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Abstract 

This paper presents results for the numerical simulation of compressible 

hydrodynamic interface instabilities. The numerical results are produced by the 

direct Simulation via numerical solution of the two-dimensional Euler equations. 

The numerical method considered here is a MUSCL-type scheme and belongs to 

the class of high resolution schemes. We study the instabilities of interfaces 

separating two domains of a fluid which move at different velocities, namely the 

Kelvin-Helmholtz instability, the Rayleigh-Taylor instability and the instability of 

jets. The interfaces are treated in a Lagrangean fashion according to the 

calculated Eulerian flow field. 

Numerische Simulation kompressibler hydrodynamischer lnstabilitäten 

Kurzfassung 

Diese Arbeit zeigt Ergebnisse der numerischen Simulation kompressibler 

hydrodynamischer lnstabilitäten. Die numerischen Ergebnisse werden durch 

direkte Simulation mittels numerischer Lösung der zweidimensionalen 

Eulergleichungen erzielt. Das numerische Verfahren, welches hier angewendet 

wird, ist ein MUSCL-Typ Verfahren und gehört zur Klasse der "High Resolution 

Schemes". lnstabilitäten von Grenzflächen zwischen Strömungen, welche mit 

verschiedenen Geschwindigkeiten strömen, werden untersucht, insbesondere 

die Kelvin-Helmholtz-, die Rayleigh-Taylor Instabilität und die Instabilität eines 

überschallstrahls. Die Grenzflächen werden in Lagrangescher Weise 

entsprechend dem berechneten Eulerschen Strömungsfeld behandelt. 
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1. lntroduction 

Interface instabilities arise in a wide variety of physical contexts: e.g., inertial 

Iaser fusion, instabilities of layers in stars, astrophysical jets, or foils accelerated 

by energy beams. ln this paper, we examine the numerical simulation of the 

large-scale motion of these two-dimensional interfacial instabilities. We study 

the instability of interfaces separating two domains of the same compressible 

fluid which move at different velocities, namely the Kelvin-Helmholtz instability, 

the Rayleigh-Taylor instability, and the instability of supersonic jets. Our 

calculations are based on the two-dimensional equations of compressible fluid 

flow which can be written in the Lagrangean or in the Eulerian form. Numerical 

methods based on the Lagrangian formulation use a computational mesh 

traveling with the fluid. Hence, the Lagrangean methods areideal for solving 

problems which involve interfaces between two fluids. However, two­

dimensional Lagrangean calculations can typically be carried out for only small 

time spans. Then severe mesh distortion or mesh tangling will occur and will 

destroy the calculations. To continue the calculations rezoning must be 

performed in which all computational quantities aretransferred to a new 

Lagrangean mesh. Asthis rezoning calls for much computational effort, a 

Lagrangean method does not seem tobe favorable for large-scale computations. 

Eulerian methods, in which the mesh is fixed, areideal for flows with I arge 

deformations. But interfaces are smeared out over some grid zones and the 

development of the interfaces can hardly be seen. 

ln this paper we use a combined method. The flow field is calculated by a 

Eulerian method, while the interfaces are moved in a Lagrangean fashion 

according to the Eulerian flow field. This means that we discretize the interface. 

ln each time step we calculate at first the Eulerian flow field and then we 

calculate the new position of the discretized interface. To solve the Euler 

equations we use a shock-capturing finite difference scheme which is a so called 

high resolution scheme. The high resolution schemes are defined to have the 

following properties: They are at least second-order accurate on smooth parts of 

the flow, they produce sharp monotone discrete shock profiles without 

generating spurious oscillations, and they do not require artificial viscosity. The 

directions of the finite differences are upwind biased which means that they are 

locally defined according to the direction of the wave propagation. Here, we 

consider a high resolution scheme which is based on the MUSCL scheme of van 

Leer /18/. The treatment of the interfaces may be considered as a marker particle 
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algorithm. Butthis algorithm is used only to visualize the movement of the 

interface in the fluid flow. lt may be also considered as the simplest method of 

front trackingl but we do not decompose our computational domain into two 

components separated by the interface as Glimmet al. /3/ do. Hencel our method 

is limited to the numerical simulation of instabilities in a homogeneaus fluid. 

The format of this paper is as follows. ln Section 2 weshall briefly describe the 

mathematical model- the equations of compressible gas dynamics. ln Section 3 

weshall give the design principles of the numerical method we used. Section 4 is 

a description of the treatment and visualization of the interfaces. The numerical 

code is fully vectorized on the Cyber 205 vector computer. Weshall add some 

remarks on the vectorization of the algorithm in Section 5. Section 6 contains a 

description ofthe interfacial instabilities considered here and the numerical 

results. 

2. Euler Equations 

We consider the two-dimensional equations of compressible fluid mechanics 

without thermal conduction and viscosityl written in the conservation form 

U, + f (U) + g (U) = 0 
• X y 

(2.1) 

where U denotes the vector of the conserved variables and fl g denote the 

physical fluxes: 

p pu pv 

pu pu2 + p puv 
u = I f(U) = I g(U) = 

pv puv pv2 + p 

e u (e + p) v (e + p) 

(2.2) 

Here p denotes the density 1 u and v denote the velocity components in x and y 

directionl respectivelyl p denotes the pressure and e denotes the total energy per 

unit volume. Equations (2.1 )1 (2.2) are derived from the integral conservation 

laws for densityl momentum and energy. They are usually called Euler equations. 

