KfK 4499 Februar 1989

Neutronendosimetrie in Kernkraftwerken mit Leichtwasserreaktoren

B. Hofmann, W. Schwarz, B. Burgkhardt, E. Piesch Hauptabteilung Sicherheit

Kernforschungszentrum Karlsruhe

KERNFORSCHUNGSZENTRUM KARLSRUHE HAUPTABTEILUNG SICHERHEIT

KfK 4499

Neutronendosimetrie in Kernkraftwerken mit Leichtwasserreaktoren

B. Hofmann¹⁾, W. Schwarz, B. Burgkhardt und E. Piesch

1) ABB Reaktor GmbH, Mannheim

Kernforschungszentrum Karlsruhe GmbH, Karlsruhe

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

ZUSAMMENFASSUNG

Während der nuklearen Inbetriebsetzung des Kernkraftwerkes Mülheim-Kärlich (1986) wurden die Neutronenstrahlenfelder in den Anlagenräumen des Containments mit Hilfe von Einkugel-Albedodosimetern und anderen Meßverfahren untersucht. Zur Personenüberwachung wurden Albedodosimeter, bestückt mit Thermolumineszenzdetektoren und Kernspurätzdetektoren in Kombination mit Bor-Konvertern, verwendet. Es wurden folgende Ergebnisse erzielt:

- Die Neutronenfelder erreichen Dosisleistungswerte bis zu 1000 mSv/h an den Abschottungen der Hauptkühlmittelleitungen, im Flutbecken und im Reaktorkavernensumpf. Der Neutronenanteil am gesamten Strahlenpegel variiert von 10 % in den Dampferzeugerräumen bis zu 92 % im Flutbecken.
- Die effektive Energie der an verschiedenen Meßpunkten nachgewiesenen Neutronen liegt schwerpunktmäßig bei 100 keV. Der Anteil der thermischen Neutronen an der Ortsdosis beträgt ca. 10 %.
- 3. Durch direkte Vergleichsmessungen und durch unterschiedliche Auswertemethoden der Einkugel-Albedodosimeter wurde nachgewiesen, daß die in der Routineüberwachung eingesetzten Rem-Counter in den gemischten Strahlenfeldern einer LWR-Anlage nur eine geringfügig (≃ + 20 %) erhöhte Dosisleistung anzeigen und damit für den praktischen Strahlenschutz geeignet sind.
- 4. Die Empfindlichkeit der Albedo-Personendosimeter gestattet den Nachweis von Neutronen ab 10 μSv. Der Neutronenanteil an der Personen-Gesamtdosis betrug max. 25 %. Es kann ein konstanter Kalibrierfaktor zur Auswertung der Albedodetektoren verwendet werden.

NEUTRON DOSIMETRY AT NUCLEAR POWER PLANTS WITH LIGHT WATER REACTORS (LWR)

<u>Abstract</u>

During nuclear start-up of the Mülheim-Kärlich Nuclear Power Plant in 1986 the neutron radiation fields in the primary and auxiliary component rooms of the containment were investigated using the Single Sphere Albedo Technique and additional measurement techniques. For personnel monitoring albedo neutron dosemeters were used consisting of thermoluminescent detectors and track etch detectors combined with boron converters. The results found are the following:

- (1) The neutron radiation fields reach dose rate values up to 1000 mSv/h at the sleeves of the reactor coolant pipes, in the refuelling pool and the reactor cavity sump. From the total radiation level, the neutron component varies between 10 % in the steam generator rooms up to 92 % in the refuelling pool.
- (2) The mean value of the effective neutron energy at the different locations was found to be about 100 keV. Thermal neutrons contribute with about 10 % to the area dose.
- (3) By direct intercomparisons and different evaluation methods of the Single Sphere Albedo Dosemeter it was shown, that rem-counters used within routine monitoring in the mixed radiation fields of the LWR overestimate the neutron dose rate only insignificantly (+20 %) and are therefore usable for practical radiation protection work.
- (4) The sensitivity of albedo neutron dosemeters allows the detection of neutrons above 10 μ Sv. The contribution of neutrons to the total personnel dose was 25 % in maximum. For the evaluation of albedo detectors a constant calibration factor can be applied.

INHALTSVERZEICHNIS

1	Einleitung	1		
2	Aufgabenstellung			
2.1	Zielsetzung			
2.2	Arbeitsprogramm	2		
2.2.1	Ortsdosimetrie	2		
2.2.2	Personendosimetrie			
3	<u>Meßverfahren zur Bestimmung von Neutronen- und</u> Gamma-Dosen			
3.1	Einkugel-Albedodosimeter mit Thermolumineszenz-	5		
	detektoren			
3.1.1	Meßanordnung	5		
3.1.2	Meßverfahren	7		
3.2	Ortsfestes Meßsystem MEGAN	11		
3.2.1	Gerätebeschreibung			
3.2.2	Aufbau der Sonden	11		
3.2.3	Aufstellungsorte	12		
3.2.4	Meßtechnische Besonderheiten	13		
3.3	Neutronen-Äquivalentdosisleistungsmesser (Rem-counter)	13		
3.3.1	Technische Beschreibung	13		
3.3.2	Meßtechnische Besonderheiten	14		
3.4	Gewebeäquivalente Proportionalzähler (TEPC)			
3.4.1	Grundlagen des Meßverfahrens			
3.4.2	Meßanordnungen			
3.5	Photonen-Äquivalentdosisleistungsmesser	17		
•	(Geiger-Müller-Zähler)			
3.5.1	Meßprinzip	17		
3.5.2	Meßtechnische Besonderheiten	17		
3.6	Albedoneutronen-Personendosimeter (Albedodosimeter)	18		
3.6.1	Meßanordnnung	18		
3.6.2	Meßverfahren	19		
3.6.3	Meßtechnische Besonderheiten	19		

<u>Seite</u>

<u>Seite</u>

3.7	Neutronenfilmdosimeter	21
3.8	Neutronen-Stabdosimeter SEQ-10	21
3.8.1	Meßprinzip	21
3.8.2	Meßtechnische Besonderheiten und Anwendung	22
4	Ortsdosis-Meßprogramm	23
4.1	Strahlenschutzbereiche im Kernkraftwerk Mülheim Kärlich	23
4.2	Methoden der Ortsdosigmessung	25
4.3	Auswahl der Meßnunkte	26
4.3.1	Auswahlkriterien und Bezeichnungen	26
4.3.2	Lage der wichtigsten Meßpunkte (MPT)	26
4.3.3	Sonstige Meßpunkte (Bereiche (1) und (3))	29
4.4	Ergebnisse der Ortsdosismessungen	30
4.4.1	Ermittlung der Ortsdosisleistungen	30
4.4.2	Darstellung der Ortsdosisleistungen	31
5	<u>Personendosis-Meßprogramm</u>	32
5.1	Begehung von Sperrbereichen	32
5.2	Ermittlung von Personendosen	32
5.3	Überwachung von Arbeitsabläufen	34
5.3.1	Personenüberwachung in Sperrbereichen	34
5.3.2	Dosisbelastung eines Rundgängers	34
5.4	Einbau der Anfahr-Neutronenquellen	38
5.4.1	Handhabungsschritte	38
5.4.2	Dosisbelastung des Personals	38
6	<u>Diskussion der Ergebnisse</u>	41
6.1	Verteilung der Neutronenfelder	41
6.2	Energieverteilung der Neutronen	43
6.3	Kalibrierfaktor für Albedoneutronendosimeter	44
6.4	Vergleich der Meßverfahren zur Ortsdosisbestimmung	47
6.4.1	Kennzeichnung der Meßverfahren	47
6.4.2	Vergleichsmessungen im Incore-Kanal	47
6.4.3	Vergleichsmessungen am Dampferzeuger l	49

S	e	i	t	е
the base		_	_	_

6.5		Ergebnisse verschiedener Auswertemethoden der Einkugel-Meßtechnik	50
6.6		Vergleich der Personendosen	51
6.7		Anzeigen der Neutronen-Filmdosimeter	53
7		Literaturverzeichnis	54
ANHANG	A	Ergebnisse der Ortsdosismessungen mit Einkugel- Albedodosimetern	57
ANHANG	В	Zeitlicher Verlauf der Neutronen- und Gamma-Ortsdosis- leistungen während der Inbetriebsetzungsphasen, ge- messen mit dem System MEGAN	67
ANHANG	С	Balkendiagramme der Ortsdosisleistungen, gemessen mit Einkugel-Albedodosimetern und anderen Meßgeräten	73
ANHANG	D	Meßpunkte mit den höchsten Neutronen- und Gamma-Dosis- leistungen	83
ANHANG	Е	Versuchsmatrix für das Ortsdosis-Meßprogramm und Meß- werttabellen	87
ANHANG	F	Verzeichnis der Abkürzungen	95

,

<u>Einleitung</u>

1

Strahlenexpositionen von Mitarbeitern in Kernkraftwerken resultieren im wesentlichen durch äußere Bestrahlung von Aktivierungs- und Spaltprodukten. Diese befinden sich in der Regel hinter dickwandigen Behälter- und Rohrwandungen, so daß nur die ausgesandte Gammastrahlung von Bedeutung ist. Bei einer laufenden Reaktoranlage besteht zusätzlich die Möglichkeit, daß die vom Reaktorkern ausgehende Neutronenstrahlung zur Strahlenexposition eines speziellen Personenkreises führt, welcher Zugang zu den Sperrbereichen in der Nähe des Reaktors hat. Dazu zählen u.a. das Schichtpersonal, Rundgänger und das Strahlenschutzpersonal.

1

Zum Schutze dieser Personen ist eine genaue Kenntnis der Neutronen- und Photonen-Strahlungsfelder, insbesondere in den Räumen des Hauptkühlmittelkreislaufs erforderlich, um eine zu hohe Strahlenexposition zu vermeiden. Bei allen Begehungen von Anlagenräumen, in denen ein signifikanter Beitrag der Neutronenstrahlung zur Gesamtdosis zu erwarten ist, müssen die Neutronen-Äquivalentdosis <u>und</u> die Photonen-Äquivalentdosis durch geeignete Personendosimeter individuell erfaßt werden.

Der vorliegende Bericht beschreibt spezielle Meßmethoden zur Erfassung von Neutronen- und Photonen-Äquivalentdosen sowie deren Einsatz während der Inbetriebsetzung des Kernkraftwerks Mülheim-Kärlich im Rahmen eines Feldversuches.*) Die Ergebnisse eines umfangreichen Meßprogramms zur Bestimmung der Ortsdosis sind darin ebenso enthalten wie die während der Leistungsversuche ermittelten Personendosen.

*) Das diesem Bericht zugrundeliegende Vorhaben wurde mit Mitteln des Bundesministers für Umwelt, Naturschutz und Reaktorsicherheit (Förderkennzeichen: St.Sch.1000) gefördert. Die Verantwortung für den Inhalt der Veröffentlichung liegt bei den Autoren.

2 <u>Aufgabenstellung</u>

2.1 <u>Zielsetzung</u>

An einem Kernkraftwerk mit Leichtwasserreaktor soll die räumliche Verteilung der Neutronenfelder bestimmt werden. Dazu sind während der Inbetriebsetzung des KKW Mülheim-Kärlich – beispielhaft für eine Anlage mit Druckwasserreaktor – Messungen der Neutronen- und Photonen-Äquivalentdosis mit derzeit gebräuchlichen bzw. neu entwickelten Meßsystemen durchzuführen.

Die Eignung verschiedener Meßverfahren ist insbesondere in gemischten Strahlenfeldern mit einem hohen Gammastrahlungsanteil zu untersuchen.

In einem Feldversuch sind die bei einer laufenden Anlage für das Betriebspersonal zu erwartenden Neutronen-Äquivalentdosen zu ermitteln und daraus Empfehlungen für die Personenüberwachung zu erarbeiten.

2.2 <u>Arbeitsprogramm</u>

2.2.1 <u>Ortsdosimetrie</u>

- Bestimmung der Neutronen- und Photonen-Äquivalentdosis an ausgesuchten Meßpunkten (MPT) im Sicherheitsbehälter unter Verwendung des Einkugel-Albedomeßverfahrens (A-Kugeln).
- Vergleichende Messungen mit anderen stationären und tragbaren Neutronen- und Photonen-Meßeinrichtungen

 Ermittlung der Ortsabhängigkeit der Äquivalentdosisleistungen während der Inbetriebsetzungsphasen sowie der spektralen Zusammensetzung der Strahlenfelder.

2.2.2 <u>Personendosimetrie</u>

- Messung der Personendosis strahlenexponierter Mitarbeiter mittels Albedodosimetern.
- Vergleich verschiedener Detektoren bzw. Dosimeter zur Personenüberwachung
- Bewertung der ermittelten Neutronen-Äquivalentdosen im Vergleich zu den Photonen-Äquivalentdosen und Empfehlungen für die Anwendung von Neutronendosimetern

- Abb. 1: Einkugel-Albedodosimeter mit Aluminiumstativ, aufgestellt vor dem Dampferzeuger 2 am Meßpunkt 2.2. Die Plastikfolie dient als Kontaminationsschutz der auf der PE-Ku
 - gel angebrachten Dosimeterkapseln mit Thermolumineszenzdetektoren

<u>Meßverfahren zur Bestimmung von Neutronen- und Gamma-Dosen</u>

Nachfolgend sind die im Rahmen des Feldversuchs am Kernkraftwerk Mülheim-Kärlich verwendeten Meßverfahren und ihre Anwendungsbereiche beschrieben.

3.1 <u>Einkugel-Albedodosimeter mit Thermolumineszenzdetektoren</u>

3.1.1 <u>Meßanordnung</u>

3

Die Albedomeßtechnik beruht auf dem Nachweis der von einem wasserstoffhaltigen Körper (Polyäthylenkugel, Mensch) moderierten und zurückgestreuten Neutronen mit einem für thermische Neutronen empfindlichen Detektor.

Das hier zur Messung der Neutronen-Äquivalentdosis eingesetzte Einkugel-Albedodosimeter mit Thermolumineszenzdetektoren (Abb.1) besteht aus einer Polyäthylenkugel von 30 cm Durchmesser und drei thermischen Neutronendetektoren, die im Zentrum (c) sowie an der Oberfläche der Kugel innerhalb der Albedodosimeter in den Positionen (i) und (a) (siehe Kap. 3.6 und Abb.7) angeordnet sind. Die Detektoren an der Kugeloberfläche dienen dazu, die Energieabhängigkeit der Neutronen-Äquivalentdosisanzeige des thermischen Neutronendetektors in Position (c) zu kompensieren und weitere Neutronenfeldparameter insbesondere zur Feldkalibrierung von Albedoneutronendosimetern in der Personenüberwachung zu ermitteln [1], [10].

Das Neutronen-Äquivalentdosismeßgerät mit der Moderatorkugel von 30 cm Ø und dem Detektoreinsatz im Zentrum (Abb.2) entspricht in seinem Aufbau einem "Rem-counter", wie er auch im System MEGAN (s. Kap.3.2) eingesetzt wurde. Für die Detektoren in den Positionen (i) und (a) des Albedodosimeters repräsentiert die Moderatorkugel in guter Näherung die für die Kalibrierung von Personendosimetern verwendete ICRU-Kugel mit gleichem Durchmesser aus gewebeäquivalentem Material.

- 5 -

Als Detektoren für thermische Neutronen werden sowohl gammaunempfindliche Kernspurätzdetektoren (s. Kap.3.6) als auch neutronen- und gammaempfindliche ⁶LiF-Thermolumineszenzdetektoren mit den Abmessungen 3x3x0,9 mm³ bzw. 3x3x0,4 mm³ verwendet. Zur Trennung des Meßwertanteils der Gamma-Strahlung werden zusätzlich ⁷LiF-Detektoren eingesetzt, die neutronenunempfindlich sind. Abb.2 zeigt die Detektoranordnung im Zentrum der Moderatorkugel.

