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Abstract 

The basic features of the PARIS code which has been developed for the calcu

lation of failure probabilities of crack containing structures are explained. 

An important issue in the reliability analysis of cracked components is the 

probabilistic leak-before-break behavior. Formulae for the leak and break 

probabilities are derived and it is shown how a leak detection system in

fluences the results. An example taken from nuclear applications illustrates 

the details of the probabilistic leak-before-break analysis. 

Probabilistische Analyse rißbehafteter Strukturen mit dem Progamm PARIS 

Die Grundzüge des Programms PARIS, das zur Berechnung der Ausfallwahrschein

lichkeiten rißbehafteter Strukturen entwickelt wurde, werden erläutert. Ein 

wichtiger Punkt in der Zuverlässigkeitsbeurteilung von Komponenten mit Rissen 

ist die probabilistische Leck-vor-Bruch-Analyse. Es werden Formeln für die 

Leck- und die Bruchwahrscheinlichkeiten abgeleitet, und es wird gezeigt, wie 

ein Leckentdeckungssystem die Ergebnisse beeinflußt. Ein Beispiel aus der 

Kerntechnik veranschaulicht die Einzelheiten der probabilistischen Leck-vor

Bruch-Analyse. 
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Introduction 

Probabilistic fracture mechanics (PFM) has been developed in recent years 

in order to estimate the reliability of components containing cracks (for 

reviews see /1/ - /3/). A fracture mechanical analysis provides failure 

criteria applicable to each individual crack in a given component. The fai

lure probability is then defined as the probability of finding combinations 

of crack sizes, loads and material parameters such that the applied stress 

exceeds the critical stress determined by the failure criterion. A survey of 

the state-of-the-art and of applications of PFM in the aircraft and in the nu

clear industry is given in /4/. 

The failure probability can be determined analytically or by Straightforward 

numerical integration in simplified cases only /5/. Monte Carlo simulation 

including variance reducing techniques turns out to be a powerful tool for 

the numerical analysis of general PFM problems. Several codes using Monte 

Carlo methods have been developed for applications in the nuclear industry. 

The OCTAVIA-/6/, VISA-/7/, OCA-P-/8/ and COVASTOL-codes /9/ have been devised 

for the PFM analysis of reactor pressure vessels. Special emphasis is put on 

the assessment of radiation embrittlement and of pressurized thermal shocks. 

The PRAISE-code /10/ has been designed for calculating the leak and break 

probabilities for pipes in the primary coolant loop of a PWR. ISPUD /11/ is a 

Monte Carlo program using variance reducing techniques for which the fracture 

mechanical model has to be provided by the user. 

The development of the PARIS-code (PARIS is an acronym for "Probabilistische 

Analyse rißbehafteter Strukturen" = probabilistic analysis of cracked com

ponents) described in this report was motivated mainly by the idea that a 

general code should be available with which PFM analyses of a variety of 

components can be performed without any major programming effort. Additional

ly, it was felt that the highly sophisticated variance reducing techniques 

(for an overview, see e.g. /12/) should be standardized as in the ISPUD-code 

in order to avoid systematic errors occurring inadvertedly in the simple

minded application of these techniques. In the first section of this report, 

the basic features of PFM analyses using Monte Carlo simulation are sketched. 

Variance reduction by importance sampling is introduced. The secend section 

contains analytic expressions for the failure probability of crack con

taining components including the effect of fatigue crack growth, in-service 
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inspections, leak-before-break-behavior, leak detection systems, etc. These 

formulae form the theoretical background of the code. Additionally, an itera

tive procedure based on Spanier's algorithm /13/ is described which enables 

the user to specify suitable importance sampling distributions such that 

rapid convergence of the simulation is ensured. In the third section the 

detailed structure of the code is described at some length. The fourth 

section contains an example typical of nuclear applications of PFM /14/ in 

order to illustrate some of the characteristics of the code. 
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1. Monte Carlo Simulation in Probabilistic Fracture Mechanics 

1.1 Basic Ideas 

If all the cracks contained in a component are independent of each other, its 

failure probability can be expressed as 

(1.1) 

where M is the average nurober of cracks per component and Q1 is the failure 

probability provided that one and only one crack is present. Q1 is given by 

f (a) da dxk ... dx1 
( 1. 2) 

-oo -oo ac !x, , ..• xtcl 

x1, ••• ,xk are input quantities such as fracture toughness, flow stress, ap

plied stress and crack length influencing the critical crack depth ac; a 

denotes the crack depth, f(xi) the probability density assigned to xi, and t 

the wall thickness. 

The conditional probability Q1 is expected to take a very small value for 

components of high reliability such as nuclear structures and has to be de

termined numerically by solving the multi-dimensional integral eqn. (1.2). 

This can be performed either by conventional numerical integration or by 

Monte Carlo simulation, the latter being more favorable in case of higher 

dimensions and complicated formulae for ac. 

Direct Monte Carlo simulation is equivalent to performing numerical experi

ments. A crack of fixed crack depth is selected from a sample of cracks 

generated according to the probability distribution F(a). This corresponds to 

considering a sample of nuclear components each containing one crack of the 

depth selected. Each particular crack is ceropared with a critical crack depth 

resulting from specific values of xi of the corresponding samples. If a is 

less than ac, the numerical experiment does not lead to a failure of the 

component under consideration ("miss"), whereas cases with a ) ac are counted 

as "hits." After n simulation runs, the failure probability of the real com

ponent is estimated to be 

number of hits 

number of trials 
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The standard error of this estimator is equal to 

( 1.4) 

The simulation method has two clear disadvantages: 

i) A compromise has to be made between calculation speed and accuracy. For a 

typical failure probability of the order of 10-7 , about 10 7 simulation runs 

have to be performed in order to obtain an average of one hit. 

ii) The numerical results will contain inherent statistical fluctuations 

which will vani sh only as ~ 

However, direct simulation has certain advantages, because complicating ef

fects such as fatigue crack growth and elasto-plastic failure criteria can be 

introduced directly into the simulation procedure, which is impossible in 

numerical integration. A fair compromise seems to be to perform as many ana

lytical integrations as possible and to use variance reducing techniques to 

solve problems i) and ii). 

1.2 Importance Sampling 

The fundamental numerical problern to be solved in PFM is to compute the 

integral 

00 t 
a, = I f (Kiel I f (a) da dK1c ( 1.5) 

0 ac 

or, equi valently, 

t K(a) 

a, = I f (a) I f (Kiel d Klc da ( 1.6) 

0 0 

where a is the crack depth, Krc the fracture toughness, t the wall thickness, 

K the stress intensity factor, and f(•) the respective normalized probability 

density. An analytical integration leads to 
t 

a, = 1 t (a) h (a) da 
(1. 7) 

0 
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where 
h(a) = F(K 1c = K(a)) 

and F(Kic) denotes the probability distribution of Krc· In case of constant 

Kic' h(a) is a step function defined as 

h (a) = {6 for K (a) 2: K1c 
for K (a) < K1c 

(1. 8) 

It is clear that in the one-dimensional case of Eq. (1.7), Q1 can be eva

luated much more efficiently by conventional numerical means than by Monte 

Carlo methods, but let us consider eqn. (1.7) as an illustrative example. In 

a Monte Carlo simulation for the calculation of Q1 random numbers are gene

rated representing the random crack size a and the random fracture toughness 

Krc K(a) > Kic corresponds to a "hit" in eqn. (1.3). 

An alternative method of calculating Q1 is to interpret eqn. (1.7) as an 

expectation value of h(a) with respect to the distribution F(a). Grude Monte 

Carlo amounts to computing 

( 1. 9) 

i=1 

for a sample of size n generated with a random number generator according to 

the distribution F(a). This means that the expectation value, eqn. (1.7) is 

estimated by the corresponding arithmetic mean. The variance of the estimator 

is given by 

n 
L (h (ai) - O.c)2 s 2 -c - n -

1 

i = 1 

wherefrom the standard error can be determined: 

scE=R n 

( 1.10) 

(1.11) 

Several methods are available for further reducing the error of the 

simulation /12/. Importance sampling is used in the PARIScode which amounts 

to biasing the simulation by the use of another distribution so that the part 

of the integrand in eqn. (1.7) that makes the highest contribution to the 

integral is emphasized in the sampling. To avoid introducing a bias in the 

final result, corrections are made at the end. Let us represent Q1 in the 
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following way to illustrate the method: 

(a) · ~ •• f1 {a) da 
f1 (a) 

t 

=I 
0 

(1.12) 

f {a) 
h (a) 

where f 1(a) is called the importance sampling density and its support in

cludes that of f. Let a 11 , ••• ,a1n denote random observations from F1• Then an 

unbiased estimate of Q1 is given by: 

n 
=- [ 

n 
(1.13) 

i=1 

The density f 1 is to be chosen so that there is an abundance of ob

servations in the region of large values of h(a) and so that the ratio 

h(aii) f(au)/f 1 (aii) does not greatly fluctuate 'for the different values of 

art• If. these requirements are fulfilled, the variance estimated 

s,z = 1 
n-:1 ~ [ h (a ·l · ~ - a,] 2 

L '' fl (ali) 
(1.14) 

i = 1 

will be much less than the variance of Grude Monte Carlo sampling given in 

eqn. (1.11). The corresponding standard error is given by 

SIE =R 
n (1.15) 

In general, a global optimum importance density is difficult to find. 

Spanier /13, 15/ developed an iterative procedure to locate the best choice 

within a single parameter family f 1 (a, tJ 1 ). Fora particular tJr = tlo' the 

first term in the variance s 1
2 corresponding to the second moment is given 

by: 

(1.16) 
n- 1 

where aii is a random observation from F1 (a, tl 
0

). Formula (1.16) is an esti-
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mator of the integral 

t t I [h (a) f (a) ]2 dft (a, 1-lol = I 
o f 1 ( a, 1-lo l . o 

(h (a) f (a))2 da I 
f1 (a, jl) 1.1 = l.lo 

(1.17) 

If ~ = ~ 1 is selected, the right side of eqn. (1.17) becomes: 

t t 

I (h (a) f (a)) 2 
da =I (h (a) f (a))z d F1 (a, 1-lol 

0 ft (a, l-l1) 0 ft (a, 1-L1l f1 (a, 1-lol 

(1.18) 

with the estimator 

n 2 1 [ (h (aul f (alill 
n-1 i=1 ft (~j, l-l1l ft (an, 1-lol 

(1.19) 

Thus, with one set of random numbers from FI(a, ~ 0 ), one estimates the 

second moment of other estimators arising from different choices of ~I· Now, 

the value of ~I is chosen that corresponds to the minimum variance estimate 

and a new batch of samples is generated. A few repetitions of this procedure 

usually lead to a near optimum choice of fi(a, ~I). 

In realistic PFM problems, the failure probability depends on several random 

variables which means that variance reduction by importance sampling becomes 

much more complicated. The failure probability in a typical PFM problern is 

given by: 

00 00 00 1 t 

0.1= lf (o) lf (K~cl I f (otll f (a/c)l f (a) da d (a/c) dof dKtc de1 (1.20) 
0 0 0 0 at 

replacing the simple integral eqn. (1.5). 

Generally speaking, there is no algorithm available to determine the Optimum 

simulation strategy. Therefore, an iterative method relying on the basic 

ideas of Spanier's algorithm is used in the PARIS code (see Section 2.4). 
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2. General Features of the PARIS Code 

2.1 Determination of Failure Probabilities 

In the PARIS code failure probabilites are assumed to depend on the crack 

depth a, the depth-to-length ratio a/c, the fracture toughness Kic' the flow 

stress 0f and the applied stress 0 , each of which is an independent random 

variable with a probability distribution F(.). As the failure criteria con

tained in the code are more easily solved for the critical stress 0 c than 

for the critical crack depth ac, the integral eqn. (1.20) is transformed to: 

00 1 t 00 

I f (of) I f (a/c) I f (a) I f (o) d o da d (a/c) d Ot dK1c (2.1) 
0 0 0 ~ 

Integrating the stress distribution leads to: 

100 100 J t 
o., =· f (K,cl f (of) f (a/c) I f (a) · [1 - F (o = Oe)]. da d (a/c) d C1t dK1c 

0 0 0 0 
(2.2) 

where the integration domains of the random variables are independent of each 

other. Eqn. (2.2) is a tour-dimensional generalization of eqn. (1.7) and can 

be evaluated numerically by using Monte Carlo simulation and variance re

ducing techniques. 

In the PARIS code an importance sampling function fi is introduced for each 

of the random variables, i.e. eqn. (2.2) is replaced by: 

0.1 
= loo f !K1c loo f (otl 11 

f (a/c) lt ~ 
0 f1 (Kiel 0 f1 (orl 0 f1 (a/c) 0 f1 (a) 

f 1 - F (·o = o c 1 • 

(2.3) 

(see eqn. (1.12)). 

A sample of n random vectors (x 1 , x2 , ••• , xn) with xi = (ai, (a/c)i, (Kic)i, 

(0f)i) is drawn from the joint probability distribution FI(a) FI(a/c) FI(Kic) 

FI(0f). As in the one-dimensional case (eqn. (1.13)), an unbiased estimator 
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of Q1 is given by: 

(2.4) 

The variance and the standard error are deterroined by generalizations of eqn. 

(1.14) and eqn. (1.15), respectively. 

The PARIS code can also be used for probleros involving fewer randoro variables 

than iroplied by eqn. (2.2). In this case, the distribution functions fi and f 

have tobe defined as constants leading to f/fi = 1, and the appropriate 

constant value is assigned to the variable in question by the pararoeters of 

the distribution (see Section 3). If the applied stress is assuroed to be 

constant, the probability distribution F(~) is replaced by a step function: 

{ 
1 for cr ? O'appl 

F I er l = 0 f o r cr < cr appl 

(2.5) 

For nuroerical convenience, the step function is replaced by a very narrow 

normal distribution, having a roean value equal to the specified constant and 

a coefficient of variation equal to 0.001. 

In soroe cases of practical interest the applied stress varies within the 

coroponent under consideration. Cracks can be found with equal probability at 

any location (xc < x < xu) throughout the coroponent. Assuroing that only the 

roean value depends on x and the variance reroains fixed we can calculate F( a ) 

as a function of the location. The square bracket in eqn. (2.2) has to be 

replaced by 

/Xu [1- F (cr (X)= crcll dx 

Xl 

(2.6) 

in order to obtain the average failure probability for varying applied 

stresses. 
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2.2 Time Dependent Phenomena 

The failure probabilities of structures containing cracks depend on time, if 

fatigue is included. In the PARIS code, stable crack growth due to prescribed 

cyclic loads is taken into consideration. No option for material degradation 

is included. For two-dimensional cracks, stable crack growth may lead to 

local instabilities and, subsequently, the formation of a stable through-wall 

crack (leak) or to global instabilities and catastrophic failure. Both possi

bilities are accounted for in the code. The maintenance of possibly flawed 

structures includes proof tests and non-destructive inspections. In the 

following sections, the basic formulae for the estimators of Q1 are derived. 

