is given in 
Fig. 2-1, showing the contours of the non-planar modular coils for three of the 5 field 
periods, along with nested toroidal volumes representing the shield and the blanket, as 
weil as the last closed magnetic surface of this particular coil system. There are 6 coils 
per field period. Three different coil shapes are present in the whole system, if one 
considers the twofold mirror symmetry. This choice was made at an earlier stage of 
the considered interim versions of an Advanced Stellarator Reactor , and was also used 
in the larger system ASRA6B. In ASRA6C, a compact system size is made possible 
by introducing a modern design for the blanket and shield (see Chapter 5 and 6) by 
reducing the critical distance ß between the first wall and the inner contour of the 
coil winding cross section from the previous value of 2.1 m to 1.2 m. Consequently, 
the major radius can be changed from Ro = 25m to a value of 20m , and the average 
coil radius from r c = 5.22 m to 4.57 m, keeping other parameters constant, e.g. the 
plasma radius rp = 1.6 m, the effective coil current density, and the induction at the 
magnetic axis. 

The upper part in Fig. 2-2 shows the contours of single cryostats for the 6 coils of 
ASRA6C along with the shape of the last closed magnetic surface. The lower part 
of the picture is a cut through the mid-plane. It demonstrates the finite coil distance 
at the critical inside position. In ASRA6B these gaps are larger due to the increased 
dimensions. 

-7-



Fig. 2-1 : 
----
Advanced Stellarator React.or: schematic view of plasma, blanket, shield, and coils. 
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Fig. 2-2: Contours of single cryostats for ASRA6C 
along with shape of last magnetic surface. 
Upper half: top view, lower half: cut at mid-plane. 
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2.3. Magnetic Field 

In the upper part of Fig. 2-3, the side and front views of one of the non-planar coils 
of ASRA6C are shown, along with the required coil housing. The lower part of the 
figure shows an unrolling of the coils in the cp, () plane of angular coordinates, and an 
example of the system of mutual coil support. As detailed in Chapter 7, a considerable 
part of the finite-element stress and strain calculations is aimed at an optimization of 
this support. 

Fig. 2-4 shows the magnetic topology of ASRA6C and the coil contours at three 
toroidal positions. The coil centers are at slightly different major radii. All coils have 
identical elliptic bores. The distance 1::!.. = 1.2 m is seen between the inner side of the 
coil and the dashed line outside of the last magnetic surface. This contour can be 
used as the shape of the first wall in one of the blanket options, see section 2.5. The 
right part of Fig. 2-4 shows for ASRA6C the system of magnetic surfaces at finite ß, 
for an average value of < ß >~ 5%. The shift of the magnetic surfaces is clearly 
visible. This shift can be taken as determining a 'soft' limit for the equilibrium-ß. 
More details of the finite-ß computations are given in Chapter 3, e.g. the deepening of 
the magnetic well as well as a reduction in the radial profile of the rotational transform 
for the net current free case. 

2.4. Heating and Burn Scenarios 

Heating to ignition and steady state burn of an Advanced Stellarator Reactor is 
investigated by a one-dimensional transport code. Typical values for ASRA6C are a 
fusionpower Pf ~ 4 GW at an average < ß >= 5%. In the upper part of Fig. 2-5, 
the relation between the fusion power output and the peak values of ß(O) are given 
for the reference case ASRA6C under optimized conditions, versus the axis values of 
density and temperature. The lower part of the figure shows the dependence of these 
quantities on the external heating power Pi of start-up. These dynamic processes 
are treated in a series of computations as static equilibria. For ASRA6C, an effective 
heating power of 30 to 50 MW is suffi.cient for start-up. The two curves labelled by 
Pi = 0 characterize ignition and burn states at two different values of the magnetic 
induction. 

By increasing the refuelling rate, the Advanced Stellarator reactor is brought to 
full power, preferentially at a moderate temperature T = 12 keV to 15 keV. In the 
ASRA6C reactor an additional radiative power loss of 300 MW can be tolerated at a 
fusion power of 3.9 G W if the ripple losses are reduced by a factor of 2 in order to 
account for the improved confinement properties of an Advanced Stellarator. In this 
computation T ~ 19 keV at a value of < ßeq > = 5%. 

The question of thermal stability of the operating points remains to be studied in 
further detail. 
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2.5. Blanket and Shield 

During the course of the study four blanket options have been considered for 
ASRA6C, as shown schematically in Fig. 2-6. The first option has a constant el
liptical cross section and uniform thickness, utilizes LiPb as the breeder, Be as the 
multiplier jmoderator, He gas as the coolant and ferritic steel HT -9 as the structure. 
This option was selected on overall merits and is described in detail in Chapter 5. 
The second two options are similar to each other geometrically and utilize the same 
breeding, moderating, cooling and structural materials as in option I. These two op
tions have a geometry which tracks the contour of the plasma and, therefore, has a 
helical twist in the poloidal direction. Option 111 uses denser shield materials in critical 
areas and in this way differs from option II. Finally, option IV is a design in which the 
inner surface of the blanket follows the contour of the plasma, but the outer surface 
is uniformly elliptical causing the blanket thickness to vary both in the poloidal as 
weil toroidal directions. It also uses LiPb, HT-9 and He cooling but requires no Be 
multiplier. This option has been used by KfK in the maintenance analysis and thus 
appears in most of the figures. 

The thin blanket design described in Chapter 5 is made possible by the use oftheBe 
meta! as the multiplier. It consists of a series of cells connected together which have 
semi-ellipsoidal walls for pressure Containment, see Fig. 2-7. The Be is in a pebble bed 
configuration at a 55% volumetric fraction and is surrounded by Li Pb. The He coolant 
is at a 8 M Pa pressure and is contained within 1.0 cm diameter tubes immersed in the 
Be/ LiPb mixture. We have selected HT-9 ferritic structure due to its resistance to 
swelling. The blanket is 21 cm thick and is followed by a 44.2 cm thick steel refl.ector. 
Peakneutronwall loading is 2.4 MW /m2 and the average is 1.4 MW jm2 • The overall 
breeding ratio is 1.05 (including penetrations) and the overall energy multiplication 
is 1.2. Tritium is recovered by slowly circulating the LiPb, resulting in a total blanket 
inventory of < 6 g. Blanket and refl.ector are cooled in series by the same He gas, and 
at the exit temperature of 575 °C the anticipated gross power cycle effi.ciency is 42.7 %. 
The tritium leakage through the single wall steam generator is ,...., 10 Ci/ d. 

An optimization study was performed to optimize the shield behind the thin 
LiPb/ Be blanket. The design driver for the shield was found tobe the nuclear heating 
in the magnet. The results show that the optimum shield consists of 44.2 cm HT-9 re
fl.ector, 25.5 cm B 4 C shield, and 6.3 cm Pb shield. The radiation effects in the magnet 
vary poloidally and toroidally according to the Variation in the neutron wall Ioading. 
The peak values occur behind the He manifolds. These are 1.4 X 1023 m - 2 , 1010 rad, 
and 5 x 10-4 dpaj F PY for the fast neutron fl.uence, dose in the GFF insulator, and 
dpa-rate in the Cu stabilizer, respectively. The average nuclear heating in the front 
layer of the magnets is 0.13 mW / cm3 and the total nuclear heating in the winding 
packs and coil cases amounts to 24 kW. Only 0.4% of the gross electric power is 
needed to remove the nuclear heating from the magnets. 
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Fig. 2-6: Description of the four blanket options. 
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Fig. 2-7: Cross-section of a blanket cell. 
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2.6. Reactor Layout 

The Iayout of the ASRA6C as a fusion reactor is described in more detail in Chapter 
9. In the two cross sections of Fig. 2-8, the contour of the first wall is assumed at 
some distance outside of the last closed magnetic surface. Thus, a blanket with variable 
thickness is foreseen, accommodating space for structure. A system of many pumped 
limiters is chosen for edge control of the plasma. Their heat Ioad is assumed to be 
reduced by edge radiation. The choice of pumped limiters is a result of magnetic 
fi.eld studies near and outside of the separatrix of such systems, see Chapter 3. This 
study shows a rather complicated radial structure of field lines started at some distance 
outside of the last closed magnetic surface. 

The cross-hatched area outside of the blanket region provides volume for refl.ector 
and shield. The outer elliptical contours enclose the superconducting coils and their 
cryostats. Open space between the radial arrangement of reactor elements is available 
for assembly and maintenance. The upper part of the fi.gure is at the beginning of the 
fi.eld period, the lower half applies for some adjacent toroidal position. 

In Fig. 2-9, a plan view of a field periodplus the two adjacent coils is shown schemat
ically, cut at the vertical mid-plane. The positions of the many pumped limiters are 
indicated. Fig. 2-10 gives a cross section along the direction of neutral beam injection, 
which is one of the options for reactor start-up. Note that stellarators in principle allow 
a steady state burn, provided that refuelling and ash removal can be accommodated 
appropriately, and the impurities in the system do not pose serious problems. Then, 
after start-up, the openings for the initial heating can be closed with shield material. 
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Fig. 2-10: Schematic view of neutral injection port. 
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3. Magnetic Field Sturlies of Advanced Stellarators 

3.1. Introduction 

Stellarator fusion reactors with continuous helical windings or those using systems 
of non-planar modular coils constitute viable options for their development towards 
an alternative to tokamak reactors. Start-up from existing magnetic surfaces and 
the possibility of a steady-state burn in the absence of dangerous disruptions are 
distinct advantages of stellarators. The prospect for continuous operation of the reactor 
allows different approaches for the coil engineering and avoids problems associated 
with the cyclic loads of pulsed systems, especially in the firstwalland in the coils with 
their support structure. Furthermore, less circulating power is required in stationary 
systems. A moderate aspect ratio alleviates problems regarding the first wall power 
loading, although, in general, small systems offer advantages due to a scaling of costs 
with magnet size or with stored magnetic energy. Modular systems of non-planar coils 
avoid problems which result from the geometry of interlinked coils present in certain 
stellarators with continuous helices as well as in most tokamaks. 

The coil topology of modular non-planar coils of Advanced Stellarator Reactors 
(ASR) and Burner (ASB) configurations is derived from magnetic vacuum field stud
ies, starting from the fields of the Garehing Advanced Stellarator experiment WEN
DELSTEIN VII-AS, which is characterized by a reduction of the secondary plasma 
currents as compared to those of a standard stellarator. 

Numerical and analytic winding laws are used for the contours of the coils. There are 
5 field periods. The number of coils is varied between 18 and 4 coils per field period. 
An optimum is seen at 6 coils per field period, compromising between magnetic field 
quality (reduction of secondary currents, magnetic well, plasma aspect ratio, field 
modulation) and requirements of accessibility and maintenance of such coils. 

The rotational transform t = 0.4 to 0.6 at the magnetic axis is determined mainly 
by the minor coil radius and by the specific coil contours, i.e. the shapes of the coil 
cross section and of the toroidal excursions. These, and the radial position of the coil 
centers infiuence the field quality. Rational t-values of low order are to be avoided 
within the plasma, because of the formation of magnetic islands. Such islands exist 
in ASRA6C also outside of the separatrix in its vicinity. The behaviour of field lines 
started outside of the last closed surface lead to the choice of pumped limiters for 
control of the edge plasma in the presently considered ASR systems. 

Magnetic field calculations at finite plasma pressure are performed for the reference 
configuration ASRA6C up to an average value of < ßeq >= 4. 7% for the equilibrium
ß, yielding a relative shift of the magnetic axis up to about 50% of the radial distance 
to the edge, with a considerable deepening of the average magnetic well. 

Section 3.2 contains a short description of the main properties of Advanced Stel
larators. Section 3.3 briefiy summarizes the development of several earlier Advanced 
Stellarator Reactor and Burner systems. In section 3.4, two Advanced Stellarator 
Reactor configurations, ASRA6B and ASRA6C are introduced, which are described 
by analytical coil winding laws. Effects of perturbation fields are briefiy mentioned. 
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Section 3.5 summarizes the results of computations of the finite-beta fields for the 
reference configuration ASRA6C. In section 3.6, a short summary gives the main con
clusions regarding coil topologies and magnetic fields of Advanced Stellarator Reactors 
as studied so far. 

3.2. Properties of Advanced Stellarators 

Advanced Stellarators are distinguished from standard ones by a reduction of the 
secondary plasma currents for all magnetic surfaces of the system, and a magnetic weil 
between the magnetic axis and the last closed surface of the vacuum fields, combined 
with reasonable values of the aspect ratio and of the rotational transform. Thus, the 
associated neoclassical particle and energy Iosses as weil as the deformation of the 
magnetic surfaces by a finite plasma pressure (Shafranov-shift) are reduced, and the 
drift surfaces of circulating charged particles deviate less from the magnetic surfaces, 
in comparison to the respective results for standard stellarators. The principles of 
optimization to arrive at an Advanced Stellarator topology are given in [1]. They 
consist of a reduction of the poloidal variation of J dl / B, as taken for different poloidal 
starting points on a magnetic surface, and integrating along one field period. A difficult 
side condition is to maintain a magnetic weil in a configuration with a reasonably low 
aspect ratio. This optimization is performed by a proper combination of poloidal fields, 
which also influence the rotational transformt and the shear. 

Modular coils are essential to produce such Advanced Stellarator fields. The Gareh
ing experimental device WENDELSTEIN VII-AS (with a major radius 2 m, a plasma 
radius 0.2 m, and a magnetic induction of 3 T) is the first Advanced Stellarator to be 
built and is expected to begin operation in 1987. It has 5 toroidal field periods (FP) 
and is equipped with 9 non-planar modular coils per FP. Details of its design and of 
the expected parameter range are given in [ 2]. 

The value of the rotational transform t can be varied considerably in this experimen
tal device. This is done by the fields of aseparate set of 10 planar coils superposed on 
the fields of the modular coils. A fusion reactor is expected tobe built for operation at 
optimized conditions, e.g. at optimized t, and does not require such additional toroidal 
field coils. Furthermore, as was seen in the scoping considerations for modular coils 
of the future experiment WENDELSTEIN VII-X, a certain change of t can also be 
provided by appropriate design of the non-planar coils. 

3.3. Vacuum Fields of Advanced Stellarators 

Starting from the magnetic field topology of the Garehing Advanced Stellarator 
WENDELSTEIN VII-AS and enlarging the dimensions and fields to values of a fusion 
reactor or a burner experiment, several coil sets are derived with average major radii 
R 0 ~ 25m for the Advanced Stellarator Reactor (ASR), and about 15m for the 
Advanced Stellarator Burner experiment (ASB), respectively. In the present study, 
the number of coils of each of the 5 field periods is varied between 18 and 4, as can be 
seen in Fig. 3-1, which shows the top view of the coil arrangements of three different 
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earlier ASR and of one ASB with 18, 9 or 6 coils per field period, drawn in the same 
scale. As is clearly visible in the figure, the major radii of the coil positions vary in 
the toroidal direction with fivefold periodicity. The spatial curves describing the coil 
centers are obtained numerically using procedures developed for the design of the coils 
for WENDELSTEIN VII-AS [2]. The average value of the induction on the magnetic 
axis is set to B 0 = 5.3 T for ASR, and to a larger value of 7 T for ASB. In the two 
systems with 10 coils per FP, the current densities and coil cross sections are matched 
to keep the maximum value of the magnetic induction at values Bm < 9 T at the coil 
surface, in order to stay within the limits of Nb Ti as superconducting material and 
operating at the temperature of liquid helium. 

The case ASR254E with 4 coils per FP offers distinct advantages for assembly and 
maintenance, but shows a large value for the peak induction of 10.1 T at the coils in 
contrast to 8.8 T for ASR2510, as detailed in [3], although the effective current density 
is larger in the latter case. Furthermore, the modulation of the induction (magnetic 
field ripple) between the axis and the last closed surface is considerably increased in 
ASR254E , see Fig. 3-2. In the trace of the magnetic induction along the axis (top), 
a periodicity with each of the m = 5 field periods is visible. An increased value of 
this helical ripple is responsible for larger neoclassical energy and particle losses, see 
Chapter 4. Therefore this data set is rejected. 

As shown in the lower left of Fig. 3-1, a coil configuration ASR25T7 is derived, 
which produces the same average value of the induction on the magnetic axis, Bo = 
5.3 T, using smaller coils at increased current density. Simultaneously, the rotational 
transform t is raised to a value of about 0.6 in order to achieve a larger value of the 
equilibrium-beta. In a standard or 'classical' stellarator, this quantity roughly scales 
as < ßeq >~ t? I A, where the aspect ratio A = Rolrp and Tp ~ 1.6m is the plasma 
radius. Note that for an Advanced Stellarator a larger value of the equilibrium-ß 
applies, due to the reduction of the secondary currents and the smaller vertical fields 
which then cause a smaller Shafranov-shift in the configuration. 

The configuration ASR25T7 has about the same value of the magnetic field ripple, 
FJBI B = (Bma:z:- Bmin) I (Bma:z: + Bmin) as the data set ASR2510. 

The magnetic field quality of these Advanced Stellarator reactors is demonstrated 
in Fig. 3-3, which shows the maximumabsolute values of li11 I i1..! versus the rotational 
transform t, where i11 and i1.. are the paralleland diamagnetic current densities, respec
tively. The dots characterize the ASR data sets with values close to those computed 
for the Garehing Advanced Stellaratorexperiment WENDELSTEIN VII-AS; the up
per curve labelled by 2lt characterizes a standard stellarator. The secondary currents 
i11 are reduced by a factor of about 2 in W VII-AS andin these ASR configurations, 
compared to those of a standard stellarator. 

A similar improvement of the behavior of the drift surfaces is seen in these Advanced 
Stellarator configurations by analyzing the drift surfaces of charged particles. The 
deviation ß"' I p is found to be about half of the value of 1lt which is expected for a 
standard stellarator with the same rotational transform t, where ß"' is the radial offset 
of the guiding center of charged particles from the corresponding magnetic surface, 
and p is the Larmor radius. An example of drift surfaces for fusion a particles with an 
energy of 3.5 MeV is given in Fig. 3-4 for the magnetic field configuration of ASR25T7. 
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The coil configurations for the burner experiments ASB (right part of Fig. 3-1) are 
derived from the data set ASR25T7 by a reduction of the major radius to a value of 
15m, and by doubling the coil current density to ieff = 18M A/m2 , where this num
ber is the effective value averaged over the whole winding cross section, i.e. including 
superconductor, stabilizer, internal structure, as weil as insulation and helium chan
nels. The magnetic induction at the axis is increased to Bo = 7 T in order to achieve 
ignition at the comparatively small plasma radius of rp = 0.9 m. Associated with the 
increased axis induction, a !arge value of the induction Bm results at the coil surface, 
calling for Nb3 Sn as superconductor. 

The number of coils per field period is changed from 18 to 9 and 6 in the ASB 
configurations in order to see the effect on the peak induction at the coils, as weil 
as the influence on the field quality of the Advanced Stellarator. Some quantitative 
information is given in Table 3-1 which compares the data sets ASR25T7 with the 
three ASB cases at 18, 9 and 6 coils per field period. In the three ASB cases the peak 
values of the magnetic induction at the coils increases for a lower coil number when 
keeping the axis values of the magnetic induction and the current density in the coils 
unchanged. This is caused by the increased coil width at a low coil number. 

Comparing the axis and edge values of the rotational transform, t 0 and ta , a negative 
shear is introduced in the data set with 6 coils per FP, and the depth of the magnetic 
weil is about half the value of the cases with 9 or 18 coils per FP. 

The general properties of an Advanced Stellaratorare maintained, however. There
fore, data sets with 6 coils per field period are developed to reactor dimensions, since 
this number of coils per FP is considered as a reasonable compromise between field 
quality and prospects for assembly and maintenance. 

The coil shapes for these ASR and ASB data sets vary along the field period. This 
is visible in Fig. 3-5, showing the contours of the adjacent coils at toroidal positions at 
the beginning and half of a field period, tagether with the system of nested magnetic 
surfaces of the vacuum field. Outside of the drawn magnetic surface, a number of 10 
dots is visible. Here, the value of the rotational transform t = 5/10 = 1/2 is a low
order rational number. As described in detail in [4], such Iow-order rational t-values 
should be avoided. This can be easily realized in vacuum fields with small shear. 

Due to the non-planar shape of the coils there exists a complicated spatial distri
bution of the magnetic forces. Integrating the magnetic forces over one field period 
yields the net radial force which characterizes a toroidal arrangement of planar coils. 
Further details of the magnetic forces and their dependence on the large number of 
parameters describing the coils are given in Chapter 7 for the data sets ASRA6B and 
ASRA6C. 
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Reactor and Burner systems with different numbers 
of coils per field period shown in same scale. 
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TABLE 3-1 

Characteristic data of ASR25T7 and of three ASB confi.gurations. 

System ASR25T7 ASB18D ASB09D ASB06E 

Averagemajorradius Ro [m] 25.5 15.2 15.2 15.2 
Average coil radius Tc [m] 5.24 3.24 3.24 3.24 
Coil number /FP 10 18 9 6 
Conductor Nb Ti NbaSn NbaSn NbaSn 
Effect. current density Jefl [MA/m2

] 9.8 18 18 18 
Max. induction at coil Bm [T] 8.7 10.3 11.0 12.6 
Induction on axis Bo [T] 5.3 7.0 7.0 7.0 
Rotat. transf. on axis to 0.58 0.51 0.50 0.53 
Rotat. transf. at edge ta 0.61 0.52 0.51 0.51 
Magn. well depth V" % -0.1 -0.1 -0.08 -0.04 
Aver. plasma radius Tp [m] 1.75 0.9 0.9 0.9 
Distance to coils ll. [m] > 1.8 1.2 1.2 1.2 
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3.4. Advanced Stellarator Systems ASRA6B and ASRA6C 

Using a flexible system for describing the spatial curves of the coil center lines with an 
analytic "winding law", applicable for arbitrary position and orientation of the modular 
coils as detailed in [5], the two coil systems ASRA6B and ASRA6C are derived. The 
abbreviations of these data sets stand for Advanced .S.tellarator Reactors with coils 
described by an Analytic winding law and § coils per field period, version B and C. 
The label C indicates a more compact version than the preceding data set ASRA6B. 
This is made possible by introducing a modern design for the blanket and shield (see 
Chapters 5 and 6), reducing the critical distance !::l. between the first wall of the system 
and the inner contour of the coil winding from the previous value of 2.1 m to 1.2 m. As 
a consequence, the major radii can be changed from Ro = 25m in ASRA6B to a value 
of 20m in ASRA6C, keeping other parameters unchanged. Other data of this system 
are given in Table 3-11 and compared to those of ASRA6B as well as to data of the 
previous configuration ASR25T7 and of the Garehing Advanced Stellarator experiment 
WENDELSTEIN VII-AS. Note the remarkable decrease in the magnetic energy when 
reducing the size of ASRA6B tothat of the compact system ASRA6C. 

The coil geometry of both cases is shown in Fig. 3-6. There are 6 coils per FP 
and three different coil shapes are present in the complete coil system, if one considers 
the twofold mirror symmetry. All coil apertures are of the same elliptic cross section 
centered at major radii according to R(cp) = Ro (1 - k cos(5cp) ), where k = 0.016 
for both cases and cp is the toroidal angle. Fig. 3-7 shows the contours of the coils 
at the beginning and half of a field period, together with the nested system of the 
magnetic surfaces of the vacuum field. The varying contours of the magnetic surfaces 
and the radially undulating axis position are geometric characteristics of an Advanced 
Stellarator. Outside the last closed magnetic surface (the separatrix) an "ergodic" 
region is seen with 11 small magnetic islands at a rational value of the rotational 
transform, t = 5/11. Inside the separatrix, no low-order rational t-values are present. 
The modulation of the induction along a field line is demonstrated in Fig. 3-8 for the 
magnetic axis and the last closed surface of ASRA6C. 

It is easy to adjust the rotational transform to irrational values by a proper choice 
of the minor coil radii, see top part of Fig. 3-9, once the shape of the center line of 
the modular coils is fixed. The amount of toroidal excursion also changes the value 
oft, and the higher harmonics present in the winding law of the coil centers influence 
the degree of reduction of the secondary currents. The amplitudes of these higher 
harmonics differ for the three coil shapes present in the ASRA6 data sets. As to 
be seen in the lower half of Fig. 3-9, the effective radius of the last closed magnetic 
surface is smaller at rational t. This is caused by N "natural" magnetic islands which 
are found at rational t = m/N in such Advanced Stellaratorsinside of and near the 
separatrix, seealso [2] and [4]. In these references, more information on these islands is 
given and their sensitivity to external perturbation fields is studied. ASRA6C allows a 
comparatively large value of such a perturbation, By / B 0 = 0.2 %, see Fig. 3-10. The 
system of outer islands vanishes and the average radius of the last closed surfaces is 
reduced by a relatively small amount of about 10 %. 
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TABLE 3-II 

Characteristic data of WVII-AS and ASR25T7 compared to those of the more 
recent data sets ASRA6B and ASRA6C 

System WVII-AS ASR25T7 ASRA6B ASRA6C 

Average major radius Ro [m] 2.0 25.5 25.0 20.0 
Average coil radius Tc [m] 0.48 5.24 5.22 4.57 
Conductor Cu Nb Ti NbaSn NbaSn 
Coils / FP 8+1 10 6 6 
Coil current Ic [MA] 0.6/1.5 13.7 22.5 18 
Effect. current density Jeff [MA/m2

] 27 9.8 15 15 
Max. induction at coil Bm [T] 5.2 8.7 11.0 10.4 
Stored mag. energy Wm [GJ] 0.04 170 193 117 
Induction on axis Bo [T] 3.0 5.3 5.3 5.3 
Rotat. transform to 0.39 0.58 0.39 0.47 
Aver. plasma radius Tp [m] 0.2 1.75 1.6 1.6 
Distance to coils ß [m] > 1.8 2.1 1.2 
Average ß <ß> [%] 5 5 5 
Fusion power Pf [GW] 3.6 4 4 
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shown in the same scale. 
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Fig. 3-8: Magnetic induction along the axis (top) 
and for the last closed surface of the vacuum field (bottom) 
for ASRA6C with 6 coils per field period, 
showing a magnetic ripple of 2 % near the axis 
which increases to 6 to 13% for the last closed surface. 

-35-

100 



0.5 

0.4 

440 

" ' ' 

' ' ' .. , 
' ' 

450 

ASRA6C 

• .... .... 
·--. 

' ' " EDGE ', 

460 

.... 

S/9 

... 
" ...... S/13 O • 4 -

470 
r c [cm] 

1 .8 1.8 

raff [m] 

1.6 1.6 

1.4 1.4 

450 460 470 
r c [cm] 

Fig. 3-9: Dependence of rotational transform t on the coil radius 
for the data set ASRA6C (top) 
and effective radius of the last closed surface (bottom). 

-36-



z .. 
- {. • . ..:::~· :.",. ;';. ~.~:.:::. 'I ~ •,. • 

• •· .... ' '• . ~~ l~l!!'lt!a ·'· ~ \ •. • • 
4 I I~ ·: ·,·I JLOoo#OI·:· . - • • -I ~~~ I 0 I I I II 

~ 1 /.~ . ., lt I o .. 

I 10 I·: I II I I I I I •• •• :.:. I t'o,,. 
I 1 I I 1 I r,:• I I '1, 

11

;,: 

11 

I 

. ' 

\I~': i• I •' o, 
• • ., •• ,; ... I 0 R 

I I 1
1

: :I i• "":, 11
1

01 I 

-~--~·~·~·~·~:--~--~--~~~~}--7---r-------·:~~~~~ • :' :' ,2:15C ,175q.~ : . 'i· ,200 ··' ..... 

: ,·····'. .. ······ :·" 
... •,'1 \: , •• • •••• 

I, ~ ' : I •' .. \'. . .. ·: .... 
,I I 1\' Oft 

·~~ :.. \', I I 1 1 ,~.l'' O I 

,oo' I I 01 ~~ ..... (".I Iot ···~ .. , :o'• I 

•• ,_.. • • I • I'• I :~~.: ...... • •• ~ : ... 

lo 100 ·.".': ... ·:.::.,I I .. ••• .. . . · 
-250.0 

,· , I 
0
1: .. -~, 1 t'o I 

011 

2"50-',a 1 t I I II 

I ~ • ~~·~1.'~,.: • t 't 
lft I r{.•l ·~~~ •• ,· 

o ~ t' i I ' ... : I •' 

I 1 .,•, ),I I I 
I I I 1.' I I I I I } I l 

.. I·' J.'' : I I 

"'II I t I 11 

~,' ',•: •'~ 6 l., I !,'.I 
I f I II 

I fl ~~- \' ·r. 1 ...... 

.. .. ;, ·. 
••: ,t, \ I I 

,•'••IO!tl ,1"'1 
'::i!000\0 • \i .... r . ·. .... 
I ~tl t . . . 

I 
'•, I I 

' I 
I .· 

t ·~ .. 
I 

I o 
,: ... 1 1 u .. ~. 

I :•' \ I !•' .. 
a' I oll I~ • I I :' t'l 

,' :; .. ~. ~. ~· . 
,•''~tl ~ I I t I I \ .. •:, 

1 1 ·: 1 ~
1 

1 I 

,.,', to I ,,'.J·I II 

,.,,:•. ~,·,.,.•J"' I" 
-?~,0 ,'

1 
I ,.,., .. 

11
1 1 I I I 

•• ••••• \ ·.. i •• ' ·, 

I ' o · ... ·· .... ·. :· .. .. 

2250 

Fig. 3-10: ASRA6C with superimposed horizontal perturbation field 
Byj Bo = 0.2 %. 

-37-



3.5. Finite-Beta Fields in ASRA6C 

Magnetic field computations forafinite value of the plasma pressure are done so far 
for one of the reference configurations, ASRA6C, up to values of the average plasma 
pressure normalized by the magnetic field energy density, < ß >~ 5%. As is shown in 
Chapter 4, an average < ß >~ 5% is typical for the operation regime of the reactor. 