Abb. 2: Aufbau des zentralen Detektoreinsatzes des Einkugel-Albedodosimeters in der Polyäthylen(PE)-Kugel mit einem Durchmesser von 30 cm

Zur Herabsetzung der Richtungsabhängigkeit der Detektoranzeigen in den Positionen (i) und (a) des Albedodosimeters an der Kugeloberfläche werden zwei Albedodosimeter (front, back) diametral auf dem Äquator der Kugel angeordnet und die jeweiligen Meßwerte addiert. Der Detektor in Position (c) dient u. a. zur Ermittlung des Referenzwertes der Neutronen-Ortsdosis $H_n(c)$, mit dem das Neutronenansprechvermögen des Albedodosimeters $R_n(i)$ am jeweiligen Meßort im Streustrahlungsfeld bestimmt werden kann.

3.1.2 <u>Meßverfahren</u>

Das verwendete TLD-Auswertesystem der Fa. Harshaw wird auf die Meßgröße der Photonen-Äquivalentdosis unter Verwendung einer Cs-137-Gammaquelle kalibriert. Die Anzeige M (= Meßwert) der TL-Detektoren wird in der Einheit Milli-Sievert (mSv) – bezogen auf die erwähnte Kalibrierquelle – angegeben.

Das Verfahren der Einkugel-Albedomeßtechnik benutzt zur Bestimmung der Neutronen-Äquivalentdosis eine Linearkombination der drei Neutronenmeßwerte $M_n(c)$, $M_n(i)$ und $M_n(a)$ in den Positionen (c), (i) und (a), die im Vergleich zur Anzeige $M_n(c)$ eine geringere Energieabhängigkeit aufweist (Abb.3). Die Neutronen-Äquivalentdosis H_{fit} ergibt sich bei Verwendung des universellen Albedoneutronendosimeters mit 0,4 mm dicken Detektoren und Auswertung im Harshaw-Auswerte

Abb. 3: Energieabhängigkeit der maximal absorbierten Neutronen-Äquivalentdosis (H_{MADE}), ermittelt aus der Anzeige des zentralen Detektors ($H_n(c)$) sowie mit der Einkugel-Albedomeßtechnik durch Linearkombination der Anzeigen des zentralen Detektors und der Albedodetektoren (H_{Fit})

- 7 -

gerät 2000 A + B durch Multiplikation der Meßwerte $M_n(c)$, $M_n(i)$ und $M_n(a)$ mit den empirisch ermittelten Koeffizienten $k_c = 0,1049$; $k_i = -1,25$ und $k_a = 0,0123$ zu:

 $H_{fit} = k_c \circ M_n(c) + k_i \circ M_n(i) + k_a \circ M_n(a) \quad (Gl.1)$

Für die mit dem zentralen Detektor ermittelte Äquivalentdosis gilt:

 $H_n(c) = M_n(c)/R_n(c)$ (G1.2)

mit $R_n(c) = 1,9$ für eine Auswertung der 0,4 mm dicken TL-Detektoren im Harshaw-Auswertegerät. Die Kalibrierung erfolgt hierbei im Neutronen-Strahlungsfeld einer nichtabgeschirmten Cf-252-Neutronenquelle. Tab.l zeigt das relative Neutronen-Ansprechvermögen (Kehrwert des Kalibrierfaktors N = 1/R mit $R = M_n/H_n$) verschiedener "Rem-counter" im D_2O -moderierten Strahlungsfeld einer Cf-252-Neutronenquelle, welches insbesondere für eine Anwendung von Neutronen-Dosimetern an Reaktoren zur Kalibrierung empfohlen wird [3].

Im Vergleich zu kommerziellen Rem-countern zeigen sowohl die Kugel mit 30 cm Durchmesser als auch das Einkugel-Albedodosimeter die geringste Energieabhängigkeit.

Meßgerät	<u>R(Cf-252 + D₂O)</u> R(Cf-252)
Eberline PNR 4 (9'' Kugel)	1,83
Anderson-Braun	1,66
Kugel 30 cm ⊘	
Detektor im Zentrum	1,10
Einkugel-Albedotechnik	0,98

Tab. 1: Relatives Neutronen-Ansprechvermögen R = M/H_n von verschiedenen Neutronen-Äquivalentdosismeßgeräten im Strahlungsfeld einer D₂O-moderierten Cf-252-Quelle bezogen auf dasjenige einer unabgeschirmten Cf-252-Quelle [2]

Abb. 4: Meßwertverhältnis M_n(i)/M_n(c) des Albedo-Detektors auf der Kugeloberfläche (i) und des Detektors im Zentrum der Kugel (c) in Abhängigkeit von der Neutronenenergie.

> Innerhalb des Vorhabens werden die Meßergebnisse $H_n(c)$ (Anzeige $M_n(c)$ im Kugelzentrum) mit denjenigen der Einkugel-Albedomeßtechnik H_{fit} verglichen (s.Kap. 6.5), um die durch Energieabhängigkeit verursachte Überempfindlichkeit der Eindetektoranordnung im reaktortypischen Neutronenstrahlungsfeld aufzuzeigen.

> Die Einkugel-Albedomeßtechnik bietet darüber hinaus die Möglichkeit, eine qualitative Aussage über das Neutronenspektrum zu erhalten (s. Kap.6.2). Hierzu wird das Meßwertverhältnis $M_n(i)/M_n(c)$ der Detektoren in den Positionen (i) und (c) herangezogen, welches einen sogenannten Energieparameter liefert (Abb.4). Der Energieparameter kann als die "mittlere Energie" eines angenommenen Neutronenspektrums mit Normalverteilung angesehen werden, dessen Meßwertverhältnis $M_n(i)/M_n(c)$ dem gemessenen entsprechen würde. In Kap.6.4 wird zum Vergleich mit anderen Meßverfahren zur Gamma-Ortsdosisbestimmung der Maximalwert von zwei diametral an der Kugeloberfläche angeordneten TL 700-Detektoren herangezogen.

9 -

Abb. 5: Detektoreinheiten des ortsfesten Meßsystems MEGAN im Incore-Kanal (oben) und am Dampferzeuger 1 (unten). Jede Einheit besteht aus einem BF₃-Zählrohr in einer 30 cm Ø PE-Kugel und einem Geiger-Müller-Zählrohr.

3.2 Ortsfestes Meßsystem MEGAN

3.2.1 <u>Gerätebeschreibung</u>

Das Meßsystem MEGAN der Firma automess besteht aus zwei baugleichen Detektoreinheiten, die ortsfest in der Anlage aufgestellt wurden (Abb.5). Jede Detektoreinheit enthält zwei Sonden zur getrennten Messung der Photonen- und Neutronen-Äquivalentdosisleistung, nämlich ein energiekompensiertes Geiger-Müller(GM)-Zählrohr und einen "Rem-counter" mit einem BF3-Zählrohr in einer Polyäthylen(PE)-Kugel von 30 cm Durchmesser. Die Detektoreinheiten sind über mehradrige Kabel mit einer Versorgungs- und Steuereinheit verbunden. Diese versorgt die Sonden und die Treiberelektronik über zwischengeschaltete Spannungswandler elektrisch und verarbeitet die Sondenimpulse zu Meßwerten der Äquivalentdosisleistung. Diese werden auf einem Monitor in der Einheit Mikro-Sievert pro Stunde (µSv/h) angezeigt.

Über eine Standardschnittstelle ist die Steuereinheit mit einem portablen Kleinrechner verbunden, welcher die Meßwerte übernimmt, ein Meßprotokoll erstellt und die Daten auf einer Magnetband-Cassette abspeichert. Über den Kleinrechner kann das Meßprogramm für MEGAN geändert, eine Messung gestartet sowie das Meßergebnis abgerufen werden. Die graphische Darstellung der Meßwerte erfolgt nach Überspielen der Magnetbänder auf einen PC mit dem Programm PRMEGAN.

3.2.2 <u>Aufbau der Sonden</u>

Die Gamma-Sonde besteht aus einem energiekompensierten GM-Zählrohr ZP 1310, einer Hochspannungsversorgung sowie einem Kabeltreiber für die Impulsübertragung zur Steuereinheit. Die Empfindlichkeit des Detektors beträgt 360 Imp/µSv für Cs-137-Photonen.

- 11 -

Die Neutronen-Sonde besteht aus der bereits erwähnten Polyäthylen-Moderatorkugel und einem in Richtung der polaren Achse eingeschobenen zylindrischen BF₃-Zählrohr von 2,5 cm-Durchmesser. An das Zählrohr ist von unten die Sondenelektronik angeflanscht. Sie enthält einen Impulsverstärker und einen Leitungstreiber für die Signalübertragung. Ein ebenfalls eingebauter Gleichspannungswandler mit galvanischer Trennung erzeugt aus der Versorgungsspannung von 24 V die Zählrohrhochspannung und die Betriebsspannung für die übrigen elektronischen Baugruppen. Die Empfindlichkeit der Neutronen-Sonde beträgt 770 Imp/µSv, die Gammaunterdrückung ist mit 0,5 Sv/h angegeben.

Neutronen- und Gamma-Sonde sind auf ein gemeinsames Gestell montiert; die Detektoren haben einen Abstand von ca. 30 cm.

Aufstellungsorte

Die Detektoreinheiten wurden an zwei Meßpunkten aufgestellt: "MEGAN-YB30" am Dampferzeuger 1 (DE1; YB 30) in Höhe des primärseitigen Mannlochs auf dem linken Betonsockel. Der Aufstellungsort ist bausymmetrisch zum Meßpunkt 2.1 (Anhang A, Abb. 22) für das Einkugel-Albedodosimeter (A-Kugel), das auf dem rechten Betonsockel aufgestellt wurde.

Die zweite Detektoreinheit "MEGAN Incore" befand sich im Incore-Kanal auf dem zweiten Treppenabsatz neben dem Meßpunkt 4.2 (Anhang A, Abb. 27). Während der Meßphasen /3, /4 und /5 (Anhang E, Tab. 4) wurde die gleiche Anordnung, wie in Abb. 5 gezeigt, beibehalten. Während der Meßphase /6 (Probelauf) war die Anordnung von MEGAN und der A-Kugel vertauscht, was sich bei MEGAN mit einer Verringerung der Dosisleistungsanzeige um 10 bis 20 % auswirkte.

3.2.4 <u>Meßtechnische Besonderheiten</u>

Die Neutronen-Sonde besitzt den gleichen Moderator wie das Einkugel-Albedodosimeter (30 cm Ø). Da beide Anordnungen thermische Detektoren – BF_3 -Zählrohr bzw. TL-Festkörperdetektoren – enthalten, können bei gleichen Einsatzbedingungen vergleichbare Meßwerte erwartet werden (Anhang C, Abb. 35, MPT 4.2).

Die Gamma-Sonde zeigt nach dem Abschalten des Reaktors jeweils Dosisleistungen an, welche bis zu einem Faktor 3 über der tatsächlichen Ortsdosisleistung liegen. Dieser Wert klingt mit der Zeit ab. Es besteht die Möglichkeit, daß durch Aktivierung der kupferhaltigen Bauteile und der Schwermetall-Abschirmung des Zählrohres ein zusätzlicher Gammapegel erzeugt wird. Die Übereinstimmung der Meßwerte im Leistungsbetrieb mit denen des "Teletektors" (GM-Zählrohr) ist gut.

3.3 <u>Neutronen-Äquivalentdosisleistungsmesser (Rem-counter)</u>

3.3.1 <u>Technische Beschreibung</u>

Für die nichtstationären Messungen der Neutronendosisleistung wurden tragbare Rem-counter von Typ Alnor 2202D verwendet.

Es handelt sich dabei um Neutronen-Meßgeräte vom Anderson-Braun Typ [12], bestehend aus einem PE-Zylinder von 21,5 cm Durchmesser, einer eingebauten Bor-Plastik Abschirmung und einem BF3-Zählrohr. Die Empfindlichkeit beträgt 1188 Imp/µSv.

Die Anzeige der Meßwerte erfolgt auf einer logarithmischen Skala. Der Anzeigebereich beträgt 1 bis $10^5 \mu Sv/h$.

Wegen der Richtungsabhängigkeit des Ansprechvermögens wurden Messungen mit einer Orientierung der Zylinderachse senkrecht zur Strahleneinfallsrichtung durchgeführt.

3.3.2 <u>Meßtechnische Besonderheiten</u>

Einige Exemplare der Rem-counter zeigten Temperatureffekte, die sich in einer konstanten Anzeige von ca. $10^3 \mu Sv/h$ bei Temperaturen über 35°C bemerkbar machten. Diese Geräte wurden nicht eingesetzt.

Die logarithmische Anzeige der Meßwerte erfordert eine sorgfältige Interpolation bei der Ablesung der Skala.

3.4 <u>Gewebeäquivalente Proportinalzähler (TEPC)</u>

Während der /4-Meßphase (Anhang E, Tab. 4) wurden im Bereich des Incore-Kanals von der Universität des Saarlandes Messungen mit gewebeäquivalenten Proportionalzählern durchgeführt.

3.4.1 <u>Grundlagen des Meßverfahrens</u>

Proportionalzählrohre sind mit gewebeäquivalenten Wänden ausgestattet und werden bei niedrigem Zählgasdruck betrieben (engl.: low pressure <u>T</u>issue <u>E</u>quivalent <u>P</u>roportional <u>C</u>ounter, TEPC). Sie ermöglichen bei durchdringender externer Strahlung die gleichzeitige Messung von Energiedosis und mittlerem Qualitätsfaktor. Die Bestimmung der Energiedosis beruht wie bei den Ionisationskammern auf dem Hohlraumprinzip. Zur Ermittlung des mittleren oder effektiven Qualitätsfaktors benutzt man die vom Proportionalzähler aufgenommenen Impulshöhenspektren. Die Impulshöhen sind proportional dem Energieverlust der in einzelnen Primärreaktionen ausgelösten geladenen Sekundärteilchen beim Durchqueren des Gashohlraumes. Durch geeignete Wahl des Zählgasdrucks wird erreicht, daß die Energieverluste der geladenen Teilchen einem Durchgang durch 1 µm menschlichem Gewebe entsprechen. Die Impulshöhe wird in der mikrodosimetrischen Größe "lineal energy", y, [keV/µm] angegeben. Für die meisten praktischen Anwendungen, insbesondere in gemischten Neutronen-/Gamma-Feldern, ist y eine gute Näherung für das lineare Energieübertragungsvermögen, LET (Linear Energy Transfer). Da der Qualitätsfaktor in Abhängigkeit des LET festgelegt wurde (ICRP 21) und die TEPC die Verteilung der Energiedosis als Funktion des LET näherungsweise messen, lassen sich der mittlere Qualitätsfaktor und die Äquivalentdosis berechnen.

 Abb. 6: Mikrodosimetrisches Spektrum, aufgenommen mit einem gewebeäquivalenten Proportionalzähler (TEPC) am Meßpunkt 4.2 im Incore-Kanal. Die durch Photonen-(Gamma-) und Neutronenstrahlung hervorgerufenen Impulshöhenverteilungen sind durch eine Lücke getrennt.

- 15 -

Die Impulshöhenverteilung ermöglicht auch die Unterscheidung der Äquivalentdosis- und Energiedosisanteile von Neutronen und Gammastrahlen. Grundlage dafür ist, daß die Sekundärteilchen von Photonen (Elektronen) und Neutronen (Rückstoßprotonen., α -Teilchen und andere schwere Ionen) unterschiedliche Ionisierungsdichte bzw. LET haben und sich damit in der Impulshöhe unterscheiden. Ein Beispiel für ein mit einem TEPC gemessenes mikrodosimetrisches Spektrum, das zur Ermittlung der Strahlenschutzmeßgrößen dient und das die Dosisbeiträge von Neutronen und Gammastrahlen erkennen läßt, ist in Abb.6 dargestellt.

3.4.2 <u>Meßanordnungen</u>

In den Bereichen mit niedriger Ortsdosisleistung, z.B. vor der Tür zum Incore-Kanal (MPT 4.6), im Vorraum (MPT 4.5) sowie auf dem Zugang zur Treppe (MPT 4.3) wurde ein kugelförmiger Proportionalzähler mit 6 cm Innendurchmesser verwendet.

Auf der Treppe im Incore-Kanal an den Meßpunkten 4.4 (erster Treppenabsatz) und 4.2 (zweiter Treppenabsatz) sowie ebenfalls im Zugang (MPT 4.3) wurden die Messungen wegen der hohen ODL mit einem weniger empfindlichem Detektor von 1,27 cm Durchmesser durchgeführt.

