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ABSTRACT

The treatment of the microstructure-property interrelationship in the literature
either provides empirical or semiempirical correlations, which cannot be genera-
lized for practical use, or - being theoretically rigorous solutions - do not meet the
needs with respect to an engineering approach and use by its formulations and
theoretically limiting conditions. To overcome this gap from an engineering point
of view is the deliberate objective of this presentation. Proceeding from expres-
sions given in the literature for the theoretical relationship between microstruc-
ture and field properties according to the bound and model concepts, field
property bound equations as well as microstructure-field property equations are
derived in the first part of this article, enabling the field properties of two-phase
materials to be calculated from their microstructural data. To satisfy the demand
of maximum reliability from a theoretical as well as practical point of view no
fitting parameters are allowed to appear in these equations. - The determination
of microstructural parameters such as the number of phases, the type of micro-
structure as well as the concentration, shape and orientation factors by quantita-
tive microstructural analysis is described in the second part, whilst calculated
and measured electrical and thermal conductivities of two-phase metals,
ceramics and composites as well as porous materials are compared in the final
part. '

1. Introduction: Definition and Premises

The following presentation refers to what has been published already as an intro-
ductory review concerning the problem [205] but leads into the detail of the
correlation between microstructure and field properties. -

According to Fig, 1 the structure of materials may be subdivided into 4 groups,
the sequence of which is characterized by increasing linear dimensions. The
subject of these considerations will be the interrelationship between the
microstructure of multiphase materials and their field properties, where the term

"multiphase materials” is understood as set out in Fig. 2. As a special case porous
materials are considered to be composed of - at least - one solid phase and a
gaseous phase (= pores).
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The properties of multiphase materials depend on the properties of their phases
as well as on the geometry and geometrical arrangement of thesé phases within
the material, i.e. on its microstructure.
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Fig. 1: Subdivision of materials structure,

In this context the properties of a material are understood to mean the meas-
urable paramelers for characterizing the behavioural modes of the material
under given conditions of state. These can then be combined into groups from the
point of view of the microstructure- property relationship on the basis of analogies
and having certain things in common [206] (see Fig. 3). Thus, for example, the
field properties group characterizes the behaviour of materials when electrical,
magnetic and temperature field are set up and even when they have a combined
effect (electromagnetic fields - optical properties).

The common bond between field properties is here based on:

- the analogy of the field equations for fields of this type [208]1 which, unlike
mechanical stress-strain fields, are not bound to matter and can also exist in a
vacuum;

- the derivation of the effective properties for multiphase materials by linear
combination of vectors.

As the following treatment of the quantitative relationship between field proper-
ties of multiphase materials and their microstructure brings out, the microstruc-
ture of a multiphase material may be adequately taken into account by the
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factors summarized

in Fig.

presuppositions are fulfilled:

- the equilibrium premise
- the continuum premise
- the mean value premise

The Quantitative Microstructure-Field Property
Correlation of Multiphase and Porous Materials

4 [194,195,206,219]

supposing,

that three

Equilibrium in this context concerns the state of thermochemical equilibrium

where the microstructure does not change with time but is stable.

The continuum principle implies a macroscopically homogeneous material re-

ferring to a microscopically quasihomogeneous local distribution of the micro-

structural constituents between which - at the phase boundaries - a continuous

interface bonding exists.

1 number of phases

e.g. two-, three-, multiphased
premise:
thermochemicat equ librium

implicit- 2.type of microstructure |premise:
parameters matrix phase continuum principle
microstructure
interconnecting phase
microstructure
3. volume fraction of phase |premise:
{concentration factor) spheroidal model
ied volume x number of the mean values
p?u(-girlncel:ers phose particles

k. shope of phase particles
{ shape factor)
5. orieptation of phose
particles
{orientation factor)

Fig, 4: Characteristics of microstructure.”

By the mean value premise, which is explained under chapter 2.3 in detail, it is

assumed, that mean values for the shape and orientation of the phase particles

may fictitiously substitute for the real data, being a distribution function of axial

ratios and orientation angle,
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2. On the Theory about the Relationship between Microstructure
and Field Properties

2.1  Expressionsin the literature

For more than a hundred years numerous correlations have been advanced in the
" literature which, on empirical, semi-empirical or theoretical grounds are inten-
ded to account mathematically for the relationship between the microstructure
and field properties of two-phase materials. In the original papers they are given
for electrical resistance [171], dielectric constant [273], electrical {131] and
thermal [30] conductivities, magnetic permeability [105] and optical properties
[1,152] as the optical refractive index [163] or - more generalized recently - as
permitivities for transport properties [27,58,72,174,175,181,182,216] including
the optical absorption coefficient and refraction index [181,182]. For better
comparison, numerous of these correlations were later transcribed to the
electrical resistivity of two-phase materials by applying analdgies of field
property parameters [208], bringing out, that some of them are identical in
content but different in the original form only. Their reliability from an
engineering point of view was checked with plausibility criteria as boundary .
conditions [27,182,208). Thus for example, the condition must be met that

.- the effective field properties, e.g. conductivity, of the two-phase material

becomes identical with thal of 6ne phase when the concentration of the other
phase is zero; or

- areal effective conductivity must exist for such a material, even when that of
one phase approaches zero (the second phase being pores); or

- the effective field property of a two-phase material has to be indentical with
that ?f its phases, if the field properties, e.g. conductivities, of the phases are
equal. ’

Surprisingly the number of equations reduced lo a few by this procedures and it
was possible to select certain reliable correlations in this way [196], for which two
methods of theoretical derivation have been described: the bound and model con-.
cepts, respectively.

2.2 Thebound concept: field property bound equations

Considering the interaction between a "primary” field and a material introduced
into this field, field equations as correlation functions provide the combination of
primary field parameters, such as the external field strength, with the field para-
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meters in the material resulting from interaction [105]. These correlation func-
tions comprise the specific characteristic field parameters of the material, such as
the thermal or electrical conductivity, dielectric constant or magnetic permeabi-
lity and for a homogeneous single-phase material, enable to calculate the energy
introduced into the material by interaction with the field.

In case of the bound concept the constituents of the two-phase material are
considered separately in the respective electrical, magnetic or temperature field
as shown in Fig, 5.

§ e st s s |

/D
BN
ﬂ;)
'

Fig. 5: Bound concept schematically.

By field influence the phases (or constituents) take up field energy, where these
energy terms behave additively, when composing the constituents to one piece.
The resulting energy equation provides two solutions for the effective field pro-
perty; the solutions themselves depend on the microstructural information to be
available or assumed to be correct as limiting conditions:

for example supposing or knowing nothing more, than that the material is
two-phased one obtains an utmost upper ($Ic) and a lower value (1)
bounding all possible property quantities in between I, order bounds (Fig. 6,
equations 1a and 1b) so called for referring to one single assumption: the
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number of phases. These 1. order bound equations (= I. order engineerin
approach) correspond formally to the well-known Kirchhoff laws for series ang
parallel arrays of the phases, although the derivation does not prescribe such
an arrangement of the phases but accepts it as one of various possibilities. As
the physical-mathematical derivation implies, the I, order bounds are the
ultimate bounds for the field properties of a two-phase material stating, that
no values may exist outside the bounds!

“lower bounds upper bounds
(1a) {1b)
LI
1.order P = c?p,*lﬂz—chg ol = czq>2~u(\—c2)\p1
{2a) {2b)
39+ 2(1-c )@, -9, ) 39+ 2¢,{9,-9,)
1. order \OHC = \91 2 - 2 ! 2 gpllc = \pz ad 21¥2 !
‘ 39, -{1-c )9, -9, ) 39,-colw,-9y)
P, <P,
(3a) ; (3b)
- 2 "
HI. order l-cq = Purc waM; o 1-¢p = M Py
Pu % Puct <o Py~Pp 1 Pl
P, <y,

Fig. 6: Bound equations of field properties (¢, ¢po = field property values of
phase 1,2; dum, dp = field property values of phase M,D; ¢y, ¢o,¢p =
volume content of phase 1, 2, D). ‘

- another couple of equations represents closer II. order bounds ($fl¢, dyc)
being valid for materials with two microstructural items of information: the
material is two-phased and the material is isotropic (statistical orientation; Il.
order engineering approach).

- finally knowing that the material is two-phased, isotropic and that one phase
serves as a continuous matrix-phase, whilst the other is included discon-
tinuously we get even closer III. order bounds (¢!tlg, ¢iic) due to three
microstructural assumptions: the number of phases to be two; the type of
microstructure to be a matrix phase type; the orientation of phases to be
statistical, representing an isotropic material without definite information on
concentration and shape of the phases (compare Iig. 4).

In the meantime, these bound equations have been confirmed by different ways of
derivation [24,26,27,28,181,182] as the finite element approach [58] and
bounding equations of higher order have been derived [182] also for other than
field properties [144,145,149]. But despite this success and despite the fact, that
equations (1) and (2) are derived rigorously according to theory, they are still
inadequate for the following reasons:
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the lower bounds disappear when pores are the second phase (g — 0);

the range of variation is too large, even between the I1. order bounds, when the
field-property values for the phases of a two-phase material are very different
(compare Fig, 7);

the bounds do not permit any feedback to the technological question important
for "constructing taylor-made engineering materials”, how microstructure
effects the property variation between them; in other words (compare Fig. 8):
the question is open how to move the property of an in-situ produced two-phase
material between the bounds (circled in Fig. 8) either at constant composition
to "better” values (e.g. technically) or at constant property to most efficacious
(= least expensive, most economical or ecological by saving rare or risky
components etc) phase concentrations by optimized microstructures.

Since the scientific principle considers "knowing” and "knowing better” to be any-
way better than "not knowing” or ”vknowingl less” and since - also from a technolo-
gical point of view - an even better insight into the microstructure-property
correlation could provide closer bounds or even singular values, where sufficient
microstructural information is available, efforts were. therefore made to develop
the microstructure field-property correlation further, by an alternative method
requiring the mathematical treatment of a model structure which approximately

characterizes that of the real material.
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Fig. 8: Bounds and tayloring materials.

2.3 The model cdn,cept.‘ microstructure-field property equations

This exact characterization of a fictitious model always gives an inexact
description of the real material, but its physical and engineering quality can be
checked firstly by comparison with rigorous theoretically derived equations (1)
and (2) and secondly by comparison with experimental values.

The chosen model proceeds from a real two-phase material, the microstructure of
which consists of a continuous (matrix) phase in which the particles of the other
(inclusion) phase are embedded discontinuously but macroscopically quasi-
homogeneously. These particles which are normally irregularly shaped in real
materials are replaced by spheroids, i.e. particles with a regular mathematically-
definable geometry and geometric arrangement within the material, having a
unique mean form, size and orientation (mean value premise; fig. 9).

The mean form is given by the ratio of the rotational (z) axis to the minor (x) axis
of the speroid substituting the real particles. To obtain this, each real particle is
considered to be replaced by a spheroid having the same surface-to-volume ratio

215




Vol 3, Nos. 3 & 4, 1987 The Quantitative Microstructure-Field Property
Correlation of Multiphase and Porous Materials

Fig. 9: Model concept - mean value premise.

as the real particle and therefore a specific axial ratio. The mean value of the
axial ratios of all the particles (n)

u[\/l;

z
— -1
x

I=1 1n ! (4)

® N

corresponds to the axial ratio of the spheroid by which the real particles are re-
placed in the model. It is found in chapter 3 of this publication that for a given
axial ratio there are two alternatives for substituting the real particles of the
inclusion phase, namely either by an oblate spheroid or a prolate one. Stereologi-
cally, one actually obtains two axial ratios for each of the two types, hence a total
of four from which, however, one can normally be selected preferentially for sub-
stituting the real particles.

The mean size of the spheroids substituted for the real included particles is deter-
mined by their number and the volume concentration of the inclusion phase;

and

the mean orientation is determined by the orientation of the rotational axes of the
substituting spheroids to the field strength gradient’s direction (Fig. 10).

A comparison of these modelling assumptions, namely:

- two-phase stable nature (= number of phases in equilibrium)

- matrix structure (= arrangement of phases) with macroscopically homogene-
ous distribution and continuous phase boundary (continuum premise) and

- characterization of the form, orientation and size of the particles of the in-
clusion phase by uniform spheroids (spheroidal mean value premise).
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field direction

Fig. 10: Model concept - orientation angle (a) of a substituting spheroid.

with the five essential parameters given in Fig. 4 for the quantitative characteri-
zation of microstructure, shows that instead of the volume content of the phases
in the model, the mean size of the phase particles (not accurately defined) and
their number appear in the first instance. This is explained by the fact that
instead of the five parameters given in Fig, 4 actually seven quantitative micro-
structural parameters would be required for the complete characterization of the
microstructure of a two-phase material {194], which are

- the number of phases

- the arrangement of phases

- the shape of inclusions

- the orientation of inclusions

- thesize of inclusions

- thelocal distribution of inclusions

Because of the continuum premise, the distribution parameter can be dispensed
since the local distribution is assumed statistically homogeneous, whilst, as is
shown later (chapter 3), the size and number of included phase particles can be
combined in one microstructural parameter: the phase concentration factor.

Spheroidal characterization of the inclusion phase particles, and only this, offers

certain advantages:

- high adaptability to real irregular geometries by continuously changing the
axial ratio whose extreme cases include disc-shaped ([z/x] — 0; platelets) and
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cylindrical inclusions ([z/x] — «; fibres) and the special case of which ([z/x] = 1)
corresponds to spherical inclusion phase particles (Fig, 11).

- there are no points of discontinuity such as corners and edges, which could
represent barriers for the mathematical treatment of the field potential of
interfaces in two-phase materials;

the substituting spheroid best-suited to a real structure can be determined by
quantitative microstructural analysis, by means of available stereological
functions (see chapter 3).

o
:
?
z
i
i
!
|
4

Fig. 11: Spheroidal shape variation.

Theoretical treatment of the model begins with the characterization of the homo-
géneous field in the single-phase material by its field equation. Including
spheroids into the single-phase material which, in fact, substitutes the real inclu-
sions, leads to an interference ("stray”) field being generated by electrostatic
induction and superimposed on the original field, which depends on shape and
‘orientation (Fig 12).
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Fig. 12: Field superposition (schematic) in two-phase a material.
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The field equation can be written for both fields and the resultant field is given by
superposition of the homogeneous primary field and the induced interference
field, as will now be exemplified by an electrical field:

The field strength within an spheroidal particle (Ep) localed in a homogeneous
external field (matrix field = primary field; field strength Ep) is given by
[126,219,249,273):

E 2 (uslu
_’ Z _______’_'__ (5)
k, =  F e, —e 0l
where:
F.p = de-electrification or depolarization factor, referred to the i = x,y,z
axis of the included ellipsoidal phase particle
FYPRN = dielectric constants of matrix and inclusion phases, respectively
dip = angle ol orientation of the i = x,y,z axis of the ellipsoidal particle of

the inclusion phase, with respect to field erenth gradient
direction (Fig. 10).

and where

Z Fy=1 ‘ (6)

2
Z cosznm =1 (M
1 =x
For ellipsoids of revolution (= spheroids; axis of rotation z, minor axis x = y}, one
gels in accordance with equation (6)

F=1=2F, (8)
S0 that F, can always be expressed by Fy. In the following derivation, there-

fore, only F ), = F, is used as shape factor for the inclusion phase, where
[208,244,273]:

2 o
z

dw (9a)

x
F =F :-——I [ S (N —
= o2 w02y w)2\/ Zrw
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which results
- for prolate spheroids in

}
L
LY
™

oo { USPPRE. S ] (9b)

D x 2
2z 1 ~[-1
2z

- for oblate spheroids in

X 1 z

2
-\/n-lfl
F o= {—+ In ol }
0= et
_ 22('-"'); 2x\A_|51 tevVi+ 2
X x x

In equation (9) only the axial ratio [%/z] occurs, but not the axial lengths (x,z)

(9¢)

alone. Accordingly, this is only a shape factor, for which the size of the particle is
of no importance!