The pressure p is functionally related to the other variables via the equation of 

state. ln this paper we only consider that of an ideal gas 



1 2 2 
p = (y - 1) (e - ~ p (u + v )) 

2 
(2.3) 

where y denotes the adiabatic exponent. 

3. Numerical Method 

For the Euler equations (2.1), (2.2) it is favorable to use aschemein conservation 

form which reproduces the integral conservation properties. This provides the 

proper propagation rates of shock waves. The numerical method considered 

here is basedondimensional splitting, also termed method of fractional steps 

(see e.g., /26/, /27/). According to this method the two-dimensional Euler 

equations (2.1 ), (2.2) are split into two one-dimensional problems 

(3.1) 

(3.2) 

each of which containing either the x or y derivatives. Theseproblemsare then 

solved successively in each time step. ln our calculations we use the two-cycle 

splitting method of Strang /26/ in which after each xy step the order is reversed 

for the following time interval: xy- yx. This version is of second-order accuracy as 

regards the timet. The systems (3.1), (3.2) resernble in structure the one­

dimensional Euler equations and the numerical methods for these equations can 

be conveniently transferred to the systems (3.1), (3.2). Dimensionsplitting is 

often used to extend a one-dimensional method to two dimensions and seems to 

work very weil (see /27/, /10/). 

We will restriet ourselves now to a description of the numerical method used to 

treat (3.1); equation (3.2) can be treated in an analogaus fashion. A one­

dimensional explicit scheme in conservation form reads 

Un+l_un 1.(hn hn ) . - .-ll.. 1/2-. 112' I I 1+ J-

M 
11.=­

äx 
(3.3) 

where Ui stands for an approximation of the mean value of the solution U in the 

ith lattice interval at time tn, A.x and At denote the increments. The function h is 
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called numerical flux: hi + 112 is an approximation of the physical flux f (U) 

between the ith and the (i + 1 )th grid zone. 

The one-dimensional schemes in conservation form, considered here, are based 

on van Leer's M USCL-scheme /18/ which is a second-order version of Godunov's 

first order upwind scheme. We use the generalization of this scheme given in 

/16/. With this concept it is easy to convert every first order upwind scheme to 

second order accuracy in space and time. lt is formulated in a two-step format: 

ln the first step, by means of interpolation, a piecewise linear representation of 

the approximate solution is calculated from the integral approximate values 

un (x) = u~ + (x - x.) s~. 
I I I 

(3.4) 

The value Si stands for the slope in the ith lattice interval. The boundary values of 

the ith lattice interval- Ui + on the right and Ui- on the left- are given by 

n _ n + Llx n u.+- u. _ s. 
I_ I 2 I 

(3.5) 

(see Fig. 3.1). 

u ·~ 
uj..,z 

ui ... 1 __ 
-- U li+H+ 

u 11+11- ---
ui -- uj ... - p............ 

u. ~--1-

ui-1 __ ..... u,i-11• -~-

-
I t I I .. 
I I I I -X 

Fig. 3.1 Piecewise linear distribution of the approximate solution at time tn 
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ln order to obtain second-order accuracy with respect to time a midpoint rule is 

used: the boundary values (3.5) are advanced to tn + 112 

A. 
u~+ 112 = u~ - - (f(U~ ) - f(U~ )). 

t± t± 2 t+ J-
(3.6) 

ln the second step, an upwind scheme is applied to these data 

u~+ 1 =U?-A.(h(u?+ 112 u~+ 112 )-h(u~+ 112 u?+ 112)) 
I I 1+ 1 (t+l)- (J-1)+ 1 

1-
(3.7) 

where h denotes the numerical flux of the upwind scheme. 

The upwind scheme in the second step picksout the proper direction of the 

differences. Any first-order upwind method can be used for this purpose. A 

survey of various upwind methods is contained in /13/. The slope S must satisfy a 

number of conditions. A first necessary condition for second-order accuracy in 

space says that Si is a first-order approximation of Ux at (Xj, tn). ln order to avoid 

oscillations at strong gradients the piecewise linear representation must satisfy 

some monotonicity constraints. There are several ways of calculating the slopes. 

One method, used in the MUSCL-scheme of van Leer /18/ or in the PPM- or PLM­

scheme of Colella and Woodward /6/ or Colella and Glaz /5/, is to compute slopes 

in terms of the primitive variables p, u, v, p. Another possibility is to use the 

conservative variables. We compute the slopes in terms of characteristic variables 

and use the scalar theory of slope calculation. ln the case of a scalar equation of 

conservation laws or in the case of a system with constant coefficients new 

extrema should not be introduced and the total variation should not increase. 

Fora scalar conservation law various suitable calculations of slopes have been 

indicated and analyzed (see /20/). We are using this scalar theory in our two-step 

methods by transferring the scalar slopes to the systems (3.1 ), {3.2) with an 

extension method based on Roe's /22/ and Huang's /14/ method. 

