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Abstract 

This report refers to uncertainty analyses of the atmospheric dispersion and deposition sub­

module (trajectory model) ofthe new program system UFOMOD, version NE 87/1, whose 

most important input parameters are linked with probability distributions derived from 

expert judgement. 

Special emphasis is put in this report on some helpful theoretical investigations concerning: 

• different types of correlation between uncertain model parameters, 

• test procedures to find out the most sensitive uncertain model parameters, 

• the percentage contribution of parameter variations to changes in consequence values. 

For the mentioned submodule of the new program system UFOMOD the most important 

parameters are stable in their rankings regardless of the underlying distributions (predefined 

by experts or all uniforrnly distributed, respectively). For the less important parameters the 

values ofthe sensitivity measures (PRCC values) vary for predefined or uniform distributions, 

respectively. But even then in most cases the ranking is the same. 

lncreasing sample sizes (n = 80, 100) lead to more precision in sensitivity calculations, i.e. lead 

to a decrease of the critical 'white noise level' (garbage level) of absolute PRCC values. 

R 2 -values ( coefficients of determination) in conjunction with the corresponding PRCC val­

ues visualize the percentage contribution of each uncertain model parameter ( or groups of 

uncertain parameters) to uncertainty in consequences. This is important, because a large 

absolute PRCC value is not in every case an indication for a considerable amount of 

responsibility for uncertainty in consequences. 

The restriction to pure model parameters and revised parameter Variations in the atmos­

pheric dispersion and deposition submodule ofthe new UFOMOD code system lead to sig­

nificantly smaller uncertainty bands than for the old UFOMOD j B3 code. Variations in 

deposition velocities and the mixing height parameters play the most important role for 

uncertainties in the activity concentration values. 
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Unsicherheitsanalysen für den Teilmodul' Atmosphärische Ausbreitung' von UFOMOD unter 

besonderer Berücksichtigung von Parameterkorrelationen 

Diese Untersuchung bezieht sich auf den atmosphärischen Ausbreitungsteilmodul (Trajek­

torienmodell) des neuen Programmsystems UFOMOD, Version NE 87 11. Den wichtigsten 

Parametern liegen Wahrscheinlichkeitsverteilungen zugrunde, die in Zusammenarbeit mit 

Experten erstellt wurden. 

Besondere Beachtung finden in diesem Bericht einige nützliche theoretische Untersuchungen 
zu 

• verschiedenen Arten von Korrelationen zwischen unsicheren Modellparametern, 

• statistischen Testprozeduren, um die sensitivstell unsicheren Modellparameter zu iden­

tifizieren, 

• den prozentualen Beiträgen. von Parameterschwankungen zur Gesamtvariation der 

Ergebnisse. 

Für den erwähnten Teilmodul des· neuen Programmsystems UFOMOD bleiben die sensi­

tivsten Modellparameter stabil in ihrer Rangreihenfolge, gleichgültig ob fllr ihre Schwan­

kungen die von Experten vorgegebenen oder rechteckige Verteilungen verwendet werden. Für 

die weniger wichtigen Parameter schwanken die Werte der Sensitivitätsmaße (PRCC Werte), 

je nach der zugrunde liegenden Verteilungssituation ( vordefiniert bzw. insgesamt 

rechteckverteilt). Aber selbst dann bleibt in den meisten Fällen die Rangreihenfolge 
unverändert. 

Zunehmende Stichprobenumfange (n = 80,100) fUhren zu größerer Genauigkeit der 

Sensitivitätsberechnungen, d.h. sie bedingen eine Abnahme des kritischen 'white noise Ievels' 

von absoluten PRCC Werten, unterhalb dessen alle Werte rein zufällig sind. 

R2 -Werte (Bestimmtheitsmaße) in Verbindung mit den entsprechenden PRCC Werten ver­

deutlichen den prozentualen Beitrag jedes einzelnen unsicheren Modellparameters (oder von 

einer Gruppe unsicherer Parameter) zur Gesamtunsicherheit in den Ergebnisvariablen. Das 

ist wichtig, da große absolute PRCC Werte nicht in jedem Fall eine Hauptverantwortlichkeit 

flir die Ergebnisunsicherheiten beweisen. 

Die Beschränkung auf reine Modellparameter und überarbeitete Wertebereiche fUhren im 

atmosphärischen Ausbreitungsteilmodul des neuen Programmsystems UFOMOD, Version 

NE 87 I 1 zu deutlich schmaleren Konfidenzbändern als in der entsprechenden Untersu­

chung flir den alten UFOMOD I B3 Code. Schwankungen in den Ablagerungsparametern 

und in der Mischungsschichthöhe sind hauptsächlich verantwortlich flir die Variationen in 

den Aktivitätskonzentrationen. 
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1. Introduction 

Risk studies for installations of the nuclear fuel cycle have been carried out in the USA ( e.g. 

WASH-1400, ZION, LIMERICK, INDIAN POINT), in the United Kingdom (e.g. SIZE­

WELL, HINKLEY POINT)) andin West Germany (e.g. GERMAN RISK STUDY, RISK 

ORIENTED ANALYSIS OF THE SNR 300) to quantify and compare accident conse­

quences and their frequencies. 

In applying accident consequence analyses (ACA) codes to specific sites, it is of considerable 

importance to understand the nature and magnitude ofuncertainties that are associated with 

the various models and parameters that are used in the code and the effects of these uncer­

tainties on predicted consequences. This is not only a prerequisite for safety goal compar­

ative studies but also facilitates the identification of modelling weakpoints and thus areas for 

further improvements and supporting research and development activities. 

Although the main goal of uncertainty analysis is the quantification of the uncertainties in 

the assessed consequences, it fades into sensitivity analysis whenever the effect of each single 

parameter ( or a group of parameters) on the total uncertainty is being considered. 

Carefully dcsigned procedures are to be used to determine the impact of uncertain parame­

ters in individual submodels on the predictions of accident consequence assessments. Same 

general aspects of the role and importance of uncertainty and sensitivity analyses are 

dcscribed in a previous paper [ 18]. 

The accuracy of the description of uncertainties of the model parameters depends on the 

information available, finally condensed in a probability distribution for each parameter. The 

construction of these distributions may be based on expert opinion procedures and/or on 

experimental data. 

And additionally, following [1], the estimated distrib:ution of the consequence variables can 

only be meaningful in a probabilistic sense if the model parameters have meaningful proba­

bility distributions associated with them. For the determination of those parameters that 

contribute significantly to sensitivity, the form of the distribution is not as important as the 

representation of each parameter over its physically possible range and the possible inter­

correlations between parameters. 

Following [35], the examination ofthe uncertainty in large accident consequence assessment 

models is a very complex undertaking and is reasonably performed in a sequential manner. 

The analysis should first involve the individual components of the system, and then, at a 

later stage the model should be examined in its entirety. In the first stage, much effort is 

directed at understanding and simplifying the individual components in the model. In the 
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second stage, effort is directed at pulling this understanding tagether for use in an integrated 

analysis. 

The program system UFOMOD [15] has been completely restructured and remodeled; it 

replaces the the accident consequence assessment program UFOMOD fortheGerman Risk 

Study, Phase A [5]. 

The first module of the program system UFOMOD models the dispersion of radioactive 

material in the atmosphere and the processes of removal of material from the atmosphere 

leading to deposition on ground. Thereby the meteorological conditions prevailing during 

the release and time of travel of the radioactive plume are taken into account, which deter­

mine the dispersion and the direction in which the activity is transported. Removal mech­

anisms by dry and wet deposition are included. Dependent on the release characteristics 

plume rise due to the buoyancy of the released activity and the influence of the turbulent 

building wake are modelled. 

Various atmospheric dispersion models ranging from straight line Gaussian to puff- trajec­

tory models are available for use in UFOMOD. The investigations described in this report 

refer to the segmented plume model·MUSEMET [51], which calculates Gaussian type con­

centration distributions along trajectories. 

Before starting the uncertainty and sensitivity analyses, a detailed discussion of the parame­

ter Variations in the atmospheric dispersion model took place tagether with the experts of 

the National Radiological Protection Board (NRPB), UK. It led to a common list of 

parameters to be considered and to a revision of their distribution functions and correlations 

in comparison to uncertainty investigations with UFOMOD / B3 performed before [23]. 

One of the main agreements was to restriet to pure model parameters and to leave out 

quantities describing the source term (like thermal energy) or measured values (like wind 

speed or wind direction). Therefore, the list was reduced to twenty parameters given in 

Table 2 and Table 3 of Chapter 2. 

As source term an unit release (1 Ci) ofl-131 and Cs-137 in three hourly subsequent phases 

is chosen. The release height is assumed to be 10 meters. 

The followi:ng aspects of accident consequence assessments are investigated: The concen­

tration fields in the air near ground (1 m height) and on ground surface considering the 

variability of the averagedl concentration values at three distances: D1 (.875 km), D2 (4.9 

km) and D3 (27 km). 

In cantrast to the investigations with UFOMOD/B3, where the variations of the concen­

tration and dose values under the plume centerline are representative of all the azimuthal 

averaged over 144 weather sequences which represent the weather ofthe two years 1982/83 
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results due to the straight-line Gaussian modelling, all concentration values calculated with 

a trajectory model must be used to construct the CCFDs and their confidence bounds. 

Appropriate techniques to propagate parameter uncertainties through accident consequence 

assessment models like UFOMOD consist of performing stochastic calculations using 

Monte Carlo simulations. Due to [ 45], for these simulations a number of vectors are sam­

pled from the distribution functions. The various modules of the ACA codes are run 

repeatedly for different model parameter vectors. Random sampling techniques require a 

large number of runs to ensure that all combinations of parameter values are considered. 

Stratified sampling techniques, e.g. Latin Hypercube Sampling (LHS), aim at optimizing the 

sample selection in order to ensure that allrelevant parameter values and their combina.tions 

are included in the calculations, even for a relatively small number of runs. 

Chapter 3.1 briefly describes the IMAN / CONOVER procedure for inducing a special type 

of correlation between model parameters. 

lnvestigating correlated model parameters one may ask which type of correlation is to be 

used ( e.g. correlation measured on original raw data or based only on the order of observa­

tions (rank data)) and how much information is lost by using the data only to determine 

relative magnitudes. 'Differences' between raw and rank correlations can be measured and 

they depend on the sample size, the number of correlated model parameters and the type 

of underlying distributions. The effect of substitution of a given complex distribution by an 

appropriate linearized distribution is shortly described in Chapter 3.2. A formal discussion 

is presented in Appendix A.2. 

The estimation of confidence bounds is indicated in Chap 3.3. 

The identification of important contributors to variations in consequences is done by the 

use of a sensitivity measure, the so-called partial (rank) correlation coefficient, PCC or 

PRCC. Both sensitivity measures, PCC or PRCC, respectively, are measures that quantify 

the relation between the uncertainty in consequences and those of model parameters. When 

a nonlinear relationship is involved it is often more revealing to calculate PCCs bctween 

parameter ranks than between the actual values for the parameters. The numerical value of 

the PRCCs can be used for hypothesis testing to quantify the confidence in the correlation 

itself, i.e. by statistical reasons one can determine which PRCC values indicate really an 

importance (significance) of a parameter or which PRCC values are simply due to 'white 

noise'. This is described in Chapter 3.4 or more explicitely in Appendix A.3. Moreover, as 

it is pointed out in Appendix A.4, it is possible to calculate the percentage contribution of 

each uncertain model parameter to uncertainty in consequences by use of so-called coeffi­

cients of determination (R2
). 