- With equation (7) (cos2a;, = cos?a,;) (8) and (9) (F|, = F )} one obtains from

2y
equation (5)

. | 2 A
E B LM(l—m‘su“) £,, co8"a

D p Ny ‘ (10)

By eyt ly—edFy eyt - )0 —2F))

In accordance with the assumption made for equation (5), namely that a spheroi-
dal phase particle exists in a homogeneous primary field, equation (10) applies

only as long as the primary matrix field (K, , £,) remains homogeneous and con-

M?
stant. An interference field is now induced in and around the included particle
and the effect of this field on the field in the matrix phase can be considered
negligible providing the concentration of included phase particles is small; i.e. the
greater part of the field in the matrix phase remains undisturbed. Equation (10),
applied to a two-phase material with matrix structure, is therefore only valid for

low concentration of the inclusion phase,

On the other hand, the effective field strength (E.) of a two-phase material (and
also its dielectric displacement D) can be calculated from the corresponding
M2 DD’
volumes in accordance with Wiener's mean value theorems [274]:

parameters of its phases (E,, B, and E respectively) and their respective
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e , (11)
Eo=cy iy + k)

_ (12)
Do=c¢y Dy +¢,D),

(¢, = volume content of the inclusion phase; ¢,, = 1 - ¢, = volume content of
matrix phase) with

D =K (13)

i i

(i = C,M,D). It follows from equation (11) that

o~ by (14)

M LYY
which leads with equations (12) and (18) to

Ey ey oty -t (15)

Ey ¢

p %%

Comparison of equations (15) and (10) provides

. . 2 2
S By~ S 1 ~cos"a, 0¥y, (16)

m Pt Y — 2K )
p ¢t eyt ey —e ) gy ) - )0 —2F,

Ifin accordance with a field equation analogy [208], a general field property para-
meter (¢;) is used substituting the dielectric constants (¢;) in equation (16) and if
equation (16) is solved for the effective field property of the two-phase material
(), one obtains

the microstructure field-property correlation for two-phase materials with matrix

microstructure at low concentrations of the inclusion phase:

] et I 1 — cos’a D . cws’a D
—C [+
DDy + @ = ) F)y by by - by )T - 2F)) a7
bo=¢
¢ M 1 — cos?a cos’a

1 —c,+e,by,

D D
—+ ]
byt @y =y F)y by D) - )0 —2F)
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orrewritien

. 2 2
. ) \ | 1 — cos a, . ws'a,
— ¢
. P _ , _ — o
Y by H by =) byt by — Gy ) (128 ) (18)
b= ¢
! M ) 2 02
(‘I -~ (0§ QD €08 (ll)
L+ —a, — + -
M @y =) FYy by + by — by, (1 - 2F))

For the spherical form of the included phase particles, (F|y = 0.33; cos2aj, = 0.33;
compare chapter 3), the equation (18) is identical with the Maxwell equation
derived for this case [171], which in turn is approximately the same as the
corresponding equation form by Niesel[188,210].

The limitation of equation (18) to low concentrations of the inclusion phase can be
clearly understood in the physical sense when it is considered that only superposi-
tion of the homogeneous primary field and induced interference field within the
included spheroidal particles was taken into account in the derivation, but not
superposition of the homogeneous primary field and the induced external inter-
ference field around the different particles of the inclusion phase. In other words:
field interference in the matrix phase has been neglected assuming that the
majority of the primary field remains undisturbed. This is roughly true as long as
the mean interparticle distance (A) between the inclusion phase particles is bigger
than about four times the range of an interference field. Since according to the
Fullman equation [265]:

1 - ¢ (19)

this mean distance (1) depends not only on the volume concentration of the inclu-
sion phase (c,,) but also on the size of its particles (L3 = mean spatial intercept
length); mutual superposition of primary field and of interference fields only
comes into effect at the higher concentrations of inclusion phase, which vary
according to particle size. This interaction of primary and interference fields in
the matrix phase is taken into account in the derivation continued below by the
"self consistent scheme method”, which as will be shown, is proper for an
engineering approach bul is not mathematically exact and physically rigorous: It
is assumed that the two-phase material with a low concentration of inclusion
phase can be vonsidered a quasi-homogeneous matrix phase, in which particles of
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the inclusion phase are again introduced in low concentration (dc,)) [42,43]. The
effective field property can therefore again be determined by means of
microstructure field-property correlation (18) already derived for low
concentration of the inclusion phase, with

$y = ¢ andcy + ¢y + de, = 1 (20)

one obtains from equation (18)

. ch . 1 - ('032(1“ . s u |
b —¢,—dc, D bt = b I, bt by, — b, )(I - 2F,) 1)
q)(, + (IQ)C = (1)(, 9 5
’ ’ de,) I —cos’a, cos"a
1 + (b(.‘ — + o
Loy —dey Tl + ), — b, &+ @p — ¢ N1 =20
and by rearrangement (see also equation (16)
d(‘l) _ rhp(, (22)
b 9~ dc/) t - ('052(1“ mszuu
b, 1, ~ b, —dd,) — 4 —
crD 4 ¢ (b(,' 1 ((])I) - (b(,)l’(, (i)(, + (([)1) - (l)(.‘)(l — 2F “)
With the simplifying relationship
de, < (1-¢,) and do. < ¢ (23)
one gets the approximate form
lI'CU _ (/q)(, (24)
I —c, I~ 0()52(1“ mszun

' be by =) byt @), = b, ! b gy = b A - 2F))

the integration of which - on the left-hand side between the (concentration) limits
0 and ¢, on the right-hand side between the (field property) limits ¢,, and ¢, -
gives the general microstructure field-property correlation for two-phase mate-
rials with no limitation on the phase concentration, In accordance with an earlier
suggestion [209,243], equation (24) can be integrated by breaking the right-hand
side down into partial fractions; by rearrangement one obtains
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. 12 ; 2 o o a2
dey 2F (1~ F )% +(1 =31 +4F2)p &, +F (1 —2F )2 _
1-¢, C¢C(¢D—-¢C) {¢C!2Fn+caszan(l —-3F )+¢ 01 —2[4‘0-0032(10(1 _3]4‘1))]}
= d¢ % (25)
€ P@,)
with - according to the rule of the partial fraction method [40] -
') y 7
Q(tb( R S T (26)

= + +
P@e)  de—dpy b0y b~ gy
The solutions of the denominator function P (¢¢) in equations (25) and (28) are

1

— o — . _ 27)
¢, =0, ¢, =0, ., =0, |1 - ;
ct ez bres b 21"U + roszul)(l - SFD)
and
Qg Fo( -2F) (28)
Ploe) 1 -2F) - wsa,( - 3F))
Q)
oo MWl (29)
P,y
. Qg B Fp@ —2F) 2P, =F) 1 (30)

= = +
P ; 2 . a 2 »
@egd 1 - 2F ) — cos’a,, (L = 8F))  2F) + cos’, (1 — 3F))

Talking equations (26) to (80) into account and introducing the integrals, one ob-
tains from equations (25) -

JcD de, _rbCRdQ)C V’C do, [d)c qu)C

- +
ol-¢ Jg ¢ 4y $e —p

(81)
& 1
Moo=,

Il_
o 2
2['D+oos uD(l - 3FD)
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Another derivation of equation (31) by partial fractions and the method of inde-
terminate coefficients has already been demonstrated explicitly eisewhere [243].
As already reported [195,209,215,243], its integration gives a (model)
microstructure-field property correlation with no limitation on phase concentra-

tion:

et |
b, = o [Py rC b 28+ (:032(11)(] - 31"1)) l/
| —¢, = —_— — ¥
M PEX VR % ! (32)
LUV U 9 .
'”’l) + oy u“(l -3 I'D)

where

¢ = field property

D,M,C = indices for the inclusion phase D,

matrix phase M and two-phase material C
(N = volume content of inclusion phase
= phase concentration factor

F, = shape factor

cos2a, = orientation factor

R, T = exponentsin accordance with equations (28) and (30)

As this derivation shows, the effect of microstructure on the field properties of
two-phase materials with (model) matrix microstructure is completely taken into
account by three microstructural parameters relating to the inclusion phase,

which enter the microstructure field-property correlation as:
- phase concentration factor (c,),
- shape factor (F ) and

- orientation factor (cos2ay)).

The phase concentration factor (¢p) corresponds to the volume content of the

inclusion phase (see chapter 3) and is subject to the condition that 0 = ¢, = 1 and
incorporates the two microstructural parameters enumerated at the beginning,
namely the "size” and "number” of particles of the included phase particles; since,
if, for example, one specifies the size of an oblate or prolate spheroid with the
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same ratio of major-to-minor axes (e.g, [a/b]= = [a/b]" = 2) over its mean

intercept length (L3), one obtains for an oblate spheroid /44/;

L, =12784q (33a)
v, = 1.006(ZL)" (33b)
. _ . 3_ . ((unit volum 3
Vgt Ny Vo=V + N, 10060 = v =1 olume) (33¢)
— 3
N, 1.006(L,) .,
¢ = — =N, 1.006(L,) (33d)
VM + ND~ 1.006(‘113)
or for a prolate spheroid respectively
L, =146b (34a)
. T8 34b
, = 2.69(Ly) (34b)
N, 2.69(L)
D = ‘3 — P
e, = — =N, 269(L)" (34c)
Vy + N, 2.69(Ly)
and hence:
ey =g NV, (35)
where
Vag = volume of single oblate or prolate spheroid
N, = number of spheroidal particles of inclusion phase in the total volume
VuM = volume of matrix phase

Size and number as microstructural parameters for the particles of the inclusion

phase are accordingly not independent of each other, but may only be varied in

combination, via the phase concentration factor. This is an understandable conse-

quence of the self consistent scheme method, which formally and descriptively
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talees account of interference field superpositions at all concentrations, although
they become negligibly small at low concentrations. Really effective interference
field superpositions in the matrix phase therefore only begin above a certain
concentration of the inclusion phase, depending on the size of its particles. The
onset of interference field superposition and hence the effect of particle size as an

independent variable, is irrelevant for the result of equation (32).

The shape factor in equation (32) corresponds to the depolarization or de-electrifi-
cation factor and is given by the ratio of the axis of revolution to the minor axis of
the spheroid substituted for the real particles. It can be calculated in accordance
with equation (9) for every axial ratio /8,39/ and is subject to the condition 0 = Fp)
< 0.5 with Fpy = 0.33 for spherical particles of the inclusion phase. The result of
this calculation is shown graphically in Fig. 13 (compare also chapter 3).
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Fig. 13:  Depolarization factor = shape factor as function of the axial ratio of
spheroids.
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Finally, the orientation factor is given in accordance with the derivation by the
cosine squared of the angle formed by the axis of revolution of the substituted
spheroid and the field strength gradient direction (Fig. 10); it is subject to the con-
dition 0 = cos2ayy = 1 with cos2ajy = 0.33, for statistical orientation, i.e. randomly
oriented or isotropic inclusion of the particles of Lthe inclusion phase (see chapter
3).

2.4  Convergence between bound concept and model concept

The model on which equation (32) is based and the - mathematically inexact -
derivation of the correlation by the self-consistent scheme method make its
physical and engineering "quality control” an absolute necessity from the point of
view of reliability and hence usefulness. This can be achieved physically by
ensuring that equation (32) leads lo the same results when applying the boundary
conditions used for deriving the equations by the the bound concept.

The bounding equations of the I order correspond to the Kirchhoff laws for
parallel and series arrangement of the two phases, where the upper bound values
refer to parallel, the lower to series arrays. In the spheroidal microstructural
model, parallel arrangement of the phases may be represented by two equally
justifiable cases: ‘

- discs oriented perpendicularly to the direction of the field strength gradient
(cosZap = 0; lim #/x = 0 —» F}, = 0, comp. Fig. 13)

- cylinders oriented parallel to the direction of the field strength gradient
(cos2ap = 0;lim z/x = «— F; = 0.5, comp. Fig. 13).

On the other hand, series arrangement of the phases with regard to the
spheroidal microstructural moedel may be realized only by discs oriented parallel
to the direction of the field strength gradient.

From the conventional, macroscopical consideration according to Kirchhoff’s laws
follows the imagination, that the discs are realized stereologically in the model
concept, when the minor axis is "infinite” compared to the finite axis of revolution
(lim z/x = 0) whilst cylinders correspond to "infinite” fibres, having an "infinite”
axis of revolution compared to their finite minor axis (lim z/x = ), In this context
“infinite” means a dimension analogous to the dimension of the two phase mate-
rials specimen, This imagination does not judiciously agree with the supposition
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of a matrix microstructure, made for the derivation in the model concept. It is,
however, possible stereologically to realize dises (lim 2/x = 0) and by assuming an
“infinite” small axis of revolution compared with a finite minor axis and to
assume a finite axis of revolution compared with an "infinite” small minor axisin
the case of cylinders ("short fibres”). Both cases are totally equally justified to the
ones described first but fit with the assumplion of dises and cylinders included in
a matrix phase as made for the model concept.

Applying these boundary conditions to equation (32) and substituting the indices
(M,D = 1,2) provides equations (1a) and (1b) for I. order bounds (Fig. 6).

A second "physical quality control” of equation (32) i's given by the boundary con-
dition which follows from the I1. order bounds (equations (2a) and (2b), Fig. 6) for
the model, namely ”statistical orientation”. Substituting the correspunding orien-
tation factor (cos2q;, = 0.33) in equation (32) and varying the shape factor (0 = F,
= 0.5), as well as assuming first the phase with the higher field property para-
meter (e.g. higher conductivity ¢\, = d2 > ¢, = ¢y, see Fig. 14a) as the parti-
cular matrix phase and then the phase with the lower field property parameter
(e.g. lower conductivity: ¢,, = ¢1 > ¢, = 2, see Fig, 14b) as the model concept
requires results in upper and lower bounds in each case. In order to eliminate the
assumption of a particular phase as the matrix, the highest and lowest of the 4
bounds thus obtained must be considered the II. order bounds for two-phase iso-
tropic microstructure. Superposition of the bounding curves for a matrix phase
with higher field property parameters, with those for a matrix phase with lower
parameters provides graphically the extreme bound plots for the isotropic two-
phase model microstructure (see Fig, 14¢). Here surprisingly, the upper bound
curve corresponds to a model structure in which the phase with the lower field
property forms the matrix phase in which randomly oriented disc-shaped par-
ticles of the inclusion phase with the lower field property parameler are em-
bedded discontinuously (cos2q;, = 0.33, F,, = 0). On the other hand, the lower
bound curve applies for a model structure in which the phase with the higher
field-property parameter forms the matrix phase, in which (randomly oriented)
disc-shaped particles of the phase with the lower field property parameter are dis-
continuously included (cos2a,, = 0.33, F, = 0). Applying the corresponding orien-
tation and form factors (cos2apy = 0.33, F|) = 0) in equation (32) and substituting
the indices(M = 2,D = L for ¢, < ¢, M = 1, D = 2, for ¢, > ¢,,), results in
equation (3a) and (3b) for II. order bound (Fig. 6).
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Fig. 14; 1. (a,b) and II. order bounds (¢).

Convergence betw.een the bound and model concepts is therefore demonstrated
physically. This is why now equation (32) resulting from the model concept can be
uvsved for deriving bound equations of higher order for two-phase ‘materials (=
number of phases). With known matrix phase (= arrangement of phases) and iso-
tropic microstructure (= orientation factor), hence, three defined preconditions
for microstructure, "closer” bounding equations of the II. order (3a, 3b; Fig. 6)
follow from equation (32), whereby equation (3a) characterizes the lower bound
when the matrix phase has the higher field-property value as compared with that
~of the inclusion phase (¢, > ¢,; Fig. 14). With respect to the model concept the
lower bound equation reflects statistically oriented disc-shaped inclusion (cos2a;,
= 0.33; F}, = 0), whilst the upper bound refers to spherical inclusion (cos2a,, =
0.33; F, = 0.33), both in a matrix phase which has the higherfield property.’

Equation (8a) becomes the upper bound equation, if the matrix phase has the
lower field property compared to the inclusion phase (¢,, < ¢,,) and - ficticiously
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in the model concept - the lower bound then refers to spherical inclusion and the
upper bound represents statistically oriented disc-shaped inclusions,

It is noteworthy that equation (8a) becomes identical with equation (2a) (¢ppm =
d2; dp = ¢y), if the matrix phase has the higher field property compared with
that of the inclusion phase (pm > ¢p) and that for the reverse case (pm < ¢p)
equation (3a) becomes identical with equation (2b) (dM = ¢1; P = P2).