2.2.1 Stahle Crack Growth 

Within the framework of fracture mechanics stable crack growth caused by 

cyclic loads is described by a Paris type equation: 

da 
dN 

dc 
dN 

(2. 7) 

relating the change in crack length c and crack depth a per cycle to the 

Variation of the stress intensity factor during one cycle. ~ KA (~ KB) in 

turn depend on the actual crack configuration. Eqns. (2.7) can be considered 

as a system of ordinary differential equations from which a(N, a
0

, c
0

) and 

c(N, a
0

, c
0

) can be obtained by numerical integration using e.g. the Runge

Kutta method. a
0 

and c
0 

denote the initial crack depth and crack length. 

In probabilistic fracture mechanics stable crack growth leads to a change in 

the distribution of crack size and shape according to the well-known formula 

/16/ 

I 
a (a, a/ cl I 

f (aol . f ((a/c)ol ::: f (a, a/c) . a (ao, (a/clol (2.8) 

where 

a (a a/c) 
a (ao 1 (a/clol 
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is the Jacobian of the functions a = a(a
0

,(a/c)
0

,N) and a/c = a/c(a0 , 

(a/c)
0

,N) provided that there is a one-to-one correspondence between (a, a/c) 

and (a0 , (a/c)
0

). Insert~ng ~on. (2.8) tn eqn. (2.2) we obtain: 

00 00 1 t 

o., (N) =I f (K~cll f (crtll f ((alclol I f(aol [1-F (o=crc (a, a/clll daod (a/clodcrf dK1c 
0 0 0 0 

(2.9) 

This means that stable crack growth can be accounted for by appropriately 

changing the value of the critical stress. Correspondingly, all formulae for 

the Monte Carlo simulation remain unchanged except for the value of 0 c and 

the same sample of random vectors (xi, i = 1,.:.,n) can be used throughout 

the lifetime of the structure. 

Notwit~standing the fact that crack growth is a complicated statistical phe

nomenon and is properly described by some sort of stochastic process 

/17 - 19/ it is felt that random crack growth can be modelled with sufficient 

accuracy by introducing an additional random variable. A theoretical justi

fication for this procedure is given in /20/. If the constant C in eqn. (2.7) 

is random with probability density f(C), the time dependent failure pro

bability is given by 

00 

o., = I f (() o., (() dC 
0 

(2.10) 

with Q1(C) determined by eqn. (2.9). This implies that the sample for the 

Monte Carlo simulation now consists of the random vectors xi = (a0 i, (a/c)oi' 

Ci, (0 f)i, (K1c)i). From eqn. (2.10) follows that a given crack grows 

with one and only one value of c. 

2.2.2 Leak before Break Behavior 

A two-dimensional crack can lead to either local or global failure of a 

component. Let 0 2D be the critical stress of a two-dimensional crack of 

given length c and given depth a; 02D also depends on material parameters 

such as Krc and 0 f. Let 0 1D be the cri tical stress of a through-wall crack 

of length c with the same material parameters. If the applied stress at the 

location of the two-dimensional crack exceeds 0 2D, the crack will become 
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unstable and penetrate the wall which will lead to a one-dimensional crack of 

approximately the same length c (leak). In case of 0) 0 1D this local insta

bility will result in a global instability (break) and a complete failure of 

the component under consideration, whereas the one-dimensional crack will 

remain stable for 0 < 0 1D. 

For a crack with given geometry in a component with fixed material proper

ties, the probabilities of obtaining leak, break or no failure depends on the 

stress distribution. We have: 

PNo failure = P (er < erzol (2.11) 

(2.12) 

Psreak = P (er ? max (erm , er2o)) (2.13) 

where 8 is the step function. 

Clearly global instabil! ty will always follow local instabili ty if 0 2D > 
0 1D" 

Eqns. (2.11)-(2.13) have to be changed if the time history of a component is 

taken into account. The critical stresses 0 2D and a lD decrease with time 

due to cyclic crack growth. Let us assume that no leak has occurred for up to 

N
0 

load cycles, i.e. PNo failure + PBreak = 1. At N = N
0

, we have 0 2D(No) < 
01D(N0 ) and leakage can occur. If we now try to evaluate the various probabi-

lities at N1 > N
0

, we have to compare the actual critical stresses 0 lD(N1), 

0 2n(N1) with the values evaluated at the previous load cycle N
0 

ßnd the 

critical stress 0 lD(N1 , N
0

) of the through-wall crack that has been 

formed at load cycle N
0 

with the length c(N
0

) and has now grown to the length 

c(N1). The following cases have to be distinguished: 

The leak probability is given by the probability that the through-wall cracks 

formed at cycle N0 did not yet lead to a global failure and the probability 

that leakage occurs: 

-12-



The probabilities of no failure and of breakage are given by: 

PNo failure (N,l = P (0' < 0'20 (N,ll 

2 ) ozo (N,l < O'zo (Nol ~ om (N,l , a,o (N,, Nol ~ a2o (Nol 

In this casA we ~btain 

yields 

PLeak ( N,l = P (a2o (N,l ~ a < 0'20 (Noll 

Psreak (N,l = P (Cl' ~ Ozo (Noll 

PNo failure (N,l = P (Cl' < 0'20 (N,ll 

PLeak (N,l = p (cr20 (N,l :; cr < 0'10 (N,ll 

Psreak (N,l = P (cr ? 0'10 (N,ll 

reduces the leak probability to zero and we have: 
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(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 



(2.23) 

(2.24) 

Gases wi th 01D(N1 , N
0

) > 0 1D(N1) need not be considered because a through

wall crack of length c(N
0

) grows faster than a two-dimensional crack of the 

same length. 

In the next load cycle N2 we have to keep track of both the leaks formed at 

N
0 

wi th the cri tical stresses 0 zn(N
0

) and 0 1D(N2 , N
0

) and the leaks formed 

at N1 with the critical stresses 0 2n(N1) and 01D(N2 , N1). After k load 

cycles the contributions from previous leakages can be summarized as follows: 

k-1 

PPrevious leaks !Nk) = L 8 (cr10 (Nk1 Nil - O'zo (Ni)) · 
i=O 

· P (cr2o !Nil ~ cr < min (cr2o (Ni-1) I cr10 (Nk~ Nil)) 

(2.25) 

with 0zn(N_1 ) equal to the upper bouncl of the stress distribution. New leaks 

occur with the probability: 

PNew leaks lNk) = 8 (0'10 (Nk) - O'zo (Nkll • 

• P (cr2o (Nkl s cr < min (crzo (Nk-1) 1 cr10 (Nk lll 

from which the total leak probability is obtained: 

k 

Pleak !Nk) = L 8 (crm (Nkl Nil - O'zo !Nil) · 
i :0. 

· P (cr20 (Nil s cr < min (cr20 (Ni_ 1) I cr 10 (Nkl Ni))) 

with 0 1 D (( Nk) = 0 lD ( Nk , Nk) ) • 

Because of 0 zn(Nk) < 0 2D(Nk-f) < ••• < 0 zn(N0 ) and 

(2.26) 

(2.27) 

01D(Nk, Nk) = 01D(Nk) > 01D(Nk, Nk-1) > ••• ) 01D(Nk, No) eqn. (2.27) can 

be simplified to 

(2.28) 

where j is the smallest index with 0lD(Nk, Nj)) 0zn(Nj). Consequently, the 

probability for global instability is given by 

(2.29) 
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If 01D(Nk, Nj)< 0 2D(Nj) for all values of j, all leaks have become unstable 

and 

Pleak = 0 

(2.30) 

The failure probabilities calculated above apply only to cases with fixed 

initial crack geometry and fixed material properties, but can be easily gene

ralized to random values of these quantities by multiplying with the corres

ponding probability densities: 
()() ()() 1 t 

O.Leak (Nk) = /f (K~cl I f (af) I f ((a/c)0) I f (aol Pleak (Nk) dao d (a/col daf d K1c 
0 0 0 

and 

In the Monte Carlo simulation the term 

by 

for QLeak and by 

(2.31) 

(2.32) 

1 - F( 0 = 0 ) in eqn. (2.4) is replaced c 

(2.33) 

(2.34) 

for QBreak" Consequently, the same set of random vectors can be used to 

determine QLeak and QBreak" However, experience has shown that two different 

sets of importance sampling functions may be required in order to determine 

the failure integral for leak and break with satisfactory accuracy. 
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2.2.3 Periodic Inspection /16/ 

Components of high reliability such as airplanes or nuclear components have 

to undergo periodic non-destructive examinations in order to exclude dan

gerous fatigue darnage caused by excessive fatigue crack growth. In probabi

listic fracture mechanics the reliability of such non-destructive tests is 

assessed by a non-detection probability PND• Generally this probability de

pends strongly on the material and the geometry of the component inspected, 

but it is felt that a conservative approximation of the non-detection prob

ability can be found which is applicable to a wide variety of components. If 

all cracks found during the inspection are removed and no additional cracks 

are introduced during the repair, the distribution of crack geometry after 

the inspection f 1 is related to the distribution prior to the inspection f 0 

by: 

f1 Ia, a/c} = f0 Ia, a/c} · PNo (a, a/c) (2.35) 

If the first inspection takes place before the components are put into ser

vice, the crack size distribution at start-up is modified to: 

f (a, a/cl = CN · f0 (a, a/c) · PNo (a, a/c} 

with the normalization factor CN: 

t 1 

CN = ( I I fo 
0 0 

-1 
(a, a/c} · PNo (a, a/c} d (a/cl da) 

(2.36) 

In eqn. (2.36) it is assumed that the distribution f
0
(a,a/c) of crack size 

and shape has been determined independently. If no information is 

available about this distribution prior to the inspection and the cracks 

found in the non-destructive examination are not removed we have: 

f Ia, a/c) = CNo fo (a a/c} · 
' 1 - PNo (a, a/cl 

(2.37) 

with 
t 1 

CNo = (I I f0 (a, a/cl · 1 p 
1 

( 1 l d (a/c) da( 
o o - ND a, a c 

where fn denotes the distribution of cracks found in the component. f(a,a/c) 
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as given in eqns. (2.36) or (2.37) has to be inserted in the formulae for the 

failure integral Q. 

Let us now assume that the component undergoes cyclic loading and that an in

service inspection is performed after N1 load cycles. Combining eqns. (2.36) 

and (2.8) gives: 

f, (a (Nl, a/c (Nll = f (a (Nl, a/c (N)) · PNo (a (N1), a/c (N1ll 

(2.38) 

= f (a0 (a/cl0l ·I: (ao, (a/clol f , PNo (a (N1l. a/c (N1)) 
(a (Nl, a/c (Nll 

and the failure integral Q1(N) eqn. (2.9) is changed into: 

<X) 00 1 t 

o., (N, N,l =I f (K~cll f (crf) I I f (a0, (a/cl0)· [1 - F (cr = Oe (a(N), a/c (Nllll 
0 0 0 0 

(2.39) 

The failure probability at time N > N1 of a component containing one and only 

one crack after one in-service inspection at N1 is composed of two con

tributions: 

0.1 (
1l (N, N1l = [ 0.1 (N, N1l ~ o., (N1 N1ll + 0.1 (N1l 

' 
(2.40) 

The first term accounts for the increase in the failure probability after the 

inspection whereas Q1(N 1) is the value of the failure integral just before 

the inspection took place. 

If the next inspection is carried out after a total of N2 load cycles, we 

have: 
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f2 (a (N), a/c (Nll = f1 (a (Nl, a/c (N)) PNo (a (N2l, a/c (N2ll (2.41) 

. I a (ao. (a/clol I 
= f (ao. (a/clol· 0 (a (N), a/c (N)) · PNo (a (N,l, a/c (N1ll PNo (a (N2l, a/c (N2 ll 

Eqn. (2.39) can be easily generalized to k inspections, wherefrom the final 

formula for the failure integral is obtained: 

The conditional failure probability after k inspections is given by: 

0.43) 

2.2.4 Proof Test /21/ 

Pressure vessels or pipes have to undergo a pressure test before start-up to 

eliminate gross manufacturing errors such as very large cracks. Let the pres

sure test lead to a uniform stress 0 p throughout the component. If for a 

given combination of crack geometry and material parameters the critical 

stress is smaller than 0 p' failure will occur and the component will not 

be put into service. The failure probability eqn. (2.3) at the beginning of 

the component's life is modified to: 

00 00 

Cl1 = I f (Kiel I f 

1 t 

(atl I f (a/c) I f (a) [ 1 - F (a = 
0 0 0 0 (2.44) 

This means for the Monte Carlo simulation that either each term in the sum of 
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Eq. (2.4) has tobe multiplied by the step function 8 (er c(ai, (a/c)i )-er p) 

or that all terms with oc < op have to be removed from the sum and need 

not be considered in the course of the simulation. 

2.2.5 Leak Detection 

Pressurized components containing a liquid and failing by leakage are often 

connected to a leak detection system triggering a shutdown of the plant as 

soon as a critical leak rate Lc is exceeded. Generally, the leak rate LR 

depends on the geometry of the crack causing the leak, the geometry of the 

pressurized component, and the pressure and the hydrodynamic properties of the 

liquid /10, 22/. On the assumption that /10/ 

(2.45) 

where 11 is a monotonically increasing function of the crack size and 1 2 is a 

constant, a critical leak stress follows from LR ~ Lc, namely. 

Lc - lz 
t'Leak = 

l1 (a,c) (2.46) 

and a leak is detected for er appl > er Leak• A leak formed at a given time can 

either be detected immediately and repaired or continue to grow as a through-

wall crack. Any reasonable leak detection system is designed such that a 

through-wall crack is detected before global instability occurs. In terms of 

critical stresses this implies that 

(2.47) 

where er 1D is the critical stress for gloh,1l lnstability, holds for any crack 

geometry causing leakage. 

If a gi ven crack in a component wi th specific material properties can lead to 

a leak in the load cycle N
0

, i.e. if er 2D(N
0

) < o1D(N
0

) (see Section 2.2.2), 

the leak probability Pleak Eq. (2.12) is split into two parts: 

Pleak (Nol = Pleak, 0 (Nol + Pleak, ND (Nol (2.48) 

where 
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(2.49) 

is the probability of obtaining a detectable leak and 

(2.50) 

accounts for the leaks with leak rate below the critical leak rate. The 

probabilities of global instability, eqn. (2.13), and of no failure, eqn. 

(2.11) are, of course, not affected by the leak detection system. 