The last step in performing uncertainty analyses is to present and interprete the results of 

the analyses. Chapter 3.5 condenses the information obtained from the uncertainty analysis 
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for the atmospheric dispersion and deposition submodule ofthe program system UFOMOD, 

Version NE 87/1 and gives a guideline to understand the detailed figures and tables in the 

Appendices B and C. 



2. General Features of the Submodule 

Following [51] any accident consequence assessment (ACA) assuming the release of 

radionuclides from nuclear installations must be based on predictions of the distribution of 

the radioactive material throughout the environment. Aceidental releases into the atmos­

phere are the most severe ones in terms of the radiological consequences. Therefore, 

modelling the atmospheric dispersion and deposition is of essential importance in an ACA. 

Once the material is released, the effiuent particles and gases form a plume which is trans­

ported in the downwind direction and which expands horizontally and vertically due to dif­

fusion conducted by turbulent eddies in the atmosphere. 

During the dispersion the effiuent material may be removed from the plume by several 

mechanisms. Gravitational settling and contact with the ground, vegetation and structure in 

urban areas are referred to as dry deposition. Wet deposition may result from precipitation 

formation processes within the cloud, leading to removal by rainout, or from interaction 

between falling rain drops and the dispersing material, referred to as washout. Additionally, 

radioactive decay reduces the activity in the plume. Depending on the release characteristics 

special features may have intluence on the dispersion and deposition, for example the effect 

of plume rise due to the buoyancy or momentum of the released activity and the behaviour 

of plumes released into building wakes. Both phenomena affect the concentration distrib­

utions and, hence, the consequences arising in the vicinity of a nuclear installation. 

To simulate the very complex processes whereby material is dispersed in and deposited from 

the atmosphere and to calculate the resulting distributions of activity concentrations in the 

air and on the ground, a large nurober of models of different physical complexity has been 

dcveloped. Due to its simplicity the straight-line Gaussian model [52] is the one most 

commonly used in practical applications of atmospheric dispersion modelling. Also in most 

of the computer programs developed for ACAs in the last ten years, e.g. CRAC [54], 

CRAC2 [55], MARC [10] and UFOMOD [5], this model has been implemented to describe 

the atmospheric dispersion and deposition. The model is derived from a simplified theoretical 

treatment of dispersion which assumes that the atmospheric tlow- and turbulence fields are 

homogeneaus and stationary [62]. Especially, the model does not allow for changes ofwind 

direction during the release and during the subsequent dispersion of the released material 

through the atmosphere, processes everybody can see in the nature observing a smoke plume 

coming out off a chimney. Therefore, to increase the applicability and acceptance of ACAs, 

much effort has been invested during the development of the new ACA program system 

UFOMOD [15] to substitute the straight-line Gaussian plume model by more realistic 

atmospheric dispersion models. 

Recently, a benchmark study has been carried out at the Institut flir Neutronenphysik und 

Reaktortechnik (INR) of the Kernforschungszentrum Karlsruhe (KfK) 
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• to quantify the characteristic physical features of various dispersion models [ 48], com­

prising the straight-line Gaussian plume model and Gaussian-type trajectory plume and 

puff models, Eulerian grid-point models, and a Lagrangian random walk model, 

• to identify those models which can be applied in ACA codes under the demands of 

reasonable computertime and availability of meteorological input data [50], 

• to quantify the implications of different concepts of dispersion modelling by comparing 

the results of an ACA after the application of a straight-line Gaussian plume modeland 

improved dispersion models which take into account the changes of wind directions 
[50]. 

The study demonstrated that with respect to the demands 

• high flexibility, 

• user friendliness, 

• acceptable computing time 

• availability of meteorological input data 

only Gaussian-like trajectory models are applicable in ACAs. Although these models use the 

Gaussian formalism to calculate coricentration fields, the ability to consider changes ofwind 

direction during the release and the dispersion led to more realistic consequence assessments 

compared to the straight-line Gaussian model. 

The conclusion from the benchmarkwas to apply trajectory models in ACAs. In general, the 

range of validity of these models is limited to the region near to the site, since in most cases 

the meteorological data are available only from the site or a meteorological station repre­

sentative for it. A Gaussian dispersion over more than some 10 kilometres based on these 

data is hard to defend, especially in topographical structured areas, and even over flat land, 

this type of dispersion has never been proven at Ionger distances. Therefore, long-range 

dispersion models are needed to describe the transport of radioactive material over large 

areas up to thousands of kilometres. This led to the completely novel concept of atmospheric 

dispersion modelling in the new program system UFOMOD, which distinguishes between 

near range (::::; 5 km).and far range (;:::: 50 km) atmospheric dispersion models [51]. 

In the near range (::::; 50 km) modified versions of the atmospheric dispersion models 

MUSEMET [60] and RIMPUFF [46] are used, at present. 

The segmented plume model MUSEMET (KFA, Jülich, F.R.G., [60]) and the puff model 

RIMPUFF (RISO National Laboratory, Denmark, [46]) are both Gaussian-like trajectory 

models. The investigations described in this report are based on calculations with 

MUSEMET. 

Based on the source term characteristics and the meteorological conditions, the atmospheric 

dispersion models in UFOMOD calculate normalized time-integrated concentrations pat-
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terns in the air near to the ground and on the ground surface. Thereby, the models distin­

guish between different dry and wet deposition characteristics which depend on the physical 

and chemical form of the isotopes released. The spatial concentration fields are transferred 

to subsequent modules of UFOMOD to calculate distribution functions of air concen­

trations, contaminated areas, organ doses and health effects tagether with areas and num­

bers of persans affected by countermeasures which are taken to reduce the exposure and 

thus the health implications in the population. 

2.1 Parameter selection 

2.1.1 Parameters contributing to uncertainty in this analysis 

The following list gives the name and the meaning of the parameters: 

hm(S) 

ay(S) 

az(S) 

wp(S) 

viAE) 

viiO) 
1\,(AE) 

initial horizontal plume width in the wake of the reactor building 

initial vertical plume width in the wake of the reactor building 

mixing height for stability dass S (S e {A,B,C,D,E,F}) 

vertical plume diffusion for stability dass S 

horizontal plume diffusion for stability class S 

wind profile exponent for stability dass S 

dry deposition of aerosols 

dry deposition of elementary iodine 

washaut coefficients of aerosols for three rain intensities i 

(i e {0-1 mmjs, 1-3 mmjs, > 3 mm/s}) 

/\(/0) washaut coefficients of elementary iodine for three rain intensities i 

(i e {0-1 mmjs, 1-3 mmjs, > 3 mm/s}) 

2.1.2 Factorization of parameters 

For the purpose of clearness all uncertain parameters have been split into two factors: 

Par = w • Par50 [1] 

the first of them being a random variable w with a suitable frequency distribution, and the 

second one being the reference value for instance the median or 50%-quantile Parso . or, 

when the frequency distribution f\w) is constructed from experimental data another factori­

zation is useful: 
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Par = w' • Par modal [2] 

In this case the modal(most frequent) values Parmodal characterize the distributions f(w'). 

For example , the original wp(DC=A) values vary between 0.065 and 0.135. This corre­

sponds to Table 2 in the following manner: 

wp(DC = A) = w' • wp(DC = A)modal [3] 

2.1.3 Correlation of parameters 

Suppose there are physical mechanisms by which the different uncertain parameters are 

linked in nature. Then these mechanisms have to be considered as a source of uncertainty 

of more than one parameter value. There an! groups of parameters, say P(S;) , representing 

only one physical quantity, which depend on onea dass variable ,say S. Choose for example 

the parameter az(S) with six stability classes S e {A,B,C,D,E,F}. 

The parameters P(S;) may be equally influenced by a common cause (which is not S;). Then 

the uncertainty factors w(S;) have be to completely correlated for all S; . 

If the parameters P(S,) are stochastically influenced, the w(S;) have to be completely uncor­
related. 

2.2 Ranges and distributions 

2.2.1 Initial plume width in the building wake, Uyo,CTzo 

Wind-tunnel studies of building wakes [16], [17] show tracer concentrations varying by a 

factor of three from minimum to maximum. The Gaussian plume formula gives 

[4] 

for the average concentration c in the wake. When the source rate Q and the transport 

velocity u are kept constant, fluctuations of the concentrations only can be generated by 

Variations of the lateral (horizontal and vertical) dimensions of the wake volume. Therefore 

the range of variation of the initial plume width a y0 and O"zo can be derived from cctl\ax - 3 . 
mm 
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The factorized distributions for ay0 and az0 are chosen to be uncorrelated, symmetric and 

triangular with Wmin = .5, Wmodal = 1., Wmax = 1.5 (see Figure 1). 

2.2.2 Mixing height, hm(S) 

Variations from the mean mixing layer heights can be described sufficiently weil by a mean 

value ± 50%. As distribution the density of Figure 1 is used. 

This is derived from mixing height measurements at different stabilities S and form theore­

tical considerations [33], [9], [59]. 

It is assurned that mixing height Variations have 100% correlation at different stability 

classes S, i.e. a variation rnechanism common to all stabilities is assumed. Such mechanisms 

exist. For example, smaller radiation fluxes result in lower mixing heights, for unstable cases 

as weH as for stable cases. This can be shown by the summer to winter differences and the 

land to water differences in the mixing heights. 

2.2.3 Horizontaland vertical plume diffusion parameters, ay(S), az(S) 

The difTusion parameters depend on distance from the source and the atmospheric stability 

S. For simplicity the Variation of ay and a. shall have. no direct dependence on x, therefore, 

by definition, a fixed representative distance x = 1000 m has been chosen, where the uncer­

tainty ranges of ay(S) and a.(S) are defined by the neighbouring stability dass values 

ay.z(S- 1) = CJm;n(S) and ay,.(S + 1) = Clmax(S) • 

The result is a triangular distribution hy,.(w,S) for w: 

2.2.3.1 Plume diffusion parameters, az(S) 

The values for w are defined by 

Wmodal = 
ay,z(S)modal = 

1 
ay,z(S)modal -

Wmin,max = 
ay,z(S ± 1) 

CJ y,z(S)modal 

If S = A or S = F then Wmax or Wmin are defined by extrapolation: 

[5] 

[6] 

[7] 
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~(w) 

0 o.s 

Figure 1. Symmetrical triangular distribution f(w) 

Wy,zmaX.(A) 
ay,z mod(A) ay,zmaiA) 

[8] = = = 
ay,zmaiB) ay,zmin(A) Wy,z min(A) 

Wy,zmin(F) 
ay,z.moiF) ay,zmoiF) 1 [9] = = = 
ay,z mod(E) ay,zmaxCFJ Wy,z max(F) 

2.2.3.2 Plume diffusion parameters, ay{S) 

Since ay(S) is not a monotone function of stabili~y S in the case of the 'Karlsruhe-Jülich'­

parameters the stable cases S = E,F have to be treated different from the non-stable cases 

S = A,B,C,D (see Figure 3). 