In Fig. 14c the II. order bounding curves were obtained by superposition of two
pairs of curves, one of which applied to a matrix phase with the higher field para-
meter (Fig, 14a) and the other to one with the lower field parameter (Fig. 14b).
These two pairs of curves correspond to the I, order bounds for the two-phase iso-
tropic material,

Also the remaining findings on convergence between the bound and model con-
cepts can be demonstrated graphically by way of a representative example. This
is shown in Fig. 15 for the function ¢, = ['(F,) in accordance with equation (32),
firstly for isotropic two-phase material (cos?a;, = 0.33) with a higher field pro-
perty ratio between matrix phase and inclusion phase (¢,/¢,, = 100) and second

ly for similar material with a lower field property ratio (¢,/p,, = 0.01) at constant
phase concentration (¢, = 0.5). As results from Fig. 15 the two field property
values for the shape factor F|; = 0 include the field property values for all other
form factors and therefore represent I1. order bounds. Here, surprisingly, as
already mentioned, the lower bound corresponds to a matrix phase whose field
property parameter is higher than that of the inclusion phase, whilst the reverse
applies for shape factors between the points of intersection of the Ltwo curves. In
practice this would mean for example that a two-phase isotropic material whose
matrix phase has the lower conductivity, exhibits a higher effective conductivity
for specific shape factors for the particles of the inclusion phase, than the corres-
ponding two-phase material with the same microstructure, but higher conducti-
vity of the matrix phase. [t is an open question how to explain this result and, for
instance, whether it is associated with the simplified approximate relationships
in the derivation of equation (32). Theoretical and experimental verifications of

these findings are necessary.

Different bounds are obtained when the data on microstructure, especially those
concerning shape and orientation of the inclusion phase, are derived from
measurements on real microstructures. Since, as already mentioned at the outset,
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Fig. 15: Field property of a two-phase isotropic material with matrix micro-
structure and matrix phase with higher (—) and lower (---) field-property
parameters, as a function of shape factor.

characterization of shape in accordance with a model is usually ambiguous, two
equations result from equation (382) for each of two shape factors which are

equallyjustifiable.

If, with the help of measurement,

- the two-phase state has been established (= number of phases)
- the matrix phase has been defined (= arrangement of phases)

- the limits have been defined for the shape via defined limits for the ratio of the
axis of revolution to the minor axis of the spheroid substituting the particles of
the inclusion phase (= shape factor) and

- the orientation has been defined of the spheroid substituting the partlcles of
the inclusion phase (= orientation factor),

this would be equations presupposing 4 known items of information and, hence
determining bounding curves of the IV. order. Obviously the bounds become -
closer and closer with increasing order or - alternatively expressed - with increas-
ing microstructural information. If, finally, total information would be available
about all parameters given in Fig. 4 the upper and lower bounds would converge
into each other providing one "singular” curve or function, respectively.
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Vice versa, it is also possible to demonstrate the convergence between the bound
concept and the model concept by varying the microstructural factors in the
model concept as done schematically in Fig, 16 resulting in a steadily shifting of
the field property values from one bound to the other,
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Fig. 16. Schematic¢ bound-model convergency.

2.6  Matrixand interconnection microstructure

The correlation found between the bound and model concepts shall now be used to
draw another generalized conclusion on plausibility considerations; fundamen-
tally, two microstructures can be distinguished in multiphase microstructures,
namely matrix and interconnection microstructures [194,195] (Fig, 17). Matrix
microstructure exists when at least one phase (inclusion phase) is included
discontinuously in atl least one other continuous phase (matrix phase). The
inclusion phase can be present throughout in higher concentration than the
matrix (Fig. 18). On the other hand, interconnection microstructure exists when
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all the phases appearing in the material occur continuously. This is quite
generally the case when the phases penetrate three-dimensionally in the form of
sponge-like lattice structures. There are transitions between the two
microstructural types. Thus, with increasing agglomeration of particles of the
inclusion phase and increasing concentration of this phase, there is a steady
transition of the matrix microstructure with a specific matrix phase to
interconnecting microstructure, Further increase leads through interconnecting
microstructure to the formation of a matrix structure, in which the original
matrix becomes the inclusion phase. These considerations also make that special
case abundantly clear in which all or individual phases occur continuously in
multiphase materials only one- or two-dimensionally. Such a material possibly
has an interconnecting microstructure in one direction and a matrix jmicro-
structure in another and is anisotropic (e.g. parallel or series arrangement of the

phases).

In the derivation of equations (1) and (2) for I. and II. order bounds, no assumption
is made as to whether the microstructure has a matrix or interconnecting form.
The bounds accordingly include not only the field-property values of the two-
phase material with matrix microstructure but also those of the two-phase
material with interconnecting microstructure. Since these bounds also follow
from equation (32) for the model microstructure with the corresponding boundary
conditions, it may be assumed that an equation which can be derived by the model
concept for the field properties of two-phase materials with interconnecting
microstructure, meets the condition that field-property values calculated with it
always lie between the corresponding bounds, which follow from bounding
equations.

In order to derive such an equation it is assumed that in the interstices of a con
tinuous skeleton of spheroids of one phase, other spheroids of another phase fit so
well that they also touch and only negligibly small interstices are still left over.
To this quasi-homogeneous two-phase material with interconnecting microstruc-
ture (phases m, k)la small.quantity of spheroids of the one phase (m) is added, only.'
The change in field property then occurring can be characterized with the known
equation for two-phase materials with a matrix microstructure (equation 18)
comsidering the original material consisting of two continuous phases as a quasi-
homogeneous matrix phase. This results in an equation with two unknowns,
namely the field property parameter of quasi-homogeneous "matrix phase” and
the effective field property after addition of a small quantity of the one phase.
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Fig. 18: "Idealized” cermet microstructures (metallic matrix phase, white, < 10
vol.%; ceramic inclusions, dark).

Considering - in this notional experiment - the newly created two-phase material
as a quasi-homogeneous matrix phase and adding again a small quantity of the
other phase (k), for which the changé in field property can be calculated with the
equation (18) for a matrix microstructure and low concentration of the inclusion
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phase, the effective field property now becomes equally large in the opposite
direction. The change in field property caused by the initial addition of phase m is
therefore compensated by adding phase (k) and the field property of the new two-
phase material must then be identical with that of the two-phase material
originally present with a model interconnecting microstructure. With this boun-
dary condition a general microstructure-field property correlation for two-phase
materials with interconnecting microstructure follows from the system of
equations thusobtained [188,208,243,2441]:

2 2
1 — (os a, cos“a |

m
+
bot @, —dJF, bt

(1 — ¢, M e ‘
e ¢HI q)(‘) - (pc)(l - 21"’")

m "

v 2
! — cos’a s a

k + k ’ (36)
b+ @, —OIF, b+ @, — ) —2F)

=6 (g — &) ‘

For given phase field properties (¢, ¢i) and various phase concentrations which
are held constant in each case, one can now vary the form and orientation factors
between their possible limits (0 < F,, = 0.5; 0 = Fyx = 0.5; 0 < cosay, = 1;
0 = cos2ai = 1). If the assumption made at the outset is correct, the largest and
smallest values then calculated may not lie outside the bounds defined by the
bound concept. Accordingly, for bounding cases for example (Fy,, = Fy = 0;
cos2a;, = cos2aix = 0 and F,,, = Fi = 0; cos2an, = cos2ag = 1), equation (36)
would have to converge with the L. order bounding curves, which is also the case.
Mozweover, all values for two-phase isotropic material with interconnecting micro-
structure (cos2a,, = cos2ay = 0.383) in accordance with equation (36) would have
to lie within the calculable II. order bounding curves. The variation of the field
proyperties of two-phase isotropic materials having interconnecting microstruc-
tures (cos?ay, = cos2q = 0.33), as a function of phase concentration, for two
assumed field properties (¢, = 100, x = 1) and extreme combinations of shape
factor (F,, = Fy = 0; F;,, = Fx, = 0.5; Fp, = 0.5, Fx = 0; Fy, = 0, Fy, = 0.5) are
compared in Fig. 19 with the IL. order bounding curves. As shown, all values for
interconnecting microstructure lie within these bounds. Apart from that no
mathematical demonstration on this subject yet exists, for the reason that
pre ference has been given so far to matrix microstructures. Considering the slope
of fzeld properties versus phase concentration for both matrix and interconnection
microstructure as shown in Fig, 20 for the electrical conductivity of cermets, it
comes out that small changes in phase concentrations result in conductivity
alterations only, which do not essentially lie outside the scatter region for
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measured values as long as a matrix microstructure exists. In the region of
interconnecting microstructure, however - hatched in Fig. 20 - almost "virtual”
changes in the phase concentration may cause property drops over orders of
magnitudes. Such a sensitivity does not meet the aim testing the quality of
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Fig.19: I order bounds (~—) and calculated extreme-value curves for inter-
connection microstructure (---).
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theoretical equations by experimental data. Furthermore in practice it cannot
guarantee any acceptable reproducibility due to technological conditions, which
neither permit one to fix phase concentrations so accurately nor allow one to
realize interconnection microstructures defined in such detail. This is why - apart
from the existing equation (36) - the treatment of the relationship between matrix

microstructures and field properties deserves priority so far.

2.6  Special and exceptional cases of the constitutive microstructure-field

property equation for two-phase materials

There are a few special cases of microstructures given by definite orientation
factors and shape factors, which lead via equation (32) to the solutions given in
Fig. 21,
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Fig. 21: Table of special solutions of the model concept.

These cases are (compare Fig, 21)
- for the orientation of the inclusion:

statistical orientation; no privileged angle exists between field direction
and axis of revolution of the substituting spheroids (ap, = 57°; cos2ap = };
compare chapter 3);

complete orientation in field direction; all axes of revolution of the substi-
tuting spheroids are oriented parallel to the field direction {ap = 0° cos2ap

complete orientation perpendicular to the field direction; all axes of revo-
lution of substituting spheroids are oriented perpendicular to the field
direction (ap = 90°% cos2ap = 0°);

238




G. Ondracek Reviews on Powder Metallurgy
and Physical Ceramics

for the shape of the inclusions:

cylindrical discs (lim 2/x = 0), either formed by a definite minor axis (x) but
an indefinite small axis of revolution (z) or formed by definite axis of
revolution (z) and by an indefinite large minor axis (x) (I'; = 0);

spheres (z/x = 1) formed by equiaxed spheroids (F, = })

cylindrical fibres (lim z/x = =), either formed by an indefinite long axis of
revolution (z) and a definite minor axis (x; "indefinite fibres”) or formed by
definite axis of revolution (z) and by an indefinite minor axis (x; "short

fibres”).

As expecled equations (37) and (43) in PFig. 21 are identical Lo each other and
correspond to parallel arrays of the phases (compare also equ. (1a), Fig. 6), whilst
equation (39) corresponds to series arrays of the phases (compare equation (1b),
Fig. 6). Other identities exist between equation (38) (Iig. 21) and equations (2a),
(2b) or (3a) (Fig. 6) as well as equation (10) (FFig, 21) and equation (3b) (Fig. 6).
Two other special cases result assuming big differences between the field proper-
ties of the phases (¢, ® ¢,;; ¢, < ). Taking into account limiting terms for the
field properties of the phases (lim ¢ /¢, = 0; lim ¢ /Q,, = 0Y in equation (32) one
obtains '

|~ cos? o
— cous u“ [HIR) ||“
¢ -r " Tor
D
< iy, =y, (0 —c)) b n (44)
M
20 2
oy (ll) = s “I,
¢ ” T ,
D D 7 (45)

; Pl =¢,, 0 - e

(0 =¢,=1;0=cos2q,= 1;0 = I, = 0.5)

2.7  Porous materials

Equation (44) provides already the model concept solution for this class of
materials since for the bounds in the limiting casc of pores (4)‘2 = 0or ¢, = 0; Fig.
6) substituting one phase (2 or D) makes all lower bound equations (1b, 2b, 3b in
Fig. 6) disappear,

To understand as well as Lo solve this problem the model concept helps [189,190):
as has been poinled oul earlier the microstructure-field property equation (32) for
two-phase materials derived on the basis of the model concept provides the same
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L. and IL. order bound equations as the bound concept if the assumptions made in
the bound concept are introduced into the model concept theory, This is why it is
considered justifiable Lo use the microstructure- field property equation based on
the model concept for trying to understand the effect of pores on the lower bounds
as well as to derive the missing lower bound equaltions for porous materials via
the model concept. Doing so it becomes immediately obvious why the. lower bound
equations fail in the case of pores. Usually pores can be described sufficiently well
as spheroids (z = rotation axis, x = minor axis) and this has been done in the
model concept. The derivation of buunds by that concept, however, results in
lower bounds for porous materials with disc-shaped pores for which the relation
z/x — 0 applies, the solutions being obtained without preference either by z — 0 or

by x - w,

Pores formed by x —» «, however, disintegrale the material - its field properties
drop to zero at any porosity! To ask for the real - instead of the fictitious dise-
shaped - pore form, therclore, raises the question of the fower bound equations

of porous materials.

The (model) microstructure-field property equation (44) for porous materials
provides the effective ficld property (pp = ¢,) asa function of the field property of
the solid phase (¢,, = field pcoperty of the nonporous material), the porosity (P =
cD), pore shape (K,,), and pore orientation (cos2a”).

To answer the question as to Lthe real pore shape in a practical situation, the pow-
der technological factors which influence the formatiop of the pores must be con-
sidered.

In all sintering steps the driving force for materials transport is caused by the
tendency to reduce the surface energy, this is the surface-to-volume ratio. To start
the process it needs the activation energy for sintering (AGg), which is provided
by an external term transmitted as heat at elevated temperatures (AEqx = AQ)
and an internal Lerm from the - external and internal - surface energy of the

material (5
i

— Wir
= A(lm ).

e ar (46)
A(.S = AIL&U 4 Al‘m‘ =AQ + A(?m
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Due to the "external” surface energy (5(;¢ «yand the internal surface energy
1g
of the pores (A(;;r'rint)the interface term in equation (46) becomes
u

A(A'.()'l' — A('.Gr ext + A(;(,'rml (47)
fg /4 fe

with

sGrine _ T . (48)
A('fg = NP' 'SP Y
(N, = number of pores; S, = average pore surface; and y = specific surface

energy, a temperature dependent materials quantity).

Since equations (82) and (44) refer (o matrix phase microstructure the energy
considerations focus on closed porosily,

There are two actions to be considered separately taking place by materials trans-

port during sintering:

- the alteration of pore shupe to reduce surfuce-to-volume ratio of the pores
(reduction of internal surface epergy at canstant porosity)

- the reduction of overall porosity by the alteration of the number and size ol the
pores (shrinkage or densification = reduclion of internal and external surface
energy)

Supposing dilfusion to be the dominant mechanism of materials transport during
sintering the pore shape alteration will start first because the activation energies
for the three possible diffusion paths are{101}

(49)

] -~ T y
A('.S‘I) < A(II“ < A('V“

(AG,, = activation energy for surfuce diffusion; AG,, = activation energy for

i
internal interface diffusion, e.g. grain houndary diffusion; AG,,, = activalion
energy for volume diffusion). This is why further considerations are focussed first

on this step.

The volume (V) of spheroidal pores follows from
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V, = W’ (50)

whereas the surfaces (S,,) are given for lenticular pores (oblate spheroids: z/x > 1)
by

1+ (1 — i

, N 9 z (51)
S, = -1+ n

P2 (t — @) A

and for egg-shaped pores (prolate spheroids: z/x > 1) by
N
zxaresin (l - 2)
5t o] 52
2

) 1 12
- 2)
(2/x)

The state of minimum surlace-to-volume ratio for pores and, therefore, minimum
surface energy (a¢¢r ¢, isoblained with spherical pores (z/x = 1). Normalizing
fur 7

the surface energy and surface at conslant pore volume to that state provides

~Grint G at N sy (53)
AGE MIAGE M~ 8 S, = [

which, using eqgs. (50) and (51), results in the values given numerically in fig. 22.

