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Formation of Titanium Nitride Layers an Titanium Metal: Results of XPS and AES 

Investigations 

Abstract 

The reaction of titanium metal with gaseaus nitrogen and ammonia at 

temperatures of 890 °C Ieads to the formation of nitridic overlayers an the 

metallic substrate. The thicknesses of the overlayers increase with increasing 

reaction time. Under comparable conditions ammonia reacts much slower than 

nitrogen. 

XPS and AES depth profile analyses show continuous changes of the in-depth 

compositions of the overlayers. This can be interpreted in terms of a very irregular 

thickness of the overlayers, an assumption which is substantiated by local AES 

analyses and by the observation of a pronounced crystalline structure of the 

substrate after annealing pretreatment, which can give rise to locally different 

reaction rates. The depth profile is also influenced by the broad ranges of stability 

of the titanium nitride phases formed during the reaction. 

The quantitative analysis of the titanium/nitrogen overlayers by AES is difficult 

because of the overlap of titanium and nitrogen Auger peaks. In quantitative XPS 

analysis problems arise due to difficulties in defininq Ti 2p peak areas. This work 

presents practical procedures for the quantitative evaluation by XPS and AES of 

nitridic overlayers with sufficient accuracy. 

Bildung von Titannitrid-Schichten auf Titanmetall: Ergebnisse von XPS- und AES

Untersuchungen 

Zusammenfassung 

Die Reaktion von Titanmetall mit gasförmigem Stickstoff und gasförmigem 

Ammoniak bei 890 °C führt zur Bildung von nitridischen Deckschichten auf dem 

metallischen Substrat. Die Dicken der Deckschichten nehmen mit steigender 

Reaktionszeit zu. Unter vergleichbaren Bedingungen ist die Reaktion mit 

Ammoniak bedeutend langsamer als die mit Stickstoff. 



XPS und AES Tiefenprofil-Messungen zeigen kontinuierliche Veränderungen der 

Tiefenverteilungen der Elemente Titan und Stickstoff innerhalb der Deckschichten. 

Dies beruht vermutlich auf der sehr unregelmäßigen Dicke jeder einzelnen 

Deckschicht. Diese Vermutung wird unterstützt durch die Ergebnisse von AES

Punktanalysen und durch die Beobachtung einer ausgeprägten kristallinen Struktur 

des Substrats nach der thermischen Vorbehandlung, was zu lokal unterschiedlichen 

Reaktionsraten Anlaß geben kann. 

Die quantitative Analyse von Proben, die neben Titan Stickstoff enthalten, wird in 

der AES durch die Oberlagerung von Titan- und Stickstoff-Augerübergängen 

erschwert. In der XPS treten Schwierigkeiten bei der Festlegung der Ti 2p

Peakflächen auf. In dieser Veröffentlichung werden Verfahren vorgestellt, die die 

quantitative Auswertung sowohl von XPS- als auch von AES-Spektren erlauben und 

Daten hinreichender Genauigkeit liefern. 



I. Introduction 

Titanium metal has several properties of interest for its application in the fuel 

cycle of a fusion reactor. For instance, its capability of reversibly forming 

titanium hydrides (1-3) can be employed for the storage and handling of gaseaus 

tritium. In addition, its excellent gettering characteristics may be used to remove 

impurities from the burned fuel of a fusion reactor (4). In both applications detailed 

kinetic information on the reaction of metallic titanium with gaseaus impurities 

such as Nz, NH3, CO, COz, CH4 etc., which play a role during the fusion fuel 

cycle, is of major importance. While for gettering purposes the occurrence of 

irreversible reactions with these gases is desired to achieve an optimal cleaning 

effect, in the case of tritium storage the formation of surface titanium compounds 

(nitrides, oxides, carbides) is likely to influence significantly the rate and capacity 

of tritium uptake. Another area of interest involves coating of titanium by 

nitridation, which is known to produce a corrosion resistant surface. 

The present investigation of the reaction of nitrogen compounds with titanium is 

part of a program, which aims at the determination of the kinetic parameters and 

the identification of the reaction products of potential candidate metal and alloy 

getters with impurity gases of the fusion fuel cycle. The examination of titanium 

nitrides and nitrided titanium surfaces by modern instrumental analysis such as 

X-ray photoelectron spectrometry (XPS) and Auger electron spectrometry (AES) 

has received considerable attention in the recent Iiterature (5-15). Other fields of 

application of these two and of other surface sensitive techniques in fusion 

technology can be found in refs. (16-18). This work concentrates on XPS and AES 

investigations of the reaction of titanium metal with nitrogen and ammonia and 

describes the composition and depth distribution of the reaction products. Both 

techniques are extremely surface sensitive for the detection of surface species and 

thus very weil suited to characterize the interactions at the interface between a 

solid and a gas phase. Particularly tagether with X-ray diffraction XPS and AES 

provide quantitative chemical information on the surface products. ln combination 

with ion bombardment induced sputtering they give access to several micrometer 

thickness of the surface layer of a solid. 
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II. Experimental 

The titanium samples investigated in this work were either small cuttings (size 

~ 2 x 6 mm 2 , sample 1) or squares (size 10 x 10 mm 2 ) of 0.25 mm thick foils, which 

were supplied by Vakuumschmelze Hanau (samples 2 and 3) or by Goodfellow 

Metals, Cambridge (samples 4-8), respectively. The purity of the foils from the 

latter manufacturer was stated to be 99.6 % Ti. 

Prior to exposure to nitrogen or ammonia the Ti samples were annealed in a quartz 

vessel under vacuum at 890 °C for several hours. In experiments 1-2 the metallic 

samples were first allowed to cool down to room temperature. Then the reacting 

gas was introduced into the quartz vessel and the sample heated up to the reaction 

temperature under isochoric conditions (V = 0.668 1). With progressing reaction a 

small pressure drop due to nitrogen consumption was observed. An analogaus 

procedure was employed in experiment 3 except that in this case, due to the 

formation of Hz and Nz by cracking of NH3, the gases were circulated over the 

metallic sample with the help of a Metal Bellows pump. In runs 4-8 the reacting gas 

was admitted to the hat sample immediately after completion of the annealing 

treatment. The kinetic study itself was carried out under isobaric conditions 

employing a Baizers RME-010 pressure reducing valve, which permitted a 

regulation of the pressure to :r 5 mbar. The gas consumption was followed 

volumetrically employing calibrated vessels and an MKS-Baratron 170 M 

capacitance manometer. 

At the end of each experiment the gas was pumped off and the quartz reaction 

vessel cooled down to room temperature. The samples were then stored under a dry 

inert gas inside a glove box until needed for surface analysis. Further details 

concerning the annealing and reaction conditions employed during experiments 1-8 

are given in Table 1. 

