KfK 4479 Dezember 1988

Bestimmung der optischen Konstanten von flüssigem UO₂ im nahen Infrarot bei 1064 nm

M. Bober, J. Singer Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter

Kernforschungszentrum Karlsruhe

en en en fan de fan Referencemente fan de fan d Referencemente fan de fan d

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter

KfK 4479

Bestimmung der optischen Konstanten von flüssigem UO₂ im nahen Infrarot bei 1064 nm

M. Bober, J. Singer

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

Kurzfassung

Die optischen Konstanten von flüssigem UO₂ n und k wurden bei der Wellenlänge 1064 nm im nahen Infrarot aus Reflexionsmessungen bestimmt. Mit Hilfe eines Laser-Druckkugelreflektometers wurde das Reflexionsvermögen der Probenoberflächen mit polarisiertem Licht gemessen und daraus der Brechungsindex n und die Absorptionskonstante k des Materials errechnet. Für verschiedene Reflexionswinkel ergaben sich im Temperaturbereich 3120-4000 K konsistente Werte mit nur geringer Temperaturabhängigkeit. Mittelwerte in dem Temperaturbereich sind n = 2,0 und k = 0,51.

Determination of the optical constants of liquid UO_2 in the near infrared at 1064 nm

Summary

The optical constants of liquid UO₂, n and k, were determined from reflexion measurements at the wave-length 1064 nm in the near infrared. The reflectivities of the specimen surfaces were measured with polarized light in a pressurized integrating sphere laser reflectometer and the respective values of the refractive index, n, and the absorption constant, k, of the specimen material were calculated. Consistent values resulted in the temperature range 3120-4000 K with only little dependence on the temperature. Mean values are n = 2.0 and k = 0.51 in this range.

1. Einleitung

Die optischen Konstanten von flüssigem UO₂, Brechungsindex n und Absorptionskonstante k, sind für Reaktorsicherheitsüberlegungen von Interesse, weil sie Aussagen über den Anteil des Strahlungswärmetransports an der Wärmeleitfähigkeit von geschmolzenem Brennstoff gestatten /1/. Ihre Größen lassen sich aus Reflexionsmessungen mit polarisiertem Licht in einem integrierenden Laser-Druckkugelreflektometer ermitteln /2,3/. Erste Messungen wurden im sichtbaren Spektralbereich, der meßtechnisch am besten zugänglich ist, durchgeführt. Zur Untermauerung der Aussagen über den Strahlungswärmetransport, insbesondere bei Temperaturen in der Nähe des Schmelzpunktes, waren noch Messungen im nahen Infrarot erforderlich.

Reflexionsmessungen im Infrarot sind wegen der unsichtbaren Strahlung schwieriger als im Sichtbaren und erfordern eine aufwendigere Experimentiertechnik. Deshalb wurden die Messungen auf eine Wellenlänge, - die des Nd:YAG-Lasers -, im nahen Infrarot beschränkt. Der aus den optischen Konstanten bei der Laserwellenlänge von 1064 nm resultierende Absorptionskoeffizient gestattet es, - neben den Aussagen zum Strahlungswärmetransport -, Werte für die Eindringtiefe des Nd:YAG-Laserlichts in die Flüssigkeitsoberfläche anzugeben. Daraus ergibt sich die Dicke der direkt beheizten Oberflächenschicht.

2. Messungen

Für die Reflexionsmessungen wurde in dem Kugelreflektometer ein Argon-Schutzgasdruck von 20 bar eingestellt, um störende Materialverdampfung an der geschmolzenen UO₂-Probenoberfläche zu unterdrücken. Die Funktionsweise des Laser-Druckkugelreflektometers wurde schon mehrmals beschrieben /2-4/. Für die Messungen im Infrarot mußte der experimentelle Aufbau jedoch in einigen wesentlichen Punkten ergänzt werden.

Abb.1 zeigt ein Blockschema der erweiterten Meßanordnung. Ein kontinuierlich strahlender Nd:YAG-Laser (Line Lite, Modell 605C) mit 100 mW optischer Leistung diente als Meß-Referenzlichtquelle. Ähnlich wie dem zum Aufschmelzen der Proben verwendeten CO₂-Heizlaser (Photon Sources, Modell 300) wurde auch dem Referenzlaser ein kolinear justierter HeNe-Laser als Zieleinrichtung beigefügt. Zum Einrichten der unsichtbaren Nd:YAG-Laserstrahlung von 1064 nm Wellenlänge wurde ein Infrarot-Sichtgerät (FJW, Find-R-Scope) verwendet.