As the plot in fig. 23 demonslrates, changes in shape in the lefl region for small

axial ratios cause large reduction in surlace - and surface energy - ralios, respec:

tively. The slope of the curve in that region is well approximated by the function

§18,=0.513 T B (54)

with high accuracy belween 0.0001 < #z/x < 0.1 compared with the actual data
given numerically and graphiecally (broad black line)in figs. 22, 23 (= 1 %

deviation),

Healing up a porous material in a sinlering process surface diffusion will slart as
soon as the heat transmitied to the material (AQ) together with the energy stored
in the internal surfaces equals the activation energy for surface diffusion:
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z/x S,/Sp, z/x S,/Su,

0.0005 79.3695 1 1
0.001 49.9999 1.01 1.00002
0.005 17.1022 1.1 1.0014
0.01 10.7778 1.5 1.0274
0.02 6.7985 2.0 1.0767
0.04 43017 2.5 1.1298
0.06 3.3036 3.0 1.1819
0.08 2.7487 3.5 1.2317
0.1 2.3906 4.0 1.2789
0.2. 1.5988 5.0 1.3660
0.3 1.3129 10 1.7000
0.4 1.1729 20 2.1344
0.5 1.0954 50 - 2.8940
0.6 1.0503 100 3.6456
0.8 1.0092 200 4.5930
0.9 1.0021 1000 7.8539
0.95 1.0006 10000 16.9206
0.99 1.060002
1 1

Fig. 22; Numerical values of equation (53)

y ‘ ~Gr it
MGy, = AQ + AGHY

and Physical Ceramics

(55a)

At constant heat transmission the ;6 int_term will now decrease by reduction
i :

of the surface-to-volume ratio of the pores where the axial ratio of an oblate pore

for example increases, At the same time this process leads to

Y < . Grint
MG, > AQ + AGE

(65b)
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Fig.23: Normalized pore surface and axial ratio,

and stops at a definite axial ratio of the pores, Increasing the temperature again
equ. (55a) will be fulfilled again and the process runs - iteratively - until the

"ideal” case - spherical pores - is oblained,

Under real technological conditions during isothermal sintering at elevated tem

perature in practice, however, at least at the beginning the encrgy transmission
will be high enough to fulfill equ. (46), su that shrinkage by volume diffusion and
interface diffusion lakes pluce parulle! to surfuce diffusion, causing pore shape
alteration. Under these circumstances it is (sintering) time which determines the
pore shape that exists afler stopping the process. However, since the energy
release by pore shape change heluw axial ratios of 2/x = 0.1 is extremely high (fig.
23) it is likely that in sintering processes spheroidal pore shape with axial ratios
of z/x = 0,1 may always be expecled tu be achieved under normal technological
conditions, From this axial ratio, depending on the sintering conditions, the
shape- alterationl process: by vacancy transport .(compare sketch, fig. 23) will
be slowed down and will ﬁﬁally stup between lenticular (z/x < 1) and spherical

pores (z/x = 1) depending on sintering time,
~Investigating the slope of the 8,/S,,-2/x curve by its derivation (d(S,/S;()/d(z/x)), it

becomes obvious that energy changes .ld(AGZf’ ”"/AG;;)“") = d(S,/8  Direlated to

form alterations at axial ratios #/x > 1, correspond to Lhose existing in the axial
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ratio region 0.1 < #z/x < 1, This is why quasi-cylindrical pores (pore channels)
must be considered to be as stable as lenticular pores (0.1 < w/x < 1).

If therefore z/x = 0.1 is considered to be the minimum axial ratio Lo be reached in
real sintering procedures, the respective minimum shape factor for pores is I, =
0.0696 (compare fig. 13).

Using this shape factor together with the respective orientation factors for L.
order bounds (cos?q,, = 0 or cos2a;, = 1), [I. order bounds (cos?q,, = 1/3) and ML
order bounds (cos?a,, = 1/3) the fower bound equations for porous sintered
materials follow from equation (44) us given in fig, 24. - It must be emphasized
and not be overlooked, that the equations given in {ig, 24 exceplionally refer to
pores formed by a history including sinlering. Otherwise - as for porosity in
pellets pressed only for instance, equutions (56), (57) and (58) du not apply due to
the missing surface diffusion process. In these cases one has o go back to
equations (1) - (3) assuming a very small but definite conductivity of the pores
(lim §py = lim ¢p = 0; e.q. thermal conduetivity of the gas filling the pures).

The equations for special cases of pore characteristics according to equations

(44,45) are given in fig. 25.

lower bounds lower bounds
I order =4, 1-P  (56a) =y (=P (56b)
II. order = (1=py (57a) " _ -r (57b)
’ bpp = by - ‘ b =y S p

II. order S =y T =PP (58a) by = by U -1 (58b)

Fig. 24: Bound equalions ol dilferent order for porous materials (I = field
property; P = porosity (fractional); gp = effective ficld property of
porous material; py = conduclivity of nonporous material; $r i, =
lower bounds for the effective field property; ¢LILN = upper bounds for
effective field property
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spherical pores dp = dy (1-P)3?2 (69)

cylindrical pores dp = @y, (1-P)37 (60a)

statistically directed to the field
direction (pore channelsin
isotropic materials)

cylindrical pores dp, = by (1-P)? (60Db)

oriented perpendicular (1) and
parallel () to the field direction
(oriented pore channels) ‘1>pu = ¢y (1-P) (60c)

Fig. 25: Bound equations for special pore structures (F = field property;P =
porosity (fractional); ¢p = effective field porosity of porous material; dum
= conductivity of nonporous material; ¢ j1,111 = lower bounds for the
effective field property; ¢L.ILII = upper bounds for the effective field
property

2.8  Extension of the theory from two-phase to multi-phase materials

The previous theoretical treatment of the interrelationships between microstruc-
ture and field properties has been restricted to two-phase materials. In order to
treat materials with more than two phases the principle of the selfconsistent
scheme is applied once again.

Considering, for instance, a three phase material, the effective field property is
determined first for a combination of two of its phases. The resulting two-phase
material then is considered as a fictitious (single) substituting phase”,
possessing the - previously calculated - effective field property and being com-
bined now with the third phase of the three-phase system. Continued treatment
assumes an apparently two-phase material formed by the fictitious substitution
phase and the third phase. Applying the bound concept with that procedure to a
three-phase material (phases q, f, y; assumed phase concentrations cq = 70, cg =
20, ¢y = 10 vol.%; assumed field properties of the phases ¢ : ¢p : dy = 1000:10:
1) no preference may be given to one combination of the three possibilities in the
first step: af; By; yu. According to these three different but equally justified fic-
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titious substitution phases six effective properties result (gapl, dapt; dpyl, Gpyl;
®yal, dyal). Combining each of them with the respective third phase 12 bound
values follow, one of which provides a maximum field property and another one
providing a minimum field property value. This couple bounds all other possible
values of the three phuse material. With the values [or the assumed three-phase
material given above one obtains the results given in fig. 26.

—» (I’lum = 83
‘1’!(1[! = 43.5 ]
L ‘1"«1“\ = 39.2
afy
upper bound of the
b Plapy = 99 three-phase
Plap = 782.2 malerial:
ap — .
Ly «])'(,“\ = T704.1 704.1
™ dipya = 8.1
Pipy = 2.5 ——
g (l)lﬁ\'(l = 700.7
By
e "‘l[‘\x‘l = 96.3
iy = 8.0 __._-[
e l]i,[g\.“ =T702.4
+  Prap = 49 4.9
Qrya = 4.3
v g = 05 lhlnwcr l»run(l ol the
Lree phise
v material
e ‘]‘l\uﬁ = 7.8
(pl\/(l = 870.3 —e
» ""\u[i =698

Fig. 26:1. Order bound determination for three-phase materials.

In the first column the possible two-phase combinations are listed followed by the
respective I order bounds (second column, fig. 26). In the third column of fig. 26
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‘Lhese bounds for each substitution phase are correlated with the field property of
the respective third phase providing altogether six upper and six lower bounds,
from which, by comparison, the ultimate (I, order) upper and lower bounds for the
three phase malterial come vut (lig. 26, last column). As the comparison of the
maximum variable region between the pure phase field-properties (Adpmax = da -
¢y = 999) and the region between the bounds for the three phase materials
demonstrates, even I. order bounds, in this case, reduce the region of variation
remarkably (~ 30 %). This procedure may be applied also to more than three phases
and higher order bounds, if more than only one microstructural parameter (the
number of phases to be three) has been [ixed. Finally in the case that even
detailed information isavailable aboutthe microstructure (compare fig.4), thenan ,
.appropriate treatment of the microstructure-field property relationship is also

possible by the model concept,
Assuming the three-phase material consists of two sulid phases (M,D) and one
gaseous phase (I’ = pares), which is included in the solid matrix phase (M),

equation (44) provides

for the effective field property of the porous matrix phase (1st step)

2 2
egs T, - [

P I

I e ,
- I8 I8 61
bpp = by 1 -8 (61

for the effective field properly of the three-phase material (2nd step)

2 2
Cus - | [T

) [
K ! 2
_ . n ‘b
be = byyptl =) (62a)
2 2 2 2
cos u, ) , vos oy, - ] .\ tos ay,
I A4 P 2K
= P r » . D ] 62b
P =0y =P th—¢y) (62b)

(¢ = field property of the compuct nmtnx phase; gup = field property of the po-
rous matrix phase; ¢¢ = field property of the three-phase materi ? P = porosnty
as fraction; ¢;y = volume content of the inclusion Ehase' Fp = shape factor of the
pores; Fy = shape [lactor of inclusion phase; cos2ap = orientation factor of the
pores; cos?ap = orientation fautor of the inclusion phase)
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As can be concluded easily by changing the sequence of M, D and P it does not
matter for the final form of equation (62b), whether one combines phase M and
phase D in the first step instead of phase M and phase P. This treatment holds
also true for more than three phases offering the application of the model concept

also to multiphase materials.

3. The determination of microstructural parameters by quantitative
microstructural analysis

3.1 Microstructural analysis

According to fig. 4 and equation (32) a total of 5 parameters are required in order
to take complete quantitative account of the microstructure of a multiphase
material in microstructure-field property equations. Two of them are implicit
microstructural parameters (number of phases, type of microstructure), which
govern the type of the microstructure-field property equation by appropriate
suppositions but do not appear explicitly, Explicit microstructural parameters,
however, are defined as factors in the equation (concentration factor, shape factor,
orientation factor). - All these parameters are determined by means of quanti-
tative microstructural analysis. The principle of this analysis is illustrated in fig.
27. Working from prepared sections through the material, micrographs are
produced optically and magnified, reproduced photographically and/or electroni-
cally, magnified again and measured. The data measured in a flat plane are
converted to three dimensional microstructural parameters by means of
stereological equations in a primary computer program and these parameters are
then used in other computer programs for determining the required micro-

structural factors and properties of the two-phase materials,

3.2Implicite microstructural parameters: number of phases and type of

microstructure

Determination of the data on the number of phases (fig. 4), is particularly simple,
since they can be seen directly in magnified microstructural images with
adequate contrast.
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The data on the distinction between matrix and interconnecting microstructures

is obtained from measurements of the following parameters in the micrograph:
- total number of inclusion particles (Ng),

- number of inclusion particles not making contact with other particles of the
inclusion phase (Ny),

Microstructure Analysis

Preparation  + Microscopy + Computing

extended
progammes

control
eg gas contrashng chamber det'ector |
polishing f
grinding

output | yp ;W EX
stereological o

moulding progran

=—camera—

é\:,‘ﬁI-[:j e,

axial
section

cutting

00oop
0o00ooe
nnocoo|
jooos

noooooo
gonooun

computer /
microscopy  epidiascopy | e——

iyl

cross section

Fig. 27: Sequence of quantitative microstructural analysis (schematic) {24].

- number of contact positions between particles of the inclusion phase (ny)
related to the total number of included particles. .

by means of the correlation [563}:

2n,- N . .
Tk E (63)
N.":“Nn

where the degree of chain formation (K) is a measure of the mean number of con-
tacting positions with adjacent particles per particle | 101,243 ‘The probability of
interconnecting microsiructure being present is shown in {ig, 28 us a function of
the degree of chain furmation. When there is a small mean number of contacling
adjacent particles, the probabilily of interconnecting microstructure oceurring is
low (e.g. zero for K = 1), This probabilily increases with increasing degree of
chain formation from "pure” matrix (K = 1) to "pure” interconnecting

microstructure (K = 4).
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In quantitative microstructural analysis the precise separation between agglo-

merated particles and nonagglomerated particles simply by measurement is

usually not possible. The analysis therefore includes

- the determination of mean cross seclion areas per parlicle in microstructures
containing very low inclusion phase particles. In this case agglomeration may
be neglected.

- the determination of mean cross section areas per particle in microstructures
conlaining increasing concentration of inclusion phase particles,

- the probabilistic calculation of the terms of equation (36) from the above
mentioned measurements.

=3

g
»

o
™

/
/
/

1 2 3 3
degree of chain formation K

o
~

o
o

o

probability of interconnection microstructure
<

Fig. 28: Distinction of types of microstructure by the degree of chain formation.

The formation of an interconnecting microstructure will be reflected for example
in field property plots versus phase concentration as already demonstrated in fig.
20, where within the hatched region the interconnecting microstructure increases
starting from about 10 vol.% metal with increasing metal concentration. In this
case the degree of chain formation between metal particles is considered. But also
from the other side of the diagram the interconnecting microstructure increases
starting from about 30 vol.% metal with decreasing metal content, In this case
the degree of chain formation between ceramic particles is considered. The
degree of chain formation becomes four at different phase concentrations (e.g. 15
vol.% metal < ¢ =< 25 vol.% metal) marking the closer region in which "perfect”
interconnecting microstructure exists. - The position of this region is variable and
depends on the powder characteristics of the two phases and the materials techno-
logy. In fig. 29 it is pointed out how the change of the type of microstructure is
expressed even in such a technological parameter as the pressed density of
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powder technologically prepared cermets plotted versus the concentration of the

phases.
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Fig.29: Expression of microstructural types in density plots versus phase con-
centration (TD = theoretical density).

3.3Explicit mictrostructural parameters: Concentration, shape and orientation

factors

The three microstructural factors quantitatively characterising the concentra-
tion, shape and orientation of inclusion phase particles of a two-phase material
are defined by the derivation of equation (32), They are determined for a real ma-
terial by measurements made on two-dimensional micrographs, from which the
microstructural factors applicable to three-dimensional material can be calcula-

ted by means of stereological equations.

The phase concentration factor follows as phase volume content directly from the

mean value of the area content of the phases in micrographs originating from
sections cut statistically through the material (Delesse principle) [265].

In accordance with equation (9) and fig. 18, the shape factor is a function of the
ratio of the rotation axis (axis of revolution) and the minor axis of the spheroid by
which the real particles of the inclusion phase in the model are replaced. The fact,
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that this "spatial” axial ratio (z/x) can be determined from the (mean) "planar”
axial ratid of the sectional ellipses of the spheroids substituting for the real
particles of the inclusion phase by means of stereological equations, was a crucial
factor in the choice of the spheroid model for characterising real material.

In practice one proceeds as follows: the area and periphery are measured for each
section of an (irregularly shaped) particle of the inclusion phase in a two-dimen-
sional micrograph and from this the axial ratio is calculated for the sectional
ellipse with the same area-to-periphery ratio as the measured sectional area of
the particle (fig. 30) [199,215]. Since one can form the planar axial ratios not only
from "minor axis (b') to major axis (a')” but also from "major axis to minor axis”,

one obtains in each case two mean values of measured axial ratio of sectional

ellipses:
n '
1
b v
L C [g (64a)
" b
n b
7 a _ I El (64b)
n a'

For each of these axial ralivs, the slercological equations provide un axial ratio
for each oblate spheroid and one for cach prolate spheraid [114,199,215,244),

hence a total of 4 "spatial” axial ratios [2/x]:

2
/ z
wresin b — - '

b :lil = (65a)
a' xi_ L 12
VA P
al_
b 1
— | = - + ! [Il(|+ 1 — ! z (65b)
a' 2 2 | z 2 x [}
9= I — . l‘
'y : | N
Ny
arcsin vV I — i~
A
(66a)
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=R

) (66b)
I

Fig. 30: Delermination of axial ratios of sectional ellipses.

These equations are shown graphically in {ig, 31 {199,215]. In a notional experi-
ment, let it now be assumed thal there is a two-phase material with identical pro-
late spheroidal particles of inclusion phase, In the sections cut stalistically
through it, sectional ellipses then appear whose measurement provides the two
axial ralios in accordance with cquation (64). From equations (65) and (66) then
follow 4 axial ralios ol spheroids, of which only two, namely those for prolate
spheroids corresponding to the asspmed model material must be identical, whilst
the associated two axial ratios fur oblate spheroids are not. For quantitative
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microstructural analysis of a real material, this means that of the 4 axial ratios
obtained from measurements for substitule spheroids, only two are approximate-
ly equal in each case for Lhe same type of spheroid (prolate or oblate), or lie closer
together than the other two. The spheroid corresponding to the approximately
equal axial ratios would then be best suited for a model characterising the real
particles of the inclusion phase. - In these real cases, however, where Lhe differen-
ces between the spatiul axial ratios will he so small (see fig. 31 dotled lines) that
no selection is possible for practical purposes, une may cither determine a mean
value from each pair ol axial rativs for cach Lype of spheroid, thus obtaining two
shape faclors in accordance with equation (10) or ig, 13 and the corresponding
bounding curves or une averages all 4 axial ratios obtaining a single mean shape

factor.