At load cycle N1 > N
0

, the growth of the non-detected leaks formed up to now 

has to be considered in a way similar to the analysis of the leak-before

break behaviour. Because of the relation eqn. (2.47), leaks do not grow to 

final failure, but will be detected before becoming unstable, since 0 Leak 

decreases with increasing crack length and will eventually fall below the 

cri tical stress 0 20 (N
0

) determing leak formation. 

Let 0 Leak (Ni, Nj) denote the critical stress for detection at load cycle Ni 

> Nj for a leak formed at load cycle Nj. Then it can be shown that at load 

cycle Nk the break probability is given by: 

k 

Psreak (Nk) = L P (max (crm (Nil, 0'20 (Ni)) ~ 0'< 0'20 (Ni-1)) 
i=O 

(2.51) 

where 0 20 (N_1 ) is equal to the upper bound of the stress distribution. The 

contribution to the leak probability from non-detected leaks follows from: 

k 

Pleak, ND (Nk) = L P (cr2D (Nil .s. cr < min (crleak (Nk, Nil, 0'20 (Ni-1))) · 
i=O 

G (crleak (Nk, Nil - cr2o (Ni)) 

and detected leaks occur with the probability 

k 
Pleak, 0 = L P (max (O'Leak (Nk, Nj), 0'20 (Ni)) ~ 0' < mm (0'20 (Ni-1), 0'10 (Ni)))· 

i::1 
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2.3 Differential Fallure Probabilities /23/ 

In many cases of practical interest the available data base determining the 

input distributions in a PFM calculation is incomplete and does not allow to 

predict reliable values for the failure probabilities. However, PFM may still 

be useful if the attention is focused on trends and tendencies rather than on 

absolute numbers for the failure probabilities. Differential failure probab

ilities have been introduced for this purpose. 

The PARIS code contains options for determining the differential failure 

probabilities for a, a/c, C, o f and Kic" For example, dQ 1/da is equal to: 

dQ1 
= f (a) 

da 

00 

jf 
0 

(a/c) !1 - F (C1 = C1c)l d (a/ c) de1f dKic 

(2.54) 

dQ 1 /da is the probability of finding a crack of depth a in the component that 

leads to failure. Therefore, the differential failure probability for a can 

be considered as the distribution of hazardous cracks. A maximum in dQ1 /da 

at a certain crack depth a
0 

indicates that most of the failures observed are 

caused by cracks with depths of about a
0

• 

2.4 Determination of Importance Sampling Functions /24/ 

In many applications of probabilistic fracture mechanics very low values are 

obtained for the failure probabilities, so that great care has to be taken to 

control the numerical errors. Advanced Monte Carlo methods such as stratified 

sampling /10, 12/ and importance sampling /11, 12/ have been developed for 

variance reduction. In the PARIS code importance sampling is used, the basic 

ideas of which are described in section 1.2. 

It is obvious from eqn. (1.14) that the gain in accuracy may vary consi

derably with the importance sampling function fi. The PARIS code contains 

several features that can be used to determine optimum or at least satis

factory importance sampling functions. As a starting point we notice that the 

variance eqn. (1.14) is expected to be small if the ratio of the integrand in 

eqn. (1.7), f(a) h(a), and the importance sampling function f 1 (a) is approxi-
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mately constant for all values of a. In a multi-dimensional problern such as 

eqn. (1.20) dQ 1/da (eqn. (2.53)) corresponds to the integrand, so that the 

simulation is expected to converge if the ratio of the differential failure 

probability and the importance sampling function is approximately constant. 

This can be achieved by fitting fi(a) to (dQ1/da)/Q1 using some standard 

curve fitting method. 

These considerations lead to an iterative procedure applicable to any multi

dimensional failure probability such as eqn. (2.3). All but one random vari

ables are kept constant at the beginning of the first iteration step and are 

assumed to be equal to their mean values or any other constant. Then fi(a) is 

determined by some curve fitting procedure such that it approximates 

= 
Q1 da 

f (a) · [1 - F (er = acll 

j f (a) · [1 - F (er = ercll da 
0 

(2.55) 

as closely as possible. The impor..:duce sampling function is chosen to be any 

of the standard probability densities tor which random nurober generators are 

available in the code. Q1 is calculated from dQ1/da by the trapezoid rule or 

any other numerical integratinn orocerlure. 

The differential failure probability for tne next variable, e.g. Kic' is 

obtained by a Monte Carlo simulation with the importance sampling function 

fi(a): 

/

t f (a) . 
= f (K,cl · - · [1 - F tcr = 

f1 (a) 
0 

(2.56) 

The importance sampling function f 1 (K1c), in turn, is determined by a fit to 

(dQ1/dKic)/Q1 • Subsequent repetitions of this procedure lead to importance 

sampling densities for all input random variables. In some cases of practical 

interest it is necessary to start the iteration process from variables other 

than a in order to obtain a satisfactory variance redu~tion. 

In the second step of the interation scheme, dQ/dxi is calculated for each 

random variable xi with the scatter of all other input quantities taken into 

account. Subsequent curve-fitting of a probability density function fi(xi) to 
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Q-l dQ 1/dxi yields an improved estimate of near optimum importance sampling 

functions. The last step is repeated until two consecutive iterations lead to 

approximately the same importance sampling functions and the values of Q1 
determined by numerical integration of the dQ/dxi vs xi - curves remain con~ 

stant. 
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3. Program Description 

The PARIS code consists of a main program containing the Monte Carlo Simu

lation and several subroutines, in which the fracture mechanical and sta

tistical quantities required for the simulation are calculated. 

3.1 The Main Program 

The structure of the main program is shown in Fig. 3.1. First, the subroutine 

EINGAB is called, in which the user's input is read and stored in several 

COMMON blocks. A call of subroutine SEISMO generates the load cycles caused 

by earthquakes which are incorporated in the fatigue analysis performed in 

the course of the simulation. The Monte Carlo simulation is performed in 

several DO-loops. In the fi rst loop, the coordinate WINKEL(IW) (IW = 1 , ••• , 

NWIN) varies from WINKEL(l) to WINKEL(NWIN) so tha t components subj ec ted to 

non-uniform stresses can be analyzed. For each value of WINKEL(IW) the ap

plied stresses and cyclic loads are calculated by subroutine SPAWIN. Sub

routine NORMIE yields the factor FNORM needed for proper normalization of all 

the distributions entering the simulation. 

In the next step N random vectors (Z(I,1), Z(I,2), Z(I,3), Z(I,4), Z(I,5)), I 

= 1 , ••• , N, are generated according to the user specified i mportance sampling 

distributions Fr The first index IV = 1, ••• , 5 denoting the components of 

the random vector specifies the various input variables such as crack depth 

(IV = 1), aspect ratio (IV= 2), parameter of the crack growth law (IV = 3), 

flow stress (IV = 4) and fracture toughness (IV 5). In the subsequent 

simulation loop the contribution of each of the N random vectors (Z (I, IV), 

IV = 1 , ••• ,5, I = 1 , ••• , N) to the failure probabili ty is calculated. First 

the ratio of the original densities and the importance sampling densities is 

determined: 

5 
Fll = Tr 

IV=1 

DVER (Z (IV, 1), P1 (IV), P2 (IV), P3 (IV), IVER (IV)) 
DVER (Z (IV, 1), P11 (IV), P21 (IV), P31 (IV), IVERI (IV)) 

where DVER is a subroutine containing various types of probability densities. 

P1(IV), P2(IV), P3(IV) and Pll(IV), P2I(IV), P3I(IV) denote the parameters of 

the original and the importance sampling distributions, respectively. 

IVER(IV), IVERI(IV) are indices specifying the type of the distribution under 

consideration. 
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Yes 

Generate load cycles for earthquake 
CALL SEISMO 

Begin loop for location 
IWIN=1, .. , NWIN 

Yes 

Normalize probability distributions 
CALL NORNIE 

Generate random vector 
CALL ZUFALL 

Begin loop for random vectors 
I=l, .. ,N 

Determine FII (see eqn. (3.1)) 
Evaluate benefit of pre-service inspection 

Consider proof test 

Begin loop for time steps 
IT=1, .. ,NT 

Garnpute fatigue crack growth 
CALL ERMUED 

No 

Yes 

Include in-service inspection 

Leak-before-break analysis 
CALL BRULEC, CALL ENTLEC 

Add contributions to failure integrals QL(IT),QD(IT),QB(IT) 

Normalize failure integrals, determine failure probabilities, print results 

Irrtegrate over location, print results 

Figure 3.1 Flow chart of the main program of the PARIScode 
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A non-destructive inspection before start-up is taken into account by mul

tiplying FII by the appropriate non-detection probability (see eqn. (2.36) 

or (2.37)). Subroutine VERSAG is called yielding the critical stress S2D at 

which the particular combination of crack geometry and material properties 

given by Z(IV, I), IV= 1, ••• ,5, leads to failure. If a proof test with 

applied stress SIGP is performed, S2D < SIGP implies that the corresponding 

random vector Z(., I) is removed from the subsequent calculations (see Sec

tion 2.2.4). Fatigue and leak-before-break behavior is analyzed in the fol

lowing loop. For the sake of simplicity the total number of load cycles is 

divided into NT groups, each of which consisting of NDSIG different load 

amplitudes DSIG(IDSIG) occurring DFEQ(IDSIG) times (IDSIG = 1 , ••• , NDSIG). 

The crack growth caused by the load group IT (IT = 1, ••• , NT) is determined 

in the subroutine ERMUED. As it was shown in Section 2.2.2., both the growth 

of the two-dimensional surface crack and of some one-dimensional through-wall 

cracks must be calculated once the leak probability is greater than zero. 

The quantity ITINS(INS) indicates whether the component is inspected non-de

structively after IT = ITINS(INS) load groups (INS = 1, ••• , NINS; NINS is 

the total number of non-destructive inspections). This means that the joint 

probability density stored in FII (eqn. (3.1)) is multiplied by the non

detection probability PND(A,ADC), where A and ADC are the value of the crack 

depth and the depth to length ratio, respectively, after IT load groups (eqn. 

(2.42)) have been applied. Subroutines BRULEC(A, ADC, FISL, FISB) and 

ENTLEC(A, ADC, FISL, FISD, FISB) are called to perfom a probabilistic leak

before break analysis for the given crack of length A and depth-to-length 

ratio ADC (see sections 2.2.2 and 2.2.5); FISL = PLeak,ND denotes the pro

bability for a leak which is not found, FISD = PLeak,D the probability for a 

leak which is detected by the leak detection system and FISB = PBreak the 

break probability. In the absence of a leak detection system, BRULEC deter

mines the probability that the given crack causes local or global instabili

ty. A leak can either continue to grow stably during the component's lifetime 

or fail by global instability after some period of stable crack growth. 

ENTLEC takes into account the benefits of a leak detection system. A leak 

continues to grow until the leak rate is greater than a critical leak rate at 

which the through-wall crack is detected and repaired completely. 

The next random vector Z(·, I + 1) is considered after NT time steps. Re-
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peating this procedure for all random vectors and summing up the products 

FII*FISL, FII*FISD, FII*FISB etc. yields, after normalization, the failure 

integrals for non-detected leaks (QL(IT)), detected leaks (QD(IT)) and breaks 

(QB(IT)) at a given location of the component after IT groups of load cycles 

have occurred, tagether with the corresponding standard errors. If periodic 

inspections are performed after time steps ITINS(INS), these failure inte

grals are no langer equal to the corresponding failure probabilities but 

corrections have to be made according to eqns. (2.40), (2.43). 

The total failure probabili ty (eqn( 1.1 )) is equal to 

AUST 1 - EXP ( - EM*(QL(IT)+QD(IT)+QB(IT))) (3. 2) 

where EM is the average nurober of cracks per component. 

lf the component considered is subject to varying stresses, the procedure 

described above has to be repeated for all NWIN locations. Numerical integra

tion in the subroutine AUSWIN leads to the average failure integrals and the 

respective standard errors. 

3.2 Fracture Mechanics Subroutines 

These subroutines contain the relationships for calculating the growth of a 

given crack under cyclic loads and the critical stresses for leakage or 

break. 

3.2.1 Stress Intensity Factars and Limit Loads 

Various options for the stress intensity factor are available in subroutines 

TAKA(A,ADC,IK) and TAKB(A,ADC,IK). For·one-dimensional cracks, only TAKA is 

called, whereas in two-dimensional cases, where both the depth A and the 

depth to length ratio ADC have to be taken into consideration, TAKA and TAKB 

yield the stress intensity factor at two specific ponts A and B along the 

crack front. lf the applied stress is denoted by SIGMA, the stress intensity 

factors at A and B are 

SIGMA*TAKA(A,ADC,IK) and KB SIGMA*TAKB(A,ADC,IK), (3. 3) 
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respectively. 

The formulae for the various options for the stress intensity factor are 

contained in Appendix A.3. A specific crack and component geometry is selec

ted by the index IK in the input. Table 3.1 gives a survey of the configura

tions assigned by IK. 

Subroutine PG(ADC,IP) contains plastic limit loads for most of the geometries 

considered in TAKA and TAKB (see Table 3.2 and Appendix A.4). If SF denotes 

the flow stress of the material considered, the limit load is given by 

a L SF*PG(A,ADC,IP) (3.4) 

IP indicates which option is selected for the plastic limit load. 