This method relies on locallinearization of the nonlinear system which defines a 

local system of characteristic fields. The linearized system can be converted to the 

characteristic form where the individual equations are decoupled. Then the 

scalar slope calculation is applied scalarly to each of the characteristic equations. 

ln each g rid zone an average value Oi is determined; for instance, by Ui = (Ui + 1 

+ 2Ui + Ui-1) or also Üi = Ui. Here andin the following studies the time index n 

is omitted as long as no misunderstandings can arise. The vector rr denotes the k-
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th right eigenvector of the Jakobimatrix evaluated at Ui. The left hand side and 

the right hand side difference quotients are then expanded in terms of this 

system of right eigenvectors 

1 4 k k 
- (U. + 1 - U.) = l:k 1 a. r. , L\x I I = I I 

1 4 k k 
- (U. - U. 

1
) = 1:

1 1 
ß. r .. äx I I- {= I I 

(3.8) 

The coefficients ak, ßk measure the change of the difference quotients in 

direction of the kth eigenvector. A suitable vector of slopes Si is obtained by 

applying a scalar slope calculation to these coefficients. By using Roe's minmod-
foonr+,'nn ,.,,., ob+ .... ;n ~ ~ 
•""' '"-" ....,,, vvc; '-Oll 1 c.~. 

S 4 • d ( k ßk) k 
i = l:k=1 nunmo 0 i' i ri 

where the minmod-function is given by 

minmod (a,b) = 
a for 1a1 < 1b1, ab > 0 
b for 1a1 > 1b1, ab > 0 
0 for ab< 0 . 

(3.9) 

(3.10) 

A survey of other suitable choices of the scalar slope calculation is given in /20/, 

/21/. The main advantage of the slope calculation in terms of characteristic 

variablesisthat different slope calculations may be applied to the genuinely 

nonlinear characteristic fields and to the linearly degenerate fields. Especially in 

I arge scale computations a severe problern isthat numerical damping of a 

contact discontinuity increases in time in contrast toshock waves (see e.g. 112/). 

This will imply- for a classical second order accurate scheme like Lax-WendroH 

scheme /15/- those contact discontinuities vanish for I arge time spans and the 

asymptotic numerical solutionfort ~ oo, if existent, does not possess any contact 

discontinuity. Within a high resolution scheme this numerical damping may be 

reduced or prevented by using a very compressive slope on the linearly 

degenera1te field. Slope calculations can be used which give the best results for 

linear advection problems. A very compressive slope has been proposed by Roe: 

maxmod (a,b) = sign (a) max{lminmod (2a,b)l, lminmod (a,2b)l} (3.11) 
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which is ~alled superbee-function. This slope calculation yields a very narrow 

transition zoneforalinear or contact discontinuity. However, thesuperbee­

function exhibits a slightly over-compressive behavior and tends to compress all 

monotone transitions into discontinuities. ln our calculations we use a class of 

slopes, proposed by Sweby, in terms of schemes using flux limiters which in terms 

of a parameter l provides a continuous transition between the minmod and 

superbee-function 

s1 (a,b) = sign (a) max {lminmod Oa,b)l, lminmod (a,lb)l} (3.12) 

where l is in the range 1 < l < 2. The slope s1 equals the minmod-function, the 

most compressive s2 equals the superbee-function. Another possibility to reduce 

the numerical dissipation of the contact discontinuities is to additionally apply 

Harten's /12/ artificial compression method in a second step on the linear 

degenerate field. This method deepens the contact discontinuity. Very 

compressive slopes or the artificial compression method should not be applied to 

the genuinely nonlinear fields. Because they may be over-compressive and may 

compress each monotone profile into a discontinuity, they may introduce at 

centered rarefaction waves non-physical discontinuities which are usually called 

rarefaction or expansion shocks and which violate the entropy condition. lf the 

slopes are calculated in terms ofthe primitive or conservative variables, the 

different waves cannot be treated in a different fashion. Hence, less compressive 

slopes must be used or near so nie points a correction mechanism must be added 

which switches to a less compressive slope or which increases the entropy {see 

/21 /). Another advantage of the characteristic slope calculation isthat new ideas 

for the scalar conservation law can be easily extended to systems. 

As an explicit method the one-dimensional schemes have to satisfy a stability 

condition, usually called the CFL- condition according to Courant, Friedrichs and 

Lewy, 

at 
- max <Iu I + c) :s 1 ax (3.13) 

which gives a restriction on the time increments. ln the calculations presented 

here we used within the two-step algorithm the first-order upwind schemes of 

van Leer /17/ and of Einfeldt /9/which is based on the work of Harten, Lax and 

van Leer /13/. ln terms of the computational effort these schemes seem tobe the 

best. ln Chapter 5 we will give a comparison of the computer times we needed. 
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4. Visualization of Interfaces 

At the beginning of the calculations the surfaces between the fluids are 

discretized and the surfaces are replaced by a number of discrete points. ln the 

following we will term these points marker particles. ln each time step, at first 

the new flow field is calculated by the Eulerian two-step method and then the 

massless marker particles are advected in a Lagrangean fashion according to the 

local flow field. The movement of the interface can then be visualized by graphic 

display of these marker particles. The particles are overlaid on the fixed 

computational grid and are advected without any collisional effect between 

them. This algorithm will be described in detail below. 