Eq. [6] and Eq. [7] are used to define the triangular distribution of w. The marginal 

values like Wm;n(D) , Wmax(A) , Wm;n(E) , Wmax(F) are defined by extrapolation like in Eq. [8] 

and Eq. [9]. 

The resulting numbers for the w-distributions of the a-parameters corresponding to three 

different plume heights are given in Table 1. 

2.2.3.3 Correlation of variations of u-parameters for different classes S 

The plume a-parameters describe the plume width generated by turbulent motions in the air. 

When sampling times get lang (for example: 1 h) the horizontal plume width is dominated 

by very low frequency motions, i.e. wind direction changes. The variation of the amplitude 

of these wind direction changes represents the varia tion of a y( S). 

10 
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Figure 2. Characterization of the uncertain ranges of o'y(S), a,(S) (Part 1) 

The variability of this amplitude is not dependent on the small-scale turbulence which defines 

the stability dass and acts like a stochastic influence. Therefore, the variation of oiS1) is not 

correlated to the variation of ay(S2) S1:FS2 , and there are six independent distribution with 

density functionsj;(w,), i= 1, ... ,6 for·ay(S). 

The Variation of the amplitude of vertical turbulent motions generates the variation of az(S) 

at a given stability dass S. Since mechanisms for enhanced vertical turbulent motions (like 

roughness length, density of hills in a given terrain) act systematically for all stability classes 

S it is assumed that there is a correlated contributioa to the variation of az(S) for different 

classes S. Of course, there are also stochastic influences on az(S). So, both correlated and 

uncorrelated influences superpose. 

As a consequence, the correlation is chosen as follows: 50% for each pair (Llaz(S;), .Llaz(Sj)) 
with i;Cj. 
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Figure 3. Characterization of the unccrtain ranges of aAS), a.(S) (Part 2) 
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Stability Special w-distribution values for u-parameters 
Height (m) 

Category 
IVmin(O"y) IVmoct(O"y) IVmax(O"y) IVmin(O"z) IVmoct(O"z) IVmax(O"z) 

A 0.54 I 1.84 0.39 I 2.56 

B 0.67 I 1.84 0.60 I 2.56 

c 0.83 I 1.48 0.60 I 1.67 
50 

D 0.83 I 1.21 0.57 I 1.66 

E 0.79 I 1.26 0.42 I 1.75 

F 0.79 I 1.26 0.42 I 2.38 

A 0.29 I 3.41 0.44 I 2.29 

B 0.48 I 3.41 0.62 1 2.29 

c 0.78 1 2.08 0.61 1 1.61 
100 

D 0.78 I 1.29 0.58 1 1.64 

E 0.48 1 2.06 0.47 1 1.71 

F 0.48 I 2.06 0.47 I 2.14 

A 0.62 I 1.62 0.38 1 2.62 

B 0.56 I 1.62 0.34 1 2.62 

c 0.90 I 1.79 0.48 1 2.95 
200 

D 0.90 1 1.12 0.52 1 2.08 

E 0.51 I 1.95 0.60 1 1.91 

F 0.51 I 1.95 0.60 1 1.67 

Tablc 1. Special w-distribution valucs: Min-, mode-, and max-values of the w-distribution of the 

a -parameters for three different plume heights 

2.2.4 Wind profile exponent, wp(S) 

The wind profile exponent wp describes the increase of wirid velocity with hGight by the 

equation 

( 

. wp(S) 

u(z) = u(lOm) • l;m ) [10] 

which is an approximation of the log-lin proftle laws of surface boundary layer similarity 

theory [38] and [8]. These profiles are dependent on atmospheric stability S and on rough­

ness length zo. If stability S and the wind velocity u(z') are kept constant (z' =200m, 

z'2::z(SBL), surface boundary layer height) then an increase of z0 causes all wind velocities 

u(z) with z<z' to decrease. This corresponds to an increase of the wind profile exponent wp. 
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So one source of uncertainty of wp is the variation of roughness length. A roughness length 

Variation in the interval from 0.1 m to 1.0 m produces a wp-variation of ±30% in the case 

of a non-stable stability dass, and ±10% for the other dasses. This results from calculations 

with the log-lin profile formulae [8] and from [38]. The variations are 100% correlated 

concerning different stability classes S. Another contribution is the random variation of wp 

itselfwithin the stability dass intervals. This is about ±20% and is uncorrelated with respect 

to stability dass. 

A complete consideration of all uncertainty contributions to the wind profile exponent 

would result in six independent uncertainty contributions fs(ws) with S = (A,B,C,D,E,F). 

For S = (A,B,C,D) the corresponding Ws would be correlated with about 60% and the range 

would be (wmin, Wmod, Wmax) = (0.65, 1, 1.35). For S = {E,F) the correlation would be about 

40% and the range Would be (wmin, Wmod, Wmax) = (0.75, 1, 1.25). (wmin, Wmod, Wm~) again 

refers to triangular distributions. 

In a former uncertainty analysis of the atmospheric submodel of the old UFOMOD code it 

was shown that the contribution of wp to uncertainty in relation to others is not very 

important [23]. Therefore a very detailed treatment of the outlined uncertainty contributions 

of wp would be a waste of computer time. 

lt is more adequate to take simplified w-distributions. Therefore the wp-uncertainty is 

represented by only one w-distribution for all stability classes (i.e. 100% correlation). The 

range is ( Wmin, Wmod, Wmax) = (0.65, 1, 1.35). 

This is a little bit pessimistic point of view with regard to uncertainty, and without major 

importance for the analysis. 

2.2.5 Dry deposition velocities, vd 

The ranges of deposition velocity variations are quite large; data spread over more than one 

decade. Measured data appear to be normally distributed an a logarithmic scale [57]. 

Therefore lognormal distributions describe the variation of vd . Same quantiles of the dis­

tribution of the uncertainty factors w of vd are given for aerosols by 

1 
1, w9o 5.5 WIO :::: Wso :::: = 

5.5 ' 

and for iodine by 

1 
1' 3 WIO :::: Wso :::: W9o :::: 

3 ' 
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The w-variables for aerosols and elementary iodine are uncorrelated, i.e. vtt(AE) and vliO) 

can vary independently. 

2.2.6 Washout coefficients, A 

Sirnilar arguments are valid concerning the variation of the washaut coefficients. Lognormal 

distributions f\w) of the uncertainty factors w of the /\-parameters describe the variation of 

washaut coeffients. Same quantiles of the distribution of the uncertainty factors w of 1\ are 

given for aerosols, iodine and all rain intensities by 

1 
wlo = 5 ' Wso = 1' w9o = 5 

The relative Variations of 1\ are independent of rain intensity and thus 100% correlated with 

respect to different rain intensities. 

The general form of the washaut co~fficient is 

b 
1\=a•l 

where I is the rainfall rate in mm/h, a and b are model parameters. The influence of a Vari­

ation of b is not specific to the material washed out; therefore a correlated contribution 

originates from the variation of the parameter a. A 50% correlation is assumed between the 

aerosol and iodine washaut coefficient variations. 
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Range of variation Corre-
Additional lation of Reference Distrib-

No. Parameter character-

istics 
value ution 

Wmin Wmo<! Wmax 
parame-

ters 

I CTyO BW/4.3 0.5 I 1.5 no corre-
triangular lation 

2 CTzO BHj2.15 0.5 I 1.5 

DC=A 1600 m 

DC=B 1200 m 
100% 

DC=C 800 m between 
3 hm(S) triangular 0.5 I 1.5 

all stabili-
DC=D ·600 m 

ty classes 

DC=E 300m 

DC=F 200m 

4 DC=A 0.54 I 1.84 

1--
5 DC=B 0.67 I 1.84 

t---
6 DC=C CTy(x,S) 0.83 I 1.48 no corre-

1--- CTy(S) KA-JÜ triangular lation 
7 DC=D z=50m 0.83 I 1.21 

I---

8 DC=E 0.79 I 1.26 

1--
9 ·oc=F 0.79 I 1.26 

10 DC=A 0.39 I 2.56 

f---
II DC=B 0.60 I 2.56 

'--- 50°/o 
12 DC=C CTz(x,S) 0.60 I 1.67 between 

- CTz(S) KA-JÜ triangular all stabili-
13 DC=D z=50m 0.57 I 1.66 

- ty classes 

14 DC=E 0.42 I 1.75 

f---
15 DC=F 0.42 I 2.38 

DC=A 0.10 

DC=B 0.13 
100% 

DC=C 0.16 between 
16 wp triangular 0.65 I 1.35 

DC=D 0.22 
all stabili-

ty classes 

DC=E 0.35 

DC=F 0.55 

Table 2. Parameter distribution table 
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Range of variation Corre-
Additional 

Reference Distrib- Iation of 
No. Parameter character-

istics 
value ution 

Wto wso W90 
parame-

ters 

17 vd(AE) 1
) 0.55 E-3 lognormal 1/5.5 1 5.5 no corre-

18 vd(/0) ') 1.00 E-2 *) 1/3 1 3 lation 

0-1 mm 0.34 E-4 

19 1\AE 2) 1-3 mm 1.17 E-4 
lognormal 

*) 
1/5 1 5 **) 

>3 mm 3.29 E-4 

0-1 mm 0.42 E-4 

20 1\w 2) 1-3 mm 1.06 E-4 
lognormal 

*) 
1/5 1 5 **),***) 

1-3 mm 2.31 E-4 

Note: 

DC = Diffusion category 
*) lognormal distribution truncated at lOth and 90th percentile 
**) I 00% with respect to different rain intensities 

***) 50% between /\;(AE) and /\,{10) 
I) Units for vd(AE), vd(/0) are [mfs] 2) Units for 1\AE, 1\ro are [1/s] 

Table 3. Parameterdistribution table (cont'd) 

2.2. 7 Parameters not considered in this analysis 

This analysis is restricted to the investigation of uncertain model predictions coming from 

model parameters of the atmospheric dispersion and deposition submodule,only. 

This means cspecially, that Variations of the following (input) variables are not considered 

in the uncertainty analysis: 

111 release of radionuclides 

" all variables concerning source-terms, including 

" thermal energy 

.. releasc height 

111 meteorological situation 

,. wind direction 

.. wind velocity 

" sta bility class 

" rain intensity 

111 plume rise and 'Iift-off-modeHing 

The parameters of the plume rise model and the 'Iift-off -criterion are kept fixed m this 

analysis. The reasons are: 
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• The general influence of a variation of plume rise parameters has already been shown 

in a former uncertainty analysis of the atmosperic model of the DRS (Phase A) - code 

[23]. lt turns out that there are effects only at distances close to the source (r :$ 0.5 -

lkm) 

• Presently there is no information about the amount ofthermal energy released from the 

source. However, uncertainty related to plume rise strongly depends on thermal energy. 

18 



3. Uncertainty Analysis 

The preceding chapter described to some extent rang es, distributions and correlations of the 

model parameters, respectively. 