In order Lo test the stereologieal «yuations for determing axial ratios a model
experiment has been made as shown in fig. 32, Pills of equal prolate shape have
been included in a resin matrix as used for mounting in metallography. Since
their spatial axial ratio was known by measurement the mean axial ratio of their
ellipses in sections of plane can be determined by equations (66b) and (66b) or fig.
31. Now measurements as described above have been made Lo determine the
experimenlally mean axial ratios in scetions of plane. From them the most likely
tnean spatial axial ratio has been calcululed by equations (65) and (66). 1n fig, 33
the values oblained from measurements are compared with the predetermined
nominal values|200).

In accordance with the derivation of cqualion (32), the orientation factor is the

cosine squared ol the angle formed by the field strength gradient direction and
the rotation axis of spheroids of identical form and size substituling the real
particles in the model (see fig. 10). Like the shape Tuctor, this can also be calcula
ted from axial ratios determined by quantitative microstructural analysis. To
derive the relationship, one proceeds from the fullowing equations [ 114);

for prolate spheroids

sin gud (67a)
12/ l}

ms2u +
A

for oblate spheroids
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sin (l" (683)
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or after transformation
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Fig. 31: "Spatial” axial ratio of spheroids as a function of "plane” axial rativ of
sectional ellipses.

Fig. 32: Spheroids modelled by pills in a resin matrix phase.
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Quantity { Nominal | Measured | Rel. Error{°%b)
Mean axial ratio {a78) 12494 1,2027 388
i the plane (B/a) 0gne | 08541 519
Volume content ' vy 0,2180 02212 146
| |
‘&un axial ratio (z7x) 11785 1,2001 1,83 l
Fig.33: Comparison of nominal and experimental axial vatios of spheroidal
inclusions,
g 2
270
- = —_1
X a /
ws?a, = ! A . (67b)
A L 12
= -1
N
and
g T2
4
LR
o i K
wsTa, = ——— ! - (68b)
/ . 9
-1 -1
X

]

For these equations, the ("spatial”) axial ratio of the sphe.roid is determined with
equations (65) and (66) from the mean axial ratios of the sectional ellipses

( [ b l a’ ] ywhich were measured in sections cut statistically through the
a ’ b ' .

material. On the other hand, the mean axial ratios of the sectional ellipses

ERE
; A lbl,
sectional planes (A) perpendicular to the field direction (see fig. 34).

jcontained in the equations themselves, are those measured in

The selection procedure for evaluating a mean spatial axial ratio, as described
above for the determination of the "singular” shape factor specifies which of the
two equations 67b or 68b is to be used for evaluating the orientation factor. If, on
the other hand, one considers the mean axial ratios for the prolate and oblate
spheroids to be equally justifiable, then one obtains two - equally justifiable -
orientation factors and hence one more corresponding bounding curve of higher
order.

The orientation factor in accordance with equations 67 or 68 can be optimized by

an additional measuring requirement. Fundamentally, of course, one may
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determine the orientation of the substituted spheroid for each spatial direction,

by determining the axial ratios of the sectional ellipses in all three sectional
planes perpendicular to the three spatial directions (see fig. 34) and hence

2
- COS Q

B - cos’a (69)

The following mathematical boundary condition then applies

(70)

2 2 20 -
co.s(1A+oa.saB+cosuC—l

This boundary condition, however, is only fulfiiled on the ideal model, whilst for

the real case the following will apply:

¢ ‘ (71)

2, . y<
:)__ cosal..‘X7l

=A

Fig. 34: Orientation factor: model explanation.

In order to adjust the model material to the real case, one sets:

chsQuA + Ymszan + Ycuszac =Y X=1 (72)
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with
Ycosta A= cosza n (73)
and
y = 1 (74)
msza A + 00320 8 + coszu e
and analogous to equations (67b) and (68b):
p—
z [b'
== =
. x a iy )
msza“ = *—H——T———— : ' (75‘&)
) -
*y
22
2 u '
- Z;r —1
. X B
cosa, = '7 ; (75b)
- -1
x =
4 : b'
- = —1
. x ale
mszaa = ——u——;——— (76a)
Z
- = 1
y
—2
2 a
Z ; -1
. x|l «
mszu(, = — (76b)
2
= -
Xl
From equation (74) together with equations (67b), (75a) and (76a) follows
1 j oy |
(77}

T2

I

and - also from equation (74) but with equations (68b), (75b) and (76b) follows

b

a

b

ao

bv
al

¥

+
B

¥ A

2
F4
- —1
Ve i (78)
HEREREE
x ply dely dotlel
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The orientation factor which can be determined from analytical measurements of
microstructure results then from equations (67), (68), (77), (78) and (73):

2
z| & 2
he = 1
x a'la
l #
os’a, = (79)
D 5 2‘{ 512 B2 b 2=
- = prll D Bl B Bt
xl a A a B a C
2 2
z a
= - -1
) xi_ 814
cos“a, = 3 — — = (80)
z a a a
- = +i=| +|= ]-3
Xob_ b' A b' B b' I

Since for example for a model material with statistical orientation of the

inclusion phase particles

- ! b’
A B a'

a

b

A

a

b

a

(81)

B

C
or

a

b

a'

(82)

Y

a C

must apply, an orientation factor of

20 = =
cosa,, = 3

follows from equation (79) and (80), as expected for an isotropic material (compare
page 21).

It might be mentioned in this context that an isotropic material always refers to
that orientation factor, but that this orientation factor is not exclusively
representative for an isotropic microstructure, It is possible to realize that special
orientation factor also by definitely oriented microstructures (a,, = 55°), which
means, according to theory, that the field property of an unique anisotropic
material should be identical with that of the same but isotropic material, Further
theoretical treatment and experimental verification of this result is desired.

In general, however, as the derivation demonstrates, the microstructural factors,
which according to equation (32) quantitatively correlate the microstructure of a
two-phase material with its field properties, can completely be determined by
quantitative microstructural analysis.
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4. Comparison between calculated and measured field properties in
dependance on microstructure

4.1 Two phase metals

Generally the comparison between measured and caleulated values will start
from least specified microstructures - concerning I. order bounds - and move
gradually to more and more defined microstructures - say higher order bounds

and "singular” values of field properties [201].

If, in the case of a metallic material, nothing more is known about its micro-
structure than the number of phases (compare fig. 4) Lo be two, then the
experimental values have only to fit intu first order bounds (equation (1)). As
pointed out in figs, 35, 36, 37 and 38 these expectations come true, indeed, for the
electrical conductivity of two-phase metal systems [201].

®
Q’Pb]
o
[+-]

0.4 | / | ‘
0.2 L_U___//

normalized electrical conductivity |

] 1

0 20 40 60 80 100
Mg,Pb concentration [V ) Pb

Fig.35: Electrical conductivity of MgoPb-Pb metal ([]) at room temperature
[150] and I. order bounds (—).
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Fig. 36: Electrical conductivities of Cd-Pb metal (g ) at room temperature [150]

)

and I. order bounds (

).

=}
=3
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0.4

normalized electrical conductivity

! 1

20 40 60
concentration { Vo)

80 100
Cu

Fig.37. Electrical conductivities of Cu-W metal (€ [} + A) at room tempera-
ture [73,120,134,242] and L. order bounds (—).
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Fig. 38: Electrical conductivity of Cu-Fe metal (1)) at room temperature [150]
and L. order bounds (—).

Due to the fact, that, from theory, 1. order bounds are ultimate bounds it is also
possible conversely to confirm theoretical values by experimental data

- either to test the reliability of measured field properties of two-phase
materials

- or to conclude about the bonding between the phases,

If the premise is fulfilled thatfboudingj exisls ‘between the Lwo phases then all
measured field properties need to fit into the 1. order bounds. FFor experimental
values which lie above the upper L. order bound, as in fig. 39 for the thermal
conductivity, either the accuracy of measurement for the values themselves is not
sufficient or the field properties of the pure phases governing the bounds are not
correct. If, for instance, the conductivity of tungsten would be somewhat higher
more measured values of the two-phase material would be bounded by the curves.
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Fig. 39: 'Thermal conductivity of Cu-W-metal ((] ®)at room temperature [73,
120] and I. order bounds ( ).

In figs. 40, 41 and 42 some measured values are placed below the lower bound.
Assuming bonding exists then the same reasons may explain it as given for fig.
39. But taking into account nonbonding between the phases the 1. order bounds in
fig. 40, for exa(mpkle, then have to refer to either (quasi-) porous bismuth or (quasi-
porous) tin (hatched regions). These bounds are superimposed in fig. 40 to the L.
order bounds for the Bi-Sn-system. Since all measured values fit into the hatched
region for porous materials it is reasonable to assume a lack of bonding between

the phases as a possible explanation.,

As the example demonstrales microstructure-property correlations may also be a
tool to investigate indirectly the bonding behaviour between different phases.

Knowing that the material is two-phased and isotropic II. order bounds (equ. 2)
apply to describe experimental field properties, Obviously these bounds will come
closer with decreasing difference in the field pruperties of the pure phases, as the
comparison for the electrical and thermal conductivity of two-phase isotropic
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Fig.40: Thermal conductivity of Bi-Sn metal (+) at room temperature [150],
respective . order bounds (—) and 1. order bounds for porous bismuth
and porous tin (hatched region).

10
—
| 4
ol6
—'os8
=
= :
kel
e 0.6 . .
c
g / +
- /
& o4 A
= A,/
5
8 +
02
0 20 40 60 80 100
CuAl, concentration [V/6) Al

Fig. 41: Electrical (+) and thermal (®) conductivity of Al-CuAly metal at room
temperature [5] and L. order bounds (—).
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Fig. 42: Electrical conductivity of Bi-Ga metal ({7) at room temperature | 166]
and L. order bounds (—).

metals with [1. order bounds in fig. 43, 44, 45 and 46 demonstrates [201] and also
for steel and cast iron considered later (fig. 80) together with the composites due
to their carbide phase. '

Bounds come closer and closer by increasing microstructural information ending
up finally in "singular” curves of field properties versus phase concentration. The
measured values in fig, 47, for instance, refer to Ag-Fe specimens; in which the
matrix phase changes bul spherical geometry of the inclusion phase particles
remains. In that case equ. (40) provides a lower bound if iron forms the matrix but

delivers upper bound values for the silver matrix phase.

Additionally one part of these Ag-Fe specimens has been cold worked by drawing
which led to a fibre-like microstructure, where the fibres are parallel oriented
with the drawing direction, Measuring electrical conductivities in this direction
the respective theoretical curve follows from equ. (483). - Summarizing both the
non-¢oldworked and coldworked Ap-Fe specimens in one diagram, all measured
values should be bounded by the upper curve following from equ. (43) and the
lower curve given by equ, (40) for Fe matrix phase [201], As fig, 47 brings out, this
- indeed - is the case.
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Fig.43: 'Thermal conductivity of Al-UAl; metal (e+[ ) at 366 K [124,125] and

II. order bounds (----).
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Fig. 44: Thermal conduclivity of AgyAl-Al metal ([(]) at room temperature

[150] and II. order bounds (----).
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Fig. 45: Electrical conductivity of Ag-Ni metal ([7]) at room temperature [242]
and IL. order bounds (-----),
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Fig. 4.6: Electrical conductivity of CusSb-Sh metal ([]) ét 289 K [150] and I1.
order bounds (-----),
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Fig. 47: Electrical conductivity of Ag-Fe metal (x) at 289 K [150] and respective
bounds for spheres or directionally oriented fibres as inclusion phase ().

Fig. 48 refers to spherical copper inclusions in a Zn-malrix phase, where the
respective curve was calculated according to equ. (40) and fig. 49 shows the com-
parison of experimental data with a calculated curve for Bi-Cu-metal: In order to
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Fig. 48: Thermal conductivity of Cu-Zn metal with Zn-matrix phase and spheri-
cal Cu inclusions (x) at room temperature [ 156} and calculated curve (-).
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simulate directionally solidified eulectics a network of Cu-fibres (F|, = 0.5) has
been included into a Bi-matrix phase. The orientation of the fibre-network was
perpendicular to the current direction (a;, = 90°) as drawn in fig. 49. This micro-
structural arrangement refers to equ. (4 1) which, in fact, describes the slope of the
electrical conductivity values even bringing oul the scattering more clearly by

proper ordinate magnification (fig, 49){201].
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Fig.49: Electrical conductivity of Bi-Cu metal (x) at room temperature [270]
with a Cu fibre network oriented perpendicular to the direction of
electrical current and calculated curve (—).

Finally in figs. 50 and 51 the measured electrical and thermal conductivities of
Al-matrix phase metal materials containing oriented steel fibres (F;y = 0.5) as a
inclusion phase are compared with calculated curves [201]. The fibres have been
oriented under different angles to the electrical current or heat flux direction (0°;
30°; 60°; 90°), for which the respective orientation factors have been introduced

intoequ. (32).

As pointed out in figs. 50 and 51 there is a clear reflection of the variation of the
fibre orientation by the theoretical curves for electrical as well as for the thermal
con ductivity. Ttmight be worthwhile in this context to mention that short fibres
of swmall diameter as the inclusion phase being oriented in field direction cause al-
most the same effect on the effective field property as long fibres due to the same
sha pe factor approach (Fy = 0.5). Keeping in mind with respect to technology
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that long fibres are usually more complicated to handle, this result is also of
practical interest.
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Fig. 50: Electrical conductivity of Al-SS metal with Al-matrix phase and orien-
ted steel fibres (x 0°; A 30° []60°; @ 90° inclination of the fibre axis to-
wards the direction of electrical current) as inclusion phase at room
:;emperature [129] and theoretical curves for the respective inclinations
— 0°% - 30°% +.rr 60° —— 90°),
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Fig. 51: Thermal conductivity of Al-SS metal with Al-matrix phase and oriented
steel fibres (0 0°; x 30° A 60°;1190° inclination of the fibre axis towards
the direction of heat flux) as inclusion phase at room temperature [129]
and theoretical curves for the respective inclinations (— 0°; ---- 30°%; .....
60°; —.~ 90°),

4.2 Two-phase Ceramics

Reparted electrical conductivities of two-phase ceramics [197] are compared in
fig. 52 with the respective L. order bounds demonstrating clearly, that bounding
in that case is not a sufficient engineering approach to describe the effect of phase
concentration on the selected field property. - For the thermal conductivity of
Be(-MgO-ceramics (fig. 53) as well as of the very "practical” clay-technical
zirconia system (fig, 54), however, already I. order bounds offer useful restrictions
of thie variational region with phase concentration, which is even more true for
the «case of isotropic "Bamica” Aly03 matrix phase ceramics and the respective
1. order bounds (fig. 55).
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And although special conditions have to be observed when treating magnetic
properties, which are still under consideration, literature data of the magnetic
permeability of isotropic "Nizifer”-BaTiOj3 fit well with IL. order bounds (Fig. 56).
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Fig. 52: Electrical conductivity of AIN-TiN ([]) and AIN-ZrN ceramic (o) at room
temperature [34] and I. order hounds (—).
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Fig. 53: Thermal conductivity of MgO-BeO ceramic () at 473 K [136] and I.
order bounds (—).
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Fig. 54: Thermal conductivity of clay-technical zirconia ceramic ([]) at 673 K
[110] and I. order bounds (—).
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Fig. 55: Thermal conductivity of BaMg3AleSioO;gFy ("Bamica”)-Al203 ceramic
with AlpO3 matrix phase ([J) at 673 K [264] and III. order bounds (****).
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If the available information about the microstructure permits the use of a micro-
structure-field property equation instead of bounds, a single curve follows
correlating the field property and the phase concentration. This is the case for a
two-phase ceramic in fig, 57, where the two phases form an interconnecting
microstructure (Fyy = 0.5; cos2am ) = 0.33) over a wide range of phase
concentrat\ions (15 vol.% < ¢ < 85 vol.%) [17,21]. The measured field property
concerns the relative dielectric constant, the calculated curve refers to equ. (36)
taking into account the above mentioned shape and orientation factors [17,21].

4.3 Two-phase carbon-polymer materials

With respect to fig. 2 carbon - or graphite - is difficult to coordinate but it is a non-
metal-containing material and a basic element for polymers. This is why carbon-
polymer materials are considered separately in this chapter {197].

