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Summary 

Chemical lnteractions between U02 fuel and Zircaloy cladding up 

to 2350°C are described. U02/Zircaloy single effects tests have 

been performed with short LWR fuel rod segments in inert gas 

and under oxidizing conditions. The reaction kinetics of malten 

Zircaloy claddlng with solid U02 fuel has been investigated 

with U02 crucibles containing malten Zircaloy. The U02/Zircaloy 

reactions obey parabolic rate laws. The oxygen uptake by solid 

Zircaloy due to chemical Interaction with U02 occurs nearly as 

quickly as that from the reaction with steam or oxygen. 

To study the campet ing effects of the external and internal 

cladding oxidation under realistic boundary conditions and the 

influence of the uncontrolled temperature escalation due to the 

exotherrnie steam/Zircaloy reaction on the maximum cladding 

temperature, single rod and bundle experiments have been 

performed. Electrically heated fuel rod simulators, including 

absorber rod material (Ag, ln, Cd alloy for PWR or B4C for 

BWR), guide tubes and grid spacers are used. 

The maximum measured cladding temperature during the 

temperature escalation was about 2200°C. The failure 

temperature of the Ag/In/Cd-absorber rods and the extent of 

bundle darnage depends on the guide tube material (Zircaloy or 

stainless steel) and varies between 1200 and 1350°C. ln boron 

carbide absorber rods the cladding starts to be 1 iquefied due 

to interactions between boron carbide and stainless steel at 

about 1200°C. The liquid reaction product may then react with 

Zircaloy. The malten materials and liquid reaction products can 

relocate and form large coherent lumps on solidification, which 

may result in complete blockage of the fuel rod bundle cross 

section. 

ln the future, 7x7 bundle experiments of 2 m overall length 

will be performed in the new CORA facility to study, in 

addition, the influence of quenching on fuel rod integrity. 
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Physikalisches und chemisches Verhalten von LWR Brennelementen 

bis zu sehr hohen Temperaturen. 

Kurzfassung 

Die chemischen Wechselwirkungen zwischen UOz-Brennstoff und 

Zircaloy-Hülle im Temperaturbereich bis über 2000°C werden 

beschrieben. UOz/Zircaloy Einzeleffekt-Untersuchungen wurden 

mit kurzen LWR Brennstababschnitten in Inertgas und unter 

oxidierenden Bedingungen durchgeführt. Die Reaktionskinitik 

geschmolzener Zircaloy-Hüllrohre mit UOz-Brennstoff wurde an 

U02 Tiegeln untersucht, die flüssiges Zircaloy enthielten. Die 

U02/Zlrcaloy Reaktionen zeigen eine parabolische Zeitab­

hängigkeit. Die Sauerstoffaufnahme im festen Zircaloy infolge 

der chemischen Wechselwirkung mit U02 geschieht nahezu genau so 

schnell wie bei der Reaktion mit Dampf oder Sauerstoff, 

Für die Untersuchung der konkurrierenden Effekte der Wechse 1-

ltJirkung zwischen Hüllrohr und U02 und der Oxidation im Dampf 

unter real Istischen Randbedingugnen (Temperatureskalation), 

wurden Ei nze 1 stab- und Bünde 1 exper i mente durchgeführt. Hier für 

wurden elektrisch beheizte Brennstabsimulatoren einschließlich 

Absorberstäbe (AglnCd für BWR oder B4C für SWR), Führungsrohre 

und Abstandshalter verwendet. 

Die maxi ma 1 gemessenen Temperaturen bei der Temperatur­

eskalation betrug ca. 2200°C. Die Versagenstemperatur der 

Ag I nCd-Absorbers täbe hängt vom Führungsrohrmater i a 1 (Z i rca 1 oy 

oder Edelstahl) ab, und variiert zwischen 1200°C und 1350°C. 

Bei Borcarbid-Absorberstäben beginnt die Hülle bei ca. 1200°C 

durch Wechselwirkung zwischen dem B4C und dem Edelstahl zu 

schmelzen. Die flüssigen Reaktionsprodukte können dann mit dem 

Z i rca 1 oy reagieren. Die geschmo 1 zenen Mater i a 1 i en können beim 

Erstarren zusammenhängende Klumpen bilden, die in weitgehenden 

Blockaden des Bündels resultieren. 

ln der Zukunft werden in der CORA-Anlage 7x7 Bündelexperimente 

mit 2m langen Bündeln durchgeführt um zusätzlich den Einfluß 

des Wieder f 1 utens auf das Schandensverha 1 ten des Bünde 1 s zu 

untersuchen. 
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1. lntroduction 

ln a severe fue1 darnage (SFD) accident, the fuel and the 

claddlng may reach temperatures up to the melting point of U02. 

However, the temperature trans i ent can be stopped before an 

uncontro11ed core meltdown occurs. With increasing fuel and 

c 1 add i ng temperatures, fue 1 rod darnage wi 11 occur in the core 

in a variety of forms. A point of special concern is the 

formation of liquid phases, which may relocate, so1idify, and 

form potential coolant channel blockages. 

Since Zirca1oy (Zry) is thermodynamica11y unstab1e with respect 

to steam and U02, chemica1 interactions wi 11 take p1ace which 

become significant at temperatures above 1200°C and which have 

an i nf 1 uence on the ehern i ca 1 and mechan i ca 1 i n_tegr i ty of the 

fuel rods and bundles. Zr, U and oxygen are. not the only 

elements in the fuel rod bundles and the reactor core. Fe, Cr, 

and Ni of the structural materials as well as a (Ag,ln,Cd)alloy 

or B4C of the absorber rods of PWR or BWR are a 1 so present, 

causing additional complex chemical interactions. Especially 

the low-temperature melting of the (Ag, ln, Cd) absorber 

material (about 800°C) may significantly influence the darnage 

mechanisms of the bund1es, the formation of blockages, the 

release of f1ssion products and the aerosol generation. 