For XPS and AES measurements the specimens were mechanically mounted on 

appropriate specimen stubs under Iabaratory atmosphere and then introduced into 

the spectrometer. Due to the Iack of an adequate sample introduction systern 

which operates under an inert gas atmosphere, the specimens were briefly exposed 

to the atmosphere during this step. As a consequence the XPS spectra of the 

specimens showed partial oxidation of the outermost atomic layers. 

The XPS and AES measurements were performed in a Vacuum Generators (VG) 

ESCALAB 5 electron spectrometer already described elsewhere (19). The system is 

equipped with a hemispherical sector field analyzer. Most measurements were 
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carried out at a base pressure of 1o--9 mbar. Details of the instrumental parameters 

and measurement conditions employed for the recording of XPS and AES spectra as 

well as of depth profiles are summarized in Table 2 and Table 3. Data acquisition, 

storage, handling, and evaluation was carried out with a POP 11/03 computer 

(Digital Equipment Corporation) ernploying software supplied by the manufacturer 

of the electron spectrometer. This software package includes the possibility of 

removing X-ray satellites and the background of inelastically scattered electrons. 

The latter is performed according to a mathematical treatment given by Shirley 

(21). 

III. Results and Discussion 

l. Microscopic examination 

All samples were routinely inspected with a light microscope for possible effects of 

the various treatments on the appearance of the sample surfaces. This examination 

revealed that already during the annealing procedure structural transformations of 

the metal took place. For instance, Figs. 1 and 2 show microscopic photographs of 

the original titanium foil (representative of specimens 2 and 3) as received from 

the manufacturer and before annealing. Besides some black dots, which represent 

impurities on top of the surface, the appearance of the surface is governed by 

traces resulting from the mechanical treatment of the material rluring 

manufacture (probably rolling). After annealing for about 4 h the surface structure 

has changed markedly as can be seen in Figs. 3 and 4. Even though the working 

traces are still visible the surface appearance is now governed by the crystalline 

structure of the metal foil. This indicates that the foil itself and the heavily 

disturbed surface layer of the metal foil, resulting from the mechanical treatment 

during manufacture, have recrystallized during annealing. The X-ray diffraction 

spectrum of the annealed titanium foil (4 h at 890 °C) shows no siqnificant 

difference from that obtained with the untreated foil. Only heating up to higher 

temperatures ( > 920 °C) causes permanent changes of the crystallographic 

structure. 

Exposure of the Ti foil to nitrogen at 890 °C does not significantly alter the 

appearance of the surface. This is apparent from a comparison between 

photographs of specimen 2 before (Figs. 3 and 4) and after reaction with nitrogen 

(Figs. 5 and 6). 

The appearance of the surface is not affected by ion bombardment applied during 

the measurements of the AES depth profiles. Figs. 7, 8 and 9 show photographs of 

that part of the surface, which has been hit by the ion beam. The approximately 
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reetangular slightly brighter area in the center of Fig. 7 corresponds to the ion 

bombarded part of the surface. Figs. 8 and 9 show sections of this area at higher 

magnifications. 

A comparison of the light microscopic photographs with those obtained with a 

scanning electron microscope (SEM) employing a rastered electron beam for the 

excitation of secondary electrons gives additional information. The resolution 

achieved with the SEM was of the order of one micrometer. Figs. 10 and 11 show 

SEM micrographs of sample Nr. 2. The shown area is close to the sputter crater. 

When compared to Figs. 5 and 6 it is seen that whereas the light microscopic 

photographs predominantly show the typical features of the crystalline structure, 

the SEM micrographs are dominated by the working traces from the manufacture 

of the metal foil, the crystalline structure being only barely recognizable (see 

Fig. 11). Due to their low kinetic energy secondary electrons can only be emitted 

from a surface layer of a few nanometers thickness. Furthermore, the cantrast in 

SEM pictures is .governed by gross differences in chemical composition and/or the 

topography of the sample surface. Therefore, the absence of significant differences 

between different crystallites in the SEM pictures indicates a fairly homogeneaus 

composition of the upper sample surface layer, which is not apparent from the light 

microscopic examination. 

Within the ion bombarded area, on the contrary, the SEM micrographs show a 

surface with a distinct crystalline structure. The SEM micrograph in Fig. 12 shows 

approximately the same section of the foil as the light microscopic photograph in 

Fig. 7. The SEM micrograph in Fig. 13, which was obtained with a higher 

magnification than that in Fig. 12, depicts an area close to the center of the 

sputter crater. Approximately the same zone is also shown in the light microscopic 

photograph of Fig. 9. The shadowing effects along the grain boundaries indicate 

significant topographical height differences. * These height differences appear only 

after extended ion bombardment of the sample suggesting that the sputtering rates 

depend upon crystallite orientation. 

2. AES: Depth profiles 

The major Auger transitions of titanium are observed at kinetic electron energies 

of about 385 eV (L 3M23M23) and 420 eV (L3M23V), the most prominent one of 

nitrogen occurs at about 385 eV CKL23L23). Therefore an almost complete overlap 

* The light microscopic photographs of the titanium foils obtained from other 
manufacturers (samples 4-8) showed essentially the same features as the ones 
already described. They are, therefore, not discussed separately in this 
section. 
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of the Ti (L 3M23M23) and NCKL23L23) transitions is expected in the Auger spectra 

of samples containing both titanium and nitrogen. This is illustrated in Fig. 14, in 

which the AES spectra of titanium and titanium mononitride are compared. The 

latter spectrum shows the surface composition of a pellet, which was pressed from 

commercial TiN powder and which was sputtered in the electron spectrometer until 

a constant surface composition was achieved. 

The considerable amount of oxygen present in the sample results from partial 

oxidation of the surfaces of the individual grains when the powder qets in contact 

with air during manufacture of the pellets. Sputtering can only remove oxygen 

from the outer surface of the pellet but not that incorporated into the pellet during 

compactation of the powder. 

One approach to separate the contributions of titanium and nitrogen to the 

cornplex peak at 385 eV has been described by Dawson and Stazyk (9). The authors 

determined the intensity ratio of the two major Auger transitions of titanium 

metal with their instrumental parameters and assumed that any deviation from this 

ratio occuring after nitridation of the sample surface is due to the overlapping of 

the NCKL23L23) I Ti (L 3M23M23) peaks. The titanium contribution to the complex 

peak at 385 eV is calculated from the Ti (L }M23V) I Ti (L 3M23M23) metal ratio and 

the height of the peak at 420 eV. The difference between the total height of the 

peak at 385 eV and the height attributed to the Ti contribution is assigned to the 

intensity of the NCKL23L23) Auger peak. The various phases formed during the 

gas/rnetal reaction were identified by X-ray diffraction. Uncertain with this 

rnethod is the dependency of the intensity ratio (ratio of excitation probabilities) of 

the titanium peaks on the chemical environment of the sample. For example it is 

known from experiments with titanium oxides that the Auger peak Ti (L 3M23M23) 

/Ti CL3M23V) intensity ratio varies significantly with the state of oxidation of 

titaniurn (22,23). 