3.2.2 Critical Stress 

The critical stresses S1D and S2D are determined in subroutine VERSAG(A,ADC, 

AKIC,SF,S1D,S2D), where S2D denotes the critical stress of a two-dimensional 

surface crack of the depth A and the depth-to-length ratio ADC and S1D the 

critical stress of a through-wall crack of the length A/ADC. AKIC is the 

fracture toughness and SF the flow stress. In the following IPl, IK1 refer to 

the crack model chosen for the aue-dimensional through-wall crack whereas IP, 

IK denote the options selected for the two-dimensional crack. Both S1D and 

S2D are required, if a leak-before-break analysis is performed (see sections 

2.2.2 and 2.2.5). Depending on the value of the index KRIT either a linear

elastic or a plastic or a elasto-plastic failure criterion is chosen. For 

KRIT = 1, we obtain from linear elastic fracture mechanics: 

KRIT 

S1D AKIC/TAKA(A(ADC,ADC,IK1)) 

S2D AKIC/max(TAKA(A,ADC,IK),TAKB(A,ADC,IK)), 

2 corresponds to the plastic limit load criterion yielding 

S1D = SF*PG(A/ADC,ADC,IP1) 

S2D SF*PG(A,ADC,IP) 
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IK 

1 
2 
3 
4 

CRACK MODEL 

center cracked plate 
three-point-bend specimen 
longitudinal through-wall crack in pipe 
circumferential through-wall crack in 
pipe 

LOAD 

tension 
bending 
internal pressure 
tension 

5 circumferential through-wall crack in linear stress 
pipe gradient 

6 longitudinal through-wall crack in pipe linear stress 
gradient 

7 u s e r o p t i o n for through-wall crack 
8 semi-elliptical surface crack in plate tension 
9 semi-elliptical surface crack in plate tension & bending 
10 internal longitudinal semi-elliptical internal pressure 

surface crack in pipe 
11 internal longitudinal semi-elliptical internal pressure 

surface crack in pipe 
12 internal circumferential semi-elliptical tension 

surface crack in pipe 
13 external circumferential semi-elliptical linear stress 

surface crack in pipe gradient 
14 external longitudinal semi-elliptical linear stress 

surface crack in pipe gradient 
15 u s e r o p t i o n for two-dimensional crack 

REFERENCE 

/38/ 
/38/ 
/39/ 
/40/ 

/41/ 

/42/ 

/43/ 
/43/ 
/44/ 

/30/ 

/10/ 

/41/,/43/ 

/41/,/43/ 

Table 3.1 Survey of the options available for the stress intensity factor 

I P CRACK ~10DEL 

1 
2 
3 

4 
5 

6 

7 

8 
9 
10 
11 
12 
13 

14 

center cracked plate 
three-point-bend specimen 
longitudinal through-wall crack in pipe 

longitudinal through-wall crack in pipe 
circumferential through-wall crack in 
pipe 
circumferential through-wall crack in 
pipe 
longitudinal through-wall crack in pipe 

u s e r o p t i o n for through-wall 
semi-elliptical surface crack in plate 
semi-elliptical surface crack in plate 
semi-elliptical surface crack in plate 
semi-elliptical surface crack in plate 
external longitudinal semi-elliptical 
surface crack in pipe 
internal circumferential semi-elliptical 

LOAD 

tension 
bending 
linear stress 
gradient 
internal pressure 
linear stress 
gradient 
tension 

linear stress 
gradient 

crack 
tension 
tension 
tension 
tension & bending 
internal pressure 

tension 

15 
surface crack in pipe 
u s e r o p t i o n for two-dimensional crack 

REFERENCE 

/45/ 
/45/ 
/46/ 

/47/ 
/41/ 

/10/ 

/42/ 

/45/ 
/48/ 
/25/ 
/25/ 
/46/ 

I 101 

Table 3.2 Survey of the options available for the plastic limit load 
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For KRIT = 3, the two-criteria approach of CEGB /25/ is used to describe 

elasto-plastic failure: 

2 rr2 SIGK 2 

S10, S20 = rr * SIGL* ACOS (EXP(- s * ( SIGL ) ) ) (3.7) 

where SIGK is the linear elastic critical stress given by eqn. (3.5a) for SlD 

and by eqn. (3.5b) for S2D, and SIGL the plastic limit load eqn. (3.6a) or 

(3.6b). 

3.2.3 Crack Growth 

Subroutine ERMUED(AA,CA,AE,CE) integrates the crack growth law eqn.(2.7). At 

a given time step IT, ERMUED determines the final depth AE and length CE of a 

crack with initial depth AA and length CA after NDSIG load cycles. There are 

two different options IFAT for the numerical integration of eqn. (2.7). IFAT 

= 1 calls DVERK, a subroutine contained in the IMSL library /26/ using a 

fifth order Runge-Kutta method. IFAT 2 adds the increments 6. a = YPRIME( 1), 

6.c = YPRIME(2) (see below) caused by a load cycle of amplitude DSIG(IDSIG) to 

the actual crack depth and length. This method, albeit less accurate, is 

faster than the Runge-Kutta method and should preferably be chosen for load 

cycles with high frequencies DFEQ(IDSIG). As it is the case for the failure 

stress, the leak-before-break analysis requires that one-dimensional cracks 

are considered in addition to the two-dimensional crack. Therefore, the one

dimensional crack growth law for cracks of length CL is integrated in the 

second part of ERMUED. 

The crack growth law integrated in ERMUED is stored in function FKN(ND,X,Y, 

YPRIME). Depending on the value of ND, a one- (ND= 1) or a two-dimensional 

(ND= 2) crack is considered. X denotes the nurober of load cycles, Y(l), Y(2) 

are the crack depth and length, and YPRIME(1), YPRIME(2) stand for the deri

vatives da/dN, dc/dN. FKN contains several different crack growth laws which 

can be selected by specifying the variable IERM. The following options are 

available: 

IERM = 1 

da 
dN = CP * DK * * EN 
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lERM 2 

IERM 4 

da CP* DK * * EN 
dN = (1 - Rl * * (EN * OMl 

da 
dN 

= CP* DK * * EN 
(1- Rl * AKIC - 0 K 

for 
DK 

~ DKTHR (3. 9) 
(1 - Rl * * OM 

for DK ~ DKTHR ( 3. 10) 

EN, OM are material constants, CP = Z(IV = 3,1) also depends on the material 

but is assumed to be random, R is the ratio of minimum and maximum applied 

stress, AKIC is the fracture toughness, and DKTHR is the threshold value for 

fatigue crack growth. DK is the amplitude of the stress intensity factor and 

has to be evaluated at two different points if two-dimensional crack growth 

is considered. 

IERM = 3 calls function RWASME(DK) containing a tri-linear form of crack 

growth law as given in the ASME code /30/: 

CP1*DK**EN1 for DKTHR1 ~ DK < DKTHR 

da/dN CP*DK**EN for DKTHRi DK < DKTHR3 (3.11) 

CP3*DK**EN3 for DKTHR3 < DK 

In some applications it may be necessary to specify time steps IT such that 

there are some load cycles occurring only DFEQ < 1 times per time step. A 

typical example are load cycles caused by major accidents. Subroutine 

FREQ(IT,NT,IKH) determines whether such a load cycle should be taken into 

account at a given time step IT (IKH = 1) or ignored (IKH = 0). 

If an earthquake is included in the analysis (ISEISM = 1), additional load 

cycles caused by the earthquake have to be accounted for and NDSIG = NDSIG+1. 

Subroutine SEISMO(SERD,RATERD,FEQERD) determines whether an earthquake will 

actually occur at time step IT and what are the stress ampli tude SERD, ·the 

stress ratio RATERD and the number of load cycles FEQERD to be used in the 

subsequent crack growth analysis. The earthquake currently modeled in the 

code is taken from /31/; any other model can easily be included by changing 

SEISMO. 
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3.2.4 Stress Gradients 

Subroutine SPAWIN(X) enables the user to specify fatigue and applied loads 

varying with the location of the crack considered. The stress amplitude of 

each load cycle, DSIG(IDSIG), is a product of a dimensionless amplitude 

DSMAX(IDSIG) defined in the input and a stress factor SMEM depenent on the 

location of the crack. It is assumed that the stresses caused by fatigue 

loads can be described in terms of a fourth order polynominal: 

SIG1 BI(S)*X**4+BI(4)*X**3+BI(3)*X**2+BI(2)*X+BI(1) 

(3.12) 

SIG2 BA(S)*X**4+BA(4)*X**3+BA(3)*X**2+BA(2)*X+BA(1) 

where SIG1 is the stress on the outer surface of the component, SIG2 is the 

stress on the inner surface, Xis the location and BI(J), BA(J), J = 1, •• ,5, 

are coefficients specified in the input. SPAWIN assumes that a linear gra

dient exists between inner and outer surfaces which can be described as the 

superposition of a membrane stress 

SMEM (SIG1 + SIG2)/2. (3.13) 

and a bending stress (SIG1-SIG2)/2. This bending stress is taken into account 

in the stress intensity factor by introducing the quantity 

FAKERM (SIG1 - SIG2)/(SIG1 + SIG2) (3.14) 

The method described above is also applied to the failure stress. The stres

ses at the outer and inner surface are denoted by SIGV1, SIGV2 with 

SIGV1 = BVI( 1 )+BVI(2 )*X+BVI(3 )*X**2+BVI(4 )*X**3+BVI(S )*X,'<*4 

SIGV2 BVA(1)+BVA(2)*X+BVA(3)*X**2+BVA(4)*X**3+BVA(S)*X**4 

(3 .15) 

The membrane stress SIGV = (SIGV1+SIGV2)/2. defines the parameter P1(6) of 

the stress distribution in the Monte Carlo simulation. The other parameters 

of the stress distribution are assumed to be independent of the location. The 

bending component of the applied stress is accounted for by the factor 
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FAKVER = (SIGV1 - SIGV2)/(SIGV1 + SIGV2) (3.16) 

in the stress intensity factor and the limit load. 

3.3 Statistical Subroutines 

3.3.1 Distribution Functions 

The probability distributions used in the Monte Carlo simulation are con

tained in FUNCTION DVINT(X,P1,P2,P3,IFLAG); FUNCTION DVER(X,P1,P2,P3,IFLAG) 

gives the corresponding probability densities. Depending on the value of the 

variable IFLAG, an exponential, a log-normal, normal, Weibull, gamma, uniform 

or extreme value distribution is selected. All these distributions depend on 

maximal three parameters P1, P2, P3 and may have an additional upper bound 

(OG) and lower bound (UG). The details can be found in Appendix A.1. FUNCTION 

DVINT is related to FUNCTION DVER by: 

y 

DVINT (Y' P1, P2, P3, IFLAG) = I DVER (X, P1 ' P2, P3, IFLAG) dX 
UG 

(3.17) 

If one of the inputvariables is assumed tobe a constant (IFLAG = 8), DVER 

and DVINT are equal to 1, so that eqn. (3.1) can be applied without any 

further changes. 

In the course of the Simulation, DVER is used both for the "original" proba

bility densities and for the importance sampling functions. In the first 

case, the input quantities Pl(IV), P2(IV), P3(IV), IVER(IV) replace P1, P2, 

P3, l.FLAG in the probability density of the random variable IV, whereas 

Pll(IV), P2I(IV), P3l(IV), IVERI(IV) specify the corresponding importance 

sampling distribution. Both distributions have the same lower and upper bound 

denoted by UG(IV) and OG(IV), respectively. Generally, the distributions are 

not normalized for finite lower and upper bounds, and a normalization factor 

has to be calculated by subroutine NORMIE (see Section 3.3.4). 

3.3.2 Random Number Generators 

In the Monte Carlo simulation, various kinds of random numbers have to be 

generated depending on the irnportance sampling distribution F1 , which is done 

in subroutine ZUFALL(Z,N). The random numbers are stored in the array 
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Z(IV,I), where IV denotes the components of the random vector Z( , I) and I 

1,.",N. N is the total number of random numbers generated. The following 

random number generators of the IMSL-library /26/ are used: GGUBFS for uni

form distributions, GGNQF for normal distributions and GGAMR for gamma dis

tributions. All the other random number generators required can be derived 

from those with the help of some arithmetic transformations. The details can 

be found in Appendix A.2. 

3.3.3 Non-Detection Probability 

Non-destructive examinations of a component containing cracks may be perfor

med at the beginning of its lifetime or during service. Eqns. (2.36), (2.37), 

2.41) indicate the change in the crack geometry distribution for the case 

that the reliability of the non-destructive test is expressed in terms of a 

non-detection probability PND" 

The input variable IAVER determines for an inspection before start-up whether 

the input crack geometry distribution is considered to represent the distri

bution of the cracks actually existing in the component (IAVER = 1) or the 

distribution of the cracks found during the pre-service inspection (IAVER 

2). The following non-detection probabilities are available in FUNCTION 

PND(A, ADC) in the PARIS code and can be selected by the input variable IPND: 

IPND 1: no inspection 

IPND 2 /32/ PND PINS(3)+(1-PINS(3))*EXP(-PINS(1)*A) (3.18) 

IPND 3 /31/ 

{ 

1 for A < PINS(2) (3.19) 

PND 

PINS(3)+(1-PINS(3))*EXP(-PINS(I)*(A-PINS(2))) for A ~ PINS(2) 

IPND 4 /10/ PND PINS(3)+(1-PINS(3))*0.5*ERFC(PINS(4)+ln(AR/AF)) 

where AR A*min(2*A/ADC, PINS(2)) 

(3 .20) 

AF PINS(1)*PINS(2) 
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and ERFC is the complement of the error function. 

IPND = 5 /33/ 

PND = PINS (3) + (1 _ PINS (3)) * ERFC ( ALOG (A/(OICK * PINS (1))) )· 
12* PINS (2) 

(3.21) 

The parameters PINS(l), ••• , PINS(4) are input variables. In-service inspec

tions take place when the input quantity ITINS(INS), INS=1, ••• , NINS is 

equal to IT, i.e. after the ITth load group has been applied (see 3.1). NINS 

is the total number of in-service inspections. 

3.3.4 Normalization 

Probability theory requires all distributions in the Monte Carlo simulation 

to be normalized such that 
OG 

I f (x) dx = 
UG 

(3.22) 

As the distributions in FUNCTION DVER are only normalized, if the upper and 

lower bounds coincide with the domain of the distribution, a normalization 

factor FNORM is determined in subroutine NORMIE(FNORM). If FN(IV) with 

OG(IV) 
FN (IV) = I DVER (X, P1 (IV), P2 (I V), P3 (IV), !VER (IV)) d X (3. 23) 

UGOVl 

is the normalization factor of the random variable IV, and FNI(IV) given by 

OG (IV) 

FNI(IV) = I DVER (X, P11 (IV), P21 (IV), P31 (IV), IVERI (IV) dX 
UG(IV) 

(3.24) 

the normalization factor of the corresponding importance sampling distribu

tion, FNORM is equal to 

I ZAHL-1 
FNORM= 1T 

IV=1 

FNHIVl 

FN (IV) FN (!ZAHL) 
( 3. 25) 
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where IZAHL = 6 denotes the number of random variables taken into account in 

the simulation. The random variable IV = IZAHL corresponds to the stress 

distribution which enters the failure probability only in terms of its proba

bility distribution (see Section 2.1). If the component considered is inspec

ted non-destructively before start-up, the normalization factor for the crack 

geometry distribution is determined by 

OG(1) UG(2) 

FN (1) * FN (2) = I I f (a) f (a/c) PNo (a, a/c) d (a/c) da 

UG(1) UGI2l 

for IAVER 1 and 

OG(1) OG(2) 

FN (1) * FN (2) = I I 
UG(1) UG(2) 

for IAVER 2. 

f (a) · f (a/c) 

1- PND (a, a/c) 
d (a/c) 

(3.26a) 

(3.26b) 

The integrals in eqn. (3.23 - 3.24) are calculated in subroutine DVINT (see 

section 3.3.1) whereas the IMSL subroutine DBLIN yields the double integrals 

eqn. (3.26). 