The shapes of the magnetic surfaces of the vacuum field and at < ß >= 4. 7% 
are shown in Fig. 3-11 at toroidal positions of the beginning, one quarter and one 
half of a field period. The solid curve of the vacuum field contours is used as a fixed 
boundary for the computations. At finite ß-values, the inner surfaces and especially 
the magnetic axis are radially shifted. This axis shift (Shafranov-shift) amounts to 
about 50 % of the average minor radius. Such a value of the axis shift is regarded as 
determining the upper Iimit of the equilibrium-ß. A parabolic pressure profile is used 
in the computations presented here. 

In addition to the radial Shafranov-shift, a slight helical offset of the magnetic axis 
is also visible. The magnitude of the axis shift is obtained by varying the number of 
grid points used in the code and extrapolating to zero mesh size, see Fig. 3-12. Here, 
three curves are shown for different peak values of ßo = 1.9, 3. 7, and 6.9 %; the point 
marked by 'x' corresponds to the result of the previous figure. 

The upper part of Fig. 3-13 shows the dependence of this radial shift versus the 
peak value of ßo. Simultaneously, a considerable deepening of the magnetic weil is 
obtained, as shown in the lower part of the figure. The dashed curves give the result 
of a net current free computation, whereas the solid curves apply for a fl.ux conserving 
case, yielding nearly the same results. A difference is seen in the radial profile of 
the rotational transform, t(r), as demonstrated in Fig. 3-14. In the fl.ux conserving 
case, the initial profile of the rotational transform of the vacuum field with low shear is 
maintained, whereas the net current free computations show a decrease of the rotational 
transform in the region of the plasma edge. 

The shift of the magnetic surfaces found in the above computation can be taken 
as determining a 'soft' Iimit for the equilibrium-ß. Regarding the critical value for 
stability, ßstab, theory predicts lower numbers for this type of configuration. In this 
respect, interesting new configurations, 'HELlAS', were recently published in [6] and 
[7], with stable values of < ßstab > up to 9%, considering resistive interchange modes. 
The geometrical characteristics of a HELlAS configuration are a helical magnetic axis 
and some indentation of the magnetic surfaces at those particular toroidal positions 
where the toroidal curvature has a maximum. Bean-shaped Advanced Stellarators with 
a nearly planar magnetic axis are described in [8] . Modular non-planar coils for such 
configurations are being developed in the studies towards WENDELSTEIN VII-X, the 
future large Advanced Stellarator experimental device at IPP-Garching . 
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Fig. 3-11: Magnetic surfaces of ASRA6C. 
Left part: initial vacuum field with fixed boundary close to separatrix; 
right part: final configuration at < ßeq >~ 5%, showing a value 
of about 50 % for the Shafranov shift. 
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3.6. Summary and Conclusions 

For magnetic field studies for Advanced Stellaratot Reactors and Burner systems 
numerical and analytic relations for the positions and contours of the non-planar coils 
are used. Starting from topologies similar to those of the Garehing Advanced Stel
laratorexperiment WENDELSTEIN VII-AS, considerable progress is made in the two 
data sets ASRA6B and ASRA6C regarding the simplicity of the coil system. 

The compact system ASRA6C is obtained by reducing the size of ASRA6B from a 
value of the major radius from Ro = 25m to 20m , correlated with a change of the 
magnetic energy from W m = 193 GJ to a value of 117 GJ. This reduction of system 
size is made possible by use of a modern approach of a thin blanket with appropriate 
refl.ector and shield. Using the same average current density in the coils of both data 
sets and adjusting the same average induction at the magnetic axis, the peak field at the 
coils is moderately reduced in ASRA6C. The minor plasma radius remains unchanged. 

Magnetic field computations at finite plasma pressure are done for ASRA6C at an 
average < ß > up to 5 %, yielding a considerable deepening of the magnetic well 
and a still tolerable shift of the magnetic surfaces. Regarding the critical ß-value for 
stability, ßstab, theory predicts lower numbers forthistype of configuration. However, 
an interesting innovative configuration, 'HELlAS', and also Bean-shaped Advanced 
Stellarators were recently published. Non-planar modular coils for such systems are 
being developed. The detailed reactor properties of these new configurations remain 
to be studied. From the experience gained in the ongoing investigations it can be 
concluded that such new configurations do not require qualitatively new and differing 
engineering approaches. 
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4. Plasma Engineering 

4.1. Introduction 

An essential advantage of Stellarators with regard to their prospects for develop
ment towards economically competitive fusion reactors is their possibility of steady 
state operation. This possibility stems from the property of Stellarators to allow 
plasma start-up from existing magnetic surfaces of the vacuum magnetic field, which 
provide a stable confinement of plasmas up to a certain value of ß, the plasma pressure 
normalized by the energy density of the magnetic field used for confinement. For the 
numerical investigation of heating and burn seenarios in Advanced Stellarator Reactor 
(ASR) and Advanced Stellarator Burner (ASB) systems, steady state conditons are 
assumed in the burn state. The start-up procedure is treated as a sequence of such 
steady states, called equilibria, with the external heating power and its radial profile 
as input. The question of thermal stability of such equilibria remains to be studied in 
detail, however. 

A one-dimensional numerical transport code is used to solve the coupled equations 
of particle and energy transport (heat conduction and bremsstrahlung) for electrons 
and ions in the presence of electric fields. The complicated structure of the magnetic 
fields in ASR and ASB is modelled by an effective ripple ranging from 2% to about 
10 % between the magnetic axis and the edge. 

For start-up, an effective heating power of 30 to 50 MW is suffi.cient. By increased 
refuelling, ASR is brought up to full power, preferentially at a moderate temperature 
T = 12 keV to 15 keV at the plasma center. The fusionpower amounts to typically 
PJ ~ 4 GW for ASR, whereas ASB stays at about 10 % of this value. For ASR6C, 
central radiation Iosses up to 300 MW can be tolerated if the fusion power output is in
creased by an increased refuelling rate. Partideinput fluxes ~o of 1.0 to 1.1 · 1023 s-1 

are required in the two cases without and with radiation, yielding values of the average 
< ß > of 5.3 and 6.4 % at a fusionpower of 3.8 and 5.6 G W. In a different computation 
for a radiative power loss of 300 MW near the plasma edge and a refuelling rate of 
1.1·1023 s-1 , a totalfusionpower of 3.9 G W is obtained at an average < ß > of 5 %. 
The peak temperature is T ~ 19 ke V . In this case the ripple Iosses are reduced by 
a factor of two, in order to take account of the improved confinement of an Advanced 
Stellarator, see [1], and the field is raised to 5.5T at the axis. 

In section 4.2 of this Chapter, the transport model and assumptions made in the 
one-dimensional code calculations are discussed. In the third section earlier findings [2] 
are summarized, comparing an ASR with an ASB. In section 4.4, heating and refuelling 
methods are described. In section 4.5, results are given as obtained for the presently 
considered reference data set ASRA6C. Radiation Iosses in addition to bremsstrahlung 
are considered. The influence of the smaller major radius of ASRA6C, Ro = 20m, 
as compared to a previous value of 25m on the required start-up power and the 
operation regime is pointed out. In section 4.6, impurity control options are treated, 
considering pumped limiters and RF impurity control as an alternative. The Chapter 
ends with summary and conclusions in section 4.7. 
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4.2. Transport Model and Boundary Conditions 

The computations of the start-up and of the burning conditions in ASR and ASB 
are done with the use of a one-dimensional transport code. The coupled equations of 
particle and energy transport are solved for neoclassical diffusion and heat conduction 
of electrons and ions. Corrections to account for the varying shape of the magnetic 
surfaces are neglected. The system of equations is 

1 a aTe 
-- -a rnxe -a = Qe(r) + Qe,at- Prad- Pei 

r r r 
(1) 

1 a ari 
---a rnxi -a = Qi(r) + Qi,at + Pei r r r 

(2) 

1 a an 
---rD- = Qn(r) 

rar ar 
(3) 

In these equations Xe and Xi are the coeffi.cients ofthermal conductivity and Dis the 
particle diffusion coeffi.cient. In our model neoclassical transport coeffi.cients as given 
by Shaing and Houlberg are used. To the neoclassical terms the anomalous electron 
thermal conductivity found in ohmically heated plasmas in W VII-Ais added [3]. 

The coefficients of thermal conductivity are given in Fig. 4-1 for ASRA6C at half 
radius. The abscissa is the inverse collisionality At/ R, where A is the mean free path 
between collisions, t = 1/q is the rotational transform, with q being the safety factor 
of a Tokamak with comparable toroidal and poloidal fields and equal major radius R. 
Four curves at constant temperatures T = 8 , 10 , 13 , and 16 ke V are entered in each 
of the four parts of the figures, which apply for electrons (ions) in the left (right) part 
of the figure; the top half is without radial electric field, in the lower half a normalized 
field equal to the temperature gradient is assumed. The thermal conductivity increases 
with temperature at all collisionalities. For electrons there is a continuous increase in 
the thermal conduction coeffi.cient with At/ R, depending on the amplitude f. of the 
magnetic field modulation. This 'ripple' is about 2 % at the magnetic axis of ASRA6C 
and rises to 6 to 13% near the plasma edge, see Chapter 3, Fig. 3-8. An edge ripple of 
f. 1 = 15% is assumed in the above computation; thus the effect of the trapped particles 
is overestimated. 

The thermal ion conduction coeffi.cient at large values of At/ R, decreases again, due 
to the depletion of the distribution function, since the loss rate of trapped ions is faster 
than the scattering in velocity space. A loss cone develops in addition to the drift term 
included in the analytical formula for the ion thermal conduction coefficient. 

Note that the radial electric field plays a major role only for the ions in the reactor 
relevant regime of At/ R ~ 100-1000, and effectively reduces the conduction coeffi.cient, 
typically by a factor of about 5. A larger radial field would yield a stilllarger reduction. 
So far, a self-consistent radial electric field, depending on the radial position, such as 
to locally balance the electron and ion particle loss rates is beyond the scope of our 
code. 
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For start-up, electrons and ions are heated by the input powers Qe and Qi, respec
tively. The particle refuelling rate Q D enters only in the third equation; it is required 
during start-up and steady state burn. The above quantities are given as radial pro
flies, peaked either at the center or near the edge. The a-particle heating power to 
electrons and ions, Qe,a and Qi,a, respectively, are obtained from the temperature
dependent reaction rate < u v > of the D-T process. In the transport equations, the 
quantity Pei is the electron-ion Coulomb interaction, which enters the electron and 
ion equations with opposite sign. The term Prad in the electron equation consists of 
the bremsstrahlung, and can be increased by an optional radiative loss simulating the 
effects of impurity radiation. This radiative loss can be chosen either within the whole 
cross section or as a radiative layer near the plasma edge, choosing an appropriate 
radial profile. 

The transport code is operated iteratively, starting from an initial radial density 
profile. Other boundary conditions are fixed values of the electron and ion temperature 
and density, Te(a), Ti(a), andn(a), respectively, at the edge radius a. Prompt a
particle Iosses are neglected. The refuelling rate and its radial profi.le are essential 
input data for the stationary burn state. The start-up computations are determined 
by the applied heating power, in addition to the refuelling. 
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Fig. 4-1: Calculated thermal conductivity coeffi.cients for ASRA6C 
versus the inverse collisionality >..tj R 
without and with radial electric field (top and bottom parts), 
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4.3. Heating and Burn Scenarios for ASR and ASB 

Computations of the burning conditions for a typical Advanced Stellarator Reactor 
(ASR) and an Advanced Stellarator Burner (ASB) are given in [2]. The results of these 
considerations are summarized here. The following dimensions and fields are used in 
the systems of ASR and ASB : major radii of Ro = 25 and 15m , with plasma radii 
of rp = 1.6 and 0.9m, at an average magnetic induction of Bo = 5.3 and 7.0T, 
respectively. 

Using the transport code with a radial electric field and an effective helical ripple of 
2 % amplitude at the axis and 7 % at the plasma edge, a net heating power of 30 MW 
is found for ASR, as weil as for ASB, to reach ignition. This is shown in the lower part 
of Fig. 4-2 for ASR. Curves of constant heating power are shown which cross a saddle 
point near 20 MW coupled to the plasma. At ignition, the fusion power amounts to 
Pj = 0.6 and 0.4 GW, in ASR and ASB, respectively, at values of the average ß of 
about 2 and 2.5 %. At these comparatively low ß-values the neutron Ioad on the first 
wall is still moderate. In ASR the ports for the start-up power can be closed after 
ignition and the neutron streaming reduced. 

The reactor power is increased by raising the input flux of particles, e.g. of injected 
pellets. Two different seenarios are envisaged, central refuelling and a refuelling profile 
which is peaked near the plasma edge. 

In the top left part of Fig. 4-2, several radial profiles are given: in the left part 
the electron and ion temperatures Te and Ti, and in the right part the density n and 
the refuelling rate Qd, respectively. The refuelling is peaked at the plasma center. 
The curves pertain to the ignited state of ASR. Increasing the refuelling rate for a 
central deposition profile raises the temperatures, and thus the fusion output to values 
above Pj > 3 GW. As demonstrated in the upper right part of Fig. 4-2, a refuelling 
profile peaked near the edge of ASR broadens the density profile and allows for a 
power production of Pj = 3.2 GW at temperatures close to those of the ignition state 
with central refuelling. Increasing the refuelling rate to a value of ~o = 3 · 1023 s- 1 

brings the system to full power (3.6 GW) at average temperatures of Ti = 10 keV and 
Te = 12 keV for ions and electrons, respettively. The average ß amounts to 5.3 %. 
The power flow diagram of this state is given in Fig. 4-3 at an average density of 
1.4 · 1020 m-3 • 

Thus, a change of the radial deposition of refuelling constitutes a viable option for 
increasing the power of the reactor after ignition without an essential temperature 
rise. This is done by adjusting the pellet velocity or the pellet size, and keeps the 
neoclassical heat conduction Iosses limited. 
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4.4. Heating and Refuelling Methods 

The plasma engineering methods envisaged for heating and refuelling of the plasma 
in ASRA6C are ion cyclotron heating and/ or neutral particle injection, and pellet 
injection, respectively. Since there exists far more experience in the WENDELSTEIN 
team at Garehing with neutral injection as the heating method, ion cyclotron heat
ing will not be discussed in the following, although smaller penetrations through the 
blanket and shield might be possible. 

A target plasma in ASRA6C is tobe produced by electron cyclotron waves at a fre
quency of 150 GH z, compatible with the electron cyclotron resonance for Bres = 5.3 T, 
which is equal to the magnetic induction on the axis in ASRA6C. Plasma build-up 
and heating with an electron cyclotron resonance system has been tested successfully in 
the small stellarator experiment WENDELSTEIN VII-A at an induction of B = 2.5 T 
up to the cut-off density of n ~ 6 · 1019 m - 3 , using a gyrotron of 200 kW. It was 
possible to raise the stored plasma energy by subsequent application of neutral beam 
heating of about 1 MW. Heating of the ASRA6C plasma by neutral beams with a 
power of Pi = 30 to 50 MW requires typically 4 to 6 injector systems with a power 
of 8.4 MW in each unit, similar to that of the neutral injectors used in the JET toka
mak. A schematic for the ASRA6C neutral injection scheme is shown in Fig. 2-9 and 
Fig. 2-10 of Chapter 2. The injection is at a cross section where the magnetic surfaces 
have the smallest radial dimension of about 80 cm between the magnetic axis and the 
plasma edge. This value is comparable with the penetration length of neutral particles 
at an injection energy of 70 to 80 keV, as is presently being used in the JET neutral 
injection system. For ASRA6C , beam ducts of a typical size of 1.8 m height and 1m 
width are estimated from the dimension of the sources and their beam divergence. 

An important advantage of stellarator fusion reactors is that they allow steady state 
operation in principle. Ignition in an Advanced Stellarator reactor occurs preferentially 
at a low to moderate ß-values of the plasma, as demonstrated in the preceding section. 
Then the fusion power is low, hence the neutron Ioad and darnage of the injection 
systems are considered tobe tolerable. After reaching ignition, the start-up power can 
be turned down and appropriate shielding are introduced into the respective ports, 
in order to avoid problems of neutron streaming. Such movable shielding plugs are 
omitted in the above figure. The shielding of the neutral injection ports without such 
plugs is analyzed in Chapter 6.4 . 

The density increase and the continuous refuelling of the ignited plasma is conceived 
to be done by pellet injection. The pellet injectors are also to be placed at the toroidal 
position where the magnetic surfaces have a small radial dimension. The pellet velocity 
should be matched to a deposition outside but near the axis of the ignited low-ß 
plasma. By increased refuelling the density is increased and the deposition profile is 
shifted towards edge refuelling as discussed in the above section. The reactor is thus 
brought to full power. Then particle fl.uxes of the order of (J) = (1 - 3) · 1023 s- 1 

are calculated. The necessary penetrations in the blanket and shield systems are 
comparatively small. Several pellet injection systems might have to be provided, since 
the particle fl.uxes are above those achievable at present. Development is required 
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regarding the pellet velocity, possibly also regarding an adjustment of the velocity 
during the transition from the ignited state to the full power operation of the reactor. 

4.5. Results for the Reference Case ASRA6C 

In [2], heating and burn seenarios for a system with Ro = 25m as weil as for an 
Advanced Stellarator Burner with R 0 = 15 m at an increased magnetic induction 
were published, as described in the above sections. More recent results are given 
in this section for ASRA6C, including also the effect of an additional radiative loss. 
These findings are summarized in Table 4-I and are elaborated in more detail in the 
following. The smaller major radius of the data set ASRA6C, Ro = 20m, introduces 
a more difficult situation regarding start-up and stationary burn of the reactor. 

In Fig. 4-4, upper part, the relation between the fusion power output and the peak 
values of ß(O) are given versus the axis values of density and temperature. The middle 
and lower parts of the figure show the dependence of these quantities on the external 
heating power Pi of start-up. In the middle part of the figure, the magnetic field is 
Bo = 5.3 T, and the ripple Iosses are as given in [2], with a magnetic ripple amplitude 
up to about 10 %, as to be seen in Chapter 3, Fig. 3-8. Under these circumstances, 
ignition is possible at an effective heating power Pi ~ 50 MW with center densities 
of N(O) ~ 3 ·1014 cm-3 , and temperatures of Ti(O) ~ 10keV, respectively. A full 
power operation point is found at a particle input fl.ux ~ = 1 · 1023 s- 1 , characterized 
by an average ß of 5.3 % and a fusion power of Pt = 3.8 GW. This data point is 
Iahelied '400' in the middle part of the figure. Introducing an additional radiative loss 
with a broad centered profile and amounting to Prad = 0.3 GW , the fusion power is 
tobe increased to Pt = 5.6 GW at an average ß = 6.4%, by an increased input fl.ux 
~ = 1.1 · 1023 s- 1 , as shown by the point marked '406'. Suchradiation Iosses with a 
centered broad distribution should be avoided in order to keep the total power output 
within reasonable Iimits. 

In the lower part of Fig. 4-4, the improved confinement properties of an Advanced 
Stellarator are modelled by a reduction of the ripple Iosses by a factor of 2. The 
magnetic field is also varied to values of 5.0 and 5.5 T, the larger field being indicated 
by the dashed curve. In these cases, an effective heating power of 30 MW is sufficient 
to reach ignition, as is the case with the larger systems at R 0 = 25m . In ASRA6C 
with reduced ripple losses, ignition occurs at a peak ion temperature of about 10 keV 
and central densities around 2.2 ·1014 cm-3 , with little dependence on the magnitude 
of the magnetic field. 

Two examples of the various operation points for ASRA6C are shown in the 
Figures 4-5 and 4-6, using input rates of ~o = 0.9 and 1.1 · 1023 s- 1 , respectively. 
The first case is without radiation; in Fig. 4-6 a radiative loss of 300 MW is assumed 
near the boundary, as to be seen in the lower right of the figure. In the lower right 
part of Figures 4-5 and 4-6, the two other curves indicate the a-particle heating power 
densities to ions and electrons, respectively. Due to the larger electron heat conduc
tion, Qe,a > Qi,a. The radial proflies of the thermal conduction coefficients are given 
in the upper right part of the figures. The largest contribution is by the ripple term, 
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whereas the anornalous coeffi.cient found in the W VII-A experirnents is irnportant only 
at the plasrna edge. 

For the two exarnples shown in the Figures 4-5 and 4-6, the total fusion power 
arnounts to PJ = 2.0 and 3.9 GW with average ß-values of 3.6 and 5 %, respectively. 
The density and ternperature profiles (upper and lower left part of the figures) are 
cornparatively broad and reveal steep gradients near the plasrna edge, set at rp = 1.5 m. 
Peak values are 2.1 and 2.3·1020 m-3 for the density, and T = 15 keV to 19keV for 
the ternperatures, respectively, as can be seen in the left parts of the figures. The data 
point with the radiative loss of 300 MW at a fusion power of 3.9 G W is labelled '372' 
in the lower part of Fig. 4-4. The average value of ß = . 5 % agrees well with the 
cornputed ßeq = 4.7% for the finite-ß fields of ASRA6C , see Chapter 3.5. 

Note that the edge physics in laboratory or fusion reactor plasrnas is not described 
by the equations used in the transport rnodel. lf one assurnes a purnped lirniter systern, 
assisted by an effi.cient radiative outer layer, other terrns are to be included. Further
rnore, the electric field, which ensures equal particle loss rates of electrons and ions for 
all radial positions, is not yet treated selfconsistently. The three-dirnensional topology 
of the stellarator fields, rnodified by the Shafranov-shift at the different finite ß-values 
of the start-up and burning plasrna states, introduces further geornetrical corrections. 
Furtherrnore, the thermal stability of these operation points needs to be analysed. 
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TABLE 4-I 

Results of the Transport Code for ASRA6C : 

<bo Te(O) Ti(O) n(O) ß(O) (ß) (n)r Pa PJ Prad B fx 
job 1023 1020 1020 

no. 8-1 keV keV m-3 % % m-3s GW GW MW T 

400 1.0 15.1 13.7 3.2 13.3 5.3 1.75 0.75 3.80 0 5.3 1.0 
406 1.1 15.7 14.6 3.7 15.8 6.4 1.13 5.63 300 5.3 1.0 
161 1.2 15.8 15.3 3.0 13.2 5.1 1.44 0.57 2.83 0 5.3 1.0 

355 0.8 14.3 13.1 2.2 9.2 4.0 1.95 0.33 1.64 0 5.0 0.5 

383 0.4 12.0 10.7 2.0 6.0 2.5 2.76 0.16 1.60 0 5.5 0.5 
392 0.7 14.8 13.6 2.0 7.7 3.2 1.89 0.30 1.52 0 5.5 0.5 
391 0.9 16.0 15.4 2.1 8.8 3.6 1.63 0.40 2.02 0 5.5 0.5 

393 0.9 16.6 16.0 2.2 9.4 4.0 1.59 0.49 2.45 100 5.5 0.5 

388 0.9 17.5 17.2 2.3 10.5 4.7 1.53 0.68 3.38 300 5.5 0.5 
387 1.1 18.4 18.9 2.3 11.4 5.0 1.38 0.78 3.88 300 5.5 0.5 

Legend: 

The different computations are Iabelied by a three-digit job nurober in the first column 
of the Table. The following symbols are used in the other columns: 

Cl) 0 : refuelling fl.ux, peaked near the edge; 
Te(O), Ti(O) : axis values of electron and ion temperature, respectively; 
n(O), ß(O) : axis values of density and plasma pressure, respectively; 
(ß) , (n)r : average values of ß and density times confinement time, 

respectively; 
Pa, PJ, Prad : powers of o:-particles, fusion output, and radiative loss, 
B : average magnetic induction in the plasma 
fx : multiplication factor of heat conduction loss. 
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4.6 Impurity Control Options 
Impurity control studies for ASRA6C have focused on the development of a 

system which provides for the following requirements: 1) Adequate removal of 

the heat transported across the last closed magnetic surface by the escaping 

plasma, 2) pumping of helium produced in the reacting plasma, 3) minimal pro
duction of impurities by sputtering at a target plate where the ions leaving 

the plasma are neutralized, and 4) shielding of the core plasma from incident 
impurities and fast D and T atoms. In addition, we have investigated RF tech

niques for actively removing impurities from the core plasma as an additional 
method of impurity control. In Section 4.6.1 we consider the plasmaoutside 

the last closed magnetic surface and its interaction with a target plate with 
the resulting recycling of neutral gas and the requirements for vacuum pump

ing. In Section 4.6.2 RF techniques for impurity control are considered. 

4.6.1 The Edge Plasma 
The magnetic field topology outside the last closed surface of ASRA6C has 

been shown in Section 3.3 to be "ergodic 11 with some indications of weak mag

netic islands. The islands, however, are believed to be sensitive to magnetic 

field errors caused by plasma currents and/or small errors in magnetic coil 
manufacture and assembly. These errors would erode the islands further and 

lead to increased ergodie behavior of the magnetic field. For the impurity 
control studies, we have therefore considered the edge magnetic field to be 

ergodie in a region about 20 cm wide just outside the last closed magnetic 

flux surface. 

Ergodie magnetic limiters( 1) have been considered for tokamaks as a way 

of spreading the charged particle power over a large surface area. If the 
760 MW of alpha power in ASRA6C were spread uniformly over the surface of the 

first wall, the resulting heat load would be 30 W/cm2, which exceeds the limit 

of about 20 W/cm2, imposed by the maximum temperature of the first wall. Con

sequently, with the present blanket design, at least 40% of the power (charged 

particle plus radiation) escaping the plasma must be directed to surfaces de

signed to take a high heat flux. This leads us to consider an edge plasma 

which impinges on a target plate, as in the usual divertor or limiter, and 

operates in a high recycling mode so that the plasma at the target plate is 
cool (~ 10 eV) and dense. Production of impurities by sputtering is minimized 

by the resulting low sheath potential and pumping of neutral gas is enhanced 

because the localized recycling leads to high neutral pressure in the vicinity 
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of the pump duets. The edge plasma ean shield the eore plasma from ineident 

neutral partieles and impurities if it is suffieiently dense. Unlike a toka
mak, the edge plasma is in an ergodie magnetie field whi'eh enhanees radial 

transport in the edge region and red.uees the peaking of the heat flux on the 
target p 1 ates. 

The plasma temperature at the target plate is determined by the power 

input PH to the edge plasma, the power radiated in the edge plasma, the amount 

of reeyeling, and the sheath boundary eondition at the plate. We define the 

reeyele ratio R to be the ratio of the ion flux hitting the target plate to 

the ion flux rH out of the eore plasma. In the diseussion we treat PH to be a 

parameter varying from 50% to 100% of the alpha power (this ean be influenced 

by the amount of impurity radiation eoming from the eore plasma), but restriet 

rH to the eore refueling rate of 1.2 x 1023 ions/s. A power balanee on the 
edge plasma yields the equation, 

(4.6-1) 

where Tb is the plasma temperature at the plate, Rn and Re are the particle 
and energy refleetion eoeffieients, respeetively, for ions hitting the plate 

at energy 5.5 Tb (this ineludes the effeet of aeeeleration aeross the sheath 

evaluated for a D-T plasma), af and am are the albedo for fast atoms and mole
eules incident on the plasma, Wi is the ionization potential and Wex is the 

energy lost( 2) by atomie and moleeular exeitation per ion pair ereated. EFc 
is the Franek-Condon energy, whieh we take to be 3 eV. The albedo terms in 

Eq. (4.6.1) ineorporate the energy loss due to eharge exchange. The dominant 

terms in PH are the power earried by the ions and eleetrons hitting the target 

plate; eharge exehange and radiation only aceount for a small fraetion of the 
power. In this analysis we assume that the plasma is suffieiently eollisional 

that the ion and eleetron temperatures are equal throughout the ergodie layer. 

The power deposited on the plate is not only that earried by the ions and 
eleetrons hitting the plate; the plate also reeeives 50% of the energy re
leased by reeombination at the plate and about 50% of the power radiated by 

atomie exeitation sinee the exeitation oeeurs primarily in front of the plate. 

Shown in Fig. 4.6-1 is the required reeyele ratio for a given plasma tempera-
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Fig. 4.6-1. Recycle ratio, R, versus plasma temperature, Tb at the target. 
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ture at the plate. We see that recycle ratios on the order of several hundred 

are required to reduce the plasma temperature at the plate to the 10-20 eV 

range. Shown in Fig. 4.6-2 is the ratio of Pt, the power incident on the 

plate to PH, the power leaving the hot core plasma; Pt is given by 

(4.6-2) 

We see that about 10-20% of the power entering the edge plasma is converted to 

radiation in the edge plasma by the recycling process itself and is incident 

on the walls. An equal amount of radiation is incident on the target plate. 

The plasma density nb at the plate is determined by the condition that the ion 

flow velocity along the magnetic field at the sheath edge is the ion acoustic 

velocity. This yields 

(4.6-3) 

where q is the heat flux on the plate, a is the angle of inclinatio.n of the 

plate relative to the magnetic field, and es is the ion acoustic velocity. It 

is desirable to maximize the ion density; this makes the edge plasma opaque to 
energetic neutral atoms and impurities and improves the shielding property of 

the edge plasma. We see from Eq. (4.6-3) that we want to make a as small as 

possible since q i~ limited by heat transfer limits and mechanical design con

siderations. Shown in Fig. 4.6-3 is the ion density for q = 3 MW/m2 and 
5 MW/m2 and a = 10°. The density is also increased by high recycling, leading 

to low Tb. 
The heat flow along the magnetic field from the core plasma to the plate 

is determined primarily by electron heat conduction. Integrating the expres

sion, 

_ 13 .!__ T7/2 
q" - -2.15 x 10 ds ( e ) 

along the field line gives the electron temperature, T0, at the edge of the 

core plasma: 
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(4.6-4) 

where A is the target plate area and L is the average length along the field 

line from the edge to the target plate. In this expression, MKS units are 

used except that T0 is in keV. We choose L such that (AL sin e) is the volume 
of the ergodie layer. This leads to rather short lengths in comparison with 
poloidal divertors and reduces the temperature at the boundary of the core 

plasma. Because of the 2/7 power, the temperature is not very sensitive to 

the choice for L. 