Abb. 1 Meßaufbau

Da die Strahlleistung des Nd: YAG-Lasers während der Meßzeit von einigen Millisekunden erheblichen zeitlichen Schwankungen unterlag, wurde ein Teil des Strahles nach der elektrooptischen Modulation (EOM) ausgeblendet und einem Leistungsmonitor zugeführt. Durch Division des mit Lock-In-Technik demodulierten Reflexionssignals aus der Kugel durch das gleichgerichtete Monitorsignal wurden die Leistungsschwankungen eleminiert.

Weiterhin erwies es sich als notwendig, die optische Qualität des Referenz-Laserlichtstrahles zu verbessern. Zu diesem Zweck wurde hinter der $\lambda/2$ -Platte, mit der die Polarisationsebene gedreht wird, ein Raumfilter angeordent. Das Filter bestand aus einem Mikroskopobjektiv (4:1), einer Lochblende (50 µm \oslash) und einer nachfolgenden Fokussierlinse (f = 63 mm, Bestform). Damit wurde störendes Streulicht und divergierende Strahlanteile vor dem Eintritt in die Reflektometerkugelausgeblendet.

Die Reflexionsgradmessungen an den geschmolzenen UO₂-Probenoberflächen wurden bei drei verschiedenen Reflexionswinkeln durchgeführt. Der hierzu notwendige Justieraufwand war relativ groß, da jede Winkeleinstellung eine andere Position der Probe in der Kugel bedingte. Jedes Mal mußte der gesamte

Strahlengang neu einjustiert werden. Unter allen Winkeln wurden die Messungen bei zwei definierten Einstellungen der Polarisationsebene, durchgeführt. Je Einstellung wurden 10 bis 20 Experimente gemacht, in denen die Temperatur der flüssigen Probenoberfläche vom Schmelzpunkt (3120 K) bis 4500 K durchfahren wurde.

Der Temperaturverlauf der flüssigen Probenoberfläche im Laserheizfleck wurde mit einem schnellen Einfarben-Mikropyrometer /3/ bei der Wellenlänge 1031 nm gemessen. Die erhaltenen schwarzen Temperaturen wurden mit den aus den Reflexionsgradmessungen bei 1064 nm resultierenden Emissionsgradkurven (vgl. Abschnitt 3) in wahre Temperaturen umgerechnet. Um die Winkelabhängigkeit des Emissionsgrades zu berücksichtigen, wurde für die Umrechnung jeweils die Emissionsgradkurve verwendet, die bei einem dem aktuellen Pyrometrierwinkel ähnlichen Reflexionswinkel erhalten wurde.

Die Auswahl der geeigneten Reflexionsmeßwinkel ß erfolgte nach zwei Kriterien. Zum einen mußte, um günstige Bedingungen für die Auswertung der Messungen nach den Fresnelschen Gleichungen /5/ zu erhalten, mindestens ein Winkel oberhalb und ein Winkel unterhalb des Haupteinfallswinkels /5,6/ gewählt werden. Zum anderen sollten Pyrometrierwinkel und Reflexionswinkel der Meßreihen sich gegenseitig so weit entsprechen, daß die aus den Reflexionsgradmessungen abgeleiteten Emissionsgrade jeweils zur Temperaturauswertung einer anderen Meßreihe verwendet werden konnten. Die günstigsten Meßwinkel wurden in einigen Vorversuchen ermittelt. In Tabelle 1 sind die sich entsprechenden Reflexionsmeßwinkel und Pyrometrierwinkel wiedergegeben.