By discretization of an interface we obtain a set of marker particles. At time tn 

the kth particle is locatd at a point (xk, Yk) of the computational domain and 

possesses the velocity (uk, Vk). After calculation of the flow field at time tn + 1 by 

our Eulerian method the new locations of the marker particles are calculated by 

using 

(4.1). 

The velocities Uk , Vk in (4.1) are determined by bilinear area weighting 

interpolation. At first we need the location of the particle according to the 

computational grid. Herewe only need the location of the lower left grid zone 

near the particle. We will call this grid zone ri,j; i,j is given by the formula 

n 
X -X 

• • k le 
t:=mt( ) 

Äx · 

n y - y 
• , ( k lo) 
J: = mt 

Äy 
(4.2) 

where X!e, Ylo denote the position of the left and lower boundary of the 

computational grid, respectively. Next we calculate the areas A1, A2, A3, A4 in 

reference to Fig. 4.1 which are given as 

(4.3) 
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The values without superscripts refer to the fixed grid quantities. The velocity of 

the k-th marker particle at time tn + 1 is then determined from the qt,.~antities of 

the Eulerian flow field by the interpolation formula 

(4.4) 

where Bi denotes the area ratios Bi = Ai I (ilx ily), I = 1, ... , 4 and the values i,j are 

given by (4.2). 

Ri,j+1 R i•1,j•1 

I Yk) """ 
r--r---r 
I I 

A1 
I 

~ I A2 I I 
I I I 

R .. ~~ I 
Ri+1,j I, J I 

r--~- ----i 
*-A4 l _ _ _!.L~ 

Fig. 4.1: Area weighting interpolation 
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At the boundary some modifications are needed according to the physical 

boundary conditions. For instance, in the case of periodic boundary conditions it 

is favorable that a particle which leaves the computational domain reappears at 

the opposite boundary. ln this paper we only consider a reetangular 

computational domain and it is very easy to determine the location of a particle 

as given in (4.2). For general domains and grids this is more difficult and 

necessitates much more computational effort. 

5. Vectorization 

The one-dimensional two-step algorithm (3.5)- (3.7) is an explicit algorithm and 

can be efficiently implemented on a vector computer. But, if the upwind scheme 

of Godunov is used in the second step to determine the exact solution of the 

Riemann problem, a fixed point problem has tobe solved at each grid point by 

an iteration scheme. This iteration scheme introduces some difficulties for an 

efficient vectorization, because it is a recursive process. The approximate 

Riemann solvers or the flux-vector splitting schemes do not contain fixed point 

iterations and they can be vectorized in a Straightforward manner. For the two­

dimensional algorithms some other difficulties arise. To vector computers and 

especially to the Cyber 205 for which our numerical code is optimized, it is very 

important that the data used in the calculations are contiguously stored vectors. 

For the x-step of the splitting algorithm the first index of the two-dimensional 

variables can be chosentobe the index of the inner loops. Then the two­

dimensional calculations can be replaced by calculations with contiguously 

stored long one-dimensional arrays. ln the y-step this situation changes. To 

obtain contiguously stored vectors the physical variables have tobe transposed. 

After the transposition, the index of the inner loops can be chosentobe again 

the first index of the two-dimensional arrays, and the two-dimensional 

calculation can be replaced by calculations with contiguously stored vectors. For 

Strang-typesplitting one transposition of the physical variablespertime step has 

tobe performed. Forthis reason it turned out that Strang-typesplitting is also 

favourable for the vectorization oftwo-dimensional algorithms. 

Within the two-step algorithm we used several upwind schemes in the second 

step. The fastest schemes turned outtobe the Godunov-type scheme of Harten, 

Lax and van Leer /13/. The scheme of Harten, Lax and van Leer has been 

implementedas proposed in /9/. The different computer times we needed in the 
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case of 100 x 100 grid zones are listed in Table 5.1. All calculations have been 

done on the Cyber 205 vector computer. The values in Table 5.1 do not give a 

true comparison, but show only the trend. ln an early stage of our optimization 

for vector computers we recognized that the flux-vector ~plitting scheme of van 

Leer seemed tobe the fastest. Hence, we made more effort to optimize this 

scheme. Then, because of its simplicity the upwind scheme of Harten, Lax and 

van Leer seemed tobe able to compete with this scheme. As the schemes of 

Steger-Warming and Roe call for more computational effort we did not invest 

the sametime for their optimization. We think that by further optimization of 

our codes the computer times may be reduced for these schemes by about 

10- 20 percent. The two-step algorithm consumes additionally about 0.008 

seconds pertime step, if the slope calculation is performed in terms of primitive 

variables and using {3.1 0). lf the slope calculation is performed by (3.12) in terms 

of characteristic values the algorith.m add to the computer times of the upwind 

schemes 0.12 pertime tep. ln Table 5.2 we listed the computer times for a grid 

with 200 grid points in each space direction. 