Shown in Fig. 4.6-4 is T0 versus Tb for different values of q and PH. At 

low Tb the temperature T0 exceeds Tb by a large amount; in this limit the heat 
flow along the field is primarily by electron heat conduction. At higher Tb, 

energy transport is primarily by convection and the conduction model used here 

is not very good, but it still gives the right asymptotic limit of T0 =Tb. 

In the intermediate region, the real difference between To and Tb is less than 
that shown in this figure. This error is not significant since we are pri

marily interested in operating in the high recycling limit with low Tb. The 

upturn in T0 as Tb drops below 25 eV is due to the reduction of Pt, because of 
excitation radiation, for a given PH. At constant q, this causes the target 
area to decrease and the effective length L to increase. 

The ion density, n0, at the edge of the core plasma is given by a momen
tum balance along the magnetic field, accounting for the acceleration of the 

plasma to the ion sound speed as it nears the sheath at the target. This 
yields( 3) 

(4.6-5) 

Increasing q and reducing Tb (by increasing the r.ecycle ratio) increases n0 
and improves the shielding effectiveness of the ergodie layer. Shown in Fig. 

4.6-3 is the density n0 versus Tb. Note that in the conduction limit (Tb << 

T0), the density n0 is less than nb, but in the convection limit (Tb= T0) n0 
is twice nb, as is well known from collisionless presheath theory.( 4) 

The ability of the ergodie layer to screen out impurities and neutral gas 
can be ascertained by estimating the mean free path of cold and energetic 

neutral atoms near the target plate and near the edge of the core plasma. For 

the case of PH = 380 MW, Tb = 10 eV, and q = 3 MW/m2, the density at the tar-
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get plate is 6 x 1013 cm- 3; energetic atoms with a mean energy of 30 eV can be 

formed by reflection of ions accelerated across the sheath. These atoms would 

have a charge exchange mean free path of about 3 cm and a net mean free path 
(i.e., a neutral atom density scale length due to the combined effects of 

charge exchange and ionization) of about 4 cm. Consequently, most of them are 

screened out before they can reach the edge of the core plasma, which is still 
not very hot. Near the last closed magnetic surface, the plasma is less dense 

(- 3 x 1013 cm- 3) and warmer (- 40 eV); the charge exchange mean free path is 

increased to 4.5 cm, but the net mean free path is still only about 4.5 cm be

cause of the higher ionization probability. A cold neutral atom (- 3 eV) 
formed by the Franck-Condon process would have a net mean free path of 1.8 cm 

near the plate and 1 cm near the last closed magnetic surface. Consequently, 
it appears from these simple estimates that an adequate shielding probability 

against gas, and therefore also impurity atoms, can be obtained if we can 

operate in this high recycling mode. Note also that the temperature at the 

last closed magnetic surface is not ve~ high; energetic fuel atoms getting 
this far into the plasma still do not produce a flux of atoms on the target 

plate with enough energy to cause significant sputtering of the plate. 

The discussion above indicates that a cool, dense plasma in the edge re

gion can be obtained if the recycle ratio can be made to be about 200 or more. 
Up to now the discussion has been fairly generic and not strongly dependent on 

the detailed design of the target plate where the recycling takes place. We 

now turn to the target plate and consider whether this degree of recycling is 

obtainable and consistent with vacuum pumping requirements. 
A possible target plate concept is the vented plate utilized in the TIBER 

ETR( 5) design; this is shown schematically in Fig. 4.6-5. The vented plate is 

essentially opaque to ions since they hit the plate at near grazing angles. 

The particles are partly reflected as energetic neutral atoms and partly as 

molecules; this creates a neutral gas layer in front of the plate which charge 

exchanges with the incoming ions. About half of the neutral flux is directed 
towards the plate with a roughly isotropic angular distribution. The vented 

plate is more transparent to neutrals because of the nearly normal incidence. 

A fraction ft passes through the plate and creates a neutral gas pressure in 

the plenum behind the target plate. This plenum is connected to pumping ducts 

leading to the vacuum pumps. For TIBER the neutral gas is pumped at the 

rather high pressure of 105 bar, which reduces the size of the penetrations 
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Fig. 4.6-5. Schematic of the vented target plate. 
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required in the blanket for vacuum pumping ducts. In comparison, the pumped 

limiter designs utilized in NET( 6) and INTOR(l) pump the gas at about 1 mbar 

and therefore require a proportionally larger area for pump ducts. Note that 

the pump duct area is determined by the gas throughput and the pressure at 
which it is pumped. This is unrelated to the target area which is determined 

by heat transfer considerations and plasma flow. 
A particle balance on the plasma in the ergodie layer yields the follow

ing equation for the transparency factor ft required to achieve a given re
cycle ratio R: 

1 - a n 
ft = a (R - 1) 

n 
(4.6-6) 

where an is the albedo (ratio of the neutral flux reflected by the plasma to 

the neutral flux entering the plasma) of the neutral gas. The albedo depends 
on the energy spectrum of the neutrals incident on the plasma as well as the 

plasma temperature. For Tb = 10 eV, about 50% of the ions hitting the target 
plate recycle as molecules which have an albedoof 0.3.( 8) If we assume that 

the energetic reflected atoms penetrate further and don•t recycle to the tar

get plate, then the effective albedo is 0.15. For R ~ 200, the required ft is 
about 0.03. Hence, the plate is about 3% transparent. This is only a rough 
estimate to indicate the principle; the transparency can easily be adjusted 

for a more refined calculation of the albedo and three-dimensional effects. 

In any case, the plate has a low transparency. 

Since the plasma conditions are similar to those in TIBER, it is reason

able to expect the gas pressure in the plenum to be about 105 bar. This 

pressure is also in the same range as seen in a number of tokamaks where the 

neutral pressure has been measured in scoop limiters. 

A final concern for this concept is whether it will pump helium from the 

vacuum chamber. A helium ion impinging on the target plate hits the plate 

with energy of about 90 eV, if doubly ionized, or 55 eV if singly ionized. 

The reflection coefficient is about 0.4; hence 60% of the helium recycles as 

cold atoms. A cold helium atom in a 6 x 1013 cm- 3, 10 eV plasma ha~ a mean 

free path for ionization of 1.2 cm and a mean free path of 2.5 cm for elastic 

scattering(9) with the incoming deuterium and tritium. The elastic scattering 

will cause the heliumtobe returned to the plate and a portion of it will 

enter the plenum and produce a helium gas pressure driving a flow towards the 
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pumps. Ionization, however, will cause the helium to be converted to ions 

which, like the deuteriwn and tritium ions, can•t get through the ports. We 
have to consider ionization to be a competing process which inhibits the pump

ing action of the ports in the target plate. We can easily control, however, 

the amount of ionization by small changes in the electron temperature at the 

plate. If the temperature is reduced to 5 eV, then the ionization mean free 

path is 10 times langer than the mean free path for elastic scattering. In 

this case, one might anticipate a substantial reflux of neutral helium inci

dent on the target plate and some degree of pumping of helium. An adequate 

analysis of this problern is beyond the scope of this study, however. 
In conclusion, we have seen that a high recycling mode of operation in 

which a cool, dense plasma at the target plate is produced, can be obtained. 

Furthermore, the plasma temperature near the edge of the core plasma is still 

not very hot and the plasma is sufficiently dense that there should not be a 
problern with a flux of more energetic atoms producing excessive erosion and 

impurity generation by sputtering. Calculations for the TIBER study indicate 

that a gas pressure of 105 bar at the entrance to the pump ducts can be pro

duced; this gives adequate gas flow to the pumps with rather small penetra
tions through the blanket and shield. Helium pumping by this concept has not 

been thoroughly addressed, but elastic scattering by fuel ions is a possible 

process for helium pumping if the electron temperature near the target plate 

is reduced to about 5-10 eV. 

4.6.2 ICRF Method for Active Impurity Control 
We consider the use of localized ICRF (Ion Cyclotron Range of Frequen

cies) heating in the ASRA6C Stellarator reactor to reduce impurity transport 

from the ergodie region into the hot reacting plasma core. The basic princi
ple has been put forth by Ohkawa(10) in his work on the prevention of impurity 

accumulation in classical tokamaks. He has proposed the use of poloidal ion 

density inhomogeneities caused by trapped ions produced by ICRF heating to 

produce a poloidal electric field which leads to an azimuthal variation for 

the impurity ion distribution and produces a flux-averaged impurity radial 

flow reversal in circular or noncircular tokamaks. The resulting poloidal 

electric field which leads to an azimuthal variation for the impurity ion 
distribution and produces a flux-averaged impurity radial flow reversal in 

circular or noncircular tokamaks. The resulting poloidal electric field and 
the poloidal variation of the impurity ion distribution can be averaged o~er a 
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flux surface to yield the ~et radial flux for impurity species Z when the 
trapped particle ion density is 

(4.6-7) 

where et is the inverse aspect ratio for the machine; this process is most 
effective on medium and high Z impurities. If we apply this to ASRA6C para

meters with Zeff = 2, et = 0.08 and ZFe = 26 we obtain a two percent variation 
in ion concentration to reverse the ion impurity radial influx. 

Recent works on ICRF heating in stellarators(ll) and an analysis of ICRF 
heating for the Heliotron E and ATF torsatrons( 12 ) have been carried out. 

Preliminary ICRF heating experiments have also been carried out on the L-2 

Stellarator and Heliotron E torsatron. 
Fokker-Planck calculations for poloidal ion density variations due to 

banana trapped ions in an ICRF heated tokamak reactor have been calculated by 

Harvey et al.(1 3) and have been observed in moderate power ICRF experiments on 

PLT.(l4) Our concept is to locally heat the ASRA6C Stellarator reactor in a 

region somewhat inside (30 cm) the last closed magnetic flux surface by means 

of ICRF heating. 
Questions which we will address for ASRA6C include the frequency required 

to heat the bulk deuterium or seeded small concentration (5%) of hydrogen, the 
ICRF wave coupling efficiency through the ergodie layer edge plasma, the re

quired power density in the heating zone and total supplementary power re

quired. The poloidal and toroidal dependence of the ICRF induced equilibrium 

electric fields are briefly addressed. This work should be considered a pre
liminary investigation of the concept and factors which determine a successful 

active ICRF impurity control concept. 
The ergodie layer of 20 cm extent with a high density n = 3 x 1013;cm3 

plasma, relatively cool T = 40 eV plasma is an ideal region which allows good 
coupling through it without a substantial evanescent wave zone for the 80 MHz 

ICRF wave. The cooler edge temperatures will allow improved antenna perfor

mance, should reduce impurity production, and could provide enhanced energy 

confinement times. 
The mod B and flux surface plots for ASRA6C at different field periods 

show that the most convenient region for localized ICRF heating would be at a 

1/2 field period corresponding to a toroidal angle of 36° where the flux sur-
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faces are vertically elongated ellipses and the mod B surfaces are nearly 

vertical over a large portion of the central plasma zone. The ICRF radiation 
would be focused over the central portion of the 5.2 T mod B surface on the 

low field side of the Stellarator axis as shown in Figs. 4.6-6 and 4.6-7. 
This corresponds to a fundamental deuterium cyclotron frequency of 40 MHz and 

a fundamental seeded hydrogen (< 5% concentration) cyclotron frequency of 
80 MHz. The first few harmonics ·of the cyclotron frequency can be considered 

(n < 3) with good single pass absorption expected at the 10 keV ion tempera

tures and 7 x 1o131cm3 deuterium density in this region obtained from equi
librium ignited transport code results for ASRA6C. ASRA6C is particularly 

well suited to harmonic ICRF heating since its large aspect ratio R/a = 12.5 

insures that a single ion cyclotron harmonic can be isolated in the confined 

Stellarator flux volume for harmonics below n = 3 for deuterium and n = 4 for 

tritium. 

The choice for which harmonic or ion species to heat and trap is one of 

convenience for the compact design of the ICRF waveguide or antenna coupler 

consistent with the ASRA6C wall, magnet, blanket and shield design. There is 

also the physics issue of which heating mode produces the most trapped ions 

for the least amount of auxiliary RF power. Previous experimental and theo

retical research for tokamaks( 15 ) suggests that a fundamental minority ion 
population produces the strongest ion tail formation for a given amount of 

power absorbed and that a substantial trapping fraction can be obtained at 

moderate powers. One can consider the seeding of the plasma with the required 

concentration of hydrogen to accomplish this (< 5%), but this sacrifices the 

D-T fusion power output. If one heats the second or third harmonic of the 

deuterium bulk distribution, then higher amounts of auxiliary power will be 

required to achieve a given trapped ion population. 

An estimate of the power required can be obtained by using the results of 
Harvey et al.( 13) for a D-T tokamak reactor heated by second harmonic deuteri

um heating. The bounce average Fokker-Planck equilibrium code shows that 

1 W/cm3 yields a 3% poloidal ion density variation with the heating on axis, 

an electron density of 1 x 1014 cm3 and 10 keV background ion and electron 

temperatures. One can anticipate that heating off axis as is proposed here 

would reduce the required absorbed power density levels. This is because the 

heating off axis would deposit a substantial amount of power in a region 

tangent to the local flux surface which increases the amount of time the pass-
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ing particles have to interact with the ICRF wave and become trapped. The 

absorption profile of 1/50th of the total poloidal cross-sectional area yields 

an upper limit power requirement over the whole machine of Pmax = 1.0 W/cm3 x 
1760 cm2 x 2 x n x 2000 cm = 22 MW. As one moves to different regions in the 
toroidal direction, the 5.2 tesla mod B resonance surface deforms from weakly 

convex outward at ~ = 36° to more sharply concave outward at ~ = 18° and 0° 
but always lies on the outboard region of the cross section and would be most 

accessible to antennas located on the outboard side of the torus. 
If ICRF heating were applied only in the five toroidal field periods in 

the neighborhood of the ~ = 36° toroidal angle and subsequent zones where the 
flux surfaces repeat their shape, then the amount of additional power might be 

reduced since impurity ions would traverse these zones many times during their 

slower radial drift. The mapping of the broader heating zone at ~ = 36° where 

the flux surfaces are vertical ellipses to regions where the flux surfaces are 

more triangular would have the effect of an increased localization of the po

tential formed by trapped ions on the vertically compressed resonant mod B 
surfaces at those points. Since a discrete number of toroidal heating zones 

(5) makes sense from a point of a discrete set of heating antennas, a higher 

value of poloidal electric field would have to be introduced there to compen

sate for adjacent regions where the poloidal electric field giving rise to 
impurity flow reversal is reduced due to fewer trapped ions. Since the heat

ing zones would have a toroidal extent and the trapped ion banana orbits exe

cute toroidal drifts, an extended region where the potential is produced is 

evident. The effect of ICRF heating and the production of helical ripple 
trapped ions which would produce localized potentials should also be 

addressed. 
The ergodie layer of 20 cm extent with a high density n = 3 x 1013;cm3 

plasma, relatively cool T = 40 eV plasma is an ideal region which allows good 
coupling without a substantial evanescent wave zone for the 80 MHz ICRF wave. 

The cooler edge temperatures will allow improved antenna performance and will 

reduce impurity production. 
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4.7. Summary and Conclusions 

Although there are several open question regarding the transport model as described 
above, especially regarding the very edge region of the plasma, it can be concluded 
that essential features of the start-up and burn conditions of an Advanced Stellarator 
Reactor (ASR) or Burner system (ASB) can be described appropriately. 

Under neoclassical conditions, the plasma confinement is dominated by the effect of 
trapped particles and the associated ripple transport. A radial electric field reduces 
the Iosses by decreasing the ion heat conduction. The heat conduction coefficients, 
increasing with temperature, introduce relatively broad temperature and density pro
files. 

The fusionpower amounts to typically Pt ~ 4 GW for ASR, whereas ASB stays 
at about 10% of this value. For the reference confi.guration ASR6C, a radiative power 
loss of 300 MW near the plasma edge and a fusion power of 3.9 G W is obtained at an 
average ß of 5.0 % , at a refuelling rate of 1.1 · 1023 s- 1 . The peak temperature is 
T ~ 19 keV. In this case the ripple Iosses are reduced by a factor of two in order to 
take account of the improved confinement of an Advanced Stellarator, and the field is 
raised to 5.5 T at the axis. 

For start-up, an effective heating power of Pi = 30 to 50 MW is suffi.cient for 
ASB and ASR. Larger major radii, e.g. a value of Ro = 25 instead of 20m , ease the 
requirements for start-up and allow a larger difference in the ß-values of the ignition 
and the burn points. Since stellarators can, in principle, operate steady state, the 
start-up power can be turned down after reaching ignition, and appropriate shielding 
can be introduced into the respective ports, in order to avoid problems of neutron 
streaming. 

Furthermore, continuous operation of the reactor is an essential advantage regarding 
the material stresses and lifetimes. Due to the absence of cyclic loads a Iongeroperation 
at full power is possible in a stationary system than in a pulsed reactor. 

The ergodie layer at the separatrix combines some of the features of magnetic diver
tors with the simplicity of pumped limiters. This allows the edge plasma to operate in 
a high recycling mode which produces low plasma temperature (,..". 10 eV) at the target 
plate. The use of RF to induce net outward impurity transport is an interesting option 
for the impurity control, but requires further study to fully assess its feasibility. 
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5.1 Blanket Options 

5.1.1 Motivation 

5. BLANKET AND REFLECTOR DESIGN 

In the past several years there has been a trend in conceptual fusion 

power reactor designs toward more compact systems, primarily motivated by 

economic considerations. The blanket thickness directly impacts the size and 

mass of the components immediately behind it, ultimately determining the size 

of the magnets, which constitute a major fraction of the cost of the nuclear 

island. The effect is not as dramatic for tokamaks, where only the inboard 

side of the reactor chamber must have a limitation on the blanket thickness. 

In linear geometry tandem mirrors and high aspect ratio Stellarators, where 

the magnets follow immediately behind the shield the effect is much more 

pronounced. 

Obviously the nuclear performance of the blanket cannot be compromised at 

the expense of the thickness. The blanket must be capable of breeding tri

tium, giving a high energy multiplication and producing thermal energy which 

can be converted to electricity at a reasonably high efficiency. The thinnest 

blanket which can achieve all these goals is one which makes use of Be metal 

as a multiplier/moderator. Such a blanket has been proposedas the base case 

for ASRA6C. It is a He gas cooled design utilizing LiPb as the breeding mate

rial, Be metal as a multiplier/moderator and the ferritic steel HT-9 as the 

structure. 

In the case of ASRA6C, the bl anket thi ckness i s only one aspect for 

consideration. Since the plasma in a Stellarator has a helical twist in the 

toroidal direction, the question arises as to whether the blanket shape should 

conform to the plasma or be made independent of the plasma shape. Further, 

because impurity control is a major requirement in a reactor grade plasma, 

placement and accommodation of collection plates and pump ports is an impor

tant consideration. 

It was determined early in the study that the plasma in ASRA6C can be 

contained in an elliptical chamber of uniform cross section when viewed in the 

toroidal direction. A thin blanket with a uniform elliptical cr.oss section 

and constant thickness would avoid complicated shapes and be the simplest to 

fabri cate. Neverthel ess, it was important to determi ne whether a bl anket 

which conformed to the shape of the plasma made it possible to reduce the size 
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of the magnets, achieving a more attractive reactor from the cost standpoint. 
For this reason it was decided to do a trade study comparing suitable blanket 
options on the basis of neutranies performance, configuration, maintain

ability, mass utilization and economics. The four blanket options selected 
for comparison are described in the next section. 

5.1.2 Description of Blanket Options 
The initial intent of the trade study was to compare two blanket options: 

a uniformly elliptical blanket of constant thickness, and a blanket which 

followed the contour of the plasma on the inner surface, had a uniformly 

elliptical shape on the outside surface and was, consequently, of non-constant 
thickness. As the study progressed, it became apparent that using the thin 

blanket in configurations other than uniformly elliptical may have some 

economic advantages. The study finally settled on comparing four blanket 

options, three utilizing variations of the thin blanket of constant thickness 

and a fourth option, the non-constant thickness blanket mentioned above. 

Figure 5.1-1 is a schematic representation of the four blanket options 

and has a short description of each. In the following sections a more 

detailed description is given. 

Option I 
The blanket, reflector, and shield are uniformly elliptical in the 

toroidal direction. Dimensions are selected to insure that the plasma, 
which changes shape in the toroidal direction always fits within the provided 

envel ope and has a mi nimum scrapeoff l ayer of 22 cm between it and the fi rst 

wa ll • 
The blanket consists of cells which circumvent the plasma poloidally and 

are joined tagether to form a RBU (Removable Blanket Unit). External struc
ture and coolant tubes are made of the ferritic steel HT-9. The coolant tubes 

spiral within the cells and are immersed in a matrix of Be balls and the re

maining spaces are filled with Li 17Pb83 • Helium gas at 80 atm is circulated 

through the tubes as the coolant. The Li 17 Pb83 is slowly circulated for T2 
recovery. 

The reflector is made· of modified 9Cr1Mo and is cooled in series with the 

blanket using the same helium gas. It is followed by a shield composed of 

layers of B4c and Pb and cooled with water. 
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BLANKET OPTION I 

BLANKET UNIFORM THICKNESS 
ELLIPTICAL CROSS SECTION 
HT-9 STRUCTURE-liPb BREEDER 
Be MODERATOR/MULTIPLIER-He GAS COOLING 

REFLECTOR UNIFORM THICKNESS 
&I SHIELD ELLIPTIC CROSS SECTION 

BLANKET OPTION m 

BLANKET SEGMENTED, UNIFORM THICKNESS 
FOLLOWS PLASMA CONTOUR 
HT-9 STRUCTURE-UPb BREEDER 
Be MODERATOR/MULTIPLIER-He GAS COOLEO 

REFLECTOR UNIFORM THICKNESS 
"' SHIELO FOLLOWS PLASMA CONTOUR 

TUNCSTEN SHIELD USED AT 
STRATECIC LOCATIONS 

BLANKET OPTION li. 

BLANKET 

REFLECTOR/SHIELD 

BLANKET UNIFORM THICKNESS 
FOLLOWS PLASMA CONTOUR 
HT-9 STRUCTURE-liPb BREEDER 

MAGNET 

Be MODERATOR/MULTIPLIER-He GAS COOLED 

REFLECTOR UNIFORM THICKNESS 
&I SHIELD FOLLOWS PlASMA CONTOUR 

BLANKET OPTION ISZ: 

BLANKET NONUNIFORM THICKNESS 
OUTSIDE SURFACE ELLIPTICAl 
INSIDE SURFACE FOLLOWS PLASMA CONTOUR 
HT-9 STRUCTURE-LiPb BREEDER 
He GAS COOLINC 

REFLECTOR UNIFORM THICKNESS 
"' SHIELD ELLIPTICAL CROSS SECTION 

Fig. 5.2-1. Description of the four blanket options. 
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Option II 

This design is a variation of Option I with the difference being in the 

geometry only. Here the blanket follows the contour of the plasma and thus 

has a helical twist in the toroidal direction, repeating the same shape every 

field period. Although the blanket thickness is the same everywhere, and it 

circumvents the plasma, it is of non-uniform cross section when viewed in the 

toroidal direction. The reflector and shield also conform to the shape of the 

plasma but are made of the same materials as in Option I and are cooled in the 

same way. 

Option II I 

This design is yet another variation of Option I. Here it was decided to 

use a denser shield at the points where the plasma makes its closest approach 

to the coils. To do this, it was necessary to segment the blanket in order to 

take maximum advantage of the denser shield at these locations. Geometrically 

the configuration is the same as i·n Option II with the difference being that 

the blanket does not completely circumvent the plasma, but is rather seg

mented. The reflector and shield behind the blanket are the same as in the 

previ ous two opt i ons, but are segmented. The denser shi el d i s composed of a 

He cooled tungsten layer, followed by water cooled layers of B4c and Pb. 

Option IV 

In this option the first wall, which is integral with the blanket, 

foll ows the contour of the pl asma, but the back surface of the bl anket i s 

uniformly elliptical. For this reason, the blanket thickness varies both 

in the poloidal as well as the toroidal direction. Because in places the 

blanket thickness was as high as 110 cm, it was decided not to use Be and 

instead adopt a He gas cooled Li 17 Pb83 blanket. As in the other options, the 

blanket structure and tubes are made of HT-9, the coolant is He gas at 80 atm 

and the breeding material is Li 17 Pbs3· 

The reflector and shield are of constant thickness and uniformly 

elliptical. They are composed of the same materials as in Option I and II, 

and are cooled in the same way. 

Table 5.1-1 gives the physical parameters of the four blanket options. 
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Table 5.1-1. Physical Parameters of Blanket Options 

0 P T I 0 N S 

BLANKET UNITS I I III IV 

FW Surface Area m2 2280 1780 1780 > 1780 
Fraction of Penetration Area % 3 4 4 ~ 4 

Blanket Composition 

Breeder/vol/o LiPb/14 Li Pb/14 Li Pb/13. 5 LiPb/80 
Multiplier/vol/o Be/53 Be/53 Be/62.5 Pb in Li Pb 
.St ructure/vo 1 I o HT -9/11 HT-9/11 HT-9/9 HT-9/10 

Coolant, Void/vol/o He/22 He/22 He/15 He/10 
Blanket Thickness cm 17.5 17.5 24 15-110 
Blanket Coverage Fraction % 97 96 74.7 96 

Refl ector & 

Shield Thickness cm 80 80 100 68 + 10* 

Reflector: 
Thickness cm 46.4 46.4 81.4; 58.1 35.3 + 10* 

Composition HT-9/He HT-9/He W/He; HT-9/He 
HT-9/He 

V/0 90/10 90/10 90/10 90/10 

B4C Shield: 
Thickness cm 27 27 16.6;33.6 26.2 

Composition B4C/Fe1422/H20 same same 

v/o 80/10/10 

PbShield: 
Thickness cm 6.6 6.6 2;8.3 6.5 

Composition Pb/Fe1422/H20 same same 

v/o 80/10/10 

*for blanket support 
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5.2 Blanket Gomparison 

The common design criteria for all the options are as follows: 

Overall T2 breeding ratio 1.05- 1.10 

Average nuclear heating in front layer of superconductor ~ 0.1 mW/cm3 

Peak fast neutron fluence (E > 0.1 MeV) in Nb 3Sn 1.5 x 101 9 n/cm 2 

Reactor lifetime 20 FPY 

Neutron wall loading distribution for the two different blanket geome

tries has been determined and is presented in Figs. 6.1-1 and 6.1-2 of Ghapter 

6. 

5.2.1 Gonfiguration and Maintainability 

In order to compare the options on the basis of configuration and con

struction complexity, it was necessary to have a scoping design. Figure 5.2-1 

shows possible configurations of the four options. Option I is represented 

with top view of an RBU only, since this design is described in detail in 

Section 5. The remaining options are shown as isometrics of RBUs with the 

plasma outlines superimposed. Because all four blankets are cooled with He 

gas at 80 atm, i t i s necessary to des i gn them wi th the capabil ity of wi th

standing this pressure in case a leak develops in a coolant tube. For this 

reason the containment structures are in the form of small elliptical cells 

joined tagether to form a complete RBU. In Options I, II and III, all the 

cells are of constant thickness and circumvent the plasma poloidally. In 

Option IV, the individual cells are of constant thickness and circumvent the 

plasma in a helical spiral. There are four RBUs in each field period and each 

RBU has three supply and three return coolant connections. 

Table 5.2-1 gives a relative judgmental evaluation of the four options 

with respect to configuration and maintainability. Gonfiguration is judged on 

design and construction complexity and the ability of the design to 

accommodate penetration. Maintainability is judged on the ease of extracting 

an RBU from the reflector and on the mass of the drained RBU. 

As far as design and construction complexity is concerned, Option I is 

superior due to its simpler geometry. It is equally difficult to accommodate 

large penetrations in all four options. In Option Ill, a penetra'tion falling 

between blanket segments can be accommodated easier. 
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Table 5.2-1 Gonfiguration and Mai ntenance 

I I I I I IV 

Design/construction complexity Moderate Diffi cult Di ffi cul t Di ffi cul t 
Penetration accommodation Diffi cult Diffi cult Di ffi cul t Di ffi cult 

Mass of Drai ned RBU (tonnes) 38 27 32 58 
Ease of Extraction Moderate V. Difficult V. Difficult Moderate 
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POSSIBLE BLANKET DESIGN 

OPTION I 

"I I 

- r---+----I-

l l I 

POSSIBLE BLANKET DESIGN 

OPTION'DI 

POSSIBLE BLANKET DESIGN 
OPTION li 

POSSIBLE BLANKET DESIGN 

OPTION Dr 

Fig. 5.2-1. Possible design of the four blanket options. 
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With respect to maintenance, Options I and IV are clearly ahead. Because 

they have a uniformly elliptical interface between the RBU and the reflector, 

they can be extracted from each other. The drained mass of the RBU in Option 

I is 38 tonnes as compared with 58 for Option IV. 

5.2.2 Neutranies Camparisan 

The neutranie comparison is summarized in Table 5.2-2. The neutron wall 

loading distribution was calculated for Options I and II (see section 6.1 for 

more details). The peak wall loading occurs at the midplane of the outboard 

side of the reactor for Option I and slightly above the midplane in the other 

options. The wall loading is higher for Option II since the first wall is 

closer to the plasma. The first wall shape in Option III is exactly the same 

as that of Option II while in Option IV the first wall is located between the 

walls of Options I and II and, consequently, the wall loading is expected to 

have values between those of Options I and II. 

The comparison was carried out for an early design of ASRA6C where the 

fraction of the penetration area amounts to 3-4% of the fi rst wall surface 

area. The local tritium breeding ratio (TBR) and energy multiplication (M) 

calculated using a one-dimensional code were scaled down by the blanket cover

age fraction (96-97%) in order to get the overall values. The final design 

calls for a higher penetration area ( .... 10%) and a rigorous analysis was 

performed for the final blanket design to assess the effect of the increase in 

the penetration area on the TBR and M (see section 5.2.3). 

