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On the Derivation of Thermodynamic Restrictions for Materials with
Internal State Variables

Summary

Thermodynamic restrictions for the constitutive relations of an internal variable
model are derived by evaluating the Clausius-Duhem entropy inequality with
two different approaches. The classical Coleman-Noll argumentation of Rational
Thermodynamics applied by Coleman and Gurtin to an internal variable model is
summarized. This approach requires an arbitrary modulation of body forces and
heat supply in the interior of the body which is subject to criticism. The second
approach applied in this presentation is patterned after a concept of Miller and
Liu, originally developed within the context of a different entropy inequality and
different classes of constitutive models. For the internal variable model the
second approach requires only the modulation of initial values on the boundary
of the body.

In the course of the development of the second approach certain differences
to the argumentation of Muller and Liu become evident and are pointed out.
Finally, the results demonstrate that the first and second approach give the same
thermodynamic restrictions for the internal variable model. The derived residual
entropy inequality requires further analysis.




Zur Ableitung konstitutiver Restriktionen fiir Materialien mitinternen Variablen

Zusammenfassung

Unter Verwendung zweier verschiedener Vorgehensweisen werden thermo-
dynamische Restriktionen fur die konstitutiven Gleichungen eines internen
Variablen-Modells durch Auswertung der Clausius-Duhem Entropieungleichung
abgeleitet. Die klassische Coleman-Noll'sche Argumentation der Rationalen
Thermodynamik, wie sie von Coleman und Gurtin fir ein Internes Variablen
Modell angewandt wurde, wird zusammenfassend dargestellt. Diese Vorgehens-
weise erfordert die beliebige Einstellbarkeit der Volumenkrafte und Warme-
quellen bzw. -senken im Innern des Korpers; diese Methode ist nicht unum-
stritten. Die zweite Vorgehensweise, die in dieser Studie angewandt wird,
orientiert sich an einem Konzept von Muller und Liu, urspringlich entwickelt im
Zusammenhang mit einer anderen Entropieungleichung und anderen Klassen
konstitutiver Modelle. Fur das Interne Variablen-Modell erfordert die zweite
Vorgehensweise nur die beliebige Einstellbarkeit von Anfangswerten auf der
Oberflache des Kérpers.

Im Rahmen der Entwicklung der zweiten Vorgehensweise treten bestimmte
Unterschiede zur Argumentationsweise von Muller und Liu auf; darauf wird
erlauternd hingewiesen. SchlieBlich zeigen die Ergebnisse, daB die erste und die
zweite Vorgehensweise dieselben thermodynamischen Restriktionen fir das
Interne Variablen-Modell liefern. Die abgeleitete Restentropieungleichung
erfordert noch eine weitere Auswertung.
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1. Introduction

Within the context of the R & D activity “Metallic Materials and Structures under
Complex Loading” itis planned to perform a systematic analysis of different con-
stitutive models with internal variables on the basis of continuum thermodyna-
mics. These internal variable models serve to describe the elastic-plastic response
of metals under complex stress or deformation histories.

Itis well known that continuum thermodynamics imposes restrictions on the
constitutive equations. However, frequently the constitutive relations have been
and are developed on a purely mechanical basis. But it is obvious that a thermo-
mechanical theory embracing mechanical and thermodynamic principles has a
richer physical content. Therefore, a purely mechanical constitutive theory
should be interpretable at least as a special case of the more embracing thermo-
mechanical theory. Part of the thermodynamical restrictions are also reflected in
such special situations, for example when only isothermal processes are con-
sidered.

The thermodynamic restrictions of the constitutive equations derive from an
evaluation of an entropy principle together with the appropriate balance
equations of the continuum and the assumed constitutive relations. Beside the
restrictions associated with an entropy principle there are conditions due to
material objectivity and the symmetry properties of the material.

Whereas the validity of the balance equations is generally not questioned the
entropy principle or the entropy production inequality has raised many contro-
versies which persist at the present time [1-5]. Very often the entropy principle is
taken to be the Clausius-Duhem inequality given by
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Subscripts take the values A= 1,2, 3 and the usual summation convention
applies to repeated subscripts. It appears that this inequality (1.1) including heat
sources and sinks at first has been set up by Truesdell and Toupin [6]. Equ. (1.1) is
motivated from the second law of thermostatics of homogeneous processes.
Application of the divergence theorem to the surface integral in (1.1) yields*

//}’7 # /—7’:‘—)4 - i;—t ar 2o

and since this is assumed to be valid for any volume Vone obtains the local
Clausius-Duhem inequality'

. , . 5’""
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In 1963 Coleman and Noll [7] described a logical context for this inequality which
allowed to draw conclusions from this inequality. This context has three
ingredients as follows [8]:

(1) A mathematical description of the physical system and a definition of a
thermodynamic process for the system. Such a process is defined to be time-
dependent set of configurations, force systems, and temperature, integral
energy, entropy, heat supply and heat flux compatible with the balance of
linear momentum and moment of momentum and the energy balance equa-
tion. Thus, some of the quantities describe the possible internal evolution of
the system, while others describe the possible actions of the environment on
the system. |

* The dol () represents Lthe material lime derivative and the comma ( ), denoles the partial
derivative with respect to the material coordinate X“k .




(2) Constitutive assumptions describing the material behaviour of the above
physical system. Such assumptions are equations relating the various
quantities that make up the internal portion of a thermodynamic process. A
thermodynamic process that satisfies the constitutive equations is said to be
admissible. ‘

(3) A definition of the production of entropy for every thermodynamic process of
every system of the type under consideration. This was taken to be the left
hand side of (1.1).

Once these ingredients are prescribed a “dissipation postulate (second law)” is

required to hold:

“For all admissible thermodynamic processes and for every part of the body,
the entropy production must be non-negative.”

The decisive word of this postulate are the quantifiers “all” and “every”. The

quantifier "every” allows to transform the integral Clausius-Duhem inequality

(1.1) into its local form (1.2) as derived above. The quantifier “all” makes the

postulate a restrictive condition on the constitutive assumptions. Indeed, if the

constitutive relations are laid down at will and without restrictions, the specific
entropy production cannot be expected to be non-negative for all admissible
processes. Thus, the dissipation postulate is not a restriction on the kind of pro-
cess that can occur but a restriction on the material behavior (for more details

see section 2).

The concept of Coleman and Noll, applied by many others and promoted by

Truesdell [10], has been critizied for several reasons, e.g.:

(a) Entropy and absolute temperature are well defined, derived quantities only
in thermostatics (equilibrium states). Their transfer to the thermodynamics of
irreversible processes involves hypothetical generalizations [1, 2, 11, 12].

(b) Closely connected with (a) is the question which inequality should replace the
Clausius-Duhem inequality [2, 11, 12} _

(c) Some authors (e.g. [13]) reject the requirement that the entropy inequality
should be satisfied identically for all admissible processes such that it re-
presents a restriction on the constitutive equations. Instead it is interpreted as
a constraint on processes. Thisinterpretation appears to be unacceptable (see
section (2)) if sufficiently smooth processes or unique constitutive relations
are considered. However, when discontinuous processes are envisaged [14 -
16] or when the material behaviour is not represented by the same set of
constitutive relations in the whole range of interest [14, 15], the entropy
inequality plays a dual role: A restriction on the constitutive relations and on
the possible motions and temperatures, i.e. processes.




(d) The Coleman-Noll argumentation considers a large variety of admissible
thermodynamic processes. From a physical standpoint an admissible process is
controlled by prescribing the distribution and history of the body force and
heat supply as well as initial and boundary conditions. In the approach of
Coleman and Noll the body force and heat supply are required to be
assignable in any way but initial and boundary conditions need not to be
considered explicitly (see section 2). Woods [18 -20] has criticized this aspect
among others: It requires a fictitious body force and a fictitious heat supply
unconnected with any genuine physical sources of these quantities. These
distributions could be supplied only by some imponderable medium
permeating the body (“phlogiston axiom”). However, these external fields lie
beyond control atinterior points of the body. Green [21] did respond to the
criticism in [18] but obviously without much success (compare [19, 20]).

In 1967 the Coleman-Noll approach was used by Coleman and Gurtin [22] to
develop thermodynamic restriction for the constitutive equations of nonlinear
materials with internal variables whose temporal evolution is governed by ordi-
nary differential equations. Later this development was the basis for material
models discribing elastic-plastic behaviour (e.g. [23, 24]).

Also in this study it is the purpose to derive the thermodynamic restrictions
for the constitutive relations of an internal variable model using the Clausius-
Duhem entropy inequality and the dissipation postulate but accounting for the
criticism of the “phlogiston axiom”. This new approach is based on an idea of
Miller [25 - 28] where body forces and heat supply are not allowed to be
assignable in any way but where the arbitrariness of initial conditions induce a
sufficiently large variety of admissible thermodynamic processes. Miller
developed his approach in connection with an entropy inequality more general
than (1.2) and for other classes of materials. Thus his results cannot simply be
transferred to the present problem.

In section 2 the classical Coleman-Noll argumentation is described for the
~ purpose of illustration. In section 3 the new approach is developed in a stepwise
manner starting from a simple one-dimensional problem - the rigid heat
conductor without internal variables - to the three-dimensional problem inclu-
ding the full set of constitutive relations. This stepwise procedure is recom-
mended because of the mathematical peculiarities of the derivations. The study
closes with a discussion of the results.




2. Description of the Classical Methodoloqy of Rational Thermodynamics for
Materials with Internal State Variables

The following discussion is restricted to the thermodynamics of infinitesimal
deformations of solid bodies. Cartesian coordinates are used throughout and
index notation is applied.

The local forms of the balance equations of linear momentum, moment of
momentum and energy are as follows*

Linear momentum

L

e, "_éél,& =5’ée (2.1)

Moment of momentum

fée = Zeg -
Energy
56 ~lue €4 * Yu = 57 &
Strain - displacement relations
(2.4)

where the yet undefined quantities are
d;;_ components of the displacement vector
fu components of the infinitesimal strain tensor
* Actually the balance equations are formulated as integral balance equations for a finite

portion of the body. The derivation of the differential balance equations from the integral
balance equations is a subtle process and involves a locality postulate.




zftl components of the stress tensor
dg components of the specific body force
€

& specificinternal energy

For infinitesimal deformations the mass balance equation need not to be
considered.