The SFD experiments performed by the Nuclear Safety Project of 

the Karlsruhe Nuclear Research Center have served to 

investigate the most important physica1 and chemica1 phenomena 

of fuel element behavior beyond the current design 1 imit 

( 1 arge-break LOCA, 1200°C) up to core me 1 tdown phenomena. The 

experiment results will be used for the assessment of SFD codes 

and their capability to describe integral fuel element 

behavior. 

This paper describes the results of out-of-pile reaction 

experiments with LWR fuel rod sections and electrica1ly heated 

fuel rod simulators up to 2200°C under oxidizing conditions. ln 

addition, the dissolution of solid U02 by malten Zircaloy 

cladding was studied in the temperature range of 1900-2300°C. 
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2. U02/Zircaloy Chemical lnteractions 

2.1 UOz/Solid Zircaloy Reaction Experiments 

The out-of-pile U02/Zry reaction experiments were performed in 

Ar or an (Ar + 25 vol.% 02) gas mixture in the high 

temperature/high pressure autoclave apparatus MONA /1,2,3,6,8/. 

Short cladding tube specimens filled wlth stoichiometric high­

density UOz pellets were used in the tests. The specimens were 

100 mm long with an outside diameter of 10.75 mm and a wall 

thickness of 0.72 mm. The specimen was contained in a high­

pressure vessel and inductively heated , with the cladding 

acting as susceptor. The experimental procedure is described in 

detail in /2,3/. The maximum cladding temperature was 1700°C in 

isothermal experiments and the annealing times v~ried between 1 

and 150 min. The temperature transient experiments were 

performed with equal heating and cooling rates of 0.25, 1, 5, 

and 10 K/s. The maximum temperature varied between 1000 and 

2000°C. The holding time at the maximum temperature was 10 s. 

At temperatures above the melting point of Zircaloy (~ 1760°C) 

apart of the cladding melted (unreacted .ß-Zr). However, due 

to the Zr02 shell forming on the outside surface of the 

cladding, the molten material remaind at place. On the other 

hand, the melting point of Zircaloy is shifted from about 1760 

to 1960°C [melting point of oxygen-saturated a-Zr(O)] as a 

resu 1 t of oxygen uptake. The externa 1 overpressure cou 1 d be 

varied between 1 and 200 bar, but was about 40 bar in most of 

the experiments. 

The results of the U02/solid Zry reaction experiments under 

isothermal and transient temperature conditions have been 

extensively described in /1,2,3,7,8,15/. The results show that 

due to oxygen uptake by the Zry c 1 add i ng from react i on wi th 

gaseous oxygen or steam on the outside and from reaction with 

U02 on the Inside oxygen stabilized a-Zr(O) phases, Zr02 and a 

metallic (U, Zr) alloy form. The sequence of the various 

phases, starting from the Inside surface, is for isothermal and 

transient temperature experiments at all temperatures: 
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Figure shows the sequence of external and internal 

interaction layers. The a-Zr(O)a,b layers forming on the inside 

of the cladding and the a-Zr(O)c layer forming on the outside 

of the cladding grow at roughly the same rates. Moreover, due 

to the elevated oxygen potential (oxygen partial pressure) of 

the gas mixture or steam compared to stoichiometric UOz, a ZrOz 

layer also forms on the external cladding surface. The 

th i cknesses of the var i ous i nteract i on 1 ayers determ i ned 

metalllographically as a function of temperature and time are 

plotted versus the square root of time in Figure 2 at 1020, 

1100, 1200, and 1300°C. lnitially, the growth of the reaction 

layers, obey parabol ic rate laws. However, since the wall 

thickness of the cladding is small (0.72 mm), the tubing must 

be considered as a finite system. For this reason~ the external 

and the internal oxygen uptake influence each other and an 

accelerated growth of the reaction layers is observed at longer 

reaction times, especially after the ß-phase has disappeared. 

The thicknesses of the reaction layers in the transient 

temperature experiments are documented in /6,8/. 

With increasing time theß-phase of the cladding disappears due 

to oxygen uptake and transformation into a-Zr(O). The growth of 

the various layers as functions of temperature and time and the 

i nrease in fue 1 rod d i ameter due to the format i on of Zr02 are 

evident. The time required to completely convert the ß-Zry 

region in the center of the cladding to a-Zr(O) is highly 

temperature dependent. After the disappearance of theß-phase, 

the oxidized cladding tube is completely embrittled and is no 

langer mechanically stable. The slightest force exerted during 

cooling or subsequent handl ing causes the fuel rod sections to 

,., The (U,Zr) alloy within the a-Zr(O)a layer is concentrated 
mainly at the grain boundaries, but also within the matrix. 
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break apart. Since embrittlement of the cladding occurs as a 

result of the formation of oxygen-stabillzed a-Zr(O), the 

internal oxidation makes approximately the same contrlbutlon as 

the external oxidation. For this reason, embrittlement of the 

claddlng occurs about four times faster than by one-sided 

oxidation alone. The time to embrittlement is about 3 minutes 

for double-sided oxidatlon of the cladding at 1400°C (Fiqure 

}). At 1020°C, the cladding is still ductile even after the 

Iongest reaction time examined of 150 min. Figure 3 indicates 

also the conditions for which embrittlement of the cladding 

must be anticipated in temperature transient experiment (upper 

scale). The slower the heating and cooling rates, the lower the 

temperature at wh i eh the duct i le ß-phase i s transformed i nto 

brittle oxygen stabilized a-Zr(O); for example at dT/dt 

5 K/s, the critical temperature for cladding embrittlement is 

about 1600°C. 