Prior to the actual analysis performed with the program system UFOMOD it is necessary 

to define specific vectors of the uncertain model input parameters to be used in each run of 

UFOMOD. The selection of these sets of specific parameter values is done by a suitable 

sampling scheme. With one parameter set each run produces one complementary cumulative 

distribution function (CCFD). From all runs a farnily of curves results, which visualiz~s the 

variability of the CCFDs of consequences. Confidence bands can be derived tagether with 

sensitivity measures, which deterrnine what causes this variability in consequences. 

Important questions are, how to construct CCFD curves and confidence bands, how to 

calculate sensitivity measures and how many UFOMOO-runs are necessary to get reliable 

uncertainty and sensitivity results? 

Uncertainty analysis methods may need much computer runs and time if there are a lot of 

model parameters and the accident consequence code is long-running. Therefore, one hand 

the designer of a sampling scheme should aim at a low number of runs, on the other hand 

the number of runs should be large enough to get stable and thrustworthy results. 

3.1 The sampling scheme 

From the various possible sampling strategies the Latin hypercube sampling (LHS) 

approach was selected. LHS is a modified random sampling with stratified samples and is 

found to have very good sampling characteristics when compared to other methods ( see 

[35] and [47] (Vol. 3 K-5)). 

The sampling procedure forces the value of each model parameter to be spread across its 

entire range. In random sampling it is possible by chance to choose only a portion of the 

range of model parameters, leaving out another part of the possible range that could greatly 

influence the consequence variables. The intent of LHS is to make more efficient use of 

computer ru.ns than random sampling even for smaller sample sizes. For !arge sample sizes 

there is little difference between the two techniques. 

A Latin hypercube sample of size n stratifies the range of each model parameter into "n" 

nonoverlapping intervals on the basis of equal probability. Randomly a value is selected 

from each of these intervals. Let X; (i = l, ... ,k) be the model parameters. The n values 
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obtained for X 1 are paired at random with the n values obtained for x;. These n pairs are 

combined in a random manner with the n values for X3 to form n triples. The process is 

continued until a set of n k-tuples is formed. 

There may exist "spurious" correlations between model parameter values within a Latin 

hypercube sample, due to the random pairing of the model parameter values in the gener­

ation of the sample. This is most likely when n is small in relation to k. Such correlations 

can be avoided by modifying the generation of the sample through use of a technique 

introduced by R.l. Iman and W.J. Conover [30]. This technique preserves the fundamental 

nature of LHS, but replaces the random pairing of model parameter values with a pairing 

that keeps all of the pairwise rank2 correlations among the k model parameters close to :Zero. 

The ImanjConover-technique can also be used to induce a desired rank correlation structure 

among the model parameters. The procedure is distribution free and allows exact marginal 

distributions to remain intact. This is used for the UFOMOD - LHS - design. For some 

mathematical details see [30] and [23]. 

In producing correlated model parameters one may ask which type of correlation is to be 

used ( e.g. correlation measured on raw or ranked data). 

A correlation coefficient computed on raw data may lose meaning and interpretation with 

data from non-normal populations or in the presence of outliers, as is pointed out in [34]. 

Rank correlations can be quite meaningful in modeHing situations where the model parame­

ters are monotonically related and not necessarily normally distributed. Additionally, it may 

make more sense to talk about monotone relationships, and hence rank correlations, 

bccause of the unusual behaviour of the Pearson correlation coefficient in certain joint 

probability distributions (In some cases there is an unusuallower bound on the correlation 

value which is greater than -1.). 

Following [24], another aspect is: When actual measurements areimpossible or not feasible 

to obtain but relative positions can be determined, rank order statistics make full use of all 

the available information. The question is however, how much information is lost by using 

the data only to determine relative magnitudes. An approach to a judgement concerning the 

potential loss of efficiency is to determine the correlation between the variate values and 

their assigned ranks. If the correlation is high, we would feel intuively more justified in the 

replacement of actual values by ranks for the purpose of analysis. The hope is that inference 

procedures based on ranks alone will lead to conclusions which seldom differ from a corre-

2 
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The rank order statistic for a random sample is any set of constants which indicate the order of 

observations. The actual magnitude of any observation is used only in the determination of its rel­

ative position in the sample array and is thereafter ignored in any analysis basedonrank order sta­
tistics. 



sponding inference based on actual variate values. But nevertheless one may ask to which 

extent influences are to be expected if an model parameter is substituted by its rank statistic. 

Is it reasonable to expect that these results will depend on the type of distributions? So, one 

should try to calculate correlations between variables and their ranks for each type of dis­

tribution and to check the effect on the consequence variables. If the mentioned correlation 

is near to one, there should be more confidence in the obtained results. 

3.2 Correlation considerations 

The interest is now concentrated on formal coherence of variate values and their ranks for 

different distribution types. It can be measured by the population correlation coefficent 

between ranks and variate values, i.e. between x; and Y = R(X) , where R(X,.) = rank of X 

r= 
E(X1YJ- E(J()E(Y1) 

(J X;(J Y; 
[11] 

From [61], the correlation between raw values and corresponding ranks is rather high for 

some commonly used distributions: 

normal distribution r= .98 

uniform distribution r= 1 

Gamma distribution with parameter m 

r= .78 (m= 1/2) (Chi square distribution) 

r= .87 (m= 1) (Exponential distribution) 

r= .90 (m= 2) 

r= .95 (m=4) 

In AppendixAis shown: 

Eq. [12] 

Eq. [13] 

Eq. [14] 

For lognormal distributions r= .69, for triangular distributions from r= .98 to r= .99 

( depending on the modc). For standardized logtriangular distributions the value of r 

depends on b, the mode value ofthe distribution, and is for b= .5 about r= .98. The uniform 

distribution shows a 'stable' behaviour, i.e. a perfect correlation between raw and rank val­

ues. 

In general, correlations between raw and rank values differ and depend on some distribution 

parameters and the sample size in the LHS - design. The main intention is to get raw and 

rank correlations created by the design as close as possible. This actually means to get a 
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small value for a I correlation stabtel measure, d(n), the lmean differencel3 between two (rank 

and raw) correlaü"on matrices ( calculated element pairwise ), 

d(n) = 1 
q 

q is number of different used random seeds, sm , and 

k i-I 

d(n,sm) = k(k ~ 1) I I I ru(n,sm) - Pu(n,sm) I 
i=2 j=I 

[15] 

[16] 

rij(n,m) and pij(n,sm) represent the raw and rank correlation between variables and j, 

respectively. The number n represents the sample size. 
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*UNIFORM 

0 100 200 300 400 500 600 700 800 900 
NUMBER OF COMPUTER RUNS 

Figure 4. Parameter d(n) versus sample size (input rank corr. = 0.5) 

The I difference' between rank and raw correlation matrices strongly decreases if the ratio of 

sample size, n, and the number of correlated variables, k, is small. Increasing the ratio n/k 

beyond 10 has no influence on the 'stability measurel d(n). This might be important for the 

number of necessary computer runs to create a thrustworthy design. 

3 It was assumed that all parameters are correlated with each other. The number of correlation pairs 

is k(k- 1)/2 
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New distributions can be introduced to substitute the lognormal distribution, especially 

because of the 'instabilities' detected during the former uncertainty/sensitivity analyses 

[23] ofthe old UFOMOD code. Ifit is possible to substitute e.g. the lognormal distribution 

by an appropriate linearized distribution the benefit could be significant. Such substitutions 

would have the same effect as increasing the sample size. With other words, the same 'cor­

relations stability', i.e. variable d(n), is obtained with a smaller number of necessary com­

puter runs. 

For example from Figure 4, to get d(n) = 0.04, about 150 runs are needed for lognormal 

distributions, but only about 30 runs are necessary for triangular distributions. 

In Appendix C the effect of using uniform distributions for all model parameters is demon­

strated. 

3.3 Estimation of confidence hounds 

The next task is to run the accident consequence code with the sampled input parameter 

values from the LHS-design. 

The following distinctions are necessary: 

• There are stochastic variations e.g. in weather conditions or wind directions. Each run 

of UFOMOD therefore produces one frequency distribution (CCFD) of consequences. 

- • Due to lack of knowledge about the actual model parameter values there is an uncer­

tainty in these results. This can quantitatively be expressed by confidence intervals of 

the frequency distribution of consequences. 

CCFD curves are generated by considering the probability of equaling or exceeding each 

consequence level on the x-axis. To construct a CCFD keepin rnind 144 weather sequences 

with different probabilities, say PWET(L) (L= 1, ... ,144), and 72 azimuthal sectors of 5 o 

each, are considered. Foreachradius (distance) there exist 144 x 72 point values with the 

probabi1ity PWET{L)/72. The 144 x 72 conscquence values ate sorted into 90 classes (which 

correspond for instance to nine decades of consequence values on a logarithrnic x-scale). 

Each class has its own probability of occurrence given by sumrning up the probabilities of 

the members of the class. Adding the probabilities of the classes stepwise from the right to 

the left will give the CCFD. 

To get confidence curves for each consequence level so-called p-quantiles are calculated from 

the nurober n0 of associated probability values at this consequence level x. 
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Example: 

Suppose n0 = 40 UFOMOD - runs, i.e. there are 40 CCFDs and - corresponding for each 

consequence level x - 40 probability points. To get a (p %) - confidence the following 

procedure has been adopted: 

For each consequence level x find the (p %) - smallest probability value of n0 ordered values. 

For all individual· consequence Ievels these selected probability points are connected to 

obtain the estimated (p %) - confidence curve. 

Particularly for the 5 % (95 %) - confidence curves connect the p x no -th numbers from the 

bottarn in the ordered Iist of n0 probability points, i.e. in our example connect the 2-th and 

the 38-th values from the bottom, respectively. Mean and median curves can be created in 

a similar manner. 