Obviously, the balance of moment of momentum leads to an algebraic
condition, the symmetry of the stress tensor. This symmetry condition is inter-
preted as a restriction on the constitutive equations for the stresses. The two
other balance equations represent a set of four partial differential equations:
which govern the thermomechanical process. /

It is evident that these equations must be supplemented by further equations
to close the system. These equations are the constitutive relations. For an inter-

nal variable model they are assumed to be given by \
A

Ztﬁ.e = l/éc (Crun, 7, 7k “J’) = Ty
26 = F4 (Emn, 7/fA , %) > (2.5)
é "é /éﬁh,r/;t) o‘d’)
7 = "; ( Coma, 7, ;4/ Kd’)

and ordinary differential equations represent the evolution equations for the
internal variables OCJ;

Xp = Jylemn, 7,00, %), panagx 20

The quantity T denotes the absolute temperature and the vector jé isthe
temperature gradient

f& p= /M %9”& . (2.7)

The above relations represent an application of the “rule of equipresence”. This
rule* asserts [22], that a quantity present as an independent variable in one

* Some authors have raised this Lo the status of an axiom bul this is certainly unacceptable.




constitutive equation of a material should also be so presentin all, unless its
presence contradicts some general law of physics or the assumed symmetry of
the material. Thus, this rule is basically an anti-discriminatory postulate [3].
However, for special materials and/or approximate theories dependence on one
or the other variable may even disappear.

The constitutive equations (2.5) and (2.6) glven above nmplncnly contain the
assumption that the constitutive functions fﬂ f‘, é '? and £, do not
depend on the thermodynamic process, i.e. their forms are not affected by the
present state characterized by the set

7
=/'f"'~=e"“‘ Y “y/

or by the temporal or spatial derivatives of these variables. Thus, it is assumed
that for every process the response of the material is always represented by the
same set of constitutive functions. It should be pointed out that this assumption
is not always acceptable when modelling realistic material behavior; then extra

considerations are necessary [14, 15).

This system of equations togehter with a prescribed body force and heat
supply as well asinitial and boundary conditions completely define the problem.
Itis obvious that the local entropy balance equation so far does not play any
role; nevertheless this inequality is required to be satisfied.

On the first sight this may be achieved in two ways:

@ The entropy inequality is a restriction on the admissible thermodynamic
process, i.e. on the solution of the above system of equations for a given set
of the body force, heat supply, and initial and boundary conditions.

Forinstance, the solution aifr,..,t) , 7-(,#'.,,t) and %M.Qand the depen-
dent variables, especially &(,'-m{/ and 7/4,.,{) , are inserted in the
entropy inequality. Within a certain time intervall €, £ ¢ <€, somesolutions

may be consistent with the inequality (1.2), i.e.

'/5’7' +/7%‘-&) > S

and are thus physically acceptable. However, in general it is not to be expec-
ted that the above solution obeys this condition.

In reality a process is determined by prescribing the body force, heat supply
as well asinitial and boundary conditions. Thus, failure to satisfy the entropy
inequality would mean that these quantities are restricted by the entropy
inequality.




@ However, this view is hardly acceptable. In continuum thermodynamics the
external agencies are not part of the solution but are presumed to be given
by some extra considerations. The body forces and the heat supply as well as
the actions on the boundary of the body represent the influence of the
environment on the body whereas the initial conditions at some initial time
reflect the history of the body up to this time. Thus, continuum theories and
any other theory consider only a section of the material world and only part
of the evolution of the body. It is certainly true that these external agencies
are also subjected to physical laws but these are not necessarily part of the
continuum theory. Thus, when analyzing the mathematical and physical
consistency of a continuum theory in general, it is quite natural to consider
the external agencies and initial conditions as arbitrary. Consequently, the
entropy inequality should be satisfied irrespective of the choice of the
external agency and initial conditions, i.e. for all processes compatible with
the balance equations and assumed constitutive relations. Evidently, this
includes processes due to external agencies which cannot be realized.This is
the interpretation of Coleman and Noll [7]) and others laid down in the
“dissipation postulate” (see page 3).

Thisinterpretation and an approach developed by Coleman and Noll allows a
systematic evaluation of the entropy inequality to derive logical consequences
from this postulate for the constitutive relations. In effect, these consequences
will restrict the constitutive functions in their dependence on certain indepen-
dent variables and will reduce the number of constitutive functions which are in
accordance with the thermodynamic principle.

Following Coleman and Noll [7] and Coleman and Gurtin [22] the approach is
as follows. For some set of body forces and heat supply as well asinitial and
boundary conditions the relevant field functions 44 7 and OCJ.. are
determined by solving the initial-boundary value problem. This procedure for
~obtaining an admissible thermodynamic process may be reversed. Assume that at
an initial time the initial values of the internal variables are given by

/dJ)f-t = e(/ Y ) X T (2.9)
“tép




Further, consider a displacement field & (4,,%) and a temperature field
7?/“;,,1-) . The quantities

o7
4 = Z7
oo(é’ , Che = Z/“l,e . ”’nﬁ)/ 7 ) fl = DAy (2.10)

are functions of A and ¢ and are assumed to be smooth enough to ensure
the existence of a unique solution X, (¥ ¢ of the evolution equation (2.6). Thus,,
prescribing &g (,(;,1‘/, 7?/1*..,,1.‘) and the initial values g(, [.c‘,.,), the
independent variables

77= /fu, 7,;,,«,] (2.11)

are known at any time and every point in the body. From the set (2.11) via the
constitutive relations (2.5) and (2.6) one can calculate the dependent variables

fﬂ, e, €17 (2.12)

as functions of 4. and Z.Then the associated body force and heat supply is
uniquely obtained from the balance equations. Furthermore, the initial and
boundary conditions in the body and on the surface of the body may be deter-
mined from the values of the field functions at the initial time and on the
surface.
The latter quantities, i.e. body force, heat supply etc., may now be prescribed.
The associated initial-boundary value problem yields exactly those field function
Ug (A, t), T, and &% (w) which were the starting point, if the initial-
boundary value problem admits a unique solution. This uniqueness condition is
implied in the further analysis.
Consequently, the following alternative for the evaluation of the dissipation
postulate exists:
(1) Evaluation for all (i.e. arbitrary) body forces, heat supplies, and all initial and
boundary conditions; these quantities are actually determining an admissible

thermodynamic process.

(2) Evaluation for all (i.e.arbitrary) sufficiently smooth set of functions Uy /*Q,f),
7% #) and initial values %y l4).

Coleman and Noll [7] and Coleman and Gurtin [22] have taken the second
alternative as a basis for the evaluation of the Clausius-Duhem entropy in-
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equality. This procedure will be described in the following.
The elimination of the heat supply from the entropy inequality (1.2) using the
local energy balance equation

g* = g € —14, €44 + %44

gives

57 - T T T 7
(2.13)
. SE Zee Cae 76 2o
= —_—_— #F — - = O
where the definition equ. (2.7) is observed. With the constitutive relations (2.5)
one has N
A A A K]
. De - DE Je e .
E = Chn T N -a_wﬁ“ . dal ag/
D Come o 27 J;“‘ ¢ , (2.14)
« ;. AL 2%
_ 2% 4 97 7 oy * Ay .
7= %, O T o7 Za 77

Inserting thisin (2.13) and rearranging according to the rates of the independent
variables one obtains

9»; 4 De 4 [ .
-_ — e £= A —
/3 e, T 50e, T 7 lmn [En

2 1,95 77
/37 ~F%or /7

- 29 R . "
7‘[5,9% - > fajm]ﬁ‘- P | (2.15)
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where the evolution equation (2.6) is accounted for.
For an arbitrary admissible thermodynamic process, characterized by an
arbitrary choice of the smooth functions @& 2) 7¢x ¢) and dJ,/X” ), the

elements of the two sets

7 _— —
l = @"-.:e,.,,,, /, fw’ﬁ. , A/,/ (2.16)

R = Coun = Core 7:’ f' = 7}.‘,‘.} (2.17)

may take locally (i.e. for a material point) arbitrary values independent of each
other at any time. For example, there may be two admissible processes leading
locally to the same set 7-' but havmg different rates /R and &, Ifthe
constitutive functions 2 . '2“ d ’-‘a_ and %e could indeed be
chosen at will without restrictions, then the inequality (2.15) would represent a
constraint on the two sets # and MR ,1.e. on the thermodynamic process
(compare Paglietti [13]). Thisis not acceptable and therefore the inequality
should |dent|ca||y be satisfied in the constitutitve functions for all processes, i.e.
forallsets # and R .

[tis important to note, that the rates é,..,. etc. occur only linearly in the
inequality. Since the set R isindependent of T and arbitrary, the coefficients
of the rates R in equ. (2.15) must vanish identically for all sets T since
otherwise a violation of the inequality would be possible. This yields the
following constitutive restrictions

97 ) 7— z,/e,..,. 9«;.)";{:"‘ =

9&. 95....
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A
9’?‘ _ _’/_ 95 = O »>(2.18)
T 7 27
27 126 _ o
9}«. 7 Qj‘« B y

and the residual entropy inequality
A

A R
97 s &) _ Tk (2.19)
9 9“/ - 7— 9“, /}/ 7—,_ Z 0.