Figure 4 shows cross sections and microstructures of the 

reaction layers of specimens which were heated and cooled at 

5 K/s to various maximum temperatures. At a maximum temperature 

of 1400°C the i nterna l and externa l react i on 1 ayers formed in 

the cladding as described in Figures 1 and 2. The prior ß-phase 

is still dominant, which means that the cladding is stil 1 

duct i le. At a maximum temperature of 1600°C, the ß-phase has 

disappeared and the cladding is embrittled. At 1800°C, the 

metallic part between the U02 and Zr02 looks like a solidified 

(U, Zr, 0) melt. The ceramte phase whithin the metallic melt 

consists of an oxidic solid solution (U, Zr)02 which forms due 

to chemical Interaction between the malten Zircaloy cladding 

and U02 or Zr02. 

A comparison of the growth rate equations of the whole reaction 

zones. for the U02/Zry, 02/Zry, and H20/Zry react i ons i s shown 

in Figure 5. Note that the total U02/Zry growth rate curve 

overlaps the steam/Zry region (results of six investigations 

/2,3/) above about 1100°C. This means, that the U02/Zry 

reaction occurs as rapidly as the steam/Zry reaction above 

about 11 00°C. The tota 1 growth rate curve for the 02/Zry gas 

mixture lies within the steam/Zry region. For this reason, the 
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gas mixture (Ar+ 25 vol.% 02), which was used in the MONA 

experiments, can be used to simulate a steam environment. This 

was also shown in other tests /11/. 

The modeling the combined internal and external cladding 

interactions resulted in the PECLOX (~llet fladding oxidation) 

numerical model. PECLOX solves the Fick and Stefan equations. 

lt predicts the formation, growth, and disappearance of the 

var i ous i nteract i on 1 ayers and the correspond i ng oxygen 

profiles as a function of temperature and time up to complete 

Zry cladding oxidation /7,8/. ln this respect, the PECLOX model 

has major advantages over other models /9, 10/, which attempt 

only to simulate the kinetics of the system in the first stages 

of the process, when all Interface movements obey parabol ic 

rate laws (infinte systems). Fiqure 6 shows .a comparison 

between experimental results and calculations for an isothermal 

fuel/cladding Interaction experiment under oxidizing conditions 

at 1100°C. The phase boundary movements are plotted versus the 

square root of time. The agreement between experiment and 

calculation is satisfactory /8/. 

Figure 7 shows the calculated oxygen concentration profiles for 

the combined cladding interactions at 1100°C after 3000 and 

10,000 seconds reaction time. Oxygen diffuses into the Zircaloy 

cladding from the Inside and the outside forming various 

Interaction layers. The metallic (U,Zr) alloy forming between 

the two oxygen stabilized a-Zr(O)a,b layers contains only a 

small amount of oxygen. The ß-phase saturates with oxygen 

(3000 s) and then finally disappears. After long reaction times 

the cladding will be completely converted to Zr02 since the 

oxygen potential is higher on the outside (H20) than on the 

Inside (U02). The (U,Zr) alloy then transforms into (U,Zr)02 

oxide. Swelling due to a density change of the reaction 

products occurs at the Zr02/a-Zr(O)c Interface. 

2.2 U02 Dissolution by Molten Zircaloy 

The meltdown behavior of Zry cladding depends decisively on the 

extent of the cladding oxidation and on the possible formation 

of a Zr02 oxide layer during the heating period. However, the 
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oxygen uptake by Zry depends not only of the oxygen potential 

of the enviroriment but also on the chemical Interaction with 

the UOz fuel, which is determined by the fuel/cladding contact 

cond i t i ons, i. e., the externa 1 overpressure. Th i s i s shown in 

Figure 8 /12/. Two specimens were tested under inert conditions 

to a maximum temperature of about 2000°C with a heating rate of 

10 K/s and external pressures of 1 and 40 bar argon. 

At bar, very 1 ittle oxygen was taken up by the cladding 

during heating because there was no good fuel/cladding contact. 

The onset of melting of the cladding therefore remained at 

about 1760°C. When the melting point was reached, the molten 

Zry ran down the specimen and, because the oxygen content was 

low, reacted with the UOz and dissolved a relatively large 

amount of fuel (upper left photograph in Figure 8). The 

different phases forming when molten Zry dissolves UOz are 

shown in the higher magnification photograph (upper right): (a) 

a metallic a-Zr(O) phase containing some U, (b) a metallic U­

rich (U,Zr) alloy phase, and (c) a ceramic (U,Zr}Oz phase. 

At 40 bar, a-Zr(O) was formed during heating (and cooling} due 

to the UOz/Zry chemlcal interaction. The cladding therefore 

melted at a higher temperature than Zry low in oxygen. Only a 

small amount of localized melting and cladding relocation 

occurred leaving the fuel stack relatively undisturbed (lower 

left photograph in Figure 8). The higher magnification 

photograph (lower right) shows the identical formation of 

react i on 1 ayers away from the c 1 add i ng breach as observed in 

the isothermal and temperature transient tests below the 

melting point of Zry-4 (Figure 1). 

Under ox i d i z i ng cond i t i ons an ox i de 1 ayer forms on the out er 

cladding surface during heating before the melting point of Zry 

or a-Zr(O) has been reached. Therefore, the relocation of 

molten material will be prevented. The malten cladding then 

i nteracts wi th UOz and ZrOz and may 1 ater breach the ZrOz 

shell. Studying the fuel dissolution by malten Zry requires a 

system in which no melt relocation occurs. For this reason, the 

reaction kinetics of malten Zry cladding with solid UOz fuel 

has been investigated in the LAVA high temperature melt 
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facility with UOz crucibles containing malten Zry /13, 14, 15, 

16/. ln these tests, small samples consisting of a UOz crucible 

and an as-received (oxygen-poor) Zircaloy melt specimen are 

heated in a larger tungsten crucible. The tungsten crucible 

acts as a susceptor for the induction heating and provides 

rapid heating of the test samples up to 2400°C. The temperature 

of the UOz cruc i b l e and tungsten susceptor i s measured by a 

pyrometer during the test• 

Below 1650°C the heating and cooling rate is limited to 1 K/s 

to prevent cracking of the ceramic crucible. Above 1650°C, the 

programmed heating rate increases to 5 K/s. The isothermal 

reaction time varies from minute to 2 hours and malten 

Zi rcaloy/UOz tests have been run at react ion temperatures of 

1950, 2050, 2150, and 2250°c. The temperature .of the test 

specimen slightly lags behind the programmed temperature during 

heating. The measured temperature histories were used to obtain 

an effective reaction time for each test /16/. 