In Options I, II and 111, the blanket thickness is determined such that 

it yields an overall TBR in the range of 1.05-1.1. Blanket III is thicker 

than blankets I and II to compensate for the decrease in breeding due to the 

lass in blanket coverage. The blanket thickness for Option IV was predeter

mi ned and ranges between 15 cm at the mi dp 1 ane and 110 cm at the top and 

bottom. The energy multiplication is based on the energy recovered from both 

blanket and reflector. According to this neutranies analysis, all blankets 

will be self-sufficient in tritium and Option I gives the highest energy 

multiplication which may lead to the lowest cost of electricity. 

The reflector and shield are designed to minimize the peak nuclear 

heating in the magnet and their thicknesses are determined from the optimi

zation study of section 6.3. The peak radiation effects in the magnets are 

listed in Table 5.2-2 and the poloidal variation of the nuclear heating and 

fluence are shown in Figs. 5.2-2 and 5.2-3 for the four options. In Option I, 
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Table 5.2-2. Neutranies Comparison of the Four Options 

Units I II I I I IV 

Peak/Av. Neutron Wall Loading MW/m2 2.4/1.41 2.55/1.84 2.55/1.84 ~ 2.5/~ 1.6 

Fraction of Penetration % 3 4 4 ~ 4 

Blanket Thickness cm 17.5 17.5 24 15 - 110 

Blanket Coverage Fraction % 97 96 74.7 96 

Local/Overall TBR 1.14/1.1 1.14/1.09 1.5/1.1 1.17/1.12 

Local/Overall Energy Multiplication 1.42/1.38 1.42/1.36 1.38/1.33 1.18/1.13 

HT-9 Reflector Thickness cm 46.4 46.4 81.4; 58.1 35.3 + 10* 
W; HT-9 

I 
00 B4C/Pb Shield Thickness cm 33.6 33.6 18.6; 41.9 32.7 00 

*The 10 cm is the blanket support structure. 

Radiation Effects in S/C Magnet: 

Peak Nuclear Heating (in innermost mW/cm~ 0.5* 0.1 0.0042 0.11 
Av. Nuclear Heating 1 ayer) mW/cm 0.1 0.08 < 0.001 0.03 

Peak Fast Neutron Fluence in Nb 3Sn n/cm2 1 E19* 2.3 E18 1 E17 2.0 E18 
@ 20 FPY 

Peak Dose in GFF Polyimide rad 1 E10* 2.1 E9 8 E7 1.88 E9 
@ 20 FPY 

Peak dpa in Cu Stabilizer dpa/FPY 4. 5 E-4* 1 E-4 4.5 E-6 8.3 E-5 

Potential for Magnet IR Reduction cm - 10 28 10 

*For cross section through 10 cm thick He manifolds. 
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the He manifolds replace some parts of the reflector. As a result, the darnage 

in the magnet ·behi nd the He manifol ds i ncreases by a factor of ~ 5 over the 

nominal values. In Options II and III, the He manifolds could be arranged in 

the available space between the shield and the magnets and, therefore, are not 

expected to raise the darnage in the magnets. In all cases, the magnet radi

ation limits are all met. It is interesting to notice that in Options II, 

I II, and IV the S/C magnets are overprotected. Therefore, the shi el d thi ck

ness and, thus, the inner bore dimensions of the ma·gnets can be reduced by 10, 

28, and 10 cm, respectively, and all the limits arestill satisfied. 

It shoul d be poi nted out that in order to accommodate a 10% penet rat i on 

area in the final design of ASRA6C the blanket should have a local TBR of 1.4, 

as will be shown· later. This would require 21, 21 and ~ 34 cm thick blankets 

for Options I, II and III, respectively, to achieve an overall TBR of 1.05. 

With the current design of Option IV, the blanket will not be self-sufficient 

in tritium since the overall TBR amounts to 0.9 for 10% penetration area. A 

feasible solution is to replace the 5 cm thick first wall and the extra 10 cm 

of the shield by blanket materials. This results in a local TBR of 1.46 and 

an ove ra 11 TBR of 1.1. 

5.2.3 Economics and Mass Utilization 

In order to perform an economics comparison of the four blanket options, 

it was necessary to adopt a set of unit costs. To allow for the more complex 

construction in Option II, III & IV, the fabricated cost of the structure was 

taken higher than in Option I. Filler material such as Be, LiPb, B4C, Pb and 

W has the same unit cost in all the options. Table 5.2-3 gives the unit costs 

used for the various options. 

Tab l e 5. 2-4 summari zes the economi es and mass ut il i zat i on for the four 

opt i ons. The tab l e l i sts the mass in tonnes and the cost in $106 for the 

blanket, reflector, shield, and totals. It also lists the thermal power using 

the energy multiplication obtained in the neutronics analysis and the net 

electric power using a net efficiency of 38%. From these quantities we can 

obtain the total direct cost based on the blanket, reflector and shield in 

$/kWe and the mass utilization based on the drained mass of the blanket, 

reflector and shield in kWe/tonne. It should be noted that in order not to 

penalize Option IV for the use of the large amount of LiPb, the mass 

utilization is based on the drained mass as given in Table 5.2-4. 
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Table 5.2-3. Unit Costs Used in the Economic Comparison ($/kg) 

I II III IV 
Blanket 

Structure 45 80 80 80 

Be 440 440 440 

Li Pb 14 14 14 14 

Reflector 20 40 40 20 

w 70 

Shield 

Structure 20 40 40 20 

B4C 50 50 50 50 

Pb 4 4 4 4 
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Table 5.2-4. Economics and Mass Utilization 

Option I Option I I Option II I Option IV 
mass/cost mass/cost mass/cost mass/cost 

(tonnes/$x106) (tonnes/$x106) (tonnes/$x106) (tonnes/($x106) 

Blanket (total) 1259/175 996/151 1064/183 8937/215 
Reflector 8713/174 5756/230 3761/150 6121/122 
W Shi el d 6095/427 

B4C Shield 1809/74 1361/64 1365/55.7 1412/57.5 
Pb Sh i e 1 d 1746/9 1374/9.4 1046/8.6 1436/7.5 

Total 13527/432 9487/454 13331/824 17906/402 

Drai ned Mass 13087 9080 12906 10129 
(tonnes) 

Thermal Power 4271 4180 4089 3542 
(MWth) 

Net Electric Power 1623 1588 1554 1346 
(MWe) 

Total Direct Costs 266 286 530 299 
($/kWe)* 

Mass Utilization 124 175 117 133 
(kWe/tonne)** 

* Based on direct cost of only the blanket, reflector and shield. 

** Based on the drained mass of only the blanket, reflector and shield. 
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5.2.4 tomparison of Results 
We can now list the first and second choices in each one of the 

comparison categories: 

Configuration: Option I, Option IV 

Maintainability: Option I, Option IV 

Neutronics: 

Economics: 

All four options will perform 

Option I, Option II 
Mass Utilization: Option II, Option IV 

Given that the four options perform neutronically, the choice must be 
made on the basis of the remaining categories. Option I wins three of the 

four categories. 
It is, therefore, concluded that the thin blanket of constant thickness 

and of uniformly elliptical cross section is the best choice under the 

circumstances. 
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5.3 Thin Blanket Design 

5.3.1 Introduction 

The blanket in a fusion reactor should not be viewed as an entity in 

itself, but rather as a constituent in a series of components, namely blanket, 

reflector and shield which tagether breed fuel, convert nuclear energy into 

heat and protect the superconducting magnets. Further, since the blanket 

suffers radiation darnage and must be replaced periodically, it would be 

advantageaus to have the capabi 1 ity. of separati ng it from the refl ector, thus 

minimizing the quantity of structure that must be replaced. At the same time, 

it is beneficial to recover useful energy from the reflector and use it at 

maximum efficiency in the power cycle. These kinds of considerations that 

have been motivating the design of the thin blanket which comes close to 

satisfying the requirements mentioned above. 

Having decided to use Li 17 Pb83 as the breeding material for ASRA6C we 

were faced with the choice between a self-cooled blanket and a separately 

cooled blanket. Although self-cooled blankets have some attractive features, 

they have four major drawbacks: 

1. High MHD lasses due to pumping of liquid metals across magnetic field 

1 i nes. 

2. Potential for corrosion product transport in the primary loop. 

3. Large and heavy piping needed in the primary loop. 

4. Double walled steam generator tubes needed to alleviate T2 diffusion into 

the steam cycle. 

Separately cooled blankets manage to avoid these problems. However, the 

question arises as to what is the best coolant to use. The choices are 

basically limited to water (steam), malten salt or helium gas. We have 

generally avoided the use of water in close proximity to a liquid metal for 

safety reasons. Further, achieving a reasonable efficiency with a water 

cooled blanket is difficult and one is also faced with the problern of T2 
recovery from water. Malten salts have the potential of low pressure Opera

tion but have problems with corrosion, corrosion product transport and T2 
recovery from the mo lten sa lt. The maj or di sadvantage of he 1 i um gas coo 1 i ng 

is the need for operating at a high pressure. Nevertheless, taken overall, a 

helium gas cooled blanket has enough advantages to overcome this drawback, and 

for this reason we have opted to use it. 
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An important factor in the thin blanket is the use of Be metalas a 

moderator/multiplier. By cooling the blanket and reflector in series, using 

the same He gas, the energy in the refl ector i s recovered at a high tempera

ture with a resulting improvement in the power cycle efficiency. This 

improvement is achieved while maintaining a low temperature at the interface 

between the breeding material and the structure. The salient features for 

the ASRA6C blanket are summarized in Table 5.3-1. 

5.3.2 Description and Mechanical Design 

The ASRA6C blanket is a He gas cooled design utilizing Li 17 Pb83 (LiPb) 

breeder, ferritic steel HT-9 structure and Be metal as moderator/multiplier. 

Over the years, there have been many He gas cooled blankets proposed for 

fus i on reactors. In most of them the gas fl ows through channe l s in the fi rst 

wall, then emerges into the blanket, cooling the breeding material, which is 

contained in tubes, on the way out. Since the blanket outer structure in such 

designs acts as a pressure vessel, it continuously operates at a high level of 

stress. We have avoided this condition in ASRA6C by keeping the He gas in 

small tubes which are immersed in a close-packed matrix of Be balls with the 

voids filled with LiPb. The result is a compact blanket 21 cm thick in which 

on ly the tubes are in a stressed condi t i on. Neverthe l ess, the b l anket out er 

structure is designed to withstand a leak in one or more of the He gas coolant 

tubes. 

The question of corrosion product transport is ever present in any circu

lating liquid metal system. A self-cooled liquid metal blanket is particu

larly susceptible to this problern since there is continuous dissolution in the 

hot zone, namely the blanket, with deposition in the cold zone, usually the 

steam generator. In this design we have avoided the problern in three ways. 

First, the maximum liquid metal/structure interface temperature is maintained 

low. Second, the LiPb is circulated at a very slow rate for T2 recovery and 

is essentially static. Finally, the LiPb remains isothermal in the T2 
recovery system preventing any deposition of corrosion products. 

The reaction chamber in ASRA6C is toroidal with a major radius of 20 m. 

The cross section of the vacuum chamber is uniformly elliptical in the toroi

dal direction with a vertical dimension of 6.4 m and a horizontal dimension of 

4.6 m. There is a total of 30 coils in the reactor with six coils completing 

a field period. Each field period extends 25.12 m toroidally along the axis 
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Table 5.3-1. Salient Features of ASRA6C Blanket 

The blanket is He gas cooled, utilizes LiPb breeder, HT-9 structure and Be 

multiplier/moderater and is only 21 cm thick. 

It i s backed up by a 44.2 cm thi ck refl ector made of modi fi ed 9Cr1Mo the 

energy of which is directly used in the power cycle. 

The overall breeding ratio is 1.05, the overall energy multiplication is 

1.2 and the gross power cycle efficiency is 42.7%. 

The T2 is recovered from a slowly circulated LiPb stream and the total T2 
inventory in the blanket is < 6 g. 

r2 leakage through a single wall steam generator is ~ 10 Ci/day. 
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of the ellipse. There are four RBU in each field period with a length on axis 

of 6.28 m. 

Figure 5.3-1 is a top view of a RBU where its curvature indicates that it 

is a segment of a torus. The radial lines indicate the joints between cells 

while the circumferential lines indicate coolant manifolds. Figure 5.3-2 is a 

cross section looking in the toroidal direction showing the elliptical config

uration of the blanket. In this figure the manifolds are shown as ellipses 

attached to the outer surface of the blanket. There are three double supply 

manifolds and three double return manifolds. The internal flow distribution 

is discussed in the thermal hydraulics section. Each double manifold set will 

have a single radial header, either supplying or returning coolant gas to or 

from it. 

Each RBU is divided into 28 cells oriented circumferentially in the 

toroidal direction. The cells arewider (24.0 cm) at the outer perimeter of 

the RBU than on the inner perimeter (19.5 cm), thus creating the toroidal 

shape needed. A cross section of a cell is shown in Fig. 5.3-3. Note that 

the outer walls of the cell are shaped semi-ellipsoidally to make them capable 

of withstanding a He gas leak in one or more cooling tubes. This figure shows 

the cooling tubes surrounded by a matrix of Be metal balls which in turn are 

surrounded with molten LiPb. Each cell has individual cooling tubes and only 

communicates with the adjacent cells through the common manifolds. 

The cooling tubes are 1.0 cm internal diamett!r and have a wall thickness 

of 0.5 mm. There are two types of cooling tubes in this blanket, the outer 

and inner tubes. The outer tubes provi de cool i ng for the fi rst wall and ab

sorb a large fraction of the nuclear heating in the front zone of the blanket. 

These tubes spiral araund the inside of the cell coming in contact with the 

first wall. Each outer tube makes only seven loops inside the cell before 

returning to the exit manifold. There arealso inner tubes which cool the 

central part of the cell. These tubes, of which there are three, perform a 

small radius large pitch spiral, traveling the full length of a cell quadrant. 

All the inner and outer tubes are the same length and thus present an equal 

impedance to the flow of He gas. 

Figure 5.3-4 is a cross section through a portion of a cell, showing 

outer and inner tubes as well as a single set of supply and return manifolds. 

It shows the He gas supp l y manifo l d connected to the tubes at a manifo l d 

flange. The tubes travel one-sixth of the circumference in both directions 
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and are then connected to areturn manifold. This figure shows that each 

outer tube executes only seven complete loops within the cell before tra

velling the remaining distance to the return header in the rear zone of the 

blanket. 

It is important at this point to explain why two manifolds are used as a 

set and why they are shaped elliptically. To minimize the He gas pumping 

power, it is necessary to limit the maximum gas velocity in the manifolds to 

< 100 m/s. Since the header connection to the manifolds is always made on one 

side of the RBU, the manifolds must be sized to be capable of delivering gas 

the whole length of the RBU to the last cell. Further, the extent to which 

the manifol d penetrates i nto the space of the refl ector determi nes the hot 

spot in the nucl ear heati ng of the superconducti ng coil. To sat i sfy these 

requi rements it was deci ded to use two mani fol ds at every supply and return 

point, each feeding alternate cells, and to make the manifolds elliptical, to 

limit their protrusion into the reflector space. This makes it possible to 

supply an RBU which is up to 6 m long from one end, while maintaining reason

ably low gas velocities. 

After the coolant gas leaves the blanket through the return 'manifolds, 

it is routed through the reflector. Each set of two return manifolds is con

nected to a single coupling which directs the He gas flow into the reflector. 

It should be noted that the supply headers and the blanket/reflector couplings 

are all located on one end of a RBU to make it possible to slide out the RBU 

from its reflector from one end. 

The flow path of the He gas through the blanket/reflector can be 

summarized in the following way: 

1. He gas comes in through three supply headers. 

2. Each header is attached to an elliptical connecting pipe which feeds a set 

of two supply manifolds. 

3. From the supply manifolds the He gas travels through the cooling tubes 

ending at the return manifolds. 

4. From the two return manifolds the gas goes through another elliptical 

connecting pipe which is attached to the blanket/reflector coupling. 

5. The He gas then trave)s through the reflector and finally exits the 

reflector through three return headers. 

Finally the question of penetrations has to be addressed. Penetrations 

extending 40 cm in the toroidal direction and up to 2m poloidally can be 
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Table 5.3-2. Pertinent ASRA6C Option I Blanket Parameters 

Firstwall radius (cm) 

Blanket thickness (cm) 

Reflector thickness (cm) 

Shield thickness (cm) 
Volumetrie fraction in the blanket 

HT-9 (v/o) 
He + void (v/o) 

Be (90% density) (v/o) 

LiPb (v/o) 
Overall breeding ratio 

Overall blanket multiplication 

No. of RBUs in reactor 

No. of cells per RBU 

Cell wi dth 

Cooling tube ID (cm) 

Cooling tube OD (cm) 

First wall and rear wall thickness (cm) 

No. of cooling tubes per cell 

No. of coolant supply manifolds per RBU 

No. of coolant return manifol ds per RBU 

Dimensions of manifolds 

Mass of LiPb in reactor (tonnes) 

Mass of Be in reactor (tonnes) 

Mass of HT-9 in blanket (tonnes) 

Mass of 9Cr1Mo in reflector (tonnes) 
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easily accommodated by fitting them within two cells as shown in Fig. 5.3-5. 

The figure shows the tubes shunted over to the sides of the cells to make room 

for a frame which surrounds the penetration. The poloidal extent of the 

penetration can be quite la1ge and is only limited bY, the spacing between 

manifolds. 

Penetrations which must extend more than 40 cm toroidally will be more 

difficult to accommodate. Such penetrations will have to terminate near mani

folds, or possibly, manifolds will have to be specially located. Table 5.3-2 

lists the pertinent parameters of the ASRA6C Option I blanket. 

5.3.3 Thermal Hydraulics 

The primary aim ofthermal hydraulic analysis is to ensure that the 

blanket structures are adequately cooled and that the temperatures an the 

first wall or elsewhere do not exceed recommended design limits for the 

materials at those conditions. 

The blanket in ASRA6C is cooled with He gas at 80 atm. Helium cooled 

blankets have a general reputation for requiring a high pumping power. 

Pumping power is a function of the volumetric flow rate and the pressure drop, 

and is therefore directly dependent on the pressure of the coolant. Most He 

cooled blanket designs have used 50 atm as the coolant pressure, because the 

gas was contained within the structural shell of the blanket. Since the He 

gas in this blanket is contained in small tubes, we have been able to operate 

at a hi gher pressure. At the hi gher pressure, vol urnetri c fl ow i s 1 ower for 

the same mass throughput and the velocity is lower, therefore the pressure 

drop is lower, directly reducing the pumping power. We have found that 80 atm 

seems to be the pressure at which the benefits of lower pumping power begin to 

be offset by the increased structure in the blanket. 

In this design the He gas enters the blanket at 275°C, exits at 510°C, 

then is routed to the steel reflector and exits at 575°C, finally going to the 

steam generator. As mentioned earlier, there are two kinds of cooling tubes 

in the blanket identified as the outer and inner tubes. These tubes are 1.0 

cm i nterna 1 di ameter and 1.10 cm externa 1 di ameter. Each sextant of each 

blanket cell has twenty outer tubes and three inner tubes. The outer tubes 

cool the front zone of the blanket including the first wall. On entering the 

blanket, each outer tube executes only seven loops inside the cell, then 

travels the remaining distance to the exit manifold in the rear (low nuclear 

heating zone) of the blanket. The next outer tube crosses over the seven 
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loops of the preceding tube, then executes seven loops of its own before 

exiting to the return manifold. From the plasma side, it appears as if only 

one tube spiral s around the ci rcumference of the cell, but in fact there are 

many. This design is unique because the length of all the tubes is the same, 

626 cm, therefore, the pressure drop and mass flow rate are the same. 

The inner tubes, of which there are three per cell quadrant, travel the 

full length of the quadrant executing a large-pitch small radius spiral. They 

provide a heat sink in the center of the cell and are also 626 cm long, the 

same as the out er tubes. Negl ect i ng the sma ll inert i a effects due to the 

different pitch between the inner and outer tubes, the pressure drop in all 

the tubes will be the same, ensuring that the mass flow rate in them will also 

be the same. 

The average nuc 1 ear heat i ng in the fi rst wa 11 i s 11 W/ cm3, in the rear 

wall it is 3.3 W/cm3 and in the bulk it varies from 11.4 W/cm3 at the front to 

4.7 W/cm3 at the rear. At the outer midplane, nuclear heating peaks by a 

factor of 1. 7 and at that poi nt, the above va 1 ues go up by thi s factor. The 

number of outer cooling tubes used has to be adjusted poloidally to accommo

date the nuclear peaking. However, the thermal hydraulic parameters will be 

based on the average nuclear heating. 

The total thermal power in the blanket consists of nuclear heating and 

radiant surface heating. Nuclear heating consists of 80% of the fusion power 

multiplied by the overall blanket multiplication. The total radiant surface 

heating depends on impurity control assumption and can vary from a lower limit 

of 228 MW to an upper limit of 494 MW. Using the upper limit we obtain as the 

total thermal power 3648 + 494 = 4142 MWth· Of this amount, 76% of the 

nuclear heat and all the radiant heat ends up in the blanket or 3266 MWth· 

The power in the reflector is only 876 MWth· 

To determine the maximum temperature at the first wall it is necessary to 

obtain the bulk coolant temperature profile in the outer tubes. Since the He 

gas circulates in a spiraling motion within the outer tubes which are in con

tact with the first wall, it is the coolant bulk temperature which will deter

mine the hot spot on the first wall. We write steady state one dimensional 

energy ba 1 ance equat i ons for the He gas and for the b 1 anket mate ri a 1 s (Be and 

LiPb} along the circumferential length neglecting circumferential conduction 

and all convection. This approach is conservative in that it predicts slight

ly higher circumferential temperature gradients in the coolant and the blanket 
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materials. The results are plotted Fig. 5.3-6 where the He gas temperature 

profile is plotted as a function of the tube length for the first and the last 

outer tubes in any cell sextant. The He gas temperature as it leaves the last 

point of contact with the first wall is 495°C, To this must be added the 

cumulative temperature rise through the gas film on the inside of the coolant 

tube, conduction through the tube wall, the Be-LiPb and finally the tempera

ture rise across the first wall due to surface and nuclear heating. 

The average velocity in the tubes is 76 m/s and the heat transfer 

coefficient 0.71 W/cm2K. For the average condition where the tube spacing 

at the first wall is 1.09 cm, the heat flux on the coolant tube on the side 

in contact with the first wall is 23.6 W/cm2• This heat flux can be made to 

be the same at peak nuclear heating locations by simply adding tubes and 

decreasing the spacing between them. 

The temperature drop across the fi rst wall depends on the surface heat 

load which is dependent on the impurity removal assumption and to a lower 

degree on the nuclear heating. Using the lower limit gives a surface heat 

load of 10 W/cm2 while the upper limit yields 20,5 W/cm2. Assuming the lower 

limit of surface heat load and average nuclear heating gives an average first 

wall temperature of 544°C. The same surface heating at the peak nuclear 

heat i ng gi ves an average fi rst wa 11 temperatu re of 548°C. lf, however, the 

upper limit of surface heat load is used, the corresponding average first wall 

temperatures would be 554°C and 558°C respectively for the average and the 

peak nuc 1 ear heat i ng zones. These values assume no heat transfer in the 

circumferential direction and are therefore conservative. 

The total He gas mass throughput through the reactor is 2600 kg/s. The 

pressure drop in the blanket tubes and the manifolds is calculated using the 

equation: 

2 
l!. _ 2fpv L 
p - gD 

where f is a friction factor, p the density, v the velocity, L the length, g 

acceleration due to gravity and D the diameter. The friction factor is 

obtai ned from: 

f 0.0024 + 0.125 (Dvp)-0•32 
J.l 
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where 11 is the gas viscosity. The calculated friction factor is .004 and llp 

i s equa 1 to 1770 g/ cm2• 
Pumping power is then equal to Vllp where V is the volumetric throughput. 

Using the volumetric throughput at the average gas density we obtain a pumping 

power of 77 MW for the blanket. 

Table 5.3-3 gives the thermal hydraulic parameters of the blanket. 

5.3.4 Blanket Stresses 
During normal operation the blanket outer structural shell operates at a 

low pressure and consequently a negligible pressure stress. The blanket, 
however, is designed to withstand a leak in one or more coolant tubes, in 

which case the shell will experience a pressure of 8 MPa. The cooling tubes, 

however, are constantly subjected to the high pressure and for this reason we 

have designed them with a higher margin of safety. 

Figure 5.3-7( 1) gives the recommended design stress values for HT-9 

ferritic steels as a function of temperature. There is a discontinuity in 

the curve where the design stress criterion changes from a fraction of the 

yield strength to creep rupture in 105 hours. This discontinuity occurs at 

~ 535°C. From the previous section we determine that the maximum average 

temperature in a cool ant tube i s ~ 550°C and of the fi rst wall 558°C. The 
corresponding recommended design stress values are 128 MPa and 125 MPa, 

respectively. 
The maximum stresses in the coolant tubes are circumferential, which for 

a thin walled cylindrical vessel are: 

Pr 
C1 =-t 

where Pis the pressure, r is the average radius and t the wall thickness. 
For the coolant tubes of 1.0 cm internal diameter and 0.05 cm wall thickness 

the stress is 85 MPa. This is only 2/3 of the recommended design stress at 

this temperature. 
The stresses in the semi-ellipsoidal toroidal shell which make up the 

front and the rear surfaces of a blanket cell are:( 2) 

In the center of the semi-ellipse: 

Longitudinal stress 
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Table 5.3-3. Thermal Hydraulic Parameters of the Blanket 

Fusion power (MW) 

Total thermal power (MWth) 
Thermal power in the blanket (MWth) 

He gas inlet temperature (°C) 
He gas outlet temperature from blanket (°C) 

He gas outlet temperature from reflector (°C) 

He gas pressure (MPa) 

He gas mass throughput (kg/s) 
Heat flux on front surface of outer tubes (W/cm2) 

Avg. nuclear heat in FW (W/cm3) 
Peak nuclear heat in FW (W/cm3) 

Lower limit surface heat (W/cm2) 
Upper limit surface heat (W/cm2) 

Avg. FW temp. at peak nuclear heating (°C) 
Avg. FW temp. at peak nuclear heat and max. surface heat (°C) 

Max. temp. of coolant tube (°C) 
Avg. He gas velocity in coolant tube (m/s) 

Avg. heat transfer coefficient in coolant tube (W/cm2K) 

Avg. He gas velocity in supply manifold (m/s) 

Avg. He gas velocity in return manifold (m/s) 

Max. stress in coolant tubes (MPa) 

Max. thermal stress in FW (MPa) 

Min. Thermal stress in FW (MPa) 
He gas pressure drop in the blanket (MPa) 
Total pumping power for the blanket (MW) 

LiPb pumping power (kW) 
Gross power cycle efficiency (%) 
Gross electric power output (MWe) 
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Fig. 5.3-7. Allowable design stresses in HT-9. 
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Tangential stress 

In the knuckle: 

Longitudinal stress 

Tangential stress 

where P is the pressure, R is the half width of the major dimension of the 

semi-ellipse, t the wall thickness, h the half width of the minor dimension of 

the semi -e 11 i pse and Rt the radi us of curvature of the front of the semi

ellipse. Forthis blanket P is 8.1 MPa, and R is 10.7 cm, h is 5.4 cm at the 

widest portion of the cell. In a semi-ellipsoidal toroidal shell, the domi

nant stresses are the longitudinal and tangential stresses in the center of 

the shell and are equal to 143 MPa in this case. As mentioned, in the worst 

case (upper limit of surface heating and peak nuclear heating) the recommended 

design stress value based on creep rupture in 105 hours is 125 MPa. It should 

be repeated that this stress will be felt in the toroidal shell only in the 

event of a 1 eak in a coo 1 ant tube. We expect that a 1 eak can be detected 

within minutes, the plasma shut down and the blanket depressurized. The 

equilibrated temperature of the blanketat shutdown is only 435°C which will 

also be the temperature of the first wall and the recommended design stress at 

this temperature is 185 MPa. At these conditions, low pressure He gas can be 

circulated indefinitely to absorb afterheat. 

The thermal stress in the first wall is calculated by the following 

formula: 

where cx is the coefficient of expansion, E the modulus of elasticity, k the 

thermal conductivity, v Poisson's ratio, qs surface heating, qn nuclear 

heating and t the wall thickness. For HT-9 at 550°C and using the lower limit 

surface heat and average nuclear heating we obtain crth = ± 42 MPa while for 

the upper limit surface heat and peak nuclear heating, crth = ± 80 MPa. This 
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means that the front surface of the first wall will be in compression and the 

rear surface in tension. 

It is important to understand the significance of the thermal stress. 

Structure that has not experienced radiation creep will have the thermal 

stress in it as soon as the plasma is turned on. Thermal and radiation creep, 

however, will anneal the thermal stress out. This means that the structure, 

after a certain amount of radiation exposure, will have nothermal stress' as 

long as there is surface and nuclear heating. However, when the plasma is 

turned off, the thermal stress reappears in reverse, namely the front surface 

of the first wall will be in tension and the rear surface in compression. 

Assuming the higher value of thermal stress, the implication of this is that 

in the event of a coolant line leak and plasma shutdown, the first wall will 

have a tensile stress of 223 MPa on the front surface and 63 MPa on the rear 

surface until the blanket is depressurized. Again we feel this is tolerable 

for a few minutes, in view of the fact that yield strength of HT-9 at 550°C 

i s > 300 MPa. 

5.3.5 Reflector Design 

The reflector in ASRA6C is an important component in the reactor since it 

acts as a part of the shield and its energy is used di rectly in the power 

cycle to improve the overall thermal efficiency. It is cooled in series with 

the blanket, using the same He gas. 