0 

Remark: 

Following [I] the 5 % - and 95 % - quantiles can be taken to be confidence intervals on 

the mean curve. The 5 % - and 95 % - quantile estimation is possible by using two methods: 

111 direct calculation ofthe empirical 5 % - and 95 % - quantiles at each consequence level 

(see example above), and 

~~~ using ± I.645 times sigma based on the assumption of a normal distribution at each 

conseq uence Ievel. 4 

[I] points out that the two methods give substantially similar estimates. 

0 

4 The Central Limit Theorem states that for large sample sizes, n, the distribution of 

(X- Ji)/(u/fo) is approximately normal, so that holds true 

24 

P(- zl-af2 < ~~F- < zl-a/2) l- a 

or 

P(X - z1_ 012 • u;fo < J1 < X+ z1_ 012 • u!fo) =: 1- a 

This statement forms the basis for the confidence interval for the average of n distributions at each 

consequence level. z1_a12 is the ( 1 - a /2) - quantile of the standardized normal distribution. 

For instance a = 0.1 , then z.os = -1.6449 and z.95 = 1.6449. 
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Figure 5. Complcmentary cumulative frcquency distributions (CCFDs) of activity concentrations 

on ground surface: Each CCFD (assuming release has occurred) corresponds to one 

of the 40 runs in a Latin hypercube sample of size 40. 
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Figure 6. Reference CCFD of activity concentrations: The empirical 5%-,95%- quantiles are 

given as estimated confidence bounds at discrete points of the x-axis. 



I t has been tested that different samples or an increase of sample size (for sample sizes larger 

than n= 40) do not change the 5%-95%-confidence bands.s As a typical example 

Figure 5 shows 40 estimated complementary cumulative frequency distributions for Cs-137 

activity concentrations on ground surface at the distance of 0. 87 5 km. 

Figure 6 shows the corresponding estimated so-called reference CCFD (all uncertain input 

model parameters are at their point value (50%-quantile)) and the empirical 

5%-95%-quantiles at each consequence level. The 5%-95%-'confidence curves' were gener­

ated by considering the probability of equaling or exceeding each consequence level 

appearing on the x-axis. For each consequence level the 5% and 95%-quantiles ( or other 

values: mean, median etc.) were calculated from the 40 associated probability values. cfhese 

probability estimates for individual consequence levels were then connected to obtain the 

empiric(:l.l 5%-95%-confidence curves (see [1]). 

So, the confidence bounds have to be interpreted as follows: 

There is 90%-confidence that the conditional probability for the activity concentrations, x, 

on ground surface, is 

• below the ordinate value at x of the 95%-curve,and 

• above the ordinate value at x of the 5%-curve. 

The width of the CCFD-confidence band is an indicator of the sensitivity of model pred­

ictions with respect to variations in parameters, which are imprecisely known. 

3.4 Sensitivity analysis 

Now, those uncertain input model parameters have to be identified which are important 

contributors to variations in consequences. Following [35], there are several methods for 

quantifying the relative importance of the uncertain model parameters to the output of the 

accident consequence model. Usually, each of the uncertain model parameters is ranked on 

the basis of its influence on the consequences. Some methods provide such an overall rank­

ing while others ( e.g. stepwise regression) are designed to select subsets consisting of only 

the most influential parameters. 

5 In [35] is stated, that good results can be obtained even with n = 4/3 times the number of uncertain 

model parameters. For n < k it seems appropriate to use the LHS - technique in a piecewise fashion 

on subsets of the k model parameters. For details see [30]. 
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• Rankings beyond the first few most important uncertain parameters usually have little 

or no meaning in an absolute ordering, since only a small number of the total number 

of uncertain parameters actually turns out to be significant. This will be explained later 

in more detail. 

• Sensitivity analysis in conjunction with any form of sampling or design is easiest to 

carry out if a regression mode! is fitted between the model consequences and the model 

parameter values. Such a regression model is inherent in the calculation of correlation 

coefficients. But, regression techniques are influenced by extreme observations and 

nonlinearities. Therefore it seems to be appropriate to transform the data. 

A method which 

• is regression based, 

• ranks either all uncertain model parameters or only those within a subset, and addi­

tiDnally 

• avoids sophisticated transformations 

is the ranking on the basis of partial rank correlation coefficients. 

Now, regression analyses define the mathematical relationship between two ( or more) vari­

ables, while correlations measure the strength of the relationship between two variables. 

But do all correlation numbers indicate a significant relationship between variables, i.e. is 

there an actual relationship or only one by chance ('white noise')? Up to which level ('white 

noise'-level, critical value) the correlation numbers are treated as garbage? 

The numerical values of correlation coefficients or partial (rank) correlations coefficients can 

be used for significance testing of the correlation, or with other words, for hypothesis testing 

to quantify the confidence in the correlation itself. For details see Appendix A.3. 

But to summarize the main results in advance: 

To get statistically stable results for sensitivity analyses larger sample sizes than for confi­

dence bounds calculations have to be chosen. The number of uncertain model parameters, 

which have a sensitivity mcasure value above the so-called 'white noise level' increase with 

sample size. For details see Appendix A and the sensitivity tables in Appendix C, which 

compare the results for n = 40, 80 and 100 computer runs. 

The partial correlation coefficient (PCC) is a measure that explains the linear relation 

between for instance a consequcnce variable and one or more uncertain model parameters 

with the possible linear effects of the remaining parameters removed. Following [25], when 

nonlinear relationships are involved, it is often more revealing to calculate PCCs between 

variable ranks than between the actua! values for the variables. Such coefficients are known 

as partial rank correlation coefficients (PRCCs). Specifically, the smallest value of each vari-
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able is assigned the rank 1, the largest value is assigned the rank n (n denotes the number 

of observations). The partial correlations are then calculated on these ranks. 

Remark: 

One may ask: 

~~~ Why rank correlation for explaining sensitivity ? 

• Why Pearson' s product moment correlation and not Kendall' s coefficient ? 
41 What's about standardized and stepwise regression coefficients ? 
111 What has to be done if there are different rankings with respect to different sensiüvity 

measures? 

Rank correlations are more comprehensive if there are nonlinearities in the computational 

models. Same other arguments for using these measures have been given at the beginning 
of this section. 

The 'concordance'-based sensitivity measure, Kendall's r, can also be choosen for partial 

(rank) correlation. But, on the other hand, an advantage of using the extension of 

Spearman's product-moment based p is, that existing computer programs for finding 

Pearson's partial correlation coefficients may be used on the ranks instead of the data, and 

the partial rank correlation coefficients are obtained easily (for more details concerning 

similarities and discriminations of the two measures see [11], [24] and [7]). 

Standardized (rank) regression coefficients (SRC, SRRC) have been calculated, too. There 

was nearly the identical importance ranking as in the PCC, PRCC - calculations. 

Stepwise regression calculations have not been carried out. But in [35] there is a summary 

of camparisans of some results achieved with different regression-based sensitivity measures. 

In [32] and [35] a way is shown to measure agreement on the selection of the most 

important model parameters by computing the ordinary correlation coefficient on scores 

based on the sum of the reciprocals of the assigned ranks (so-called Savage scores). 

The next step is to pick out the relevant sensitivity information out of the bulk of hidden 

messages within the CCFDs. 

There are various possible ways to condense the extensive data: 

Estimate fractiles, the estimated mean values etc. ofthe n CCFDs at certain consequence 

Ievels. There will be possibly divergent 'importance rankings' for different consequence 

values. 

Estimate one fractile, one estimated mean value etc. for each of the n consequence 

curves. 
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The second procedure is used for the UFOMOD - uncertainty and sensitivity analyses. To 

find the most important contributors to uncertainty in the consequences partial rank corre­

lation coefficients (PRCCs) are used. 

Importance ranking is done by taking absolute values of the PRCC values. The model 

parameter associated with the largest absolute PRCC value is called the most important one 

responsible for uncertainty in consequences and gets importance rank 1. 

This differs from the definition of ranks of sample values, where the smallest values has rank 

1, the next smallest has rank 2 and so ,on. 

Example: 

On the basis of 40 UFOMOD - runs with LHS, the most important uncertain parameters 

including their PRCC and importance rank for each consequence (e.g.: Cs-137 activity con­

centrations on ground surface at the distance of 0.875 km) are identified. By statistical rea­

sons (as explained before), a parameter is significant with confidence 95%, if the absolute 

value of the corresponding PRCC is greater than .43 (for n = 40). The absolute value 

describes the strength of the input-output dependency, while the ( + ,-)-sign indicates 

increasing ( decreasing) model conseq uences for increasing uncertain parameter values. Wet 

and dry deposition velocity of aerosols, 1\AE, and v.t(AE), are the most important sources of 

Variation for the activity concentration with PRCC-values of .97 and .96, respectively. 

Increasing 1\AE and v.t(AE) lead to a strong increase of activhy concentration (see Appendi­

ces). 
0 

In addition to evaluating the influence of each uncertain model parameter on the model 

consequences, the calculation of PCCs or PRCCs provide a good indicator of the 'fit of the 

analysis' to the model behaviour: the coefficient of determination, R2
, which is a measure of 

how weil the linear regression model based on PCCs ( or the corresponding standardized 

regression coefficients) can reproduce the actual consequence values. Or, in other words, it 

reflects the fraction of the variance in model consequences which can be explained by 

regression, i.e. it is possible to calculate the percentage contribution of each uncertain model 

parameter to variations in consequences. R2 varies between 0 and 1 and is the square ofthe 

corresponding PCC. The closer R2 is to unit, the better is the model performance. 

To clarify this, let us observe a hypothetical system of about twenty uncertain model 

parameters. Take each parameter separately, omitting all other 19 parameters, and calculate 

the R2 
- value. Assurne model parameter X has importance rank 1 and parameter Y has 

importance rank 20 with respect to the consequence. It is expected (at least when all 

parameters are uncorrelated) that the greatest amount ofthe observed variation is accounted 

for by the most important model parameter (in the linear regression model). The second 

30 



most important model parameter has a smaller R2 - value, and so on. Thus, the R2 - values 

should describe a monotonaus nonincreasing function of importance ranks. 

However, assume now, only X and Y are correlated and have rank 1 or 20, respectively. The 

corresponding R2 
- value for the unimportant Y may be significantly greater than even e.g. 

the parameter with rank 2! But an unimportant parameter cannot be responsible for more 

Variation than the most important ones. 

Therefore, in the case of correlated model parameters, some of the calculated R2 
- values 

(from separately taken parameters) give misleading effects. So, one has to be very careful in 

interpreting these coefficients of determination when there are correlations present within 

the group of model parameters. 

3.5 Results 

This chapter summarizes the main conclusions for the UFOMOD/NE87 submodule uncer­

tainty and sensitivity investigations. For details the reader is refered to the Appendices B and 

c. 

The following results of accident consequence assessments are investigated: 

• The activity concentrations ofl-131 and Cs-137 in the air near ground (1-m height) and 

on ground surface considering the variability of the averaged6 concentrations values at 

three distances Dl (0.875 km), D2 (4.9 km) and D3 (27 km). 

Due to weather conditions each UFOMOD run produces one frequency distribution 

(CCFD) of consequences. 

In Chap 3. 3 the way of construction of CCFDs and corresponding confidence curves has 

been indicated. The calculation of sensitivity measures has been outlined in Chap 3.4. 

6 (averaged over 144 weather sequences which represent the weather of the two years 1982/ 83) 
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DISTANCE IODCG IODCA CAECG CAECA 

[km] [Bq/m2 ] [Bq/m3] [Bq/m2 ] [Bq/m3 ] 

0.875 3 104 3 106 4 103 4 106 

4.9 1 103 1 105 3 102 3 lOS 

27 1 102 6 103 3 101 1 104 

WIDTH :$0.2 decade :$ 1.0 decade :$ 1.0 decade :$ 1.0 decade 

Note: 

IODCG = I-131 activity concentration on ground surface 

IODCA = I-131 activity concentration in air near ground (1-m height) 

CAECG = Cs-137 activity concentration on ground surface 

CAECA = Cs-137 activity concentration in air near ground (1-m height) 

Table 4. 99 th percentiles of activity concentrations: This table indicates the 99 th percentiles 

of activity concentration values and the variability of corresponding consequences 

The restriction to pure model parameters and revised variations in the atmosheric dispersion 

and deposition submodule of UFOMOD version NE87/l (see Chapter 2) Ieads to signif­

icantly smaller uncertainty bands than for the old UFOMOD / B3 code (see for comparison 

[23]). The number ofnecessary UFOMOb-runs to get reliable uncertainty and sensitivity 

results depends on different arguments: 

• As mentioned before, even small samples or an increase of sample size (for sample sizes 

larger than n = 40) do not change the confidence bands. I.e. the sample of size n = 40 is 

already sufficient and adequate to estimate the distribution of results. Otherwise differ­

ent samples would provide a hint of the variability of results due to sampling. 