In this work another evaluation procedure based an the use of two appropriate 

reference materials is discussed. In addition to the assumption that the ratios of 

the excitation probabilities remain coristant, the approach requires a knowledge of 

the relation of the absolute intensities of the Auger peaks of the two reference 

materials. 

In the case of TiNx the intensity ratios of the two Auger transitions of titanium 

and of a titanium nitride of known composition can be employed. The stoichiometry 

of the unknown sample can be derived frorn the experimentally observed intensity 

ratios of these two reference materials as well as the one from the titanium nitride 
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phase under investigation. Under the assumption that the intensity increase of the 

Auger transition at 385 eV is proportional to the nitrogen uptake of the sample a 

straight forward evaluation is possible, i.e. the nitrogen concentration of the 

sample under investigation is obtained from the measured intensity ratio of the 

peaks at 420 and 385 eV. Any sample with a nitrogen concentration lower than that 

of the mononitride will exhibit an Auger spectrum with an intensity ratio value 

Iying between that of the mononitride and that of the pure meta!. As apparent 

from Fig. 14 the intensity ratios of the meta! and of the mononitride differ 

significantly. Therefore, a sensitive determination of the composition of the 

nitrided samples is possible. 

Starting from the assumption that the spectrum of an unknown compound TiNx 

results from the overlap of the spectra of Ti meta! and TiN, the following 

expression for the peak intensity ratio S (peak at 420 eV to peak at 385 eV) of the 

sample under investigation can be derived 

s = 

1 (-- 1) + c 
X 

1 1 c 
(-- 1)- +-x T N 

(1) 

In this expression T and N are the intensity ratios (420 eV /385 eV) of the titanium 

meta! (T = 1.24) and of the mononitride (N = 0.52), respectively. C is a constant 

which accounts for the different absolute intensities of the Auger transitions of the 

reference materials. C, which was simply equated to the ratio of the atomic 

concentrations of titanium in the mononitride and in the meta!, was calculated to 

be 0.9. Implicit in this calculation is the assumption that the Auger transition 

intensity is proportional to the atomic concentration of the species under 

investigation. Equation (1) is based an purely stoichiometric considerations: 

TiNx -• Ti 1/xi'~ = (~ - 1) Ti + TiN 

By simple rearrangement of eq. (1) an expression can be obtained, which permits 

the calculation of the average composition of a sample from a knowledge of the 

intensity ratios S, T, and N as obtained from the corresponding Auger spectra: 

S/T- 1 
(2) X= 

S/T + C (1 - S/N) - 1 
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Fig. 15 illustrates the evaluation of the average stoichiometry of the analyzed 

Volume as a function of the 420 eV peak I 385 eV peak ratio S employing eq. (2). 

Several possible sources of error need to be kept in mind when using eq. (2) or 

Fig. 15: 

uncertainty in the intensity ratios of the reference materials, in particular TiN 

(oxygen contribution) 

uncertainty in the absolute intensities of the Auger peaks of the reference 

materials (no experimental data available yet, the effect of chanqinq C is 

illustrated in Fig. 15) 

uncertainty concerning chemical effects influencing the experimentally 

determined intensity ratios 

neglection of the fine structure of the Auger peaks for the evaluation of 

intensity ratios (see Fig. 14 and the peak heights defined therein). 

Figs. 16 - 23 show the depth profiles recorded for each sample along with 

representative Auger spectra obtained at selected depths. The peak heiqhts have 

been used as defined in Fig. 14 without consideration of possihle contributions from 

the fine structure of the spectra. A conversion of the peak heights into TiNx 

compositions can be done by using Fig. 15 or eq. (2). The depth scale has been 

estimated from the actual ion current densities and the measured sputtering rates 

of titanium meta! and titanium dioxide (see Table 3). 

The Auger spectra as well as the depth profiles of the various samples show that 

their surfaces are partly oxidized. In addition, the surfaces show adsorbed 

hydrocarbons. Both surface contaminants (oxygen and carbon), which result from 

the contact of the samples with atmosphere, are easily removed after short 

sputtering. As a rule, both elements practically disappear from the AES spectra 

after removing a 10 - 20 nm surface layer, leaving titanium and nitrogen as the 

only detectable elements and suggesting the formation of one (or several) titanium 

ni tride(s). In fact, the AES spectra recorded just after the removal of carbon and 

oxygen closely resemble that of TiN (see Fig. 14 b). The presence of nitrides is, in 

addition, substantiated by the characteristic XPS chemical shifts of nitrogen and 

t i tanium (see section 3). 

The intensities of the Auger transitions at 420 eV and 385 eV kinetic energy, which 

correspond, an one hand, to a titanium transition alone and, an the other hand, to 

the overlapping of a titanium and a nitrogen transition, show in each of the 

examined depth profiles continuous variations over the whole depth range 
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investigated, indicating that the nitrogen contribution to the spectra continuously 

decreases with progressing depth. Several explanations can account for these 

observat ions: 

The overlayer formed during the reaction between titanium and nitrogen 

actually shows the observed compositional gradient over the depth range. In 

principle, this is possible because titanium nitride phases are stable within a 

very broad range of concentrations (24). 

The overlayer thickness is strongly dependent upon the location at the surface 

at which it was formed. Since AES spectra only yield the integral composition 

of a certain surface area, large thickness differences within the analyzed area 

can also give rise to the observed depth profiles. 

A combination of the former two explanations. 

Additional distortion of the depth profiles can be caused by lateral variations in the 

sputtering yields and thus of the sputtering rates. However, this is considered to be 

a secondary effect, which will only play a role when significant variations in lateral 

composition occur. 

No conclusive interpretation of the reaction mechanism is possible an the basis of 

the experimental data available. Probably, both effects discussed above contribute 

to some extent to the experimental observations. Because of the pronounced 

crystalline structure shown by the surface of the foils after annealing (cf. Chapt. 

III.l.), the possibility of different reaction behaviour at the various crystal faces, 

leading to Variations in the product layer thickness and perhaps to several product 

nitrides, need to be considered. For instance, local AES analyses of sample No. 7 

at a depth of approx. 4 11m indicate large variations in lateral composition. 

However, these observations da not exclude a possible contribution from in-depth 

gradients to the depth profiles. 

While the absolute depth ranges of the examined samples showed significant 

Variation with reaction time and type of reacting gas, no fundamental differences 

between the shapes of the various depth profiles could be observed. This is 

apparent from a comparison of samples No. 2, 3 and 5. The only difference between 

samples No. 2 and 5, which reacted with nitrogen, and sample No. 3, which reacted 

with ammonia, is that in the latter case the amount of nitride formed is smaller 

(see Figs. 17, 18 and 20). 
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The average composition of the overlayer as a function of depth can be derived 

using Fig. 15 or eq. (2). Table 4 summarizes the estimated compositions of the 

overlayer of all investigated samples at progressing depths. In addition, the position 

of the point of intersect on the depth scale, i.e. the depth at which the Auger 

transitions at 420 and 385 eV are equally intense, is included. This intersect, which 

corresponds to a composition of TiNo.19, has been arbitrarily defined as the 

thickness of the nitridic overlayer. The intersects for samples 2, 3 and 5 were 

observed to occur at 880, 200 and 790 nm, respectively, indicating that under 

comparable conditions nitrogen penetrates deeper into the titanium metal than 

ammonia. Generally, an increase in reaction time is accompanied by a shift of the 

position of the intersect towards greater depths and, in consequence, by an 

increase of the thickness of the reaction product layer. 