Die Impulshöhenanalyse erforderte wegen der hohen dynamischen Breite die Verwendung von drei Linearverstärkern mit abgestufter Verstärkung und drei Analog-/Digital-Wandlern. Die Meßwertverarbeitung und eine erste Auswertung erfolgte am Meßort mit Hilfe eines zur Anordnung gehörenden Rechners.

Die Reaktorleistung während der Messungen betrug 30 % RL. Die für 100 % RL angegebene ODL wurde daraus berechnet.

3.5.1 <u>Meßprinzip</u>

Die Wirkungsweise von Geiger-Müller(GM)-Zählrohren, auch Auslösezählrohre genannt, beruht auf der Ionisation von Gasen unter Ausnutzung der Gasverstärkung. Die Ionenladung ist unabhängig von der primären Ionisation, wobei jedes direkt ionisierende Teilchen im Gasraum stets den gleichen Impuls auslöst.

Bei Verwendung von Energiekompensationsfiltern ist die Impulszahl näherungsweise ein Maß für die Dosis.

Im Rahmen des Versuchsprogramms wurden GM-Zählrohre im System MEGAN (s. Kap.3.2), in den digital anzeigenden Personendosimetern des Kraftwerks sowie in den "Teletektoren" zur Messung der Gamma-ODL verwendet.

3.5.2 <u>Meßtechnische Besonderheiten</u>

Da im GM-Zählrohr Impulse durch Photonen bzw. Sekundärelektronen unterschiedlicher Energie ausgelöst werden können, ist eine Dosisbestimmung in Strahlenfeldern mit hochenergetischen Quanten nur näherungsweise möglich. So ist z.B. bekannt [14], daß durch die energiereiche Gammastrahlung des Aktivierungsprodukts Stickstoff-16 (¹⁶N), welche den Hauptdosisbeitrag am Hauptkühlmittelkreislauf während des Leistungsbetriebs liefert, wegen des Paarbildungseffektes vermehrt Sekundärelektronen in der Zählrohrwandung erzeugt werden, wodurch es zu einer Dosisüberschätzung kommt.

Dieser Effekt wird durch die Meßergebnisse am DE 1 (MPT 2.1) bestätigt: Die mit MEGAN und Teletektor (GM) gemessenen Gamma-ODL liegen deutlich über den A-Kugel-Ergebnissen (Anhang C, Abb. 36).

3.6.1 <u>Meßanordnung</u>

Das universelle Albedoneutronendosimeter (Abb.7) enthält in einer Borplastikkapselung vier Thermolumineszenzdetektoren (TLD) als ⁶LiF/⁷LiF-Detektorpaare (TLD 600/TLD 700) jeweils in den Positionen (a) und (i). Die Detektorkristalle sind in einer speziellen zur automatischen Auswertung vorgesehenen Halterung bzw. Kapsel montiert. Ein Detektorpaar – nachfolgend "Albedo-Detektor" genannt – ist in der Borplastikkapsel hinter dem "Albedoneutronenfenster" (Position (i), Rückseite), das andere hinter dem "Betafenster" (Position (a), Vorderseite) angeordnet, um Albedoneutronen bzw. thermische Neutronen aus dem Strahlungsfeld getrennt nachzuweisen [4].

Abb. 7: Bestandteile des universellen Albedoneutronen-Dosimeters. Es wird als Personendosimeter und auf der Oberfläche des Einkugel-Albedodosimeters als Ortsdosimeter eingesetzt.

3.6.2 <u>Meßverfahren</u>

In der Albedodosimetrie erfolgt der Neutronennachweis im gesamten Energiebereich (0,025...10⁷ eV) über die Messung der im Körper des Dosimeterträgers moderierten und zurückgestreuten Neutronen (sogenannte Albedoneutronen, bevorzugt thermische und mittelschnelle Neutronen) unter Verwendung neutronenempfindlicher Detektoren über die Kernreaktionen ${}^{6}\text{Li}(n,\alpha){}^{3}\text{H}$. Albedoneutronendosimeter mit TL-Detektoren sind gleichzeitig auch Gammadosimeter.

Zur Trennung des Gammadosisanteils werden jeweils Dosimeterpaare aus neutronen- <u>und</u> gammaempfindlichen ⁶LiF-Detektoren und allein gammaempfindlichen ⁷LiF-Detektoren eingesetzt. Die Differenz der Meßwertanzeigen ergibt den Meßwert (M_n) durch Neutronen.

Die Albedodosimeterkapselung wird teilweise zusätzlich mit Kernspurätzdetektoren bestückt. Der Kernspurätzdetektor besteht aus einem $10B(n,\alpha)$ -Radiator (Konverter) und einer Polykarbonat-Detektorfolie (MAKROFOL). Beim Kernspurätzdetektor werden nach elektrochemischer Ätzung der Detektorfolie die Kernspuren bei 40-facher Vergrößerung in einem Microfiche Reader ausgezählt. Neutronenanzeige ist hierbei die Anzahl der Kernspuren bezogen auf eine Detektorfläche von l cm². Der Kernspurätzdetektor bietet im Vergleich zum TL-Detektor den Vorteil einer Gammaunempfindlichkeit und der Erweiterung des unteren Meßbereiches bis zu Neutronendosen von 10 µSv.

3.6.3 <u>Meßtechnische Besonderheiten</u>

Die langzeitige Exposition von TL-Detektoren z. B. am Meßpunkt 5.1 führt zu hohen Dosisanzeigen oberhalb von 1 Sv, die eine Korrektion der Nichtlinearität (Supralinearität) der Meßwertanzeige erforderlich macht [5]. Abb.8 zeigt die zur Korrektion der Supralinearität zugrunde gelegte Kalibrierkurve für Photonen- und Neutronenstrahlung.

Abb. 8: Hochdosis-Ansprechvermögen von Thermolumineszenzdetektoren (TLD) bei Photonen-(Gamma-) und Neutronen-Bestrahlung

Das bei Neutronenbestrahlung im TL-Detektor über die Kernreaktion ${}^{6}\text{LiF}(n,\alpha){}^{3}\text{He}$ erzeugte Tritium führt durch radioaktiven Zerfall zu einer internen Strahlenexposition des Detektors. Damit kann zur Bestimmung von hohen Neutronendosen die im TL-Detektor langzeitig akkumulierte Beta-Dosis durch Tritium-Zerfall benutzt werden. Eine Subtraktion des Gammameßwertanteils bzw. eine Korrektion der Supralinearität ist dann nicht mehr erforderlich. Für eine Tritium-Dosisbestimmung wurden die TLD 600-Detektoren über einen Zeitraum von 108 Tagen gelagert und danach ausgewertet. Für die Bestimmung der Neutronenexposition wurde ein experimentell erhaltener Kalibrierfaktor zugrunde gelegt [6]: Eine Anzeige durch Tritium von 9,8 \cdot 10⁻⁷ mSv pro Tag entspricht einer Neutronen-Äquivalentdosisanzeige M_n von 1 mSv (s.Kap. 3.1.2).

3.7 <u>Neutronenfilmdosimeter</u>

Das von amtlichen Meßstellen in der Vergangenheit (bis 1986) ausgegebene Neutronenfilmdosimeter besteht aus einer Universalfilmplakette, die einen Gammafilm sowie einen Kernspurfilm (Kodak NTA-Film) enthält.

Zum Nachweis thermischer Neutronen ist in der Plakette eine gewichtsäquivalente Cadmium-Zinnfilterkombination vorhanden. Langsame Neutronen werden hierbei über eine Einfang-Gammastrahlung im Cadmiumfilter nachgewiesen. Die entsprechende Filmschwärzung wird densitometrisch ausgewertet. Zur Trennung des Gamma-Dosisanteils wird die Schwärzung hinter dem Zinnfilter herangezogen.

Der Kernspurfilm ermöglicht den Nachweis schneller Neutronen über Rückstoßprotonen im Energiebereich oberhalb 1 MeV [7]. Die Auszählung der Kernspuren erfolgt bei 1000-facher Vergrößerung im Mikroskop.

Das Neutronenfilmdosimeter wurde zum Vergleich mit den anderen Dosimetern (s. Kap.3.6 und 3.8) verwendet, da es thermische und höherenergetische Neutronen nachweist und bisher an Reaktoren zur Personenüberwachung eingesetzt wurde. Die Auswertung wurde durch eine amtliche Meßstelle durchgeführt.

3.8 <u>Neutronen-Stabdosimeter SEQ-10</u>

3.8.1 <u>Meßprinzip</u>

Das Stabdosimeter SEQ-10 enthält ebenso wie die üblichen Gamma-Stabdosimeter (z.B. FH 39S) eine Ionisationskammer (I-Kammer) mit statischem Elektrometer. Die Zählrohrwand ist mit Bor-10 (10 B) ausgekleidet, welches als Konverter für thermische Neutronen dient. Das aus der (n, α)-Kernreaktion entstehende α -Teilchen bewirkt eine Ionisation im Kammervolumen, welche der Äquivalentdosis durch thermische Neutronen proportional ist.

3.8.2 <u>Meßtechnische Besonderheiten und Anwendung</u>

Durch geeignete Gasfüllung und Auskleidung der I-Kammer kann erreicht werden, daß lediglich durch Neutronen erzeugte Alphateilchen eine Ionisation hervorrufen können, nicht jedoch Gamma- oder Beta-Strahlung.

Durch Bestrahlung mit harter Gamma-Strahlung aus der Reaktion 19 F (p, $\alpha\gamma$) 16 O konnte nachgewiesen werden, daß bis zu Photonen-Äquivalentdosen von 1 mSv keine Anzeige erfolgt.

Das Stabdosimeter SEQ-10, welches nur für thermische Neutronen empfindlich ist, wurde für Vergleichsmessungen am Zugang zum Incore-Kanal (MPT 4.3) und am Reaktorschild (MPT 13.1) aufgestellt. Referenzdosimeter waren TLD 600/700 Paare jeweils in Cadmium und Zinn-Umhüllung zur selektiven Bestimmung der thermischen Neutronendosis.

Beide Meßverfahren liefern übereinstimmende Ergebnisse (Anhang C, Abb.37 und 39).

<u>Ortsdosis-Meßprogramm</u>

4.1

4

Strahlenschutzbereiche im Kernkraftwerk Mülheim-Kärlich

Neutronen-Strahlenfelder hoher Dosisleistung treten in einem Kernkraftwerk mit Druckwasser-Reaktor (DWR) während des Leistungsbetriebes nur innerhalb des Reaktorsicherheitsbehälters (Containment) auf. Dieser gehört vollständig zum Kontrollbereich der Anlage. Entsprechend der baulichen Auslegung des Reaktorgebäudes (Anhang A) lassen sich die einzelnen Räume innerhalb des Containments in folgende Bereiche einteilen:

- (1) <u>Räume außerhalb des Splitterschutzzylinders:</u> Dazu zählen die Flure auf den Ebenen + 5,6 m und +10,5 m, der Montageschacht und die als "bedingt begehbar" klassifizierten Räume der Umluftfilteranlagen.
- (2) <u>Containment-Bereiche oberhalb der Riegel auf dem</u> <u>Flutbecken und den Dampferzeugerräumen</u>
- (3) <u>Bereiche innerhalb des Splitterschutzzylinders</u> <u>unterhalb der Riegel:</u> Dazu gehören die als "Sperrbereiche" klassifizierten Anlagenräume mit den beiden Dampferzeugern, den Hauptkühlmittelleitungen und den vier Hauptkühlmittelpumpen.
- (4) Incore-Kanal mit Zugang und die Reaktorkaverne
- Nicht zugängliche Räume unterhalb der Riegel:
 Dazu gehören das Flutbecken und das Abstellbecken.

Die Bereiche (1) und (2) können während des Leistungsbetriebes, mit Ausnahme der Umluft-Filterräume, frei begangen werden. Signifikante Neutronen-Strahlenpegel sind dort nicht zu erwarten. In den Filterräumen ist während des Leistungsbetriebes lediglich mit einer geringfügigen Gammastrahlung durch das Aktivierungsprodukt Ar-41 zu rechnen. Die Raumbereiche (3) und (4) sind Sperrbereiche im Sinne des § 57 StrlSchV. Sie dürfen nur zur "Durchführung vorgesehener Betriebsvorgänge oder aus zwingenden betrieblichen Gründen" unter der Kontrolle des Strahlenschutzes betreten werden. Zum Verständnis der in Kap.5 beschriebenen Begehungen der Anlagenräume (3) sind in Abb.ll und 12 die Begehungswege und die ambulant gemessenen ODL angegeben. Aufgrund der Abschirmung durch bauliche Strukturen sind einige Raumbereiche unterhalb der Ebene 3,5 m ohne erhöhtes Strahlenrisiko bei laufender Anlage zu begehen. Dies gilt insbesondere für den Reaktorsumpf, wo die Strahlenfelder im wesentlichen durch die Rohrleitungen der Hilfssysteme bestimmt werden.

Eine Besonderheit des KKW Mülheim-Kärlich ist der sogenannte Incore-Kanal (Bereich (4), Anhang A, Abb.27). Durch ihn verlaufen die Druckrohre, welche die Meßleitungen der Innenkerninstrumentierung umschließen. Diese Druckrohre münden in der unteren Kalotte des Reaktordruckbehälters. Durch den Incore-Kanal ist der Reaktorkavernensumpf, d.h. der Bereich unmittelbar unterhalb der thermischen Isolation des Druckbehälters, zugänglich. Da zwischen Reaktorkaverne und Incore-Kanal keine nennenswerte Abschirmung vorhanden ist, sind dort während des nuklearen Betriebes hohe bis sehr hohe Neutronen- und Gammastrahlenfelder vorhanden. Durch den als Vorraum ausgeführten Zugang zum Incore-Kanal ist ein kurzzeitiges Betreten des oberen Teils des Incore-Kanals für Meßzwecke gefahrlos möglich. Eine betriebliche Notwendigkeit, den Incore-Kanal bei laufender Anlage zu begehen, war während der Inbetriebsetzung nicht gegeben.

Das Flutbecken sowie das Abstellbecken (5) sind bei laufender Anlage mit Betonriegeln abgedeckt und nicht zugänglich. Diese Bereiche können deshalb nur dann betreten werden, wenn die Riegel bei abgeschalteter Anlage entfernt sind. Dies war während der Inbetriebsetzung insgesamt viermal der Fall, so daß bei diesen Gelegenheiten die aufgestellten Ortsdosimeter gewechselt werden konnten.

4.2 <u>Methoden der Ortsdosismessung</u>

Zur Bestimmung der Neutronen (n)- und Gamma (γ) -Ortsdosisleistung wurden sowohl nichtstationäre, ambulante Messungen mit tragbaren, direkt ablesbaren Meßgeräten als auch mit stationären, d. h. zeitweilig ortsfesten Detektorsystemen durchgeführt:

a) Nichtstationäre Meßsysteme

- Teletektor mit GM-Zählrohr (γ)
- Radiameter FH 40 mit GM-Zählrohr (γ)
- Alnor REM-Counter mit BF3-Zählrohr (n)

b) <u>Stationäre Meßsysteme</u>

- 30 cm PE-Moderatorkugel mit zwei bzw. vier Albedodosimetern an der Oberfläche und einem Neutronen- und Gamma-Detektor im Zentrum (Einkugel-Albedomeßtechnik, s. Kap. 3.1)
- Li-6/Li-7-Detektoren in Cd- bzw. Sn-Kapselung "frei in Luft" zum Nachweis thermischer Neutronen
- Stabdosimeter SEQ-10 für thermische Neutronen (s.Kap.3.8)
- Gewebeäquivalenter Proportionalzähler (TEPC, Rossi Counter, s.Kap. 3.4))
- System MEGAN mit BF₃-Zählrohr in 30 cm PE-Moderatorkugel sowie GM-Zählrohr (s.Kap. 3.2)

4.3 <u>Auswahl der Meßpunkte</u>

4.3.1 <u>Auswahlkriterien und Bezeichnungen</u>

Die Meßpunkte (MPT) der stationären Meßsysteme wurden mit dem Ziel ausgewählt, die Orte der höchsten Neutronendosisleistung aufzufinden sowie einen Überblick über die Verteilung der Neutronenfelder in den Sperrbereichen zu erhalten. Zusätzliche Meßpunkte in den begehbaren Bereichen (1) und (2) (s.Kap.4.1) dienen dem Nachweis, daß dort die ODL innerhalb der auslegungsmäßigen Vorgabe (< 10µSv/h) liegt.