At the end of each reaction test, a metallographic examination 

is performed on the crucible specimen. Figure 9 shows three 

specimens annealed at 1950°C for various reaction times /13, 

15, 16/. The Zry melt interacts with the UOz crucible forming a 

(U,Zr,O) melt at temperatures which, an cool ing, depending on 

the oxygen content, decomposes into either two metallic phases 

[a-Zr(O) and a (U,Zr) alloy] or into two metallic phases plus a 

ceramic (U,Zr)Oz phase. Figure 9 shows the microstructure of 

the solidified (U,Zr,O) melts. The phases observed are in 

agreement with the U-Zr-0 ternary phasediagram /1, 12, 15, 

16/. The ceramic phase portion has been used to quantify the 

extent of fuel dissolution by malten Zry as 

temperature and time /12, 13, 16/. 

funct i ons of 

The uranium and oxygen content of the malten (U,Zr,O) mixture 

has been correlated to the area fraction of the (U,Zr)Oz phase 

seen in the cross sections. The correlation was obtained by 

preparing control samples of known chemical compositions, 

heat i ng them to a temperature above the me l t i ng po i nt of the 

Zircaloy/UOz mixture and then examing the resulting 

microstructure /12,13,16/. Using the correlation between the 
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uranium or oxygen content and the microstructure, the 

dissolution rate of the U02 crucible in (wt.% U02)2/s was 

determined for these tests 1Figure 10). The Interaction obeys a 

parabolic rate law. At 2250°C/5 min the solidified (U,Zr,O) 

melt consists of 80 wt.% of dissovled U02 /13, 16/. 

The significance of these experimentsisthat U02 fuel can be 
11 liquefied11 by molten Zry cladding about 1000°C below the 

melting point of U02 (""" 2850°C). As a result, fission gas 

release will be enhanced because the original U02 crystal 

structure is completely destroyed. 

3. Out-of-pile Single Rod and Bundle Experiments 

Und er severe fue l darnage cond i t i ons, the i nterac.t i on between 

Zry and U02 described above competes with the oxidation of the 

cladding by steam. Also the Interaction of fuel rods with grid 

spacers, guide tubes and absorber rods have an important 

influence on the darnage behavior of the fuel element. To 

investigate the integral behavior of these competing effects, 

out-of-pile singlerod and bundle experiments were started. The 

objectives of the tests are summarized in six categories: 

Competition between pellet/cladding chemical Interaction 

and cladding oxidation by steam; 

influence of the exothermal zircaloy/steam reaction on the 

temperature increase (uncontrolled temperature escalation); 

oxidation behavior of liquid zircaloy; 

fragmentat i on of the fue l rods and the refrozen me l t by 

embrittlement due to oxidation; 

influence of the absorber, guide tube and spacer materials; 

reference experiments for the internationally performed In­

pile-experiments on severe fuel damage. 
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The streng influence of the boundary conditions requires 

realistic simulation. For this purpose, the CORA-facility was 

built by the Central Engineering Department of KfK /27/. ln 

this facility bundles of up to 7x7 rods of 2 meter length can 

be heated to about 2000°C in s team. Var i ous i nterna 1 fue 1 rod 

and externa 1 system pressures as we 11 as quench i ng of the hot 

bundle at the end of the test can be simulated. 

ln the meantime, part of the test program for which no pressure 

simulation and quenching was needed, has been performed in the 

NI ELS-fac i 1 i ty. 

Two main points were of interest in the NIELS experiments: 

The influence of the uncontrolled temperature escalation 

due to the exothermal zircaloy/steam reaction on the rate 

of temperature rise and maximum temperature and its 

consequences with respect to fuel element darnage behavior. 

The influence of the absorber material on fuel element 

darnage behavior. AglnCd is mainly used in PWR and B4C in 

BWR. 

3.1 The NIELS Facility 

Figure. 11 shows the NIELS facility. On the left, one can 

recognize the insulation of the double-walled vessel, which is 

heated by oil to 130°C. The four windows allow the observation 

of the bund 1 e and the i nterna 1 i nsu 1 at i on arrangement and the 

measurements of the bundle surface temperature wi th two-eolor 

pyrometers. The cover ean be 1 i fted for aecess to the bund 1 e 

arrangement before and after the tests. 

The pieture in the middle in Figure 11 is a eross seetion of 

the vessel. The 3x3 bundle, eonneeted to power at the top and 

the bottom by water-eooled eleetrodes, is insulated by 10 em of 

Zr02 f i ber-eeram i es. The out er meta 1 sheath of th i s i nsu 1 at i on 

can be recognized on the right side in Figure. 11. 

The single fuel rod simulator is made of a central tungsten 

heater of 6 mm d i ameter, wh i eh i s surrounded by annu 1 ar U02-
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pellets and the normal PWR-Zircaloy-cladding of 10.75 mm outer 

diameter. The maximum length used was 40 cm. The simulators can 

be used as a single rod or in a bundle arrangement. 