The initial part of the depth profile of sample No. 4 (and to a lesser extent of 

sample No. 5) differs from those of the other samples in that the intensity of the 

Auger peak at 385 eV passes through a maximum very close to the surface. This 

points to a relatively high nitrogen concentration in the surface layer of these 

samples. It is not clear why only these samples show such an effect. Presumably 

this is related to the particularly short reaction time selected for these experiments. 

Since all samples were first heated up to 890 °C before admitting nitrogen into the 

reaction vessel, they cooled down when brought in contact with the non-preheated 

gas. In the case of experiments of short duration this retardation in heating 

manifests itself rather strongly on the total reaction time. In consequence, runs 

like that with sample No. 4 do not reflect constant temperature conditions for the 

reaction and diffusion process over the stated period of time (in experiments of 

Ionger duration the initial departure from steady state conditions can be 

neglected). A more detailed investigation is necessary for a complete elucidation 

of this effect. 

Depth regions of constant composition were observed only in the profiles of 

samples No. 7 and 8. The ranges extend approx. from 300 - 1200 nm (sample No. 7) 

and from 300 - 1700 nm (sample No. 8), respectively (cf. Table 4). The extension of 

the profile region with constant composition is, however, small compared to the 

total depth of the overlayer where nitrogen can be detected. Sampie No. 7 has also 

been investigated by XPS. The depth profile resulting from these measurements is 

displayed in Chapt. III.3 (cf. Fig. 29) and compares well with the results from the 

AES depth profile. 
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3. Surface analysis and depth profiles by XPS 

In addition to the AES depth profile measurements several samples were 

investigated by XPS with the aim of characterizing the surface and speciating the 

overlayer constituents. The method also permits a determination of depth 

distributions. Due to the difficulties encountered during the quantitative evaluation 

of the AES spectra (see Chapt. III.2) useful complementary information was 

expected from this surface analysis technique. 

Fig. 24 shows an XPS spectrum of sample No. 7. The surface shows contributions of 

titanium, nitrogen, oxygen and carbon. While the overwhelming fraction of the 

carbon can be attributed to a contamination of the sample surface by hydrocarbon 

adsorption during contact of the specimens with air, a small additional peak at the 

binding energy position corresponding to titanium carbide can also be observed. It 

is very likely that this compound has been formed durinq the thermal treatment of 

the sample (annealing and/or reaction step). Possible rc:H~tion partners are carbon 

containing impurities (hydrocarbons or carbon oxides) · the qas phase or adsorbed 

at the metallic substrate prior to the thermal treatment. 

The titanium 2p photopeaks clearly show the presence of two titanium species, 

which we attribute to titanium nitride (not necessarily stoichiometric) and to some 

titanium oxinitride of unknown composition. On the basis of the observed binding 

energy shifts the presence of pure titanium dioxide can be excluded. 

Table 5 summarizes the binding energies determined experimentally for the surface 

compositions of several titanium specimens as well as of the standard materials 

employed in this work. The N ls photopeak appears at a binding energy of 396.9 eV. 

This binding energy, which is indicative of a nitride, compares weil with the values 

from our own standard and with those reported in the Iiterature (a compilation of 

Iiterature values is given in Table 6). 

The XPS measurements were also employed for the determination of depth 

profiles. For this purpose a quantitative evaluation of the (relative) concentrations 

of titanium in the titanium containing materials is required. The major difficulty is 

to find a reliable way to determine the peak area of the titanium 2p photopeaks. 

The prob!em is caused by the presence of intense lass features in the Ti 2p 

spectrum of titanium and titanium compounds, which originate from the excitation 

of surface and volume plasmons and/or from shake-up processes (15). Shake-up 

processes are the result of the excitation of valence electrons into unfilled Ievels. 
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They occur simultaneously with photoemission processes of the excited atom (28). 

The shake-up satellites represent photoelectrons which have lost energy during 

their emission by a secondary excitation of the atom. Therefore the intensity of 

the satellites should be added to the total photoemission intensity. Plasmon 

excitations, on the contrary, are associated with loss processes, takinq place when 

electrons pass through a solid (29). They are comparable to inelastic energy lasses 

of electrons (the latter giving rise to the background). Plasmon excitations are not 

associated with the primary excitation processes within the atom and should, for 

this reason, not be considered as part of the photoelectron emission intensity (30). 

The overlap of lass structures from plasmon and shake-up excitations in the XPS 

spectra of titanium nitride, titanium metal (15) and presumably titanium 

oxinitrides, the latter being of relevance only for surface-near atomic layers, 

makes it impossible to define accurately the part of the total photopeak structure 

necessary for the determination of the peak area (or photoemission intensity, 

respectively). In view of this, a practical but somewhat arbitrary procedure for the 

determination of the peak area was developed. 

A typical evaluation of a depth profile is illustrated utilizing the Ti 2p XPS spectra 

of sample No. 3 measured at various depths (see Fig. 25). As apparent from the 

spectra the surface oxidation product has already disappeared after a very short 

sputtering period e.g. after removing a few nanometers of surface material. At 

50 nm the spectrum closely resembles that of titanium metal except for the fact 

that the peak positions are slightly shifted and that the intensity of the N ls 

Photopeak indicates the presence of a considerable amount of titanium nitride. 

The peak area determination is carried out in several consecutive steps as 

illustrated in Figs. 26 and 27 for the case of two Ti 2p spectra from Fig. 25 (depth 

0 and 0.4 nm, respectively). In a first step the background attributed to the 

inelastic scattering of the electrons is subtracted. This contribution is calculated 

from equations as proposed by Shirley (21). Figs. 26 a and 27 a show the raw data as 

well as the calculated background. In Fig. 26 a the intensities of the raw spectrum 

and of the background spectrum coincide at a binding energy which corresponds to 

the intensity minimum at the high binding energy side of the photopeak multiplet. 

This is where one would approximately expect the upper limit of the energy ranqe 

of the multiplet. Fig. 26 b shows the spectrum after subtraction of the background 

and, in addition, after subtraction of the X-ray satellites (spacings and relative 

intensities taken from Ref. (31)). The hatched part of the resulting spectrum gives 

the peak area ascribed to the intensity of the phototransition. The broad peak on 
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the right part of Fig. 26 b is assigned to plasmon Iosses not contributing to the 

photoemission intensity. 