Die Meßpunkte werden durch Dezimalzahlen (XX.Y) gekennzeichnet, wobei die ganze Zahl (XX) einen Raumbereich oder eine Komponentengruppe der Anlage kennzeichnet und die Dezimale (Y) die verschiedenen Redundanten einer Komponentengruppe oder verschiedene Aufpunkte in einem Raumbereich festlegt.

4.3.2 Lage der wichtigsten Meßpunkte (MPT)

- <u>MPT 1:</u> Hauptkühlmittelpumpen (HKMP) (Bereich (3))
- <u>MPT 1.1:</u> Pumpenkammer der HKMP 2 (10YD20) (keine stationäre Messung!)
- *<u>MPT 1.2:</u> Pumpenkammer der HKMP 3 (10YD30), an der Wand zum RDB
- *<u>MPT 1.3:</u> Pumpenlaterne der HKMP 3; auf dem Gitterrost (+ 0,79 m) in der Pumpenkammer

<u>MPT 2:</u> Dampferzeuger (Bereich (3))

*<u>MPT 2.1:</u> Rechter Betonsockel vor dem unteren primärseitigen Mannloch des DE1 (YB30) auf Kote – 3,8 m

- *<u>MPT 2.2:</u> Rechter Betonsockel vor dem unteren primärseitigen Mannloch des DE2 (YB70) auf Kote – 3,8 m
- *<u>MPT 2.3:</u> Auf dem Gitterrost vor dem sekundärseitigen Mannloch des DE1 (YB 30) auf Kote – 1,5 m
- <u>MPT 3:</u> Hauptkühlmittelleitungen (Bereich (3))
- *MPT 3.1: Vor dem Kriechgang zum RDB neben dem kalten Strang YA 21
- *MPT 3.2: In der Abschottung (Sleeve) des kalten Strangs YA 31
- *MPT 3.3: In der Abschottung (Sleeve) des heißen Strangs YA 50
- *MPT 3.4: Unter dem kalten Strang YA 21 auf Kote 3,8 m
- *MPT 3.5: Unter dem kalten Strang YA 31 auf Kote 3,8 m
- MPT 4: Incore-Kanal (Bereich (4), Anhang A, Abb.27)
- *<u>MPT 4.1:</u> Auf der Teppe im Incore-Kanal ca.3 m vor dem Reaktorkavernen-Sumpf TX 20
- *MPT 4.2: Zweiter Treppenabsatz unterhalb des Zugangs zum Incore-Kanal
- *MPT 4.3: Zugang zum Incore-Kanal; Plattform oberhalb der Stahltreppe
- *MPT 4.4: Erster Treppenabsatz unterhalb des Zugangs zum Incore-Kanal (unteres Ende der Stahltreppe)
- MPT 4.5: Im Vorraum zum Incore-Kanal
- <u>MPT 4.6:</u> Vor der Zugangstür zum Incore-Kanal
- MPT 5,6,7: Meßpunkte unter den Riegeln (Bereich (5))
- *MPT 5.1: Flutbecken in Höhe des RDB-Deckelflansches
- *MPT 5.2: Abstellbecken zwischen Abstellring und Reaktorschild
- *MPT 6.1: Steuerelement(SE)-Bühne
- *<u>MPT 7.1:</u> Gitterrost am heißen Strang (YA 50) auf Kote 17,8 m unterhalb des oberen Rohrbogens zu DE 1
- MPT 8: Unter dem RDB (Bereich (3))
- *MPT 8.1: Reaktorkaverne auf Kote 11,9 m unter dem RDB
- *MPT 8.2: Reaktorsumpf (TX 30) auf Kote 11,5 m

MPT 9,10,11: Über den Riegeln (Bereich (2))

- *MPT 9.1: Riegel über dem RDB auf Kote 10,5 m
- *<u>MPT 10.1:</u> Profilanordnung in der Gebäudeachse 0° 180° über den Riegeln auf Kote 10,5 m (in Richtung Abstellbecken)
- *<u>MPT 10.2:</u> Profilanordnung in der Gebäudeachse 90° 270° auf Kote 10,5 m (in Richtung DE-Abschirmung)
- *<u>MPT 11.1:</u> Riegel über DEL (YB 30) in der Achse des DE auf Kote 23,0 m

4.3.3 Sonstige Meßpunkte (Bereiche (1) und (3))

- *MPT 12.1: Druckentlastungsschacht auf Kote 10,5 m am Rand des Abstellbeckens
- *<u>MPT 13.1:</u> Reaktorschild in Höhe der Zwischenbühne auf Kote – 9,0 m; Zugang über die "lange Treppe" (s.Kap.5.3.2)
- *MPT 14.1: Gegenüber der Personenschleuse am Zugang zum Treppenhaus
- *MPT 15.1: Am Incore-Becken auf Kote 10,5 m
- *MPT 16.1: Montageschacht auf Kote <u>+</u> 0,0 m; unterhalb des Zugangs zur Pumpenkammer der HKMP 3 (YD 30)
- *<u>MPT 16.2:</u> Vor der Tür zur Pumpenkammer der HKMP 3; auf dem Podest
- *<u>MPT 17.1:</u> Reißfolie, an den Frischdampfleitungen RA 11/12 von DE1 (YB 30) auf Kote + 8,0 m
- *<u>MPT 17.2:</u> Reißfolie, an den Frischdampfleitungen RA 13/14 von DE2 (YB 70) auf Kote + 8,0 m

An den mit * gekennzeichneten Meßpunkte wurden während mindestens einer Meßphase Einkugel-Albedodosimeter aufgestellt (Anhang E, Tab.4).

4.4.1 Ermittlung der Ortsdosisleistungen

Für sämtliche untersuchten Meßpunkte ist die Ortsdosis in der Einheit Milli-Sievert (mSv) angegeben und auf die Reaktor-Vollast-Stunde (100 % RL) bezogen. Zeitbasis ist dabei der Reaktorabbrand während der Expositionsdauer der Ortsdosimeter. Es wird angenommen, daß die Ortsdosisleistung proportional zur Reaktorleistung ist. Der zeitliche Verlauf der Ortsdosisleistung am Dampferzeuger 1 (YB 30) neben Meßpunkt 2.1 sowie im Incore-Kanal am Meßpunkt 4.2 wurde durch das Meßsystem MEGAN erfaßt (Anhang B).

Abb. 9: Neutronen- und Gamma-Dosisleistungen in Abhängigkeit von der Reaktorleistung, gemessen mit dem ortsfesten Meßsystem MEGAN.

Ein Vergleich der ODL mit der thermischen Reaktorleistung (Abb. 9) zeigt, daß die Gamma-Dosisleistung, die durch die Aktivierung des Hauptkühlmittels erzeugt wird, der Reaktorleistung weitgehend proportional ist. Dies gilt nur näherungsweise für die Neutronendosisleistung, da sich hier zusätzlich Einflüsse der Steuerstabstellung bemerkbar machen: Beim Verfahren der Trimmelemente (Gruppe 8) verschiebt sich die axiale Neutronenverteilung, was sich in einer Änderung des Neutronen-Meßwertes am Dampferzeuger, bedingt durch Flußänderungen im oberen Kernbereich, und in gegenläufiger Weise im Incore-Kanal, bedingt durch den unteren Kernbereich, bemerkbar macht. Mit zunehmender Reaktorleistung werden die Regelelemente (Gruppe 7) aus dem Reaktorkern herausgefahren; dadurch nimmt die Neutronenproduktion in der oberen Kernhälfte zu.

4.4.2 Darstellung der Ortsdosisleistungen

In Anhang A ist die Lage der Meßpunkte in den Grund- und Aufrissen des Reaktorgebäudes durch V gekennzeichnet. Die gemittelten Einkugel-Albedomeßwerte der Neutronen- und Gammadosisleistung sind in den eingerückten Tabellen aufgeführt. Die für die Mittelung benutzten Meßwerte der einzelnen Meßphasen sind beispielhaft für die wichtigsten Meßpunkte in den Balkendiagrammen von Anhang C wiedergegeben. Daraus lassen sich die Streuungen der einzelnen Meßwerte entnehmen.

Zum Vergleich mit den Meßwerten der Einkugel-Albedodosimeter wurden an den Meßpunkten im Incore-Kanal sowie am Dampferzeuger 1 Vergleichsmessungen mit anderen stationären Meßeinrichtungen (MEGAN, TEPC, TLD-Paare frei in Luft, SEQ 10) sowie tragbaren Meßgeräten (Rem-Counter, Teletektor) durchgeführt. Die Ergebnisse sind ebenfalls in Anhang C dargestellt.

5 <u>Personendosis-Meßprogramm</u>

5.1 Begehung von Sperrbereichen

Während der Inbetriebsetzung der in ihrer Auslegung neuartigen Anlage Mülheim-Kärlich (KMK) bestand zeitweise die Notwendigkeit, Sperrbereiche während des Leistungsbetriebes zu betreten. Diese Begehungen dienten u.a.

- ° der Leckage-Kontrolle von hauptkühlmittelführenden Komponenten
- Kontrolle des Reaktorsumpfes
- Überprüfung der Lüftungsanlagen durch Temperaturmessung und Leckageprüfung
- Einstellarbeiten an Armaturen
- Strahlenschutzmessungen im Rahmen der Arbeitsvorbereitung und -überwachung

Die Strahlenschutzmessungen umfassen sowohl Gamma- als auch Neutronen-Ortsdosisleistungsmessungen. Alle beteiligten Personen waren zusätzlich zu ihren Gammadosimetern mit amtlichen Neutronendosimetern (NTA-Film) und Albedo-Dosimetern ausgestattet.

5.2 <u>Ermittlung von Personendosen</u>

Zur Bestimmung der Neutronen-Personendosis wurden insgesamt 180 Albedo-Dosimeter an Mitarbeiter ausgegeben, die Tätigkeiten in Sperrbereichen des Reaktorgebäudes durchzuführen hatten bzw. die dafür vorgesehen waren. Dazu gehörte u.a. das Schichtpersonal auf der Warte, das Strahlenschutzpersonal sowie Rundgänger und Interventionspersonal für spezielle Arbeiten bei laufender Anlage. Auf 27 Dosimetern konnten Neutronendosen nachgewiesen werden. Die höchste, während eines Zeitraums von ca. vier Monaten gemessene Neutronen-Personendosis betrug 0,5 mSv. Sie wurde im Rahmen des Ortsdosismeßprogramms aufgenommen und ist nicht charakteristisch für den Betrieb der Anlage. Die Zusammenstellung der aufgenommenen Gamma- und Neutronendosen (Abb. 10) läßt zwei Gruppen von Mitarbeitern unterscheiden:

- Die am Versuchsprogramm aktiv beteiligten Mitarbeiter weisen eine Neutronendosis auf, die maximal 25 % der Gammadosis beträgt.
- Für die übrigen Mitarbeiter, die kraftwerkstypische Arbeiten ausführten, liegt der Neutronenanteil deutlich unter 10 % der Gesamtdosis.

Volle Symbole: am ODL-Meßprogramm beteiligte Personen

5.3 <u>Überwachung von Arbeitsabläufen</u>

5.3.1 <u>Personenüberwachung in Sperrbereichen</u>

Alle Personen, die im Leistungsbetrieb die Sperrbereiche des Containments betreten, sind mit je einem amtlichen Gamma- und Neutronenfilmdosimeter, einem TL-Dosimeter der Anlage, einem direkt ablesbaren Digitaldosimeter mit GM-Zählrohr sowie einem Albedo-Personendosimeter (s. Kap.3.6) ausgerüstet. Als Beispiel für die Dosisbelastung während einer Begehung von Sperrbereichen wird nachfolgend der Weg eines Rundgängers beschrieben, dessen Aufgabe darin bestand, zur Überprüfung der Lüftungsanlagen die Raumtemperaturen an verschiedenen Aufpunkten der Anlage abzulesen und zu protokollieren.

5.3.2 <u>Dosisbelastung eines Rundgängers</u>

Der Weg des Rundgängers ist in den Grundrissen (Abb.ll und 12) eingezeichnet. Zusätzlich sind an einigen markanten Stellen die mit tragbaren Geräten, Rem-counter (Alnor 2202 D) und Teletektor, gemessenen ODL angegeben:

Der Mitarbeiter betritt den Sperrbereich auf der Ebene -4,5 m über eine Lüftungsschleuse (1). Er geht die "lange Treppe" (2) hinab bis zum Reaktorsumpf auf -11,5 m (3). Am Fuß der Treppe wendet er sich nach links und geht, an einem TH-Sumpf (4) vorbei unter dem Auflager (5) des Dampferzeugers 1 (DE) hindurch bis zum Fuß der Zugangstreppe zum DEl (6). Über diese Treppe mit Zwischenabsätzen (7) und (8) erreicht er die Betonsockel der unteren Abstützung des DEl (9). An dieser Stelle ist die maximale ODL des Rundgangs vorhanden. Die Aufenthaltsdauer zum Ablesen und Notieren der Temperatur beträgt dort ca. 10 s. - 35 -

Messort	Neutronen-ODL (mSv/h)	Gamma-ODL (mSv/h)
(1)	0.001	0.006
(2)	0.004	0.2
(7)	0.35	3
(8)	0.2	5
(9)	0.5	25

Abb.11: Grundriβ des Reaktorgebäudes auf Kote -4/-4,5 m.

Weg eines Rundgängers in den Dampferzeugerräumen. Die Ortsdosisleistungen wurden mit tragbaren Meßgeräten bei 100 % Reaktorleistung gemessen. - 36 -

Messort	Neutronen-ODL (mSv/h)	Gamma-ODL (mSv/h)
(3)	0.015	0.1
(4)	0.01	0.02
(5)	0.13	0.15
(6)	0.07	0.1
(10)	0.015	0.2
(11)	0.003	0.25
(12)	0.015	0.5
(13)		0.75

Abb.12: Grundriß des Reaktorgebäudes auf Kote – 11,5 m. Weg eines Rundgängers im Reaktorsumpf. Die Ortsdosisleistungen wurden mit tragbaren Meßgeräten bei 100 % Reaktorleistung

gemessen.

Der Rundgänger geht den gleichen Weg über die Treppe zurück bis zum Sumpf (10), den er bis zum gegenüberliegenden Treppenaufgang (11), (12) durchquert, bevor er den Rückweg antritt, der ihn am TX-Sumpf (13) vorbeiführt. Er verläßt die Anlagenräume wieder über die "lange Treppe" und die bereits erwähnte Lüftungsschleuse.

Die beschriebene Begehung, die durchschnittlich vier Minuten dauert, wurde insgesamt sechsmal bei 100 % RL durchgeführt. Die dabei aufgenommene Personendosis für alle sechs Begehungen, ermittelt mit verschiedenen Dosimetern, ist in Tab. 2 aufgeführt.

MESSVERFAHREN	DOSIS [mSv]	STRAHLENART
Digitaldosimeter (GM)	0.19	Gamma
Albedodosimeter mit TLD 600/700	0.19 0.03	Gamma Neutronen
Makrofol+B-Konverter	0.06	Neutronen
Amtliche Filmdosimeter	0.20 0.0	Gamma Neutronen

Tab. 2: Personendosis eines Rundgängers, aufgenommen bei sechs Begehungen der Dampferzeugerräume; Dauer einer Begehung: 4 Min; Anzeigen der verwendeten Dosimeter.

5.4 Einbau der Anfahr-Neutronenquellen

5.4.1 <u>Handhabungsschritte</u>

Der Einbau der Anfahrneutronenquellen (NQ) in den Erstkern des Reaktors ist eine Tätigkeit, bei der mit einer fast reinen Neutronendosisbelastung zu rechnen ist. Es handelt sich dabei um einen einmaligen Vorgang, der nur vor der ersten Kritikalität eines Reaktors erforderlich ist.