To simulate the influence of the neighbouring fuel rods with 

respect of the exothermal Zircaloy/steam reaction, and to 

ensure a proper steam flow, the bundle is surrounded by a 

Zircaloy shroud. Uniform steam distribution is guaranteed by 

the tube system at the lower end of the bundle. 

3.2 Experiments on the Temperature Escalation Behavior 

Earl ier experiments have shown that the behavior of the fuel 

rod at high temperatures in steam is mainly influenced by the 

oxidation of the cladding. The degree of oxidation at a given 

temperature is fixed by the rate of temperature increase up to 

this temperature and the time at temperature. For Zircaloy-clad 

fuel rods the actual heating rate is influenced by the rate of 

oxidation. The reaction rate rises exponentially with 

temperature. A rise in temperature increases therefore the 

reaction energy and this raises the temperature. The 

temperature increase escalates uncontrolled. The temperature 

r i ses unt i 1 the react i on rate decreases due to de 1 ayed oxygen 

diffusion and/or until the heat lasses, which grow strongly 

with temperature, dominate. 

The format i on of the Zr02 ox i de 1 ayer reduces further 

oxidatlon. The extent of the reaction layer growth decreases ~s 

the th i ckness of the ox i de 1 ayer I ncreases. Consequent 1 y, the 

experiments were performed so that the thlckness of the oxide 

layer at the onset of temperature escalation was the main 

parameter. 

Out of eleven experiments /17, 18, 19, 20, 24/ performed, 

results from two typical examples with high and slow Initial 

heat i ng rat es are des er i bed. F i gure. 12 i nd i cates the surface 

temperature of the fuel rod in comparison to the electric power 

i nput as a funct i on of 

temperature the lower 

escalation has started, 

time. 

the 

the 

Escalation starts at a higher 

Initial heating rate is.Once 

temperature rises even for a 



- 17 -

constant electric power input. After reaching a maximum 

temperature of about 2000°C the temperature drops at about 

1°C/s, despite the constant electric power input. 

Figure. 13 shows the posttest appearance of the fuel rod 

simulators each from 4 different directions. One recognizes the 

great difference in damage. ln the test ESSI-7 only a thin 

oxide layer is formed, which is swept away by the malten 

Zircaloy cladding after reaching the melting point of Zircaloy. 

ln contrast, for the slow heatup of ESSI-4/5 upon reaching the 

melting point of Zircaloy the cladding is completely oxidized, 

thus avoiding melting of the cladding and partial dissolution 

of the UOz. 

Bundle tests /21, 22, 23, 25, 26/ produced the same results for 

the temperature escalation and for fuel rod behavior. As in the 

single rod experiments, a temperature escalation to a maximum 

temperature of about 2200°C was observed. The post-test 

appearance of the ESBU-1 3x3 bundle is shown in Fiqure 14. The 

oxide layer formed during heating, was swept down by the malten 

Zircaloy along with the dissolved U02 into the lower part of 

the bundle where it solidified again. The bundle cross section 

was blocked with the exception of one cool ing channel. The 

oxidationaraund this channel is evident from the black seam. 

The cross sect i on a 1 so shows the cent ra 1 heaters, the dark 

annular U02 pellets, whose outer region is partially dissolved, 

and the refrozen metallic (U,Zr,O)-melt which is relatively 

homogeneaus in its chemical composition. 

lnvestigation of the solidified melt provides information on 

the degree of U02 dissolution by the malten Zry. The necessary 

basic information is derived from the experiments discussed in 

the first part of this paper. ln the refrozen melt (Figure. 15) 

three phases are found: a-Zr(O), a metallic (U,Zr) alloy and a 

mixed (U,Zr)Oz oxide. The existence of an oxidic (U,Zr)Oz phase 

proves the dissolution of a remarkable amount of U02. 

The temperature escalation tests can be summarized as follows: 

ln all tests an uncontrolled temperature escalation due to the 

exothermal Zircaloy/steam reaction is observed. The maximum 
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c 1 add I ng surface temperature measured was around 2200°C. The 

starting temperature of the escalation increases with 

decreasing Initial heating rate. For fast heating rates, the 

runaway of the molten Zircaloy is the rate limiting process in 

the temperature escalation. A large amount of the U02 pellets 

is dlssolved by liquid Zircaloy. For low heating rates, the 

formation of a thick protective Zr02 oxide layer limits the 

reaction energy. There is no remarkable chemical Interaction 

between the oxidized cladding and U02. 

3.3 AglnCd Absorber Experiments 

A PWR fuel element consists of grid spacers, guide tubes and 

absorber rods, in addition to the U02/Zry fuel rods. The 

material preferred for the grid spacers is lnconel 718, but 

also Zircaloy is used. The guide tubes are made of Zircaloy or 

stainless steel. The absorber rods contain an (Ag80, ln15, Cd5) 

alloy and are clad with stainless steel. The alloy melts at 

about 800°C. 

In the absorber test /28/ of the NI ELS fac i l i ty a centra l 

absorber rod Inside a guide tube was used in the center of the 

3x3 bundle. The guide tubewas al igned relative to the fuel rod 

simulators by two lnconel grid spacers at the 70 and 250 mm 

elevations. 

The fa i 1 ure temperature of the absorber rods in dependence on 

the guide tubematerial is given in the table below: 

AqlnCd-Absorber Test Matrix 

Test Max. tem(2. Fallure tem(2. Guide tube 

in the bundle material 

ABS-4 1170°C no fai lure Zircaloy-4 
ABS-3 14oooc 1200°C II 

ABS-2 1850°C 120Q°C II 

ABS-·1 2050°C 1200°C II 

ABS-6 1400°C 1350°C stainless steel 

The influence of absorber alloy melting at 800°C becomes 

apparent in the fuel element when the stainless steel of the 

absorberrod falls. The failure temperature of the absorber rod 
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i s therefore i mportant for the fa i 1 ure behav i or of the fue 1 

element. The failure temperature of the absorber rod depends on 

the guide tube material. Experiments were performed with 

maximum bundle temperatures between 1170 and 2050°C. Wlth a Zry 

guide tube the absorber rod falls at about 1200°C. A stainless 

steel guide tube raises the failure temperature to about 

1350°C. 