The reflector is made of the modified 9Cr1Mo ferritic steel which has 

been normalized and tempered. The modification is done by the addition of 

0.06-0.1% Nb and 0.18-0.25 V to the original composition of 9Cr1Mo.( 3) In 

this composition this alloy has creep strength which exceeds that of standard 

9Cr1Mo for the temperature range 427-704°C·. The total elongation and reduc

tion of area values for all test temperatures and rupture times up to 22,500 

hours exceed 15% and 70% respectively. Estimated design allowable stress 

values are considerably higher than the standard alloy, being a factor of two 

higher at 550°C. Figure 5.3-8 gives the allowable design stress value as a 

funct i on of temperature for the range 550°C to 640°C. These va 1 ues have been 

obtained from V. Sikka•s paper.(3) 

The reflector is built up of concentric ellipses which have cooling chan

nels machined into them prior to assembly. Figure 5.3-9 shows an end view of 

the reflector and a cross section at plane A-A. The details show the manifold 
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cutouts on the inner surface of the elliptical reflector and also the three He 

gas inlet ports. The cross-section at A-A shows the reflector as consisting 

of three zones used forthermal hydraulic analysis. The first zone consists 

of a single ellipse 13.6 cm thick which is deeply grooved on the back side. 

The grooves are 0.5 cm thick and 12.6 cm deep, coming to within a centimeter 

of the front surface. This is done to reduce the effect of thermal stress 

while keeping the hoop stresses low. The second zone consists of an assembly 

of three ellipses with cooling grooves machined into them. These ellipses 

carry the longitudinal force in the reflector. Finally, the last zone is 

another heavy walled ellipse with grooves machined on the inside surface. 

The He gas flow path in the reflector is chosen to minimize high temper

ature buildup and the coolant channel distribution is consistent with the 

nuclear heating in the reflector. 

The reflector is cooled with He gas at 80 atm in series with the 

blanket. It receives gas from the blanket at 510°C and discharges it to the 

steam yenerator at 575°C, giving up 876 MW of thermal energy in the process. 

Figure 5.3-10 is a segment of the same end view as in Fig. 5.3-9 but has 

the He gas flow path indicated on it. He gas enters the three ports, travels 

axially and then splits in half and travels circumferentially through the 

grooves in Zone I. Not i ce that there i s countercurrent fl ow of gas through 

alternate grooves in this zone, designed specifically to average temperatures 

out. A considerable amount of energy recirculation takes place from the 

countercurrent flow; however, no energy is wasted. After going through Zone I 

the gas then goes through Zone I I also f1 owi ng countercurrent but in grooves 

at two different radii. This is done for a very special reason. The nuclear 

heat i ng in the fi rst row of grooves in Zone I I i s greater than in the second 

row. Thus the gas flowing in the first row will end up at a slightly higher 

temperature than that in the second row. The last zone has only singular flow 

of gas in it before the two streams coming from opposite sides combine and 

exit tagether from the back of the reflector. 

Helium gas temperatures are determined from energy and mass flow balance 

equations, and heat transfer coefficients are calculated using average gas 

velocities and properties for each zone. The results are presented in Table 

5.3-4. 
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Table 5.3-4. Thermal Hydraulic and Stress Parameters of Reflector 

Zone I Zone II Zone III 

Zone thickness (cm) 13.5 13.4 17.3 
Inner radi us at midplane (cm) 255 268.5 281.9 
Outer radius at midplane (cm) 268.5 281.9 299.2 
Local zone void fraction (%) 13.1 13.3 5.1 
Overall void fraction (%) 4 4 2 

Nuclear heating (MW) 560 237 79 
Mass flow per 1/3 reflector (kg/s) 887 887 887 

Inlet He gas temperature (°C} 510 551 569 
Outlet He gas temperature (°C} 551 569 575 

Characteristic channel width (cm) 0.5 1.0 0.5 
Average He velocity (m/s) 45 43 50 

Average heat transfer coefficient (W/cm2-K) 0.40 0.40 0.40 
Temperature of outer wall surface (oc) 560 N/A* 590 

Tempe~ature of inner wall surface (oC) 551 N/A* 586 

Average cylinder temperature (°C) 555 565 594 

Recommended design stress (MPa) 92 85 64 

Thermal stress (MPa) ± 14 N/A* ± 2.8 

Pressure stress (MPa) 55 32 55 

Maximum stress (MPa) 69 32 58 

Average stress (MPa) 55 32 55 

Pressure drop (MPa) 0.032 0.025 0.023 

*N/A means not applicable 
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Thermalstressesare fairly low because all the heating is relatively low 

nuclear heating. They are calculated using thick walled vessel formulae. To 

calculate the pressure stress, we assume the whole reflector acts as a unit, 

since all the layers are in contact with each other. Here again we use the 

thick walled vessel equations. The stresses in Zone li are mostly due to 

1 ongitudi nal forces. 

The total pressure drop in the reflector is equal to 0.08 MPa giving a 

pumping power requirement of 45 MW. Thus the total pumping power requirement 

for the blanket and reflector is 122 MW not counting the pressure drop through 

the steam generator. This is 6.9% of the gross electric power and 2.9% of the 

total thermal power. 
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5.4 Blanket Neutranies Analysis 

5.4.1 Introduction 

The main function of the blanket in a 0-T fusion reactor is to hreerl 

tritium, and recover and multiply the neutron energy. In adrlition, it 

cooperates with the reflector and shield in providing adequate radiation 

protection for the superconducting (S/C) magnets. However, the hlanket has 

less shielding performance and keeping its thickness to a minimum reduces 

the sizes of the reflector, shield, and magnet, and, thus, rlecreases the 

overall reactor cost. Other advantagesforthin blankets include reducerl 

tritium and Li inventories, and light weight rr10rlules which greatly ease the 

replacement and maintenance process of the blanket. 

Lithiumlead (Li 17Pb83 ) is an attractive choice for the breeding material 

where the breeder and multiplier are intermixed. It has other attractive 

features regarding reactor safety, tritium breeding, tritium extraction, and 

energy multiplication. The need for a thin blanket design provided a driving 

force to improve the performance of the LiPb-type hlanket through arlding a 

moderater to the breeder to soften the neutron spectrum and, thus, enhance the 

tritium breeding. Almost all the tritium breerling in such a system results 

from the 6Li(n,a)T reaction and, therefore, it is beneficial to highly enrich 

the Li in 6Li. An overall tritium hreeding ratio (TBR) of 1.05 is a design 

~oal for the ASRA6C blanket and as large an energy multiplication (M) as 

possible is highly rlesirable to improve the reactor economics. 

5.4.2 Moderator Choice 

The description of how the choice of the moderater affects the TRR, ~~. 

and the blanket thickness is thoroughly covered in Ref. 1 and only a summary 

of the analysis is given 

graphite and beryllium. 

beryllium has the dual 

here. Candi date moderators are hydrogen compounds, 

Hydrirles are good neutron moderators. However, 

advantage of acting as moderater and multiplier. 

Basically, two generic configurations were examined; the morlerator in the 

first is TiH2 , while in the secend is Be. The results of the two cases were 

then compa red to the case of a pure Li Pb b l anket. 

carried out in one-dimensional (1-D) cylindrical 

ordinates transport code ONEDANT( 2 ) with the 

(30 neutron and 12 gamma groups) which is based 

All the calculations were 

geometry using the discrete 

LANL nuclear data library 

on the ENOF/13-V evaluation. 

In the analysis, we considered 10 vol% coolant and 10 vol% HT-9 structure in 

all blankets. A meter thick He cooled HT-9 reflector was placed behind the 
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blanket to reflect some of the leaked neutrons and intercept most of their 

energy. The results of the analysis show that a 0,275 m thick LiPb blanket 

yields a TRR of 1.05 and M of 1.32. The TiH 2 (at AO% theoretical density) was 

gradually added to the LiPb blanket (trading LiPh for TiH?). The optimum mix

ture that maximizes the TBR consists of 10 vol% TiH 2 and 70 vol% LiPb yielding 

TBR and M of 1.37 and 1.23, respectively. In order to get a TRR of 1.05, the 

LiPb/TiH2 blanket thickness was reduced to 0,145 rn. This corresponds to al

most h~lf of the LiPb blanket thickness and results in an M of 1.2R. Although 

the performance of the TiH 2 is acceptable from the neutranies standpoint, the 

decomposition of the TiH2 at elevated temperatures lirnits its use in the 

blanket. 

The alternative option is to use beryllium as a moderator. Beryllium 

is not only an excellent moderator, but it is also an effective neutron 

rnultiplier. It increases the total numher of neutrons through a high (n,2n) 

reaction cross section with a relatively low threshold energy at 1.7 MeV (com

pared to 6.7 MeV for Pb). The effect of Be is demonstrated upon adding the Be 

(at 90% theoretical density) to the 0.275 m thick LiPb blanket (trading LiPb 

for Be). The TRR peaks at 70 vol% Be and 10 vol% LiPb at a value of 1.68 and 

the corresponding value of M is 1.56. The 0.275 m thick LiPb/Be hlanket gives 

excessive breeding and a 0.137 m thick LiPb/Be blanket was found to give a TBR 

of 1.05 and M of 1.57. 

Clearly, the LiPb/Be concept yields the thinnest breeding hlanket with 

the largest energy multiplication. Two important factors must he considered 

in the design of a LiPb/Be blanket, however. Firstly, due to the small LiPb 

inventory in the thin LiPb/Be blanket, the Li will he rlepleted rapirlly and the 

TBR will decrease during reactor operation. Therefore, during the process of 

slowly circulating the LiPb for tritium removal, Li replenishment rnust be done 

continuously in order to maintain a constant 6Li concentration in the breeder. 

Secondly, at the ASRA6C flux level, the Re swells hy 10 vol% at the end of the 

5 FPY design lifetime of the blanket.(3) At that time the blanket will be 

changed and the Be must be reprocessed. 

5.4.3 Tritium Breeding Reguirements 

In ASRA6C, the NBI and pumping ports subtend ~ 10% of the total solid 

angle seen by the source neutrons. The direct loss of the 14.1 t-1eV source 

neutrons through the penetrations is predicted to be 10%. One would expect 

that the local T8R drops by 10% and a value of 1.17 results in an overall TBR 
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of 1.05. Unfortunately, this is not the case because the lower energy neu

trons that are mocterated in the bl anket anrl refl ecterl hack i nto the pl asma 

chamber will also ?trearn tflrough the portsandas a result tfle TRR and t·1 

decrease more rapidly than the loss of blanket coverage. ~1eier(4) performerl 

3-0 calculations to analyze the effects of the penetrations on the neutron 

leakage and the blanket perforrnance. The analysis was carried out for an 

Inertial Confinement Fusion (ICF) spherical geornetry, natural 1\; in u 17 Ph83 , 

10 vol% structure content, and 70 cm thick hlanket. The conclusion v1as that 

the number of neutrons per 0-T fusion reaction that reenter the plasrna charnher 

is 7.8 neutrons per 0-T neutron. Moreover, the total neutron leakage through 

the penetrations is a factor of 6-7 higher than the ctirect loss. As a result 

of the enhanced neutron leakage, the TBR and M decrease at 3.5-4.5 and 2.5-3.5 

times the expected rate, respectively, with the high and low ends of this 

range corresponding to solid angles < 2% and 10%, respectively. The results 

are shown in Figs. 5.4-1 and 5.4-2. The Tr(O) and Eo(O) are the TBR and M for 

the case without penetrations. 

In order to scale from r~eier•s results, a run was made for the ASRA6C 

thin LiPb/Be blanket with cylindrical geornetry, in which the nurnher of 

reentering neutrons to the plasma charnber was calculated. This number was 

found to be 3.5 neutrons per 0-T neutron. Scaling from Meier•s results we 

determi ned that the rat i os of the overa 11 to 1 oca 1 TBR and M are 0. 76 and 

0.83, respectively, for the ASRA6C hlanket with 10% penetrations as shown in 

Figs. 5.4-1 and 5.4-2. Th.is means that a local TBR of 1.4 must he achieved 

to meet the rlesign goal for the tritium breerling in ASRA6C. 

It should be mentioned that the required local T8R is conservatively 

estimated for two reasons. Firstly, there is a difference in the angular 

distribution of the source neutron incident on the first wall between ICF and 

magnetic fusion. The distribution is forward peaked in the ICF and results in 

a complete loss of the source neutrons streaming through the penetrations. 

Secondly, in ASRA6C there are numerous small penetrations while Meier carried 

out the analysis for two large penetrations. These two differences lead to a 

1 arger chance for the streami ng neutrons to enter the bl anket frorn the pene

tration walls and contribute to the breeding in the ASRA6C blanket. 
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Fig. 5.4-1. Normalized TBR as a function of the opensolid angle fraction; 
the dashed line is the geometrically predicted scaling {Ref. 4). 
The chain-dashect line is our estimate for the thin LiPb/Be 
blanket of ASRA6C. 
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5.4.4 Final ßlanket Design 

In the ahove scoping analysis, we have considered 10 vol% coolant and 10 

vol% strtrcture that v1ere invariant with the blanket thickness. In the actual 

design, these quantities vary according to the blanket thickness in order to 

meet the mechanical and thermal hydraulics requirements. With the constraint 

of 1.4 local TBR, many iterations were performed to determine the blanket 

thickness and content that satisfy all requirements for neutronics, thermal 

hydraulics, anrl mechanical design. The LiPb to Be ratiowas reoptirnizerl for 

the thin hlanket with the TRR being rnaximizerl. The variation of the TRR with 

the total blanket thickness is given in Fig. 5.4-3. The results show that the 

required blanket thickness is 0.21 rn and consists ()f 14 vol% LiPh, 55.7 vol% 

Be, 10.3 vol% HT-9 with the balance being void and He coolant. Only 0.04% of 

the TBR is contributed hy the 7Li(n,n'a)T reaction. 

The energy multiplication depends on the thickness of the reflector as 

the energy i s recovered from both b 1 anket and refl ector. In ASRA6C, the re

flector acts as the first layer of the magnet shield and its thickness depends 

on the shield materials, the allowable radiation limits in the magnet, and the 

neutron wall loading. An extensive study has been performed to optirnize the 

shield and determine the thickness that adequately protects the magnet. As 

shown later, the optimal shield consists of 58.1% steel-shield, 33.6% R4c
shield, and 8.3% Pb-shield. The values indicate percentage of the total re

flector and shield thickness which is 0.76 m. The reflector thickness is, 

therefore, 0.442 m and the corresponding value for the local energy rnultipli

cation is 1.45. 

The energy in the blanket amounts to 76% of the total and the neutron 

heating contrihutes 80% of blanket energy, whereas in the reflector the energy 

i s most 1 y produced by garnma rays. Appropri ate refl ector cutouts are used to 

accommodate the He manifolds implying that the reflector thickness is reducerl 

by 0.15 m at the poloidal locations v1here the manifolds are located. The 

manifolds cover 30% of the reflector area and reduce M to 1.43. As rnentioned 

before, the 10% penetrations result in an overall M that ic; 83% of the full 

coverage value. Therefore, the overall energy multiplication in ASRA6C is 

1.2. 
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5.5 Tritium Removal from the Breeder Blanket 

5.5.1 Introduction 

The 1 i qui d breeder all oy, Li 17 Pb83 , tagether with Be spheres are con

tained within the blanket for the thin blanket design. Tubes containing 

flowing helium are interspersed within the blanket for heat removal. Tritium 

removal from the breeder can be accomplished by either (1) slow circulation 

of the liquid breeder to an external Tritium Removal System (TRS), or (2) non

circulation of the liquid breeder so that the tritium permeates from the 

breeder into the coolant from which it is removed (see Fig. 5.5-1). The pri

mary advantage of the former systemisthat the tritium concentration in the 

liquid breeder can be more easily controlled by variations in the recycle 

rate, whi le the static system has the advantages that the MHD pressure oppos

ing the flowiny liquid metal in the complex magnetic field of the Stellarator 

is eliminated and corrosive effects caused by the flowing liquid are reduced. 

Both tritium removal schemes were briefly analyzed. 

Both tritium removal schemes allow some tritium to permeate from the 

breeder into the helium coolant. A technique must be used to lower the T2 
pressure in the helium coolant so that the tritium permeation is not excessive 

in the steam generator (SG) where it can be lost to the environment. The tri

tiumpartial pressure is reduced, therefore, by the addition of oxygen into 

the helium so that T2o is formed. While the uncatalyzed reaction rate for the 

oxidation of hydrogen is low, recent experimental studies(l) indicate that, 

when tritium permeates through a steel tube which is externally coated with an 

oxidized surface, greater than 95% of the tritium is converted to the oxidized 

form. For thi s study we assume that 99% of the trit i um can be oxi di zed wi th 

careful oxidation of the steel. Additionally, investigators( 2) conclude that 

an oxidized steel surface retards the permeation of hydrogen as compared to an 

unoxidized surface. This retardation effect increases as the hydrogen partial 

pressure decreases, as shown in Fig. 5.5-2 for an oxidized surface on ferritic 

steel. At the T2 partial pressure in the helium typical ofthat found in the 

steam generator (SG), the permeation rate decreases approximately 103 times as 

compared to the unoxidized surface in which the permeation rate is a function 

of the square root of the hydrogen pressure. Additionally, the permeation 

rate for T2 is decreased by a factor of 10 to 102 at 103 Pa(T2) which is the 

typical :r2 pressure in the liquid breeder alloy. These retardation effects 

were utilized in this study. 
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LIQUID BREEDER CIRCUIT 

Fs = ftow rate ot breeder 
FG = :ftow rate of coolant gas 
a = ftoaction of gas ftow to OXR 
X11 X::s, X 1, Xe = mole ftoactlon T::s ln He 
Xao, Xu, X12, Xn = mole ftoactlon of T::sO ln He 

~o :;: rate of' T::sO removal 
~ = rate of' T::s removal 

HELIUM COOLANT CIRCUIT 

XsR,XBB = g atoms T/mole of Ll1rPbu 
Ps = tritlum permeatlon rate to the coolant gas 
PsG = trltlum permeatlon rate to the steam clrcuit 

BLK = breeder blanket 
OXR = trltlum oxide removal systern 
TRS = tritium removal system f'or liquid breeder 
SG = steam generator 
MIX = mixer f'or gas streams 

Fig. 5.5-1. Flow diagram for tritium removal from the helium and the liquid 
metal breeder circuits. For the nonconvective breeder concept 
only the helium coolant circuit is used. Both circuits are used 
for the circulating breeder concept. 
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5.5.2 Circulation of the Breeder for Tritium Removal 

In order to control the T2 pressure in the helium coolant, and subse

quently the tritium permeation through the SG, we have considered both (1) 

the ci rculation rate of the breeder through the blanket and the TRS and (2) 

the fraction of the coolant which can be diverted to a side-stream for tritium 

removal. Forthis study the following assumptions were made: (1) a stream 

degassing technique(3) was adapted for the liquid metal TRS in which 75% 

of the tritium is degassed from small droplets (1 mm radius) of the liquid 

breeder during a fall of 10 m in a vacuum vessel; (2) during the permeation 

of the tritium from the liquid breeder into the coolant, 99% of the desorbed 

species were assumed to be r2o and only 1% as r2; (3) the exit stream from the 

helium purification system in which all the tritium is oxidized and collected 

on a desiccant was considered to contain essentially zero concentration of r2 
while the T2o pressurewas limited to 0.48 Pa, the vapor pressure of ice at 

-66°C, and (4) only the r2 species were allowed to permeate the SG. 

Based on the above assumptions, a sensitivity analysis was made, as shown 

in Fig. 5.5-3, in which the tritium permeation rate in the SG was determined 

as a function of the breeder purification rate and the fraction of the helium 

coolant diverted for tritium removal. The fraction of the helium flow di

verted to the side-stream for purification was kept small, e.g. 0.25, 1 and 

4%, so that the s i ze of these components woul d not be exces s i ve. Typi ca 1 

HTGR fission reactors which release little fission products utilize < 0.1% 

continuous He purification.(4) The possible flow rates of the liquid breeder 

through the bl anket were l imi ted by the pumpi ng power requi red to ci rcul ate 

this liquid. As a first approximation the pumping power was related to the 

pressure requi red to force the vi scous 1 i qui d through the Be spheres in the 

blanket plus the MHD resistance to flow caused by the conductive liquid 

flowing in the magnetic field, Table 5.5-1. For this calculation all of the 

liquid breeder was assumed to enter a plenum at the top of the blanket, flow 

al ong one-hal f of the ci rcumference of the bl anket and exit at the bottom 

during residence times of 100 and 1000 s. The residence time of 100 s re

quires a reasonably low pumping power, 0.5% of the fusion power; consequently, 

residence times of 100 to 500 s are preferred. The excessively slow residence 

time of 1000 s would only be used if it were necessary to reduce possible 

corrosion and mass transfer effects. 
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Table 5.5-1. Pumping Power for Breeder Circulation 

Residence Time, s 

100 1000 

Velocity, mm/s 90 9 

Fl ow Rate, m3/s 0.64 0.064 

f~Pviscous• MPa 5.5 0.055 

f~PMHD• MPa 24 2.4 

f~Ptotal • MPa 30 2.5 

Pumping Power, MW 19 0.16 

Pumping Power, % 0.5 0.004 
Fusion Power 
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In order to assess the performance of such a system, we selected the case 

for 1% helium-purification from Fig. 5.5-3 with a liquid breeder residence 

time of 320 s in the blanket; the results are shown in Table 5.5-2. The aver

age tritium concentration in the ltquid breeder is 3 x 10-9 wt. fraction tri

t i um so that for the tota 1 breeder in the b 1 anket, 6. 4 x 105 kg, the tota 1 

inventory is only 1.9 g of tritium. For a Sievert•s constant of 1.2 x 10-3 

wppm tritium/Pa1/2 at 400-500°C the tritium pressure in the blanket is 6.1 Pa. 

The c·oncentration of r2o in the helium coolant is 7.2 x 10-8 mole fraction 

(0.57 Pa) while the T2 concentration is 1.2 x 10-10 mole fraction (1 x 10-3 

Pa), resulting in the permeation of only 20 Ci/d of tritium to the SG. For 

the entire He circuit, ~ 2.85 x 104 kg He, the tritium inventory is 3.2 g, 

consisting mostly of r2o. 
5.5.3 Noncirculating Breeder System 

For the static blanket system, all of the tritium produced in the liquid 

alloy breeder must be removed either by permeation through the coolant tubes 

into the helium or by permeation through the cell walls directly into the 

plasma chamber where it can be processed with the plasma-exhaust gases. Based 

upon the dimensions of the blanket and the respective barrier factors for 

tritium permeation, i.e., one for the first wall, 102 for the helium coolant 

tubes and 103 for the SG (Fig. 5.5-2), approximately 72% (8.5 x 10-4 moles 

r2;s) permeates into the plasma chamber while 28% (3.3 x 10-4 moles r2/s) per

meates into the helium coolant. Of the tritium in the helium only 3.3 x 10-6 

moles/s is generated in elemental form, r2, which can permeate at the SG. 

In order to assess the potential for tritium permeation at the SG, the 

following conditions were examined: a side-stream of the fraction, ~. of the 

total helium flow was diverted for r2o + r2 removal, resultiny in a steady

state concentration of the tritium in the helium. The concentrations of r2o 
and r2 at the exit of the He purification system are the same as given in 

Section 5.5.2. The permeation rates of r2 through the SG were then calculated 

for this range of r2 concentrations. The results shown in Fig. 5.5-4 indicate 

that the tritium release rate decreases rapidly from 54 Ci/d at ~ = 0.5% to 

21 Ci/d at ~ = 3% and then decreases more slowly as ~ increases. 

As an example, the inventories of tritium in the helium coolant and the 

liquid breeder were calculated for the case of 1% helium purification rate, 

Table 5.5-2. The tritium inventory in the helium coolant is 4.8 g which 

exists principally as r2o at a partial pressure of 0.82 Pa.· The steady-state 
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Table 5.5-2. Comparison of Static Breeder Blanket with 
Circulating Breeder Blanket for Tritium Removal 

Parameter 

Coolant Purification 

Rate, % 

Breeder Residence 

Time, s 

Oxide Barrier 

Factor 
Steam Generator 

Coolant Tubes 

T2/T20 Ratio Desorbing 
from Coolant Tubes, % 

Tritium Permeation 

To Cool ant, % 

To Plasma, % 
Through Steam 

Generator, Ci/d 

Tritium Inventory 

In Coolant, g 

In Breeder, g 

Static 
Blanket 

1 

CO 

1 

28 

72 

37 

4.8 

340 

-136-

Circulating 

Blanket 

1 

320 

1 

7 

0 

20 

3.2 

1.9 



partial pressure of T2 in the coolant is 3.5 x 10-3 Pa, giving a calculated 

tritium permeation at the SG of 37 Ci/d. 

The inventory of tritium within the liquid metal breeder is an important 

consideration but more difficult to quantify because of conflicting experi

mental data. In order to obtain a steady-state tritium permeation rate from 

the blanket modules at the same rate at which it is generated, a partial pres

sure of T2 within the blanket of 5.1 kPa (T2) is required. The concentration 

of tritium in the liquid alloy at this r 2 pressure is determined by use of the 

Sievert•s constant, Ks; however, two ranges of experimental values for Ks have 

been reported:{5,6,7,8) {4.6 x 105 and 5.0 x 104) kPa1/2;mole fraction T per 

mole of Li 17 Pb83 • Based upon these two values for K5 , the tritium inventory 

in the entire liquid alloy could be either 50 or 445 g. The lower solubility 

value is preferred at this time because a very recent determination( 9) sup

ports the low solubility value determined by Chan and Veleckis.( 5) 

The above inventory values are predicted for a well-stirred solution in 

which the tritium is homogeneously distributed throughout the liquid; however, 

for the presently proposed blanket the liquid alloy fills only 14% of the 

volume around the Be spheres •. As a result the liquid will not circulate and 

tritium can migrate to the walls only by the diffusional process. In this 

case, the inventory of tritium, Cr, is given by the relationship, 

• 2 

CT = .L!:._ + c 40 0, 

where, T = the tritium generation rate 

r = the radius of the blanket module 

D = the diffusion coefficient of dissolved T in 

liquid LiPb (~ 5 x 10-4 cm2/s) 

and C0 = the gaseaus solubility of r 2 in the liquid alloy. 

The first-term on the right-hand side of the above equation increases the 

tritium inventory by an additional 290 g. When combined with the previously 

determined value for C0 , the total tritium inventory in the blanket would be 

340 g, giving a mole fraction tritium concentration of 31 at.ppm. The tritium 

concentration in this alloy is important because the solubility limit has been 

reported to be near· 10 at.ppm by Wu,( 7) > 400 appm by Katsuta( 8 ) and was 

calculated by Buxbaum to be ~ 48 at.ppm(lO) Except for the first value, 
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apparently, the solubility limit for tritium in this alloy is not exceeded. 
If the solubility limit were exceeded, the diffusion of tritium through solid 

LiT would be approximately five-fold slower, thus increasing the tritium 
i nventory. 

5.5.4 Comparison Study 
In order to gai n an appreci at i an of the advantages and di sadvantages of 

the circulating and noncirculating breeder blanket designs, a comparison study 

was made at a similar design point for each system. The design point selected 

was at a 1% helium purification rate following passage of the coolant through 
the blanket (Table 5.5-2). The relevant values used to calculate the pathways 

of tritium in the blanket, also given in the table, were utilized to calculate 
the release of tritium at the SG, e.g. 20 Ci/d for the circulating blanket and 

37 Ci/d for the static blanket design. 
The significance of these amounts of tritium release to the environment 

is difficult to quantify at this time because the guidelines for the radio

active discharge from a fusion reactor plant have not been defined. As an 

indicator of possible limits, 11 different air dispersion models for continual 

release of HTO at the rate of 100 Ci/d at a height of 20 m were calculated and 

compared. (11) The chronic dose to an individual at 1 km distance from the 

release point varied from 0.6 to 14 mrem/yr, with an average of 3.4 mrem/yr. 

These values compare favorably with the U.S. EPA limit of 10 mrem/yr and the 
U.S. NRC limit of 5 mrem/yr to a maximum exposed individual.(12) Because the 

results of the comparison study (Table 5.5-2) are only 20% and 37% of these 

exposure guidelines such values should be initially conservative and no 

significance need be attached to the slight difference between them. 
The amount of tritium inventory in the coolant, chiefly as T2o (Table 

5.5-2), is similar in each case, i.e., 4.8 g (5 x 104 Ci) for the static 

blanket and 3.2 g (3 x 104 Ci) for the circulating blanket. In the most 

severe accident to the pressurized helium coolant system, all this tritium 
might be released to the environment. An assessment(11) has been made of the 

potential radiation dose to an individual residing 1 km from a puff release of 

104 Ci of HTO at ground level. Nine release models were considered and the 

radiation dose to the maximum exposed individual varied from 0.05 rem to 
1.2 rem with an average of 0.3 rem. Using the average value, we note that the 

maximum dose caused by tritium in such a potential accident would be 1.5 rem 
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for our stat i c b 1 anket des i gn. Tritium i s expected to cause the 1 argest 

radiological dose in s~ch an accident.(12) This dose is well within the 

25 rem limit suggested in the U.S. NRC Regulation 10 CFR 100. 

A chronic radiation dose could be caused by the continual leakage of 

helium and T2o from the highly pressurized coolant system. High quality 

construction and operation of the Dragon Reactor(13) in the U.K. has shown, 

however, that routine leakage of the helium can be maintained in the range of 

0.025 to 0.05% per day; therefore, the maximum expected release in the present 

case would be only 25 Ci/d and most of it would be within the containment 

building where it could be recaptured. 