In the case of the XPS spectrum shown in Fig. 27 the situation is more 

complicated. Fig. 27 b shows the multiplet resulting after subtraction of the 

background and the satellite. For the determination of the peak area there is 

clearly no minimum at the right binding energy side of the multiplet which might 

serve as a Iimit to distinguish between the photopeak multiplet and the plasmon 

structure contribution. Consequently, it was assumed that the spectrum results 

from an overlap of both contributions as represented by the dashed lines in Fig. 27 

b. The intersect was assumed to occur at the same binding energy position as the 

minimum in Fig. 26 b. Postulating a symmetrical overlap, a peak area as indicated 

by the hatched area in Fig. 27 c can be derived. 

With the procedure described above reproducible and consistent peak areas from Ti 

2p XPS spectra can be determined. The evaluation method neglects any shake-up 

satellites which might occur in the energy range of the plasmon structure and 

which actually are present for instance in the XPS spectra of titanium dioxide in 

the relevant energy range (15,20,25,32). Also neglected is that fraction of the 

plasmon structure which might appear below the photopeak multiplet. It is 

expected that both errors cancel out to some extent. In absence of a more accurate 

evaluation method of the peak areas from the Ti 2p XPS spectra the chosen 

procedure provides reasonably good data for the determination of the composition 

because the comparison of consistently evaluated data is possible with better 

precision. 

The depth profiles of sample No. 3 and No. 7, which were evaluated according to 

the procedure described above, have been plotted in Figs. 28 and 29, respectively. 

Fig. 28 shows the intensities of the Ti 2p, N ls, 0 ls, and C ls phototransitions 

Oeft ordinate) and the Ti/N atomic ratios (right ordinate, calculated from the 

absolute intensities after correction for the photoionization cross sections as given 

by Scofield (33)) as a function of depth. While the dash-pointed curve has been 

determined from the total intensity of the Ti 2p transition, the pointed curve 

includes a correction for the fraction of titanium bound to oxygen. Because oxygen 

is rapidly removed, the two curves diverge only over the first ten nanometers in 

depth. Fig. 29 gives the Ti/N atomic ratio over a depth range of approx. 2 11m of 

sample No. 7. In this case the contribution of oxygen can be neglecterl except for 

the first 30 nm. 
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The results plotted in Figs. 28 and 29 point to an approximate stoichiometry of 

Ti2N. Only very close to the surface the stoichiometric coefficient approaches 

unity suggesting a composition of the surface nitride close to TiN. None of the 

samples shows constant composition over the analyzed depth range. In some 

samples, for instance sample No. 7, only a small concentration gradient at depths 

between 200 and 1500 nm was observed. This range of approximately constant 

composition was also observed by an AES characterization of sample No. 7 (cf. 

Table 4 and discussion in Chapt. III.2). 

During the measurements of the depth profiles a continuous binding energy shift of 

the Ti 2P3/2 photopeak towards the value of titanium metal became apparent, 

which correlates with the composition of the analyzed volume (see Fig. 30). The 

curve in Fig. 30, which is based an the depth profiles shown in Figs. 28 and 29, 

reflects a dependence of the binding energy upon composition. Also included in Fig. 

30 are three data points from the titanium mononitride reference sample (before 

and after sputtering) as well as data found in the literature. Particularly, the latter 

show a considerable scatter in binding energies. As opposed to this the values 

obtained in this work show a smooth variation with composition. 

In principle, the observed binding energy shift can be ascribed to changes in the 

chemical environment of a homogeneously composed phase or to changes in the 

average composition of a mixture of phases (titanium metal and titanium nitride). 

In the latter case the position of the binding energy scale of the Ti 2p peak maxima 

would be the result of the overlap of the Ti 2p spectra of different species and the 

value of the binding energy would depend an the relative intensities of the 

overlapping spectra. The results from the AES measurements (cf. Chapt. III.2) 

favour the second explanation, i.e. differently composed phases. In this case a 

dependence of the binding energy shifts an the composition of the titanium 

ni tride is expected, particularl y in the low ni trogen concentration rang es. 

Unfortunately, the large scatter of the literature values (cf. Fig. 30 and Tab. 6) 

does not allow an unequivocal conclusion. In addition, binding energies for nitrogen 

concentrations below 40 at.% are not available. Possibly, the dependence displayed 

in Fig. 30 is the result of both effects described above. 

4. Camparisan of the surface analysis results with kinetic measurements 

Tab. 7 summarizes the nitridic overlayer compositions, which have been derived 

from AES and XPS measurements of the various samples; the fourth column shows 

phases detected by X-ray diffraction. As evident from the results, the XPS and the 

AES measurements are in reasonably good agreement. Especially in the depth range 

of approximately constant composition (see for example the range between 300 and 
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1200 nm of sample No. 7) both techniques point to a composition of about TiNo.5· 

A composition approaching that of TiN appears to occur only at the surface of each 

sample but with increasing depths the nitrogen concentration shows a continuous 

decrease (cf. Tab. 4). 

Ta understand the apparent compositional discrepancies observed when nitrided 

titanium specimens are characterized by XPS, AES and X-ray diffraction, it is 

necessary to take into account that, whereas XPS and AES provide only the 

average composition of the analysed volume, X-ray diffraction is capab!e of 

identifying single phases (see Tab. 7). Accordingly, it was observed that after a 

short exposure to nitrogen the reflections of the specimens can be assigned to aTi 

and TizN and that after a prolongued exposure additional reflections characteristic 

to TiN appear. This is certainly not in disagreement with the depth profiles 

determined by AES. As a whole, the results point to a layered structure of TiN over 

TizN and aTi. 

The depth profiles show that the thickness of the overlayer is not too weil defined. 

The overlayer thickness was assumed tobe given by the position an the depth scale 

of the intersect at equal intensity of the two predominant Auger lines. The 

positions of the intersects are given by the fifth column in Tab. 7 and are displayerl 

as a function of reaction time in Fig. 31. 

The data in Tab. 7 suggest that under comparable conditions the rate of the 

reaction of ammonia is much slower than that of nitrogen. This result, which is in 

disagreement with the observations of other authors (34), may be explained by the 

occurrence of significant cracking of ammonia, i.e. 

an the surface of the titanium sheets. Such a reaction has been observed to occur 

at 625 °C with a rate constant of k = (3.1 :r 1.9) • 1013 molecules/cm 2 ·sec (35). 

Since the gas I meta! reaction was followed under static conditions, it is expected 

that the products of the reaction, i.e. Hz and Nz, will cumulate in the vicinity of 

the meta! surface and retard the reaction. 