The earl ier failure of an absorber rod surrounded by a Zircaloy 

guide tube is caused mainly by the chemical Interaction between 

the Zry guide tube and the lnconel grid spacer. lnconel reacts 

eutectically with Zircaloy forming liquid reaction products. 

This melt then chemically destroys the stainless steel 

c 1 add i ng of the absorber rod. The 1 i qu i d (Ag, In, Cd) a 11 oy i s 

released and interacts with the Zircaloy of the fuel rod 

cladding. The resulting absorber/Zircaloy melt .starts to 

dissolve the U02 pellets. These processes can release fission 

products due to failure of the cladding and cause dissolution 

of the fuel and blockage of the bundle far below the melting 

point of the Zircaloy (~ 1760°C). 

F i qures. 16 and 17 show the post-test appearance of the ABS-3 

and ABS-1 absorber bundles. ln ABS-3 the experiment was 

terminated shortly after failure of the absorber rod at 1200°C. 

The me 1 t runs down i nto the 1 ower part of the bund 1 e where i t 

freezes. The i nteract i on between the mo 1 ten absorber mater i a 1 

and Zircaloy in this case is mainly limited by the zircaloy 

guide tube. 

ln the ABS-1 test, with a maximum temperature of 2050°C, darnage 

is much more extensive. The Zry claddlng has molten, dissolving 

the outer region of the pellets. The melt has solidified in the 

lower part of the bundle. On cool ing the embrittled cladding 

and the pe 11 et s fragmented and have co 11 ected on the refrozen 

melt together with fragments of the shroud (Fiqure. 17). 

Fiqure. 18 shows the refrozen melt in the lower part of the 

bundle after the rubble (debris} has been removed. Two separ~te 

regions are clearly recognlzable. Fiqure. 19 shows thelr cross 

sections. Analysis of these cross sections shows that the lower 
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lump, which fi lls all of the inside of the shroud, consists 

mainly of absorbermaterial (35 wt%), but contains also spacer 

material (30%), Zry (15%), and uranium (20%). The upper lump 

contains mainly uranlum, with 10-12% Zr and less than 10% 

absorber and grid spacer materials. The cross sections in the 

lower lump show that the cladding was dissolved in the malten 

absorber material at temperatures far below the melting 

temperature of Zircaloy. 

A fi 1 ter was installed in the exhaust 1 ine of the vessel and 

the aerosol condensate was investigated by spectral ana1ysis. 

The ma in component of the aeroso 1 s was Cd. For the ABS-1 tes t 

with a maximum temperature of 2050°C also 3.5 wt% Ag was found 

in the condensate. ln agreement with these resu1ts, the 

analysis of the refrozen absorber melt in the 1ower part of the 

bundle showed that most of the cadmium had evaporated. 

3.4 B4C Absorber Experiments 

In BWRs boroncarb i d (B4C) i s preferent i a 11 y used as absorber 

mater i a 1. F i gures 20 and 21 show the typ i ca 1 absorber rod and 

its arrangement within the fuel bundles. Inside the cross 

shaped absorber rod the boroncarbid is contained in stain1ess 

steel tubes. The b1ade of the absorber rod consists of 

stainless steel too. The absorber rod is surrounded by Zry 

cool ing-channel boxes of the neighbouring fuel elements. 

To get first information about the behaviour of B4C in 

stainless stee1 two tests with the arrangement shown in 

Fiqure 22 have been performed: B4C powder in a double stainless 

steel tube - simulating the absorber cladding tube and the 

blade- is heated in the center of a zircaloy-clad 3x3 bundle 

to 1800°C and 1300°C in steam. The posttest appearance of the 

bundle heated to 1800°C is given in Fiqure 23. Cross sections 

of the absorber rod with a maximum temperature of 1300°C at its 

hattest elevation are shown in Figure 24. 

[Lgure 24 proves that the melting of the stainless steel tube 

started at the inside of the double tube, though the 

temperature is higher on the outside due to the geometrical 
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arrangement of the bundle. B4C interacts eutectically with the 

components of stainless steel (Fe, Cr, Ni) resulting in the 

formatlon of liquid reaction products already below 1200°C as 

was shown by single effects tests. Above 1200°C the Interaction 

kinetics becomes very fast. Figure 25 shows the microstructure 

of the solidified B4C/stainless steel eutectic after 15 min at 

1230°C. More than 2 mm of the initially 3 mm thick stainles 

steel cladding wall thickness was consumed by the interactions 

with B4C. The right picture in Fig. 25 shows a few B4C 

particles surrounded by various reaction products. 

The liquid reaction products interact with the zircaloy 

cladding of the neighbouring fuel rod simulators in melting 

down the sheath as can be seen in rods 7, 2 and 6 of figure 23. 

This interaction between the B4C stainless steel eutectic and 

the z i rca 1 oy i s of grea t i mportance for the behav i our of B4C 

absorber rods in the neighbourhood of the zircaloy fuel element 

coolant-channel boxes, because they can fai 1 far below there 

melting point. 

The temperature increase of the experiment shows, that there is 

only a limited reaction of the boroncarbid with the steam. The 

liquid B4C/Stainless steel Interaction products is surrounding 

the boroncarbid particles and in this way reducing or even 

preventing the direct contact between boroncarbid and steam. 

3.5 The CORA Facility 

The CORA facility /27/ was built to simulate boundary 

conditions relevant to investigate the fuel element behavior 

under severe fuel darnage conditions. Compared to NIELS, this 

facility offers the following additional possibil ities: 

Quenching of the hot bundle at the end of the test to 

investigate the fragmentation of Zry cladding due to 

embrittlement by oxygen uptake. 