The first equation is obtained by observing that only six components of the strain
rate tensor €44 can be varied independently and that L‘,... is symmetric.
This result can be putin a more compact form by introducing the free energy

function (Helmholtz function)
A A (2.20)

/y/..= 6-/—72

A
v
where V is a function of the variables # . Thus

2k _ w04

QEA-"- B thvh QEM“

Jeé 952 A 27 (2.21)
27 = o7 # 7 a 72/_ ¢
)E ¥ D%

Introducing thisin (2.18) gives finally

(L)
‘?2—— O Cen i’ 2 Cnn - Z,,,,,_
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and the residual entropy inequality
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\v

=

With (2.20) and (2.22); one notes that also
Al
4 A 7 2 ¥

é = % - 97‘ 3

One concludes that the free energy ¥ is independent of the temperature
gradientj., and so are 7" , 2 and 2,“, Equ. (2.22) and (2.24) show that the
constitutive equations for the stress, entropy and internal energy follow from
the free energy function and cannot be chosen independently. These results are

well known,

A

o

(2.22)
[

> (2.23)

(2.24)

Itis obvious that the evaluation of the Clausius-Duhem entropy inquality does

not end here: The residual entropy inequalitx‘imposes restrictions on the evolu-
tion functiorlsjl and the heat flux vector % and likely there exists a relation
between &Yf/é’a’, and Jy . Thisrequires further analysis which is not part of

this study.
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3. An Alternative Derivation of Constitutive Restrictions

3.1 General Remarks

It has already been noted in section 1 and itisdemonstrated in section 2 that the
Coleman-Noll argumentation is based, among others, on the assumption that
body forces and heat supply are at our disposal and thus may be modulated at
will. This has been heavily criticized by Woods for physical reasons (see section 1).
Itis felt that the arbitrary choice of initial and boundary conditions is suffi-
ciently rich to induce a large variety of processes in the body even for a fixed,
prescribed body force and heat supply. In the following analysis it will be shown
how the Clausius-Duhem entropy inequality is to be evaluated to give consti-
tutive restrictions if only the initial and boundary conditions are allowed to take

arbitrary values. However, it should be observed that these conditions must be {
consistent with the partial differential equations to give a unique solution.

This approach is based on the work of Muller [25-28] and Liu [29] who applied
asimilar argument to an extended form of the Clausius-Duhem entropy
inequality and to a rather different set of constitutive relations; Muller assumes
that the entropy fluxis not given by % /7 but by a constitutive equationsin its
own right. Also the concept of absolute temperature is dismissed. The indepen-
dentvariablesin the constitutive relations are e.g. the deformation gradient (or
strain), the (empirical) temperature, the temperature gradient and additionally
the rate of temperature. Within this frame an admissible thermodynamic process
may be characterized by a pure initial value problem. If the initial values and the
constitutive functions are analytic* then using the Cauchy-Kowalewski theorem
[30-31] it can be shown that a unique analytic solution exists.

Since some of these basic assumptions are not relevant for the problem
tackled in the present study one cannot simply refer to the results of Muller and
Liu; a step by step approach is necessary.

3.2 The Rigid Heat Conductor without Internal Variables

To simplify the discussion a rigid heat conductor without internal variables is

* Areal function f/ig)ﬁ of several variables £, § = 0, 1,...nis called analyticin the neigh-
bourhood of a point & if /(X}) can be represented there by a convergent power series.
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considered first. In the general three-dimensional case the governing equations
are

Assumed constitutive relations*

€ = é(rlj"‘lxﬁ}
'7"(7-/}»,)’4) y (3.1)
j:t: ;&/7;}"/ X\‘)

~
]

Balance of enerqy

9&
ﬁ‘& % & sz',g

. ;7" = O (3.3)

Sa7

and the Clausius-Duhem entropy inequality

Kd 1 /9% 9?-4 9?/:
(3.4)

1/ S
>z e - F Z O

* The assumed explicit dependence on the material coordinates XL allows for inhomogeneous
material response.
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Itis fairly simple to show that the evaluation of the entropy inequality on the
basis of the Coleman-Noll argument yields the following restrictions on the con-
stitutive relations (compare with (2.22)): With

A

.= € - 7 (3.5)

one obtains

9¢
J

~
|
N

Xa
T
w
2

J
o4
é

b
Q

I
‘$
|
V
N

and the residual inequality

Y

7t e = O

Itis obvious that the free energy and thus the entropy and the internal energy
are independent of the temperature gradient.

In the following itis intended to proof that the same restrictions are obtained
by allowing the initial- and boundary conditions to assume arbitrary values but
without modulation of the heat supply; thus 7 is fixed in the further analysis.
For the sake of simplicity a one-dimensional homogeneous heat conductor is
treated first.
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3.2.1 The One-Dimensional Rigid Heat Conductor
3.2.1.1 The Initial-Boundary Value Problem and the Initial Temperature Rate

The assumed constitutive relations for the homogeneous heat conductor are

e (7,3)

i

&

W

7 = n(7,5)
7 =413

with

o7
7= on

The balance of energy reads

5’977'7‘-5’;?; +——?—7

or with (3.9)

2'7 T _
a <t boxﬁt td =o0

where @ , 6 and & arefunctionsof 7, 27/ and 7/t .

24
a=;;
b=£’§;
28 . 24
L= 9577 tor 8 ST

(3.9)

(3.10)

(3.11)

L (3.12)
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This is a special form* of the general quasilinear P.D.E. of second order

DT 7 )7
ot F by f o ot

a = QO

whose characteristic condition is given by

a b6 ¢

4 = |# ¢t o|=alt)-sxt vcix)

O o't
’ A x- /Lt
= 2 2Z— LL = T
o ad ’ 2

here A isa parameter along a characteristic curve given by the parameter

representation

X k() 4= 44)

With

2' At

e————" [

- = ==
X ax
the characteristic condition reads

¢
a,[ff —-é% + C =0

A
It is noted that by introducing a suitable coordinate transformation F=fxe)
t=(x,¢) onemaytransform (3.11)to oblain a quasilinear P.D.E. of the general form
(3.13).

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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and thus

_ay___é_,u__{_/z_ ) s
drx ~ 2a — 2a &~ fac, %

If two real solutions exist, i.e. if

6  — 4ac o (3.20)

)

then the P.D.E. is of hyperbolic type. Since €@, two real characteristic curves
exist given by

at) /_ﬂ_léjz_é_ (3.21)
ax/, = ' (L a

Thus, the first set of characteristic curves are parallels to the x-axes in the (x,t)-
plane and the second set are curved lines which are not predetermined but
depend on the solution T[X‘;é}.
Usually two types of initial value problems may be prescribed for a hyperbolic
P.D.E. [30-33]:
(a) Cauchy problems
A Cauchy problem for a general hyperbolic P.D.E. is characterized by
prescribing 7 and #7%4 along on open non-characteristic curve /7 * in the
(x,t)-plane; here (9:/J)is the derivative along the normal of I
(b) Darboux problems (characteristic initial value problems)
A characteristic initial value problem is defined by prescribing 7 along two
intersecting characteristics.

From the theory of P.D.E. it is known that these problems admit a unique
solution [30]. .

For the hyperbolic heat conduction problem equ. (3.11) neither (a) nor (b)
appears to be physically reasonable: For physical reasons part of the initial
condition is characterized by prescribing 7 alongthe x-axesat =0, e.g.

* This curve is not allowed to intersect twice any characteristic
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However, the x-axes is a characteristic curve and therefore the Cauchy problemiis
not applicable here.

On the other hand, additional prescription of the temperature along the
characteristic (3.21)2 is conceptually not impossible but physically rather

complex.

A more reasonable situation is an initial-boundary value problem, e.g. the
initial condition is assumed as above and the temperature is given as a function
of time at ¥%~0 . Thus

w
7—06", 0) = ,/ (x) o< X initial condition
r (3.22)
lco¢t) =7 (&) 7N boundary condition
with
50 = 7o) (3.23)
This situation is related to a Goursat problem [32]. In the further analysis
existence of a solution of the above initial-boundary value problem is implied.
In the following a procedure isindicated which allows to calculate the initial
temperature rate
(r) = [ (3.24)

atany pointin the regime X on the basis of the differential equation (3.10)
and the initial and boundary conditions (3.22). Further, itis indicated that higher
derivatives (P¢7/9¢%)., ,(97/9t*)4-0 etc. may be obtained too.

Observing the definition (3.24) and the initial condition (3.22); the energy
balance equation (3.10) at #= @ reduces to the following linear ordinary
differential equation for the temperature rate J/x)

A
A 2—%’ + By =C oL x (3.25)
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where /4, 8, C are given functions of &:

H = 5}—){—‘0 functions of
T, AL dr
'8 = ( )f =0 y
9? 7 4 9 .
C = (er functions of
/ 4’0 o7 ax 2? 9,«) e LT /e
27/t

In general terms the solution of (3.25) may be written as

x £ f
7 ”/"/‘//”df//“ +/J ap //W‘Wf/

8 <
Bism + 477

and where of isan integration constant. Therefore a unique solution for J""

is obtained if the temperature rate ¢ is prescribed at a single position X"=;.

This requirement is derived from the boundary condition at 4= o :

/ 27
(J)X‘=};=0 dl‘/tc =6

Consequently

AT
X = dt /¢=0

The higher time derivatives of the temperature at €20 are determined as
follows. The partial derivatives of the energy balance equation (3.10) with
respect to time reads
€ Pé
=7 r 9 3 =
27 8;1

N

) (3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)
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where

~ . 28 2%
g = §» -(lf*ifu)

‘3/97" 7 979/ )T

(3.32)

s /%:é 7
-G 7« 22 f/f i T )

Introducing the definition

/ 27 (3.33)
?(x‘) r = (?t‘ £=0

equation (3.31) at €=0 simplifies to an ordinary differential equation which has
the same structure as equation (3.25):

/7
a7 / ’
A +~ B =C (3.34)
Ax Vy
where /qand B are defined as above and

_ (C’ ){w | (3.35)

Note that again ﬁ, 8 and c,are known functions which can be determined
from the initial and boundary conditions and the solution equ. (3.27). The
general solution of (3.34) has the same form as (3.27) except that g has to be
exchanged by

, C (3.36)

’ 14
and the integration constantis ¢ . But @ isobtained from the boundary con-

dition (3.22); by differentiation

/3 )., / ) (3.37)
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In an analogous way the time derivatives of the temperature at Z=0 may be
determined up to any order. Thus, itis evident that the initial and boundary con-
ditions (3.22) as well as the differential equation (3.10) are sufficient to deter-
mine the first, the second and all higher time derivatives of the temperature at
{=o for every pointin the regime os A" . This process of successive deter-
mination of the initial derivatives can be continued without limitation if the
differential equation and initial and boundary conditions are analytic. There-
fore, if the solution 77»\'7() can be expanded in a convergent Taylor seriesatt =0
forevery point o0=x*, the series coefficients are uniquely determined and thus
the solution 7é¢¥) is unique.