• By statistical reasons sensitivity analyses need !arger sample sizes than for confidence 

bound · calculations. The so-called 'white noise Ievel' decreases with increasing sample 

size. 

The variability of the CCFDs is fairly small. This is shown by the width ofthe corresponding 

confidence bands which is not !arger than one decade. 

The confidence bounds are considerably smaller than those calculated in the earlier analysis, 

where about 1.5 decades (width) resulted at a distance of about 1 km (for details see [23]). 

This is mainly due to the fact, that a near ground release without thermal energy and its 

variation is considered. In addition, the variations of dry and wet deposition parameters are 

somewhat reduced and unreasonable correlations are removed. At far distances, where the 

plume extends vertically in the whole mixing layer, the difference of the confidence bounds 

become smaller. 
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Conse-
Partien-

Impor-
Range of R2 

Range of Range of R2 
lmportant Range of 

in(%) quence tance PRCC 
variable 

larity parameters 
ranking 

PRCC in(%) u u 

vjJO) 1 .98 ( 79 ' 83 ) ( 96 ' 98 ) ( 75 '83 ) 
IODCGD1 

CTz(E) 2 ( -.61 '-.69) ( 16 ' 19 ) *) ( -.49 '-.61 ) ( 12 ' 19 ) *) 

vJJO) I (.79,.95) ( 36 '44 ) 

hm 2 ( -.67 ' -.68 ) ( 8 '22) 

IODCGD2 40 1\w 2 .83 

40U hm I -.82 31 

100U hm I -.73 28 

hm I ( -.94 ' -.96 ) ( 38 ' 54) ( -.91 ' -.95 ) ( 47 ' 51 ) 

IODCGD3 vjJO) 2 ( .92 ' .95 ) ( 32 '44 ) ( .88 '.91 ) ( 28 ' 34) 

1\w 3 ( .52 ' .74) ( 3 ' 9) (.35,.55) ( 2' 4) 

vJJO) 1 ( -.91 ' -.94 ) ( 36 ' 51 ) ( -.96 ' -.98 ) ( 68 '72) 

IODCAD1 CTz(E) 2 ( -.61 '-.75) ( 40 '44 ) *) ( -.58 '-.79 ) ( 22 '28 ) *) 

80 CTzo 2 -.72 7 

vjJO) 1 ( -.95 ' -.97 ) ( 76 ' 86 ) ( -.96 ' -.98 ) ( 82 ' 85 ) 
IODCAD2 

hm 2 ( -.61 '-.77) ( 3 ' 7 ) ( -.73 ' -.84 ) ( 8 ' 11 ) 

vJJO) I ( -.94 '-.97 ) ( 48 ' 55 ) ( -.97 ' -.98 ) ( 63 ' 65 ) 
IODCAD3 

hm 2 ( -.93 ' -.97 ) ( 37 '40 ) ( -.95 ' -.96 ) ( 27 ' 33 ) 

Note: 

* ) The R 2 
- values are calculated for the total group of correlated CTz (S)- parameters. 

Table 5. 1\tlost important parameters for uncertainties in I-131 activity concentrations: This table 

indicates the most important parameters (including ranking, range of PRCC - and R2 -

values) for the variability in consequences for different sample sizes (40, 80, 100) and dif­

ferent assumptions on distribution types (U means al1 parameters are uniformly distributed) 

Table 4 shows decreasing concentration values from near to far distances. The smallest 

concentrations are for aerosols on ground surface. 

Table 5 and Table 6 try to summarize the main sensitivity information given in Appendix 

c. 
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The rnost irnportant pararneters are listed tagether with sorne 'ranges' 7 for PRCC- and 

R 2 -values. Sorne particularities are detected and appear in the tables. 

Conse-
Particu-

Impor- Range of Range of R2 
quence 

Important 
tance 

Range of Range of R2 
PRCC in(%) 

larity parameters PRCC in(%) 
variable ranking u u 

CAECGDI 1\AE I ( .89 ' .97 ) ( 44 ' 56 ) 

vd(AE) 2 ( .89 ' .96 ) ( 35 '40 ) ( .95 ' .97 ) ( 46 '48 ) 

CAECGD2 1\AE I ( .98 ' .99 ) ( 91 '93 ) ( .98 ' .99 ) ( 88 '91 ) 

vd(AE) 2 ( .82 ' .92 ) ( 3 ' 7 ) ( .86 ' .90 ) ( 2 ' 8) 

CAECGD3 1\AE I ( .98 ' .99 ) ( 90 ' 94) ( .94 ' .97 ) ( 70 ' 77 ) 

vd(AE) 2 ( .83 ' .89 ) ( 3 ' 6) ( .77 ' .87 ) ( 6 ' 16) 

Uz(F) I ( -.94 '-.95 ) ( -.95 ' -.96 ) 
( 88 '94) ( 90 ' 93 ) 

CAECADI Uz(E) 2 ( -.78 '-.86 ) ( -.85 ' -.90 ) 

80 Uzo 2 -.83 10 

(T z(F) I ( -.91 '-.93) ( 74 '89 ) ( -.81 '-.93) ( 69 ' 70 ) 

CAECAD2 hm 2 -.76 9 ( -.69 ' -.84 ) ( 8 ' 12) 

80 Uz(E) 2 -.67 89 *) 

hm I -.99 ( 93 '96 ) ( -.98 '-.99 ) ( 83 '87 ) 
CAECAD3 

vd(AE) 2 ( -.74 ' -.83 ) ( 1 ' 9 ) ( -.90 '-.92 ) ( 10 ' 16) 

Note: 

* ) The R 2
- values are calculated for the total group of correlated u 2 (S)- parameters. 

Table 6. Most important parameters for uncertainties in Cs-137 activity concentrations: This table 

indicates the most important parameters (including ranking, range of PRCC - and R2 -

values) for the variability in consequences for different sample sizes (40, 80, 100) and dif­

ferent assumptions on distribution types 

The reason for introducing the uniform distribution into the analysis is the simplicity of this 

distribution type. 

If there is no detailed knowledge about the distribution behaviour and all pararneter values 

seern to be equally likely then possibly this type of distribution rnay be appropriate. This 

special case is simulated by setting all pararneter distributions to be uniform. 

• For IODCGDI there is a dominant influence of dry deposition which has a PRCC 

value of .98. Frorn 73 <% to 83 % of the uncertainty in the consequence variable can 

7 Due to the fact, that PRCC and R 2 -values depend on the sample size, there exist three (not neces­

sarily different) values, building the 'ranges' (colurnn 5,6 and 7,8) in Table 5 and Table 6 of the 

corresponding PRCC and R 2 -values. 
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be explained by Variations of the model parameter dry deposition, vjJO), depending on 

the number of UFOMOD runs ( 40, 80, 100) and the distribution type. 

For the consequence variable IODCGD2 the dry deposition parameter, vd(IO) , again 

seems to be the most important parameter responsible for variation in the consequence 

with sample size n = 40,80, 100. The second most important parameter is the mixing 

height parameter, hm . The PRCC values are from -.67 to -.68. Only from 8 % to 22 % 

of the uncertainty in the consequence variable can be explained by variation in the 

mixing layer. 

However, if all parameters are uniformly distributed, for the sample size n= 40,100 

(marked as 40U, lOOU) the most important parameter becomes hm. On the other hand, 

looking at the corresponding tables in Appendic C, the actual PRCC values differ only 

very slightly for n = 40 (PRCC = -.80) and n = 40U (PRCC = -.82), respectively. 

• For small distances from the source depositionandin some case vertical a-parameters 

are dominant. For the second ( 4.9 km) and third (27 km) distance category the mixing 

layer becomes important. 

Similar results with physically interpretable dependences are obtained for the air near 
ground. 

Studying Table 5, Table 6 and Appendix C shows for this particular modelling situation: 

• The most important parameters are stable in their rankings regardless of the underlying 

distributions (different and predefined by experts or all parameters uniformly distributed, 

respectively ). 

• For the less important parameters the PRCC values vary for the predefmed or uniform 

distribution situation, but even then in most cases the ranking is the same. 

To avoid improper generalizations: 

For the atmospheric dispersion and deposition submodule of the new UFOMOD code sys­

tem the distribution effect was not as is important as it was expected. 

It is supposed that a different model with different characteristics, behaviour and complexity 

may be more sensitive to changes in distributions. 

But to verify this a lot of time consuming and possibly expensive computer runs for different 

distribution sets would be necessary. 
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4. Summary 

The restriction to pure model parameters and revised parameter variations in the atmos­

pheric dispersion and deposition submodule of the new UFOMOD code system led to sig­

nificantly smaller uncertainty bands than for the old UFOMOD / B3 code. Variations in 

deposition velocities and the mixing height parameters play the most important role for 

uncertainties in the activity concentration values. 

Special emphasis was put in this report on some helpful theoretical investigations concern­
mg: 

111 different types of correlation between uncertain model parameters, 
111 test procedures to find out the most sensitive uncertain model parameters, 
111 the percentage contribution of parameter variations to changes in consequence values. 

For mentioned submodule of the new program system UFOMOD the most important 

parameters are stable in their rankings regardless of the underlying distributions (predefined 

by experts or all uniforrnly distributed, respectively). For the less important parameters the 

PRCC values vary for predefined or uniform distributions, respectively. But even then in 

most cases the ranking is the same. 

lncreasing sample sizes (n= 80,100) led to more precision in sensitivity calculations, i.e. led 

to a decrease of the critical 'white ·noise level' (garbage level) of absolute PRCC values. 

R 2 -Values (coefficients of determination) in conjunction with the corresponding PRCC val­

ues visualized the percentage contribution of each uncertain model parameter ( or groups of 

uncertain parameters) to uncertainty in consequences. This was important, because a large 

absolute PRCC value was not in every case an indication for a considerable amount of 

responsibility for uncertainty in consequences. 
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More Details, Figures and Tab/es 

Appendix A.l gives some details concerning the LHS-procedure and the IMAN j CON­

OVER-method for inducing rank correlations. 

Appendix A.2 illustrates some results concerning the correlation between variate values and 
ranks. 

Appendix A.3 describes the partial (rank) correlation coefficient and some significance test­
ing pro blems. 

Appendix A.4 gives some remarks concerning the coefficient of determination, R2
• 

Appendices B and C comprise a detailed set of figures for uncertainty and sensitivity ana­

lyses, respectively. If necessary some legends to understand abbreviations are added. The 

figures and tables are given in the fo~lowing sequence: 

• UNCERTAINTY (CCFDs and confidence curves) 

.. Activity concentrations (lodine, Aerosols) on ground surface and in the air near 

ground at three distance intervals 

• SENSITIVITY (Tables of PRCC values) 

" Camparisan of concentration runs for n = 40, 80, 100 
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Appendix A. Some Mathematical Details 

A.l The lMANfCONOVER- procedure 

This paragraph follows some results presented in [30]. 