The nitrogen uptake observed when titanium foils react with nitrogen at 890 °C 

was measured volumetrically and is shown graphically in Fig. 32. In general, an 

induction period of a few minutes was observed, which is due to a decrease in 

temperature of the metallic sample when brought in contact with the non

preheated gas. The reaction rate can be described by a parabolic law of the type 
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where 

w = weight gain/area 

K = temperature dependent proportionality constant 

t = time 

and the constant K has a value of (10.1 ± 0.3) llg2/cm4 • sec at 890 °C. The curve 

showing the time dependency of the depth profiles as determined by AES is similar 

to the one obtained from the weight gain experiments (see Table 8 and Figs. 31 and 

32). A comparison between the overlayer thickness as estimated from AES 

measurements and that calculated with the data in Table 8 and crystallographic 

considerations, assuming a layer of either the composition Ti"-1 or TizN is given in 

Table 7. Considering that the overlayer thickness determined by AES is based on 

estimated sputtering rates and was arbitrarily assumed to end at the depth at 

which the main Auger transitions are of equal height and that the thickness 

estimated from weight gain runs was obtained under the assumption of a 

homogeneaus single phase (TiN or TizN) overlayer, the agreement can be 

considered satisfactory. 

One result of the XPS measurements was the observation of a direct dependence of 

the binding energy shift of the Ti 2p photopeaks upon the nitrogen concentration of 

the nitrided surface. lt is at present not clear whether this effect arises from the 

compositional change of a homogeneaus phase or is caused by the overlappinq of 

Ti 2p spectra of several species of varying concentrations. More work is needed to 

shed light on this question. 
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Table 1: Annealing and reaction conditions employed in experiments on the interaction of titanium meta! with nitrogen 

and ammonia 

annealing step reaction step 
experiment/ duration pressure temperature reactant starting temperature 
sample No. (h) (mbar) (oc) pressure heat-up phase holding phase holding 

(mbar) (min) (h) phase (°C) 

1a) - - 890 N2 130 - 24 890 

2 4 3 7 ·1o-5 
' 890 N2 135.5 100 0.50 890 

3 4 3·10-5 890 NH3 135 40 0.62 890 

4 4 1·10-5 890 N2 l35:r2b) - 0.25 890 

5 4 1·1o-5 890 N2 135:r2b) - 0.50 890 

6 4 1·10-5 890 N2 135:r2b) - 2.00 890 

7 4 1·10-5 890 N2 135:t-1b) - 6.17 890 

8 4 1·1o-5 890 N2 135:t-1b) - 7.00 890 

a) Sampie No. 1 represents a test run. Same parameters are not known with certainty and are, therefore, not given. 

b) Pressure held constant during the experiment; nitrogen was admitted after the reaction temperature had been reached. 

()') 



- 17 -

Table 2: Instrumental parameters and experimental conditions employed for the 

XPS measurements 

Excitation: 

Excitation power: 

Analyzed surface area: 

Analyzer mode: 

CAE-settings: 

Resolution: 

Energy reference: 

Depth profiling: 

Ion gun type: 

Primary ion energy: 

Al K , not monochromatized 

10 kV • 10 mA 

~ 50 mm 2 

constant analyzer pass energy (CAE) 

50 eV (overview spectra) 

20 eV (element spectra) 

1.3 eV FWHMa) for the Au 4f photopeak at CAE = 20 eV 

Au 4f7 /2 = 84.0 eV binding energy 

penning ion source (Leybold-Heraeus IQP 10/63); 

operated with argon. 

~ 5 keV 

Sputtered area of constant 

ion current density: 

Ion current densities: 

Sputtering rate: 

~ 80 mm 2 

~ 150 - 200 nA • mm-2 (valid for area of constant ion 

current densi t y) 

1 nm • min-1 at ion current density of 100 nA · mm-2 b) 

a) FWHM: full width at half maximum 

b) Estimated from sputtering rates of titanium metal and titanium dioxide, taken 

from Ref. (20). 
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Table 3: Instrumental parameters and experimental conditions employed for the 

AES measurements 

Excitation source: 

Excitation energy: 

Excitation current: 

rastereble electron gun (VG LEG 100) 

3 or 5 keV 

2.0 jlÄ 

Electron current density: ~ 80 nA • mm-2 

Analyzer mode: 

CRR-setting: 

Modulation valtage a): 

Depth profiling: 

Ion gun type: 

Primary ion energy: 

Ion current: 

Ion current density: 

Sputtering rate: 

constant retard ratio (CRR) 

10 

2.0 eV 

rastereble ion gun (VG AG 61) operated with argon 

5 keV 

200- 600 nA 

200 - 600 nA • mm-2 

1 nm • min-1 at an ion current density of 

100 nA • mm-2 b) 

a) Spectra recorded directly in the derivative mode using the lock-in-amplifier 

technique. 

b) Estimated from sputtering rates of titanium meta! and titanium dioxide, taken 

from F~ef. (20). 



Table 4: Composition of the investigated samples expressed as x of TiNx as a function of depth8
) 

sample position of depth (nm) 
number intersect b) 

(nm) 50 100 200 400 600 800 1000 1500 2000 2500 

1 » 3600 0.73 0.77 0.77 0.73 0.65 0.65 0.62 0.58 0.54 0.53 

2 880 0.68 0.57 0.57 0.33 0.26 0.21 0.16 0.11 0.08 

3 200 0.62 0.36 0.19 0.08 0.06 0.03 0.03 

4 460 0.57 0.46 0.32 0.20 0.16 0.14 0.14 

5 790 0.57 0.56 0.43 0.30 0.23 0.19 0.16 0.12 

6 2170 0.58 - 0.53 0.50 0.45 0.42 0.38 0.29 0.20 0.16 

7 4480 0.74 0.70 0.59 0.51 0.51 0.49 0.51 0.47 0.41 0.36 

8 4780 0.82 0.60 0.57 0.52 - - 0.52 0.51 0.46 0.39 

a) Determined from the intensities of the Auger transitions displayed in the depth profiles by using Fig. 15 

b) Intersect corresponds to equal intensities of the Ti (L 3M23V) Auger transiti an and the sum of the Ti (L 3M23M23) 

and N CKL23L23) Auger transitions. 

3000 

0.50 

- CD 

0.15 

0.31 

0.32 



Table 5 

sample 

Ti 0 

no2 

TiN pelletb) 

Nr. 3 

Nr. 7e) 

Nr. 78 ) 
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Binding energies of the photopeaks of elements detected at the 

surfaces of various samples and commercial reference materials 

(values accurate to ± 0.2 eV) 

Binding energy (eV) Ref 

Ti 2p3/2 N ls 0 ls C ls 

454.0 25 

459.0 530.3a) 25 

458.3 53o.2c) 288.4d) 

455.2 396.9 284.8 

457.9 529.8c) 288.1 d) 

454.9 396.9 284.4 

458.4 53o.oc) 284.4 

454.9 396.9 281.7 

458.0 529.8 284.0 

455.0 396.8 281.4 

a) Not given in Ref. 25; private communication. 

b) For details on sample preparation and characterization see section III.2. 

c) Energy position of maximum; shoulder on high binding energy side indicates 

the presence of hydroxide. 

d) In addition to hydrocarbons a component at the position corresponding to the 

binding energy of carbonate was detected. 

e) Two independent measurements performed. 
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Table 6: XPS parameters of titanium nitrides (literature values) 

compound binding energy calibration 

bulk assignment Ti 2p
312 

N 1s 0 1s Ti 2p
312 

line (binding Ref. 

camp. - N 1s energy e V) 

TiNo.95 TiNxOy 458.8.t0.1 n.g. C 1s (285.0) 68) 

TiNo.95 456.0.t0.1 397.1.t0.1 58.9 

TiNo.8o TiNxOy 458.6.t0.1 n.g. 