3.2.1.2 Evaluation of the Clausius-Duhem Entropy Inequality

In the one-dimensional case the entropy inequality (3.4) reduces to
9’7 o _:Q_Z— ° 7J g? 9?
ST tSiEd ¢ F (e F g b

-7 Sr
7-2?; ——7—_' > 0.

An admissible thermodynamic process is equivalent to a solution of the initial-
boundary value problem for the temperature. However, such a solution is not at
hand. But in the neighbourhood of the initial time t =0 complete information
about 7;»,&1 is available, if 7(},t) can be represented by a convergent Taylor
series close to t =0 at any point 29X Therefore, the entropy inequality is

evaluated att =0 for any material point 054"
If the constitutive equations (3.8) are assumed to be known then the entropy

inequality at some material point X‘&«t“" may be viewed as an inequality relating
the quantities
= ) z — -
=K [..x

(3.38)

(3.39)
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and
27 7
Z@ {7’ # e Gix = 5;;— ok (3.40)

as well as the prescrlbed heat supply . Similarly the local energy balance equa-
tion (3.10) at X‘-A‘ is considered as an equation relating the sets Rand T as well
as 7. It isimportant to note that the elements of & occur linearly in the entropy
inequality and in the energy balance equation. But the elements of T are non-
linearly involved in both relations. Att =0 the quantities Rand T assume the
following values: |

([7")" = y(x)

. A Yo
< G), - ‘{i 8 27'= AT (3.41)

, AL, /f)a 7 I
\/ﬂx/a T odxt

Recalling now that the initial temperature distribution //r) may be chosen at
will, one concludes that at a point ¥= x‘ the quantities

d d /5 (2
{/(m ) / (‘7 ”)} (3.42)

may take arbitrary values locally. However, the initial temperature rate ¥ and
its derivative a{y/dt are notindependent locally but are related to each other
and to the set 0 via the local energy balance equa’uon att=0,i.e.equ. (3.25).
Similarly the temperature rate T and its der:vatnveg 37‘/&?’ are related by
equ. (3.10) at later times. This interdependence of 7' and j due to the energy
balance equatron may be accounted for by expressmgj in terms of T or 7 in
terms ofj as well as the other elements of the sets R and 7 and the heat
supply # _Here 7 is expressed in terms of 3 This is motivated by the fact that
in the two- and three-dimensional heat conduction problem the temperature

°
I

{
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rate is related to more than just one of its spatial gradients via the energy
balance equation; thus, 7 may be expressed by its gradients but not conversely.
Consequently, equation (3.10) yields

.1 r R N
% O N A S
Inserting this result into the entropy inequality (3.38) and rearranging gives
792/9r e ) s
J7. _ X
(f 9; s De /o7 o”j)
4 22/97 ) 92
fE - y
7 D€/IT/ 7%
, (3.44)
R ;’7/97) o7
# /7" - e yels or j
7 9/97 4
—/7» T pesor 57 72?7t =@
Especially att =0 thisreducesto
/7 P91 de ) Ly
5075 P&/oT 8F Jewo @t
22/91 ) WE A
A 7 L e
a /'7“ T 2E/I7 V<0 /9; La ax*
(3.45)

-, D29/97 D
. //.;:- B 5%%497- ¢ =o {Zig;éa£=o

Y ' iz S
—5/?— [1‘){--_—0 /7‘2 i =0 Z0

T 0€/07 /#=0
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where df]%lx‘ may be obtained from the solution (3.27) or the differential
equation (3.25); one obtains

4 —ﬁ% : | (3.46)

It should be observed that except (7‘)4 so alltermsin bracketsin equ. (3.45)

are functions of only 7,' and 4{/0‘ _The same is true for the functions /3

and 4 . Thus,oé/u&‘and /‘5//1‘1 occur linearly in the entropy inequality.
If one chooses X¥=X*=o then (3.46) reducesto the simple relation

[ﬁh)rw /Jl[ /dx‘)) /ﬂ( o, 7¢) )_ ( } ~(3.47)

Thus, for a fixed prescribed initial temperature distribution 7-0\‘) the
derivative ‘{?/A{x‘ at x =0 may take any value since the boundary value 7_/{) at
x=0and hence 7 may be manipulated at will and independently of 7'/;:‘/ ,
except for (3.23).

Consequently, in the entropy inequality (3.45) taken at x = 0 the quantities

dy A%, ]

A ' odrt atx=0 (3.48)
and
- d7
A .-//0 s atx=0 (3.49)

may take any value independently of each other.

Since the quantities (3.48) are linearly involved in (3.45) and the entropy in-
equality should not be violated for any choice of (3. 48) the coefficients of 4}/‘2//"'
and 0// emust vanish, i.e. s

/ﬂ_ _ iy 95)
0(? 96/97 Qf ”;a

s M )
[—7—’“ - 952/97/{_.,, 9f/m '

J
O

¢ (3.50)

|
©
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Since it is assumed that
A

gg? ~ 0 (3.51)

equ. (3.50)7 yields

A
7
[_. _27?-4?——/ = 0O (3.52)
2€/97 Jt=°
Azo
Therefore (3.50)1 simplifies to
= O . (3.53)

/97‘ _ 7 ﬁé)

o9 7 /5

If one assumes that the two constitutive functions é and ?A could be chosen

at will, then (3.52) and (3.53) would represent two conditionson 4 and /Z//l‘
- x =0. However, this is contrast to the basic assumption that the initial condition

A aswell as &4, /d# could be chosen at will locally. Therefore, the two
conditions (3.52) and (3.53) are to be interpreted as restrictions on the consti-
tutive functions é and '6 : They are required to satisfy (3.52) and (3.53)

identically.
Introducing the free energy function

¥-<-75 = Hrp) o

such that N 4
¥ _ 2¢ _ Tyzz -
7 o7 o7
) . ) L (3.55)
¥y 2 _ 727
L .= =T 7
Z’Oi j 7
then (3.53) yields
9%) = 0 (3.56)

QJ' /g‘ro
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and from (3.52) one obtains
Q¥ «
(25 4 5 _—
a7 ¢vo
A A

=0
Equ. (3.56) and (3.57) are restrictions on the functions ¥ and 4 att=0and
x =0. Since the constitutive functions are not asumed to depend on time and
position explicitly, these restrictions are generally valid, i.e.
A A
s
75 or 7

[

and the internal energy is restricted by

4 A 9(;
E =¥ +7 57

With the result (3.52) two other terms in the entropy inequality (3.45) vanish
identically, especially the term involving the heat supply, and (3.45) reduces to
the residual entropy inequality

- (?j/4:o > 0
ey

and generally

-77 = e

The results (3.58) and (3.59) show that the free energy, entropy and internal

energy do notdepend on the temperature gradient. As a consequence the func-

tion 4 inthe energy balance equation (3.11) vanishes identically. Thus,

equation (3.11) is required to be parabolic with a single characteristic curve

(compare (3.14) and (3.15))
= =t
s

passing through a pointin the (x, t)-plane.

Further, the differential equation (3.25) for the initial temperature rate ()
degenerates to a linear algebraic equation for}, since according to (3.26)4

A= o.

= 0O

(3.57)

(3.58)

(3.59)

(3.60)
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Therefore, the prescription of the temperature history at a point #=£=0 is not
required any more to obtain a unique solution of (3.25). Also for a solution of
(3.11) the boundary condition (3.22) is not required if initial condition (3.22)4 is

given.

3.2.2 TheTwo-and Three-Dimensional Heat Conductor
3.2.2.1 Thelnitial-Boundary Value Problem for the Two-Dimensional Case and

the Initial Temperature Rate

The constitutive relations for an inhomogeneous heat conductor are assumed to

be given by \
A
& = &[T,jﬂ'

x‘d,)
7= 77,80 ,%) (361
(T30, %), A¢= 42

’

where

J”:_ 9,573 . (3.62)

The energy balance equation reads

A A A
396 P 9&? L, d+9?¢ ¢r=o0
o7 29 ¢ T or ¥ 7 290 I T Dk
(3.63)
Analogous to the discussion in section 3.2.1.1 an initial-boundary value problem
is considered. The initial temperature is prescribed in a simply connected region B
of the (x4, x2)-plane:
T, 0) = [ ) in 8. (3.64)

Along its open boundary o? ,defined by the parameter representation

b 4
x‘;‘ = X:‘(.f) , o = 4,2 (3.65)
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the temperature is assumed to be a given function of time, i.e.
—_— A ~
I(xg,t) = T(F )

such that

T(f,0) = T(5)

From (3.64) the initial temperature gradient is found to be

27,
// d)z‘=0 T o

Introducing the abbreviation (3.24) for the initial temperature rate (7') o
the energy balance at t =0 is written as

}21 96“, -+ 28(? = Cj

with »

'Z?d = /Qfoc ){ =0

( )-é=o
2!.1

9%
S/"?!:o g‘t 2//3 fﬂd TR

c

It

Since the constitutive functions (3.61) depend* only on the temperature and its
gradients, the right hand side of (3.69) is determined by the initial condition
(3.64).

Equation (3.68) represents a linear first order P.D.E. for the initial temper-
ature rate ¢ with two independent variables X} and X{ .In contrast to the
one-dimensional case an integral representation of the solution is not readily
obtained. The functions ZZ( ,o=4¢ and (C‘BJ,) define a field of vectors in the

* The dependence on the material pointis of no consequence in this context.