Upwind scheme 

Harten, Lax and van Leer /13/ 

van Leer/17/ 

Steger-Warming /24/ 

Roe /22/ 

Computer times 

0.073 s pertime step 

0.073 s pertime step 

0.09 s pertime step 

0.12 s pertime step 

Table 5.1: Computer times for different upwind schemes on Cyber 205 

Upwind scheme 

Harten, Lax, van Leer 

van Leer 

Slope calculation in terms of 

Primitive variables 

0.265 s 

0.248 s 

Characteristic 

variables 

0.393 s 

0.376 s 

Table 5.2: Computer times on Cyber 205 for two-step schemes using 200 x 

200 grid zones pertime step 
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ln the table above which shows the computer times we did not take into 

consideration the marker particle algorithm to visualize the movement of the 

interfaces. Since we only consider reetangular grids and uniform step sizes, it is 

very easy to determine the location of a particle. The movement of 2000 marker 

particles in each time step according to the Eulerian flow field only needs 0.003 s 

of computer time. For general domains and grids the calculation of the position 

of the particles becomes more difficult and requires more computational effort. 

A fast vectorizable algorithm has been proposed recently by Seldner and 

Westermann /23/. 

ln the case of one-dimensional calculations the numerical results of two-step 

schemes basedondifferent upwind schemes turned outtobe quite similar (see 

/21/). This is also valid for our two-dimensionai calculations. We wiil present in 

this paper only numerical results of our fastest two-step scheme. This is based on 

van Leer's flux vector splitting scheme and on the slope calculation in terms of 

the primitive variables with the minmod-function of Roe. A comparison of 

numerical results using different upwind schemes and slope calculations will be 

contained in a further paper. 

6. lnterfaciallnstabilities and Numerical Results 

ln this chapter we will apply a two-step scheme to simulate two-dimensional 

compressible interfacial instabilities. We will consider instabilities of interfaces 

which separate two domains of the samefluid which move at different 

velocities. These instabilities were recognized and formulated notably by 

Helmholtz, Kelvin, Rayleigh and Taylor. A reviewoftwo-dimensional 

hydrodynamic instabilities and their mathematical description have been given 

by Birkhoff /1/. The mathematical description can be given only approximatively. 

An important method is the linear theory based on the concept of anormal 

mode (see /1/). But the linear theory is limited toshorttime spansandsmall initial 

perturbations. For Ionger time spansnonlinear effects become important and a 

linear theory cannot give satisfactory results. Furthermore the linear theory is 

only favorable for an incompressible fluid, it becomes very complicated in the 

case of a compressible fluid. Another important approximation-also limited to 

an incompressible fluid- is the vortex method (see /1/, /19/). This numerical 

technique is based on the representation of an interface by a vortex sheet, i.e. a 

surface across which the fluid velocity has a continuous normal component, but a 
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discontinuous tangential component. The jump measures the strength of the 

sheet. The vortex sheet is replaced by a suitable distribution of discrete vortices. 

This Ieads to an autonomaus system of ordinary differential equations which 

have tobe solved numerically. By vortex methods the nonlinear development of 

the interface can be approximated, but the methods run into difficulty for large 

scales (see /1/, /19/). Especially, vortex methods are unreliable to study e.g., vortex 

sheet rollup and the development of a Karmanvortex street. 

The technique adopted here is the direct numerical solution of the equations of 

the fluid flow. By that it is possible to perform large scale computations. We will 

show that if fully vectorized fast numerical methods are used the direct 

simulation may not be very costly in terms of computer time. We will study 

interfacial instabilities which are purely inertial phenomena. We adopted the 

three basic examples of hydrodynamic instabilities: the Kelvin-Helmholtz 

instability, the Rayleigh-Taylor instability and the instability of a jet as described 

by Birkhoff (/1/, Figure 1 - 3). We will present a series of computations with a two­

step scheme based on the slope calculation (3.9) with the minmod-function. 

Applied to a sinusoidally perturbed vortex sheet forahomogeneaus fluid the 

numerical results show the roll-up of the sheet into spirals. lf another- more 

compressive- slope calculation is used, the amount of numerical dissipation and 

viscosity which is inherent in the scheme is smaller. Besides the movement of the 

vortex sheet towards the rollupsmall amplitude waves will additionally arise. 

These higher frequency perturbations disturb the rollup of the vortex sheets into 

spirals. The small perturbations might be introduced by the errors of the 

approximation of the initial values on the Cartesian grid. We may also conclude 

that the rollup of a perturbed vortex sheet corresponding to a local 

concentration of vorticity will only arise, if the fluid possesses a small amount of 

viscosity. This result agrees with the statements of Birkhoff /1/, /2/ for the case of 

incompressibility. But there are several uncertainties which have tobe carefully 

studied. in this paper we will restriet ourselves to show the numerical results of 

our calculations. They demonstrate that the high resolution schemes combined 

with the Lagrangean tracking of the interfaces give a very efficient method to 

study hydrodynamic instabilities. Further investigations will be performed to 

clarify the role of viscosity and to obtain better insight in the development of the 

instabilities. Numerical results with viscosity terms and finer grids have tobe 

examined. 
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At first we apply the two-step schemes to study the time evolution of the 

compressible Kelvin-Helmholtz instability. The initial values for our problern are 

shown in Fig. 6.1. The density and pressure are equal to 1.0 in the whole 

computational domain. The velocity in x-direction in the upper part is equal to 

-0.5, while in the lower part it is equal to 0.5, the velocity in y-direction v is zero 

everywhere. The two fluids are separated by a surface S represented in the form 

S: y = a sin (2nk x) (6.1) 

where a denotes the amplitude and k the mode number corresponding to a 

sinusoidal perturbation of the shear layer y = 0. At the boundaries of our 

computational domain R = [-0.5, 0.5] x [-0.5, 0.5] we impose the following 

boundary conditions: At the flow entrance and exit, corresponding to the right 

side and left side in Fig. 6.1, we impose periodic conditions, at the top and the 