Die Neutronenquellen sind ca. 4 m lange Stäbe, die ca. 14 G Bq des spontan spaltenden Radionuklids Californium-252 (²⁵²Cf) in einer nahezu punktförmigen Anordnung enthalten. Die Neutronen-Äquivalentdosisleistung in 1 m Abstand, gemessen mit einem Rem-counter, beträgt 30 mSv/h. Die entsprechende Photonen-Äquivalentdosisleistung wurde mit 1,25 mSv/h ermittelt. Die Entnahme der NQ aus dem Transportbehälter sowie das Absenken in die vorgesehenen Brennelemente erfolgte mit dem Hilfshub des Rundlaufkrans.

Sämtliche Handhabungsschritte wurden mit drei Video-Systemen überwacht und über das Kranfahrerpult ferngesteuert. Lediglich für die Schwenkbewegung des Rundlaufkrans von der Transportflasche in das Lagerbecken war Sichtverbindung zur NQ und eine Einweisung des Kranfahrers per Funksprechgerät erforderlich. Die mit NQ bestückten Brennelemente (BE) wurden anschließend mit der BE-Wechselmaschine aus dem Lagerbecken entnommen und in den Reaktorkern eingesetzt (Abb.13).

5.4.2 <u>Dosisbelastung des Personals</u>

Eine mögliche Dosisbelastung war nur für insgesamt sieben Personen anzunehmen, die sich während des Einbaus im Sicherheitsbehälter aufhielten. Diese Personen waren neben den üblichen Gamma-Dosimetern (Stab- und Filmdosimeter) zusätzlich mit einem amtlichen Neutronen-Filmdosimeter und einem Albedo-Personendosimeter ausgestattet.

Abb.13: Reaktorgebäude, Grundriβ + 23,00 m; Personen-Aufenthaltsorte und Handhabungspositionen beim Einbau der Anfahr-Neutronenquellen

- (1) BE-Wechselmaschinen-Fahrer
- (2) Einweiser
- (3) Aufsichtführer
- (4) Kranfahrer
- (5) Transportbehälter
- (6) BE-Lagergestell
- (7) Reaktor
- <I> A-Kugel: BE-Wechselmaschine
- <II> A-Kugel: Dampferzeuger-Riegel.

Zur Überwachung der Ortsdosis wurden auf dem DEl neben dem Platz des Einweisers sowie auf der BE-Wechselmaschine je ein Einkugel-Albedodosimeter aufgestellt.

Die Albedo-Dosimeter waren sowohl mit TLD 600/700 Detektor-Paaren als auch mit Makrofol-Kernspurätzdetektoren und Bor-Konvertern bestückt.

Von den eingesetzten Dosimetern zeigten allein die Albedodosimeter eine Personen- bzw. Ortsdosis an. Die amtlichen Filmdosimeter (Neutronen und Gamma) lieferten keine Anzeige, ebenso die Stabdosimeter. In Tab. 3 sind die gemessenen Personen- bzw. Ortsdosen aufgeführt.

Pos. Nr.	Person / Ort	NEUTRONEN - Äquivalentdosis [mSv] Makrofol + B-Konverter	PHOTONEN(Gamma) - Äquivalentdosis [mSv] TLD 700
(1) _(2) _(3) _(4)	BE – Wechselmaschinen– Fahrer Einweiser Aufsichtführer Kranfahrer	0.010 0.018 0.007 0.0	0.01 0.0 0.0 0.0
<1> <11>	BE – Wechselmaschine Dampferzeuger – Riegel	0.052 0.029	0.01 0.01

Tab. 3: Personen- und Ortsdosen beim Einbau der Anfahr-Neutronenquellen, gemessen mit Albedo-Dosimetern.

6 <u>Diskussion der Ergebnisse</u>

6.1 <u>Verteilung der Neutronenfelder</u>

Aus den gemessenen Neutronendosisleistungen (Anhänge A und D) ergibt sich folgendes Bild über die Verteilung der Neutronenfelder:

Neutronenquelle ist der Reaktorkern. Für den Strahlenschutz relevant sind diejenigen Neutronen, die den Reaktordruckbehälter (RDB) verlassen und in den Ringspalt zwischen dem RDB und dem biologischen Schild gestreut werden. Nur ein geringer Teil der Neutronen durchdringt die schweren Betonabschirmungen auf direktem Weg und ist dann in den Anlagenräumen, z.B. am MPT 13.1 nachweisbar.

Der für die Dosisbelastung bedeutsamere Teil wird im Ringspalt in vertikale Richtung gestreut und verläßt die Reaktorgrube über den Kompensator und das Flutbecken, durch die Abschottungen (Sleeves) der HKM-Leitungen sowie über den Reaktorkavernensumpf, von wo aus die Neutronen in den Incore-Kanal gestreut werden.

Die an der Steuerelementbühne nachweisbaren Neutronen werden durch die Betonriegel über dem Flutbecken vollständig abgeschirmt, so daß im begehbaren Bereich mit tragbaren Geräten keine Neutronendosisleistung nachweisbar ist.

Die durch die Sleeves austretenden Neutronen werden in die Dampferzeugerräume und in die Pumpenkammern gestreut. Sie führen an der Pumpenlaterne und im Bereich der unteren Wasserkammer der Dampferzeuger zu Dosisleistungen von einigen Milli-Sievert pro Stunde. Die daraus entstehende mögliche Strahlenexposition ist jedoch gegenüber derjenigen durch die harte Strahlung des Aktivierungsproduktes ¹⁶N gering. So werden z.B. am Dampferzeugeraustritt des Hauptkühlmittels (kalter Strang) im Kontakt zur Rohrleitung Photonen-Äquivalentdosisleistungen von 800 mSv/h gemessen. An den Meßpunkten 2.1 und 2.2 verhalten sich die Photonenund Neutronenpegel etwa im Verhältnis 10:1.

Im Incore-Kanal, der ohne Betonabschirmung direkt mit der Reaktorkaverne verbunden ist, herrscht ein gegenüber der Photonenstrahlung erhöhter Neutronenpegel. Dies läßt sich mit den guten Streueigenschaften der Neutronen erklären, die dem gekrümmten Verlauf des Incore-Kanals besser folgen können als Photonen.

Die Abb. 40 und 41 in Anhang D geben einen Überblick über die nach den Beträgen der Äquivalentdosisleistungen geordneten Meßpunkte mit hoher Ortsdosisleistung (ODL) in Sperrbereichen und begehbaren Bereichen der Anlage. In den Sperrbereichen betragen die Maximalwerte der Neutronen-Äquivalentdosisleistung 500 bis 1300 mSv/h.

In den begehbaren Bereichen (1) und (2) ist die Neutronen-Äquivalentdosisleistung erwartungsgemäß gering mit einem Maximalwert von 0,015 mSv/h am Meßpunkt 16.2 ($H_n/H_{\gamma}=3$). Der Mittelwert aller übrigen Meßpunkte beträgt $H_n = 0,00017$ mSv/h mit $H_n/H_{\gamma} < 0,1$.

Eine Zusammenstellung der mit den verschiedenen Meßverfahren ermittelten Dosisleistungen, geordnet nach Meßpunkten bzw. Meßphasen, enthält Anhang E, Tab. 5.

Für die Beurteilung der Meßergebnisse wurde für die TL-Detektoren die jeweils empirisch ermittelte zufällige Komponente der Meßunsicherheit berechnet. Für die Ermittlung abgeleiteter Meßgrößen (Tab. 6, Anhang E) und die Interpretation der Ergebisse werden nur solche Messungen herangezogen, die innerhalb eines Variationskoeffizienten von \pm 30 % liegen.

6.2 <u>Energieverteilung der Neutronen</u>

Im Hinblick auf den Einsatz von Albedodosimetern in der Personendosimetrie wird anstelle einer Neutronen-Energieverteilung bzw. einer mittleren Neutronenenergie ein sog. Energieparameter angegeben, der – wie bei der Angabe einer mittleren Neutronenenergie – zur Interpretation des Streustrahlenfeldes bzw. der Energieabhängigkeit des Albedodosimeters herangezogen werden kann. Das Verfahren zur Bestimmung des Energieparameters ist in Kap. 3.1.2 beschrieben.

Die Häufigkeitsverteilung für den Energieparameter E_0 in Abb. 14 zeigt, daß die Neutronenstrahlungsfelder in den Anlagenräumen des LWR hauptsächlich Neutronenenergieparameter zwischen 20 keV und 180 keV ergeben.

Abb.14: Häufigkeitsverteilung des Neutronen-Energieparameters am Kernkraftwerk Mülheim-Kärlich.

Abb.15: Häufigkeitsverteilung des Neutronen-Energieparameters für Leistungsreaktoren in der BRD und in den USA, ermittelt mit unterschiedlichen Meßverfahren.

Diese Ergebnisse stimmen gut überein mit älteren Messungen (Abb. 15), die mit der Einkugel-Albedomeßtechnik an verschiedenen deutschen Leistungsreaktoren [8] bzw. mit spektroskopischen Meßmethoden an amerikanischen Druckwasserreaktoren [9, 10] und im Kernkraftwerk Gösgen, Schweiz, durchgeführt wurden [11].

6.3 <u>Kalibrierfaktor für Albedoneutronendosimeter</u>

Das Neutronen-Ansprechvermögen $R_n(i)$ bzw. der Kalibrierfaktor $N_n(i)$ des Albedodetektors ergibt sich aus dem Meßwert $M_n(i)$ und dem Referenzwert der Neutronen-Äquivalentdosis $H_n(c)$ zu

$$R_n(i) = M_n(i)/H_n(c) = 1/N_n(i).$$

Die an den verschiedenen Meßpunkten gefundenen Kalibrierfaktoren streuen innerhalb eines Faktors 2. In Abb.16 ist das Neutronen-Ansprechvermögen in Abhängigkeit vom Meßwertverhältnis $M_n(a)/M_n(i)$ wiedergegeben. Die große Streuung des Meßwertverhältnisses läßt für die Personendosimetrie keine Korrelation zum Neutronen-Ansprechvermögen zu, die zur Korrektion des Ansprechvermögens herangezogen werden könnte.

Die Häufigkeitsverteilung für das Neutronen-Ansprechvermögen in Abb.17 zeigt, daß 77 % aller $R_n(i)$ -Werte zwischen zwei und vier liegen. Ausreißer können auf örtliche Asymmetrien des Strahlenfeldes zurückgeführt werden. Für die Personendosimetrie im Kernkraftwerk kann daher ein mittleres Ansprechvermögen von $R_n(i) = 3$ angenommen werden.

Abb.16: Neutronen-Ansprechvermögen R_n des Albedo-Detektors (i) in Abhängigkeit vom Meßwertverhältnis $M_n(a)/M_n(i)$ der Einkugel-Albedodosimeter. Es ist keine funktionale Beziehung erkennbar.

Abb.17: Häufigkeitsverteilung des Neutronen-Ansprechvermögens R_n des Albedo-Detektors (i) für alle Meßpunkte des Ortsdosis-Meßprogramms.

-

6.4 <u>Vergleich der Meßverfahren zur Ortsdosisbestimmung</u>

6.4.1 <u>Kennzeichnung der Meßverfahren</u>

In Abb. 35 - 39 (Anhang C) sind die mit verschiedenen Ortsdosismeßverfahren ermittelten ODL vergleichend dargestellt.

Folgende Abkürzungen werden für die eingesetzten Meßgeräte bzw. Detektorsysteme verwendet:

A	Einkugel- <u>A</u> lbedodosimeter		
м	Meßsystem <u>M</u> EGAN		
R	<u>R</u> em-Counter		
т	<u>T</u> EPC; gewebeäquivalenter Proportioalzähler		
G	Teletektor mit <u>G</u> eiger-Müller Zählrohr		
S	SEQ 10; Stabdosimeter für thermische Neutronen		
TL	<u>TL</u> -Detektoren in Cd- und Sn-Kapselung		
A4	TLD der Fa. ALNOR mit 0, <u>4</u> mm Dicke auf		
	<u>A</u> lbedo-Kugel		
A9	TLD der Fa. ALNOR mit 0, <u>9</u> mm Dicke auf		
	<u>A</u> lbedo-Kugel		
AV	TLD der Fa. <u>V</u> INTEN auf <u>A</u> lbedo-Kugel		

6.4.2 <u>Vergleichsmessungen im Incore-Kanal</u>

Am Meßpunkt 4.2 (Anhang C, Abb.35) zeigen die während verschiedener Meßphasen bestimmten Neutronen-Äquivalentdosisleistungen eine gute Übereinstimmung. Abweichungen, z. B. der MEGAN-Werte in den Meßphasen /5 und /6, lassen sich durch eine Veränderung der Aufstellungsposition auf dem zweiten Treppenabsatz im Incore-Kanal erklären.

Der gegenüber den Albedo-Dosimetern erhöhte Gamma-Pegel ist bei MEGAN u.U. auf die in Kap. 3.2.4 erwähnte Aktivierung der Kupferbauteile des Detektors zurückzuführen. Die Messungen mit dem TEPC-Zählrohr an den Meßpunkten 4.2 und 4.3 (Abb. 35, 37) zeigen, daß die Neutronen-Äquivalentdosisleistung mit dem TEPC im Vergleich zum Einkugel-Albedodosimeter bis zu einem Faktor 2 unterschätzt wird. Am Meßpunkt 4.3 wird im Vergleich zum Rem-Counter eine Unterschätzung von etwa 20 % erhalten. Für den am Meßort ermittelten Neutronenenergieparameter von weniger als 100 keV wird entsprechend den Kalibrierergebnissen mit monoenergetischen Neutronen eine Minderanzeige um einen Faktor 2 erwartet [15].

Bei der Bewertung der TEPC-Messungen muß berücksichtigt werden, daß die Aufstellung des Proportionalzählrohres am MPT 4.2 aus räumlichen Gründen nur oberhalb der Albedo-Kugel und damit in einem schwächeren Strahlenfeld erfolgen konnte.

Am <u>Meßpunkt 4.4</u> (Abb.38) wurden die Albedo-Kugeln mit Detektoren unterschiedlicher Hersteller und Abmessungen bestückt und jeweils 1/2 h bestrahlt. Die Meßergebnisse zeigen eine gute Übereinstimmung.

Trotz gleicher Aufstellungsbedingungen liegt die TEPC-Neutronendosisleistung deutlich unter den Ergebnissen der übrigen Meßverfahren. Die Rem-Counter und GM-Messungen zeigen systematisch einen höheren Strahlenpegel an.

Wegen der guten Zugänglichkeit wurden am Meßpunkt 4.3 (Abb.37) zahlreiche Messungen durchgeführt. Auffallend ist die große Schwankungsbreite der mit tragbaren Geräten (Rem-counter, GM-Zähler) gemessenen Werte, die zu unterschiedlichen Zeitpunkten von verschiedenen Personen mit Geräten der Anlage ermittelt wurden. Sie sind charakteristisch für Routine-Messungen im Strahlenschutz, bei denen die Streuung des Meßaufpunktes, die Meßdauer sowie die subjektive Ablesung der Analogskala, z.B. mit logarithmischer Teilung, als Fehler auftreten. Die Neutronen-Messungen des TEPC liegen wiederum unter den übrigen Meßwerten. Die TLD-Anordnung "frei in Luft" sowie das Stabdosimeter SEQ-10 dienen zur Bestimmung des thermischen Neutronen-Äquivalentdosisanteils. Er beträgt ca. 1/10 der gesamten Neutronen-Äquivalentdosisleistung.

6.4.3 <u>Vergleichsmessungen am Dampferzeuger 1</u>

Die am MPT 2.1 gewonnenen Meßwerte (Abb. 36) zeigen innerhalb der einzelnen Meßverfahren eine gute Übereinstimmung. Die MEGAN-Werte liegen jedoch einheitlich über den Daten der Albedo-Meßtechnik. Beide Systeme sind an spiegelsymmetrischen Punkten, bezogen auf den Längsschnitt 90° – 270°, angeordnet. Die Detektoranordnung von MEGAN befindet sich auf dem linken Betonsockel am Fuß von DE 1 (s. Kap.3.2.3). Der Meßpunkt 2.2 ist 180° drehsymmetrisch zum MPT 2.1. Die entsprechenden Mittelwerte von Neutronen- und Gammadosisleistung (Abb.32) stimmen für diese Meßpunkte sehr gut überein. Der Neutronenpegel liegt bei ca.1/10 des durch Kühlmittelaktivierung vorhandenen Gammapegels.