(3.66)

(3.67)

(3.68)
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(x1, x2, y)-space, i.e. the characteristic directions which are tangential to the
integral surface J/X;,/“) -the solution of the linear P.D.E. (3.68) [30, 33]. With
the field of directions, characterized by the direction numbers /ﬁ,, A, p - 3})
a family of characteristic curves is associated, which at each point are tangent to
the direction field. Thus, for any characteristic curve the relation

A _ A L 570
A, A, -8y |

holds [33]. If § isa parameter along a characteristic curve (e.g. the arclength)
and denoting the ratio (3.70) by s, the condition (3.70) defining the charac-
teristic curves is equivalent to the characteristic system of ordinary differential
equations given by

dX _ 2y _ 7
TE = A, ®=a2, T - -8y (3.71)

/q,. lqz , 8 and C donot explicitly depend on $ . According to the theory of
systems of O.D.E.'s of 1. order a solution of (3.71) is uniquely determined by pre-
scribed initial values

* * *
X\;'zx;//('=/‘t) g-‘-‘-g /or 5:0. (3.72)

3

Itis noted that the first two equations of (3.71) can be solved independently of
the third since g,,and A, donotdepend on ¥ . Thesolution X7¢6s), X, (5)
and &'(5) represents a spatial curve - a characteristic curve - in the three-dimen-
sional space with coordinates X7, A7, & .

It may be proved [30, p. 51] that every integral surface ¥ (% ,£%¢), i.e.solution
of (3.69), is generated by a one-parametric set of characteristic curves (Fig. 1) and
vice versa. To obtain such a surface it suffices to prescribe the initial value j
notonly at one pointin the (x1, x2)-plane but along some curve, e.g. the
boundary @ given by the parameter representation (3.65). With (3.66) the
initial value § along the boundary Z? is given by

e /2T
}/ﬁ ~/3z‘ (f’t},na (3.73)

f.
onpa? : X;.: X;'{/f) ’ =42
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This set of data generates a spatial curve & inthe (x1, X2, y)-space (Fig. 1).

The integral surface which goes through ® is constructed as follows. At
every point P along the spatial curve ® the characteristic curve E passing
through P is determined by solving the characteristic equations (3.68). Thus a
one-parametric set of characteristic curves

X(s,f) , X5(s, f) , 35 F (3.74)

is obtained. These curves generate a surface (X;,/I) if the first two functions
allow to represent the two parameters (S,f) in terms of A5 and &5 . Thisis
assured at least in the neighbourhood of ® if the differentials 45 and a’f
may be expressed in terms of &%, and A%, The total differentials of the first
two functions (3.74) are given by

_ dX %y
ax, = 9s 45 9j
) (3.75)

, X |
a’,r;_-—g"g‘-ds *Qf 4§ ; |

6{5 and df are uniquely expressed in terms of di"; and 44, ifthe coef-
ficient determinant of the linear system of equations (3.75) is nonsingular

ou, X oK X,

4= s 2¢ s If

On the boundary curve fthis condition reduces to

X % ¢
X K,
A= /Z i‘f - A e # o (3.76)

if the characteristic equations (3.71) and the parameter representation of .:;‘,F
equ. (3.65) are observed.

This condition may also be obtained in a somewhat less abstract way.
Assuming that the function 0’)’(5,f) may be expressed also as a function of A%
and X; one gets (coordinate transformation) \

dy _ It M I ok
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Atthe boundary curve equ. (3.77) reduces to
A -/9‘7 *p" +/—8‘Z*
- a" - 9x°, . 24
/ ,{X«;"‘ ( /ﬁ
oHy/) df ;

¥ ¢
here ﬁ' ﬁ, , 8 and C are obtained from (3.69) along the boundary. Equ.
(3.78) is a set of linear equations for the two gradients

_gs{ /* 2z | (3.79)

o,

?(3.78)

which determine the orientation of a surface element of the integral surface
along the boundary. If the coefficient determinant is non-vanishing, i.e.

*
¥ X 7
far A 7 *O, (3.80

the gradients (3.79) are uniquely determined at any point along & interms of
local properties of the initial values f and /f/df as well as properties of the
boundary curve. Thus, if condition (3.80) is satnsﬁed the form of the boundary 3
the functions A, , 8 , € and {/x‘) 76‘} and their derivatives allow to
construct a surface element of the integral surface Jﬂ;,)fl) atapointalong &,

If the determinant 4 vanishes for every point along the boundary then & is
a characteristic curve and a unique solution J&;, X% ) for the initial value (3.73)
does not exist [30, p. 54]. Consequently, the condition (3.80) is assumed to be
satisfied in the further analysis.

Analogous to section 3.2.1.1 the higher order time derivatives of the
temperature att=0, e.g.

Bx,) <=

7
(az“ tco !
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may be obtained by differentiation of the appropriate equations. This is not
studied here.

3.2.2.2 Thelnitial-Boundary Value Problem for the Three-Dimensional Case and

the Initial Temperature Rate

The results presented for the two-dimensional case are extended to the three-
dimensional one. Here one has to observe that the subscriptsin equ. (3.61) to
(3.63) take the values 46=l,2,3 . Further, the initial condition for the temperature
in aregion @ of the (x1, x2, x3)-space is

7-[,(3,,_‘}8 Z_(Xz) in @ at € =0,

The boundary condition on the open boundary surface f which is defined by
the parameter representation*

*
K = Kg (£,T),  A£zans,

where ,1' and T aresurface coordinateson @,is given by

72& ,'t") = 7‘/]', T,Z‘) onf forall 7 .

L d

-

The function 7 s prescribed. On the surface f? the given function ,//12) is
related to 77,37,{) by

AP
S f —
[ky) = T¢tT0),
The governing partial differential equation for the initial temperature rate

. 27 )
y/,)(‘)v‘: (r_j?—f-:o

* Different points on @correspond to different pairs (}/ <)

(3.81)

(3.82)

(3.83)

(3.84)

(3.85)
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Ay 46 * 8y =C

where the functions /qﬁ £=123 B and € have the same struct-

ure as (3.67) but the subscripts take the values 1to 3. The quantities ﬂ& and
-8By define a field of vectors in the four-dimensional (x1, X2, X3, y)-space, i.e.
the characteristic directions. The associated characteristic “curves” in the (x4, x2,
x3, y)-space are defined by the characteristic system of O.D.E.'s

Axa _ ] dy _ .
ds = P A=ans Zs =C-%y.

The projections of these curves in the three-dimensional (x1, x2, x3)-space are
given by the solution of the first three differential equations (3.87). Since the
functions /‘74 donotdepend on ¥, the characteristic projections may be
determined independently ofJ . For prescribed initial values (e.g. on f )

»

f
X'z_=/('2 ‘/\'2/'(',7) for S=To

a characteristic projection represents a spatial curve in the (x1, x2, x3)-space. The

solution y of the third characteristic equation (3.87) for a prescribed initial value

y: J* for S=0

is considered as a “density” distribution along the characteristic projection. In
the present context the solution of (3.87)4 subject to (3.89) is the initial temper-

ature rate distribution along the characteristic projection in the (x1, x2, x3)-space.

The solutions of the characteristic equations (3.87) are defined without speci-
ficreference to the first order P.D.E. (3.86). But analogous to the two-dimen-
sional case (section 3.2.2.1) the following relations apply[30]: Every solution of
the P.D.E. (3.86) can be represented by a two-parametric set of characteristic
projections and their density distributions and every such set represents a solu-
tion of (3.86). Further, if a projected characteristic curve and its density distribu-
tion satisfies the P.D.E. (3.86) at one point, then itis a solution of (3.86) at all
other points along the projection.

(3.86)

(3.87)

(3.88)

(3.89)
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A solution of the P.D.E. (3.86) is constructed as follows. From the boundary
condition (3.83) for the temperature on the surface 4? appropriate initial values
¥
4 on k are obtained by setting

(7*= ;7*/,?'?7 /21‘ 77f‘ z, z‘)) (3.90)

To every point of 4? a single characteristic projection is associated and these
curves in the (x1, x2, x3)-space are not intersecting. The solution of the charac-
teristic equations (3.87) with initial values (3.88) and (3.90) yields the character-
Istic projections

X‘Z = X“é [5’ ((-, 2') 4= 4,2,3 (3.91)

and the density distribution

<7A (s, 5.7) (3.92)

with

A %
X, (0, f,7) = X4 (f7T) , £:423

y & » (3.93)
y/alf(?.) :y(f/?)
)
The functions "2 and (}’ are unique and are continuously differentiable func-
tions of their arguments. Differentiation of (3.91) yields
A
2 Xy 20 91’3
dx, = E ds + ZL2 df + AT (3.94)
£ Js ¢ f 2T

In the neighbourhood of ®R(i.e. s o )equ.(3.94) reducesto

Ay, = ,q: ds + QX‘;, df + Qﬁa’  Aegez (395

when the characteristic equations (3.87)1.3 and the initial values (3.93)4.3 are
observed. Thisis a linear relation between the differentials /12 and d's, 4 f, AT
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which may be solved for the second set of differentials if the coefficient determi-

nant
¢ o6 K
IS
A = F]* _?_/_n_f I N (3.96)
2 7f 2T
* @_\*_’; QXT;
7 oy ot

is non-vanishing:

A+ O, (3.97)

Equ. (3.97) assures that relations (3.91) may be solved forJ, fand Cinthe
neighbourhood of 5’ . Then a unique representation of the density distribution
(3.92) exists in terms of the coordinates X; at least close to the surface ;7 If
(3.97) is satisfied the surface Q’ is called “non-characteristic”.

The condition (3.97) with (3.96) is the appropriate extension of (3.80). In the
following condition (3.97) is implied.

3.2.2.3 Evaluation of the Clausius-Duhem Entropy Inequality for the Three-
Dimensional Case

The discussion follows similar lines as in section 3.2.1.2. The dissipation postulate
requires that every admissible thermodynamic process obeys the local Clausius-
Duhem inequality (3.4) for all times and for all material points in the body. The
general solution of the initial-boundary value problem for the temperature,
characterizing a general admissible process, is not readily available. However, at
time t =0 the initial temperature distribution is assumed to be known and,
according to section 3.2.2.2, the initial temperature rate # (and also higher
derivatives (f{)“etc.) can be determined. Thus in the neighbourhood of t=0 and
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close to the boundary surface g the temperature field 7(.4,1‘) may be
constructed in terms of initial and boundary values*. Therefore, the entropy
inequality (3.4) is evaluated at t =0 and for a material point close to or on the
boundary surface #.