TiNo.8o 456.1±0.1 397.3±0.1 58.8 

TiNo.6o TiNxOy 458.5±0.1 n.g. 

TiNo.6o 456.2±0.1 397.4±0.1 58.8 

TiNx(x ~ 1) Ti(oxidized) n.g. n.g. Ti 2P3/2 from 58) 

TiNx (x ~ 1) 455.3±0.2 n.g. metal (453.8) 

TiNo.9b) Tio2 458.8 530.0 C 1s (284.6) 12a) 

TiNo. 9 454.8c) n.g. 

TiN1 d) TiN1 455.0±0.2 397.2±0.2 57.8 Au 4f7/2 (83.8) 15 

Cu 2P3/2 (932.4) 

TiNx (x ~l)e) 455.2±0.2 397.1±0.2 58.1 

TiN0.99f) TiNo.99 455.1 397.4 57.7 Ti 2P3/2 from 11 

TiNo.8o TiNo.8o 455.1 397.4 57.7 metal (453.6) 

n.g.Q) Ti02 457.9 530.0 C 1s (284.6) 26 

TiNxOy 456.7 399.9 56.8 

398.4 58.3 

TiN1 454.7 396.3 58.4 

TiNx(x f= 1) 395.4 59.3 

TiNh) TiNh) 455.5 n.g. Au 4f7/2 (83.8) 27 

n.g.n Tio2 458.8 530.2 C 1s (285.0) 7 

TiNx (x >1) 457.3 395.8 61.5 

TiN1 455.5 397.2 58.3 

TiNk) TiNxOy 458.3 530.2 Au 4f7/2 (84.0) this 

TiN1 455.2 396.9 58.3 work 

TiN I) TiNxOy - m) 530.9 this 

TiNo.9n) 454.8 396.9 57.9 work 
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a) Results obtained from the surface analysis of nitrides 

b) Composition determined from an XPS depth profile 

c) Binding energy value of N ls remains unchanged after sputter cleaning 

d) Commercial TiN powder used 

e) Surface composition after N2+ ion bombardment of titanium meta! 

f) Sampie surfaces abr<3'ded with a diamond file prior to measurements 

g) Sampie prepared by reactive sputter ion plating; speciations are the result 

of surface analysis and depth profiling by XPS 

h) No details about sample composition given 

i) Surface of titanium metal has been nitrided 

k) TiN powder; details on preparation and characterization of the sample are 

given in Chapt III.2 

I) TiN powder (see k) after sputtering until equilibrium composition was 

reached 

m) No separate oxinitride peak of Ti 2P3/2 observable 

n) For the evaluation of the stoichiometry see discussion 

n.g. == not given 



Table 7: 

sample 

No. 

1 

2 

3 

4 

5 

6 

7 

8 
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Composition and approximate thickness of the TiNx overlayer 

formed during the reaction of titanium metal with nitrogen or 

ammonia 

overlayer composition overlayer thickness (nm) 

AEsa) xpsb) X-rayc) AEsd) weight gaine) 

< TiNo.7 » 3600 

<Ti No. 7 Ti 2N,a.Ti 880 

<TiN0•6 TiNo. 5 200 

<TiNo.6 Ti 2N,a.Ti 460 560 -1150 

<TiNo.6 Ti 2N, a.Ti 790 220 - 460 

<TiNo.6 Ti 2N, a.Ti 2170 1720- 3570 

<TiNo.7f) TiNo. 5 TiN, Ti 2N, a. Ti 4480 3700 - 7660 

<TiNo.8f) TiN, Ti2N, a.Ti 4780 

a) Compositions given correspond to upper nitrogen concentration as measured at 

a depth of 50 nm. For further details on the decrease of nitrogen 

concentration with progressing depth see Figs. 16 - 23 and Table 4. 

b) Approximate composition over the depth range investigated by XPS (see Figs. 

28 and 29). 

c) Species as identified by X-ray diffraction. 

d) Values correspond to the depth at which the Auger transitions Ti (!_3M23V) and 

Ti (L 3M23M23) + N CKL23L23) are of equal intensities (intersect of the AES 

depth profiles). Values were taken from Table 4 and represent a composition of 

TiNo.19· 

e) Overl.ayer thickness calculated from the weight gain of the sample assuming a 

stoichiometry of the reaction product between TiN and Ti2N. 

f) Constant composition corresponding to TiNo.5 observed approx. from 300 to 

1200 nm (sample No. 7) and from 300 to 1700 nm (sample No. 8), respectively. 



Table 8: 

Reaction 
time 

(min) 

15 

30 

120 

370 
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Reaction of nitrogen with titanium at 890 °C 

Ti: 10 x 10 mm plates pretreated at 890 °C for 4 h under a 

vacuum of 1o-5 mbar 

N2 
pressure 

(mbar) 

135 :±- 2 

135 :±- 2 

135 :±- 2 

135 :±- 1 

N2 
consumption 

(mbar·l) 

0.52 

0.21 

1.62 

3.46 

Ti 
weight 

(g) 

0.492 

0.491 

0.490 

0.480 

N2 uptake 

(g N2/g Ti) 

1.22·10-3 

4.91·10-4 

3.80·10-3 

8.33•10-3 
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Fig. 1 Light microscopic photographs of a titanium metal foil before annealing 

(magnification x 50); the sample is representative of experiments 2 and 3. 

Fig. 2 Light microscopic photograph of a titanium metal foil before annealing 

(magnification x 200); the sample is representative of experiments 2 

and 3. 
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Fig. 3 Light microscopic photograph of a titanium meta! foil after annealing for 

4 h at 890 °C and 3 • lo-5 mbar; magnification x 50. 

Fig. 4 Light microscopic photograph of a titanium meta! foil after annealing for 

4 h at 870 °C and 3 • I0-5 mbar; magnification x 200. 
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Fig. 5 Light microscopic photograph of sample No. 2 after reaction with 

nitrogen, magnification x 50. 

Fig. 6 Light microscopic photograph of sample No. 2 after reaction with 

nitrogen, magnification x 200. 