Tabelle 1	Reflexionsmel in den Experir	3winkel un nenten	el und dazugehörende Pyrometrierwinke n			
Reflexionswinkel		44,9°	59,2°	67,6°		
Pyrometrierwinke	el	60°	<u>46°</u>	33°		

Die Messungen unter den Reflexionswinkeln der Spalten 1 und 2 in Tabelle 1 konnten für die (n-k)-Auswertung und für die Bestimmung des Emissionsgrades zur gegenseitigen Temperaturauswertung verwendet werden. Der Emissionsgrad für den Pyrometrierwinkel von 33° (Spalte 3) wurde einer früheren Messung /7/ entnommen. Abbildung 2 zeigt die graphische Darstellung der unter den drei Meßwinkeln erhaltenen Reflexionsgrade von flüssigem UO₂ für parallel (R_p) und senkrecht (R_n) zur Einfallsebene polarisiertes Licht als Funktion der wahren Temperatur. Oberhalb 4000 K sind die Fitkurven der Meßwerte gestrichelt dargestellt, weil sich hier Absorptionen und Streuungen durch verdampfendes UO₂ störend bemerkbar machten. Eine Tabelle der Meßwerte ist im Anhang wiedergegeben.

3. Auswertung

С

Aus den gemessenen Reflexionsgraden $R_p(B,T)$ und $R_n(B,T)$ läßt sich der spektrale Emissionsgrad E(B,T) für den entsprechenden Emissionswinkel B unter Anwendung des Kirchhoff'schen Gesetzes mit folgender Beziehung gewinnen:

 $E(\beta,T) = 1 - [R_{p}(\beta,T) + R_{n}(\beta,T)]/2.$ (1)

T ist hier die mit dem Pyrometer direkt gemessene schwarze Oberflächentemperatur des flüssigen UO₂. Die resultierenden Emissionsgradkurven sind in Abbildung 3 wiedergegeben. Sie erlauben es mit Hilfe des Planck'schen Strahlungsgesetzes, die unter den entsprechenden Pyrometrierwinkeln gemessenen schwarzen Temperaturen in wahre Temperaturen umzurechnen. Hierbei ist der kleine Unterschied zwischen der Pyrometerwellenlänge 1031 nm und der Wellenlänge 1064 nm, bei der E(B,T) bestimmt wurde, unerheblich. Die Koeffizienten der entsprechenden Fit-Gleichungen für die Emissionsgradkurven im Bereich schwarzer Temperaturen vom Schmelzpunkt bis 4500 K,

$$E(T) = \sum_{n=0}^{\infty} A_n(T-T_s),$$
 (2)

sind in Tabelle 2 gegeben. T_s ist die schwarze Schmelzpunkttemperatur von UO₂ bei der Wellenlänge 1064 nm und dem Emissionswinkel ß. Die Emissionsgradwerte und Koeffizienten A_n für ß = 34° entstammen einer früheren Arbeit /7/.

Abb.2: Reflexionsgrade von flüssigem UO₂ für parallel (R_p) und senkrecht (R_n) zur Einfallsebene polarisiertes Licht der Wellenlänge 1064 nm bei den Reflexionswinkeln ß gleich 44,9°, 59,2° und 67,6° als Funktion der Temperatur.

Abb. 3 Spektraler Emissionsgrad von flüssigem UO₂ bei der Wellenlänge 1064 nm für 3 Emissionswinkel als Funktion der schwarzen Temperatur.

Tabelle 2 Koeffizienten A_n und schwarze Temperaturen*) des Schmelzpunktes T_s für Gl. (2) bei den Emissionswinkeln β

ß	Ao	A ₁ x106	A ₂ x109	A ₃ x10 ¹²	Т _s (К)
34°	0,847	3,26	0,471	17,6	3006
45°	0,825	-3,54	26,9	7,11	2992
59°	0,804	-1,62	15,4	16,0	2976
68 °	0,730	-4,17	47,0	10,7	2915

*) Die wahre Temperatur des Schmelzpunktes ist 3120 K.

Das Auswerteverfahren /8/ zur Ermittlung der optischen Konstanten n,k basiert auf der Lösung der Fresnel'schen Gleichungen,

$$\frac{R_{p}}{R_{n}} = \frac{(a - \sin \beta \cdot \tan \beta)^{2} + b^{2}}{(a + \sin \beta \cdot \tan \beta)^{2} + b^{2}}$$

$$a^{2} = \frac{1}{2} \left\{ (n^{2} - k^{2} - \sin^{2}\beta) + [(n^{2} - k^{2} - \sin^{2}\beta)^{2} + 4n^{2}k^{2}]^{1/2} \right\}$$

$$b^{2} = \frac{1}{2} \left\{ -(n^{2} - k^{2} - \sin^{2}\beta) + [(n^{2} - k^{2} - \sin^{2}\beta)^{2} + 4n^{2}k^{2}]^{1/2} \right\},$$
(3)

die eine Beziehung herstellen zwischen n und k, dem Verhältnis R_p/R_n der gemessenen Reflexionsgrade und dem dazugehörigen Reflexionswinkel ß. Dieses Verfahren wurde schon zur Auswertung der Messungen an UO₂ im sichtbaren Spektralbereich angewendet und dort ausführlich diskutiert /2/.