In figs. 58 and 59 electrical conductivities of carbon-polymer matrix phase combi-
nations are compared with the respective III, order bounds. In fig, 60 the same
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Fig. 58: Electrical conductivity of (CH»-CHg),-C two-phase material with poly-
ethylen matrix phase ([]o) al room temperature [238] and I1l. order

bounds (****).
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has been done for the thermal conductivitiy of a diamond-polymer matrix phase
and graphite-polymer matrix phase combinations. For graphite fibres (Fp = 0.5)
included in a phenolformaldehyde matrix phase and oriented perpendicularly to
the temperature gradient (cos2ap = 0) the measured thermal conductivities are
compared with the respective theoretical curve according to equ. (41) in fig. 61,
Combinations of carbon with other than polymer phases are treated amongst
composites,

5.10"3

41070

31073

21073

X

11073
0

K 0 60 80 100
Phenolic concentration [%] grafite

Fig. 61; Thermal conductivity of phenolic SC 1008 (phenolformaldehyd)-grafite
material with phenolic matrix phase and included grafite fibres oriented
perpendicularly to the temperature gradient (x) at room temperature
[258] and theoretical curve (—-).

4.4 Two-phase composites

If, according to nomenclature and fig. 2,the phases of a multiphase material
belong to different main groups of materials as either metallic and ceramic mate-
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rials, ceramic and non-metal-containing materials (e.g. polymers) or polymeric
and metallic materials then one is dealing with composites [202,206]. More than
that the structure of composites has to be macroscopically homogeneous and
microscopically quasihomogeneous. Macroscopically inhomogeneous phase
‘combinations as sandwich materials or plated materials are “composed
materials” but not composites in the sense of this definition. And also
combinations such as carbon fibres in a carbon matrix (CFC) are not composites
but carbon- based materials with a technically produced, instead of in-situ formed,

("fibre-reinforced”) microstructure,

Composites, thus defined, are especially appropriate to test theoretical predic-
tions since due to the difference in the field properties of their phases, which is
usually big, their effective properties reflect microstructural alterations particu-
larly sensitively (196,203,204].

In figs. 7 and 20 the measured electrical conductivities of a number of two-phase,
isotropic composites have been compared with the respective bounds which
process is now continued by figs. 62 - 85. The sequence of the figures follows the
decreasing difference in the field properties of the pure phases, which results in
closer bounds of any order, Electrical (fig. 62 - 67, 69, 70, 72, 80, 82, 84, 85) as well
as thermal conductivities (figs. 68, 71, 79, 81, 83) of cermets (figs. 7, 20, 62 - 67,
71,74, 77 - 82, 84, 85) including steel as an exception (fig. 80), metal-polymer
(figs. 7, 68, 73) and polymer-ceramic composites (figs. 75, 76, 83) are included in
the comparison between measured data and bounds. Amongst them those with
glasses (figs. 65, 83) or carbon (figs. 69, 70, 72) oceur. Apart from a few exceptions,
amongst them those for resin-Al1[106,138], resin-Cu [106,246] and UO9-Mo [128],
the comparison between experimental values and theoretlical bounds for field
properties confirms the practical reliability of bound predictions in the frame of
their restricted accuracy. If, however, the information about the microstructure is
sufficient, the more definite microstructure-field property equations based on
model microstructure assumptions should be used. This was possible and has
been done for the composites mentioned in figs. 86 to 96. The computed curves in
figs. 86, 87 (Fy = 0,33; cos2ap = 0.33) refer to equation (44), whilst equation (45)
(Fp = 0,33; cos2ay ='0.33) holds true for the calculated slope in figs. 88 and 89. In
figs. 90 to 93 the theoretical calculation of the slope of the field properties versus
phase concentration was based on equation (40) (spherical inclusions). As
expected and demonstrated in fig. 94 the calculation with equation (43) (oriented
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Fig. 79: Thermal conductivity of UO2-Cr cermets (x) at 300 K [62], UO2-Fe
cermets (V) at 473 K [92,176] and UO2-Mo cermets (@) at 873 K [92],
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Fig. 86: Thermal conductivity of glass-indium cermets with indium metal
matrix phase and included glass spheres (@) at room temperature [91]
and calculated curve (—).
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300 K {11} with polymer matrix phases and spherical metal inclusions
and calculated caurve (—).
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Fig. 94: Electrical conductivity of coextruded (x) and forged (@) glass-Al cermets '
at room temperature [37] and calculated curve for unidirectional
oriented fibres parallel to the electrical current flux (—).

fibres) approaches the measured electrical conductivities for extruded glass-Al
cermets more than those for hot forged glass-Al cermets and the variation of
orientation according to equations (41) and (43) (oriented fibres) in the case of fig.
95 and according to equation (44) (oriented platelets) in the case of fig. 96 reflects
fairty well the measured orientation effect for polymer-glass composites in fig, 95
and for wood metal-bakelite composites in fig. 96.
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. 95: Thermal conductivity of epoxy-glass (8) [253] and polyester-glass

composites (x) with polymer matrix phase and glass fiber inclusions
oriented parallel to the heat flux at room temperature and calculated
curve (—) as well as epoxy-glass ([J]) and polyester-glass composites (A)
with polymer matrix phase and glass fiber inclusions oriented
perpendicular to the heat flux at room temperature [213] and calculated
curve (----),
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Fig. 96: Thermal conductivity of bakelite-Wood metal composites with Wood
metal matrix phase and bakelite platelet inclusions of various orien-
tation (x @ A) at room temperature [246] and calculated curves (—).

297




Vol 3, Nos. 3 & 4, 1987 The Quantitative Microstructure-Field Property
Correlation of Multiphase and Porous Materials

4.5 Two-phase solid-liquid systems

For a few solid-liquid systems measured data of thermal and electrical
conductivities are available 1o be compared with caleulated values. In fig, 97
measured thermal conductivities of sand-water mixlures are compared with
caleulated curves versus phase concentration. Assuming interconnection of the
phases equation (36) (I'}y = 0.5; cos2a = 0.33) |244,246] provides the respective
curve, which, however, does not meet the experimental data sufficiently, probably
due to the assumed microstructural parameters. The less definite II. order

bounds, however, include the measured values as expected,

Changing density and electrical conductivity of an NaCl solution (liquid matrix
phase) by variable dissolution with pending polymer spheres in it the measured
effective electrical conductivities of the liquid-solid system vary as shown in fig.
98. Curves calculated according to equation 40 fit sufficiently well with the

experimental data.

4.6 Porous and multiphase materials

The same procedure as used for the comparison of measured and calculated field
properties of two phase materials shall now be applied to compare theoretical and

experimental values {or the field properties of porous materials,

Electrical and thermal conduclivities as well as magnetic permeabilities of
porous metals and ceramics are compared with 1. order bounds according to equs.
(66) in figs. 99 - 101, The same has been done in Fig. 102 for carbon and grafite. -

. and . order bounds according to equ, (567) and (58) are compared with
measured electrical and thermal conductivities of isotropic porous sintered
metals and measured thermal conductivitlies of isotropic sintered porous ceramics
in figs. 103 - 105 and II[. order bounds according to equ. (58) are compared with
experimentally determined electrical and thermal conductivities of isotropic
sintered porous oxide and nonoxide ceramics as well as isotropic porous carbon
and graphite in figs, 106 - 109.

Turning to two-phase isotropic and nonisotropic sintered porous systems, in
which non-spherical pures form one phase, the shape and orientation of which is
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Fig.98: Thermal conductivity of solid-liquid suspensions with aqueous NaCl-

solution as matrix phase and polymer spheres included (¢p/dy =
14400: 3J; du/dm = 160: ®; dp/dy = 0: x) at room temperature [263] and
calculated curves (—).
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Fig. 101: Thermal conductivity of UO2 ({7) [22,230] (UP4)O9 (0) [93] and ThOy
(A){78,184] porous nuclear sintered oxide ceramics atl room
temperature and I. order bounds (—).
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Fig. 102;: Thermal ([]) and electrical (o) conductivity of porous carbon and grafite
at room temperature [23,83] and L. order bounds (—).
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Fig.104: Thermal conductivity of isotropic porous sintered metals as Fe/steel (1)
(4,33,121,140,141,168,276], Cu (x) [140], Mo (o) {10,49], W (A)
[84,147,162,1651, Ni ([1)[168], Be (+) [48] at room temperature and II.
order bounds (---) as well as ITI. order bounds (>*).
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Fig. 105: Thermal conductivity of isotropic porous sintered ceramics as AlyO3y
(D [172,235], ZrOy (0) [16], B4C (+) 119,167], TiN (V) {3] and various
minerals (I) [251] at room temperature and I, order bounds (---) as well
as II1, order bounds ().

known, one may calculate singular values and compare them with measured
data. This is done in ligs. 110 and 111 for sintered porous iron, The caleulation
was based for both fig. 110 (isotropic sintered porous iron; cos2ap = 0.,33) and [ig.
111 (non-isotropic sintered porous iron) on equ. (44). It is noteworthy, that all
shape factors of the pores in sintered iron in fig. 110 and 111 reler to those axial
ratios (= 0.1) according to fig, 13, which, for industrially sintered materials, have

been predicted before,,

Finally measured values of multiphase materials have been compared with

theoretical data calculaled as described in chapter 2.8

In fig, 112 measured thermal conductivities for fire-resistant bricks (mmultiphase
ceramic) are related to curves, which have been calculated referring to the
schematic sketch (fig. 112). For the alumina based and quartz based bricks
consisting of single-phase alumina and quartz with microporosity as an
"effective” matrix phase, in which, then, macroporosily is included, the thermal

conductivities for the microporous alumina and microporous quartz have been
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Fig. 106: Electrical conductivity of isotropic porous sintered ceramics as
Zr0Oy (0) [234], TiC (+) [236], CaxMo,C (x) [218], TiN (V) [3] at
room temperature and I, order bounds (-**).

calculated in a first step followed by calculating the (inacro-) porosity influence in
a second step. The calculation was based on equ. (32) and (36) and concerns, in
this case, three phase materials: a single-phase ceramic, microporosity and
macroporosity, the latter one being either closed (in quartz based bricks) or
interconnected (in corund-based bricks). Since in the silica-based fire resistant
ceramic the silica solid constituent itsell is already three-phased composed by
cristobalite (50 Vol.%), tridymite (36 Vol.%) and glassy phase (14 Vol.%) the
system with microporosity and macroporosity is five-phased in total. Bul, as fig.
112 brings out, also for this complex ceramic as well as for the two three.phase
brick materials satisfying agreement exists belween the calculated overall

thermal conductivities versus macroporosily and the measured data.

The same result has been obtlained by the same procedure for non-porous three-
phase ZrOg-based ceramic and non-porous three-phase polymer-metal-composites
with polymer matrix phase (fig. 113) as well as for porous glass-iron cermets (fig.
114). Even for microstructurally complex four-phase "gas concrete” [21] and five-
phase mining materials [75] promising results are reported in the literature. -
This is why, summarizing, the following conclusions may be drawn:
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order bounds ().

4.7 Conelusions

Microstructure-field property correlations open a better scientific insight into
multi-phase materials behaviour inctuding even phase bonding studies holding
true for all types of multi-phase materials (e.g. metals, ceramics, carbon,
polymers and composiles) including porous materials and all field properties (e.g.
electrical and thermal conductivities, dielectric constants, magnetic perme-

abilities),

They are reliable and may be used as an engineering tool to predict desired
properties by precalculated microstructures in order to construct taylor-made
materials as for example to satisfy the increasing technical demands towards
engineering materials as well as economical and ecological expectations by
substituting rare and biosuspicious components without quality losses. Thus
direct property measurements may be subslituted by quantitative
microstructural analysis, where lhese properly measurements are difficult,
inaccurate, expensive or even impossible as under certain conditions (e.g. high
temperature, irradiation) and quality control may be extended by field property

data calculated via microstructure field property equalions.
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normalized eleclrical conductivity
Porosity Shape factor (pripre)
(%I (Fp)
measured calculated
0 - 1.0 1.0
(=8.7106Q-Im ) ] (=8.7108 Q-Im-1)

3.7 0.225 0.97 0.94
3.9 : 0.219 0.94 0.93
3.9 0.208 0.96 0.93
4.3 0.240 0.97 0.93
4.5 0.190 0.93 0.93
4.8 0.185 0.97 0.92
5.1 0.137 0.87 0.90
5.3 0.174 0.88 0.91
5.3 - 0.232 ‘ 0.94 0.93
5.4 0.246 0.97. 0.95
5.5 0.200 0.97 0.91
5.6 0.153 0,92 0.90
5.5 0.150 - 0.93 0.90
5.6 - 0.169 0.97 0.91
5.8 0.165 0.93 0.90
5.8 0.180 0.91 : 0.90
5.9 0.169 0.97 0.90
6.0 . 0,170 ‘ 0.97 0.90
6.0 0.148 0.91 0.89
6.1 0.173 0.91 0.90
6.2 0.160 0.94 0.89
6.2 0.298 093 0.93
6.2 0.303 0.97 0.97
6.6 - 0,187 0.95 0.89
6.7 0.140 . 0.93 0.87
6.8 0.160 0.87 0.88
7.1 ‘ 0.311 0.97 0.97
7.2 ’ 0.181 0.87 0.88
7.8 0.192 0.86 0.87

Fig. 110: Measured and calculated electrical conductivities of isotropic (cosZap
= 0.33) sintered iron with different porosily and pore shape at room
temperature [215].
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normalized electrical
Y oroci antati conductivit
| onl(:snty Shape factor Ol}iléggilOIl 0?@3;;:)' y
1% Fp cos2ap
measured calculated
0 - 1.0 1.0
(= 8.7-106 (= 8.7-106
QO-lm-1) Q-lm-1)
0.10 0.83 0.97
2.61 0.177 0.13 0.83 0.96
0.77 0.83 0.94
0.25 0.86 0.89
7.14 0.177 0.29 0.86 0.88
0.46 0.85 0.86
0.20 0.79 0.84
10.7 0.165 0.38 0.78 0.81
0.42 0.76 0.80
0.10 0.70 0.81
14,5 0.153 0.28 0.67 0.76
0.62 0.60 0.68

Fig. 111: Measured and calculated electrical conductivities of porous sintered
iron with different porosity, pore shape and orientation at room
temperature [215],
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Fig. 112: Thermal conductivity of quartz (two-phased) with airfilled (macro-)
porosity (&), corund (two-phased) with airfilled (macro-) porosity (e)
and silica (four-phased: cristobalite + trydymite + glassy phase +
microporosity) with airfilled (macro-) porosity (+)at 873 K [187] and
caleulated curves (— closed porosity; --- interconnected porosity).
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Since field properties cover just one Lype of pruperly, microstructure-property

relationships are now under investigation with respect Lo the elastic and complex

technical behaviour of materials[205].

effective thermal conductivity
phase (Wm-1K-1]
Phases concentration
1.9
lvol.%l measured calculated
silicon rubber 90
Al 6 0.559 0.525
Ni 4
silicon rubber 78
Al 13 0.804 0.802
Ni 9
silicon rubber 88
4 0.637 0.542
Bi 8
silicon rubber 82
Al 15 0.770 0.682
Bi 3
silicon rubber 88
Bi 4 0.592 0.547
Pb 8
silicon rubber 82
Bi 10 0.692 0.652
Pb 8
MgO-stabilized ZrOy;:
55
2r02 27 0.75-0.77 0.77
monoclinic inclusions 18
monoclinic matrix phase
Zr02 35
monoclinicinclusions 25 0.91-0.93 0.93
monoclinic matrix phase 40
Zr02 20
monoclinic inclusions 25 1.02-1.05 1.07
monoclinic matrix phase 55

Fig. 113: Measured and calculated thermal conductivity of isotropic three phase
composites [21,53] and magnesia stabilized ceramic [21,47] at room

temperature,
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eff. electrical

effective electrical conductivity

porosiiy | B3, | BYEAT, | conduerivipor | 7RO el
[vol.%] iron [%] [dp/dFe] .
measured calculated
0 0 0 1(=8.7-106 Q-1m-1) 1 1
8.9 - 8.9 0.87 0.68 0.87
16.66 8.33 18.2 0.74 0.54 0.65
20.35 7.96 22.1 0.69 0.55 0.61
11.38 8.86 125 0.82 0.64 0.71
14.75 8.52 16.1 0.77 0.68 0.67
14.48 8.55 15.8 0.77 0.59 0.67
15.43 8.45 16.8 0.76 0.55 0.67
12.94 17.41 15.7 0.77 0.48 0.58
14.7 25.59 19.8 0.72 0.48 0.46

Fig. 114: Measured and calculated electrical conductlwty of isotropic (Fp = Fglass = 0.33; cos2ap =
cosZaglass = 0.33) (three phase) porous glass-iron cermets at room temperature

SLIDRY SHOLO puD sPYdlINEY Jo HONDIaLIOD
14201 Plo1]-24MIINLSOLIP SANDIIUIND Y [

L8G6T ‘v ¥ £ 'SON '€ 104




G. Ondracek v Reviews on Powder Metallurgy

(4]