Fig. 7 

rig. 8 

- 28 -

Light microscopic photograph of the ion bombarded area of sample No. 2 

after measurement of the AES depth profile. The slightly brighter square 

in the center of the photograph represents the sputtered part of the 

surface. The dark spot in the upper left of the photograph corresponds to 

a mechanical damage of the surface which occurred after the depth profile 

measurement (magnification x 50). 

Same as Fig. 7, but showing the center of the sputtered area; 

magnification x 100. 



Fig. 9 
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Light microscopic photograph of the ion bombarded area of sample No. 2 

after measurement of the AES depth profile, magnification x 200. The 

photögraph may be compared with Fig. 13. 



Fig. 10 

Fig. 11 
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SEM micrograph of sample No. 2 after reaction with nitrogen; 

magnification x 100. 

SEM micrograph of sample No. 2 after reaction with nitrogen; 

magnification x 400. 



Fig. 12 

Fig. 13 
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SEM micrograph of sample No. 2 after reaction with nitrogen showing 

the surface area which has been ion bombarded during depth profiling; 

magnification x 100. 

SEM micrograph of sample No. 2 after reaction with nitrogen showing 

the surface area which has been ion bombarded during depth profiling; 

magnification x 400. The figure can be compared to Fig. 9. 



Fig. 14 

a) 
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600 
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TiN 

[ 
Ti(l3~23M23) 

N(KL23L23) 

500 400 300 200 

kinetic energy [ eV] 

AES spectra of titanium meta! (a) and titanium mononitride (b). Details 

of the preparation and treatment of the TiN sample are given in the 

text. Peak heights as shown in the figure have been employed for the 

evaluation of depth profiles. 
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1.5 

.1.0 

0.5 

0 0.5 1 
TiNx; X= 

Evaluation of the composition of titanium nitrides as a function of the 

intensity ratio of the Auger peaks at 420 eV and 385 eV kinetic energy. 

The plot neglects possible errors in the determination of the intensity 

ratios of the reference materials (x = 0 and x = 1, respectively). The 

continuous curve has been calculated from eq. (2) (T = 1.24; N = 0.52 

and C = 0.9). The dashed lines were obtained with C values of 1.35 and 

0.45, respectively, representing a 50% deviation from the assumed true 

value of C of 0.9. 
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Fig. 16 a Depth profile of sample No. 1. 
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Fig. 16 b Auger spectra of sample No. 1 corresponding to selected depths of the 

data shown in Fig. 16 a. 
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Fig. 17 a Depth profile of sample No. 2. 
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Fig. 17 b Auger spectra of sample No. 2 corresponding to selected depths of the 

data shown in Fig. 17 a. 
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Fig. 18 a Depth profile of sample No. 3. 
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Fig. 18 b Auger spectra of sample No. 3 corresponding to selected depths of the 

data shown in Fig. 18 a. 



- 40 -

~ 
I I I 

r---"1 
V) ...... 
c Ti ( L3 M23 M23) + N ( KL23 l23) 
::J 

>. 
'- r Ti(L3M23V) 0 
I... ...... 

..0 
'-
0 1- -

L_j 

>. ...... 
V) 

c 
(I) ...... 
c 

0 I I I 

0 250 500 750 1000 

depth [nm] 

Fig. 19 a Depth profile of sample No. 4. 



,........, 
Ul ...... 
c 
:J 

~ .... 
es .... ...... 

..0 .... 
es 

L-1 

~ ...... 
Ul 
c 
Q) ...... 
c 

600 

- 41 -

500 400 

kinetic energy 

13 nm 

0. 41Jm 

l.O!Jm 

300 

[ev] 

200 

Fig. 19 b Auger spectra of sample No. 4 corresponding to selected depths of the 

data shown in Fiq. 19 a. 
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Fig. 20 a Depth profile of sample No. 5. 
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Fig. 20 b Auger spectra of sample No. 5 corresponding to selected depths of the 

data shown in Fig. 20 a. 
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Fig. 21 a Depth profile of sample No. 6. 
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Fig. 21 b Auger spectra of sample No. 6 corresponding to selected depths of the 

data shown in Fig. 21 a. 
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Fig. 22 a Depth profile of sample No. 7. 
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Fig. 22 b Auger spectra of sample No. 7 corresponding to selected depths of the 

data shown in Fig. 22 a. 
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Fig. 23 a Depth profile of sample No. 8. 
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Fig. 23 b Auger spectra of sample No. 8 corresponding to selected depths of the 

data shown in Fig. 23 a. 
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XPS spectrum of sample No. 7 showing the major photoelectron 

transitions obtained with Al Ka radiation. 
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Ti 2p XPS spectra of sample No. 3 at various depths using the Al 

K a radiation. Depth values were calculated from the employed ion 

current density. Particularly in the zone close to the surface they are 

very uncertain due to the unavailability of reliable sputtering rates. 
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Ti 2p XPS spectrum of sample No. 3 (surface composition): a) raw 

spectrum and background caused by inelastically scattered electrons; 

b) spectrum after subtraction of background and X-ray satellites. The 

hatched peak area corresponds to the intensity of the photoemission. 
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Ti 2p XPS spectrum of sample No. 3 (nominal depth 0.4 nm): a) raw 

spectrum and background caused by inelastically scattered electrons; 

b) spectrum after subtraction of background and X-ray satellites. The 

dashed lines indicate the expected courses of the photopeak multiplet 

and the plasmon distribution, respectively. The position of the intersect 

corresponds to the binding energy at the minimum in Fig. 26 b; c) equi

valent to b, the hatched peak area corresponds to the intensity of the 

photoemission. 
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Depth profile of sample No. 3 evaluated from XPS measurements. The 

intensities of the photopeaks are displayed an the left ordinate 

(continuous curves) and the atomic Ti/N ratios are shown an the right 

ordinate. - ·- x - ·- gives the total amount of titanium to nitroqen and 

·•••• gives the atomic titanium/nitrogen ratio after correction for the 

titanium fraction bound to oxygen. This fraction was calculated from 

the oxygen signal intensity under the assumption of an average 

stoichiometry of Ti01.5· 
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Depth profile of the titanium to nitrogen atomic ratio of sample 1'\lo. 7 

evaluated from XPS measurements. 
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Correlation between the Ti 2P3/2 binding energy and the composition of 

the titanium nitride TiNx (e frorh XPS depth profile measurements with 

sample No. 7; x from XPS depth profile measurements with sample 

No. 3; 0 from TiN1 powder before sputtering; + from TiN1 powder 

after sputtering; c Iiterature values evaluated from samples having a 

partially oxidized surface, and 111 Iiterature values evaluated from 

samples having a clean or a cleaned surface (for Iiterature values see 

Table 6). Values of x ~ 1 are acceptable because the TiNx phase has 

been observed to exist up to x-values of 1.16 (9). 
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Position of the point of intersect as a function of reaction time at 

890 °C (e samples 4-8; A. sample 2, x sample 3). 
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Volumetrie determination of the nitrogen uptake by titanium foils at 

890 °C as a function of time (see Table 8). 
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