Eine anschauliche Darstellung des Lösungsbereiches der Fresnel'schen Gleichungen, die außerdem eine einfache Fehlerbetrachtung erlaubt, erhält man durch die graphische Aufzeichnung der Kurven gleicher Reflexion in der (n,k)-Ebene /9/. Abbildung 4 zeigt die entsprechenden Lösungskurven für die an flüssigem UO₂ bei den Meßwinkeln 44,9°, 59,2° und 67,6° gemessenen Reflexionsverhältnisse R_p/R_n für sechs verschiedene Temperaturen. Die Schnittpunkte der Kurven stellen Lösungen der Fresnel'schen Gleichungen für je zwei Reflexionswinkel dar. Die zugrundeliegenden Reflexionsverhältnisse und ihre mittleren Fehler, die aus den Ausgleichsrechnungen für die Fitkurven der R_p- und R_n-Messungen resultieren (Abb.2), sind in Tabelle 3 wiedergegeben.

_	T(K)	β = 44,9°	β = 59,2°	$\beta = 67,6^{\circ}$
	3120	0,240 ± 0,019	0,045 ± 0,013	0,030 ± 0,010
	3300	0,240 ± 0,019	0,044 ± 0,013	0,030 ± 0,010
	3500	0,239±0,019	0,043 ± 0,013	0,031±0,010
	3700	0,237±0,019	0,043 ± 0,014	0,033±0,010
	3900	0,233±0,020	0,046 ± 0,014	0,036 ± 0,011
	4100	0,231 ± 0,021	0,053 ± 0,015	0,045 ± 0,012

Tabelle 3 Reflexionsverhältnisse R_p/R_n bei den drei Meßwinkeln für sechs verschiedene Temperaturen.

Zur (n,k)-Auswertung reichen im Prinzip zwei Messungen unter verschiedenen Winkeln aus, die dritte kann als Kontrollmessung angesehen werden. Im Idealfall sollten sich alle drei Lösungskurven in einem Punkt schneiden. Wie Abbildung 4 zeigt, ist das jedoch nur angenähert der Fall. Aufgrund von unvermeidlichen Meß- und Justierfehlern sowie durch Einflüsse der realen, nicht vollständig glatten Flüssigkeitsoberflächen bedingt, erhält man ein Schnittpunktdreieck. Die

Abb.4 Lösungskurven der Fresnel'schen Gleichungen in n,k-Darstellung für die gemessenen Reflexionsverhältnisse R_p/R_n bei den drei Meßwinkeln 44,9°, 59,2° und 67,6° für sechs verschiedene Temperaturen.

- 8 ---

größte Auswertegenauigkeit wird erreicht, wenn sich die Kurven nahezu senkrecht schneiden. Das ist jedoch nur für zwei von drei Kurven möglich. Als Kompromiß wurden deshalb die Meßwinkel so gewählt, daß annähernd gleichschenklige Lösungsdreiecke entstehen. Einer der drei Winkel liegt oberhalb des Haupteinfallswinkels, bei dem R_p minimal wird, und zwei liegen darunter. Die Flächenschwerpunkte der Lösungsdreiecke stellen Mittelwerte der gesuchten Lösungen für n und k dar. Zur Veranschaulichung sind in Abbildung 5 für n = 2 und k = 0,5 mit Hilfe der Fresnel'schen Gleichungen berechnete Reflexionskurven über den Reflexionswinkelß dargestellt. Der Haupteinfallswinkel B_o beträgt hier ca. 64°.

Tabelle 4 zeigt die Ergebnisse für die optischen Konstanten n und k und für den Absorptionskoeffizienten α , der sich aus der Absorptionskonstante k und der Wellenlänge λ nach GI. (4) ergibt.

1.0 2.0 n 0.5 C k 0.8 σ ത Reflexionsgr 0.6 R_p/R_n Rn 0.4 0.2 β_O Rp 0.0 oō 300 60⁰ 90⁰ Reflexionswinkel ß

Abb. 5 Mit den Frensnel'schen Gleichungen berechnete Reflexionskurven für n = 2 und k = 0,5.