Assuming the constitutive equations (3.1) to be given then the entropy
inequality (3.4) at some fixed material point X =/3; is a condition relating the

derivatives Q
e 7 45 _ 97 Rl
/P = {7—:9_2:“ / fb "9/(2 ot 7 j&,jm' 9,82 ‘)X«h‘} N (3.98)
Yo=K
and
[ _ o7 |
/ =[/ /jé—an i (3.99)

as well as the heat supply 7, which is prescribed. Also the local energy balance
equation (3.3) is relating the sets £ and r//_'as well as ¥ One notes that the
elements of & are linearly involved in the entropy inequality and in the energy
balance. On the otherhand #  is nonlinearly involved in both relations. Att=0
the sets /& and T take the following values:

(7)), = &

(T), = 7,

. /g % i
é?- /j*)o A / 1, - o7 (3.100)
(ﬁ)o = QX"Q

-~

Q

%
(), = M I,

* It should be observed, that this actually requires a prove that the solution //4"3 7
can be represented by a convergent Taylor seriesin the above regime. Such a prove seems
nol readily deriveable.
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Since the initial temperature distribution ,7-0(‘) may be chosen at will, the

quantities
7 A
{ ) 9/(2 ' oK, Ok, (3.101)

assume arbitrary values locally. On the other hand, the first two elements of
é? ,i.e.theinitial temperature rate ‘y and its spatial derivatives 9}/‘7!2 ,are
not independent locally. They are related to each other and to the set U by the
local energy balance equations at t=0. This mterdependence applies also forthe
temperature rate T and its spatial derivatives 9¢ = 2 7/«#«9‘” atsome later
time &20 . Thisis accounted for by expressing inn terms of (7‘ and other
elementsof R and 7.

The local energy balance (3.3) at some time >0 and any material point
X3 = A“'l; yields

5’

A . % 254
5’96/0"7’[ aj,ﬁﬁ“ arf'l pf"ﬁ% 3& (3.102)

With (3.102) the temperature rate T is eliminated from the entropy inequality
which takes the form

/5’95%.2 - 99%;;; 9;~)f“

/ 29,/07 9?6
*/ 7 PE T Al

A4 9?//97 9%036 (3.103)
(7 07/ 8T

y 2% 67 ) 2%
7 96/97 &t‘”&

2% /o7 "

v _ 7
“(7 aé-‘/»f/ff 7o Fa

v
N
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99 99/97 Je ) 2
g(Qj'« DESIT BJ». 2 X,
WA I AN, 9?») 4 27
’ / 7 Qé/jf) 0 QJQ {;DZ 9».9'{2
/s 97 /2
f:( 7 96/27)., /97‘ ?‘X!a
/1 2%,/97 (9?4
LT 92/97/- 91; =0
4 9,97 S 1 4
"/7‘ N 95//97)—0 (s )Lz-a 7 ?‘f‘)(.a

The formulation of the second term of (3.104) accounts for the symmetry of the
second derivative %/ 91"

Itis noted that all terms in brackets* are functions of r and 9/ /‘9'*"2’
which are nonlinearly involved and which may take arbitrary values locally. Also

the second derivative 97;/(714.. 91‘; , representing six independent quantities,

is arbitrary locally and is linearly involved in (3.104). The initial temperature rate
& +whose spatial derivatives appear linearly in (3.104), isthe solution of the
linear P.D.E. (3.86). |t is possible to formulate the general integral of (3.86)
analogousto (3.27) (see ref. [31]) and to obtain 9}/91)’., by differentiation.
However, if attention is restricted to material points on the boundary surface gp
the derivatives o’,}/&a’; are easily expressed in terms of initial values on & . With
the results of section 3.2.2.2 a unique solution J(J‘g) of the P.D.E. (3.86) exists.
The introduction of the characteristic equations (3.87) and their solutions (3.91)
and (3.92) allows to differentiate the function }/&) with respectto §,i.e. the
parameter along the characteristic curves, as well as S‘ and € ,i.e.thesurface
coordinates of 03’ . This yields

* Except the term /97'){_0

(3.104)




0y gy IR Iy S ¢ 0% \
5;&=§%95 Y AP * k% Ps

l¥ g —9—2 24 + 2 2% L (3.105)
of ok oy T ok 9F ok of

9 Jy o4, oy 25 ¢ ke

9_%‘ = Q/t:',, )T ok 9T DX} 9T |

Considering only material points on the boundary surface (7? i.e. $=0 )one

obtains
‘ ¥ a2 2 8"
= £(fT), 92;2=('“3J, 9;* 2z T 2T
Q/G‘a - /;7" 0’);3 = /c)/t“: Q/V' = QX"
95 ‘& 0f oF 7’ oT o

and (3.105) reduces to
C{‘B = (Qr (—f—/ ﬁ (Bﬁ) ﬁ

£ 9& g2a
.22 - ;‘-?;{) /ax:k 9& > (3.106)

25

*
4" «7/5 __% 9’(’ 9&
or T(Bgf T Tong 2 H‘

These are three linear equations for the three unknown derivatives )Jﬂlz on
E - A unique solution exists since the coefficient determinant is 4 , whichis
assumed to be non-vanishing (equ. (3.97)). Thus, the derivatives 9]/94’; ata
point on g’ are uniquely determined by




-42 -

* ¥
A A=423 5’* I determined by the choice of
%/
£ ) ’ ,(,;,7;)91.'/91; au‘k
# #
I Az J A% Lones determined by the choice of OP
=
I
e ) ¥ 9#"" determined by the choice of
e DTS
g (P52 oy et
Itis important to note that the quantities /ﬂf)/ﬂxz)k at a pointon 5’

are linearly depending on the initial temperature rate and its surface derivatives
Qf/gf, 9&‘,'/92' . The latter quantities may take locally arbitrary
values independently of each other. Consequently, this property is completely

transferred to /07) ﬂ& )&
With these results the inequality (3.104) is evaluated for a material point on
the boundary surface & Since

2y /us., and 917 W, g = 922;//9’”‘2 M.
y« a/ o0 1

may take arbitary values on 03 and are linearly involved in (3.104) their coeffi-
cients must vanish: J

/9% 07/07 Qi)
“To

|
i\

O o ESIT I pm ,?-

/_/ _ 99/57) 4 9?,‘,/ - O
7 ’Je/ar € =0 90"‘40

,(3.107)
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Further, itis assumed* that

.9_‘?:_ + .2_?:'_ $ O (3.108
5 D 9% Jéo 108)
7 7y

at least for some & and m _Thus,(3.107)2 yields

A V4
[7. 9é/97 /o = 0O (3.109)
2

o

for all admissible thermodynamic processes. This is a restriction on the consti-
tutive functions7‘ and é‘; otherwise equ. (3.109) would represent a relation
between 7 and its derivative QZ/QXZ atapointon &, but thisin contrast to
the basic assumption. Therefore, (3.107)2 simplifies to read

/97 a1 JE (
p) 7 P - = 0 3.110)
7 -

A A
which is another restriction on € and % . With the result (3.109) three other
terms in the inequality drop out, especially the one involving the heat supply.
Equ. (3.104) reduces to the residual entropy inequality

A /
(F ) 20 o (R <0 am
2 %
With the free energy function
A “ A 4
7& = & - 7-7 = %/f,}.} (3.112)
such that
A A _ 9,; a
2 ¥ = 96 -/ 9—.7’ - 7
“97_ o7 / (3.113)

* Itisa simple matter Lo show thal only the symmetric parl of )fé /f)ﬁ. gives a contribulion
Lo the energy balance equation (3.3). Thus, not ail elements of Lhe symmetric part should be
vanishing identically.
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one obtains from (3.110)

/0”53 - 5 (3.114)
2 =0
"y

and (3.109) yields

2 . = 0 (3.115)

These two restrictions apply to the time t =0 and any material point on f .

Since the constitutive functions (3.1) do not explicitly depend on 7 , the choice of
the initial time is irrelevant. Further, the constitutive functions may depend
explicitely on the material coordinate Xk (ifinhomogenous material response is
assumed), and the conditions (3.114) and (3.115) are derived only for material
points on the boundary surface f? . Nevertheless, the position of ? may be
chosen fairly arbitrary except that it should be non-characteristic. Thus, the
constitutive restrictions apply to any time and any pointin the rigid heat
conductor. Hence, \

ra
QJw
DL -
o7

I
C

L (3.116)

h
|
~N

and with (3.112)

. O
A -

for any pointin the body.
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A A A
The results show that % € and 7 donotdepend on the temperature
gradient and entropy is given by (3.116)5.

3.3  The Three-Dimensional Deformable Heat Conductor with Internal
Variables
3.3.1 The Initial-Boundary Value Problem and Initial Derivatives

For an internal variable model the constitutive equations are given by (2.5) and
(2.6).If inhomogeneous material behaviour is assumed, the relations are exten-
ded to read

- A A w

g, = y; [ )

&€

)
7 _-/ﬁ(...)

0
m
A

5 (3.118)"

and

5/4’(’")' y =12,

With these relations the balance of linear momentum equ. (2.1) yields after
differentiation

y 97.‘&
gaf = 3ée +[9€~~ e‘m./" VQ&

9@ Qéu Da ]
ou, "0 7 o

(3.119)
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and the energy balance reads

(625 -4, )e..

04, . D44 24

g7 274 (3.120)
T e Tt T o1 9/~ f"" o, %

D%
4 : — A = O )

I X4 5

These four equations are the governing P.D.E. for the four primary unknown
functions, i.e. the three displacement components 4(4 and the temperature 7.