0.5 .-----------------, 

yt_ 

U=-0.5._ 

u = 0.5 
1111111 

9 = 1.0 
p = 1.0 
V= 0.0 

s_ .... ~-Y = 0.025 sin (4nx) 

X -0.5 ,__ _______________ ___. 

-0.5 0.5 

Fig. 6.1: Initial values of a Kelvin-Helmholtz instability 
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bottom we impose conditions of a reflecting wall. For the numerical calculations 

we used a uniform grid with 100 x 100 grid zones corresponding to step sizes 

ßx = 0.01, ßy = 0.01. The time increment is at each time step adaptively chosen 

according to the CFL-condition (3.1 ). 

The marker particles are placed on the interface S. The development of this 

interface can be seen by displaying the marker particle field. We used 2000 

marker particles. The initial perturbation (6.1) is of mode 2 and the amplitude is 

a = 0.025. As initial data for the numerical scheme we prescribed in each grid 

zoneapproximative mean values. The profile of the vortex sheet at 10 points in 

time are shown in Figures 6.2- 6.6. ln Fig. 6.2 the initial shape and the slope at 

timet = 0.4 of the sheet are plotted. The sheet differs from the sinusoidal profile 

as predicted by the linear theory. At x = -0.25, 0.25 the sheet becomes vertical 

and startstoroll up. This rollup into a pair of spirals becomes very obvious from 

results at timet = 0.8 (Fig. 6.3). The vortex sheet tends to roll-up into local 

concentrations of vorticity. The next figures indicate that this roll-up will 

continue. The increasing rate seems tobe constant; du ring a time step ßt 

= 0.4 the roll-up precedes half a rotation. Experimental result for the 

incompressible case can be found in /7/ (page 85). They are in good agreement 

with our numerical results for the compressible case. 

lf the amplitude of the sinusoidal perturbation (6.1) becomes larger, the 

movement of the vortex sheet will change. A diagram of initial data with I arge 

amplitude perturbations is plotted in Fig. 6.7. The computational region agrees 

with that of our last problem, the amplitude of the sinusoidal perturbation (6.1) 

is now a = 0.1. The self-induced motion of this vortex sheet differs strongly from 

the motion of the vortex sheet with a small amplitude. The numerical results are 

plotted in Figures 6.8- 6.11. ln cantrast to the results for the Kelvin-Helmholtz 

instability where the rollup process starts, the results at the timest = 0.2, 0.4 are 

quite similar to those obtained by Birkhoff (Figure 8.6 in /11) for an 

incompres.sible fluid. Heusedapoint vortex method. Our next example is the 

numerical simulation of the Rayleigh-Taylor instability. This instability may occur 

when two superposed fluids of different densities are accelerated in a direction 

perpendicular to their interface. lf the acceleration is directed from the light.er to 

the heavier fluid, the interface is unstable. A mathematical theory can also be 

given for the case of an incompressible fluid only, with small amplitude 

perturbations of simple types of motion. ln the present investigation we consider 

initial values as given in Fig. 6.12. A fluid with the density p = 1.0 is superposed 
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---

Fig. 6.2: Numerical simulation of a Kelvin-Helmholtz 
instability at time t = 0.0, 0.4 
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Fig. 6.3: Numerical simulation of a Kelvin-Helmholtz 
instability at timet= 0.8, 1.2 

t=O.B 

t=1 • 2 
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Fig. 6.4: Numerical simulation of a Kelvin-Helmholtz 
instability at timet= 1.6, 2.0 

t=1. 6 

t ==2. 0 
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Fig. 6.5: Numerical simulation of a Kelvin-Helmholtz 
instability at time t = 2.4, 2.8 

t=-2. 4 

t=2. 8 
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l!,ig. 6. 6: Numerical simulation of a Kelvin-Helmholtz 
instability at time t = 3.6, 4.0 

t=3.6 

t=4. 0 
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0.5 .-----------------. 

u = -0 5 •• 

9 = 1.0 
p = 1.0 
V= 0.0 

S ._y = 0.1 sin (4Jtx) 

.. u = 0.5 

YL 
X -0.5 .__ _ _:.:_ ____________ ____j 

-0.5 0.5 

Fig. 6.7: Initial values for a Kelvin"Helmholtz instability with a I arge amplitude 

by a heavier fluid with the density p = 10.0. The lighter fluid is accelerated 

against the heavier fluid due to the gravitational force. lnstead of the 

homogeneous Euler equations (2.1) the equations 

Ut + f(U) + g(Ul = h(U) 
X y 

(6.2) 

are nu merically solved where due to the gravitational forces the source term 

'I' h (U) = (0, 0, - p, - p v) (6.3) 

occurs in addition on the right hand side. The source term is treated by a splitting 

techn ique. Equation (6.2) is decomposed into the two one-dimensional problems 

(3.1), (3.2) and the equation 
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t=O.O 

t=0.2 

Fig. 6.8: Numerical simulation of a Kelvin-Helmholtz 
instability with a large amplitude at time t = 0.0, 0.4 
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t=0.4 

t=0.6 

Fig. 6.9: Numerical simulation of a l~elvin-Helmholtz 
instability with a large amplitude at time t = 0.4, 0.6 
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---~ ......... ······ ... ............ 