(4)

T(K)	n	k	α (μm ⁻¹)	
3120	2,01 ± 0,11	0,50 ± 0,10	5,9 ± 1,2	<u></u>
3300	2,01±0,11	0,51±0,10	6,0 ± 1,2	
3500	2,00 ± 0,11	0,50±0,10	5,9 ± 1,2	
3700	1,97±0,11	0,52 ± 0,10	6,1±1,2	
3900	1,94 ± 0,11	0,54±0,10	6,4 ± 1,2	
4100	(1,88±0,12)	(0,59 ± 0,10)	(7,0 ± 1,2)	

Tabelle 4 Optische Konstanten (n,k) und Absorptionskoeffizient α von flüssigem UO₂ bei der Wellenlänge 1064 nm.

4. Diskussion

Die geringe Ausdehnung der Lösungsdreiecke in Abbildung 4 ist ein Indiz für die Güte der Messungen. Zur quantitativen Bestimmung der Unsicherheiten in n und k, die von den mittleren Fehlern in den Reflexionsmessungen herrühren, wurden die Fehlergrenzen von R_p/R_n in die (n,k)-Auswertung eingeführt. Für jeden Meßwinkel wurden die Schnittpunkte der Lösungskurven gleicher Reflexionsverhältnisse R_p/R_n mit den entsprechenden Lösungskurven der Reflexionsfehlergrenzwerte R_p/R_n ± Δ R_p/R_n der beiden anderen Meßwinkel betrachtet. Aus den resultierenden Grenzwerten für n und k wurden die mittleren Fehler bestimmt, die in Tabelle 4 eingetragen sind. In Abbildung 6 sind die für 3500K erhaltenen Lösungsgrenzkurven als Beispiel wiedergegeben.

Die Grenzen des angewendeten Verfahrens zur Bestimmung der optischen Konstanten werden durch die Genauigkeit der Reflexionsmessungen im Kugelreflektometer und durch den Einfluß systematischer Fehler bestimmt. So ergibt sich für die Absorptionskonstante k eine untere apparative Bestimmbarkeitsgrenze von 0,2 /10/. Für k-Werte kleiner 0,2 wird außerdem die Signal/Untergrund-Auflösung des Lock-In-Verstärkers in der relativ kurzen, durch den Heizlaserpuls bestimmten Meßzeit von ca. 1 ms ungenügend.

Abb.6 Lösungskurven der Fresnel'schen Gleichungen für die gemessenen Reflexionsverhältnisse R_p/R_n und deren Fehlergrenzwerte bei den drei Meßwinkeln für T = 3500K. (1:44,9°,2:59,2° und 3:67,6°). Mit + und sind jeweils die oberen und unteren Grenzkurven zu den Mittelwertkurven 1 bis 3 bezeichnet.

Kleine k-Werte bedingen kleine Meßwerte für R_p, die in der Nähe des Haupteinfallswinkels minimal werden (vgl. Abb, 5). Jede Störung der Messungen führt zu

Abb. 7 Optische Konstanten von flüssigem UO₂ bei der Wellenlänge 1064 nm als Funktion der Temperatur.

einer systematischen Erhöhung des R_p-Wertes und zu einer entsprechenden Erniedrigung des R_n-Wertes. Solche Störungen können durch Fehler in der glatten Flüssigkeitsoberfläche, durch mangelhafte Polarisationsebeneneinstellung, durch unvollständige Polarisation oder durch teilweise Streuung des einfallenden Referenzlichtstrahles in der - trotz des Schutzgasdruckes von 20 bar - noch entstehenden Dampfwolke hervorgerufen werden. Bei Temperaturen über 4000 K macht sich bei allen Messungen eine zusätzliche Störung infolge verstärkt einsetzender Absorption des Referenzlichtstrahles in der Dampfwolke bemerkbar, die ebenfalls zum systematischen Fehler beiträgt. Abbildung 7 zeigt eine graphische Darstellung der bei 1064 nm erhaltenen optischen Konstanten von flüssigem UO₂ über der Temperatur mit den entsprechenden Unsicherheitsbändern. Oberhalb von 4000 K bewirken die systematischen Fehler der Reflexionsmessungen, die von der Wechselwirkung des Referenzlichts mit der Dampfwolke herrühren, eine einseitige Aufweitung der Unsicherheitsbänder. Die Größe dieser systematischen Fehler ist nicht vollständig quantitativ erfaßbar. Deshalb wird die Bestimmung der optischen Konstanten nur bis 4000 K als verläßlich angesehen.