(5]

[e]

(7]
(8]
[9]
[10]

[11]
(12]
(13]
(14]

[15]
[16]

[17]
[18]
[19]

{20]
[21]
[22]
[23]

and Physical Ceramics
References

Abeles B., Gittleman J.J., Appl. Opt. 15 (1976) 2328
Aharoni S.M,, J. Appl. Phys. 43 (1972) 2463

Aivazov M.1,, Domshnev LA., Sov. Powder Met. Metal. Ceram. 7 (1968)
708

Aksenov G.I,, Zabbarov R., Sov. Powder Met. Metal. Ceram. 54-6 (1967)
458 :

Allev N A., Trudy Inst. Fiz. i. Mat., Akad. Nauk. Azerbeidzhan SSR, Ser.
Fiz 8 (1956) 101

Amato J., Colombo R,L., Polin F,, Rev, Hautes Temper. et Refract. t3
(1966) 189

Amman E., Hinniiber G., Z. Eisenhiittenwesen 71-21 (1951) 1081
Andrea D., Ling Thesis, Renss. Polytechn, Inst. Troy, N.Y. (1969)
Andreeva, N.G., Mekhanika Polimerov 2 (1973) 259

Anishenko L. M,, Brekhovskikh V.F,, Sov. Powder Met, Metal, Ceram, 13
(1974) 298

Araujo De F.F.T.,, Rosenberg H.M.,, J. Phys. D: Appl. Phys. 9 (1976) 665
Arthur G., Coulson J.A., J. Nucl, Mat. 13 (1964) 242
Asamoto R.R., Anselin F L., Conti A.E,, J, Nucl. Mat. 29 (1969) 67

Avgustinik A.J., Gandelsman L L., Gorfunkel L.F., Zhurnal Prikladnoi
Khimii 40 (1967) 2566

Bahr U., Diener G., Schopf H.G., Wiss Z, der TU Dresden 23-2 (1974) 319

Bahunov V.S,, Balkevich VL., Vlasov A.S., Guzman LY., Lukin E.S.
Pouboyarinov D.N., Moscow. Metall. 2 (1977) 232

Bast U., Dissertation Technische Fakultat, Universitit Erlangen (1986)
Beckermann M., Thun R.E,, Transact. 8th Vacuum Symp, (1961) 905

Beer A., Einleitung in die hohere Optik, S. 35, Verlag Vieweg & Sohn,
Braunschweig 1853

Behrens E., J, Comp. Mat. 2 (1968) 1

Beie H.J., Dissertation Technische Fakultit, Universitit Erlangen (1986)
Belle J., "Uraniumdioxide” US AEC Naval Reactors (1961)

Belskaya E.A., Tarabanov A.S.,J. Eng. Phys. 20-4 (1970) 472

311




Vol 3, Nos. 3 & 4, 1987 The Quantitative Microstructure-Field Property

[24]
[25]

[26]
(27
[28]
[29]
[30]
{31]

[32]

[33]

f36]
(371

[38]
{391

[40]

[41]
(42]
[43]
[44]
[45]
[46]
[47]

312

Correlation of Multiphase and Porous Materials
Beran M., Molyneux J., Q. Appl. Math. 24 (1966) 107

Beran MJ., in J.W, Provan, H.H.E, Leipholz, Continuum Models of
discrete systems, University of Waterloo Press, 2 (1978) 217

Bergmann D.J., Phys, Rep. 43 (1978) 377

Bergmann D.J,, J, Phys, C12(1979) 4947

Bergmann D.J., Phys. Rev. Lett. 44 (1980) 1285
Bergmann W., Frommeyer G., Z. Metallkde 68 (1977) 590
Behrens E., J. Comp. Mat. 2 (1968) 1

Bevington R.C., Kim H.J., [EEE Trans. on Comp., Hybrids and Manufact.
Techn., CHMT 2-1 (1979) 46

Bhattacharyya S.K., Basu S., De S.K., pal A.D., Chowdhury S., J. Appl.
Phys. 49 (1978) 3001

Biceroglu L., Mujumdar N,, Heinigen N, van, Douglas C., Int. J. Heat and
Mass Transfer 3 (1976) 183

BielskafLewandowska H., Acta Physica Polonica A 39 Fasc. 6 (1971) 687

Blakeley T.H., White AE.S., in F, Benesovsky, Proc. 2nd Plansee-
Seminar, Springer-Verlag Wien (1956) 335,

Blum G., Elektrie 13 (1959) 201

Bocchini G.F., Reviews on Powder Metallurgy and Physical Ceramics 2-4
(1985) 313

Béttcher C.J.F., Rev. trav. chim, 64 (1945) 47

Brocklehurst E., Brown R.G., Gilchrist K.E,, Labaton V.Y, J. Nucl, Mat,
35-2(1970) 183

Bronstein J., Semendjajew K., Taschenbuch der Mathematik, Teubner
Verlagsgesellschaft Leipzig (1963) 110

Brown W.F,, J, Chem, Phys, 23 (1958) Nr, 8, 1514
Bruggeman D.A.G., Ann, Phys, 24 (1935) 636
Bruggeman D.A.G., Ann, Phys, 25 (1936) 645
Budiansky B., J. Comp. Mater. 4 (1970) 286-295
Bueche F., J, Appl. Phys. 44-1 (1973) 5632

Burger H,C,, Phys. Z, 20 (1919) 73; 22 (1921) 28

Buykx W.J., Swain M.V,, Advances in Ceramics Vol. 12, Science and
Technology of Zirconia IT (1984) 518-527




G. Ondracek Reviews on Powder Metallurgy

[48]

[49]

{501

[51]
[52]
[53]

[54]
[65]

[56]
[57]

(58]
[59]
[60]
[61]
[62]

[63]

[64]
[65]

(66]
(67]
(68]

and Physical Ceramics

Bykovskii V.F., Dubinin R.M., Nichkov C.V., Sov. Atomic Energy 45
(1978) 793

Chaparova ILN., Chruyavski R., Agababova S.T., Vsova U.S., Nachn.
Trudy Vses. Nauch, Issled. Proekt. Inst. 13 (1973) 50

Chaurasia P.B.L., Chaudhary D.R., Bhandari R:C., Indian J. Pure Appl.
Phys. 16 (1978) 963-967

Chaurasia P.B.L.,Indian J. Pure Appl. Phys.20 (1982) 145-147
Cheng S.C., Vachon R.L,, Int, J. Heat Mass Transfer 12 (1969) 249-264

Cheng S.C., Law Y.S.,, Kwan C.C.Y., Int. J. Heat Mass Transfer 15 (1972)
355-358

Chiew Y.C,, Glandt E.D., J. Colloid Interface Sci. 94 (1983) 90-104

Chistov S.F., Belyaev A.A., Burtsev Y.N., Zavadskaya Laboratoriya 38
(1972) 954

Clark H., Trans. Am. Geophys. Union 3 (1941) 543

Clausius R., Die mechanische Wirmetheorie, Bd, 11, S. 62, Verlag F.
Vieweg & Sohn, Braunschweig (1879)

Cohen M.H., Jortner J., Webmann J., AIP COnf. Proc. 40 (1977) 63
Colletti W., Rebori L., Insulation 27 (1965)

Craeynest J.C. van, StoradJ.P.,J.Nucl. Mat, 37 (1970) 153

Crane R.A., Vachon R.I, Int. J. Heat Mass Transfer 20 (1977) 711-723

Cunningham G.W., Kizer D.E., Paprocki S.J., in F, Benesovsky (ed.), 4th
Plansee Seminar, Springer-Verlag Wien (1962) 483

‘ll)lfnilenko V.A., Zyrin A V., Sov. Powder Met. and Met. Ceram. 50 (1966)

DasD., Basu S., Paul A, J. Mat. Sci. 15 (1980) 1719

ngies H.T,, Valencourt L.R., Johnson C,E,, J. Am. Ceram. Soc, 58 (1975)
4

Dawson D.M,, Briggs A., J. Mater, Sci. 16 (1981) 3346-3356
Degussa-Firmenschrift, Liste K 110 (1961) 14

Diener G., Weissbarth J., in O. Brulin, R.K.T. Hsieh, Continuum models
of discrete systems, North Holland Publ, Co. Amsterdam-New York-
Oxford 4 (1981) 349

Doebke W., Z, Techn. Phys, 11 (1930) 12

Donea d., J. Comp. Mater 6 (1972) 262-266
313




Vol 3, Nos. 3 & 4, 1987 The Quantitative Microstructure-Field Property

(71}
[72]
(73]
(74]

[75]
[76]
{77]
[78]

[79]
[80]
[81]

[82]
(83)
[84]
(85)
[86]
(87)

[88]
(89]
[90]
[91]
[92]
(93]
[94]
(951

[96]
314

Correlation of Multiphase and Porous Materials

Dorre E., Ziegele W., Ber. DKG 47 (1970) 622
Doyle W.T., AIP Conf, Proc. 40 (1977) 300

Dulnev G.N., Zarichnyak Y.P,, Machavariani E.S., Teplofizika Vysoki
Temperatura 11-4 (1973) 887

Diirrwichter KG, “Elektrische Kontakte aus Sinterwerkstoffen”,
Firmenschrift, 5.12 (1956) 14

Ebel B., Jeulin D., Ondracek G., Proc. MRS-Europe (1985) 187
Eisenkolb F,, Richter W., Wiss, Z. TH Dresden 3 (1953/54) 71
Eisenkolb F., Schatt W., Neue Hiitte 2 (1957) 471

El-Fekey S.A., El-Manoan Jehia M., El-Hakim M.N.A., Powder Met. Int,
10-2(1978) 90

Eucken A, VDI Forschungsheft 353B, Bd. 3 (1932) .
Farnbam F.R., Iron Age Nov. (1954)

Feldtkeller E., Dielektrische und magnetische Materialeigenschaften I
BI-Hochschultaschenbuch, Band 485, Mannheim 1973

Fischer W A, Pieper C., Arch, Eisenhtuittenwesen 44 (1973) 483
FranclJ., Kingergy W.D., J. Amer, Ceram, _Soc. 37(1954) 99
Francois D, Terraz C., Mayer R., Pastor H., Planseeber, 20 (1972) 185

" Frey G.S., Z. Elektrochemie 38 (1932) 260

Fricke H., Phys. Rev. 24 (1931) 575

12i‘u2git,su M., Hasatani M., Sugiyama 8., J. Chem. Eng. Japan 10 (1977)
4

Gaal L, Proc. VII, Int. Pulvermet, Tagung Dresden, Bd. 2 (1985) 15
Gaisnayuk N,, Phys. Stat. Solidi 48 (1978) K 131

Garett K.W., Rosenberg H.M., J. Phys. D: Appl. Phys. 7(1974) 1247
Garett K.W.,, Rosenberg H.M., J. of Physics D: Appl. Phys. 8 (1975) 1882
Gebhardt E., Ondracek G., Thiimmler, J. Nucl. Mat. 13 (1964) 229
Gibby H., Lawrence G., Proc. Am, Ceram, Soc. winter meeting (1971)
Gibson-Electric Seales Corp. TB 5064- (62) |

Giuliani S., Mustacchi C., Amato 1., Colombo R.L., Coselli R., Rev. Int,
Hautes Temper. et Refract. t4 (1967) 77

Gladstone J H., Dale T.P., Phil. Trans. London 153 (1863) 317




G. Ondracek Reviews on Powder Metallurgy
and Physical Ceramics

[97]  Goetzel C.G., Treatise on Powder Metallurgy, Interscience Publ., New
York, Vol, I1 (1950) 216

[98]  Goldsmith L.A,, Douglas J.A.M., J. Nucl, Mat. 47 (1973) 31

[99]  Grootenhuis S., Powell N.T., Tye M.A,, Proc. of the Phys. Soc. 65 (1952)
502

[100] Grube N., SchlechtR.,Z. Elektrochemie 44 (1938) 367

(101] Gurland J,, in F. Benesovsky (ed.), 4th Plansee-Seminar, Springer-
Verlag, Wien (1962) 507 ‘

{102] Hamilton R.L., Dissertation, University of Oklahoma, 1960

{103] Hamilton R.L., Crosser O.K., Ind. Eng. Chem. Fund, 1(1962) 187-191
(104] Hansen D., Tomkiewicz R., Polymer Eng. and Sci. 15 (1975) 353

{105] HashinZ.,Shtrikman S.,J. Appl. Phys. 33 (1962) 3125

[106] Ha‘ttori M., Tanaka M., Kamiike E., Oyo butsuri 34 (1965) 356

[107] Hausner H.H., Powder Met. Bull. 3 (1948) 4

(108} Hayashi K., Fukui M,, Uei L, Yogyo-Kyohai-Shi 82 (1974) 21, 202
{109] Hayashi K., Ueil., Yogyo-Kyohai-Shi 82/7 (1974) 382/40

[110] Hayashi K., Kasai J., Fukui M., Nishikawa T., Yogyo-Kyohai-Shi 86-3
(1978) 115

(111] Hengst G., Dissertation TH Miinchen (1934)

(112] Herring C.,J. Appl. Phys. 31 (1960) 1939

{113] Higuchi W.1.,J.Phys. Chem. 62 (1958) 649

{114] Hoff R.T. De, Rhines F.N., Trans. Met. Soc. AIME 221 (1961) 975
[115] Holzmann H,, Metall 12 (1958) 630

[116] HuangdJ.H.,J. Geophys. Res. 76-26 (1971) 6420

(117] Hutcheon J M,, Price M.S. T\, Proc. 4th Conf on Carbon, Pergoman New
York (1960)

[118] Igarashi H., Okazaki K.,J. Am, Ceram. Soc. 60-1/2 (1977) 51
[119] IsekiT., Ito M., Suzuki H., Honda T,, J. Nucl. Sei. Technol. 10-6 (1973) 360

[120] Izvzan J., Sebo P., Taborsky L., Havalda A,, Kovove Materialy 3-XI (1973)
8

[121] Januszewski C., Khokar L., Mujumdar N, Int. J. Heat and Mass Transfer
4 (1977) 417

315




Vol 3, Nos. 3 & 4, 1987 The Quantitative Microstructure-Field Property

1122]
[123]
[124]
[125]
[126]
[127]

{128]
[129]

[130]

[131]
[132]
(133]
[134)

[135]
{136]
(137]
[138]
[139]
[140]
(141]

[142]
[143]

[144]

316

Correlation of Multiphase and Porous Materials

Jefferson T.B., Witzell O.W,, Sibbit O.W., Ind. Eng. Chem. 50 (1958) 1589-
1592

Jellinghaus W., Forschungsbericht des Landes Nordrhein-Westfalen Nr.
1015, Westdeutscher Verlag, Kéln-Opladen (1961)

Jesse A., Dissertation, Universitit Karlsruhe, Fakultit Maschinenbau
(1970)

dones T.J., Street K.N.,, Scoberg J.A., Baird J., Canadium Metallurgical
Quarterly Vol, 2, Nr, 1 (1963)

Joos G., Lehrbuch der theoretischen Physik, Akad. Verlagsges. Frankfurt
(1959) 262

Kainer K.U., Dissertation TU Clausthal, Fakultat fir Bergbau,
Hittenwesen und Maschinenwesen (1985)

Kane M., MND-SF-1770 (1973) 58

Karpinos D.M,, Klimenko V.S, Kadyrov V.H., High Temp.-High Pressure
5(1973) 13

Keil A., Werkstoffe f. elektrische Kontakt,e Springer-Verlag, Berlin-
SLuLtgarL Heidelberg (1960) 186

Kerner E.H,, Proc. Phys, Soc. 69B (1956) 802
Kharadly M.M.Z., Jackson W., Proc. Inst. Electron, Engng. 100 (1953) 199
Kharitonov E.V., Khanin S.D., Sov. Phys. Semicond. 11-2(1977) 240

Kieffer R,, Hotop W., Pulvermetallurgie und Sinterwerkstoffe,
Springerverlag Berlin-Gottingen- Heidelberg (1943) 324

Kikuchi T, Takahashi T., Nasu S., J. Nucl. Mat. 45 (1972/73) 284
Kingery W.D.,J. Am. Ceram. Soc. 42-12(1969) 617

Kirkpatrick S., Rev. Mod. Phys. 45 (1973) 574-588

Kline D.E., J. Polymer Sci. L (1961) 441

Knappe W,, Ott H.-H., Wagner G., Kunststoffe 68 (1978) 426-429
Koh J.C., Fortini A., Int. J. Heat and Mass Transfer 16 (1973) 2013