The following initial conditions are to be prescribed in a certain region B of
the body

initial displacement Ug (W4, 0) = Yg Of)
initial velocity 62‘{,(";,, o) = Vg (&)
initial temperature distribution T (%, 0) = [ (&) L (3.127)

initial distribution of the
internal variables D(J,[x‘..., 2)

Iy

Oy (K

From these initial conditions the initial values of the strains, strain rates,
temperature gradient as well as the gradient of the internal variables are easily
obtained:

]
initial strains Cee = f/ﬁ‘é,é * Yes)
. e . & +
initial strain rates Che = 3 ( Ve e * l{(, )
initial temperature gradient =
mperature gradi %ﬁ. = 70-)4_ » (3.122)
initial gradient of '
internal variables oo<d')k = 9%‘ /QX},_
/
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Further, higher order derivatives are obtained too:

initial gradients of strains @44, 4

initial gradients of
temperatur gradients

Lm g =

0 & wn

2 X%
A7
rTA
oL

- 2%
DX 4

Ny PX 4

9 e
Y 9&

)

(3.123)

F

Assuming that the constitutive equations and the initial values (3.121) as well as
their appropriate derivatives (3.122) and (3.123) are glven the balance of linear
momentum allows* to calculate the initial acceleration de at every pointin & .
The situation is somewhat different with the local balance of energy. Equ.
(3.120) represents a linear P.D.E. of 1. order for the initial temperature rate

(3¢

and it has the same structure as in section 3.2.2.2, i.e.

Iqi )4 . 3? B
where
Dé
ﬁé 9?'«){-—0
13
B S(57/4 =0

C

c = 9("/;%0 2Cun 2R o7
Qéé Qé’c
7 Dty o D

o e o

* The volume force Ae istaken to be prescribed.

(3.124)

(3.125)

1‘-9;;“ y

»(3.126)
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/5,98,..,, - IL“"' )oélm. - 90‘/ /;/)

é o

With the initial values (3.121) to (3.123) the functions (3.126) are fully

determined and independent of Sr/
From the results of section 3.2.2.2 it is evident that the linear P.D.E. (3.125) has

a uniquesolution ?/X“) if the initial temperature rate is prescribed along an
open non-characteristic boundary surface R ,l.e.

5lk) = FUtT) =/—ﬁ—“’é .

where T/.f'ﬂ}‘/ is given along 8 and J‘, T are surface coordinates on op
OP is defined by the parameter representation

=XZ/?,T) # = 2,3,

The condition, that ? is non-characteristic, is given by equ. (3.97), i.e.

% &
# X 247
a4, or o

#

% QX{- /X,
A = oy or | *+ O
« W G
Y’ 2T

: -
where l% represents the values of (3.126)1 on ok

From the discussion in section 3.2.2.2 itis clear that higher order time deriva-
tives of the temperature and displacement at t = o0 can be obtained if necessary.
This requires time differentiation of the balance equations and the boundary
condition on {:? .Further, mechanical boundary conditions need not be explicitly

considered, if the requirements in appendix 1 are satisfied.

-

(3.127)

(3.128)

(3.129)
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3.3.2 Evaluation of the Clausius-Duhem Entropy Inequality

Inserting the constitutive relations (3.118) into the entropy inequality (1.2) and
performing the appropriate derivations yields

R 2% . 947 YQA ;

A 9 9 3 9-? 9 A 9 A
’ 7'[/96’ff vy T 5& ffyi',ﬂ *g_dﬁ'a{,,‘ "&7‘% (3.130)

4 y
Tk T 7T 2 9

With the same argumentation as in section 3.2.2.2 this inequality should be satis-
fied identically for all admissible thermomechanical processes att =0 and on the
boundary surface 5. It is noted that the entropy inequality relates the quantities

= {gm‘ , 7‘,;‘ ’ “lj , (3.131)

and

R = {8,.,,,, Cunh , 1, Fe, o, “J‘Mf (3.132)

as well as the prescribed heat supply . The set F collects the independent
arguments in the constitutive relations and the set /R represents their first
temporal and spatial derivatives. The time derivative o'CJ, isnot contained in R
since it is fully determined by the set T via the evolution equation (3.118)s.
Furthermore, the local energy balance equation (3.120) is relating R , ar
and * too. R is linearly involved here and in the entropy inequality, but
nonlinearly involved. Att=0the sets R and N take the following values:
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((eu)y = o
(Cn,s) = ?Em /)r,e ((ean) = Coun
(T), =& (7).
(), = %/ % </ Ge) = Vel

(en)s = 07/ oxIm (), = &y /
\ ‘

i
o\_‘

? (3.133)

4

0%
]
0§]
j

s/ - d’
\ ( d// % /0 e d‘} % l
Since the initial distributions of the displacements, the velocities, the temper-
ature and the internal variablesin region & may be chosen at will, the quanti-
ties

U = {m, 26mntds, Gun, T, 07/, 9T i,

o

Xy, Doty /X, } | (3.134)

assume arbitrary values locally at a material point. However, the two residual
elements of the set ok ,l.e. y and QJ/QX“_ ,aswell as the local value of the
acceleration (66,}0 are notindependent. If att =0 the set GU is prescribed, then
the acceleration is completely determined by the set é/ for a given body force
(b)o via the local balance of linear momentum. This interrelation needs not to
be accounted for when evaluating the entropy inequality since the acceleration
/‘Ze)o does not explicitly appear in thisinequality. On the other hand, the initial
temperature rate ¥ and its spatial derivatives %ﬁ/ﬁxz are related to each
other and to the set & via the local energy balance att=0. This latter interre-
lation is taken into account by solving the energy balance equation for the initial
temperature rate (7 and inserting the result in the entropy inequality att = 0.
This yields

Vw  9P/T e _4 / T L
(3 98’»» Qé/yréygé’"" M‘.]{:o §““
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z /0T € ZZ_
"( 52607 D ), O,
gjm 96' /97 f" ™
. /_4_ _ 9:7/97') ?_7_‘ -
T DE /AT /i =0 9&.,. 0 ¢
4 97/& 2
"/ 7 7 / 9£—/ A/
4 PE/07) \ ( Ugm fino 901,
1 _ 22007 Q?t 2%y
"( T 95/,97) ~o/ o 9;@ 3139
4 97/0"/
7‘/7- - 96/;/')4;0 /9(/
/ 1 dv/or 9?@)
# 7 96/97 ¢ 30 9& € -0
4 PYT ) /
../7_ ae/éfj'l—"o/ /‘_D zﬁéﬁ‘ so
” 07/07
*/990( Y21 ’éot),//.k/ = 0
Attention is now restricted to material points on the non-characteristic boundary
surface ?. Following the derivation in section 3.2.2.3 it may be shown that the
derivatives 93/«9& atapointon g’(i.e.(9}/9r1 )} are uniquely determined
e
by © \
* * 4
H& 4{:4,2,3 , 8 , C
Ve 9%
Q}L , sz VIRAA  (3.136)
SZANY.
g ar
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where the values ﬁ]*‘ 8 ( are obtained from (3.126) for points on ﬁ The
derivatives [%/é’).‘g/ depend Imearly on the initial temperature rate and its
surface derivatives oy k i.e. J’* 9(;'/07}’ 9{7/2' which may take locally arbi-
trary values mdependently of each other. Therefore the three values (07;7/"7’2);9
may be chosen at will. Consequently, the initial values on k

@

Cpn = S Jov/o’n/ DCun /My = OLn [N

(-4
?(3.137)
2 ¢
970-/912 9[;.,:970./()4(’«.)& , 909'/‘)3"“_ J
occur linearly in the entropy inequality and are allowed to take any values; here
their appropriate symmetry properties, as indicated, must be observed. Since the
entropy inequality should not be violated for any admissible thermodynamic
process, i.e. any set of values (3.137), their corresponding coefficients should
vanish:
A A A . A
Nk 97/2%1 0é ) ]
2 96‘... 2 E5 96,‘ Q7 2{0€mn 98“" é=o
A A S A
9% 27/97 Qé) -0
9. PESIT Igm [¢=o
%
a A
y, 9’2/3) %4 +9?é) 2 - 0
7 PE/I fyoo | P " Do
r ) (3.138)
4 97/9’ ) 9?& 9 ~. 21 O
T PEsr t20 (99, 9;4 . =
= O

(£ ~Z:,cii) . ”‘,/m

R

o
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Similarly to equ. (3.108) it is required that

9?4
co at least for some #and 4 (3.139)

Thus,(3.138)4 yields
/ 9/971 ) - (3.140)
7 96/37 e

so that (3.138)3 and (3.138)5 are satisfied too. With (3.140) equ. (3.138)1 and
(3.138)7 reduce to

7% ) / ) 4 ]
*~ — —/S 5 beo s =0
/fz ?8;.,,, thm 4 98‘" 96’"“
p . ?(3.141)
g 7 evo '
é““ f’” g ’ ¢
Observing (3.140) several other terms drop out in the entropy inequality which
reduces to
1 € ) 4
—_— — —— —_— > O (3.142)
/9 9”‘/ Iy /} 7¢ ?‘ ﬁt[‘-—o -
]
The introduction of the free energy function ')’
A A A A
,}b =€ - 7_7 = (}b(é’m‘/ r/fn/ dd', XI&.) (3.143)

allows to write the above results in a lucid form
A A
¢ 9 9” /
259
Dl " Jenn "

equ.(3.141); =» @ 4

A

e _ _,7" ) (3.144)
equ. (3.140) =» 7
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inequ. (3.142) = f@ff s 7'—_‘%?‘ < O

I

equ. (3.141); =

Actually, these conditions are derived only for material points on the boundary
surface 3 and att=0. Since the constitutive equations do not explicitly depend
on ¢, the choice of the initial time is irrelevant. Further, the position of g? may
be chosen fairly arbitrarily except that it should be non-characteristic. Thus, the
above restrictions (3.144) apply to any time and any point in the body.

Finally, the comparison with the results (2.22) and (2.23) obtained with the
conventional method shows complete agreement.

3.3.3 Exploitation of the Clausius-Duhem Entropy Inequality with Lagrange
Multipliers

The derivation of constitutive restrictions from the entropy inequality in section
3.3.2 shows strong similarities with the evaluation of a variational principle sub-
jected to auxiliary conditions (constraints). The satisfaction of the entropy in-
equality for all “variations” of the set ;R . which is linearly involved, is similar to
a variational statement. The energy balance equation represents a condition
relating the elements of o@, which are again linearly involved, such that they are
not independent; this relation represents a constraint on Z/?