Mit der Größe der bei 1064 nm ermittelten Absorptionskonstante k erweist sich flüssiges UO₂ auch im nahen Infrarot als starker Absorber. Dies erhärtet die aufgrund früherer Messungen im sichtbaren Spektralbereich gemachte Aussage /1/, daß der Strahlungswärmetransport nicht wesentlich zur Wärmeleitung von geschmolzenem Oxidbrennstoff beitragen und auch keinen merklichen Anstieg der Wärmeleitfähigkeit am Schmelzpunkt verursachen kann. Aus der Größe des Absorptionskoeffizienten a resultiert eine Eindringtiefe des Nd:YAG-Laserlichts in die Oberfläche von 0,17µm.

Literatur

- 1. M. Bober, J. Singer, K. Wagner, Radiative contribution to the heat transfer in liquid urania, Nuclear Technology, <u>65</u> (1984) 32-35.
- 2. M. Bober, J. Singer, K. Wagner, Determination of the optical constants of liquid urania from reflectivity measurements, Proc. 8th Symp. on Thermophysical Properties (ASME, New York, 1981) pp. 234-244.
- 3. K. Wagner, Die Bestimmung der optischen Stoffdaten von Schmelzen aus Urancarbid und Thoriumcarbid, Report KfK 3588, Kernforschungszentrum Karlsruhe (1983).
- 4. **M. Bober, H.U.Karow**, Measurements of the spectral emissivity of UO₂ above the melting point, Proc. 7th Symp. on Thermophysical Properties (ASME, New York, 1977) pp. 344-350.
- 5. M. Born, E. Wolf, "Principles of Optics", Pergamon Press, Oxford, 1975.

- H.B.Holl, Numerical solutions of the Fresnel Equations in the optical region, Proc. Symp. on Thermal Radiation of Solids (NASA, Washington DC), Report NASA SP-55 (1965) pp. 45-61.
- 7. **M. Bober, J. Singer**, Vapor pressure determination of liquid UO₂ using a boiling point technique, Nuclear Science and Engineering <u>97</u> (1987) 344-352.
- 8. D. G. Avery, An improved method for measurements of optical constants by reflection, Proc. Phys. Soc. <u>B65</u> (1952) 425-428.
- 9. W.R.Hunter, Errors in using the reflectance vs. angle of incidence method for measuring optical constants, J. Opt. Soc. Am. <u>55</u> (1965) 1197-1204.
- 10. M. Bober, J. Singer, K. Wagner, Bestimmung der optischen Konstanten von geschmolzenen Kernbrennstoffen, J. Nucl. Mater. <u>124</u> (1984) 120-128.

Anhang

Reflexionswinkel B=44.9°

T [K]	Rn	T [K]	Rp	T [K]	R _n	т (К)	
3043	0.269	3055	0.070	3568	0.279	3780	
3089	0.288	3065	0.067	3590	0.282	3811	
3095	0.291	3085	0.070	3638	0.277	3863	
3099	0.269	3142	0.057	3662	0.276	3870	
3104	0.289	3142	0.079	3670	0.265	3926	
3111	0.291	3143	0.075	3683	0.277	3988	
3118	0.292	3151	0.071	3684	0.259	4025	
3119	0.289	3167	0.066	3690	0.276	4052	
3121	0.283	3173	0.065	3695	0.264	4147	
3122	0.284	3193	0.065	3707	0.275	4214	
3123	0.283	3206	0.065	3721	0.280	4218	
3126	0.293	3235	0.067	3762	0.262	4358	
3130	0.286	3237	0.075	3819	0.274	4361	
3134	0.291	3307	0.065	3822	0.272	4469	
3143	0.266	3351	0.066	3822	0.276		
3161	0.268	3385	0.065	3833	0.254		
3171	0.289	3397	0.066	3848	0.259		
3224	0.267	3412	0.076	3879	0.258		
3236	0.269	3433	0.066	3898	0.276		
3245	0.271	3442	0.065	3923	0.248		
3336	0.264	3479	0.064	3942	0.267		
3342	0.283	3483	0.074	3976	0.257		
3343	0.268	3496	0.070	3977	0.275		
3374	0.288	3497	0.064	3990	0.247		
3413	0.269	3525	0.074	4002	0.246		
3421	0.283	3545	0.064	4024	0.251		
3430	0.281	3556	0.063	4027	0.258		
3478	0.282	3606	0.066	4072	0.245		
3534	0.264	3615	0.075	4079	0.246		
3545	0.271	3656	0.067	4084	0.267		
3550	0.279	3668	0.066	4127	0.241		
3550	0.273	3720	0.073	4229	0.215		
3552	0.283	3738	0.072	4304	0.202		
3564	0.266	3765	0.064	4446	0.187		