6.5 <u>Ergebnisse verschiedener Auswertemethoden der</u> <u>Einkugel-Meßtechnik</u>

Nach den in Kap. 3.1.2 aufgeführten Gleichungen (1) und (2) lassen sich mit der Einkugel-Meßtechnik zwei Werte der Neutronen-Äquivalentdosis bestimmen: H_{fit} und $H_n(c)$. Ein Vergleich der in Tab.6 (Anhang E) aufgeführten Werte zeigt, daß H_{fit} ca. 10 bis 20 % unterhalb der $H_n(c)$ -Werte liegt. Das für die einzelnen Meßpunkte ermittelte $H_{fit}/H_n(c)$ -Verhältnis ist in Form einer Häufigkeitsverteilung in Abb.18 dargestellt.

Da H_{fit} im Sinne einer Energieunabhängigkeit als der "bessere" Wert zu betrachten ist, bedeutet dies, daß die in Abb.17 wiedergegebenen Kalibrierergebnisse zu einer entsprechend konservativen Anzeige der Neutronen-Äquivalentdosis in der Personendosimetrie führen. Das wahre Neutronenansprechvermögen liegt im Bereich 2,6 bis 5,2 gegenüber 2 bis 4.

Abb.18: Häufigkeitsverteilung des Quotienten der Neutronen-Äquivalentdosen, ermittelt nach der Einkugel-Albedomeßtechnik (H_{fit}) bzw. aus dem Meßwert des zentralen Detektors (H_n(c)).

Als weiteres Ergebnis ist festzuhalten, daß Rem-counter mit einer Moderatorkugel von 30 cm Durchmesser, deren Anzeige dem Wert $H_n(c)$ entspricht, ebenfalls nur einen geringfügig höheren Wert gegenüber H_{fit} anzeigen. Ein Ersatz dieser Geräte durch die Einkugel-Albedomeßtechnik, die auf einer Linearkombination der Anzeigen $M_n(a)$, $M_n(i)$ und $M_n(c)$ beruht, bringt damit keine wesentliche Verbesserung.

6.6 <u>Vergleich der Personendosen</u>

Für die Personenüberwachung wurden Albedodosimeter eingesetzt, die in einigen Fällen sowohl mit TL-Detektoren (TLD) als auch mit Kernspurätzdetektoren (Makrofol) bestückt waren.

Die Personendosen für Mitarbeiter, die nachweislich eine Neutronendosis erhalten haben, sind in Anhang E, Tab.7 aufgelistet.

Folgende Neutronendosen wurden ermittelt:

0,01 mSv	beim Einbau der Anfahr-Neutronenquelle
0,010,1 mSv	bei kraftwerksspezifischen Arbeiten
0,20,5 mSv	bei der Durchführung von ODL-Messungen

Die mit verschiedenen Dosimetern gemessenen Personendosen sind in Abb.10 (s. Seite 33) in Abhängigkeit der TL-Gamma-Dosis dargestellt. Man erkennt die gute Übereinstimmung der TLD-Gamma-Werte mit den Anzeigen der Digital (GM)-Dosimeter (unterbrochene Linie). Die amtlichen Filmdosimeter weisen Abweichungen bis zu \pm 30 % auf. Der Neutronenanteil an der Gesamtdosis beträgt maximal 25 %.

Die Häufigkeitsverteilung für das Meßwertverhältnis $M_n(a)/M_n(i)$ bei TL-Detektoren mit Dosen oberhalb 0,1 mSv ergibt eine Schwankungsbreite von 1,5 bis 6, vergleichbar mit den Ergebnissen der Ortsdosimetrie (Abb.19).

Abb.19: Häufigkeitsverteilung des Neutronen-Meßwertverhältnisses M_n(a)/M_n(i) des thermischen Detektors (a) und des Albedo-Detektors (i) für Personen- und Ortsdosimeter.

Diese Streuung um mehr als einen Faktor 4 zeigt im Vergleich zur geringeren Energieabhängigkeit des Albedodetektors (etwa Faktor 2), daß ein thermischer Neutronendetektor nicht zur Bestimmung der Neutronen-Äquivalentdosis eingesetzt werden kann. Ein thermischer Neutronendetektor kann auch aus grundsätzlichen Erwägungen nicht als Neutronendosimeter getragen werden, da er für die thermischen Neutronen das 20fache des Ansprechvermögens von Detektor (i) besitzt.

In Abb. 20 sind die mit Kernspurätzdetektoren ermittelten Neutronendosen gegen die jeweils gleichzeitig gemessene TLD-Neutronendosen aufgetragen. Wegen der geringen Anzahl der Meßwerte und der relativ hohen Meßunsicherheit bei kleinen Dosen läßt sich die Form der Abhängigkeit nicht eindeutig festlegen.

Abb.20: Neutronen-Personendosen, gemessen mit Kernspurätzdetektoren (Makrofol + Bor-Konverter) bzw. TLD. Beide Detektormaterialien sind in derselben Dosimeterkapsel untergebracht. Die unterbrochene Linie gibt den 1 : 1 Verlauf wieder.

6.7 <u>Anzeigen der Neutronen-Filmdosimeter</u>

Aufgrund der im Streustrahlungsfeld gemessenen Neutronenenergien (s. Kap. 6.2) wird mit dem Kernspurfilm keine Dosisanzeige erwartet.

Bei allen mit Albedodosimetern angezeigten Neutronendosen oberhalb 0,1 mSv wurden mit den Neutronen-Filmdosimetern für thermische und schnelle Neutronen keine Dosen angezeigt.

Das Neutronen-Filmdosimeter ist deshalb für den Einsatz in Kernkraftwerken mit Leichtwasser-Reaktor nicht geeignet. Es wurde inzwischen durch das Albedodosimeter als amtliches Neutronendosimeter ersetzt.

<u>Literaturverzeichnis</u>

7

- [1] Piesch, E., Burgkhardt, B., Comper, W.; The single sphere Albedo system - A usefuel technique in neutron dosimetry Radiat. Prot. Dosim. <u>10</u>, 1-4, 147 (1985)
- [2] Singh, D., Piesch, E., Burgkhardt, B.; Investigation of room return neutrons and their importance for the calibration of albedo dosemeters Proc. 5th Symp. on Neutron Dosimetry, Neuherberg, EUR 9762, Vol. 1, 617 (1985)
- [3] Schwartz, R. B., and Eisenhauer, C.M.; Procedures for Calibrating Neutron Personnel Dosemeters NBS Special Publication 633 (1982)
- [4] Piesch, E., Burgkhardt, B.; Erprobung eines Albedoneutronendosimetriesystems. TLD-Kalibrier- und Meßverfahren, Neutronenkalibrierung, dosimetrische Eigenschaften, Routineanwendung KFK 4303 (1988).
- [5] Piesch, E., Burgkhardt, B., Sayed, A. M.; Supralinearity and re-evaluation of TLD 600 and TLD 700 in mixed neutron and gamma fields Proc. 4th Int.Conf. Luminescece Dosimetry, Krakow, 1201 (1974)
- [6] Burgkhardt, B., Piesch, E.; Estimation of the build up of zero dose reading in ⁶LiF thermoluminescence dosemeters due to neutron produced tritium Radiat. Prot. Dosim., Vol. 2, 105 (1982)

- [7] Höfert, M., Piesch, E.; Neutron Dosimetry with Nuclear Emulsions, Neutron Dosimetry in Radiation Protection Radiat. Prot. Dosim., Vol 10, 1-4, 189 (1985)
- [8] Piesch, E., Burgkhardt, B.; Measurement of stray neutron fields in the containment of nuclear reactors Proc. Euratom 4th Symp. Neutron Dosimetry, Neuherberg, EUR-7448, Vol.1, 549 (1981)
- [9] Endres, G. W. R., Aldrich, J. M., Brackenbush, L. W., Faust, L. G., Griffith, R.V., Hankins, D. E.; Neutron Dosimetry at Commercial Nuclear Power Plants PNL-3585 (1981)
- [10] Piesch, E., Burgkhardt, B.; Application of a single sphere albedo technique in stray neutron fields Proc. 8th DOE Workshop Personnel Neutron Dosimetry, PNL-SA-9950, 111-120 (1981)
- [11] Birch, R., Delafield, H. J. and Perks, C. A.; Measurement of the neutron spectrum inside the containment building of a PWR Radiat. Prot. Dosim. Vol 23, 281 (1988)
- [12] Anderson, I. O., Braun, J.; A Neutron Rem Counter Nukleonik 6, 237-241 (1964)
- [13] Kraut, A; Kernstrahlungsmeßtechnik Heft 17, Schriftenreihe des Deutschen Atomforums (1969)

- [14] Burgkhardt, B., Schmitt, A.; Dosimeterkalibrierung mit 9 MeV-Gammastrahlung... KFK-interner Arbeitsbericht ASS/305/01 (1976)
- [15] Dietze, G., Guldbacke, S, Kluge, H, Schmitz, Th.; Intercomparison of Radiation Protection Instruments Based on Microdosimetric Principles PTB-ND-29 (1986)

Anhang A

Ergebnisse der Ortsdosismessungen mit Einkugel-Albedodosimetern

1

i.

- 59 -

Abb. 21:

Durchschnittliche Neutronen- und Gamma-Ortsdosisleistungen im KKW Mülheim-Kärlich , erfaßt mittels 30cm Kugel mit TLD bei 100 % RL; Lage der Messpunkte im Reaktorgebäude, Längsschnitt 90-270°.

Messpunkte	Neutronen-ODL	Gamma-ODL
	(mSv/h)	(mSv/h)
1.2	0,19	1,16
1.3	3,03	9,91
2.1	2,26	26,3
2.3	2,73	8,85
3.2	1334,3	340,8
3.3	561.0	164,0
3.5	40,74	86,4
5.1	466,6	36,0
6.1	114,2	10,3
7.1	-	300,8
11.1	< 0,001	< 0,001

- 60 -

<u>Abb.22</u>:

Durchschnittliche Neutronen- und Gamma-Ortsdosisleistungen im KKW Mülheim-Kärlich , erfaßt mittels 30 cm Kugel mit TLD bei 100 % RL; Lage der Messpunkte im Reaktorgebäude, Grundriss 0,00m .

Messpunkte	Neutronen-ODL	Gamma-ODL
	(mSv/h)	(mSv/h)
1.2	0,19	1,16
1.3	3,03	9,91
2.1	2,26	26,3
2.2	2,24	24,5
3.3	561,0	164,0
4.3	3,46	1,10
4.4	9,39	2,78
16.1	< 0,001	< 0,001
16.2	0,015	0,005

Abb. 23:

Durchschnittliche Neutronen- und Gamma – Ortsdosisleistungen im KKW Mülheim-Kärlich , erfaßt mittels 30cm Kugel mit TLD bei 100 % RL; Lage der Messpunkte Im Reaktorgebäude, Grundriss -4,00m .

Messpunkte	Neutronen-ODL (mSv/h)	Gamma-ODL (mSv/h)
3.1	102,2	66,5
3.2	1334,3	340,8
3.3	561,0	164,0
3.4	33,72	109,1
3.5	40,74	86,4
4.2	45,93	11,3
4.4	9,39	2,78

<u>Abb. 24</u>:

Durchschnittliche Neutronen- und Gamma-Ortsdosisleistungen im KKW Mülheim-Kärlich , erfaßt mittels 30cm Kugel mit TLD bei 100 % RL; Lage der Messpunkte im Reaktorgebäude, Grundriss -11,5m .

Messpunkte	Neutronen-ODL (mSv/h)	Gamma-ODL (mSv/h)
4.1	630,0	204,0
8.2	0,003	0,3
13.1	0,038	0,082

Abb.25:

Durchschnittliche Neutronen- und Gamma-Ortsdosisleistungen im KKW Mülheim-Kärlich , erfaßt mittels 30cm Kugel mit TLD bei 100 % RL; Lage der Messpunkte im Reaktorgebäude, Grundriss +5,20m .

Messpunkte	Neutronen-ODL (mSv/h)	Gamma-ODL (mSv/h)
2.3	2,73	8,85
5.1	466,6	36,0
5.2	6,51	2,33
6.1	114,2	10,3
16.1	< 0,001	< 0,001
16.2	0,015	0,005
17.1	0,04	1,23
17.2	0,056	1,58
- 64 -

Abb. 26:

Durchschnittliche Neutronen- und Gamma-Ortsdosisleistungen im KKW Mülheim-Kärlich , erfaßt mittels 30cm Kugel mit TLD bei 100 % RL; Lage der Messpunkte im Reaktorgebäude +10,5m .

Messpunkte	Neutronen-ODL (mSv/h)	Gamma-ODL (mSv/h)
9.1	< 0,001	0,002
10.1	< 0,001	0,002
10.2	< 0,001	0,002
12.1	< 0,001	0,003
14.1	< 0,001	< 0,001
15.1	< 0,001	0,007

Abb. 27:

Durchschnittliche Neutronen- und Gamma-Ortsdosisleistungen im KKW Mülheim-Kärlich, erfaßt mittels 30cm Kugel mit TLD bei 100% RL; Lage der Messpunkte im Incore – Kanal.

Messpunkte	Neutronen-ODL (mSv/h)	Gamma-ODL (mSv/h)
		<u> </u>
4.1	630	204
4.2	45.9	11.3
4.3	3,5	1.1
4.4	9.4	2.8

Anhang B

Zeitlicher Verlauf der Neutronen- und Gamma-Ortsdosisleistungen während der Inbetriebsetzungsphasen gemessen mit dem System MEGAN

- 70 -

Abb.31 : MEGAN - Messwerte der Neutronen(N) - und Gamma(G) - Dosisleistung; Messphase /6 : Probelauf bei 100% RL "Incore" : MPT 4.2 , geänderte Anordnung (s.3.3.2) "YB30" : Dampferzeuger 1 , Betonsockel neben MPT 2.1

Anhang C

Balkendiagramme der Ortsdosisleistungen gemessen mit Einkugel-Albedodosimetern und anderen Meßgeräten

<u>Abb. 34</u>: Neutronen – und Gamma – Dosisleistungen, ermittelt mit 30 cm PE – Kugeln, bestückt mit TLD; AVG: Mittelwert; MPT 6.1, Steuerelement – Bühne auf dem RDB – Deckel, im Flutbecken

NEUTRONEN-DOSISLEISTUNG ORTSDOSISLEISTUNG BEI 180% RL (mSv/h) 60 ÂΜ Ĥ Ĥ A=KUGEL 50 М R H 40 I H=HEGAN 30 T=TEPC 20 ₩ R=REH-C 10 ß 76 75 13 14 MESSPHASEN AM MESSPUNKT 4.2 GAMMA-DOSISLEISTUNG DRTSDDSISLEISTUNG BEI 100% RL (mSv/h) 30 A=KUGEL 25 M 20 M M=MEGAN M M 6 15 T=TEPC A 18 T 🖾 G=GH 5 8 14 /5 76 13

MESSPHASEN AM MESSPUNKT 4.2

- 78 -

Abb. 36 : Vergleichsmessung der Ortsdosisleistung am MPT 2.1, Dampferzeuger 1, mit tragbaren und stationären Meßsystemen; die Werte beziehen sich auf 100% Reaktorleistung (RL); oben: Neutronen – Dosisleistung unten: Gamma – Dosisleistung

Abb. 37: Vergleichsmessung der Ortsdosisleistung am MPT 4.3, Zugang zum Incore - Kanal, mit tragbaren und stationären Meßsystemen; TL: TLD 600/700 "frei Luft"; S: Stabdosimeter SEQ10; die Werte beziehen sich auf 100% Reaktorleistung (RL); oben: Neutronen - Dosisleistung; TL u. S : nur thermischer Anteil; unten: Gamma - Dosisleistung

Abb. 38 : Vergleichsmessung der Ortsdosisleistung am MPT 4.4, Treppenhaus im Incore – Kanal, 1.Absatz, mit verschiedenen Detektormaterialien (A4,AV,A9) auf Albedo – Kugeln; die Werte beziehen sich auf 100% Reaktorleistung (RL); oben: Neutronen – Dosisleistung unten: Gamma – Dosisleistung

- A Einkugel Albedodosimeter mit TLD
- R Rem Counter (Anderson Braun Typ)
- G Teletektor mit GM Zählrohr
- S Stabdosimeter für thermische Neutronen SEQ 10
- TL TLD 600/700 Paare in Cd bzw Sn Absorber

Anhang D

Meßpunkte mit den höchsten Neutronen- und Gamma-Dosisleistungen

.