3.3.5 Probabilistic Leak-Before-Break Analysis 

Subroutine BRULEC(A, ADC, FISL, FISB) determines the leak and the break pro

babilities if no leak detection systems is available, i.e. if the input quan

tity QLENT is equal to zero. First the critical stress S2D = o2D of the 

present two-dimensional crack with depth A and depth-to-length ratio ADC and 

the corresponding critical stress S1D = o 1D of a one-dimensional crack of 

length A/ADC are determined in subroutine VERSAG. The index ILE numbers the 

previous time steps Ni at which the leak probability was different from zero 

and for which the critical stress of the through-wall crack S1LECK (ILE) = 
o 1D (IT, Ni) is still larger than the corresponding two-dimensional value 

S2LECK (ILE) o 2D (Ni). The leak and break probabilities, eqn. (2.25) and 

eqn. (2.26), are denoted by FISLand FISB, respectively. 

Subroutine ENTLEC(A, ADC, FISL, FISD, FISB) is called if the effect of a leak 

detection system on the reliability of the component is taken into account. 

As in BRULEC, the critical stresses S1D, S2D corresponding to the actual 
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crack configuration A, ADC are determined in the first place. Then the criti-

cal leak stress 0Leak(IT) S1LENT(IT) is determined as well as the change 

in time of the critical leak stresses oLeak(IT, ILE) = S1LENT(ILE) for leaks 

formed at a previous load cycle ILE. Eqns. (2.50) - (2.52) are then applied 

yielding the probabilities PLeak,ND = FISL, PLeak,D = FISD and PBreak = FISB. 

3.4 Miscellaneous 

For components subjected to varying stresses, QB(IT), QL(IT), QD(LT) etc. are 

the failure probabilities at time IT and a given location WINKEL(IW). All 

locations are assumed to be equally probable, and numerical integration in 

subroutine AUSWIN(WINT) using the trapezoid rule yields the average failure 

probability WINT. 

The critical stress for leak detection is determined in subroutine SIGENT(C). 

Harris /10/ derived the following relation for a pipe in a PWR: 

QLENT SIGENT~C~~2/CLE2 - CLEI (3. 27) 

where C is the crack length, the input quantity QLENT = Lc is the critical 

leak rate (in liter/sec) and 0Leak = SIGENT is the critical stress for leak 

detection. The constants CLE1, CLE2 depend on the details of the mechanical 

and fluid-dynamic properties and are specified in the input. 

FUNCTIONs AKOPT(A,ADC), BKOPT(A,ADC) contain the formulae for the stress in

tensity factor if the option IK = 15 is chosen (see Appendix A.2), FUNCTION 

AK10PT(A) yields the one-dimensional K-factor for IK = 7. FUNCTIONs PG10PT(A) 

and PG20PT(A,ADC) are called for IP = 8 and IP = 15, respectively. 

Subroutine SPAVER (SMAX) substitutes a narrow normal distribution for the 

step function eqn. (2.5) with 

P1 SMAX 

P2 0.001*SMAX 

UG = 0 .9 5*SMAX 

OG 1.05*SMAX 

for positive applied stress SMAX and 
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Pl SMAX 

P2 -O.OOl*SMAX 

UG l.OS*SMAX (3.28b) 

OG 0.95*SMAX 

for negative applied stress SMAX. 

Numerical integrals in the PARIScodeare calculated with the IMSL-sub

routines DCADRE for one-dimensional integrals and DBLIN for two-dimensional 

integrals. Both require the integrand to be contained in external functions. 

Therefore, FUNCTIONs FGAMMA(X) (probability density of the gamma distribu

tion) and FAPND2(ADC,A) (crack geometry distribution including pre-service 

inspection) are included in the code. FUNCTIONs AADC(A), BADC(A) give integ

ration limits for DBLIN. 

3.5 Input Description 

Subroutine EINGAB reads the input data and stores them in various COMMON 

blocks. Table 3.3 shows how the input is organized. Table 3.4 gives an over

view of the meaning and the range of the input variables. All READ statements 

are FORMAT-free. The first card contains the total number N of Monte Carlo 

simulations performed at a specific time step NT. If the appropriate impor

tance sampling functions have been selected N = 1000-10,000 should be suffi

cient. Next, the average number EM of cracks per component has to be speci

fied. In the PARIS code it is assumed that the actual number of cracks is 

Poisson distributed and, consequently, that the total failure probability is 

given by eqn. (3.2). The input quantity PAC determines whether the depth-to

length ratio a/c (PAC = 0) or the aspect ratio c/a (PAC) O) is considered as 

an independent variable. 

Next, the distributions of the independent random variables and their parame

ters are specified tagether with the corresponding importance sampling dis

tributions. Foreach variable IV, the type of the distribution function is 

selected by IVER (IV), and the parameters of the distribution are given by 

Pl(IV), P2(IV), P3(IV). Appendix A.l contains a summary of the distributions 

availableo UG(IV) and OG(IV) define the lower and the upper bound, respec

tively. IVERI(IV) and Pli(IV), P2I(IV), P3I(IV) specify the type and the 

parameters of the importance sampling distribution. IV = 1 corresponds to 
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N 
EM PAC 
Pl(l) P2(1) P3(1) UG(l) OG(l) IVER(l) 
Pli (1) P2I(l) P3I(l) IVERI(l) 
P1(2) P2(2) P3(2) UG(2) OG(2) IVER(2) 
Pli(2) P2I(2) P3I(2) IVERI(2) 
P1(3) P2(3) P3(3) UG(3) OG(3) IVER(3) 
Pli (3) P2I(3) P3I(3) IVERI(3) 
Pl (4) P2(4) P3(4) UG(4) OG(4) IVER(4) 
Pli(4) P2I(4) P3I(4) IVERI(4) 
Pl(S) P2(5) P3(5) UG(S) OG(S) IVER(S) 
Pli (5) P2I(5) P3I(5) IVERI(S) 
P1(6) P2(6) P3(6) UG(6) OG(6) IVER(6) 
KRIT IK IP IKl IPl 
BREIT DICK RADIUS ENY NWIN 
~~ WINKEL(l) WINKEL(NWIN) 
BVI (1) BVI(2) BVI(3) BVI(4) BVI(S) 
BVA(l) BVA(2) BVA(3) BVA(4) BVA(S) 
SIGP QLENT CLEl CLE2 
PINS (1) PINS(2) PINS(3) PINS(4) IPND IAVER 
NT NDSIG 
";'-(""J'r THRl THR2 
";'\";'\ BI (1) BI(2) BI(3) BI(4) BI(S) 
*'" BA(l) BA(2) BA(3) BA(4) BA(S) 
t'rt'r EN OM DKTHR IERM IFAT ISEISM 
*"i'r ENl EN3 CPl CP3 DKTHRl DKTHR3 DKTHR4 
";'("';"\ DSt-1AX(l) DFEQ(l) RATIO(l) 
*t'r 