The most significant difference between the two types of blankets being 

considered is in regards to the tritium inventory in the breeder, i.e. 390 g 

for the static blanket but only 1.9 g for the circulating blanket. Because 

of this large difference we prefer, at this time, the circulating blanket 

concept. The static blanket concept should be retained for future consider

ation, however. Although the static liquid metal breeder has a relatively 

high tritium inventory, it is much less than in a ceramic breeder such as 

lithium oxide(4) in which the tritium inventory may exceed 1 kg. Also, be

cause tritium in the liquid metal alloy breeder can permeate directly through 

its containment capsule, no secondary circuit for T20 recovery is needed as 

for a ceramic breeder. As more experience is gained regarding the breeding 

and diffusion of tritium in this liquid metal breeder the static blanket may 

become more viable. Then, the helium coolant tubes can be judiciously 

repositioned toshorten the diffusional paths for heat and tritiumremoval 

and, consequently, reduce the tritium inventory. 
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6. SHIELD DESIGN AND OPTIMIZATION 

6.1 Neutron Hall loading nistribution 

In toroidal fusion reactors, the neutron wa11 loading exhibits a poloirlal 

variation that can deviate considerably from the nominal value of the neutron 

wa11 loading defined as the neutron fusion power divided by the first wall 

area. This poloidal variation has an important impact on the first wall life

time as well as the reactor thermal-hydraulics design. In arldition, the wall 

loading distribution helps identify locations of magnet hot spots and facili

tates the design of a magnet shield that satisfies the magnet radiation 

lirnits. The poloidal wall loading distribution depends on the aspect ratio, 

the plasma shape, the neutron source distribution in the plasma and the first 

wall shape. 

The neutron wall loading distribution in ASRA6C was determined using the 

NEWLIT code. (1) The code uses ray tracing techniques to determine the extent 

of the plasma contribution to the neutron current at a given point on the 

wall. The source distribution within the plasma is taken into account by 

properly represent i ng the different magnet i c surfaces. The boundary of the 

plasma as well as the first wall can take any shape. The code assumes toroid

a 1 symmet ry with a symmet ri c p 1 asma shape about the reactor mi dp 1 ane. Two 

ca 1 cul at i ons were performed for the two toroi da 1 1 ocat i ons in ASRA6C where the 

plasma is horizontal (~ = 0°) and vertical (~ = 36°), The plasma outer boun

dary was fitted to a 0-shape at each of the two toroidal locations. The mag

netic shift was taken to be 50% of the plasma radius at the reactor midplane. 

The neutron source in the plasma was considered to vary with distance frorn the 

magnetic axis as {1- (r/rp)2}2• The results were normalized to a reactor 

fusion power of 3.8 GW. The plasma parameters obtained by D-shape fitting at 

the toroidal locations ~ = 0° and 36° are given in Table 6,1-1. 

In the fi na 1 des i gri for ASRA6C, the fi rs t wa 11 has the same e 11 i pt i c 

shape at all toroidal locations with a = 2.32 rn and b = 3.23 m. The center of 

the ellipse moves in the reactor midplane with the distance from the reactor 

major axis ranging in each field period from 19.68 m at the toroidal location 

~ = 0° to 20.32 m at ~ = 36°. The results of the calculations are shown in 

Fig. 6.1-1. The wall and plasma shapes are indicated as well as the source 

distribution. The dashed line represents the average wall loading which was 
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Table 6.1-1. Plasma Parameters at ~· = 0° and 36° Obtained by Fitting the 

Bounrlary to R = RP + rp cos (t + CP sin t) and Z = rPKP sin t 

~ = oo ~ = 36° 

Plasma major radius Rp (m) 19.78 20.46 

Plasma minor radius rp(m) 2 0.93 

Plasma elongation factor Kp 0.765 3.07 

Plasma triangularity factor cP 0.52 0 

Magnetic shift Ern (m) 1 0.46 
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determinecl to be 1.4 t~H/m2 • The results indicate that at all toroidal loca

tions, the peak neutron wall loading occurs on the outhoarrl sirle at the 

reactor midplane. The peak neutron wall loading in I\SRA6C is 2.4 t1t·J/m 2 anrl 

occurs at the five toroidal locations where the plasma shape is horizontal. 

This peak value calculated by NEWLIT, which assumes axisymmetry, is a good 

estimate since the peak neutron source is nearly the same clistance from the 

major axis at all toroidal locations. The peak valu~ is 70% higher than the 

average neutron wall loading of 1.4 MW/m2• The minimum wall loading is 

1.1 MW/m2 at a poloidal angle of - 110°. 

Several alternate designs were considered for ASRA6C in which the first 

wall shape varies as one moves toroidally around the major axis. In these 

design options the first wall follows closely the plasma boundary shape as 

explained in Section 5.2. The neutron wall loading distribution calculated 

using the plasma and wall configuration at the toroidal location cp = 0° is 

shown in Fig. 6.1-2. The peak neutron wall loading is 2.54 MW/m2 and occurs 

slightly above the reactor midplane at a poloidal angle of- 30°. 13ecause of 

the reduced total first wall area in this contoured configuration the average 

wall loading is 1.8 Ml~/m2 • The minimum wall loading is - 1.3 MW/m2 at a 

poloidal angle of- 140°. 

The neutron wall loading distribution calculated here was coupled with 

the one-dimensional shielrling calculations to determine the peak rarliation 

effects in the magnet as well as the total nuclear heating in the ASRA6C mag

nets. The results were also combined with the poloidal variation of hlanketl 

reflector/shield thickness and composition in the different options to compare 

the magnet radiation effects obtained in the different design options ancl the 

impact on cost as discussed in Section 5.2. 
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6.2 t1agnet Radiation Limits 

The radiation limits for the magnets determine the shielrl thickness that 

directly influences the cost of electricity. The superconducting magnet com

ponents most sensitive to radiation darnage are the superconductor filaments, 

stabilizer, and electrical and thermal insulators. In adrlition to its effect 

on winding temperatures, nuclear heating affects the economic performance of 

the reactor through increased refrigeration costs. Radiation effects are 

re 1 ated as they are determi ned by the fl ux 1 eve 1 in the magnet. Revi ewi ng 

previous magnet shielding neutranies calculations for the different conceptual 

fusion reactor designs, we found a rule-of-thumb relation for radiation ef

fects that holds to within a factor of two. For a 20 full power year (FPY) 

exposure to the nuclear radiation leaking from the back of the shield, a peak 

wi ndi ng pack power dens ity of 1 mW/cm3 corresponds to ~ 10-3 dpa/FPY in the 

copper stabilizer, ~ 3 x 1023 n/m2 (E > 0.1 ~1eV) end-of-life fluence and 

~ 3 x 1010 rad end-of-life insulator dose. 

Radiation effects on superconductors are related to the damage produced 

by fast neutrons through the product i on of defect cascades. The rlamage i s 

usually measured in darnage energy available per atom in eV/atom. Different 

damage wi 11 be produced if the superconductor is exposed to the same neutron 

fluence with different neutron spectra. Oegradation of critical properties 

is usually related to fast neutron fluence (E > 0.1 MeV). The relative numher 

of neutrons that produces equal darnage in superconductors as that produced by 

one neutron in RTNS-II was calculated by Guinan and coworkers( 1- 3) to he 4.5, 

5.74, 7, 3,68, and 4,7 for IPNS, HFBR, TFCX, STARFIRE and MARS, respectively. 

We calculated the relative numher for ASRA6C and MINIMARs( 4) to be 5.1. 

The critical properties of A15 compounds are sensitive to nuclear radi

at i on because of the 1 ong- range ordered atomi c st ructu re. Most experi menta 1 

data involve irradiation at fission reactor ambient temperatures( 3) with 

limited low fluence 4 Kirradiation data.( 2) Tc is nearly constant up to a 

fluence of ~ 1022 n/m2 and drops rapidly at higher fluences.( 2) All Tc data 

from irradiation in different facilities at different temperatures agree when 

compared on a darnage energy basis. (2) Recent data for 19-core and cor.1mercial 

10,000-filament Nb 3Sn wires( 5) agree also very well with previous monofilament 

data. The drop in Tc is less than 3% up to a fusion reactor fluence (E > 0,1 

r1eV) of ~ 5 x 1022 n/m2 and i ncreases to ~ 20% at ~ 2 x 1023 n/m2• In 

general, an initial rise in Je was observed with a subsequent drop at higher 
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fluences. The initial rise, which is related to increased Hc 2 with nearly 

constant Tc at low 
temperatures.( 6,l) 

fashion.( 5) 

fluences, increases for larger fielcts and lower irradiation 

Hc2 was found to vary with fluence in a similar 

Figure 6.2-1 shows the experimental data for the effect of irradiation on 

Je compared on a darnage energy basis. Comparing the results of high tempera

ture HFBR irradiation( 3) with the 4 Kirradiation of the nearly identical 

monofilament sample( 2) indicates that high temperature irradiation yields 

larger Je degradation. This is due to defect mobility and subsequent cascade 

collapse during the high temperature irradiation resulting in lower flux 

pinning. Hence, using the high temperature irradiation data yields conserva

tively low fluence limits. The commercial 10,000-filament wires( 5) have less 

Je degradation than the 19-core wires.( 3,7) ßased on the high temperature 

irradiation data for multifilamentary wires, a fluence limit of 1.5 x 1023 

n/m2 (E > 0.1 MeV) will be assumed in this study. At this fluence Tc drops by 

~ 15% from its preirradiation value. This fluence limit needs tobe confirmed 

by 4 K irradiation. Guinan has plans for irradiating multifilamentary Nb 3Sn 

at low temperatures in the National Low-Temperature Neutron Irradiation 

Facility (NLTNIF) at Oak Ridge within a year.( 8) 

Experimental data for fiber-reinforced organic insulators indicate that 

the mechanical properties degrade at a lower dose than do the electrical ones. 

Polyimides are 5 to 10 times more radiation resistant than epoxies.( 9) 

Samples of several millimeters-thick cylindrical rods of glass-fiber-fillect 

(gff) polyimide were irradiated by gamma rays at 5 K and tested for flexural 

and compression strength. (9) More than 65% of the strength was retained up 

to a dose of ~ 1010 rad. The samples are representative of relatively thick 

sheets of insulators placed between conductors with both compression and 

interlaminar shear being important. Recently, 0.5 mm-thick disks of gff poly

imide (Spaulard-S) were irradiated at 325 K to a mixed gamma and neutron dose 

of ~ 1.2 x 1012 rad with no failures observed in the static compression tests 

with a 2750 MPa stress level.(lO) In these tests essentially no interlaminar 

shear occurred. Furthermore, this dose corresponds to an excessive fast neu

tron fluence of ~ 1025 n/m2• In this study we use a dose limit of 10 10 rad 

for the electrical insulator. This dose corresponds to ~ 1023 n/m2 fluence 

and is consistent with the fluence limit used for Nb 3Sn. The aluminizect mylar 

has been used in previous designs as a thermal insulator. However, 
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experimental data showed a large drop in its strength after irradiation to 6 x 

108 rads.(ll) No failure of any type was observed in aluminized Kapton up to 

a dose of 1010 rads. ( 11 ) The superi nsul ator 1 ocated in front of tlle magnet 

case i s exposed to doses hi gher than those in the el ectri cal i nsul ators. The 

more radiation resistant aluminum sheets supported with glass paper will be 

used in ASRA6C with essentially no practical dose limit. 

Neutron irradiation at cryogenic temperature produces immobile point 

defects in the stabilizer resulting in a zero-field radiation induced resis

tivity 1\pr which impacts the total resistivity at field. The relation between 

1\pr and Cu dpa is( 12) 

1\pr = 3 x 10-9 [1 - e-240 x dpa] (n m) • (6.2-1) 

The resistivity at the operating field Po depends on 1\pr and the purity of Cu. 

Furthermore, partial recovery (80-90%) of radi ati on i nduced defects can be 

achieved by room temperature annealing. Based on Kohler 1 s plot for Cu, we 

generated a chart relating 1\pr to Po given the field Band the residual resis

tivity ratio RRR of Cu.( 13 ) The dpa rate limit is determined by dividing the 

dpa limit, from Eq. (6.2-1), by the time before the first magnet anneal. 

Power reactor availability considerations require at least 4 FPV 1 s before the 

first magnet anneal. 

The effect of stabilizer resistivity increase on both magnet stability 

and protection is design dependent. If the conservative principle of cryo

geni c stabil i zat i on i s adopted, the Cu dpa rate i s 1 i mited to va 1 ues as 1 ow 

as ~ 5 x 10-5 dpa/fpy(13) for bath-cooled magnets. This is a very restrictive 

limit that corresponds to an end-of-life neutron fluence of only ~ 1022 n/m2. 

It is therefore important to consider magnet design approaches that are less 

sensitive to a stabilizer resistivity increase.0 4) The magnet can be de

signed to be unconditionally cryostable only during the initial charge relying 

an other stabi 1 i zat i on mechani sms 1 ater on such as trans i ent stabi 1 i ty and 

end-zone stability. Furthermore, forced-flow magnet designs such as that used 

in ASRA6C are less sensitive to a Cu resistivity increase. It should be men

tioned that if the magnet is designed with adequate stability at the resis

tivity level corresponding to the Saturation radiation induced resistivity 

(~ 3 nn m), the darnage in the stabilizer will not be restricted. In this 

study we do not set a Cu darnage limit which is design dependent. It is worth 
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mentioning that according to the rule-of-thumb relation given in this section, 

the fluence and dose limits adopted in this study correspond to a maximum Cu 

radiation induced resistivity of ~ 1 nn m. 

Although winding pack power densities as high as ~ 1 W/cm3 can be handled 

by the liquid helium coolant, the values that can be achieved in practice are 

much lower because of problems of cryogen replenishment for the He-l cooled 

magnets and excessive cryoplant cost. The economic optimum nuclear heating 

level can be determined by a cost tradeoff analysis, where the total cost of 

items strongly affected by the shield thickness is minimized. In an axisym

metric configuration such as in tandem mirrors, these are the shield itself, 

the magnets, and the cryoplant. Optimization calculations have heen performed 

for the central cell and choke coil magnets of MINIMARs.( 14 ) The optimum peak 

winding pack power densities were found to he 0.06 and 0.25 mW/cm3, respec

tively. In toroidal devices, practically all major machine components are 

affected by shield thickness, and the resultant optimum nuclear heating level 

is higher. 

A limit of 0.2 mW/cm3 on the poloidal average of the winding pack power 

dens i ty in the inner 1 ayer of the magnet i s used in ASRA6C. Thi s was deter

mi ned also by requi ring that no more than a few percent of the gross el ectri c 

power be recirculated for the cryoplant. Although this limit is quite small 

and corresponds to nominal (poloidal average) fluences and doses of only ~ 6 x 

1022 n/m2 and ~ 6 x 109 rad, the hi gher dose and fl11ence 1 i mits used in thi s 

study are needed to allow for magnet hot spots as long as the higher nuclear 

heating at these hot spots does not significantly increase the total cryogenic 

1 oad. 
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6.3 Magnet Shielding 

A reduction in the magnet size can be achieved by designing an efficient 

shield and at the expense of accepting high radiation levels at the magnet. 

The thickness, composition, and geometric configuration of the shield strongly 

depend on the allowable radiation limits for the magnet. These limits are 

based on a number of considerations including the superconductor manufacturing 

technology, the heat removal requirements, the development in magnet insula

tion technology, and the coil stability and protection. The adopted radiation 

limits are summarized here and the reader should refer to the previous section 

for more thorough coverage. The limit on the end of 1 ife peak dose in the 

boron-free glass-fiber-filled (GFF) polyimide is taken as 1010 rads. This 

allows for possible insulator material improvements. No practical limit is 

used for the stabilizer darnage in the forced-flow magnet design of ASRA6C. The 

limit on the nuclear heat load in the superconducting (S/C) magnet is design 

dependent. A limit of 0.2 mW/cm3 is considered for the average nuclear 

heating in the inner layer of the magnets to avoid excessively high reci rcu

lated power for the cryoplant. The peak neutron fluence (En > 0.1 MeV) at the 

S/C magnet should not exceed 1.5 x 1023 n/m2 for Nb 3Sn at the end of 20 full 

power year (FPY), the design lifetime of the reactor. This is based on 

reasonable extrapolation of recent experimental data at room temperature. 

Considering the magnet radiation 1 imits adopted in this study, we find 

that the magnet shield is driven by the nuclear heating in the magnet. Hence, 

the optimum shield composition is determined such that the peak winding pack 

power density is minimized. We performed a study to optimize the shield 

behind the thin LiPb/Be blanket using the one-dimensional discrete ordinates 

code ONEDANT( 1) with the XSLIB data library (30 n group + 12 y group) based on 

ENDF/B-V, and the P3-s8 approximation. We selected the option of alternate 

materials with a thick layer of Fe-shield (acts also as a reflector) followed 

by a layer of B4C-shield and then a layer of Pb-shield. The reflector is 

helium cooled and the B4C/Pb shield is water cooled. In all layers, we con

sidered 10 vol% structure and 10 vol% coolant. The material composition for 

the different zones is \:Iiven in Table 6.3-1. Figure 6.3-1 shows a schematic 

of the radial build of the blanket, shield and S/C magnet for a cross section 

through the midplane on the outboard side at the toroidal location where the 

plasma is horizontal (at ' = 0). At this section, the neutron wall loading 

peaks at a value of 2.4 MW/m2, as indicated in Section 6.1. 
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Table 6.3-1. Material Composition for the Different Zones 

Blanket 14 vol% LiPb 

Reflector 

Pb Shield 

Cryostat 

S/C Coi 1 

55.7 vol% Be (90% d.f.)* 

10.3 vol% HT-9 
20 vo 1% He/voi d 

90 vol% HT-9 
10 vol% He 

80 vol% B4C ( 86% d. f. )* 

10 vol% Fe 1422 

10 vol% H20 

80 vol% Pb 

10 vol% Fe 1422 

10 vol% H20 

1 cm Vacuum Vessel (316 SS) 

5 cm Thermal Insulation (5 vol% 

1 cm LN2 Radiation Shield 

Al) 

10 cm Coil Case (95 vol% 316 SS, 5 vol% LHe) 

1 cm GFF Polyimide (45 vol% poly., 55 vol% S-glass) 

20 vol% 316 ss 
40 vol% Cu 

12 vol% Nb 3Sn 

18 vol% He 

10 vol% GFF Polyimide 

*d.f. = density factor 
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Fig. 6.3-1. Schematic of blanket, shield, and S/C magnet. 
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The distance between the first wall and the winding pack is constrained 

to 1.2 m in ASRA6C. Leaving 21 c~ for the LiPb/Be blanket and 18 cm for the 

cryostat, the space available for the shield is 76 cm. In the optimization 

study, the three 1 ayers of the shi el d were vari ed in thi ckness to reduce the 

peak nuclear heating in the magnet. The optimum shield was found to consist 

of 58.1% Fe-shield, 33.6% ß4C-shield, and 8.3% Pb-shield. The peak radiation 

effects in the magnet are reported in Table 6.3-2. Although the magnet design 

does not call for a magnet behind the shield at all locations, the radiation 

effects were calculated assuming that the magnet is everywhere. The radiation 

effects in the magnet va ry po 1 oi da lly and toroi da lly accordi ng to the va ri

ation in the neutron wall loading (see Section 6.1). Figures 6.3-2 and 6.3-3 

illustrate the poloidal variation of the nuclear heating and fast neutron 

fluence at the toroidal location ~ = 0 where the most severe radiation effects 

in the magnet occur. 

The mechanical design of the blanket calls for 12 supply and return 

manifolds to cool the blanket and reflector. Each is 15 cm thick and 40 cm 

wide. Appropriate reflector cutouts are used to accommodate these manifolds. 

Our calculations show that the helium manifolds result in local hot spots with 

a factor of 6-7 higher damage. This effect is shown in Figs. 6.3-2 and 6.3-3. 

The peak dpa rate in the Cu stabilizer is 5.1 x 10-4 dpa/FPY and this corres

ponds to 116 nn cm radiation induced resistivity after 4 FPY when the first 

annealing is needed. This is not expected to jeopardize the stability and 

protection of the forced-flow coils. 

The peak radiation effects in the magnets occuring behind the manifolds 

are given in Table 6.3-2. The manifolds occupy 25% of the back area of the 

blanket and accordingly the poloidal and toroidal average of the nuclear 

heating in the front layer of the magnets increases from 0.07 mW/cm3 to 0.13 

mW/cm3• The nuclear heating per cm toroidal length of the magnetwas found to 

be 2.9 and 5.2 W/cm for the winding pack and coil case, respectively. Since 

30 coils each with an axial width of 1 m are used in ASRA6C, the total nuclear 

heating in the magnets amounts to 24 kW. This requires ~ 7 ~1W of electric 

power. Using an energy multiplication of 1.2 and a gross thermal efficiency 

of 42.7% we estimated the gross electric power to be 1770 MW. This indicates 

that 0. 4% of the gross el ectri c power has to be ci rcul ated to remove the 

nuclear heating from the magnets. 
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Table 6.3-2. Peak Radiation Effects in Magnet 

Nuclear Heating (mW/cm3) 
Fast Neutron Fluence (n/m2 @ 20 FPY) 

Dose in GFF Polyimide (rad @ 20 FPY) 

dpa rate in Cu Stabilizer (dpa/FPY) 

References for Section 6.3 

At t·1i dp 1 ane 

(2.4 ~1W/m2 ) 

0.11 

2.5 X 1022 

2.2 X ·109 

8.4 X 10-5 

Behinci Manifolds 

0.56 

1.4 X 1023 

1.0 X 1010 

5.1 X 10-4 

1. R.D. o•oell et al., 11 User•s Manual for ONEDANT: A Code Package for One
Dimensional, Diffusion-Accelerated, Neutral Particle Transport, .. LA-9184-
t1, Los Alamos National Labaratory (Feb. 1982). 
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6.4 Penetration Shielding 

The presence of the penetrat i ans reduces the effect i veness of the bul k 

shield as radiation streaming through the penetrations produceshat spots in 

the S/C magnet and limits its performance. On this basis, some attentionwas 

paid to the penetration shield design to insure proper performance of the S/C 

magnet. 

There are four neutral beam injector (NBI) ports (1 x 1.8 m each) located 

at the outboard side of ASRA6C and 115 pumping ports (each is 1.5 m in dia

meter) uniformly distributed araund the torus. The NBI was chosen for radi

ation analysis as it has the largest duct opening anrl thus is expecterl to 

result in the highest streaming radiation level at the magnet. The existence 

of these penetrations indicates that a realistic model to handle the streaming 

radiation effects on the magnet must be three-dimensional. The Monte Carlo 

codes are capable of modeling such geometry. However, such calculations are 

expensive and time consuming. Oue to the limited time of the study, we used 

analytical methods and 1-0 models to represent the actual 3-D problem. 

This approach has been found to be a valuable tool in previous reactor 

studies.( 1- 3) 

The method( 1) consists of computing analytically the neutron wall loarling 

at the penetration wall closest to the coil as a result of neutrons streaming 

through the penetration, and then performing a 1-0 calculation to estimate the 

radiation effects at the magnet. The wall loading depends on the magnet 

dimensions, size and shape of the penetration and its location. The W/B 4C 

shield is used araund the perimeter of the penetrations to maximize the 

attenuation of the streaming radiation. The penetration shielding criterion 

was set such that the sum of the effects of the radiation penetrating through 

the duct and the bulk shield should not exceed the radiation limit at the mag

net. The results show that the streaming neutron wall loading is 0.2 ~1~J/m2 

and 40 cm of W/B 4c shield (73% W and 27% B4C) araund the NBI duct (in addition 

to the 20 cm thick coil case) results in peak nuclear heating of 0.6 m~l/cm3 

and fast neutron fluence of 1.4 x 1023 n/m2• These calculations are based on 

an empty NRI. In the actual case, the NRI components attenuate the neutrons 

and it is expected that this reduces the streaming radiation effects at the 

magnet by at least a factor of 2. On this basis, adding the radiation effects 

from both the penetration shield and the bulk shield (see Table 6.3-2} yields 

peak values of 0.4 mW/cm3 and 9 x 10 22 n/m2 at the outboard side of the torus. 
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It should be mentioned that a minimum penetration shield thickness of 50 cm 

should be pravided bet\'leen the penetration walls and the portians of the 

magnet behind the He manifolds. This is needed ta yield a negligible cantri

bution from the streaming ra~iation at these hat spots. 

It is warth mentioning that an attractive solution for the streaming 

problern is ta plug the NBI penetrations with a hlock of shielding after the 

startup period and during reactor operation. In this case the shield required 

araund the NBI is reduced considerably. The anly concern, however, is that 

the sides of the S/C magnet claser to the NBI 1 s will be subjected to high 

nuclear heating levels during the few minutes of startup and the magnet 

designers should provide special coaling for these sides of the magnet 

during the startup periods of the reactar. 

References for Section 6.4 

1. M.E. Sawan, C.W. Maynard, and L.A. El-Guebaly, "Buildup Factars for Mag
net Shielding in Tandem Mirrar Fusion Reactors," Praceedings of the 6th 
International Conference on Radiation Shieldings, Tokyo, Japan (1983) 1 
p. 665-674 

2. M.E. Sawan and L.A. El-Guebaly, "Magnet Shielding in the Compact Fusion 
Technology Test Facility TASKA-M," Trans. ANS~. 631 (1984}. · 

3. J.D. Lee et al., "MINIMARS Conceptual Design Final Report," Lawrence 
Livermore National Laboratory, UCID-20773 (1986}. 
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7. Engineering Consideration of Modular Coils for ASRA6C 

7.1. Introduction 

The compact system ASRA6C is reduced in size as compared to the preceding data 
set ASRA6B, or to earlier stellarator fusion reactor coil systems with different numbers 
of coils per field period, as desribed shortly in chapter 3. The coil systems of ASRA6B 
and ASRA6C have 6 non-planar coils in each of the 5 field periods. The choice of 
this coil number is made as a compromise between 'field quality', see [1], and ease 
of assembly and maintenance of such systems. The main feature of the coils is their 
identical approximately elliptic coil bore. The uniform shape of the coil bores permits 
an uncomplicated design of blanket and shield and simplifies maintenance. 

The modular coil system ASRA6C is characterized by a major radius R 0 = 20m, an 
average minor coil radius of 4.6 m, and by a distance ß = 1.2 m between the plasma 
edge and the coils. The coils produce an induction of Bo = 5.3 T on axis; the total 
stored magnetic energy amounts to W m = 117 GJ . 

The force distribution within the coils is calculated and yields a local maximum force 
density of 155M N / m 3 • A characteristic feature of non-planar coil systems is that they 
have lateral forces with local values comparable to the maximum radial component. 
Within a field period the lateral forces are balanced. The mechanical stress and strain 
distributions are investigated inside the coils by finite-element calculations, using the 
SAP V (2) program system. A mutual support between adjacent coils is used. With the 
orthotropic material data of the Euratom-LCT coil, a maximum equivalent (von Mises) 
stress of UvM = 135MPa is obtained within the coils of ASRA6C, in association with 
a considerable shear stress, amounting up to usT = 50 M Pa. The tangential strain is 
about 0.2% for this case. 

A short description of the main properties of the coil system ASRA6C as compared to 
ASRA6B is given in section 7 .2. The following section briefl.y summarizes details of the 
electromagnetic force distributions present in non-planar coil systems, and compares 
the results for the two reference systems. In section 7.4, the stress analysis is performed 
for the coils of ASRA6C. A system of mutual coil support is employed. A summary 
and conclusions are given in section 7.5. 

7.2. Properties of the Coil Systems ASRA6B and ASRA6C 

The compact coil system ASRA6C is made possible by introducing a modern design 
of the blanket and shield (see chapter 5 and 6, and also [2] ) which reduces the critical 
distance ß between the first wall and the inner contour of the coil winding, from the 
previous value of 2.1 m to 1.2 m. Consequently the major radius can be reduced from 
Ro = 25m in ASRA6B to a value of 20m in ASRA6C. Fig. 7-1 shows the whole 
coil configuration of ASRA6C, and Fig. 7-2 shows one field period. There are 6 coils 
per field period with only three different coil shapes in the complete coil system, if 
one considers the twofold mirrar symmetry. All coil apertures are of the same elliptic 
cross section with an axis ratio of about 1.17, centered at major radii according to 
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R(IP) = R0 (1 - k cos(51P) ), where k = 0.016 for both cases, and IP is the toroidal 
angle. 

The spatial contours of the non-planar modular coils of ASRA6B and ASRA6C 
follow an analytical relationship or "winding law", describing the coil centerline for 
arbitrary position and orientation of the modular coils, as detailed in [3]. The edge 
contours of the coils are obtained by adding half of the lateral width and shifting by 
half of the radial height. 

The characteristic data of the two coil systems for the Advanced Stellarator Reactors 
ASRA6B and ASRA6C are given in Table 7-1. Equal values of the effective current 
density, Je /I = 15M A/ m 2 

, are used in both cases. Here, the effective current density 
is the total coil current Ic divided by the whole cross section of the coil winding pack, 
i.e. averaging over the complex structure of superconductor with stabilizer, internal 
structure, insulation, and helium channels. Because the value of the induction at the 
axis, Bo = 5.3 T, is the same in both data sets, the total coil current amounts to 
Ic = 22.5 M A and 18M A for ASRA6B and ASRA6C, respectively. The coil current 
scales proportionally to the major radius. The coil volumes Vc, as given in the table, are 
estimated including a correction factor f which describes the average toroidal excursion 
of the coils. 

In a toroidal arrangement of non-planar coils a complex distribution of the induction 
is present, which has components in all spatial directions, and has considerable field 
gradients. Fig. 7-3 shows the magnitude of the magnetic field in the first quadrant 
of ASRA6C. The maximum value of the induction is at the coil bore. Due to the 
non-planar coil shape and the differing coil distances, the maximum field at the coil 
is different for the three different coils in a field period, and not necessarily at the 
inner mid-plane. The local maximum values are given in the table and amount to 
Bm = 11.0 T and 10.4 T for the two systems, respectively. 