49

Abb. ⁴⁰: Nach Beträgen geordnete Neutronen – und Gamma – Äquivalentdosisleistungen in den Sperrbereichen des Containments

Abb. 41: Nach Beträgen geordnete Neutronen – und Gamma – Äquivalentdosisleistungen in den begehbaren Bereichen des Containments

Anhang E

Versuchsmatrix für das Ortsdosis-Meßprogramm und Meßwerttabellen

IBS MüK	PHASE von : bis : N _{max} :	1 01.03. 06.03. 0%	2 06.03. 18.03. 15%	3 18.03. 27.04. 40%	4 29.04. 03.06. 75%	5 05.06. 05.08. 100%	6 01.09. 13.10. 100%	4 15.05. 15.05. 30%
ORT	AK	EIN	KUGEL ·	- ALBE	DODOS	IMETER	!	TEPC
Pumpenkammer Laterne HKP Sockel DE 1 Sockel DE 2 Sek.Mannloch DE1	YD 30 YD 30 YB 30 YB 70 YB 30	×××	X X X	. X X X	X X X	. X X . X	X X X X X	
Sleeve, kalter Strang Sleeve, heißer Strang Kalter Strang Kalter Strang	B YA 31 YA 50 YA 21 YA 31	~	×	x	X X	X X	X X	
R-Kavernen-Sumpf 2. Treppen-Absatz		Х	х	X	X	X	X	

MPT

1.2

1.3

2.1*

2.2

2.3	Sek.Mannloch DE1	YB 30		,				Х	(
3.1	Kriechgang zum RDE	3	Х	Х	Х						
3.2	Sleeve,kalter Strang	YA 31		Х	Х	Х					
3.3	Sleeve, heißer Strang	YA 50				Х					1
3.4	Kalter Strang	YA 21					Х	Х			
3.5	Kalter Strang	YA 31					Х	Х			
4.1	R-Kavernen-Sumpf	INCORE	2	Х							
4.2*	2. Treppen-Absatz	INCORE			Х	Х	Х	Х	X		ĺ
4.3	Zugang	INCORE				Χ	. X	X	X	Х	
4.4	1. Treppen-Absatz	INCORE							X		
4.5	Vorraum	INCORE					:		X		
4.6	Tür zum Kanal	INCORE							X		
5.1	Flutbecken		X	.: X	Х	Х					
5.2	Abstellbecken		X	X	X	X	. X				
6.1	Steuerelement-Bühne		X	X	Х	Х	Х				
7.1	Oberer Rohrbogen	YA 50		Х	X	Χ	. X				
8.1	Reaktor – Kaverne	YC 10	Х								
8.2	Reaktor Sumpf	TX 30					Х	Х			[
9.1	Riegel über RDB	-	Х	Х	Х	X	. X	Х			
10.1	Profil zum Abstell-Be	ecken		Х				Х			
10.2	Profil zur DE-Abschl	rmung		Х				Х			
11.1	Riegel über DE 1	YB 30				X	.х	Х	l l		
12.1	Druckentlastungsscha	acht	- -	Х	X	X	. X				- {
13.1	Reaktorschild			Х	X	Χ	. X	Х		Х	
14.1	Personenschleuse					X	. X	Х			
15.1	Incore-Becken			Χ	X	X	. X				}
16.1	Montageschacht							Х			l
16.2	Zugang zur HKP	YD 30						Х			ĺ
17.1	Frischdampfleitungen	RA 11/12						Х			}
17.2	Frischdampfleitungen	RA 13/14						X	ł		
and an										ويستبع فستبرز مسروي	

Tab. 4 : Ortsdosis - Meßprogramm 1986: Bestückung der Meßpunkte (MPT) mit Ortsdosimetern; (*) MEGAN - Standorte; (+) zusätzlich Filmdosimeter und Stabdosimeter SEQ10; (.....) Exposition über mehrere Meßphasen 6 30.09. 10.10. 100%

TLD +

				ما ها الم مع الم		und tones to be book over by the brow start back were start
	I	INEUTRONEN	II GAMMA-	I]	I
MESS-	I MESS-	I ODL	I ODL	INEUTR/	I MESSORT	I MESS-
PUNKT	I PHASE	I 100% RL	I 100% RL	IGAMMA-ODL	. 1	I ART
	Ι	I (mS∨/h)	I (mS∨/h)	I	I	I
		23 512 514 514 511 614 527 517 518 51 24		n: 22 az z:: #3 22 az az 22 az az	: 273 975 977 977 977 977 977 977 977 977 977	
1.2		1-94E-01	1.16E+00	1.675-01	PUMPENKAMMER	A-KUGEL
		ada 12 e 1 parma "ali" alia	ada 18 ana Sunt Islan - "an" "Al"	and por case of south on the		
1.3	/2+/3	1.88E+00	1.13E+01	1.66E-01	HKM-PU LATERNE	A-KUGEL
1.3	/4+/5	3.03E+00	9.26E+00	3.27E-01	HKM-PU LATERNE	A-KUGEL
1.3	16	4.17E+00	9.18E+00	4.54E-01	HKM-PU LATERNE	A-KUGEL
2.1	12	4,45E+00	5.19E+01	8.57E-02	SOCKEL DE 1	MEGAN
2.i	12	2.78E+00	3.15E+01	8.84E-02	SOCKEL DE 1	AKUGEL
2.1	/3	4.00E+00	4.32E+01	9.26E-02	SOCKEL DE 1	MEGAN
2.1	73	2.65E+00	2.35E+01	1.13E-01	SOCKEL DE 1	A-KUGEL
2.1	/4	2.50E+00	5.00E+01	5.00E-02	SOCKEL DE 1	REM-C/GM
2.1	/4	3.89E+00	4.38E+01	8.88E-02	SOCKEL DE 1	MEGAN
2.1	14	2.73E+00	2.55E+01	1.07E-01	SOCKEL DE 1	A-KUGEL
2.1	75		3.75E+01		SOCKEL DE 1	GM
2.1	/5	4.07F+00	4.66E+01	8.73E-02	SOCKEL DE 1	MEGAN
2.1	75	2.13E+00	2.526+01	8.47E-02	SOCKEL DE 1	A-KUGFL
2.1	16	4.00F+00	4.60E+01	8.70E-02	SOCKEL DE 1	MEGAN
2.1	/6	3 975+00	4 495+01	8 84E-02	SOCKEL DE 1	MEGAN
2.1	/6	1.02E+00	2.59E+01	3.94E-02	SOCKEL DE 1	A-KUGEL
		tea 11 the strong from . In . In	and H and A link - w. He	The proof the provide the stand		
2.2	12	2.27E+00	2.79E+01	8.12E-02	SOCKEL DE 2	A-KUGEL
2.2	/3	2.15É+00	2.28E+01	9.42E-02	SOCKEL DE 2	A-KUGEL
2.2	/4+/5	2.68E+00	2.46E+01	1.09E-01	SOCKEL DE 2	A-KUGEL
2.2	76	1.89E+00	2.25E+01	8.38E-02	SOCKEL DE 2	A-KUGEL
2.3	76	2.73E+00	8.856+00	3.09E-01	MANNLOCH DE1	A-KUGEL
3.1	12	8.92E+01	7.55E+01	1.18E+00	KRIECHGANG RDB	A-KUGEL
3.1	13	1.15E+02	5.75E+01	2.00E+00	KRIECHGANG RDB	A-KUGEL
3.2	12	1.056403	3.38E+02	3.10E+00	ABSCHOTTUNG KS	A-KUGEL
3.2	/3	1.13E+03	3.05F+02	3.49E+00	ABSCHOTTUNG KS	A-KUGEL
3.2	/4	1.52E+03	3. 70E+02	4.11E+00	ABSCHOTTING KS	A-KUGEL
3.2	14	1.64E+03	3.49E+02	4.69E+00	ABSCHOTTUNG KS	A-KUGEL
3.3	/4	5.61E+02	1.64E+02	3.42E+00	ABSCHOTTUNG HS	A-KUGEL
3.4	75	2.45E+01	1.108+02	2.22E-01	KALTER STRANG	A-KUGEL
3.4	16	4.30E+01	1.08E+02	3.97E-01	KALTER STRANG	A-KUGEL

Tab. 5 : Neutronen- und Gamma-ODL, geordnet nach Meßpunkt und Meßphase

3.70E+01 8.18E+01 4.53E-01 KALTER STRANG

4.44E+01 9.09E+01 4.89E-01 KALTER STRANG

3.5 /5 3.5 /6

A-KUGEL

A-KUGEL

MESS- PUNKT	I I MESS- I PHASE I	INEUTRONEN I ODL I 100% RL I (mSv/h)	NI GAMMA- I ODL I 100% RL I (mS∨/h)	I INEUTR/ IGAMMA-ODL] I	I MESSORT I I	I MESS- I ART I
4.1 4.1	/2 /2 /2	6.95E+02 6.30E+02	1.49E+02 2.04E+02	4.66E+00 3.09E+00	KAV. SUMPF INCORE KAV. SUMPF INCORE	MEGAN A-KUGEL
4.2 4.2 4.2	/3 /3 /4	4.95E+01 4.98E+01 2.10E+01	1.83E+01 1.11E+01 7.06E+00	2.70E+00 4.50E+00 2.97E+00	2. ABSATZ INCORE 2. ABSATZ INCORE 2. ABSATZ INCORE 2. ABSATZ INCORE	MEGAN A-KUGEL TEPC
4.2 4.2 4.2 4.2	/4 /4 /5.	4.50E+01 4.14E+01 4.17E+01 4.43E+01	1.78E+01 1.10E+01 1.68E+01	2.536901 3.76E+00 2.48E+00	2. ABSATZ INCORE 2. ABSATZ INCORE 2. ABSATZ INCORE 2. ABSATZ INCORE	MEGAN A-KUGEL MEGAN A-KUGEL
4.2 4.2 4.2	/6 /6 /5	3.64E+01 3.67E+01 4.62E+01	1.29E+01 1.33E+01 1.10E+01	2.82E+00 2.76E+00 4.19E+00	2. ABSATZ INCORE 2. ABSATZ INCORE 2. ABSATZ INCORE 2. ABSATZ INCORE	REM-C/GM MEGAN A-KUGEL
4.3 4.3 4.3	/2 /3 /4	2.33E+00 2.50E+00 2.50E+00	2.00E+00 9.50E-01 1.25E+00	1.17E+00 2.63E+00 2.00E+00	ZUGANG INCORE ZUGANG INCORE ZUGANG INCORE	REM-C/GM REM-C/GM REM-C/GM
4.3 4.3 4.3	/4 /4 /5 /5	2.00E+00 1.83E+00 -	9.40E-01 1.18E+00 1.30E+00 1.50E+00	2.13E+00 1.55E+00 	ZUGANG INCORE ZUGANG INCORE ZUGANG INCORE ZUGANG INCORE	TEPC GM GM
4.3 4.3 4.3 4.3	/5 /5 /6 /6	5.30E+00 2.75E+00 4.00E+00 3.00E+00	- 1.22E+00 2.00E+00 1.00E+00	- 2.25E+00 2.00E+00 3.00E+00	ZUGANG INCORE ZUGANG INCORE ZUGANG INCORE ZUGANG INCORE	REM-C A-KUGEL REM-C/GM REM-C/GM
4.3 4.3 4.3 4.3	/6 /6 /6 /6	3.40E+00 3.80E-01 3.10E-01 4.17E+00	1.70E+00 * - *1.65E+00 9.80E-01	2.00E+00 - 1.88E-01 4.25E+00	ZUGANG INCORE ZUGANG INCORE ZUGANG INCORE ZUGANG INCORE	REM-C/GM SEQ-10 TLD .4mm A-KUGEL
4.4 4.4 4.4	/5 /5 /5	1.50E+01 1.40E+01	5.00E+00 5.00E+00 3.40E+00	3.00E+00 2.80E+00 3.49E+00	1. ABSATZ INCORE 1. ABSATZ INCORE 1. ABSATZ INCORE	REM-C/GM REM-C/GM REM-C/GM
4.4 4.4 4.4 4.4	/5 /5 /5 /5	5.76E+00 9.60E+00 9.94E+00	2.73E+00 3.08E+00 2.68E+00 2.57E+00	2.11E+00 3.12E+00 3.71E+00 3.34E+00	1. ABSATZ INCORE 1. ABSATZ INCORE 1. ABSATZ INCORE 1. ABSATZ INCORE	TEPC A-KUGEL A-KUGEL A-KUGEL
4.5	/4	1.88E-02	1.94E-02	9.69E-01	YORRAUM INCORE	TEF'C
4.6 4.6	/4 /6	1.03E~02 1.36E-02	5.20E-03 9.09E-03	1.98E+00 1.50E+00	VOR TÜR INCORE VOR TÜR INCORE	TEPC REM-C/GM
5.1 5.1 5.1	/2 /3 /4	3.95E+02 4.28E+02 5.76E+02	3.80E+01 3.23E+01 3.78E+01	1.04E+01 1.32E+01 1.53E+01	FLUTBECKEN FLUTBECKEN FLUTBECKEN	A-KUGEL A-KUGEL A-KUGEL
5.2 5.2	/2+/3 /4+/5	5.51E+00 7.50E+00	2.36E+00 2.30E+00	2.34E+00 3.25E+00	ABSTELLBECKEN ABSTELLBECKEN	A-KUGEL A-KUGEL

* THERMISCHE NEUTRONEN

Tab. 5 Forts.

MESS- PUNKT	I I MESS- I PHASE I	INEUTRONEN I ODL I 100% RL I (mSv/h)	II GAMMA- I ODL I 100% RL I (mSV/h)	I INEUTR/ IGAMMA-ODL I	I MESSORT I MESSORT I I	I I MESS- I ART I
han tau nin ilin ilid i		in (14 ilia ilia ilia ilia ilia ilia ilia ili			nig als 200 km2 km2 km fine km2	and areas for a proce for a core by a prime prime
6.1	/1+/2	1.28E+02	1.20E+01	1.06E+01	STEUERELBÜHNE	A-KUGEL
6.i	73	9.32E+01	1.06E+01	8.80E+00	STEUERELBUHNE	A-KUGEL
6.1	14	1.47E+02	1.07E+01	1.37E+01	STEUEREL - BOHNE	A-KUGEL
6. 1	/5	8.92E+01	7.82E+00	1.14E+01	STEUERELBUHNE	A-KUGEL
7.1	/2+/3		2.74E+02		OB. ROHRBOGEN	A-KUGEL
7.1	/4+/5		3.28E+02	-	OB. ROHRBOGEN	A-KUGEL
8.2	/5.		3.68E-01		REAKTOR SUMPF	A-KUGEL
8.2	76	4.69E-03	2.18E-01	2.15E-02	REAKTOR SUMPF	A-KUGEL
9.1	/2+/3	1.105-04	4.17E~03	2.63E-02	RIEGEL UEBER RDB	A-KUGEL
9.1	/4+/5	4.06E-05	1.44E-03	2.83E-02	RIEGEL UEBER RDB	A-KUGEL
9.1	16	1.29E-04	1.13E-03	1.15E-01	RIEGEL UEBER RDB	A-KUGEL
9.t	75		4.00E-03	****	RIEGEL UEBER RDB	GM
10.1	14	4 31E-05	1.885-03	2.29E-02	PROFIL ÜBER RDB	A-KUGEL
10.1	76	I B Got Branch Contract	5.00E-03	and and a second second second	PROFIL UBER RDB	GM
10.2	1 ku	4 476-05	0 10F-03	2 145-02	PROFIL ORFR RDB	A-KUGEL
10.2	/6		4.00E-03	ation 19 and 17 Kings Surfalson	PROFIL UBER RDB	GM
11.1	/4+/5	1.06E-04	1.21E-03	8.76E-02	RIEGEL UBER DE1	A-KUGEL
11.1	/6	1.22E-04	7.05E-04	1.73E-01	RIEGEL UBER DE1	A-KUGEL
12.1	/2+/3	8.82E-04	3.47E-03	2.54E-01	D-ENTLASTUNGSSCH.	A-KUGEL
12.1	/4+/5		1.67E-03	****	D-ENTLASTUNGSSCH.	A-KUGEL
13.1	/2+/3	3.298-02	8.756-02	3.76E-01	REAKTORSCHILD	AKUGEL
13.1	/4+/5	4.04E-02	7.62E-02	5.30E-01	REAKTORSCHILD	A-KUGEL
13.1	16	4.19E-02	8.14E-02	5.14E-01	REAKTORSCHILD	A-KUGEL
13.1	74	5.008-02	6.25E-02	8.00E-01	REAKTORSCHILD	REM-C/GM
13.1	76	2.80E-03	7.14E-02	3.928-02	REAKTORSCHILD	TLD .4MM
14.1	/4+/5	2.04E-05	4.43E-04	4.60E-02	PERSONENSCHLEUSE	A-KUGEL
14.1	/6	1.08E-05	2.82E-04	3.82E-02	PERSONENSCHLEUSE	A-KUGEL
15.1	/2+/3	4 . 96E-04	5.00E-03	9.92E-02	INCORE-BECKEN	A-KUGEL
15.1	/4+/5	2.64E-04	8.4 9E-03	3.11E-02	INCORE-BECKEN	A-KUGEL

5.92E-01

3.23E+00

3.27E-02

3.52E-02

.....