";'\* DSMAX(NDSIG) DFEQ(NDSIG) RATIO(NDSIG) 
~~~~ NINS 
"i'\'i'ri'\ ITINS(l) 
;'(;'\'i't 

;'(··/~";'( ITINS(NINS) 

* optional for NWIN > 1 
*;'\ optional for NDSIG > 0 
~b~;'r opt ional for NINS > 0 

Table 3.3 Organization of input data 
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Variable 

BA(l), .. ,BA(5) 
BI(1), .. ,BI(5) 
BREIT 

BVA(l), .. ,BVA(5) 
BVI (1), .. , BVI (5) 
CLE1, CLE2 
CP1,CP3 
DFEQ(1), .. ,DFEQ(NDSIG) 

DICK 
DKTHR 

DKTHR1,DKTHR3,DKTHR4 
DSMAX(l), .. ,DSMAX(NDSIG) 

EM 
EN 
ENY 
EN1 ,EN3 
IAVER 

IERM 
IFAT 

IK 

IK1 

IP 

IPND 

IP1 

ISEISM 

ITINS(1), .. ,ITINS(NINS) 

IVER(l) 
IVER(2) 

Definition and reference 

coefficients of fatigue stress, eqn. (3.12) 
coefficients of fatigue stress, eqn. (3 .12) 
width of component; for pipes see eqn. (3.29); 
large number for plates; BREIT=DICK for 1D cracks 
coefficients of failure stress, eqn. (3. 15) 
coefficients of failure stress, eqn. (3. 15) 
parameters for leak detection, eqn. (3.27) 
parameters of the crack growth law, eqn. (3.11) 
frequency of load cycles per time step, see 
section 3.5 
wall thickness of component 
threshold value for cyclic crack growth, 
eqns. (3.8)-(3.11) 
parameters of the crack growth law, eqn. (3.11) 
relative stress amplitudes of load cycles, 
see section 3.5 and 3.11 
average number of cracks per component eqn.(3.2) 
parameter of crack growth laws eqns.(3.8)-(3.11) 
Poisson's ratio 
parameter of crack growth law, eqn. (3.11) 
indicates whether the input crack size distri
bution is determined from inspection data 
(IAVER=2) or known beforehand (IAVER=1) 
selects crack growth law see eqns. (3.8)-(3.11) 
indicates whether the Runge-Kutta (IFAT=1) or 
a simplified procedure (IFAT=2) is taken to 
integrate the crack growth laws 
selects the &tress intensity factor see 
Table (3.1) and App. A.2 
selects the stress intensity factor of the 
through-wall crack used in the leak-before-break 
analysis, arbitrary for one-dimensional problems 
see Table (3.1) and App. A.2 
selects the plastic limit load, arbitrary for 
elastic problems, see Table 3.2 and App.A.3 
selects the non-detection probability, 
eqns. (3.18)-(3.21) 
selects the plastic limit load of the through
wall crack used in the leak-before-break analy
sis, arbitrary for one-dimensional problems,see 
Table 3.2 and App.A.3 
indicates if en earthquake is considered 
(ISEISH=1) or not (ISEIS~1=0) 

time steps after which a non-destructive 
spection will take place 
distribution type for crack depth a 
distribution type for ajc or c/a 

in-

(App.A.1) 
" 

Table 3.4 Definition of input variables 
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Variable 

IVER(3) 

IVER(4) 
IVER(S) 
IVER(6) 
IVERI (1) 

IVERI(2) 

IVERI(3) 

IVERI(4) 

IVERI(S) 

KRIT 
N 
NDSIG 
NINS 
NT 
NWIN 

OG(l) 
OG(2) 
OG(3) 
OG(4) 
OG(S) 
OG(6) 
OM 
PAC 

PINS (1), .. , PINS ( 4) 

Pl(l),P2(1),P3(1) 

P1(2),P2(2),P3(2) 

Pl(3),P2(3),P3(3) 

P1(4),P2(4),P3(4) 

Pl(S) ,P2(5) ,P3(5) 

P1(6),P2(6),P3(6) 

Definition and reference 

distributiontype for parameter CP in eqns. (3.8)
-(3.11) (App.A.l) 
distribution type 
distribution type 
distribution type 
type of importance 
(App. A.l) 

for flow stress (App.A.l) 
for fracture toughness " 
for stress " 
sampling distribution for a 

type of importance sampling distribution for 
ajc or c/a (App. A.l) 
type of importance sampling distribution for 
parameter CP in eqns. (3.8)-(3.11) (App. A.l) 
type of importance sampling distribution for 
flow stress of (App. A.l) 

type of importance sampling distribution for 
fracture toughness Kic (App. A.l) 

selects failure criterion, see section (3.2.2) 
number of random vectors generated 
number of load cycles per time step 
number of in-service inspections 
number of time steps 
number of locations at which the failure proba
bilities are computed, NWIN=l for uniform stress 
upper bound of crack size distribution 
upper bound of a/c (cja) distribution 
upper bound of the distribution of parameter CP 
upper bound of flow stress distribution 
upper bound of fracture toughness distribution 
upper bound of stress distribution 
parameter of crack growth law eqn. (3.9) 
indicates whether the distribution of the depth
to-length ratio (PAC=O.) or of the aspect ratio 
c/a is specified in the input (PAC>O.) 
parameters of the non-detection probability 
eqns. (3.18)-(3.21) 
parameters of the crack depth distribution, 
see App. A.l 

I 
parameters of the ajc (c/a) distribution, see 
App. A.l 
parameters of the distribution of the parameter 
CP in the crack growth laws eqns.(3.8)-(3.11), 
see App. A.l 
parameters of the flow stress distribution, see 
App. A.l 
parameters of the fracture toughness distribu
tion, see App. A.l 
parameters of the stress distribution, see 
App. A.l 

Table 3.4 Definition of inputvariables 
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Variable 

P1I(l),P2I(l),P3I(l) 

Pli(2),P2I(2),P3I(2) 

P1I(3),P2I(3),P3I(3) 

P1I(4),P2I(4),P3I(4) 

P1I(5),P2I(5),P3I(5) 

QLENT 

RADIUS 

RATIO(l), .. ,RATIO(NDSIG) 
SIGP 

THRl, THR2 

UG(l) 
UG(2) 
UG(3) 
UG(4) 
UG(5) 
UG(6) 
WINKEL(l),.,WINKEL(NWIN) 

Definition and reference 

parameters of the importance sampling distri
bution for the crack size, see App. A.l 
parameters of the importance sampling distri
bution for a/c (c/a), see App. A.l 
parameters of the importance sampling distri
bution for the parameter CP in the crack growth 
laws eqns.(3.8)-(3.ll), see App.A.l 
parameters of the importance sampling distri
bution for the flow stress, see App. A.l 
parameters ~f the importance sampling distri
bution for the fracture toughness, see App. A.l 
critical leak rate, eqn.(3.26), no leak de
tection is considered for QLENT=O. 
inner radius of components, large number for 
plates 
R-value for load cycles, see eqns. (3.9), (3.10) 
critical stress for proof test, no proof test 
is considered for SIGP=O. 
threshold for vibrations,see section 3.5, 
eqns. (3.29), (3.30) 
lower bound for crack depth distribution 
lower bound for ajc (c/a) distribution 
lower bound for distribution of parameter CP 
lower bound for flow stress distribution 
lo~er bound for fracture toughness distribution 
lower bound for for stress distribution 
locations at which the failure integrals are 
computed, see section (3.1) 

Table 3.4 Definition of input variables 
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the distribution of crack depth a, IV = 2 to the distribution of the depth

to-length ratio a/c or the aspect ratio c/a depending on the value of PAC. IV 

= 3 determines the distribution of the parameter CP in the crack growth laws 

eqn.(3.8) - (3.11), IV= 4 the distribution of flow stress 0 f and IV= 5 the 

distribution of fracture toughness Kic• No importance sampling distribution 

has to be specified for IV = 6, the distribution of the applied stress o, 

as this distribution enters all the formulae for the failure integral in its 

integrated form only (see e.g. eqn. (2.2) - (2.4)). 

The index KRIT on the following card selects one of the failure criteria 

(eqn. (3.5a) - (3.7)). IK specifies the stress intensity factor and IP the 

limit load (eqn. (3.3), (3.4)). In case oftwo-dimensional cracks (IK_2 8 and 

IP > 9) a stress intensity factor (IK1) and a limit load (IP1) of a corres

ponding one-dimensional through-wall crack are needed for the leak-before

break analysis. Both IK1 and IP1 can take any value if only one- dimensional 

problems are considered. 

The crack and component geometries attributed to the various values of IK, 

IP, IK1, IP1 are summarized in Appendix A.2. BREIT defines the width, DICK 

the thickness and RADIUS the inner radius of the component under considera

tion. For plates, RADIUS is arbitrary, whereas the following relation must be 

fulfilled for pipes 

BREIT = rt · RADIUS (3. 29) 

ENY is Poisson's ratio 

The index NWIN specifies the number of locations WINKEL(IW) (IW = 1, ••• ,NWIN) 

where the failure integral will be evaluated. For NWIN = 1, the lower and 

upper bounds WINKEL(1) and WINKEL(NWIN) are additional input variables. 

BVI(1), ••• ,BVI(5) and BVA(1), ••• ,BVA(5) are the coefficients of the polynomi

nals eqn. (3.15) describing the variation of the applied stress throughout 

the component. 

The following READ statement contains the stress SIGP applied during a proof

test before start-up, the critical leak rate QLENT and the constants CLE1, 

CLE2 determining the critical leak detection stress if a leak detection 

system has been installed. No proof test or no leak detection correspond to 
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SIGP 0 or QLENT o. 

PINS(l), •• , PINS(4) are parameters of the non-detection probabilities 

eqns.(3.18) - (3.21) characterizing the efficiency of a pre-service or an in

service non-destructive inspection. The index IPND specifies which of the 

functions PND is selected. IAVER defines whether the input crack size distri

bution is taken as a distribution of cracks in the component before the 

inspection (IAVER = 1) or as the distribution of cracks found during the pre

service inspection (IAVER = 2). 

The input variable NT defines the number of time steps, and NDSIG the number 

of different load cycles considered in the fatigue analysis. For NDSIG = 0 

the failure probability is only calculated at start-up (IT = NT = 1) and no 

fatigue analysis is performed. The following input quantities are only rele

vant in case of NDSIG = 0 and can be omitted otherwise. 

THR1 and THR2 are scaling variables used to speed up the integration of the 

crack growth law in case of load cycles with very high frequencies such as 

vibrations (see below). BI(l), •• , BI(S) and BA(l), ••• , BA(S) are the coeffi

cients of the reference stress for the fatigue analysis. EN and OM are the 

parameters in the crack growth law eqns. (3.8) - (3.11) selected by the index 

IERM, DKTHR is the corresponding threshold value. IFAT defines whether the 

Runge-Kutta method (IFAT = 1) or a simple iteration scheme (IFAT = 2) is used 

for the integration of the crack growth law. ISEISM specifies whether an 

earthquake is supposed to contribute to fatigue crack growth (ISEISM = 1) or 

not (ISEISM = 0). If the ASME crack growth law is chosen (IERM = 3), addi

tional parameters EN1, EN3, CP1, CP3, DKTHR1, DKTHR3 have to be known accord

ing to eqn. (3.11). The NDSIG load cycles used in the fatigue analysis are 

given by their relative amplitudes DSMAX(IDSIG), their frequencies 

DFEQ(IDSIG) and their stress ratios RATIO(IDSIG) (IDSIG = 1 , •• , NDSIG). The 

actual values DSIG(IDSIG) of the stress amplitudes at a specific location are 

determined by multiplying DSMAX(IDSIG) by the corresponding value of the 

reference stress SMEM (eqn. (3.13)). 

If a specific load cycle with relative amplitude DSMAX(IDSIG) occurs THR1< 

DFEQ(IDSIG) < THR2 times an equivalent load cycle with a lower frequency 

DFEQ(IDSIG) DFEQ(IDSIG) /THR1 (3 .30) 
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and a higher amplitude 

DSMAX (IDSIG) = DSMAX * THR 1 * * (1./EN) (3.31) 

will be calculated. This means that the right hand side in the crack growth 

law remains unchanged by the scaling procedure and fewer load cycles with 

higher amplitudes are equivalent to the original ones if there is no exces

sive crack growth during one cycle. In order to obtain the correct behaviour 

at the threshold of stable crack growth in terms of the transformed load 

cycles, the threshold DKTHR has to be changed accordingly: 

DKTHR {IDSIG) = 0 KTHR * THR 1 * * (1./EN) (3. 32) 

For DFEQ(IDSIG) > THR2 the scaling parameter THR1 is replaced by THR2. 

3.6 Output Description 

Subroutine AUSGAB prints all the input parameters tagether with some infor

mation about the options selected by the user. A typical print-out is shown 

in Table '3.5. 

The results of the simulation are printed at the evaluation times NZEIT = 

IT - 1, IT = 1 , ••• , NT where NT is the number of time steps. For non-uniform 

stresses (NWIN = 1) the averaged probabilities (eqn. (2.6)) are printed in 

addition to the values at each location WINKEL(IW) (IW = 1 , ••• , NWIN). The 

break probabilities are listed as well as the leak probabilities which are 

divided into two parts, one accounting for the leak detected and repaired and 

the other for the leaks not found by the leak detection system. If no leak 

detection is considered, the first part of the leak probability vanishes. 

As the Simulation of the entire life of a component may be time consuming and 

the user may want to interrupt the programme at some intermediate time step, 

a special version of PARIS code is provided which after NT of a total of 

NTEND time steps stores the results in a file such that the program can be 

re-started. 
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************************************************* 
************ P A R I S - C 0 D E ************ 
************************************************* 
PROBABILISTIG ANALYSIS OF CRACKED COMPONENTS 
************************************************* 

* NUMBER OF MONTE CARLO SIMULATIONS 1000 
* AVERAGE NUMBER OF CRACKS PER COMPONENT 10.0000 

* LOADING 
1. FATIGUE 
2. WITHOUT EARTHQUAKE 
3. WITHOUT VIBRATIONS 
4. STRESSES INDEPENDENT OF CRACK LDCATION 

* FAliGUE CRACK GROIHH SIMPLIF IED METHOD 
CRACK GROWTH LAW ( w A L K E R ) 

EXPONENT N 4.120 EXPONENT 11 0.5000 DK CTHRESHOLD) 
FATIGUE: NU~1BER OF TIME STEPS 5 
1 STRESS M1PL ITUDE 60.1000 R 0.0 FREQUENCY 
2 STRESS M1PLITUDE 42.0700 R 0.300000 FREQIJENCY 
3 STRESS AMPLITUDE 6.01000 R o,ll95000 FREQUENCY 

* FAlLURE CRITERION 
PLASTIC LIMIT LOAD 

* COMPONEN1" - LOAUING K-FACTOR 
WIDTH 860.0 THICKNESS 11.00 INNER RADIUS 273.9 

K-FACTOR FOR TWO DIMrNSlUNAL CRACKS 
PIPE TENSION & BFNUlNG CIRCUMFERENTIAL CRACK CERDOGAN) 

K ~F ACTOR F OR IJt~~ lJ I MENS l DNAL CRACKS 
PIPE TENSION BFIWING CIRCUMFERENTIAL CRACK CERIJUGAN) 

PLASTIC l.H1l 1 LIJI\IJ I'UR TWO-DIMENSIONI\'. UZACJ<:-; 
PLAT!:: ILN~;JIJN & BENDING CCEGB/R,;' 

PLASTIC LlMll LOAD FüR ONE-DIMENSIONAL CRACKS 

240.0 

25.0000 
200.000 
2':>0.00[) 

NU ll .. :sono 

PIPE TENSION & BENDING CIRCUMFERENTIAL CRACK (ERDOGAN) 

* INSPECTIDN ANO PROUF TESf 
1. WITHOUT INSP~CllON BEFORE START UP 
2. WITHOUT PROOF-IEsr 
3. WITHDUT IN SERVICE INSPECTIONS 
4. WITHOUT LEAK DETECTION 

Table 3.5 Print-out of the PARIS code 
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* 

* 

DISTRIBUTED QUANTITIES 

CRACK DEPTH DISTRIBUTION 
PARAMETER Pl= 1.00000 P2= 0.0 P3= o.o 
LOWER BOUND = O.lOOOOOD-04 UPPER BOUND 11.0000 
NORMALIZATION= 1.00000 
EXPONENT IAL - DISTRIBUTION 
IMPORTANCE-SAMPLING-DISTRIBUTION 
PARAMETER Pli= 9.04110 P2I= 0.957200 P3I= 0. 0 
NORMIERUNG: 0.979646 
NORMAL - DISTRIBUTION 

A/C- DISTRIBUTION 
PARAMETER Pl= 0.520000 P2= 0.180000 P3= o.o 
LOWER BOUND = 0.1000000-02 UPPER BOUND = 1. 00000 
NORMALIZATION= 0.994174 
NORMAL - DISTRIBUTION 