In the calculus of variations the method of Lagrange multipliers is used to free
the variations from constraints. Thus, it is reasonable to investigate whether this
method can be used when exploiting the entropy inequality. This investigation
has been done by Liu [29] in the context of a more general entropy inequality
and different constitutive relations than discussed in this study. From section
3.3.2 it is clear that the evaluation of the Clausius-Duhem entropy inequality (on
E att=0) with respect to various choices of the set /f? constrained by the
energy balance equation , is a purely algebraic problem. This is also so for mare
general situations. Thus, Liu has proved* that the following three algebraic
statements are equivalent [27-29]:

* A more readible prove is given by Maller [27, 28].

-——
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(a) The inequality
a_J, ,(J, ;ﬂ > 0 (3.145)

holds for all X’ yJ=72..% which satisfy the equations (constraints)
/qdy X{ + B, =0 , A=43.P with n>p (3.146)

(b) There exist quantities /ld(independent of X’ ) such that for all XJ’ (not
subjected to any constraint conditions) the inequality

a‘jX; * /% _/'4/'94,":/ fBA) Z O (3.147)

holds.

(c) There exist quantities /14 such that

&J = AA AA, , J: /I,Z,..."l

(3.148)

B - N8B, =20

The equation (3.145) represents the entropy inequality at t =0 and on f , the
equations (3.146) correspond to the constraining balance equations and the /14 s
are the Lagrange multipliers; the quantities /g, are to be varied, i.e. they are
those derivatives of the displacement and temperature fields as well as other
fields which appear linearly in the entropy inequality and which are determined
by initial values on the surface é’ . Thus, the first statement (a) obviously reflects
the original problem.

In the following the Lagrange multiplier method, i.e. statement (b), is applied
to the basic equations of section 3.3.2 for the purpose of demonstration.

The set X collects the following quantities

N=(n]={R. i, é, 4/., 3149
&

thus,*J, consists of the initial values of the set K and of the three components of
the acceleration all taken at a point of f@ . Without defining the quantities dd’ ; ﬂ,
ﬁA/ and BA , which requires extensive renumbering, the entropy inequality
(3.130) is extended by introducing four Lagrange multipliers, i.e.
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A'é associated to the energy balance equation
A.,,‘_ associated to the three balance equation forthe linear momentum,
{=723
such that the Xy are unconstrained. Thus, the unconstrained entropy inequality
(3.147) takes the following form

. . Dy *
3978 +9y4’7'7‘9 Z 3’ /f

26, 7 22 90(
2%, . % 8, 2% ]
*——/;C’,.. é»m,g 7"97. % Qf f"l ﬁ&& +9X":

4 2 A4
T hde — 787

96 =, DE
*A//j’ﬁem /emfg 7*9’; &7 fW( /}

9? 9?4 9?4 974 _9_?_‘_
7‘5-)5_:;9"“"- 7 ﬁ J‘” ﬁ*n& 9“1 @'ﬁ* X,

T 92‘4‘ _2_"‘_“__ - _é)l'z&.
+A?€/3 a‘ Qemu eh“/é oT 9%
 Dbe Dbwe ]
~w kT ong 5% 20 5150

Rearranging with respect to the elements of the seMY one obtains

/996., + /e /5’9&“ B z:"'“)]f:’:;
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‘A % _ |
‘/a? ? /1&)90{, L ]“/,&

7" 1/1 ?/c S c‘te

+§3; +/19 )jf +/T+A)§f£€ -/-Dg'*-g'r)
(/«91‘41 7 92}2%)' 742 f;}& = O, (3.151)

Here it is understood that the unconstrained entropy inequality (3.151) is
evaluated at a point of the non-characteristic boundary surface ? attimet=0.
However, any special notation, e.g. using the subscript 0, is suppressed The
quantities denoted by the wavy line are the elements of the set X and are
linearly involved without constraints. However, certain symmetry properties
must be observed, i.e.

\ e
e»,.. = €43, , 6,.,,,/‘ = ,“”‘ ;‘.‘ _j‘*' (3.152)
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Variation of the accelerations yields

A =0 (3.153)

Since the requirement (3.139) also applies here, the variation of the second
spatial derivative of the temperature%/,ttogether with (3.152) gives

4 _ 7/
= + A, =0 or /lé === (3.154)

Consequently, several other terms in the inequality drop out. Finally, the
variations of the initial strain rate C.,,,, temperature rate Tand its first spatial
gradlent}, yield, observing (3.152),

v J% 2/, /% )
4 y yehm g Q-Z:m TL £ g 96&« 9&.... Z{‘“ hJ
D é

S 97_ O » (3.155)

Doy
— - =@ = O
9?"‘ 7T g |

and the residual entropy inequality
o 4 2é ) A ; > 0 (3.156)
5 pre 7 Oy ﬂ' /¢ Z ;4 T |

to be taken on Z? and att=0. Comparison with the result equ. (3.140) to (3.142)
of the previous derivation shows complete agreement.

|
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4, Discussion and Conclusions

The results of section 3, especially the constitutive restrictions (3.144) for a de-
formable heat conductor with internal variables, demonstrate that the dissipa-
tion postulate in connection with the variability of the initial values on the
boundary of the body leads to the same constitutive restrictions as the classical
Coleman-Noll argumentation. Here it should be kept in mind that the classical
Clausius-Duhem entropy inequality was used and deformations were assumed to
be infinitesimal.

The approach taken in section 3 follows arguments of Mdller [25-28] and Liu
[29] and here Wood's “phlogiston objection” [18-20] does not apply: Body forces
and heat supply are kept fixed, only the initial values (equ. (3.137)) on the
boundary are required to be arbitrary locally to satisfy identically the entropy
inequality on the non-characteristic boundary surface of the body at the initial
time t =0.

It is evident that the influence of the environment on a body can be modula-
ted much easier on the surface of the body than in its interior. Nevertheless, this
modulation on the boundary of the body may be critizised along similar lines as
Wood's phlogiston objection because initial and boundary conditions cannot be
varied arbitrarily in the natural world. However, it appears to be reasonable to
require the continuum theory, which models only a part of the real world, to be
mathematically and physically consistent whatever the effects of the envi-
ronment on the body.

The comparison of the mathematical development presented in this study
with those of Muller [25-28] and Liu [29] deserves some comments. As already
mentioned (section 3.1) Miller proposed and used a more advanced entropy
inequality than assumed in this report. Further, the constitutive classes treated in
[25-28] are different from the one analysed in this report. Among others, the
constitutive assumptions in [25-28] are characterized by the fact that all consti-
tutive functions involve not only the spatial derivative of the (empirical) temper-
ature but also its temporal derivative as an independent (state) variable. As a
consequence, the energy balance equation contains linearly the 2nd order time
derivative of the temperature as the highest time derivative. Further, the pre-
scription of suitable initial conditions at every point of the body in the (x1, x2, x3)-
space yields a non-characteristic Cauchy problem. Thus, the initial conditions
suffice to determine all derivatives of the field functions at a point with respect
to the initial time t = 0. Assuming the constitutive functions and the initial data
to be real analytic functions, the Cauchy-Kowalewski theorem [30] may be
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applied in the work of Muller and Liu to prove existence and uniqueness of the
initial value problem. Thus, any choice of the initial data determine a unique
admissible thermodynamic process.

The situation is different for the case treated in this report. This is primarily
due to the fact that the constitutive functions are not assumed to depend on the
temperature rate. Consequently the prescription of suitable initial conditions at
every pointin the (x1, x2, x3)-space is not sufficient for a unique solution since the
(x1, x2, x3)-space represents a characteristic three-dimensional manifold. There-
fore, itis required in addition, that the history of the temperature is prescribed
fort =0 on a material surface of the body. This boundary surface has to be non-
characteristic with respect to the P.D.E. governing the initial temperature rate in
the body, i.e. the energy balance equation att=0.

For the initial-boundary value problem the Cauchy-Kowalewski theorem is
not applicable and it appears that a general existence theorem is not available
[30-35]. However, it is shown in this study, explicitly for the one-dimensional
case, that the boundary and initial data allow to determine uniquely the initial
(t =0) temporal, spatial and mixed derivatives of any order of the field functions
at any point on the non-characteristic boundary surface and in the interior of the
body provided the data and the differential equations are continuous differen-
tiable* up to any order. Thus, if the initial-boundary value problem admits a
solution and if this solution can be expanded in a convergent Taylor series at a
point of the body and at the initial time, then this solution is unique locally. The
non-availability of an existence theorem requires to suppose that there exists an
admissible thermodynamic process which assumes the initial data in the body
and the data on its boundary surface such that the sets OR and Z/—' (equ. (3.133))
on ‘l;? may be considered** as a representative of an admissible thermodynamic
process. But it should be noted that the formal exploitation of the Clausius-
Duhem entropy inequality is not affected by this assumption since all relevant
guantities contained in the sets /? and Tare uniquely determined by the
differential equations and the initial data on the non-characteristic boundary
surface.

*  Thisis Lhe case when lhe dala and Lhe P.D.E. are real analylic.

** Nole Lhat /ok is constrained by Lhe energy balance equalion.
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Appendix 1 (see paqge 48)

Itis important to note that from a physical point of view the initial conditions
(3.126) and the prescription of the temperature history 7 onthe open bound-
ary :'? is not sufficient to define the complete thermomechanical process in the
body for all t - 0. On the boundary ® (and possibly other boundaries) the non-
thermal mechanical actions of the environment on the body should be specified
too, e.g. the displacement or stress boundary conditions. To exclude the possi-
bility of discontinuous process (solutions) it is implicitly required that the mecha-
nical boundary conditions att =0 are compatible with the initial values on the
boundary. For example, if the displacement history on the boundary OP is given,
this function and its first time-derivative is required to take the values of the
functions (3.121)1,2; furthermore the second time-derivative has to be compa-
tible with the initial acceleration obtained from the balance of linear momen-
tum (3.119) at t=0.
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Fig. 1: Integral surface and characteristic curves of a Cauchy problem for alinear first
order P.E.D.