Note the remarkable decrease in the stored magnetic energy when the size of 
ASRA6B is reduced to that of the compact system ASRA6C. On the other hand, 
the smaller radius of curvature in ASRA6C might influence the material choice and 
winding techniques for the coil fabrication. The radius of curvature of the 6 coils in 
one field period is shown in Fig. 7-4 as a function of the coil circumference, measured 
at the coil corners. The local minimum radius of curvature is given in Table 7-1 and 
amounts to Pc = 0.77m for ASRA6C. 

- 162--



Fig. 7-1: Coil configuration ASRA6C 
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Fig. 7-2: Coil configuration ASRA6C, one field period. 

-164-



TABLEI: Characteristic data of ASRA6B and ASRA6C. 

ASRA6B ASRA6C 

Averagemajorradius Ro [m] 25.0 20.0 
Average coil radius Tc [m] 5.22 4.57 
Radial coil height w [m] 1.25 1.20 
Lateral coil width t [m] 1.20 1.00 
Average coil volume Vc [m3] 54.7 40.0 
Distance first wall - coil 6. [m] 2.1 1.2 
Min. radius of curvature Pc [m] 1.05 0.77 
Coil number total / per FP nfnp 30/6 30/6 

Total coil current Ic [MA] 22.5 18.0 
Effective current density )elf [MA/m2

] 15.0 15.0 
Self inductance coil 1 (one-turn) Lu [~tH] 16.9 15.1 
Total inductance (one-turn) L [~tH] 763. 722. 
Total stored magnetic energy Wm [GJ] 193. 117. 
Magnetic induction on axis Bo [T] 5.3 5.3 
Max. induction at coil Bm [T] 11. 10.4 

Rotat. transform on axis to 0.39 0.47 
Average plasma radius rp [m] 1.6 1.6 

Average force density (F') [MN/m3] 50. 50. 
Local max. force density F' m [MN/m3] 165. 155. 
Max. net force ( one coil) Fr es [MN] ""'200. ""'150. 
Virial stress O"y [MPa] 118. 99. 
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Fig. 7-3: Magnitude of the magnetic field m the first quadrant of ASRA6C. 
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Fig. 7-4: ASRA6C: local radius of curvature of coils 1-6. 
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7.3. Electromagnetic Forces 

In order to describe the distributions of magnetic field, forces, and stresses a local 
orthogonal coordinate system R, S, T is used, with R indicating the radial, S the lateral, 
and T the tangential directions, respectively, as shown in Fig. 7-5 (see [4] ). Inside the 
coils all field components BR, Bs, BT are present, whereas the current density has only 
one component in the tangential direction. Hence, according to F' = J X B, there are 
two components of the force density, namely Fh_ and F~, acting on the twisted coils. 
These local forces are different for the three differently shaped coils. Thus, considering 
the twofold mirror symmetry of each field period, the lateral forces are balanced over 
one field period. 

Because of the toroidal arrangement of the system and the relatively small variation 
of the major radius of the coil centers, a net force exists for each coil of the assembly 
in the direction towards the torus center. This force amounts to ab out 150 MN per 
coil for the ASRA6C configuration, and about 200 MN in ASRA6B, see [5]. 

In order to obtain the distribution of the force density inside the coils, the cross
section is subdivided into three radial and two lateral "microelements". Earlier studies, 
given in [4], demonstrate that this rather coarse grid yields a suffi.cient degree of accu
racy. 

Fig. 7-6 shows the radial (Fh_) and lateral (F~) components of the force density for 
coil1 of ASRA6C versus the coil circumference. All coils in the assembly are energized. 
The values are computed in the center of the "microelements", as given in the insert 
of the figure. If coil1 is treated as a single coil, the values are lower, see Fig. 7-7, but 
the force density distribution is similarly complex. This is due to the non-planar coil 
shape. 

N __, __, 
The average magnitude of the force density is < F' > = j, E I~. J i X B ds dAI, 

i=l 'V; 
where ds denotes a line element in the direction of the current, dA an area element 
perpendicular to ds, Vi the volume of a GCE (general current element), and N the 
number of the GCE's, respectively. For ASRA6B and ASRA6C, the same value of 
about 50 MN/m3 is calculated as an average for all coils in the assembly. The nearly 
identical result of the two configurations is due to the following facts: the averageradial 
component of the force density in ASRA6B is larger than in ASRA6C, but the lateral 
component of the force density in ASRA6B is smaller than in ASRA6C, because of the 
larger lateral radius of curvature in ASRA6B. The local maximum of the magnitude 
of the force density in ASRA6B is slightly high er than in ASRA6C: 165M N / m 3 as 
compared to 155MN/m3 • It occurs in both systems at coil2, within GCE number 11, 
see Fig. 7-8. The five curves of the figure are equally spaced at the coil bore, showing 
some spread caused by the different local values of the induction, the current density 
i being a constant across the coils. The ratio of the maximum local force density and 
the average value is a factor of approximately three. This is caused by the steep field . 
gradients within the coils. 
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Fig. 7-5: Coill of ASRA6C with the indicated natural coordinate system R, S, T. 
The cross-section of the coil is subdivided into 6 "microelements". 
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Fig. 7-8: Magnitude of the force densities calculated at the inner side of coil 2 
for 5 contours along the circumference of the coil bore. 
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7 .4. Mechanical Stress Analysis 

In order to investigate the mechanical stress and strain distributions, finite-element 
calculations are performed using the SAP V (2) program system. This is done inside 
the coils andin some cases within the support structure. The complex coil construction 
is simplified by using appropriate average values for the material data, as given in [5]. 
The calculations of stress and strain are performed for coils in the assembly, as well as 
for a single coil in its own magnetic field. 

A single coil separated from the coil assembly is free of a net force, and no external 
forces are required to support it. The main data for the single coil 1 of ASRA6C at 
the operating current are listed in Table 7-11. 

TABLE 7-11: Characteristic data of single coil 1 of ASRA6C. 

Total coil current 
Overall current density 
Total inductance (one turn) 
Magnetic energy 
Max. induction at coil 
Local max. force density 
Coil volume (winding pack) 

Ic [MA] 
Je [MA/m2

] 

L [JLH] 
Wm [GJ] 
Bm [T] 
F:n [MN/m3

] 

Vc [m3
] 
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A single coil without external support shows a complex distribution of the force 
density, due to the non-planar coil shape. The stress calculations indicate that a 
coil support similar to that shown in Fig. 7-9 is required, which has a lateral and 
inside radial thickness of 10 cm, and 40 cm at the radial outside. Elastic paddings 
are included between the coil and the structure. The ratio of structure volume to 
coil volume amounts to 1.1. Then the bending stresses inside the coil are reduced 
to acceptable values. The maximum equivalent stress UvM, as shown in Fig. 7-10, 
occurs at the centre of the microelements and is about 42 M Pa in this case ( using the 
orthotropic coil data of the WVII-AS coils as given in Table 7-111), and the shear stress 
component usT is about 10MPa under the same conditions, see Fig. 7-11. Fig. 7-12 
shows the equivalent stress in the thin structure of the coil housing, as shown in the 
insert. Because of the high stiffness of the structural material, as compared to the coil 
material, relatively high stress values occur in the structure material. In the critical 
part of the structure the maximum value of uv M reaches 4 70 M Pa at the centre of 
the microelements. On the surface the absolute maximum value is even higher, but 
reinforcing the structure at the critical points solves this problem, and the maximum 
stress values will be weil below the stress Iimit of steel. 

TABLE 7-111 Orthotropic coil material data, isotropic structure data. 

Coils Coil Structure 
WVII-AS LCT-Eur. Stainless steel 

Young's modulus ER [GPa] 25.0 62.0 200.0 
Es [GPa] 25.0 53.0 200.0 
ET [GPa] 70.0 120.0 200.0 

Poisson's ratio VRS 0.219 0.198 0.3 
VsT 0.112 0.126 0.3 
VTR 0.302 0.298 0.3 

Shear modulus GRs [GPa] 10.7 10. 76.9 
GsT [GPa] 10.7 26. 76.9 
GTR [GPa] 10.7 21. 76.9 
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Side view Front view 

Fig. 7-9: ASRA6C: coil 1 with coil housing. 
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Fig. 7-10: ASRA6C, single coil 1: equivalent stress OvM, orthotropic coil data. 
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Fig. 7-11: ASRA6C, single coil 1: shear stress asT, orthotropic coil data. 
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As support system for the coil assembly of ASRA6C we again use the previously 
introduced concept of mutual support between adjacent coils, see [5] . Each coil is 
surrounded by a suitably shaped support structure of stainless steel, consisting of 
radial and lateral rings. In the development of the support scheme, the rings are 
completed to a full coil housing, as described in [6]. The housing for the ASRA6C 
coils has a lateral width of 30 cm, a radial inside width of 10 cm and a radial outside 
width of 60 cm. In regions of high curvature of the coils the coil housing is laterally 
reinforced. The upper part of Fig. 7-13 shows a vertical view on 6 coils, comprising one 
field period, without mutual support elements. Rigid boundary elements are provided 
on the outer rings of the arrangement in the region towards the torus center, as shown 
schematically in Fig. 7-13. In the space between the coils, lateral support elements are 
located in order to achieve mutual support of the coils, as shown in the lower part of 
Fig. 7-13 in the cp- {}- plane, where cp is the toroidal and {} the poloidal angle. The 
positions of the lateral support elements are varied iteratively in order to minimize 
the stress and strain values of the coil system. The computations are done for a total 
number of 4608 nodes and 2922 elements. 

The finite element computations are based on orthotropic material data for the coils 
as given in Table 7-111. Three different cases are investigated: 

A : The coils are surrounded with radial and lateral rings, and the coil material data 
is close to the measured data of the non-planar coils for the Garehing Advanced 
Stellaratorexperiment WENDELSTEIN VII-AS, as used in [5] . 

B : The coils are surrounded with a full coil housing, laterally reinforced at locations 
of high curvature, as described in [6] , utilizing the coil material data as in case A . 

C : Like case B, but with the coil material data of the Euratom-LCT coil as given in 
[7]. 

The results of the stress and strain computations are listed in Table 7-IV. 

TABLE 7-IV: Stress and strain calculations for the coils of ASRA6C *). 

CaseA CaseB Case C 

Tangential stress luTIMax [MPa] 175. 132. 142. 
Shear stress lusTIMax [MPa] 50. 35. 46. 
Equivalent stress O"vMMax [MPa] 170. 120. 135. 
Tangential strain lt:TIMax [%] 0.2 0.15 0.17 
Shear strain hsTIMax [%] 0.5 0.3 0.44 

*) The results include an enhancement factor of 2.5 in cases A and B, and of 2.0 
in case C. 
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The computation of the load case A for the coils of ASRA6C is performed in order 
to compare with the stress and strain analysis for the coil arrangement of ASRA6B, as 
given in [5]. In this larger system, the maximum of the equivalent (von Mises) stress 
amounts to 180M Pa at a tangential strain of 0.23%. A maximum of the shear stress 
of 60MPa is seen in this case. For ASRA6C, slightly lower values are calculated, see 
Table 7-IV, case A. The similarity of these results can be understood by a comparison 
of the 'virial stress', the stored magnetic energy normalized by the total coil volume, 
W m j n Vc . Here n = 30 is the number of coils and Vc = 21r r c w t f, where f > 1 is 
a measure of the non-planar coil shape. The quantities w and t are the lateral width 
and the radial height of the coils, respectively. Inserting the corresponding numbers for 
ASRA6B and ASRA6C, the virial stresses amount to 120 and 100 MPa; the precise 
numbers areentered in Table 7-I. 

In case B with the relatively weak material data of the WENDELSTEIN VII-AS 
coils and the complete coil housing the stress and strain values inside the coils of 
ASRA6C are the lowest. 

With the orthotropic material data of the Euratom-LCT coil one obtains in case 
C a maximum value of about 135 MPa for the von Mises stress, and a maximum 
tangential strain of about 0.2 % , as shown in Fig. 7-14 and Fig. 7-15, respectively. 
In these figures, the abscissae are the number of the GCE's, and the different curves 
apply for the 6 coils treated simultaneously. The equivalent stress contains considerable 
local maxima of shear stress of about 46 MPa, see Fig. 7-16, which might exceed the 
permissible stress. These local maxima of the shear stress occur mainly at the edges of 
the lateral support elements connecting adjacent coils. It is believed that these maxima 
can be reduced by a smooth shape of the edge of the mutual support elements. 

The stress values of Table 7-IV include an enhancement factor in order to take 
into account local stress maxima and an overall filling factor. In cases A and B this 
enhancement factor amounts to 2.5, andin case C to 2.0. This is due to a filling factor 
of 0.8 for cases A and B, and of 1.0 for case C. 
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Fig. 7-14: ASRA6C: equivalent stress avM, orthotropic coil data. 
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Fig. 7-15: ASRA6C: tangential strain f.T, orthotropic coil data. 
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Fig. 7-16: ASRA6C: shear stress asr, orthotropic coil data. 
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7.5. Summary and Conclusions 

The Advanced Stellarator Reactor configurations ASRA6B and ASRA6C with major 
radii of Ra = 25 and 20m, minor coil radii of r c = 5.3 and 4.6 m, are characterized 
by distances of 6. = 2.1 m and 1.2 m between the plasma edge and the coil bore. This 
considerable reduction in size is made possible by the use of a modern thin blanket 
approach. 

For the same values of induction Ba = 5.3 T at the magnetic axis in both cases, 
the compact system ASRA6C shows a considerably reduced stored magnetic energy, 
W m = 117 GJ, as compared to 193 GJ for the larger system. 

Analyzing the distribution of the force densities, with local maxima of around 
160MN/m3 in both cases, and applying the same support scheme and the same or
thotropic material data as in the previously published case of ASRA6B, slightly lower 
values are obtained in ASRA6C, with a maximum of the equivalent (von Mises) stress 
of UvM = 170MPa, and a shear stress of UsT = 50MPa. The tangential strain 
amounts to 0.2 % for this case. With the orthotropic material data of the Euratom
LCT coil, and the coils surrounded with a full coil housing, laterally reinforced at 
locations of high curvature, one obtains similar values for the shear stress and the 
strain, the equivalent stress even decreases to a value of u vM = 135M Pa. From the 
comparison of stresses we conclude that the coils seem to be feasible for both cases. 
The shear stresses require some attention in further iterations of the support system, 
where the mutual coil support elements aretobe shaped appropriately. 

In the next step, a more detailed analysis is required, which includes the internal 
stresses caused by the manufacturing of the coils, and those induced during cooldown. 
Furthermore, more detailed stress computations are necessary with special attention 
to the details of construction in the regions of maximum load or stress. Such -local 
models would use the global results of the present calculations. 
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8 Coil Considerations 

8.1 General MagnetConsiderations 

The unique feature of modular stellarator coils is the compound bending, i.e. simultaneous 

bending in radial (poloidal) and axial (toroidal) direction. This constraint Iimits not only the 

thickness but also the width of a compact conductor due to the maximum allowable strain. The 

strain Iimitation Ieads to fairly small conductor cores for compact conductors compared with core 

sizes for planar coils which are only limited in the radial thickness of the conductor. The 

consequence of small conductor cores is a low conductor current and a high number of turns. 

Therefore the inductance of big coils will be very high and there may be problems at the charge 

and discharge of the coils. 

A possible alternative to a compact conductor is the cable-in-conduit conductor, a type of 

conductor used in the Westinghouse Coil of the LCT project /1/. This type of conductor allows to 

some extent axial movements of the strands during the winding process. Therefore a strand 

experiences its "own" strain (ratio of strand diameter to strand bending diameter), if a strand can 

move freely. In the compacted conductor the movement is prevented to some extent. Thus, the 

conductor bending strain for cable-in-conduit conductors of the Westinghouse/Airco type is not 

just the strand diameter divided by the bend diameter, but rather some value between that value 

and that ofthe conduit thickness divided by the bend diameter. A conductor ofthistype is investi

gated for the Modular Stellarator Reactor ASRA6C. Fig. 7.2-1 shows the coil arrangement. Table 

7.2-1 contains the main magnet parameter. 

Due to the small distance between first wall and the coil winding pack special attention must be 

paid to the radiation Iimits of the materials used in the superconducting magnets. Degradation of 

physical properties due to radiation has to be taken into account in the design of the conductor 

itself and also in the design of the whole coil.Special attention has tobe focused on the nuclear 

heating Iimit. 

8.1.1 Strain Limitations 

Due to the compound bending, not only the thickness but also the width of the conductor is 

limited. Fig. 8.1-1 shows this behaviour. 
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Fig. 8.1-1: Bending beha viour of a compound curve. 
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To attainthe maximum allowable strain emax for the design the strain figures ep for the poloidal 

bending and eT for the toroidal bending have to be taken into account. The definitions of both 

figures are: 

ep = drp/rp and eT = drT /rT 

(1) 

According to Fig. 8.1-1 the total strain is 

(2) 

lf ep = eT = e, then etot = e < emax. In a first approximation the linear relation etot = 

ep + ~ was used for the conductor design. But this strain Iimitation led to too small conductors, 

if only compact conductors were considered. For example, if the maximum strain is 0.2 %, then 

the core of the conductor, which contains the superconductor, would be only on the order of 

about 10 mm2. Then the operational current would be only a few kA. 

To overcome this strain Iimit a cable-in-conduit conductor similar to the Westinghouse/Airco 

concept is investigated. The development and fabrication ofthis conductor type is described in /11. 

A cable-in-conduit conductor allows to some extent axial movements during winding. As a 

consequence, a strand experiences its "own" strain, i.e. the strain is given by the ratio of conductor 

diameter dc to conductor bending diameter db. (Vacuumschmelze GmbH, Hanau, FRG, 

recommends db a: 150 dc /21.), if the strand can move freely. However, in the compacted conductor 

the movement is prevented to some extent. Thus the conductor bending strain for cable-in-conduit 

conductors of the Westinghouse/Airco type is not just the strand diameter divided by the bend 

diameter, but rather some value between that value and that of the conduit thickness divided by 

the bend diameter. The exact value is a function of cable compaction, surface conditions of the 

strands, etc. 

8.1.2 Radiation Limits 

8.1.2.1 Magnet Materials 

The results of a Iiterature study of the radiation effects of neutrons and gammas on the materials 

used in fusion magnets are given in two KfK reports /3, 4/. The values used for the reactor design 

are given in the neutronics section 6.2. 
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8.1.2.2 Nuclear Heat 

In /5/ a formula is developed to establish an acceptable nuclear heating Iimit p max: 

T 
p = 

ma:t 1t 

forT>> lt, where: 

r 
x· p 

el 

N· V · (CPC) 
c 

Pmax = peak value at the inside ofthe magnet winding pack, 

T = radial thickness of the winding pack, 

(3) 

1t = decay length (an exponential decay of nuclear heat inside the magnet winding pack is 

assumed), 

f ratio ofnuclear heat power to the total power required for removal ofall magnet 

Iosses at 4 K, (fis not fixed, there must be an assumption) 

P el = total electric reactor power, 

x fraction ofthe total electrical reactor power allowed to remove the magnet losses, 

CPC = (cryogenic power coefficient) = ratio of electrical power at 300 K to cooling power at 

4K, 

N = number of magnets, 

Vc coil volume. 

The average heating Iimit is related to the maximum by: 

Pav = lt/T·pmax· 

Formula (3) assumes nuclear heating to represent a fixed fraction of total losses. As shield 

thickness changes nuclear heating changes, but other Iosses remain the same. Therefore 

is more appropriate, where P loss is power loss at 4 K excluding nuclear heating. 

For ASRA6C which has about 3800 MW fusion power and about 1700 MW electric power we allow 

e.g. 1 per cent ( x = 0.01) of the electric powertobe used to remove all magnet Iosses at 4 K. At a 

CPC of500 then the coolingpower at 4 K is 24 kW. The number ofthe coils is 30 and the volume of 
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one coil is 41 m3. lf we assume that the nuclear heat losses are about 50% (f = 0.5) of the total 

magnet losses, then we get from Formula (3):: 

Pmax =Tl A · 9.756 · 10·3 mW/cm3 

The average nuclear heat power density is therefore about 0.01 mW/cm3. The peakpower density 

with T = 1. 2 m and A = 0. 09 m according to /6/ is: 

Pmax = 0.13 mW/cm3. 

This is the nuclear heating limit used for the magnet shield design. Neutronics calculations in 

section 6.3 indicated that the total nuclear heating in the 30 coils is 24 kW with a peakpower 

density Pmax = 0.13 mW/cm3 at the magnet winding. The difference is due to the fact that the 

analytical model here assumes perfect exponential variation and calculates heat only in winding 

pack. Heating in the case is more than that in the winding pack. 

8.1. 3 General Features of the ASRA6C Magnets 

The overall current density of 15 MNm2 is moderate compared with the current densities in the 

LCT-coils which are up to 33 MNm2 in the Swiss coil 17/*. 

The total coil current is 

N · 10 = 18MA (1) 

where N is the turn number and 10 the rated current. 10 will be determined during the conductor 

design procedure and Eq. (1) gives then the turn number. The (one turn) coil inductance of 

15.13x 10-6 H together with the total coil current of 18 MA gives a stored energy of 2.45 GJ per 

coil. 

The mechanical behaviour ofthe coils is discussed in chapter, 7. 

The maximum field of10.4 T for the coils is near the limit where ternary NbTi and Helium II 

cooling are usually considered. N evertheless, the first choice is a binary NbaSn conductor due to 

the higher stability margin and lower refrigeration power. 

*)LCT (!.,arge Qoil T.ask) is an international magnet test. Six D-shaped coils are tested together 

at the Oak Ridge National Laboratory in Oak Ridge, Tennessee, USA. 
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In this case the current density is strongly strain dependent (see e.g. /81). If a maximum allowable 

strain for NhaSn is settobe in the range of0.2% to 0.3 %, the small bending radius in the toroidal 

direction (rt = 0. 77 m) requires small conductor cores, if a monolithic conductor is tobe used. This 

would allow only low operational currents, typically 5 kA maximum, leading to high inductances 

of the coils and safety problems, as discussed earlier. Therefore the probability of building 

modular stellarator reactor coils with monolithic NhaSn conductors is low. 

For ASRA6C a cable-in-conduit conductor is proposed. The results of the test of the 

Westinghouse coil in the spring of 1986 in Oak Ridge /9/ show that such a conductor can be used 

taking into account a sufficient margin for degradation .. 
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8.2 Conductor Design for ASRA6C Magnets 

As basicstrand a commercially available NbaSn multifilamentary conductor is chosen. According 

to /1/ we choose the strand NS 1000 Ta-l with stabilizing copper. (Description: Matrix CuSn with 

approximately 10,000 Nb-filaments and a central copper-core with a tantalum diffusion barrier, 

proportion ofthe area approx. 17 ± 3%. The diameter is 0.8 mm and the critical currents at 4 

Kare 154 A at 12 T, 192 A at 11 T, 243 A at 10 T, 365 A at 8 T, and 664 A at 5 T.) 

The cable-in-conduit conductor could be fabricated in the same manner as the Westinghouse 

conductor /21. 

The first step is the cabling of 3 strands to a triplet (A~cable) . The second step is the cabling of 3 A

cables to a 32-cable (B-cable). The third step is the cabling ofB-cables to a 33-cable (C-cable). The 

fourth step is the cabling of 3 C-cables to a 34-cable (D-cable). The D-cable contains now 81 basic 

strands. The ftfth step is the cabling of 6 D-cables around a central Cu-subcable with resulting 

486 basic strands. The sixth step of the fabrication process is the continuous wrapping and 

welding of a stainless steel sheet of 0.9 mm thickness around the cable. The final step is the 

compaction to the final dimensions. 

Mter the compaction the cable can be reacted, insulated and wound to the winding package. In 

this case the insulation is outside of the steel jacket and consists of organic materials. The 

conductor pack is then inserted in the case, which has to support the magnetic forces. Calculations 

of the thickness of the casing are reported in the preceeding chapter. The thickness inside of the 

winding package is 10_ cm, on the outside 60 cm, and also 30 cm on both sides of the coil. 

The relatively high thicknesses of the casing led to the consideration of an alternative. That 

would be an inside electrical insulation. In this case the insulation must be out of ceramic 

material, because it has to withstand the reaction treatment at 700- 800 °C. As shown in Fig. 8.2-

1, a protection sheet of about 0.2 mm is wrapped around after the final cabling step and the 

following step is now the insulation step, where insulation material (about 1 mm thick) is 

wrapped around the protection case. The final step is the continuous wrapping and welding of a 

stainless steel sheet of about 1 mm thickness. Campaction and squaring gives the final shape of 

the conductor shown in Fig. 8.2-1. 

An advantage of this conductor would be the assembly process of the winding pack by Iaser beam 

welding as shown in Fig. 8.2-1. Stainless stripes and the welded structure would give an 

additional support. There are, however, some open questions: 
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CONDUCTOR AND WINDING SCHEME 

Cable (6• 34
) 

(0,2mm) 

Fig. 8.2-1: Cable-in-conduit conductor and proposed coil assembly. 
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Are stress concentrations at the welds not too high? 

Is the insulation scheme and welding procedure compatible? 

What influence on the insulation has the bending of the conduit during the winding? 

Is a sliding insulation possible? 

Is a low compaction fraction sufficient? 

Can the inside insulation be made reliable enough to withstand the full dump voltage? The 

full dump voltage appears everywhere along the conductor across the ceramic insulation. 

Thesequestion can only be clarified by experimental work. 

The calculation with the basicstrand diameter of 0.8 mm gives for the cable an area of 475 mm2 

(244.3 mm2 for the 486 strands, 40,7 mm2 for the Cu-subcable, and 190 mm2 for void). This 

corresponds to a radius of 12.3 mm, ifthe cable is a circle. Adding 0.2 mm for the protection sheet, 

1 mm insulation thickness, and 1 mm conductor case gives a radius of 14.5 mm or an area of about 

660 mm2. After squaring the conductor with rounded corners (5 mm minimum radius of the 

corner) and after compacting by 4.4 %, the final dimensions of the conductor are 26 mm x 26 mm. 

The strain of the conductor case for the minimum bending radius of 770 mm is 1.7 %. This is 

tolerable for stainless steel. 

The theoretical critical current of this conductor is 486 x 192 A (at 11 T) = 93.312 kA. The 

definition ofthe operational current is governed by other considerations as e.g. turn number and 

winding cross section or simply costs. Calculations for 10 kA to 40 kA are made. The choice of 

18 kA is a compromise between turn number and winding pack cross section and maximum field 

at the conductor. 

The choice of 18 kA offers the possibility to save basicstrand material. If we replace in the first 

cabling step one of the basic strands by a Cu-strand of 0.8 mm, then the theoretical current is 

62.2 kA, which is a factor of 3.4 higher than the rated current. Another possibility is to lower the 

coil cross section, but this Ieads to higher fields at the conductor. 

The Westinghouse coil with the conductor type discussed above became superconducting in 

February, 1986 and has been tested as a single coil [3]. The tests covered charging to the design 

current of 17.76 kA and current-sharing tests using the resistive heater. The full design current 

was achieved in May, 1986. The peak field in this single coil test was 6.2 T at conductor.The 

current-sharing threshold temperature was measured to determine the strain degradation of the 

Nb3Sn/Cu conductor after reaction as a result of handling the coil. The results of these 

measurements show serious degradation in the conductor, but the ratio of I/leb = 0.3 at 8 T (I = 

nominal current, leb = critical current at 4.2 K and in the field B based on short samples tests) 
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chosen from Westinghouse guaranteed a safe operation in the single coil test. The exact cause of 

the degradation is not known. lt occurs only at particular points in the coil and is not associated 

with points ofsmallest winding radius. There is good reason to believe that the degradation could 

be eliminated with improvements in process control. 

The latest information from the ORNL test team on the full six-coil array test is of a successful 

operation including a dump from full current. 

The cooling behaviour for the ASRA6C-conductor is similar to the Westinghouse conductor. The 

experimental results /4/ show that the pressure drop can be described by a friction factor f = 
64/Re, where Reis the Reynolds number. The small hydraulic diameter of the spaces between 

strands leads to high quench pressures and thereby Ieads to a requirement for short cooling paths. 

lt has tobe clarified which cooling length can be tolerated. 
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8.3 Summary and Conclusions 

The study of the nonplanar coils for a modular stellarator reactor show that the main Iimitation 

for the coils is given by the compound bending, which Iimits the dimension of the conductors. 

Therefore, the likelihood ofbuilding the coils with monolithic NbaSn conductors is low. A cable

in-conduit conductor seems tobe a viable solution for nonplanar coils. A conductor design similar 

to the Westinghouse design is discussed in detail. 
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9. General Layout and Maintenance 

9.1 INTRODUCTION 

The configuration ASR 25 T7 was the firsttobe investigated. The reference case 

ASRAGC (see Fig. 9.1-1) was the result of an iteration process. 

An overview and the description of all configurations are given in Ref. [1]. 

9.2 OVERALL ARRANGEMENT 

All configurations have five field periods, but the total coil number varies from 20 

to 50. The major radius is lowest in the reference case ASRAGC. The minor radius is 

very similar in all cases, as is the average coil radius with the exception of ASRAGC. 

The magnetic field on axis is 5,3 T with resulting maximum fields of about 11 Ton 

the coil winding. 

The resulting reference case ASRAGC was a compromise between plasma physics 

requirements and reguirements of accessibility and maintenance of the super

conducting coils and their cryostats. The Iayout philosophy was to find a simple 

geometrical shape for the reaction chamber components. Another goalwas to 

have only one separationareaper field period, because each separation area 

requires demountable cold intermagnetic supports as described in section 9.4. 

Fig. 9.2-1 shows a cross section in the polodial plane of ASRAGC at the toroidal 

angle <f= 0°, i.e. the beginning of a field period. This cross section shows the 

blanket option IV as described in section 5.1.2. The other options are similar with 

respect to the aspects investigated here. The contour of the first wall in option IV 

follows the contour of the plasma; the plasma cross section changes over a field 

period from an "egg-like" shape to a nearly elliptic shape and back to an "egg

like" shape at the end ofthe field period. 