Let C be a (k,k)-rank correlation matrix supplied by the user. Use the Cholesky-factorization 

to find a lower triangular matrix P, such that PP'= C. For a sample of size n form a (n,k)­

matrix R, whose k columns are unique random mixes ofvan der Waerden scores (see [24]): 

{<P- 1(i/(n + 1)), i = l, ... ,n} , 

where <P- 1 is the inverse of the standardized normal distribution. 

Let T represent the correlation matrix of R. Use the Cholesky-factorization on T to find a 

lower triangular matrix Q, such that QQ' = T. Next, one wishes to find a matrix S, suchthat 

STS' = C or SQQ'S' = C, respectively, for which one solution is S = PQ-1• The matrix 

Rx = RS has a corrclation matrix exactly equal to the original correlation matrix C. This 

comes out by the following 

Theorem (see [63]) 

Let X= (X~> Xz, ... , Xk) be a k-dimensional random vector with expectation (fJt. fJ2, ... , fJk) 

and correlation matrix K. For a linear transformation Y ;== PX we have: The correlation 

matrix of vector Y is D = PKP'. 
0 

If X: = R; are the columns of the matrix R of van-der-Waerden scores, T: = QQ' is the cor­

relation matrix of R and P: = (Q-1)' , then 

That is, the column vectors R;(Q-1)' have the correlation matrix I. By Wilks' theorem, the 

column vectors of Rx = R(Q-1)' P' have the correlation matrix C =PP'. 

Finally, it only remains to generate the (n,k)-matrix of model parameters values, according 

to any desired method or distribution, as if the k random model parameters were independ­

ent of each other. Then the values of the parameter in each column are arranged so, that 

they have the same (rank) order as the corresponding column in the matrix Rx . Therefore 

M - C, i.e. the sample rank correlation matrix of the model parameter vectors, C, will be 
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the same as the sample rank correlation matrix, say M, of Rx. This is formally explained in 

[ 40] or [ 44]. 

A.2 Gorrelation between variate values and ranks 

The rank-arder statistics for a random sample are any set of constants which indicate the 

order of the observations. The actual magnitude of any observation is used only in the 

determination of its relative position in the sample array and thereafter ignored in any 

analysis based on rank - order statistics. Thus any statistical procedures based on rank -

order statistics depend only on the relative magnitudes of the observations. 

lf the rank- order statistics for a random sample X~, X2 , ... , XN are denoted by 

where R is any function such that R(X) ::5 R(Xj) whenever x; ::5 Xj. As with order statistics, 

rank - order statistics are invariant under monotone transformations, i.e. if R(X) ::5 R(Xj) 

then R[F(X)] ::5 R[F(Xj)] in addition to F[R(X)] ::5 F[R(Xj)] where Fis any nondecreas­

ing function. 

A functional definition of the rank of any x; in a set of different observations is provided by 

N 

R(Xj) = I S(xi- xj) = l+I S(xi- xj) [17] 
i=l i# 

where 

{ 0 if u<O 
[18] S(u) = 1 if u;::::o 

When actua.l measuremerits are impossible or not feasible to obtain, but relative positions 

can be determined, rank - order statistics make full use of all the available information. 

However, if the fundamental data consist of variate& values, how much information is lost 

by using the data only to determine relative magnitudes? One aproach to a judgment con­

cerning the potentiallass of efficiency is to determine the correlation between variate values 

and their ranks. 

8 In this paper statistical variable is called variate value, or variate. 
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lf the correlation is high, we would feel intuitively more justified in the replacement of actual 

values by ranks for the purpose of analysis. The hope is that inference procedures based on 

ranks alone will lead to conclusions which seldom differ from a corresponding inference 

based on actual values. 

The correlation coefficient between two random variables X and Y is 

r = 
E(XY) - E(X)E( Y) 

OxOy 
[19] 

Assurne that for a continuous population Fx we would like to determine the correlation 

between the random variable X and its rank R(X). Theoretically, a random variable from 

an infinite population cannot have a rank, since values on continuous scale cannot be 

ordered. However, an observation X, of a random sample of size N from this population, 

does have a rank R(X) as defined in Eq. [18] The distribution of Xis the same as the dis­

tribution of X and R(X) are identically distributed though not independent. 

Therefore, it is reasonable to define the population correlation coefficient between variate 

and their rank values as the correlation between X and Y; = R(X;) , or, 

rv,R = 0 x0Yi 

E(XYJ - E(X)E( lj) 
[20] 

Following [61], Eq. [20] can be rewritten as 

-- fl2iN- 1) { E[Fx(X)] - ~ E(X)} 
rv,R[X,R(X)] -..JN + 1 ox [21] 

and9 

r = lim rv R[X,R(X)] 
N-+oo ' 

= 
21; { E[X Fx(X)] - + E(X)} 

[22] 

Let' s define 

K = E[XFx(X)] - + E(X) [23] 

Then Eq. [22] becomes 

r = lim rv,R[X,R(X)] = 
N-+oo 

[24] 

9 Treatment of ties in rank tests is not considered. 
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If f(x) represents density probability function, then 

F(x) = I x f(t) dt 
-oo 

and 

E(x) = Ioo tf(t) dt 
-oo 

Substituting Eq. [25] and Eq. [26] in Eq. [23] 

Defining (see [61]), 

we have 

and 

K = Ioo xf(x) dx Ix tf(t) dt ; f"' xf(x) dx 
-oo -oo -oo 

= ~ Ioo x(2F(x) - 1)dx 
-oo 

b. = 4 Ioo x[ 2F(x)-+ ]dF(x) 
-oo 

= 2 Joo x(2F(x) - 1)dF(x) 
-oo 

b. = 4K 

b. = 2xF
2
(x) I ~oo - 2 L: F(x)dx 

- 2xF(x) I 00 

+ 2 Joo F(x)dx 
-oo -oo 

= 2 Joo F(x)(1- F(x)) dx 
-oo 

Eq. [30] can be rewritten as 

b. = 2 Ioo Ix dF(y) [1- F(x)]dx 
-oo -oo 

= 2 Ioo Ix (x- y) dF(y)dF(x) 
-oo -oo 
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To calculate parameter r from Eq. [24] , it is necessary to calculate the standard deviation 

and mean of the each distribution. 

A.2.1 Nonnal distribution 

F or this case 

1 2 

dF(x) X = -- exp( --)dx 
J2ii 2 

[32] 

2 

dF(y) 1 y 
= -- exp( --)dy 

J2ii 2 
[33] 

and following [61]: 

b. = 2 

F 
[34] 

Then, substitution Eq. [34] in Eq. [24] , gives finally correlation between variate values 

and ranks for normal distribution 

r = Jf = .98 [35] 
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A.2.2 Lognormal distribution 

For this case is 

From Eq. [31] 1s 

By transformations 

with the Jacobian 

dF(x) = 

dF(y) = 

1 ( log
2
x ) exp --

2
- dx 

xjiii 

1 ( log
2
y ) exp --

2
- dy 

yjiii 

log X = Y COS 8 
logy = r sin e 

J = r exp[r( cos e + sin e)] 

the integral from Eq. [38] becomes 

11 = ~ 1oo J_X
3

" exp(- ; + r cos e) rdrde 

4 

~ 1oo J_ ;
3

" exp(- r; + r sin e) rdrd8 

4 

Further 

.11 - " 
J_ ;

3
" ! 1(8) exp( cofe )de 

4 

1 e," 12(8) exp( si~'e )de 
" 4 

where 
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Joo [ (r- sin 8)
2 

] 
/ 2(8) = 

0 

exp -
2 

rdr 

and after some short transformations, 

where 

2 

( cos 8 ) + exp -
2 

sin28 = exp( --
2
-) + 

J2;' cos 8[ I+ erf( cos }z ) ] 

J2;' sin 8[ 1 + erf( sin }z ) ] 

2 IX 2 erf(x) = jii 
0 

exp(- x )dx 

So, substituting expressions Eq. [45] and Eq. [46] in Eq. [42] 

b. = 1 f [ cos 8 exp ( co~'8 ) - sin 8 exp ( si~8 ) }8 + J 

we finally get 

b. = 2 je erj{ ~ ) + o 

where 

I; [ cos
2
8 ( cos 8 )] o = _ 

3
; cos 8 exp( 2 ) erf j2 d 8 

I ; [ . n ( sin
2
8 ) !( sin 8 )]d n sm o exp -

2
- er Fl o 

3rr v2 
-4 

- 0 1 + 02 

Substituting 8 = ~ - qJ in Eq. [49] for o1 , we get 

I Srr 2 ( · ) 4 sin 8 sm qJ o1 = .!L sin qJ exp( - 2-) erf j2 d qJ 

4 

Then, Eq. [ 49] becomes 

[44] 

[45] 

[46] 

[47] 

[48] 

[49] 

[50] 
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However, due to 

we finally have 

5TT 

c5 = J~ 4J(8) d8 
4 

5TT 

c5 = I~ 4J(8)d8 
4 

TT 

f4 4J(8) d8 
3TT 

-4 

5TT 

I~ 4J( 8)d8 _ o 
4 

Substituting this result in Eq. [24] , we finally get 

jf ll 
r- = 

2 a 
jf 1 1 = - 2- 2/i erj( -2 ) --;====-

Je(e- 1) 

r = .69 

[51] 

[52] 

This results shows the correlation between rank and raw values is !arger for the normal than 

for the lognormal distribution. The correlation value for the normal distribution is about 40 

% !arger than for the lognormal case. This is in correspondence to the experiences gained 

during (the UFOMOD uncertainty analyses see for example Figure 4 and the corresponding 

curves for normal and lognormal distributions). 
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A.2.3 Triangular distribution 

dF(x) = 

From Eq. [30] 

and 

2(x- a) dx 

(c-a)(b-a) 

2(c- x) dx 

(c-a)(c-b) 

[53] 

[54] 

[55] 

Substituting Eq. [54] and Eq. [55] into Eq. [24] we get the desired parameter r for tri­

angular distribution in the following form 

r = r(b) = j6 
5 

[56] 

From Eq. [56] it follows that the values for pararrieter r depend on the mode of the dis­

tribution (i. e. parameter b ). The first derivation of function r(b) gives 

r'(b) = 
j6 
10 

b(1 - b)(1 - 2b) 
3 

(b 2 -b+1)T 
[57] 

From Eq. [57] it follows that function r(b) has extreme values for b = 0, b = 1 and for 

b = 0.5. Further examinations ofthis function may show that for b = 0, and b = 1, func­

tion r(b) has a minimum. For b = 0.5, function r(b) has a maximum. 