A maximum system pressure of 10 bar assures the necessary 

contact between cladding and fuel pellet to investigate the 

solid state reaction between Zry and UOz. 
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A maxi mum i nterna 1 fue 1 rod pressure of 100 bar can be 

applied, which result in the cladding balloonlng and burst, 

to investigate the influence of ruptured fuel rods on the 

darnage behavior. 

Longer bundles with a total length of 2 m and a heated 

length of 1 m can be used. 

Larger bundles (max. 7x7 wi thout the con1er rods) can be 

employed. 

A schemat i c cross sect i on of the CORA fac i 1 i ty i s shown in 

Fiqure.26. The quench tube can be recognized below the bundle. 

I t can be moved hydraul ically around the bundle at the end of 

the test, in this way simulating a rising water level. 

The high temperature shield can be lowered into the quench unit 

for easy access to the bundle setup before the test and for 

direct investigation of the darnage without any handling or 

moving of the bundle after the test. 

Fiqure. 27 shows a bundle of 25 rods before the test. The 

central part of the bundleis covered by a Zircaloy shroud. ln 

the upper part the fuel rod simulators and one grid spacer can 

be recognized. On the right of the picture the connection tube 

to the steam superheater can be seen. 

The results of scoping test B /29/ are given in Figure. 28 + 

~ ln this test Al203 pellets were used instead of the U02 

pellets. The test showed a strong Interaction between AlzOJ and 

Zry which resulted in an early meltdown of the fuel rod 

simulator far below the melting temperature of the Zircaloy and 

AlzOJ cladding. This result is important with respect to the 

behavior of the burnable poison rods in pressurized water 

reactors, which contain 1.4 wt% B4C in sintered Al203 pellets 

inside the Zry cladding. 

The test matrix for 15 planned tests in the CORA-facility is 

given in Fiqure. 30. 
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4. Conclusions 

1. The U02/Zircaloy Interaction is an oxygen diffusion 

controlled process and obeys a parabolic rate law. 

2. The U02/solid Zircaloy reaction occurs at the samerate as 

the steam/Zircaloy reaction. Therefore, cladding oxidation 

(embrittlement) from both the outside and inside surfaces 

occurs four times faster than oxidation from either 

surface alone. 

3. Up to about 9 vol.% of the U02 can interact chemical ly 

with the solid Zircaloy cladding (<1760°C). ln a real fuel 

rod, complete release of volatile fission products in this 

region of the fuel must therefore be assumed to occur. 

4. The numerical computer model PECLOX is able to calculate 

the movement of the react i an i nterfaces as we 11 as the 

oxygen concentration profiles in the various Interaction 

layers as a function of temperature and time up to the 

complete oxidation of the cladding. 

5. The dissolution of U02 by malten Zircaloy (>1760°C) can be 

described by a parabolic rate law. The dissolutionrate is 

found to have an Arrhenius dependence an temperature. 

6. Solid U02 fuel can be 11 1 iquefied 11 by molten Zircaloy 

cladding about 1000°C below the melting point of U02. As a 

result, the release of volatile fission products will be 

drastlcally enhanced. 

7. ln all single rod and bundle experiments temperature 

escalation due to the exothermal Zircaloy/steam reaction 

was found. The starting temperature of the escalation 

i ncreases wi th decreas i ng in i t i a 1 heat i ng rate. In these 

tests a maximum cladding temperature of about 2200°C was 

measured. 

8. For fast Initial heating rates the runaway of the malten 

Zircaloy is the 1 imiting process for the temperature 
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escalation. A large part of the U02 pellet is dissolved by 

liquid Zircaloy. 

9. For low heating rates the formation of a thick protective 

oxide layer 1 imits the exothermal reaction energy. There 

is no remarkable Interaction between the oxidized cladding 

and U02 fuel. 

10. The fai lure temperature of the (Ag, ln, Cd) absorber rods 

is influenced by the guide tube material. The absorber 

rods fa i 1 at 1200°C wi th Zry gu i de tubes and at 1350°C 

with stainless steel guide tubes. 

11. The molten absorber material dissolves the Zircaloy 

cladding of the fuel rods far below the melting point of 

Zry, which results in a low-temperature premature failure 

of the fuel rods. The mixture of molten materials 

dissolves the U02 pellets. 

12. The molten absorbermaterial and the chemically dissolved 

bundle components form large lumps on sol idification in 

the lower part fo the bundle. 

13. A layer of rubble was formed by the fragmented embrittled 

fuel rods on the solidified melt during cooling. 

14. Cd is the main component in the aerosol formed from molten 

fuel element materials. 

15. The fa i 1 ure temperature of the boroncarb i d absorber rods 

i s determ i ned by eutect i c react i ons between B4C and the 

stainless steel components at about 1200°C, which liquify 

the absorber rod cladding. 

16. The molten B4C/stainless steel reaction product is able to 

1 iquify the Zircaloy of the fuel simulator cladding 

already at about 1250°C. 

17. The reaction between B4C and steam is limited since the 

B4C particles are surrounded 1 iquid Interaction products. 
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T emperature transient experiments 
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Fig. 3: Failure map for annealed LWR fuel rod segments. 
Zirkaloy embrittlement due to oxygen uptake. 
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maximum temperatures at a heatup and cooldown rate of 5 K/s. 
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Fig. 5: Comparison of the growth rate for the UOz/Zry, 
Oz/Zry and steam/Zry reactions 
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FUEL CLADDING STEAM 
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U02 dissolution by malten Zircaloy - 4 

L 
LVOS 1m in Solid1fied (Zr,O,U) melt 

LVOS 5min 

LV09 2mm 
1---1 20m in 

temper a ture: 1950 oc; a tmosphere: Ar 

• F ig.. 9 : 002 diuolution by ~ml ten Zircaloy at 1958 C in Ar. Microatructure 
of aolidified <Zr, U, 0> elta aa function of interootion tie. 