Reflexionswinkel ß=59.2°

T [K]	Rn	T [K]	Rp_	T [K]	R _n	T [K]	Rp
3051	0.381	3077	0.024	3759	0.344	3680	0.014
3208	0.373	3088	0.017	3765	0.363	3688	0.021
3289	0.402	3111	0.023	3778	0.385	3703	0.014
3294	0.366	3137	0.016	3817	0.348	3707	0.020
3301	0.390	3172	0.012	3828	0.377	3804	0.013
3304	0.367	3239	0.017	3837	0.345	3810	0.024
3368	0.362	3277	0.013	3867	0.333	3827	0.013
3369	0.368	3282	0.017	3887	0.340	3845	0.025
3394	0.360	3350	0.017	3964	0.324	3903	0.013
3462	0.365	3397	0.016	3973	0.327	3911	0.019
3514	0.357	3402	0.023	4008	0.370	3937	0.014
3542	0.351	3461	0.010	4057	0.337	3987	0.021
3542	0.403	3472	0.015	4078	0.309	4005	0.025
3552	0.372	3483	0.018	4107	0.308	4049	0.020
3553	0.352	3525	0.018	4184	0.291	4117	0.018
3587	0.365	3551	0.022	4200	0.348	4153	0.025
3635	0.349	3576	0.011	4243	0.324	4242	0.019
3661	0.351	3586	0.020	4251	0.286	4289	0.028
3663	0.366	3588	0.014	4336	0.288	4335	0.020
3678	0.400	3612	0.025	4337	0.290	4395	0.026
3732	0.363	3671	0.021	4389	0.258	4425	0.022
3733	0.348	3673	0.013	4452	0.252	4425	0.029
3751	0.357	3680	0.023	4452	0.251		

T [K]	Rn	T [K]	Rp	T [K]	R _n	T [K]	Rp
3102	0.530	3110	0.016	3735	0.528	3865	0.027
3103	0.492	3110	0.012	3740	0.479	3869	0.016
3110	0.531	3123	0.011	3781	0.488	3888	0.022
3271	0.535	3251	0.011	3819	0.476	3915	0.017
3392	0.492	3314	0.015	3836	0.488	3967	0.021
3403	0.535	3327	0.028	3842	0.479	3982	0.030
3424	0.521	3413	0.012	3846	0.481	3990	0.018
3457	0.494	3481	0.019	3936	0.442	3998	0.018
3479	0.498	3536	0.013	3936	0.454	4015	0.020
3493	0.527	3574	0.013	3970	0.482	4084	0.023
3525	0.491	3596	0.023	3970	0.469	4113	0.020
3549	0.516	3601	0.013	3975	0.459	4180	0.019
3558	0.517	3618	0.024	4018	0.438	4198	0.026
3560	0.489	3633	0.014	4037	0.459	4295	0.030
3570	0.503	3642	0.013	4102	0.410	4310	0.021
3579	0.524	3656	0.014	4119	0.424	4366	0.033
3617	0.512	3686	0.027	4125	0.435	4404	0.026
3624	0.491	3690	0.020	4149	0.429	4496	0.030
3650	0.506	3711	0.016	4197	0.418		
3661	0.487	3723	0.015	4267	0.355		
3666	0.490	3750	0.020	4276	0.353		
3687	0.491	3754	0.016	4276	0.369		
3695	0.502	3770	0.027	4352	0.345		
3724	0.484	3795	0.016	4420	0.304		
3730	0.490	3810	0.020	4475	0.314		
3733	0.488	3813	0.016	4495	0.257		
3734	0.490	3839	0.021				