Fig. 6.10: Numerical simulation of a Kelvin-Helmholtz 

t=0.8 

t=1.2 

instability with a large amplitude at timet= 0.8, 1.2 
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t=2. 0 

Fig. 6.11: Numerical simulation of a Kelvin-Helmholtz 
instability with a large amplitude at timet= 1.6, 2.0 
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ut = h (U). (6.4) 

According to the splitting technique these problems are then solved successively 

in each time step. Hence, within this Splitting algorithm the treatment of the 

source term is reduced to the solution of ordinary differential equations. To 

maintain the second-order accuracy of the algorithm we solved the ordinary 

differential equations (6.4) by the second-order accurate method of Heun (/25/). 

9 = 10.0 

9 = 1.0 
11 

't t' l f grav1 a 1ona orce 

-0.6 L----------------...,...1 
0.0 1.0 

Fig. 6.12: Initial values for a Rayleigh-Taylor instability 

The computational domain is R = [0.0, 1.0] x [-0.6, 0.4]. The interface between 

the two fltJids is situated at y = 0. The initial pressure is given by the hydrostatic 

pressure 

0.4 
p(x,y)=J p(x,y)dy. 

y 
(6.5) 



-27-

t=O. 1 

Fig. 6.13: Numerical Simulation of a Rayleigh-Taylor instability 
at time t = 0.0, 0.1 
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t=0.2 

t=0.3 

Figr 6.14: Numeriaal simulation of a Rayleigh-Taylor instability 
at time t = 0.2, 0.3 
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t=0.4 

t=0.5 

Fig. 6.15: Numerical simulation of a Rayleigh-Taylor instability 
at time t = 0.4, 0.5 
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(_) 

t=0.6 

t=0.7 

Fig. 6.16: Numerical simulation of a Rayleigh-Taylor instability 
at timet= 0.6, 0.7 
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t=-0,8 

t=0.9 

Fig, 6a17: Numeriaal Simulation of a Rayleigh-Taylor instability 
at time t = Oa8, 0"9 
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Thus, for zero velocity the problem is in equilibrium. Sinusiodal perturbations are 

introduced by perturbation of the zero velocity. We adopted the initial values 

proposed by Daly 171. The velocity components are given by the fomulas 

u (x, y) = a sgn (y) sin (2 n x) e- 2nlyl 

-2nlyl v (x, y) = a cos (2 n x) e 

(6.6) 

(6.7) 

As initial values for the numerical scheme we prescribed the mean values in each 

grid zone. At the boundaries of the computational ddmain R we impose at the 

right and left side periodic conditions, at the top and the bottom those of a 

reflecting wall. For the numerical calculations we used a uniform grid with 100 x 

100 grid zones. The amplitude of the pertUibation (6.6}, (6.7) is a = 0.5. 

Figures 6.13- 6.17 indicate the motion of the surface between the two fluids. The 

position of the marker particles are plotted at tim es 0.0, 0.1, ... 0.9. The results 

are similar to those of Daly /7/. Aspike and a b.ubble arise. As expected, the 

bubble is much broader than the spike; the spike moves to the bottom at a 

higher propagation rate. At timet = 0.6 Kelvin-Helmholtz instabilities will occur 

on both sides of the spike. At later times rollup of the vortex sheets starts. 

The next problem is the numerical simulation of a jet. The initial values are 

sketched in Fig. 6.18. A fluid to the left at velocity u = -0.5, v = 0.0 is separated 

by a small band flowing into the opposite direction. The density, pressure and 

velocity in y-direction areuniform in the whole domain: p = 1.0, p = 1.0, v = 

0.0. The surfaces between the flows are given by 

S
1

: y = 0.05 + 0.01 sin (4nx) (6.8) 

s2 : y = -0.05 + 0.01 sin (4 n x) (6.9) 

The computational domain is R = [-0.5, 0.5] x [-0.5, 0.5]. For the right and left 

sides of R we prescribed periodic boundary conditions, at the top and of the 

bottom those of a reflecting wall. The computational grid consists of 100 x 100 

grid zone$. As initial values for the numerical scheme we prescribed 

approximative mean values for each grid zone. 
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0.5 .------------------, 

u =- 0.5 ... 
9 = 1.0 
p = 1.0 
V= 0.0 

L..,....---------~---------'----~~1 ._y = 0.05 + 0.01 sin (4nx) 0.05 1 

~----------~ u = 0.5 =::-------____ sj,....~ ._ y = o. o 5 + o. o 1 s in ( 4 n x) -0.05 - --· 

U=-0.5. 