U02 disso!ution by molten Zircatoy- 4 
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Fig. 1~: U02 dissolution by molten Zircaloy. a) CU,Zr)02 phase portion in solidified 
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U02 dissolution by molten Zircaloy-4 
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ESS I -4/5 CrzJ, 5o C/ sec) 

F ig .. 13 
FUEL ROD SIMULATOR POST TEST APPEARANCE FOR FAST 
CESSI-7) AND SLOW CESSI-4/5) INITIAL HEAT UP. 
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FIGURE 14: POSTTEST APPEARANCE OF THE ESBU·1 BUNDLE AND A CROSS SECTION FRON THE RE­

FROZEN MELT IN THE BLOCKED REGION (11S NM ABOVE THE BOTTOM OF THE BUNDLE) 



-45-

(/} 
CU 
r..,_ 
0 
0.. 

>--E 
0 -::::L 

c::> 
Ln c::> 0 

r..,_ 
1'-J r..,_ 

I 1'-J I d :::::> 

0 
N c: 

c::> 
.....-4 
I 

r..,_ 

::l 1'-J 

m :::::> 
U) 
w 

CD ...... 
""C c 

:::> 
...0 

~ 
'1:::) 
c::: 

4-
0 

:::J 
...c:l ....__ 

...., 
...... 

CD 

0 

E 

~ 

E 

c 

I 0 

(I) 

:::::::> 
....._. 

N 

....._. 
0 

0 

CO ...c:l 

c.. 
V1 E 
LJ.J 0 r..,_ ....__ t..-

(I) 
c.. 
(I) 

E 

J:. 

E 
<..0 ....---..-- ...., 

c .... 
""C c 

:::> 
0 >--

4-' ' 0 

CO 0 
(I) '/ ,# .--
CO 

r..,_ 

0 
" 

1'-J 

J:. :::::> 
0.. 

E . :::::L 

~ 
....--

c::> 
Ln 

•• c::> 

!J') 
• -I 

• cn 
N .... 

c::> I.L 
....--

r..,_ 

1'-J 
~ 

:::::> f 



-46-

Fig. 16: Bundle posttest appearance after removing 
of shroud (ASS-3) ( T = 1400 ~ C) max 
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Post test appearance of ABS-1 after 

removing of front isolation <Tmax=2050°C) 
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Cross section of upper and lower lump in test ABS-1. 

(chemical composition in weight percent) 
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Fig.23: Posttest appearance of bundle 81 
seen from different directions. 
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Fig. 24: Details of absorber rod cross section at 212 mm 
and 223 mm elevation <B4C - test 82) 
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F ig.. 25: Chemical interachans between B4C and stainless steel type 316 
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========================~~======= 

Fig. 27: CORA-bundle before test, the high temperature shield 
is lowered into the quenchtank 
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Fig.28: Posttest view of the bundle CORA scoping test B 
(Al2 03 pellets) 
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73 mm 0 mm @@(])(]) 
21 15 9 

@)@@@ 29 23 17 
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==============================================~==@=43=@=8=@=2=@=6==~ 

Fi9. 29 : Croae aectione of CORA bundle 8 at 
elevatione given (bundle code) 
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Test Cladding System Rod Ballooning Test Bundle Absorber/ Test objectives. rei!W'ks 
No. Temperature atmosphere pressure pressure and termination configuration Guide tube 

(oC) [bar] [bar] bursting 

1 < 1850 argon 1 1 none cooldown ~~~ argon type a No/No Scoping test. heat transfer calibration 
2 1850 steam- 1 1 none argon p~rge type a No/No relerence test w/o. absorbermaterial 
3 2400 starved 1 1 none argon purge type a No/ No reference test w/o. absorbermaterial 

4 > 1200 .. 1 1 none argon purge type a 1-Ag in Cd /Zry control rod failure at ll!w .system pressure 
5 1850 .. 1 1 none argon purge type a 1-Ag ln Cd I Zry Zry clad melting 
6 2400 .. 1 1 none argon purge type a 1-Ag in Cd /Zry extensive luel liquefactil!n (monotect ic melting) 

7 2400 .. 1 1 none argon purge type c 4-Ag in Cd I Zry different bundle con~guration 

8 > 1200 .. w 1 none argon purge type a 1-Ag ln Cd /Zry conlrol rod Iaiiure at eiMted system 
9 2400 .. 10 1 none argon purge type a l-Ag ln Cd /Zry pressure. lo be compared wüll tesl 4 + lest 5 

~0 2400 steam rich 1 1 none argon purge type a 1-Ag lnCd/Zry influence of steam supply. tobe compared with Test 6 

11 > 1200 steam- 1 1 none quench type a 1-Ag in Cd I Zry influence ol quenching. m be compared with Test 4 
12 1850 starved 1 1 none quench type a 1-Ag ln Cd I Zry influence ol quenching, m be compared with Test 5 
13 2400 .. 1 1 none quench type a 1-Ag ln Cd /Zry inlluence of quenching. m be compared with Test 6 

14 > 1350 .. 1 1 i'IO!lli argon purge type a 1-Ag ln Cd ISS behaviour of SS guide tube, to be compared with Test 4 

15 [a] .. 1 [a] yes argon purge type a 1-Ag ln Cd /Zry influence of internal md pressure 
'--------- ------ -------------

[a]to be determined Initial heating rate: 1 °C/s. State of pellets: as received 

~ 

Fig. 39 : Test Matrix for Out-of-Pile Bundle Experiments on Severe Fuel Oamage (CORA) 