1

A-KUGEL

A-KUGEL

A-KUGEL

A-KUGEL

6M

GМ

REM-C/GM

MONTAGESCHACHT

ZUGANG HKM-PU

ZUGANG HKM-PU

FD-LEITUNG DE 1

FD-LEITUNG DE 1

FD-LEITUNG DE 2

FD-LEITUNG DE 2

Tab. 5 Forts.

2.41E-04 4.08E-04

4.49E-03

4.00E-03

1.23E+00

3,70E+00

1.58E+00

3.'50E+00

1.45E-02

4.00E-03

4.01E-02

5.56E-02

.....

.....

16.1

16.2

16.2

17.1

17.1

17.2

17.2

76

16

16

76

16

16

16

=	2	111 125 12 5 128 128 129 120	, 222 222 222 222 222 2			1 mii 611 611 621 621 621 6	ci =:: =:: == :=: == :		נות שיום ביום נותן נותן וותן זותן יותן זיהו זיהו וותן וותן אינו גווו אינו אות אינו ווווי או	n 22
3	MESS	-IMESS-	·I a∕i	I Hn(c)	IHn(Fit)	I Eo	I i/	I.Hn/Ha	I MESSORT	Ţ
_]	(PUNK)	TIPHASE	1	I (mSv)	1 (m5v)	I(keV)	I H(c)	I	I	I
Ţ		I	I	I	I	I	I	I	I	I
=	: =:: ::: ::: ::: :::		: == == == == = = = = = = = = = = = = =	41 144 146 124 124 125 125 27 229 2				r; cx; cz: cz: cx; cx; cx; c	בי אים אדם גינו הבי וכם בכם אות הבו את היה הם בינה מו היה בי היה היו בי	3 227
I	1.2	16	3.13	154	92	6.8	4.91	0.20	PUMPENKAMMER	I
]	1.3	/2+/3	2.45	166	122	27.4	3.29	0.22	LATERNE HKP	I
I	1.3	/4+/5	2.29	2090	1730	125.0	2.04	0.40	LATERNE HKP	T
]	1.3	/6	2.12	3670	3180	197.0	1.57	0.59	LATERNE HKE	T
T	2.1	13	2 2A	251	197	Ξ <u>Α</u> Ι	2.49	0 18	SUCKEL DE 1	T
1	2.1	/4	20 TC 1	450 450	500	74 3	2:07 7 50	0 15	SOCKEL DE 1	r
T	2.1	/5	1 57	1340	071	707	7 44	0 15	SOCKEL DE 1	т
T	2.1	16	2 00	2240	1700	170	A 77	0.12	SOCKEL DE 1	T
T	2.2	16		2240 7500	1020	05 7	~~ <u>~</u> //	0.14	COCKEL DE 1	Т
ĩ	2.3	/6	1 ES/1	2070	20.00		-2 • 44 	0.10	OCHEL DE 2	ц т
л. Т	7.1	/0	1. a. U.M. 73. 7. KK	2000 1 1 1	1/10			1 (n) 7 1 (n	SENTIMONE, DE I	л Т
r T		/ 1.	2.0U 0.00	1.10	0.82	10.1	0.00 - E7	.L.s	KALECHOMNO	л т
л Т		/	2.80	1420	1030	20.0	୍ରୁ ମ ମୁନ୍ଦୁ	1.64	KRIELHGANG	. I. T
		1.0	2 = O 4 	9.3.30	7460	58.2	2.02	2.78		.1. T
L T	ીકી. આ અ	/ 4	1.01	340000.	270000	129.0	2.01	5.67	SLEEVE YAZI	T
t. 			1.39	16900	12800	56.8	2.64	4.17	SLEEVE YASI	
 T	3 - 2 	13	1.37	93100	68000	42.2	2.91	5.05	SLEEVE YA31	1
ן. יי	3. X	74	0.96	317000	249000	122.0	2.06	5.05	SLEEVE YA31	T
1.	3.S	/ 4.	1.47	118000	95000	131.0	1.99	4.22	SLEEVE YASO	I
.L	5.4	/5	2.49	19500	15000	67.7	2.67	0.42	KALT.STRANG YA21	1
·]	3.4	/6	2.27	50200	37500	59.0	2.81	0,67	KALT.STRANG YA21	Ţ
1	3.5	/5	2.42	21700	16500	60.9	2.77	0.69	KALT.STRANG YA31	I
J.	3.5	/6	2.45	47300	32900	31.6	3.4	0.76	KALT.STRANG YA31	1
J.	4.1	/2	4.00	4180	3170	14.7	3.85	4.48	R.KAVERNEN-SUMPF	I
1	4.2	/3	4.35	3970	3380	53.7	2.69	6.28	2.TREFF.ABS.INC.	1
T	4.2	/4	4.72	9670	8260	44.4	2.86	5.01	2.TREPP.ABS.INC.	Ţ
ľ	4.2	/5	4.10	20800	17000	58.6	2.81	4.59	2.TREPP.ABS.INC.	I
1	4.2	16	3,85	36400	26600	20.9	3.8	4,82	2. TREPP. ABS. INC.	I
I	4.3	/4+/5	4.97	1770	1490	48.2	3	2.91	ZUGANG INCORE	T,
I	4.3	76	4.76	2450	1490	108.0	2.19	5.01	ZUGANG INCORE	Ι
T	5.1	/1+/2	1.60	6280	4800	55.9	2.66	13.80	FLUTBECKEN	ľ
Ţ	5.1	73	1.62	34100	27000	76.2	2.38	18.10	FLUTBECKEN	T
1	5.1	14	1.26	116000	93800	138.0	1.94	19.10	FLUTBECKEN	1
T	5.2	/1-/3	2.49	527	330	7.0	4.55	3.21	ABSTELLBECKEN	I
ľ	5.2	/4+/5	2.70	4880	3680	52.8	2.91	3.96	ABSTELLBECKEN	Ţ
Ţ	6.1	/1+/2	2,29	2030	1700	103.0	2.09	14,50	SE-BUHNE	I
I	6.1	/3	2.18	7410	5720	49.1	2.77	11.70	SE-BUHNE	I
T	6.1	14	1.94	29600	24900	161.0	1.78	17.40	SE-BUHNE	T
1	6.1	/5	2.25	39900	32900	128.0	2.01	13.10	SE-BUHNE	1
X	8.1	/1	2.92	925	7.31	45.2	2.85	9.01	REAKTOR-KAVERNE	T
1	11.1	/4+/5	1.93	0.07	0.05	66.2	2.69	0.10	RIEGEL OBER DE1	ĩ
I	11.1	16	2.37	0.09	0.07	53 A	2 Q	0 20	RIEGEL (BER DE1	ĩ
T	13.1	12+13		 	1 01	= 0	1 7/	0,20	PEAKTOPCOULD	л Т
Ţ	13.1	/4+/5	~~~~/>		10 LO		-T # / 44 77 - 715	0 4 UV 0 4 4	DEARTODOCUILD	л. Т
T	1.3. 1	16	2 E CO	201 LO	10 10	70,7 AE 0	0.00 72 AB		DEARTOPCOUT N	л Т
Ţ	16.1	14		2011 A 10	47810	4J.7 1/ E	0.UU // 00	0.07	MONTACCOCLACE	.і. Т
T	16 7	14	പം ന7 ജ സംജ	V = 1 Ø	U.L4 4 /000	10.0	*** U.S + ~~~//	v.00	THEANE HER VATA	л т
Ţ.	ar taaf 14 ataa	7.02	u: 40	1. I. a. S.	1"20	10/"0	1. 1 / 4	0.70	ZUCHNC HEF YDSO	.і. т
				1 11:0 ctal ctal ctal	فحصب فالدبر فالمبو والاور فتعاذ وبالم			•	بنا فترغة كوترة إجتبار وبراح وبراح برساط الجناح ووروا وبالحد لعامة وحادة ويعدا بربنيا واحاد واحدر الجامة بعامر	يا. سور
								where parts plays forst same and		

Tab. 6 : Abgeleitete Meßgrößen aus Meßwerten mit einem statistischen Fehler < 30%

,

- 93 -

Ī	; (22) 222 223 221 22	: 100 cm cm 100 cm (00 cm)]	i i i i i i i i i i i i i i i i i i i	I	1	ALBEI	0	T	ALBEDO)]	1 122 221 22	I
]	DOSIM.	I GM	IFILM	I TLD	I TLI) 600	/ 700	I MAKF	OFOL -	н вО)R	ľ
1		I	I	I	I			I ł:	ONVER [®]	FER		I
J	NR.	IGAMMA	IGAMMA	IGAMMA	I "a"	I "i"	I Hn	I "a"	I. "i."	1	Hn	1
I		I(mS∨)	I(mSv)	I(mS∨)	I(mSv)	I(mS∨)	I(mS∨)	I⊂m-2	I⊂m-2	I (m	sv)	I
I		IDIGIT	ľ	J.	ľ	J.	I	I	I	I.		I
	1 112 http://www.ana.com	1 221 222 213 213 217 213 1	ne 200 een her eis con i		na 123 kia 123 kia 124 ki	2 273 117 274 175 617 17	: 22 (12 (2 2 2 2 3 3 1		ה ביוז בים 🖂 קוו אוה ב	= 100 110 110	1 21 <u>2 A1</u> 2 A1	= ==
J	3983	0.01		Ö.14	0.25	0.07	0.01			I		I
I	4165	0.29		Ŏ.49	0.26	0.07	0.02		P	Ι	-	I
ľ	3590	0.02		0.96	0.02	0.07	0.02			I		I
Ţ	3515	0.09		0.09	0.19	0.07	0.02			I		1
1	3532	0.01		0.02	0.19	0.12	0.04		****	I		T
I	3542	0.02		0.04	0.20	0.10	0.03		*****	Ι		I
]	3572	0.24	0.00	0.22	1.65	0.43	0.11		h-1-1-1	I		ľ
I	3580	0.03	*****	0.10	0.77	0.22	0.06			I		I
1	4175	1,24	1.20	1.23	0.17	0.06	0.02	****		ľ		I
I	4186	0.52		0.54	0.22	0.03	0.01		****	I	⊷	I
J,	4196	0.43	0.80	Ö.64	0.13	0.06	0.02		-	I		1
I		1711 1712 1712 1713 1713 1713 17	12 153 123 517 152 153 1	12 hif bit vit 672 kis 5	n ing Cit ing ing ing	- 213 103 213 112 23 60		105 to 112 mil 52 to	. WR W2 = NK K= E	e ene 1112 (72	r= 115 =	: ===
1	3202	(NG)						12	18	IO.	00	I
Ι	3207	(NQ)						30	26	ΤÕ.	01	1
1	3401	(NG)						34	41	IO,	01	I
Ι	3525	0.00	-	0.02	0.18	0.11	0.08	40	56	IQ.	00	I
Ţ	3526	0.02	Percent	0.09	0.17	0.10	0.03	24	72	IO.	00	I
1	4151			0.72	0.68	0.11	0.03	240	240	ΙO.	O <u>1</u>	1
I.	4178	0.36	0.60	0.39	0.20	0.09	0.03	468	456	10.	02	ľ
Ι	3559	0.19	0.00			••••	-	389	507	ΙÖ.	oЗ	Ι
1	3579	0.02		0.08	0.42	0.12	0.03	306	596	IO.	03	1
I	4185	0.23	0.00	0.45	0.35	0.08	0.02	472	660	ΙŌ.	oЗ	1
Ţ	3262	0.19		0.39	0.51	O.14	0.03	684	1296	IO.	06	1
I	3578	0.28	0.00	0.25	1.48	0.38	0.10	840	1360	ΙÖ.	07	I
Ţ	3589			1.46	0.66	0.32	0.08	1240	2000	ΙÖ	. 1	ľ
I	4156	0.81	O.OO	0.86	3.15	0.75	0.19	3164	504O	IO.	25	٠I
1	4189	2.13	2.00	1.97	3.59	0. 84	0.21	4168	5376	ΙO,	27	ľ
I T	4171	1.78	1.20	1.71	5.52	1.03	0.24	5680	9880	IO.	49	I
1.3 T		1::: ins (n); cn) 1::: ift in	3 63 86 68 68 68 81 E	ه وي عما ين الت عما : جر الت		אום אום געל אום הוא לאני איז איז איז איז איז איז איז איז איז איז	112 123 123 124 125 125 125 125 125 125 125 125 125 125	na 221 km 221 ad 221	CII 112 108 CII 201 CI	:j≡≕ T	112 Lat 111	: [7
.L T	0000 7780	hare, a	****	<u>کر</u> ۲۰۰۰ ۲۰۰۰	112	26	0.04	****	*****	L r		L T
J.		paras Pres 1919 fong gerør pros mele kor	gan tê 19 jî li bişan gerênî berne ganîtî êva	0.07		0.84				L 		

NG:Einbau der Anfahr-Neutronenquelle (s.5.4)

Tab. 7 : Personendosen, gemessen mit verschiedenen Gammaund Neutronen-Dosimetern

ANHANG F

VERZEICHNIS DER ABKÜRZUNGEN

A - Kugel	Einkugel – Albedomeßverfahren
BE	Brennelement
DE	Dampferzeuger
DWR	Druckwasserreaktor
GM	Geiger – Müller (Zählrohr)
HKM	Hauptkühlmittel
HKMP	Hauptkühlmittelpumpe
ICRP	International Commission on Radiological Protection
ICRU	International Commission on Radiation Units and Measurements
KKW	Kernkraftwerk
KMK	Kernkraftwerk Mülheim - Kärlich
LET	Linear Energy Transfer
LWR	Leichtwasserreaktor
MPT	Messpunkt
N	Neutronen
NTA	Kodak Nuclear Track Emulsion Film Type A
NQ	Neutronenquelle
ODL	Ortsdosisleistung
PC	Personal Computer
PE	Polyäthylen
RDB	Reaktordruckbehälter
RL	Reaktorleistung
RWE	Rheinisch - Westfälisches Elektrizitätswerk AG
SE	Steuerelement
StrlSchV	Strahlenschutzverordnung
TEPC	Tissue Equivalent Proportional Counter
TL	Thermolumineszenz
TLD	Thermolumineszenzdosimetrie

ŝ

Abkürzungen für Detektorsysteme: siehe Seite 47

۴

95