YL 
X -0.5 L_ _ _.:..:_ ____________ __. 

-0.5 

Fig. 6.18: Initial values for a jet 

The marker particles are located at the interfaces s" S2. Figure 6.19 shows the 

position of the marker particles at the initialtime and at timet = 0.4. The plot at 

t = 0.4 indicates that the amplitude of the sinusoidal perturbation (6.8), (6.9) is 

increased. Further small perturbations occur and the curves s,, S2 become a little 

bit wrinkled. Four of these small perturbation increase. These wrinkles become 

very obvious at timet = 0.6 (Fig. 6.20). They continue to inrease and at time 

t = 0.8 they Iook like four noses. Du ring this process the amplitude of the 

sinusoidal perturbationfurther increased. ln Figure 6.21 we see that the small 

perturbations grow and the shear layers start to rollup into a Karmanvortex 

street. Figures 6.19- 6.22 Iook quite similar to experimental results as presented 

by van Dyke (/8/, page 56). He shows the development of a Karmanvortex behind 
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-
-

t=o.o 

t=0.4 

Fig. 6.19: Numerical simulation of a jet at time t = 0.0, 0.4 
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t=0.6 

t=O.B 

Fig. 6.20: Numeriaal simulation of a jet at time t = 0.6, 0.8 
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t=1. 2 

········· ············ ······ 
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t=1. 6 

fig. 6.21: Numerical simulation of a jet at timet= 1.2, 1.6 
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Fig. 6.22: Numerical simulation of a jet at time t = 2.0, 2.8 
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Fig. 6.23: Numerical simulation of a jet at timet= 4.0, 6.0 
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a circular cylinder. Figure 6.23 shows the behavior of the Karmanvortex street 

after larger timest = 4.0 and t = 6.0. 

We obtained almost the same results using another perturbation of the initial 

data. The diagram of the initial values is outlined in Fig. 6.24. The surfaces of the 

flows are now given by 

s
1

: y = o.o5 (6.10) 

s
2

: y = -o.o5 (6.11) 

The fluid between these lines flows to the right at velocity u = ·0.5, while the 

other part propagates into the opposite direction. The d~nsity and pressure are 

uniform in the whole domain. The sinusoidal perturbations of the initial values 

are introduced via perturbations of the velocity component v into y-direction. ln 

the region B the velocity v depends on x: 

v = v (x) = a sin (4 n x) (6.12) 

0.5 

9 = 1.0 
p = 1.0 

V= 0.0 
U=-0.5. 

0.05 
111111111 u = 0.5 V=V(X) B 

-0.05 

u = -0.5 .. 
YL 

-0.5 X 

-0.5 0.5 

Fig. 6.24: Initial values for a jet 
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t=OoO 

-

t=0.4 

Fig. 6.25: Numerical simulation of a jet at time t = 0.0, 0.4 
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t=O.B 

t=i. 2 

Fig. 6.26: Numerical simulation of a jet at timet= 0.8, 1.2 



-42-

'•, .. ······· .. ····· 

........ ·· .. ······ 

t=1.6 

t=2. 0 

Fig. 6.27: Numerical simulation of a jet at timet= 1.6, 2.0 
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Fig. 6.28: Numeriaal Simulation of a jet at timet= 2.4, 2.8 
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Fig. 6.29: Numerical simulation of a jet at time t = 3.2, 4.0 
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As in the calculations of a jet above the computational domain is R = [ -0.5, 0.5] x 

[-0.5, 0.5]. This domain is divided into 100 x 100 grid zones. The boundary 

conditions are periodic or reflecting wall conditions, respectively. The marker 

particles are again located at the interfaces S1, S2. As in the previous calculations 

we used here 2000 marker particles. The Figures 6.25- 6.28 show the numerical 

results for the amplitude a = 0.1 of the initial perturbation (6.1 0). The numerical 

results are almost identical to the results obtained in the case of sinusoidal 

perturbation (6.8), (6.9) of the initial data. 

7. Conclusions 

The results show that a high resolution scheme for the Euler equations combined 

with a Langrangian tracking of interfaces gives a very efficient method for the 

numerical simulation of hydrodynamic instabilities. The high resolution scheme, 

presented here, is designed for an efficient implementation on a vector 

computer. By that we are able to perform large scale computations on fine grids. 

For zero viscosity the two-dimensional instabilities, considred here, are ill posed 

in thesensethat small initial disturbances introduced by the grid will rapidly 

increase. The perturbations which destroy the rollup of the shear layers do not 

appear if a small amount of viscosity is added to the Euler equations. ln our 

calculations the viscosity is introduced by numerical dissipation. The rollup of the 

shear layers is stabilized by the numerical dissipation. 

Several questions remain open and will be investigated in the future. Wehave 

started to compare our results with those obtained by schemes which possess I es 

numerical dissipation but where physical viscosity is introduced.By that we can 

estimate the Reynolds number corresponding to the numerical dissipation of the 

results presented in this paper. ln a next paper we will compare these 

calculations for different Reynolds numbers with fluid mechanical experiments 

and theory. 
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