Kononenko V.1, Baranovski V.M., Dushecheniko V.P., Sov. Powder Met.
Metall, Ceram, 63-3 (1968) 175

Kostornov A.G., Shevchuk M.S., Lezehin F.F., Fedorchenko I.M., Sov.
Powder Met. and Ceram. 169 (1977) 383

Krischer O., Kast W., Die wissenschaftlichen Grundlagen der Trockungs-
technik, Springer Verlag Berlin-Heidelberg-New York (1978) 100

Kroéner E., Koch H., SM Archives 1-2/3 (1976) 183




G. Ondracek Reviews on Powder Metallurgy

[145]
[146]
[147]
[148]

[149]

- [150]
[151]
[152]
(153]
[154]

[155]

[156]
[157]
[158]

{159]
[160]
[161]
[162]

[163]
[164]
[165]

{166]

[167]

and Physical Ceramics

Kroner E., J. Mech. Phys. Solids 25 (1977) 137

Kroner E., J. Phys, F.: Metal Phys. 8-11 (1978) 2261

Kulcinski R., Wagner P., J. Less Common Met. 6 (1964) 383

Kusy R.P., Corneliussen R.D., Polymer Eng, and Sci. 15-2 (1975) 107

Landau L.D., Livsic IM., in ILM. Fedortschenko, P.A. Andrievski,
Osnowie Poroschkowoi Metallurgy. Isd. Akad. Nauk USSR 1961

Landauer R.,J. Appl. Phys. 23-7 (1952) 779

Landauer R., J. Appl. Phys. 33 (1962) 779

Landauer R., AIP Conf, Proc. 40 (1977) 2

Landolt H., Pogg. Ann. 123 (1864) 595

Landolt-Bérnstein, Zahlenwerte und Funktionen aus Naturwissenschaft
und Technik, Springer Verlag, Berlin-Heidelberg-New York, Bd. IV-2a
(1963) 234

Lauchon H,, Mirgaux A, Cioranescu D,, Saint Jean Paulin J., Bourgat J.,
in O, Brulin, R.K.T, Shieh, Continuum models of discrete systems, North
Holland Publ, Co., Amsterdam-New York-Oxford 4 (1981) 75

Lee H.J., Tylor R.E., J. Appl. Phys. 47 (1976) 148

Leheup E.R., Moon J .R,, Powder Metall. 21 (1978) 1

Lezhenin F.F., Shurgay LN., Kostornov A.G., Shevchuk M.S., Heat
Transfer 9 (1977) 144

Lichtenecker K., Phys, Z. 27 (1926) 115 and 833
Lichtenecker K., Rother K., Phys. Z. (1931) 2565
Loeb A.L.,J. Am. Ceram, Soc. 37 (1954) 96

Logunov A.V., Chevela O.B., Silaev A.F., Sov. Powder Met. Metal. Ceram,
13(1974) 304

Lorenz .., Wied. Ann. I1 (1869) 70
Lorentz H.A., Wied. Ann. 9 (1880) 641

Lvov S.N,, Malko P.I,, Nevskaya L.V, Nemchenko V.F., Sov. Powder Met.
Metal. Ceram. 41-5 (1966) 416

Magomedov A.M.A,, Ismailov M.A., Pashaev B.P,, Teplofizika Vysokich
Temperatura 13-5 (1975) 1106

7M1%hag‘in D.E., Baker D.E,, Bates J.L., Am. Ceram. Soc. Bull. 52-9 (1973)

317




Vol 3, Nos, 3 & 4, 1987 The Quantitative Microstructure-Field Property

{168]

[169]
[170]
[171]

{172]
[173]
[174]

[175]
(176]

(177
(178}
[179]
[180]
[181]
[182]
[183]

[184]

(185]
[186]
{187]

[188]
[189]
[190]
[191]
[192]

318

Correlation of Multiphase and Porous Materials

Malko P.I., Nemchenko V.F,, Lvov S.N., Pugin V.S,, Sov. Powder Met. and
Met. Ceram, 73 (1969) 49

Malliarias A., Turner D.T\, J. Appl. Phys. 42 (1971) 614
Matsuo H., J. Nucl. Mat. 89-1 (1980) 9

Maxwell J.C., Treatise on Electricity and Magnetism, Oxford Vol. 1(1904)
435

McClelland J.D., Petersen L.O,, USAEC-NAA-SR-6473 (1961) 9
McEwan J.R., Stonte R.L., Notley M.L.F., J. Nucl. Mat. 24 (1967) 109

McKenzie D.R., McPhedran R.C., Derrick G.H., Proc. Royal Soc. London
A362(1978) 211

McPhedran R.C., McKenzie D.R., Proc. Royal Soc. London A359 (1978) 45

Meny L., Buffet J., Sauve C., in F, Benesovsky (ed.), 4th Plansee Seminar,
Springer-Verlag, Wien (1962) 566

Meredith R.E., Tobias C.W., J. Appl. Phys, 31 (1960), 1270 (UCRL-8667)
Meredith R.E., Tobias C.W., J. Electrochem. Soc. 108 (1961) 286
Milgram A.A., Chih-Shu Lu, J. Appl. Phys. 39 (1968) 4219
MillerdJ.V.,NASA-TN-D-3898, 1967

Mitton G.W., Appl. Phys, Lett. 37 (1980) 300

Milton G.W., J. Appl. Phys. 52-8 (1981) 5296, 5294

Mosotti O.F., Mem, de mathem, et di fisica della societa italiana delle
science residente in Modena 24 1 (1850) 49

Murabayashi M., Takahashi Y., Nasu J., J. Nucl. Science and Techn, 6
(1969) 47

Neale G.H., Nader W.K., AIChE Journal 19 (1973) 112-119
Nedoluha A., Z. Phys. 148 (1957) 248

Neuenburg M., Dissertation, TU Clausthal, Fakultit fiir Bergbau,
Hiittenwesen und Maschinenwesen (1984) |

Niesel W., Ann, Phys, 6-10(1952) 336

Nikolopoulos P., Ondracek G.,J. Am, Ceram, Soc. 66-4 (1983) 238
Nikolopoulos P., Ondracek G., Z. Metallkde 74 (1983) 49

Odelewsky W 1., J. Techn. Fis. (USSR) 21 (1951) Nr. 6

Oelmonte J., Metal filled plastics, Reinhold Publ. Co. New York (1961)




G. Ondracek Reviews on Powder Metallurgy

(193]
[194]

[195]
[196]
[197]
{198]
[199]
[200]
{201]
[202]
{203}
[204]
[205]
[206]

[207]
[208]
{209}

(210}

(211}
[212]

[213]
[214]
[215]

[216]

and Physical Ceramics

Ollendorf F., Arch, Elektrotechnik 25 (1931) 436

Ondracek G., in Science in Ceramics Vol, 6 (1973) III/1 und Bericht des
Kernforschungszentrums Karlsruhe KfK Ext. 6/73-2 (1973) 40

Ondracek G., Z. Werkstofftechnik 5-8 (1974) 416

Ondracek G., Z. Werkstofftechnik 8 (1977) 220, 2f’30

Ondracek G., VII, Int. Pulvermet. Tagung, Dresden Bd. 2 (1981) 241
Ondracek G., Metall 36-5(1982) 523 '

Ondracek G., Metall 36-12 (1982) 1288

Ondracek G., Acta Stereologica 1-1 (1982) 5

Ondracek G., Metall 37-10 (1983) 1016

Ondracek G., Umschau 7 (1985) 400

Ondracek G., VIIL Int. Pulvermet. Tagung, Dresden Bd. 2 (1985) 191
Ondracek G., Z. Metallkde. 77-9 (1986) 603

Ondracek G., Materials Physics and Chemistry 15 (1986) 281

Ondracek G., Werkstoffkunde - Leitfaden fir Studium und Praxis, expert-
Verlag Sindelfingen 2. Auflage (1986)

Ondracek G., Patrassi E,, Ber. DKG 45 (1968) 617
Ondracek G., Schulz B., Ber., DKG 48-10(1971) 427, 525

Ondracek G., Schulz B., in J W, Provan, HH.E, Leipholz "Continuum
Models of Discrete Systems” SM-Study Nr. 12 University of Waterloo
Press (1978) 223

Ondracek G., Schulz B,, in E. Kréner, K.H. Anthony, H H.E, Leipholz
"Continuum Models of Discrete Systems” SM-Study Nr. 15 University of
Waterloo Press (1980) 499

Ondracek G., Schulz B., Thimmler F., High Temp.-High Press. 1 (1969)
439

g)gtrander W.J., Lewis C.W., Trans. 8th Nat. Vacuum Symp. Vol. 2 (1961)
1

Ott H.J., Plastics and Rubber Proc. and Appl. 1(1981) 9
Pearce C.A.R., British.J. of Appl. Phys. 6 (1955) 113

Pejsa R., Dissertation, Universitat Karlsruhe, Fakultat Maschinenbau
(1981)

Perrins W.T., McKenzie D.R., McPhedran R.C., Proc. Royal Soc. London
A369 (1979) 207 '

319




Vol 3, Nos. 3& 4,1987 The Quantitative Microstructure-Field Property

(217}
[218]
{219]

[220]
[221]
{222]

(223)
[224}

[225]
[226]
[227]
[228]
[229]
230}
{231]
[232]
{233]
(234]

[235]
[236]

[237]
[238]
{239]
[240]
[241]
[242]

320

Correlation of Multiphase and Porous Materials

Peterson J.M,, Hermans J.J., J. Comp, Mat. 3 (1969) 338
Petrova .M., Tekhuol. Poluch. Novykh, Mater. 24 (1973) 30

Pohl R.W., Elektrizitdtslehre, Springer-Verlag Berlin-Gottingen-
Heidelberg (1964) 156 '

Poisson S.D., Mem. Acad. Roy. Sc. Inst. France 5 (1826) 247 and 488
Polder D, Sanden J.H. van, Phisica 12 (1946) 257

ggogelhof R.C,, Throne J L., Ruetsch R.R,, Polym, Eng. Sci. 16 (1976) 615-
5

Provirin V.1, Savitskii A.l,, Mekhanika Polimerov 2 (1971) 323

Pustogarov A.V., Melniko G.N., Kolesnichenko A.N., Daragan V.D.,
Chepiga D.D,, Poroshk, Metall, 13 (1974) 52

Rajagopaé C., Satyain M., J. Appl. Phys. 49-11 (1978) 5536
Raleigh J.W,, Phil. Mag. 5-34 (1892) 481

Rateliffe E.H., Trans, Inst. Rubber Ind. 38 (1962) T'181

Rhee S.K.,J. Am. Ceram. Soc. 55-11 (1972) 580

Robertson E.C., Peck D.L., J. Geophys. Res. 79-32 (1974) 4875
Ross S.K., AECL 1096 (1960) |

Ridiger O., Winkelmann A., Techn. Mitt, Krupp 18-1 (1960) 19
Runge J., Z. Techn. Phys. 5 (1925) 61

Russel HW., J. Am, Ceram, Soc. 18 (1935) 1

3Rutmann D.S., Maurin AF., Taksis G.A., Torpov Y.S., J. Refract 6 (1970)
71

Saegusa T.,Iida Y., Wakao N,, Kamata K., J. Heat T'ransfer 3-2 (1974) 47

Samsonov G.V., Matsera V.E., SOv. Powder Met. Metal, Ceram, 11-9
(1972) 719

Sauerwald F,, Kubik J., Z. fir Elektrochemie 38 (1932) 5
Scarisbrick J., J, Phys. D: Appl. Phys. 6 (1973) 2098

Schifer A., Hieber K,, Politycki A.; Z.Metallkunde 63-11 (1972) 720
Schmidt C., Cryogenics 15 (1975) 17

Schmidt D., DFVLR-Forschungsbericht 69-96 (1969)

Schreiner H., Pulvermetallurgie elektrischer Kontakte, Springer-Verlag
Berlin-Gottingen-Heidelberg (1964) 122




G, Ondracek Reviews on Powder Metallurgy

[243]

[244]

[245]
[246]

[247]
[248]
[249]
[250]
[251]
[252]
[253]
[254]
[255]
[256]
[257]
[258]
[259]
[260]
[261]
(262]
[263]
[264]
[265]

[266]

[267]

and Physical Ceramics

Schulz B., Bericht des Kernforschungszentrums Karlsruhe, KfK Ext.
6/74-4(1974) 128

Schulz B., Bericht des Kernforschungszentrums Karlsruhe, KfK 1988
(1974) 291f

Schulz B., High Temperatures-High Pressures 13 (1981) 649

Schulz B., in T. Ashworth, D.R. Smith, Thermal Conductivity, Plenum
Publ. Corp. New York (1985) 33

Seith W., Schmeken H., in K. Ruthardt, Heraeus-Festschrift (1951) 218
Silberstein L., Ann, Phys, u, Chem, N.F, 56 (1895) 661

Stille U., Arch. Elektrotechnik 38-314 (1944) 91

Stoltz D.L., Kizer D.E,, Keller D.L.., BMI 1619, Section D (1963) D1
Sugawara A., Yoshizawa Y., J. Appl. Phys. 33-10(1962) 3135
Sundstrom D.W,, Chen S.Y. J. Comp. Mat. 4 (1970) 113

Sundstrom D.W,, Lee Y.D., J. Appl. Polymer Sci, 16 (1972) 3159
Sutherland W., Phil Mag. 27 (1889) Nr. 5, 27

Swamy C.8., Weimar P, Powder Metall. Int. 2-4 (1970) 134
Taubenblatt P.W., Int. J, Powder Met. 5 (1969) 89

Taylor R., High Temﬁerature—High Pressure 15 (1983) 299

Thornburg J.D., Pears C.D., ASME Paper 65-WA/HT-4 (1965)

Topper L., Ind. Engng. Chem. 47 (1955) 1377

Torkar K., Chem Ing.-Techn, 25 (1953) 308 '
Transtel S., Panda J., Jacob P., Tonindustrie-Zeitung 85 (1961) 565
Tsao G.T., Ind. Eng, Chem, 53 (1961) 395

Turner J.C.R,,Chem.Eng, Sci, 31 (1976) 487

Tye R.P., McCauley J.W., Rev. Int, Htes, Temp. et Refract. 12 (1975) 100

Underwood E E., Quantitative Stereology, Addison-Wesley Publ. Co. Inc.
Reading, Mass. (1970) 83

Vogt J., Grandell L., Runfors U., AB Atomenergie (Sweden) Int. Rep.
RMB-527 (1964)

Vries D.A. de, Disseration Universitit Leiden; Anhang 1952-1 an Bull.
Inst. Int. Froid 1952, 115

321




[269]

{270]
[271]

[272]
{273)

[274]

[275]
[276]
(277}
[278]

Vol 3, Nos. 3& 4, 1987 The Quantitative Microstructure-Field Property

Correlation of Multiphase and Porous Materials
Wagner K.W., Arch. Elektronik 2 (1914) 371, 3 (1914) 100

Wagner P,, O'Rourke J.A., Armstrong P.E,, J. Am. Ceram, Soc. 55-4
(1972)214

Wahl H.P., Wassermann G., Z. Metallkunde 61 (1970) 326

Walpole 1.J., in O. Brulin, R.K.T, Hsieh, Continuum models of discrete
systems, North Holland Publ. Co. Amsterdam-New York-Oxford 4 (1981)
467

Walter A.G., Trowell A.R., J. of Mat. Sci. 6 (1971) 1044

Westphal W.H., Physikalisches Woérterbuch, Springer-Verlag Berlin-
Gottingen-Heidelberg (1952) 351

Wiener O., Abh, math.-phys. Kl. kénigl.-sichs. Ges. d. Wiss. 32-6 (1912)
509

Woodside W., Messmer J . H., J. Appl. Phys. 32 (1961) 1688
Zabbarov R., Inzh. Fiz. Zh. 13 (1967) 373
Zehner P,, Dissertation, TH Karlsruhe (1972)

Zhorov G.A., Arabel B.G., Kozhukhov V.M., Roshchina I.N., Teplofizika
Vysckihh Temperatur 14 (1976) 648

Acknowlegement

Prof. J. Grolier, who recently applied quantitative microstructure-property correlations in
geology (compare Grolier J., Hucher M., Pouliquen J.M., Riss J., C.R. Acad Sci. Paris, t. 305 -
II (1987) 1499) and Dr. Brigitte Schulz have given valuable comments. Prof. Waldron and
Mr. Sippli thoroughly read the manuscript, which was typed and corrected by Mrs, Jutta
Howell. The figures have been prepared by Mrs. Vera Karcher. The author gratefully
appreciates this outstanding cooperation.

322