IMPORTANCE-SAMPLING-DISTRIBUTION 
PARAMETER P 1 I= 0.391000 P2I= 0. 186000 P3I= o.o 
NORMIERUNG: 0.981463 
NORMAL - DISTRIBUTION 

DISTRIBUTION OF PARAMETER c 
PARAMETER Pl= 0,538000D-15 P2= 0,780000 P3= 0.0 
LOWER BOUND = 0.0 UPPER BOUND = O.lOOOOOD-06 
NORMAL IZATION= 1.00000 
LOGNORMAL - DISTRIBUTION 
IMPORTANCE-SAMPLING-DISTRIBUTION 
PARAMETER Pli= 0.5200000-15 P2I= 0.761600 P3I= o.o 
NORMIERUNG: 1.00000 
LOGNORMAL - DISTRIBUTION 

FLOW STRESS DISTRIBUTION 
PARAMETER Pl= 258.900 P2= 18.9000 P3= o.o 
LOWER BOUND = 5.00000 UPPER BOUND = 500.000 
NORMALIZATION= 1.00000 
NORMAL - DISTRIBUTION 
IHPORTANCE-SAHPLING-DISTRIBUTION 
PARAMETER Pli= 253.600 P2I= 18.9980 P3I= o.o 
NORMIERUNG: 1.00000 
NORMAL - DISTRIBUTION 

KIC- DISTRIBUTION 
PARAMETER Pl= 6500.00 P2= o.o P3= o.o 
LOWER BOUND = 100.000 UPPER BOUND 10000.0 
NORHALIZATION= 1.00000 
CONSTANT - DISTRIBUTION 
IMPORTANCE-SAMPLING-DISTRIBUTION 
PARAMETER Pli= 6500,00 P2I= o.o P3I= 0. 0 
NORMIERUNG: 1.00000 
CONSTANT - DISTRIBUTION 

STRESS DISTRIBUTION 
PARAMETER Pl= 
LOWER BOUND = 
NORMALIZATION= 
NORMAL -

60.1000 P2= 0.601000D-02 P3= 0.0 

* 
T 
0 
1 
2 
3 
4 

* NORMALIZATION 

Q-BREAK 
0.315875D·-06 
0.545693D--06 
O.l63539D-05 
O.l77919D-05 
0.182163D-05 

0. 0 
1.00000 

DISTRIBUTION 

0.967121 

SIGMA-BREAK 
0.222184D-06 
0,256315D-06 
O.l09368D-05 
O.ll0288D-05 
0.110363D-05 

UPPER BOUND = 60.1601 

Q-LEAKCNDl SIGHA-LEAKCNDl 
0.209339D-03 0.843881D-05 
0.219808D-03 0.134637D-04 
0.220022D-03 O.l34813D-04 
0.219878D-03 O.l34829D-04 
0.220471D-03 0.134881D-04 

Table 3.5: Print-out of the PARIS code 
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Q-LEAKCDl 
o.o 
o.o 
o.o 
0.0 
o.o 

SIGMA-LEAKCDJ Q-TOTAL 
o.o 0.209435D-02 
o.o 0.220111D-02 
0.0 0.221412D-02 
o.o 0.221412D-02 
o.o 0.222046D-02 



3.7 Differential Failure Probabilities 

As it has been explained in Section 2.4, near optimum importance sampling 

distributions can be determined by an iterative procedure using differential 

failure probabilities. A special version (DIWA) of the PARIS code was deve

loped with the purpose of calculating differential failure probabilities. In 

addition to the input necessary for the standard version of the code the user 

has to specify the variable IKON = 1 , ••• , 5 with respect to which the failure 

probability is to be differentiated together with its lower (UKON) and upper 

bounds (OKON) and the number NSTEP of steps. DIWA then calculates dQ/dX(IKON) 

at points UKON ( X (IKON) ( OKON (IKON = 1 , ••• , NSTEP). The total failure 

probability Q is estimated using the trapezoid rule. A curve fit of any of 

the standard distribution densities contained in subroutine DVER to Q- 1 · 

dQ/dX(IKON) determines the importance sampling density for the variable IKON. 

Experience has shown /14, 24, 34/ that 10-20 points X(IKON) are necessary for 

a curve fit of sufficient accuracy. In all examples considered up to now a 

maximum of NT = 2 time steps has been sufficient to define the importance 

sampling distribution for the entire design life of a specific component 

including up to NT = 40 time steps. Exriessive crack growth, however, may lead 

to substantial changes in the differential failure orobabilities in the com

ponent's lifetime and, consequently, to the necessity of using different 

importance sampling distributions for different time steps. In the examples 

studied up to now /14, 24, 34/, two or three iteration steps for each vari

able have led to stable values for the parameters of the importance sampling 

distributions. 
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4. Examples 

In this section a PFM analysis is performed for a pipe elbow containing 

surface cracks in a circumferential weld with the purpose of illustrating 

some of the characteristic features of the PARIS code. The physical basis of 

the example is explained in /24/. The crack depth a, the depth-to-length 

ratio a/c, the flow stress crfand the parameter C of the crack growth law are 

assumed to be independent random variables. Due to cyclic service loads, the 

surface cracks grow stably until leakage or breakage occurs. Plastic collapse 

determines the critical stress a 1D, 0 2D for local and global instabilities. 

Furtherdetails of the model are summarized in Table 4.1. 

4.1 Determination of the Importance Sampling Distributions 

As it has been explained in Section 2.4, an iteration scheme based on the dif

ferential failure probabilities can be used to determine suitable importance 

sampling distributions. With this method, the parameters of a specific impor

tance sampling distribution can be calculated easily, but there is no way to 

determine the type of this distribution other than by guided guessing. A good 

starting point is to try the same type of probability density for fi(x) as 

f(x), the original probability density determining the statistical properties 

of the random variable x, because the differential failure probability is 

given by 

dO. 
dx 

= f(xl . 0. (x) (4.1) 

where Q(x) is the value of the failure integral evaluated at constant x. 

Once a suitable probability density is found, the iteration scheme normally 

converges after 2-3 steps. 

Table 4.2 summarizes the results of the iteration scheme applied to the leak 

probability of the example. The only variable for which the importance samp

ling distribution differs from the type of the input distribution is the 

crack depth a. Fig. 4.1 illustrates that the exponential distribution is 

not a suitable choice for the corresponding importance sampling dis

tribution, but that the normal distribution fits nicely. With 5000 simulation 

runs, the failure integral for leak at start-up, eqn. (2.31), turns out to be 

-49-



Variable 

Number of simulation runs 
Average number of cracks per component 
Distribution of crack depth a 

Importance sampling distribution for a 
leak probability 
break probability 

Distribution of depth-to-length ratio 
ajc 

Importance sampling distribution for a/c 
leak probability 
break probability 

Distribution of parameter CP 

Importance sampling distribution for CP 
leak probability 

break probability 

Distribution of flow stress of 

Importance sampling distribution for of 

leak probability 
break probability 

Distribution of fracture toughness Kic 

Importance sampling distribution for Kic 

leak probability 
break probability 

Distribution of stress o 

Failure criterion 
Stress intensity factor 

Plastic limit load 

Stress intensity factor of lD crack 

Plastic limit load of lD crack 

Table 4.1 Input for the example 

Input quantity 

N=lOOO 
EN=lü. 
exponential, Pl(l)=l., P3(1)=0., 
UG(l)=l.E-5, OG(l)=ll. 

normal, P1I(1)=9.041, P2I(1)=.957 
Weibull, P1I(1)=4.41, P2I(2)=2.2, 
P3I (1 )=0. 
normal, P1(2)=.52, P2(2)=.18, 
UG(2)=1.E-3, OG(2)=1. 

normal, P1I(2)=.391, P2I(2)=.186 
lognormal, P1I(2)=.00514, 
P2I(2)=.825, P3I(2)=0. 
lognormal, P1(3)=5.38E-16, P2(3)=.78, 
P3(3)=0. ,UG(3)=0., OG(3)=1.E-7 

lognormal, P1I(3)=5.2E-16, 
P2I(3)=.762,P3I(3)=0. 
lognormal, P1I(3)=6.71E-16, 
P2I(3)=.872, P3I(3)=0. 
normal, Pl(4)=258.9, P2(4)=18.9 

UG(4)=5., OG(4)=500. 

normal, P1I(4)=253.6, P2I(4)=19. 
normal, P1I(4)=259.2, P2I(4)=19.2 
const., parameters arbitrary 

const., parameters arbitrary 
const., parameters arbitrary 
constant, P1(5)=60., UG(S)=O., 
OG(5)=60. 
KRIT=2 
IK=l3, pipe with external circum
ferential crack, linear stress 
gradient 
IP=12, semi-elliptical surface 
crack in plate, tension & bending 
IK1=5, pipe with through-wall 
circumferential crack, linear 
stress gradient 
IP1=5, pipe with through-wall 
circumferential crack, linear 
stress gradient 
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Variable 

Half circumference 
\<lall thickness 
Inner radius 
Poisson's ratio 
Nurober of locations 
Coefficients of applied stress 

Proof-test 
Leak detection 

no leak detection 
with leak detection 

Inspection 
no pre-service inspection 
no in-service inspection 

Nurober of time steps 
Nurober of load cycles 
Relative amplitudes of load cycles 
Frequencies of load cycles 
Ratios R of load cycles 
Threshold for vibrations 
Coefficients of fatigue stress 

Parameters of crack growth law 
Integration of crack growth law 
Earthquake 

Table 4.1 Input for the example 

Input quantity 

BREIT=860. 
DICK=11. 
RADIUS=273.9 
ENY=.3 
NWIN=1 
BI(1)=65.6, BI(2)= .. =BI(S)=O. 
BA(1)=54.4, BA(2)= .. =BA(S)=O. 
SIGP=O. 

QLENT=O., CLE1=1. , CLE2=1. 
QLENT=SOO., CLE1=0., CLE2=60. 

IPND=1,IAVER=1,PINS(1)= .. =PINS(4)=0. 
NINS=O 
NT=S, 1 time step = 1 year 
NDSIG=3 
DSMAX(1)=1. ,DSMAX(2)=.7,DSMAX(3)=.1 
DFEQ(1)=25.,DFEQ(2)=200. ,DFEQ(3)=250. 
RATI0(1)=0. ,RATI0(2)=.3,RATI0(3)=.895 
THR1=1000., THR2=1000. 
BVI(1)=65.6,BVI(2)= .. =BVI(S)=O. 
BVA(1)=54.4,BVA(2)= .. =BVA(S)=O. 
EN=4. 12, OM=. 5, DKTHR=240. , IER~1=2 
simple procedure, IFAT=2 
none, ISEISH=O 
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diff. fail- constant importance sampling probability distributions 
ure prob. variables 
dQ/dx. 

J 
F1 (a) F1 (a/c) FI(of) F1 (C) 

x.=a a/c,of,c normal, 
J 

Pl=9.23,P2=.81 

x.=a/c 
J 

of,C normal, normal, 

P1=9.23,P2=.81 P1=.4,P2=.18 

xj=of c normal, normal, normal, 

P1=9.23,P2=.81 P1=.4,P2=.18 P1=253. ,P2=19. 

---------end of first iteration-------------

x.=a c normal, normal, normal, 
J 

P1=9.04,P2=.97 P1=.4,P2=.18 P1=253. , P2=19. 

x.=a/c 
J 

c normal, normal, normal, 

Pl=9.04,P2=.97 P1=.39,P2=.186 P1=253. ,P2=19. 

xj=of c normal, normal, normal, 

P1=9.04,P2=.97 P1=.39,P2=.186 P1=254. ,P2=19. 

----------- ----------- ---------end of second iteration------------ --------------
x.=a c normal, normal, normal, 

J 
P1=9.04,P2=.96 P1=.39,p2=.186 P1=254. , P2=19. 

x.=a/c 
J 

c normal, normal, normal, 

P1=9.04,P2=.96 P1=.39,P2=.186 P1=254. ,P2=19. 

xj=of. c normal, normal, normal, 

P1=9.04,P2=.96 P1=.39,P2=.186 P1=254. ,P2=19. 

x.=C normal, normal, normal, lognormal, 
J 
(''') P1=9.04,P2=.96 P1=.39,P2=.186 P1=254. ,P2=19. Pl=S.ZE-16, 

P2=. 76 ,P3=0. 

----------- ----------- ---------end of third iteration------------- --------------

('~') evaluated at IT=2 

Table 4.2 Determination of the importance sampling functions for the leak 
probabilities of the example 

-52-

failure 
integral 

Ql 

1.6E-4 

1. 7E -4 

2.0E-4 

1.9E-4 

1.9E-4 

2.0E-4 

-------

1.9E-4 

1.9E-4 

2.1E-4 

1.7E-4 



O.Leak (0) = (1.94 .:!: 0.03) · 10-4 (4.2) 

An alternative approach to find suitable importance sampling distributions 

based on the first-order-second-moment method /35/ is described in /11,36/. 

Using this procedure we obtain with 5000 simulation runs 

O.Leak (0) = (1.99 .:!: 0.04) · 10-4 (4.3) 

which agrees very well with eqn. (4.2). In /14/ it was shown that the leak 

probability remains approximately constant throughout the component's life

time. Therefore the same importance sampling distributions can be used for 

all time steps. 

The break probability QBreak, eqn. (2.32), and the corresponding differential 

failure probabilities, on the other hand, change rapidly during the first few 

load cycles so that a curve fit to dQBreak/da or dQBreak/d(a/c) at start-

up does not yield importance sampling distributions applicable to later time 

steps. Fig. 4.2 shows fi(a/c) and QBreak-1 dQBreak/d(a/c) at start-up (IT = 

1) and at IT = 2. Clearly fi(a/c) for IT > 1 cannot be based on the corres

ponding differential failure probability at start-up. 

Fig. 4.3 reflects the influence of different sets of importance sampling 

functions on the simulation results. One set was determined using a Weibull 

distribution for fi(a), whereas the other was obtained with a lognormal dis

tribution for fi(a). As the intervals spanned by the standard errors overlap, 

it can be inferred that there is no statistically significant deviation 

between the different sampling procedures. 

4.2 Leak-Before-Break Analysis 

An overview of the principles of the leak-before-break analysis described in 

Sections 2.2.2, 2.2.5 is given in Figs. 4.4 and 4.5. If the leak and break 

probabilities in eqns. (2.28), (2.29) and (2.50) - (2.52) were calculated by 

direct simulation, the flow charts Figs. 4.4 and 4.5 would illustrate the 

structure of the simulation program. Of course, the simulation procedure in 

the PARIS code is more involved so that these diagrams do not represent any 

part of the code, but only summarize which phenomena are accounted for in the 

leak-before-break analysis. 
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Figure 4.4: Principle of probabilistic leak-before-break analysis 
without leak detection 

-57-



no 

2-dimensional crack growtll ~---..,._---~ 
---- or ---
1-dimensional crack growth ~-----r-----1!------~ 

previous Ioad 
(**) 

STOP 

(*) a
20

=0 for thr6ugh-wall cracks 

(**) a
20

<a<a
10 

at previous load cycle 

no 

(~'r~h'r) a leak depends on the load cycle at which the leak was formed 

Figure 4.5 Principle of probabilistic leak-before-break analysis 
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The value of the failure integral eqns. (2.31), (2.32) and corresponding 

formulae following from eqns. (2.50) - (2.52) specify how many components 

taken from a sample of size n (= nurober of simulation runs) contain leaks at 

a given time and how many have failed by global instability during the period 

elapsed from start-up. 

Without leak detection leaks continue to grow until they cause global insta

bility, i.e. there is a transition between the failure mode leakage and the 

failure mode breakage. This implies that the leak probability can decrease 

with increasing nurober NT of time steps and tends to zero for NT~ oo 

If the benefits of a leak detection system are taken into account, there are 

three different failure modes: leakage with subsequent detection of the leak, 

leakage without detection and breakage. Non-detected leaks continue to grow 

until the leak rate surpasses the critical leak rate of the leak detection 

system and they are detected. This means that there is a transition from the 

failure mode "non-detected leak" to the mode "detected leak", but no tran

sition from the mode "leakage" to the mode "breakage". Consequently, PLeak,D 

and PBreak increase with the nurober of time steps, whereas PLeak,ND tends 

to zero with NT~ oo 

Figs. 4.6- 4.7 illustrate how the leak and the break probabilities are in

fluenced by the presence of a leak detection system. From the sample con

sidered (n = 1000), several components fail by global instability caused by 

unstable growth of leaks as it can be concluded from the dip in QLeak 

in Fig. 4.6 and the higher values for QBreak without leak detection in Fig. 

4.7. For higher numbers of simulation runs, this dip will, of course, be 

smeared out. 
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Concluding Remarks 

The PARIS code is a versatile PFM code specifically designed for applications 