-200--



Flg, 9.1-1 

- - - - - :.._ - - - I_ - - - - - - - - --
1 

I 
I' 

Conflguratlon ASRA 6C (only winding packs) 

-201-



1\) 
0 
1\) 

1 Coil 
2 .G"p 
3 Shield 
~ Vncuum g~p with fe~ding tubes 
5 ßlank~t support 
6 ßlanket 
7 F"in•t wall 
8 Cha~<sis 
9 Chassis support 

Vacuum duct 

~A 
Coil 

f'• o- I~ F 

AS!lt\ Ge 

Section 

G)-::y-//1- l 
®- ln ... 

~ 
~_i A-B 

® -~~ (2)-s--rr· 
®--=:=;:_ ::: 

~(cm) 

:,e~~f@,o::· 

E-F 
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Blanket options I to IV are described in detail in chapter 5. ln this chapter option IV 

is further investigated, because this option can have advantages over the other 

ones with respect to space for installation of coolant pipes. 

For blanket option IV the minimum distance from the first wall to the plasma is 

about 20 cm. The first wall is integrated into the blanket, and the blanket follows 

the contour of the plasma, changing its volume and contour. The blanket does not 

therefore have a constant thickness. The contour of the inner vacuum vessel is 

nearly elliptical and remains unchanged along the reactor circumference. The 

shield can be outside of the inner vacuum vessel, with only part of it located inside 

the separation areas. The minimum shield thickness is 70 cm. The limiter unit is 

removable, permitting frequent replacement. Additional shielding material is 

used near the pumping port. The blanket unit is also removable by means of a 

chassis resting an a chassis support. 

Due tothelarge space requirement by the coolant pipes only a few connections . 

are foreseen for the RBUs (ßemovable ~lanket Units). The big advantage ofthe 

blanket option IV isthat the supply pipes can be integrated into the blanket which 

has variable thickness. The best place is the backside of the blanket where 

breeding is very low. 

With such an arrangement of the pipes, the RBUs can be extented to a length of 

half a field period without difficulty. Consequently, only 10 RBUs are needed for 

the whole reactor. 
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lf the configuration is subdivided into 5 segments (1 segment = 1 field period) 

with 2 RBUs in each, the following advantages are obvious: 

Only five separation areas are needed in the reactor hall. 

The number of the cold demountable intermagnetic supports is low, because 

they are only needed at the separation areas. 

There are only 10 RBUs in the reactor. 

There are only two kinds of RBUs. 

A further subdivision of a field period into two halves would be space consuming. 

Therefore less space would be available for auxiliary equipment. 

Fig. 9.2-2 shows a cut in the equatorial plane of ASRA6C at a field period where 

two (of four) neutral beam injectors are located. One field period (0° to 72°) can be 

removed as a unit. 8oth separation areas at oo and 72° arenot planar. The 

positions of severallimiters are given. 

The coolant pipes are brought in from the inboard side in order to keep the 

outboard side clear for maintenance purposes. 
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9.3 MAINTENANCE SCHEME 

Several possibilities for the maintenance procedure were investigated du ring the 

study phase. The main boundary conditions for these possibilities were: 

Allsegments (segment = field period) are removed and the RBUs replaced by 

new ones du ringshutdown 

or 

only one segment is removed and the RBUs are replaced by new ones du ring 

shutdown 

Fig. 9.3-1 showsthe maintenance scheme selected for ASRA6C. The philosophy of 

this maintenance scheme is the exchange of all removable blanket units (RBUs) in 

all the field periods du ring shutdown. One field period segment after another will 

be removed sequentially from the main ring by the transport veh icle. 

This transport vehicle (1) which is located inside the coil circle and moves on tracks 

and provides the transportation as weil as the cooling needed du ring transport of 

the segment exchange. The segment is moved out to position (2), where the 

exchange of the RBUs takes place. The reactor hall has two doors (openings), one 

for driving out the segment (3), the other for driving in (4). 

Du ring blanket replacement the transport vehicle positions itself behind the 

segmenttobe exchanged and the cooling pipes to the segmentare connected 

suchthat cooling is provided by the transport vehicle. The segment is then be 

separated from the main circle and brought through opening (3) of the reactor 

hall to positon (2), where the exchange of the RBUs will take place. At that time 

two stationary manipulators, on each side of the segment swing around to the 

segment (5), and remove the contaminated RBUs on both sides. The manipulators 

then swing the RBUs to the storage area for the contaminated RBUs (6) and 

deposit them there. After this they swing to the storage area for new RBUs (7) and 

pick up two new ones. They then swingback to the position of the segment (5) 

and install the RBUs in the segment. 
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Fig. 9.3-1 Maintenance scheme for ASRA 6C 
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ln the meantime the transport vehicle is separated from the first segment and is 

driven to the next segment. The cooling of the first segment is taken over by a 

stationary refrigerator. 

The segment with the new RBUs is then brought to position (8) and then to the 

test Iabaratory (9). This Iabaratory is designed for the simultaneaus testing of all 5 

segments. After the test is completed the segments are brought to their original 

position in the reactor hall through opening (4) by means of the transport vehicle. 

Du ring the whole exchange process all the magnets are maintained cold. 

Asparesegment (10) is made available in case, any of the segments fail du ring the 

test. 

As shown in Fig. 9.3-1, the reactor hall is designed to fulfill the following tasks and 

conditions: 

Provide a rotunda with coil arragement and auxiliary equipment 

Have an extension, where RBU exchanges takes place 

Have an excange hall with manipulator devices 

Provide two storage halls for at least 5 new RBUs each 

One storagehall for the contaminated RBUs 

A hall for reprocessing the contaminated RBUs 

A test laboratory, and 

A hallforaspare segment. 

ln addition several small workshops are needed for preparation and/or rapair 

work. 
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9.4 COLD DEMOUNTABLE INTERCOIL SUPPORT 

A segment consists of one field period of six coils. Each field period segmentwill 

be removed from the main ring in order to exchange the blankets. Du ring this 

operation the coils must be kept cold. This requirement dictates a special support 

structure at the interface between segments. The special property of this 

intermagnetic support structure is {1) to transmit the magnetic forces at a low 

temperature and {2) to provide an element which can be demounted while the 

magnets stay cold. This intermagnetic support system can be used for all kinds of 

superconducting magnet arrangements because no parallel mounting position of 

magnets is required i.e. the magnets can be prone to each other. Therefore, the 

demountable cold intermagnetic support described here can be applied for 

tokamaks, mirrors, modular Stellarators as weil as magnet systems for special 

purposes, whenever demountable mechanical support are required. 

ln the example described, the support is designed for a pressure force of 5 MN 

(500 t). A minimum distance between the magnets of 0.7 m is required. 

9.4.1 DESCRIPTION OF THE INTERMAGNETIC SUPPORT 

Certain areas of the magnets must be especially designed in order to enable the 

transmission of the pressure forces. Figs. 9.4-1 and 9.4-2 show the devices needed 

forthat purpose. The nomenclature of these figures and the following ones are 

given in Fig. 9.4-1. {1) denotes the outer contour ofthe coil case, which is 

considered tobe the inner coil support. The coil case is covered with 

superinsulation {2). 

A LN2 shield is considered as an alternative. A slightly bevelled pressure plate {3) is 

welded to the coil case at the place where the force is tobe transferred. The 

magnet case is surrounded by the coil vacuum vessel {4) at a distance of about 200 

mm. The wall thickness of the vacuum vessel is increased and forms a flange {5) at 

the intermagnetic support location. An outer pressure plate {7) is connected to 

this flange by a bellows {6). This plate extends about 5 mm beyond the outer edge 

of the flange. The cold shield {26} intercepts the heat leak from room temperature 

to the cold pressure plate {3). 
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1 Outer contour of coil case 
2 Superinsulation 
3 Innerpressure plate 
4 Vacuum V esse I of the coil 
5 Flange 
6 Radial bellows 
7 Outerpressure plate 
8Wedge 
9 Mount 
10 Rack and pinion drive 
11 Cover 
12 Gilled tube 
13 Threaded spindie 

11 11 

5 4 

14 Case ofthe intermediate element 
15 Slide bearing 
16 Movable flange 
17 Bellews 
18 Adjustement screw 
19 Locating pin 
20 Central part of the element 
21 Guiding wedge 
22 Collar 
23 Superinsulation 
24Cap 
25 Vacuum connection 
26 Cold shield 

Fig. 9.4-1 Starting position for the installation of the 
intermagnetic support 
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Fig. 9.4-2 Starting position, perspective view 
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A wedge (8) tagether with the mount (9) and drive (1 0) can be inserted into the 

vacuum vessel through an opening on the top of the flange. The mount and drive 

for the wedge are fixed to the cover (11) ofthis opening. The wedge is connected 

to the spindie (13) of the drive by a bellows (12). The drive itself can be located on 

the top or on the side as shown in Fig. 9.4-2. ln the latter case the drive must be 

connected to a bevel gear. 

Fig. 9.4-3 showsanalternative design, where the bellows consists of glass fibre 

reinforced epoxy. The Iosses in such a system are only 1.5 W compared with 6.5 W 

for a stainless steel bellows due to the much lower heat conductivity of glass fibre 

reinforced epoxy. Experience with such bellows is given in Ref. /2/. 

Fig. 9.4-4 shows the intermediate part of the support between the magnets. The 

case (14) ofthe insert is formedas a flange on one side and as a guiding surface 

for sliding parts on the other. The flange (16) can be moved into a sliding bearing 

(15) by means of two adjustment screws (18). A bellows (17) seals the space 

between the case (14) and the movable flange. Three locating pins at 120 o 

intervals align the central part ofthe insert (20). lt has a guide wedge (21) at the 

bottom on each side and a collar (22) on the top and is wrapped in superinsulation 

(23) of 50- 70 mm thickness. Vacuum tight caps {24) cover the locating pins (19) 

du ring operation. ln addition the case (14) has a vacuum connection (25). 

-212-



Fig. 9.4-3 Alternative design with glass fibre 
reinforced expoxy bellows with 1,5W per bellows 
(6,5 W for stainless steel bellows) 
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Fig. 9.4-4 Intermediate element 
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9.4.2 OPERATION MECHANISM OF THE COLD SUPPORT 

Figs. 9.4-1 and 9.4-2 show the starting position for the installation of the cold 

intermagnetic support. The coils are at operating temperature and the wedges (8) 

are pulled out. The bevelled inner pressure plate (3) is at a low temperature Ievei 

also, but is not in contact with the outer pressure plate (7), which is at room 

temperature. Thus, heat conduction from room temperature to low temperature 

through the outer plate and the wedge to the inner plate is prevented. 

The intermediate element (Fig. 9.4-4) is then placed between the magnets 

(Fig. 9.4-5). Thus the guiding wedges (21) of the central part of the insert (20) 

depress the elastically suspended outer pressure plates (7). At this time the 

element is aligned by the locating pins. 

Following this procedure, the case (14) is sealed and tightened to flange (5) of the 

vacuum vessel (4) of one of the coils. Flange (16) is moved towards flange (5) of 

the other coil by means of the adjustment screws (18). Then they are sealed and 

tightened. The three locating pins (19) are retracted and vacuum tightly closed by 

a cap (24). Then the intermediate element is evacuated. 

When the required vacuum Ievei is established, the two wedges are actuated by 

means of a rack and pinion drive, in order to complete the deployment of the 

intermagnetic support (Figs. 9.4-6 and 9.4-7). The supporting structure is cooled 

down by heat conduction. After the required low temperature is reached, the 

wedges have tobe readjusted. 
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Fig. 9.4-5 Intermediate element placed between 
the magnets connected with the flange 
of the coil on the right side 
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Fig. 9.4-6 

24 

Final position after fixing procedure 
Fixing procedure: 

a) Connection with the flange of the coil on the left side 

b) Removal of locating pins 

c) Evacuation 

d) Fixing of wedges 

e) Cool down of support structure 

f) Adjustment of wedges 
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Fig. 9.4-7 Perspective view of support structure ready for 
operation 
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Figs. 9.4-6 and 9.4-7 show that there is no close connection between the parts of 

the intermagnetic support which are at a low temperature and the parts which 

are at room temperature. The bellows (6) which support the outer pressure plate 

(7) and those which support the wedges (12) are at least 800 mm long. Therefore, 

the heat leak is tolerable. 

The demounting ofthe supports has tobe made in reverse order. First, the wedges 

(8) are removed. The intermediate piecewill be warmed up if necessary. Then the 

three locating pins (19) will be inserted to make contact with the central part of 

the insert (20). After this the vacuum chamber of the intermediate elementwill be 

opened. After this flanges (16) and (14) will be disconnected and the intermediate 

element is removed. 

A description of the demountable cold intermagnetic support is published in /3/. 

-219-



9.5 SUMMARY AND CONCLUSIONS 

A generallayout of a modular stellarator reactor is described. The reactor is 

subdivided into 5 field periods. A blanket option which has variable thickness has 

been investigated with respect to the arrangement inside the reactor vacuum 

vessel around the plasma. The advantage of this option isthat it provides more 

space at the backside of the blanket for auxiliary equipment such as coolant pipes. 

The maintenance of such a modular Stellarator reactor is discussed. The principle 

idea is the replacement of all removable blanket units in all the field periods 

du ring shutdown. The replacement procedure is described and the space 

requirements foramodular Stellarator reactor are listed. 
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10. Summary and Conclusions 

10.1. Summary 

An Advanced Stellarator is characterized by a reduction of the secondary plasma 
currents as compared to those of a standard stellarator, maintaining an average mag
netic weil in the vacuum fields. In an Advanced Stellarator , the neoclassical particle 
and energy losses, as weil as the shift of the magnetic surfaces by a finite plasma 
pressure (Shafranov-shift) are reduced, and the deviation of drift surfaces of charged 
particles from the magnetic surfaces is small, compared to respective results obtained 
for standard stellarators. This optimization is performed by an appropriate combina
tion of poloidal field components. As typical for an Advanced Stellarator, the shape of 
the magnetic surfaces varies along the toroidal direction. An example of an Advanced 
Stellarator is the Garehingplasma experiment WENDELSTEIN VII-AS which is un
der construction and is expected to begin operation in 1987. Advanced Stellarator 
fields are produced by systems of modular non-planar coils. For a fusion reactor of 
the Advanced Stellarator type, one set of coils is suffi.cient in principle, avoiding the 
problems of linked coils. 

In the present report, a survey is given of studies of critical issues concerning 
Advanced Stellarator Reactors (ASR) and concentrating on the reference data set 
ASRA6C. This data set features the general properties of such systems but is not op
timized with respect to its plasma behaviour under reactor conditions. The magnetic 
topology is similar tothat ofthe Garehing Advanced Stellaratorexperiment WENDEL
STEIN VII-AS. The coil system for ASRA6C is obtained by introducing a modern 
thin blanket. A low number of 6 coils per field period is chosen as a compromise be
tween 'field quality' and maintainability. In ASRA6C there are three different coil 
shapes in each of the five field periods. The coils provide an axis field of B 0 = 5.3 T; 
local peak fields of Bm = 10.4 T are seen at the coils. The magnetic forces of these 
coils contain appreciable lateral components which are balanced over each field period. 
By an iterative procedure an appropriate coil support system was developed. The 
electromagnetic stresses and strains are obtained for single coils and when they are 
mutually supported. Local maximum values of the equivalent stress UvM = 135M Pa 
are seen in the coils at a tangential strain of ET = 0.2% . Although considerable shear 
stresses up to usT = 50 M Pa are present, the coils seem to be feasible. The stresses 
in the coil housing and the mutual coil support elements are not found to be critical. 

Heating and burn seenarios for Advanced Stellarator reactors are established numer
ically as sequences of equilibria for neoclassical heat conduction and bremsstrahlung 
as losses, and including electric fields in the 1-D-code. For start-up, an effective heat
ing power of 30 to 50 MW is suffi.cient. By increased refuelling, ASR is brought to 
full fusion power of 3.5 to 4 G W, preferentially at a moderate temperature of 12 to 
15 keV. In a different example, calculated for ASRA6C with a reduced value of the 
ripple Iosses in order to account for the improved confinement properties of an Ad
vanced Stellarator , an additional radiative power loss of 300 MW near the plasma 
edge can be tolerated at an increased fusion power of 3.9 G W. In this computation 
the terriperature is T ~ 19 keV and the value of the average ß is < ß > = 5%. At 
this value the magnetic axis is shifted by approximately half of the minor radius. This 
shift is regarded as determining the critical ß for equilibrium. There are theoretical 
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arguments that the critical ß for stability is lower for the above systems. However, 
innovative stellarator configurations, "HELlAS", with medium aspect ratios were re
cently published; these are stable up to an average < ß > up to 9 % according to 
resistive interchange modes. 

From magnetic field studies near the separatrix a system of pumped limiters is 
chosen for edge control of the plasma in ASRA6C. Because of the ergodie layer of the 
edge, it appears that the pumped limiters can operate in a high recycling mode with 
a low plasma temperature at the target plate. The first wall is shaped similar to the 
contours of the outer magnetic surfaces, or, preferentially, can have identical elliptic 
cross sections. For a fusion power of 3.8 GW the average neutron Ioad at the first 
wall is 1.4MW/m2 with a local enhancement up to 2.4MWjm2 • This estimate is 
obtained by a one-dimensional axisymmetric code . A radially shifted volume source 
models the Shafranov shift of the finite-ß plasma. Depending on the effi.ciency of the 
pumped limiters the first wall is also loaded by plasma losses. The effects of trapped 
a -particles as weil as local sputtering remain to be quantified. Furthermore , there 
is also plasma radiation to the first wall. A radiative layer at the plasma edge would 
effectively reduce the heat load to the pumped limiters. 

A thin blanket of 21 cm thickness is proposed for ASRA6C. It consists of slowly 
circulating Li11Pb8a as breeder with Be as moderator and neutron multiplier, and 
uses He gas as coolant in a HT -9 ferritic steel structure. An overall breeding ratio of 
1.05 including penetrations and an energy multiplication factor of 1.2 are computed. 
A fraction of 10 % of the 2280 m 2 surface of the first wall is taken into account for 
port holes. This promising result is made possible by the use of Be in the breeding 
blanket. This blanket, reflector and shield system provides adequate protection for the 
superconducting coils. 

Further investigations are concerned with the conductor design, and with details 
of the coil construction. The general layout and the maintenance of the reactor are 
investigated. One of the options utilizes a blanket with variable thickness, and the 
contours of the first wall are matched to the shape of the magnetic surfaces nea:r 
the plasma edge. A demountable cold intermagnetic support is designed for use at 
the separation areas between the coil modules. These cover one field period in the 
present reactor lay-out of ASRA6C. Two removable blanket units are foreseen which 
are replaced from both sides of the modulein the maintenance procedure. 

10.2. Critical Issues 

For the development of Stellarators towards competitive fusion reactors critical issues 
exist in the areas of plasma physics and of technology. 

Transport (heat conduction and particle losses), as extrapolated from present ex
periments and theory appears to be tolerable for reactor-grade plasmas, but this 
needs experimental verification in larger devices. As in the case of other steady state 
magnetic fusion systems with good confinement, impurities may pose a critical issue. 
Equilibrium-ß values as obtained by modern 3D-codes are adequate for reactor oper
ation, the experimental proof depends on the performance of forthcoming or planned 
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machines. Regarding stability-ß, an innovative configuration, 'HELlAS', is developed 
which provides a solution, according to theory. 

Critical issues regarding technology may arise from the three-dimensional field struc
ture in Stellarators. The influence of ferromagnetic material on the magnetic topology 
needs to be quantified. First wall, blanket and shield call for more complex structures 
as compared to those of axisymmetric systems, but this is eased at moderate to large 
aspect ratio. In modular systems the support between coils might pose a critical issue 
at Separation areas which are necessary for construction and maintenance. Salutions 
in these fields are proposed or are being developed. 

In addition, cost considerations are essential. This is already apparent for the forth
coming generation of larger Stellarators, which aim at exploring their reactor potential, 
and which will most likely utilize superconducting modular coils. 

10.3. Conclusions 

From the results obtained in this study it can be stated that the Advanced Stellarator 
scheme offers interesting prospects regarding its development towards a competitive 
fusion reactor. For ASRA6C, the approach of a comparatively thin blanket has allowed 
a considerable reduction of the size as compared to previous systems. For ASRA6C 
a total fusion power of 3.9 G W is calculated in a scenario with an additional edge 
radiation of 300 MW. The corresponding ß-value of 5 % is about the same as the 
limiting value for equilibrium, ßeq· Regarding the question of the stability- ß, theory 
predicts lower values. An innovative configurations, 'HELlAS', with stable < ß > up 
to 9% has been published, and modular coils are being developed. 

Modular Stellarators of the types described above with systems of non-planar coils 
constitute viable options for future development towards fusion reactors. Stellarators, 
also belanging to the class of toroidal magnetic confinement, have some similarities with 
Tokamaks, but at the sametime they have some distinct and favourable differences. 

Start-up from existing magnetic surfaces and the possibility of a steady state burn 
in the absence of dangeraus disruptions are major advantages of Stellarator fusion 
reactors. Continuous operation allows different approaches for the coil engineering, 
and avoids problems associated with cyclic loads in the first wall, the blanket, and in 
the coils with the associated support structure. Furthermore, less circulating power is 
required in these steady state systems. A moderate aspect ratio alleviates problems 
regarding the first wall power loading. 

All these properties need to be considered when comparing the prospects of Stel
larators in comparison to the properties of Tokamaks, the presently favoured system 
in toroidal magnetic fusion research. From the Tokamak development programmes, 
on the other hand, a considerable fraction of the data base is also applicable for the 
development of Stellarator fusion reactors and does not require essential new research 
and development effort. 

During recent years, the reactor studies have focused on the clarification of criti
cal issues. The various Stellarator configurations studied at other institutions lead to 
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differing approaches, and the results of these investigations are in many ways com
plementary. Examples are the specific types of coil systems to produce the magnetic 
fields, the choice of the values for the rotational transform and shear, etc., or the option 
of using the natural separatrix as divertor, in contrast to pumped limiters or to local 
divertors. 

Therefore it is essential to continue system studies of Advanced Stellarator reac
tors in order to provide further guidance for research directions, e.g. in the search 
and development of new configurations, and to contribute important elements to the 
basis necessary for developing economically competitive fusion power stations of the 
Stellarator type. 
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APPENDIX A 

A.l Winding Considerations 

In previous work with the twisted coils of stellarator-type devices, 

various ~ hoc winding envelopes have been assumed, In the present work, the 

techniques of differential geometry are applied to the problern of determininy 

the actual shape of the windings and the orientation of the current filaments 

in a twisted winding, given arbitrary starting surfaces for the winding. 

Mathematical formulas were developed for the above quantities in the limit 

that turns have small transverse dimensions compared to bend radii and 

envelope dimensions. 

A.2 Winding Pack Coordinates and Magnetic Field Calculations 

A winding pack is specified by giving the coordinates of points on each 

winding turn or filament relative to a fixed three-dimensional reetangular 

coordinate system. The coordinates are conveniently parameterized in terms 

of two parameters which specify the locations of the turn in the winding pack 

and of a third coordinate which specifies the length along a particular fila

ment from a starting position. For twisted windings there exists an infinity 

of different parameterizations that specify the same winding pack in space. 

A conveni ent set of parameters for defi ni ng a wi ndi ng pack i s based on 

the actual sequence in which the winding pack is wound. First, a starting 

layer surface is specified by a vector function R(p,q) of two arbitrary 

surface parameters ( for a toroi da 1 surface, for examp 1 e, these mi ght be the 

toroidal and poloidal angles). Successive layers form a family of parallel 

surfaces with the parametric form 

,. 
RP(p,q,h) = R(p,q) + hN(p,q) (8.3-1) 

,. 
where N is the outward surface normal at p,q. Individual turns in a layer 

must then be specified by a relation between p and q, or by separate functions 

for p and q, in terms of a third parameter, which may be arc length or some 

other convenient parameter which is a function of arc length. 

At this point, a discrepancy between one result of the present work 

(Eq. 8.3-1) and previously assumed winding pack envelopes is already apparent. 

If the surface of Ref. 1 (the envelope of surface binormals along a curve 

lying in a toroidal surface) is taken as a starting surface, the parallel 
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surfaces calculated by Eq. 8.3-1 do not coincide with the layer surfaces 

given, i .e., the envelopes of surface binormals transported a constant dis

tance alon~ the normal to the curve. The discrepancy is zero at the middle 

of the winding pack and increases towards the sides. 

Starting turns in each layer are specified by defining a starting turn 

surface which intersects the family of surfaces parallel to the starting layer 

surface; starting turns for each layer are the curves of intersection of the 

above surfaces. In a particular layer, as successive turns are laid down 

against each other, a family of geodesie parallels is formed. This family 

is the curved surface analog of parallel curves in the plane. A family of 

parallel curves in the plane is generated by laying off equal distances along 

the normals to the starting curve. The locus of the endpoints for a fixed 

distance is a member of the family of parallel curves. On a curved surface 

the straight normals of the plane case are replaced by geodesics which inter

sect the starting curve at right angles; geodesie parallels are the loci of 

end poi nts of arcs of constant 1 ength a 1 ong these geodes i es. The above pro

cedure can be generalized to allow the starting layer and starting turn sur

faces to intersect at the center of the pack, in which case turns and layers 

are "unwound" to get to the actual starting layer and starting turn surfaces. 

Determination of the parametric equations for the starting turns requires 

solution of a set of three coupled transeendental equations, one for each 

component in the fixed reetangular frame of reference. Geodesics are deter

mined in the general case by integration of second-order non-linear ordinary 

differential equations. In the present work, explicit formulas for the co

efficients of the geodesie equations, called Christoffel symbols, were found 

for the parallel surfaces in terms of the parameterization of the starting 

surface, and are given in Ref. 2. The result of the procedure described above 

is a parameterization of the winding pack of the form 

(8.3-2) 

where t represents the reetangular COOrdinates Of a point in the Winding pack, 

s
0 

the arc length along the curve of intersection between the starting layer 

and starting turn surface, h the winding depth, and w the length along ortho

gonal geodesics from the starting turn in each layer. The sides of the 

winding pack envelope are the two surfaces 
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and (8.3-3) 

where H is the total winding depth, L the total starting turn are length, and 

q>(h), the value of w for the last turn in a layer, is a eontinuous funetion 

of h. The bottarn and top surfaees are 

R = F(s
0

,0,w), 0 ~ w ~ q>(o)' 0 ~ s ~ L 
0 

and (8.3-4) 
R = F(s

0
,H,w), 0 ~ w ~ q>( H) ' 0 ~ s 

0 
.;; L • 

For magnetic field caleulation, the Bi ot-Savart integral becomes 

L H q>(h) J(h,w)[~~ x (X- F)](~~ x ~~) • ~!0 
= f f f -----"0----------=- dw dh ds 

I x - F 13 11!._1 ° as
0 

(8.3-5) 
0 0 0 

where J(h,w) is the current density in an infinitesimal area element ortho

gonal to aF/as • 
0 

A fundamenta 1 difference between fl at and twi sted wi ndi n!:JS i s evident 

from the above diseussion. Assuming for the moment turns of square eross

seetion, in flat windings, turn loeations and the winding pack envelope are 

the same regardl ess of whether the wi ndi ng pack i s made up of n 1 ayers with 

· m turns per layer, or of m paneakes or dises with n turns per paneake. For 

twisted windings, this is not generally ·true. This ean be seen from the 

faet that while turns in a layer form a family of geodesie parallels, the 

intersections of suceessive layers with the starting layer surfaee da not. 

Therefore, if the starting layer and starting turn surfaees are exehanged, 

the resultant turn locations and final winding pack envelopes are different. 

Also, in a flat winding, a plane orthogonal to any turn intersects all 

of the other turns orthogonally. For twisted windings it is, in general, 

impossible to find a family of surfaees that interseet all of the filaments 

in the cross-section orthogonally. This is a result of the faet that along 

a geodesie in a particular layer, the filaments are, in general, rotated with 

respect to the filaments of the previous layer. 
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A.3 Use of Developables for Winding Surfaces 

Fabrication of surfaces for winding can be considerably simplified if a 

particular class of surfaces, called developables, is used. Developables are 

surfaces that can be formed out of plane pieces by bending without stretching. 

In the present work, the mathematical formulas necessary for finding the flat

tened shape of the pi eces, gi ven the parametri c express i on for the curved 

surfaces, were derived. 

In addition, methods for approximating developables either by a collec

tion of plane surfaces or by a collection of cone segments and plane surfaces 

were found. Also, procedures for approximating general curved surfaces by a 

patchwork of developables were derived. The above work is presented in detail 

in Ref. 3. 

Use of developables for winding surfaces also results in a considerable 

simplification of the equations for geodesics. Salutions for the geodesics in 

analytic form were found for the starting surface and its parallels. Closed 

forms could not be derived for the geodesie parallels themselves. As a re

sult, the following questions remain unanswered: if developable surfaces 

are taken for the start i ng l ayer and start i ng turn surfaces, can a funct i on 

~(h) be chosen which will result in a developable surface at w = ~(h)? If so, 

what restrictions are placed on the starting developables? (The top layer 

surface will automatically be developable if the starting layer surface is 

developable; as a result, at least three of the four envelope surfaces can be 

made to be developable.) 

Use of a particular developable, called the rectifying developable, for a 

starting layer surface was also investigated. The rectifying developable, 

besides having the advantages of general developables for fabrication of the 

winding surface, has the following additional advantages: 

1. The starting turn and all of its geodesie parallels in a layer are them

selves geodesics and are of equal length. As a result, if the curvature 

does not change sign, turns can be wound without continuous clamping 

because winding tension does not cause the turns to slip sideways. 

2. Wide, flat, ribbon-like conductors can be used to minimize conductor 

strain, while maintaining a large cross-section, because the conductor 

is bent along an axis lying in local tangent plane. This feature should 

be particularly useful in windings with strain-sensitive Nb 3Sn supercon

ductor. 
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Details of the above work are given in Ref. 2. 
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