in the nuclear industry. Therefore, special care was taken to incorporate an 

efficient simulation method for components of high reliability. Previous 

applications /14, 37/ have shown that failure probabilities of the order of 

of 10-8 or less can be determined with an statistical error of a 

few per cent. 

Nuclear components generally contain welds in which the existence of cracks 

cannot be excluded. As these cracks normally govern the failure behavior, no 

effort was made to include crack nucleation. In /14/ it was shown that the 

failure probabilities following from a rather simplistic crack nucleation 

model, where crack initation is a Poisson process, can be determined directly 

from the output of the code. 

Another important point in the reliability analysis of nuclear components is 

the leak-before-break behavior /22/. The code computes leak and break proba

bilities including the effects of a leak detection system. The leak-before

break criterion is fulfilled in a probabilistic sense if the break probabili

ty remains much lower than the leak probability for all PFM models compatible 

with the data base. The impact on the reliability of other maintenance pro

cedures such as proof tests for pressurized components and non-destructive 

pre-service and in-service inspections is also taken into account in the 

code. 

Due to its modular structure the PARIS code can easily be adapted to PFM 

problems different from those considered up to now. For example, crack growth 

caused by stress corrosion as considered in the PRAISE code /10/ could be 

taken into account by making minor changes in the input subroutine and the 

subroutine where the crack growth law is integrated. Consideration of re

sidual stresses as in the PRAISE code would imply a few modifications to be 

made in the subroutine which determines the stresses for fatigue and failure. 

More substantial changes are necessary to introduce more sophisticated models 

for crack initiation and creep. It is planned to develop a second Version of 

the code in the near future which will include these phenomena. 
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Appendix 

A.l Probability Distributions 

All the distributions considered in the code are determined by a maximum of 

three parameters Pl, P2, P3 ( Pl(IV), P2(IV), P3(IV) and Pll(IV), P2I(IV), 

P3I(IV) in the input). User specified lower (UG) and upper (OG) bounds can be 

taken into account but require additional normalization in subroutine NORMIE. 

The indices IFLAG (= IVER(IV) and IVERI(IV) in the input routine EINGAB) speci

fies the distributions as follows: 

IFLAG = 1 

Exponential distribution 

f(x) Pl exp(- Pl (x-P3)) 

F(x) = exp(- Pl (UG - P3)) - exp(- Pl (X - P3)). 

IFLAG = 2 

Lognormal distribution 

2 
f (x) = 1 (_ _

2
1 (ln (x - p~3) - ln P1) ) 

ffi · P1 · (x - P3) . exp \ 

F (xl = .l[erf ( ln (x- P31- ln P1 ) -erfCn (x- P3l- ln P1)] 
2 f2·P2 V'I·P2 

where 

er f (y) = _2_J exp (- t2) dt 
vno 

iFLAG = 3 

Normal distribution 

1 [ ( x - P1 ) ( UG - P1) ] F (x) = 2 erf 1/2 p2 - erf {2. p2 

IFLAG = 4 

Weibull distribution 

f (x) = P2 (X - P3 r2
-
1 

.exp ( _ ( x - P3) P2 ) 
P1 P1 P1 
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(A. 2) 

(A. 3) 
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F (x) = exp (- (UG - P3 )P2 )-exp(-(x - P3) P2) 
P1 P1 

IFLAG = 5 

Gamma distribution 

f (x) P1 (P1 (x-P3))P2-1. = · exp (- P1 · (x - P3)) 
r (P2l 

X 

F (x) = j f (x) dx 
UG 

(numerical integration) 

IFLAG = 6 

Uniform distribution 

1 
f (x) = P2 - P1 

F (x) = p2 _ p1 (x - UG) 

IFLAG = 7 

Gumbel extreme value distdbution 

1 x - P1 X - P1 
f(x) = - exp (- - exp (- ) ) 

P2 P2 P2 

x - P1 UG - P1 
F(x) = exp ( - exp (-

P2 
) ) -exp ( - exp ( -

P2 
IFLAG 8 constant value 

f(x) = 6(x - P1) 

where Ö(y) is Dirac's B -function and 

F(x) = G(x - P1) 

where G (y) is the step function. 
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A.2 Raudom Nurober Generators 

The IMSL-library /26/ contains several random nurober generators for various 

types of distribution. For the sake of simplicity only a generator for uni

formly distributed random numbers, called GGUBFS, a generator for normally 

distributed random numbers (GGNQF) and a generator for gamma distributed 

random numbers (GGAMR) are used. All other random numbers z can be generated 

by simple transformations as follows: 

IFLAG 1, exponential distribution: 

~ GGUBFS(DSEED) 

1 
z =- Pl·ln (exp(-P1•UG)- ~·(exp(-P1•UG)-exp(P1•0G))) (A.9) 

where P3 UG was assumed. 

IFLAG 2, lognormal distribution: 

S = GGNQF(DSEED) 

z = exp(~·P2)•P1 + P3 (A. 10) 

IFLAG 3, normal distribution: 

S = GGNQF(DSEED) 

z = ~·P2 + P1 (A.ll) 

IFLAG 4, Weibull distribution: 

S= GGUBFS(DSEED) 

z = P1·(-ln(y +~·(y- y
1
))) 1/P 2+ P3 

1 2 
(A.12) 

with 

( 
UG) P2 

y1 :::: exp (- - ) 
P1 

(A.13) 
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IFLAG 5, gamma distribution: random numbers directly generated by GGAMR 

IFLAG = 6, uniform distribution 

I; = GGUBFS(DSEED) 

z = I;·(P2 -Pl) + Pl 

IFLAG = 7, Gumbel extreme value distribution 

!; = GGUBFS(DSEED) 

z = - ln (- ln (y1 + ~ · (y2 - y1))) · P2 + P1 

Y1 = exp (- exp (- UG-P1 )) 
P2 

IFLAG = 8, constant value 

Yz = exp (- exp (- OG -P1)) 
P2 

z = Pl 

( A. 14) 

(A.l5) 

(A.l6) 

( A. 17) 

A suitable starting nurober has to be assigned to the starting value DSEED of 

the random nurober generators. The PARIS code uses 

D'SEED 123457. (A.l8) 

which is recommended in /26/. All random numbers z are supposed to lie in the 

interval spanned by the lower bound UG and the upper bound OG. In cases 

where the random number generator yields unbounded values for z, all numbers 

not contained in (UG, OG) are rejected. 
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A.3 Stress Intensity Factors 

Subroutines TAKA and TAKB contain stress intensity factors for a variety of 

one- and two-dimensional cracks. With the notation 

(A.19) 

and 

Ka = a · fiä · Y a ( A. 20) 

where YB = 0 for one-dimensional cracks, the index IK selects one of the 

following crack models: 

IK = 1 Center cracked plate subjected to tension (Fig. A.1, /38/) 

1 (1 a ( a )2 
y A = V 1 - a/w · -2w + 0.326 w l 

where 2w is the width of the plate. 

IK = 2: Three-point-bending specimen (Fig. A.2, /38/) 

1 
1.99 _ -+·( 1 _ t)·(2.15 _ 3.93. + + 2.7 (-rr) 

YA =rrt 
( 1 + 2 ~ )· ( 1 - ~ ) 1.S 

where t is the thickness of the specimen. 

IK = 3: Longitudinally cracked pipe subjected to internal pressure 

( Fi g. A. 3 ' I 3 9 /) 

with 

Y A = (1 + 0.3801 f- 2 - 0.00124 ';..4 )112 

';.. = _a- (12 . (1 - v2))0.25 
J Rit 

where R1 is the inner radius and t the wall thickness. 

(A. 21) 

(A.22) 

(A.23) 

(A.24) 

IK 4 Cir.cumferentially cracked pipe subjected to tension (Fig. A.4, /40/) 
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C1 

2W 

~ 

C1 

Figure A.l Center cracked plate 

1-"0-----s----~ 

Figure A.2 Three-point bending specimen 
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Figure A.3 Pipe with a throtigh-wall longitudinal crack 

t 

Figure A.4 Pipe wi th a through-wall circumfe·rential crack 
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Y A = [ ~ · (g (cd 
2n C2 1/2 

+-- - 2 {2)] 
2n A 

( A. 25) 

with 

g (o:) 2 {2 [ 1 + 
1 - 0: CO t 0: r = 1T - 0: 2o: cot o: + {2 o: cot 

ff 

{ 1T 2 3 3 for >-. .s..2 1 + 64 A - 0.00 66 >-. 
c = ( r: >-. ) 112 + (0.~8 ) 0.885 for >-. > 2 

and 

IK = 5 Circumferentially cracked pipe with a linear stress gradient across 

the wall (Fig. A.4, /41/) 

YA = (1 + 0.0222 A + 0.0424 >-.2 - 0.0057 >-.3 + 0.000241 A 4) (1 + ~) 
2cr 

where 

0' = 

(A.26) 

(A. 27) 

is the arithmetic mean of the applied stresses at the outer (cr
0

) and the 

inner ( cri) surfaces of the pipe, and 

(A.28) 

is the relative hending component of the stress. 

IK = 6 Longitudinally cracked pipe with a linear stress gradient across the 

wall (Fig. A.3, /42 /) 

Y A = (0.614 + 0.481 A + 0.386 ( 
ab ) exp (-1.25 A)) · 1 + 
2cr 

(A.29) 

IK = 7 User option for a one-dimensional crack 

IK = 8 Plate containing a semi-elliptical surface crack subjected to tension 

(Fig. A.5, /43 /) 
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(Fig. A.S, /43/) 

(A. 30) 

with 
0. = 1 + 1.464 ( ~ ) 1.

65 (A.31) 

and 
F = M1 + M2 · ( ~ ) 2 

+ M3 · ( ~ ) 
4 (A.32) 

M1 = 1.13 - 0. 0 9 ~ 

M -- 0 54 0.89 
2 - · + 0.2 + a/ c 

M3 = 0.5 - 1 
+ 14 · (1 - .§...) 

24 

0.65 + a/c c 
The correction factor fB is given by: 

(A.33) 

IK = 9 Plate containing a semi-elliptical 

tension and bending (Fig. A.S, /43/) 

surface crack subjected to combined 

Y A = ~ (1 + :b · HA) 
(A. 34) 

YB = _f_ · (1 + ~ · HB) · fB 
Vö.. C1 

where F, Q, fB are defined in eqns. (A.31) - (A.33) o is the membrane stress, 

and ob is the bending stress, and HA, HB are determined from: 

and 

a ( a ) 2 HA = 1 + G1 . T + G2 . -t-

a G1 = - 1.22 - 0.12 c 
G2 = 0.55 - 1.05. { ~ )

0
'
75

+ 0.47. (~) 1.
5 

a a 
HB = 1 - ( 0.3 4 + 0.11 -). -

c t 

(A.35) 

(A.36) 

IK = 10 Pipe containing an internal longitudinal semi-elliptical surface 

crack subjected to internal pressure (Fig. A.6, /44/) 

F 
Y A = {Q fc · 0.97 , (A. 37) 
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~--2c 

rc 

Figure A.S Serni-elliptical surface crack in a plate 

·-----

Figure A.6 Semi-elliptical longitudinal surface crack in a pipe 

Figure A.? Semi-elliptical circumferential surface crack in a pipe 
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YB = _l_ f6 · fc · 0.97 
{ff 

where F, Q, fB are given in eqns. (A.31) - (A.33) and fc is defined as: 

f - ( Ro2 + Ri 2 
c- R2 R2 

0 - i 
+ 1 - 0.5 {ä_ ) . _t_ 

t Ri 
(A.38) 

with R
0 

denoting the outer radius and Ri the inner radius of the pipe. 

IK = 11 Pipe cantairring an internal longitudinal semi-elliptical surface 

crack subjected to internal pressure (Fig. A.6, /30/) 

with 

where 

y A = Mm · MR · )o_ 

1 a/c a ) 1.8+a/c 
Mm = 1.1 + 5.2 · (32) ·(-t 

MR = Am - a/t 
Am (1 - a/t) 

Am = V 1 + 1.61 c2/Rt 

R = ..1 (Ri + Ro) 
2 

is the mean radius of the plpe. 

(A.39) 

(A.40) 

IK = 12 Pipe cantairring an internal circumferential semi-elliptical surface 

crack subjected to tension (Fig. A. 7, /10/) 

YA = J~:a/t ·(Ho+ H1· ~ + H2 ·(~ )
2 

+ H3·(f) 3
) ·· J:n 

Ys = h~~/t ·(10 + Ii ·f + 12.(-~)
2 

+ l3 · (~)
3

) · Jn 

a (a)2 (a)3 H0 = 1.44 - 0.343 c - 0.404 c + 0.293 c 

a (a)2 (a)3 H1 =- 0.682 - 0.423 c - 0.497 T + 0.970 T 

H2 = 0. 0 3 6 6 + 11. 8 0 ~ - 2 0 . 73 ( ~ ) 
2 

+ 9. 6 9 ( ~ ) 3 
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H3 = 0.426 - 15.83 ~ + 29.54 (f) 2 
-. 15.04 ( ~) 3 

lo = 0.979 + 0.202 ~ - 0.248 (: )
2 

+ 0.055 ( +) 3 

11 = 1. 0 6 - 6' 6 9 t + 9' 2 2 ( ~ ) 
2 

- 4 '2 9 ( ~ ? 
12 = - 2.75 + 21.82 ~ - 36.22 ( ~) 2. + 18.61 (f)3 

13 = 1.43 - 17.71 ~ + 31.19 ( f-)
2 

- 16.48 ( ~ ) 
3 

IK = 13 Pipe containing an external circumferential surface crack with a 

linear stress gradient across the wall (Fig. ~7, /41/, /43/) 

F crb 
y A = ro.' (1 +' cr. HA) . fo I 

F crb 
Ys = VTf · !1 + -

0
-·Hsl · f9 . fo 

(A.42) 

where F, Q, fB, HA, HB are defined in eqns. (A.31) - (A.33), (A.35), (A.36), 

a, ab follow from eqns. (A.27), (A.28) and fD is equal to: 

f0 = (Bm - 1) · ·2.:, + 
t 

with Bm = 1 + 0.0222 A. s + 0.0424 >..~ - 0.0057 A.~ - 0.000241 >..~ 

and 

"-s = _c- . (12 (1 - v2)) 0.25 

fRif 

(A. 43) 

(A.44) 

IK = 14 Pipe containing an external longitudinal surface crack with a linear 

stress gradient across the wall (Fig. A.6, /42/, /43/) 

(A.45) 

F crb 
Y9 = ro:· (1 + - 0-H8l · fL 

where F, Q, fB, HA, HB are defined in eqns. (A.31) - (A.33), (A.35), (A.36), 

a' ab are gi ven in eqns. (A.27), (A.28) and f 1 follows from: 
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with 

fl = (Am - 1) ~ + 1 
t 

Am = 0.614 + 0.481 f.. 5 + 0.386 . exp (-1.25 f.. 5 ) 

and A 8 as in eqn. (A.44). 

IK = 15 User option for two-dimensional cracks. 
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A.4 Plastic Limit Loads 

Plastic lirnit loads are determined in subroutine PG. Depending on the value of 

the index IP the limit load 

where a f is the flow stress, is determined by one of the following 

relations: 

IP 1 Center cracked plate subjected to tension (Fig. A.1, /45/) 

where 2w is the width of the plate. 

IP = 2 Three-point bending specimen 

(Fig. A.Z, /45/) 
M = ~ (1 - ..2.. )2 

2 w 

(A.47) 

(A.48) 

(A.49) 

IP = 3 Longitudinally cracked pipe subjected to internal pressure with a li

near stress gradient across the wall (Fig. A.3, /39/) 

M = (1 + 0.3801 'A2 - 0.00124 t..4r112 -~ 
~0.: 

where ;\ follows from eqn. (A.24) and ab from eqns. (A.27), (A.28). 

(A.SO) 

IP = 4 Longitudinally cracked pipe subjected to internal pressure (Fig. A.3, 

/46/) 

with 

M = 

+ 0.12 

J 1 + 8 'A1
2 - 1 

4 'A,z 

'A, = ci{RjT 

(A.51) 
+ 0.12 ~.., ~.., < 1 

(A.52) 

IP = 5 Circumferentially cracked pipe with a linear stress gradient across 

the wall (Fig. A.4, /41/) 

M = (1 + 0.0222 'A + 0.0424 'A 2 - 0.0057 t.. 3 
+ 0.000241 t..4t 1 - crb 

2 cr t 
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where lt is defined in (A.24) and ob in eqns. (A.27), (A.28). 

IP 6 Circumferentially cracked pipe subjected to tension (Fig. A.4, /10/) 

a 
M = 1 - nR 

where R is the mean radius of the pipe. 

(A.S4) 

IP = 7 Longitudinally cracked pipe with a linear stress gradient across the 

wall (Fig. A.3, /42/) 

M = ( 0 0 614 + 0 0 4 81 A + 0.3 8 6 ° e x p ( -1.2 5 A ))-1 - cr b 
2crt 

IP 8 User optioh 

(A.SS) 

IP = 9 Plate containing a semi-elliptical surface crack subjected to tension 

(Fig. A.S, /45 /) 

a 
M = 1 - -

t 

(1 + 2(y)
2
l 112 - 1 

(1 + 2 ( -f )2)112- f 
(A.S6) 

IP = 10 Plate containing a semi-elliptical surface crack subjected to tension 

(Fig. A.S, /47/) 

M = (1 - p1 . P2) (1 - ( f) 1.4 ) 
(A.S 7) 

with 

of in eqn. (A.37) is supposed tobe 

(A.S8) 
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if eqn. (A.57) is used to determine the plastic limit load. 

IP = 11 Plate containing a semi-elliptical surface crack subjected to tension 

(Fig. A.5, /25 /) 

M 1 
_ 1rac 

2t•(t+2c) 
(A.59) 

IP = 12 Plate containing a semi-elliptical surface crack subjected to com

bined tension and bending (Fig. A.5, /25 /) 

( 
a 2 ab . ) 1/2 

M = - ~t + I + 2(-) - 2•~-
t t 2af 

(A. 60) 

where a b is the bending stress. 

IP = 13 Pipe containing an external longitudinal surface crack subjected to 

internal pressure (Fig. A.6, /39 /). 

with 

M 

c 
m 

c 
m 

a 
t 

(I + 0.380I•A 2 - O.OOI24·A 4)
1/ 2 

s s 

and A 8 as in eqn. (A.44) . 

(A.61) 

(A. 6 2) 

IP = 14 Pipe containing an internal circumferential surface crack subjected 

to tension (Fig. A.?, /10/) 

I -
ac• (2R. + a) 

]_ 

1TR.t·(2R. + t) 
]_ ]_ 

IP 15 User option for a two-dimensional crack. 
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