Substituting these values for parameterb in Eq. [56] we get 

r(O) = 0.98, r(1) = 0.98, and r( +) = 0.99 [58] 

In Figure 7 the graph of C(b) is shown with respect to Eq. [56] 
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Figure 7. Correlation between variate values and ranks for triangular distribution 



A.2.4 Logtriangular distribution 

Let's now observe the probability density function of the standardized logtriangular distrib­
ution 

dF(x) = 

2log x dx 

x log b 

2(1 -log x) dx 

x(l -log b) 

After some algebra, Eq. [30] gives 

f:l(b) 

and 

a\b) = 

log3b(2b- e- 1) + log2b(- 15b- lle + 14) 
= 4 ---------------------------------

log2b(1 -log b)2 

+ 
log b (37b- 25) -12b + 12 

log3b(- e
2 + 1) + log2b(- 7e2 + b2 + 16e- 10) 

2log2b(1 -log b)2 

log b(- b2 + 16eb- 16b- 16e + 17)- 8b2 + 16b- 8 
+ 

2log2b(l -log b)2 

Substituting the last two expressions for !::, and a(b) we get 

J3 ß(b) 
r(b) = -2- a(b) 

[59] 

[60] 

[61] 

[62] 

The explicit analytic form of r(b) and its first derivation would need too much space. Nev­

ertheless, the graph of function defined by Eq. [62] is presented in Figure 8 . 

It should be noticed that satisfactory results for function r(b ), presented in Figure 8 were 

achieved only with quadro precision. 

Finally, in Figure 9 some available results for correlation between variate values and their 

ranks are presented. The assessment of parameter r for the Gamma distribution can be 

found in [61]. 
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DISTRIBUTION GORRELATION BETWEEN RAW AND RANK VALDES 

1. Normal distribution *) 0.98 see Eq. 35 

2. Lognormal distribution 0.69 see Eq. 52 

3. Triangular distribution see Eq. 58 

4. Logtriangular distribution see Eq. 62 

5. Uniform distribution *) 1 
6. Gamma distribution *) see Eq. 14 

*) see [61] 

Figure 9. Correlation between variate values and ranks for some types of distributions 

A.3 Partial correlation coefficients 

A.3.1 Definition 

This paragraph follows some results presented in [25]. 

Sensitivity analysis in conjunction with Latin hypercube sampling 1s based on the con­

struction of regression models. The observations 

i= l, ... ,n 

are used to construct models of the form 
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subject to the constraint that 

be minimized. bo , Bq are constants and each Zq is a function of X1, ... ,X* . 

An important property of least squares regression is that 

where Ym is the mean of the Y;-values. 

The R2 
- value ( coefficient of determination) for a regression falls between 0 and 1 and is 

defined by 

The closeness of an R2 - value to 1 provides an indication of how successful the regression 

model is in accounting for the variation in Y. 

For a regression model of the form 

with an R2 
- value of r2 , the number sign(b1) Ir I is called the correlation coefficient between 

Y and Z, where sign(b1) = 1 if b1 ;;::: 1, and sign(b1) =- 1 if b1 < 1. This number provides a 

measure of linear relationship between these two variables. When more than one inde­

pendent variable is under consideration, partial correlation coe.fficients are used to provide 

a measure of the linear relationships between Y and the individual independent variables. 

The partial correlation coe.fficient between Y and an individual variable ZP is obtained from 

the use of a sequence of regression models. The following two regression models are con­
structed: 

Y' est = aa + I aqZq and 
q#;p 

Z' est = Co+ IcqZq 
q#;p 

Then, the results of the two preceding regressions are used to define the new variables 

Y- Y' est and Zp - Z' p . By definition, the partial correlation coefficient between Y and Zp is 
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the simple correlation coefficient between Y- Y',, 1 and ZP- Z'P . Therefore, the partial cor­

relation coefficient provides a measure of the linear relationship between Y and ZP with the 

linear effects of the other variables removed. 

Example: 

Sometimes the apparent correlation between two variables may be due in part to the direct 

influence on both of the other variables: Y and x1 are correlated, but are both influenced 

by a variable X2 • The influence of X2 on Y and X 1 must be removed. Simple linear regression 

of y resp. XI on x2 gives: 

Define new variables (Y- Y') and (X1 - X't) . The simple correlation (based on the Pearson 

product moment correlation) between the 'residuals' (Y - · Y') and (X1 - X' 1) is called the 

partial correlation coefficient between Y and X1, given X2 (i.e., the linear influence of X2 on 

both Y and X1 removed), and is denoted by r1Y.2: 

Y1r.2 = [63] 

Y1y , r12 , rY2 are simple Pearson product moment correlations of the corresponding variables. 

For more details see [35], [25], [29], [37] and [56]. 
0 

A.3.2 Significance tests 

Following [11], the well-known Pearson product-moment correlation formula can be used 

to estimate Pearson's partial correlation coefficient. Spearman's rank correlation p has also 

been extended to measure partial rank correlation. 

Partial correlation coefficients (PRCs) are correlation coefficients on conditional distrib­

utions. The distribution of the partial correlation coefficients depends on the multivariate 

distribution function of the underlying variables. Therefore PRCs may not be directly used 

as test statistics in nonparametric tests. 

Starting from some well-known theorems, we may nevertheless do some approximative tests 

and analyses. 
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Step 1: 

Find the distribution of the sampling correlation coefficient for random variables (X, Y) with 

bivariate normal distribution. 

Theorem (Pitman's test): (see [41]) 

Let ui = (xi~i) (i = l, ... ,n) be a random sample from a bivariate normal distribution with 

correlation r. Let r, be the sample correlation coefficient (Pearson' s product moment coeffi­

cient): 

Let r = 0 then 

Ievi-Ym)(xi- xm) 
i 

rs = I 

[ ~ (y,- Ym)2~(x,- Xm)
2 r 

(n- 2) 

(1- r/) 

is distributed as Student' t with (n-2) degrees of freedom. 
D 

Theorem: (see [42] or [53]) 

[64] 

[65] 

Let (z1, ... , zk) be a random sample from a k-dimensional normal distribution and 

rij,u1, .. ,up = 0 where rij,u1, .. ,up is the partial correlation coefficient) of order p (p= k-2). u1, ••• , uP 

are p= k-2 numbers from {l, ... k} which are different from i and j. That means the partial 

correlation between Zi and Zj is tested, say, while the indirect correlation due to z.~> ... , z.P 
is eliminated. Let rs;ij,u1, ... ,up be the sample partial correlation coefficient) of order p (p= k-2). 

Take n samples from the vector z, then 

T. = r .. s s;u,u1, ... , uP 

(n-2-p) 

is distributed as Student' t with (n-2-p) degrees of freedom. 
D 

Step 2: 

Try to find adequate approximate formulas for non-normal situations. 
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Let W; = (u;, v;) (i = l, ... ,n) be a random sample from a bivariate distribution with correlation 

r. Let r, be the sample correlation coefficient. Transform the sample values (u~, ... , Un) and 

(v~, ... , vn) into their order statistics (u<1>, ... , u<n>) and (v<1>, ... , v<n>). Then do an expected normal 

scores transformation: Replace the order statistics of the (u,v)-variables by the expected 

value of the corresponding order statistics of standard normal variates (X, Y). Then r, trans­

forms approximately to (/J,: 

LE(x(i))E(y(i)) 
i 

(This is clear from the hint that for a N(O,l)-distributed variable X one has LE(X(i)) 

because of E(X<,1) =- E(~n-i+J>). 

'[67] 

0 

lfJ, can be used for an expected normal scores test of the hypothesis that U and V are 

uncorrelated. 

[11] explains the role of the expected normal scores as well defined numbers which replace 

the unpleasant behaviour connected with using the order statistics from normal variables 

themselves. The procedure is based only on the ranks of the observations and is therefore a 

ranktest. 

Fisher and Yates (see [6]) suggested the analogue to Pitman's test using the exact normal 

scores instead of the the original data and applied the usual parametric procedures to these 

cxpected normal scores as a nonparametric procedure. 

Step 3: 

Give the significance test procedure. 

The procedure is as follows: 

The 'null' hypothesis reads: "No partial corrclation exists between Y (the consequence vari­

able) and Xi (one of the uncertain model parameters)", while the indirect influence due to 

to the other model parameters is eliminated. 

Then, for a sample of size n, the partial sample rank correlation, Ps;Y;,uJ, ... ,up , between Y and 

X has to be calculated. p, is then compared with the quantiles ofthe distribution ofthe test 

statistic. The comparison is made at a certain prescribed level of significance, a. 
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The 'null' hypothesis of no correlation is rejected, if the correlation value p, Ieads to 

I p,l ;::: Ta12", , the critical value, where Ta12", is a quantile of the test statistic' s distribution. 

ta/2,n-k 
[68] 

la/2.n-k is the (1 - a/2)-quantile of the t-distribution with n-k degrees of freedom ( compare 

[31] or [43]). Eq. [68] is easily derived from Eq. [66]. 

Example: 

For k = 20 uncertain input model parameters and a = 0.05 significance Ievel, the partial rank 

correlation value (PRCC), p, is significant, ifits absolute value is greater than 0.43 (40 runs), 

0.25 (80 runs) or 0.16 (100 runs), respectively. 
0 

A.4 Remarks to R2
- values 

Here some additional hints for rnotivation of the coefficient of determination, R2 , are given. 

The total variation of the consequence variable, Y, is defined as r(Y - YmP , i.e. the sum 

of squares of the deviation of values of Y from the mean Ym. 

The first term on the right is called the unexplained variation while the second term is called 

the explained variation (by a regression model), so called because the deviations ( Y,.t - Ym) 

have a defined pattem while the deviations (Y - Y,,1) behave in a random or unpredictable 

manner. 

The ratio of explained variation to the total variation is called thc coefficient of determi­

nation, R 2 

2 
r(Yest - Ym) 

r(Y- Ym) 2 

In this report all R2 - values R2, are normalized by R2
1 • 
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where R2
, , R2

1 are calculated by the SANDIA - PRCSRC-code (see [37]) and the R2
1 -

values are calculated with all (i.e. the complete set of) model parameters. 
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Appendix B. Uncertainty Analyses (Figures) 

B.l Activity concentrations 

In this section CCFDs and the corresponding confidence curves are shown for activity con­

centrations (1-131, Cs-137) at three distance intervals on ground surface andin the air near 
ground. 

Sequence of figures: 

• Iodine 

,. on ground surface 

'" in the air near ground 

• Aerosols 

" on ground surface 

" in the air near ground 
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CENTRATI CJNS ( ASSUHI NG RELEASE HAS eJCCURREOl • EACH CCFO ctJAFIESPONDS TfJ 

CJNE OF THE 40 RUNS IN A LATI N HYPERCUBE SAHPl.E CJF SIZE 110. 
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COHPLEMENTARY CUHULATIVE FREQUENCY DISTRIBUTIONS (CCfDS) OF ACTIVITY 
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Appendix C. Sensitivity Analyses (Tables of PRCC values) 

Legends for reading the PRCC - tables 
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The follawing list gives the name and the meaning of the parameters: 

hm 
oiS) 

az(S) 

wp 

v,JAE) 

vd(/0) 

AAE 

Aw 

initial horizontal plume width in the wake of the reactor building 

initial vertical plume width in the wake of the reactor building 

mixing height 

vertical plume diffusion for stability dass S (S e {A,B,C,D,E,F}) 

horizontal plume diffusion far stability dass S 

wind prafile expanent 

dry depasitian of aerosols 

dry depasitian of elementary iodirre 

washaut caefficients af aerasals 

washaut caefficients af elementary iodirre 

The fallawing list gives the name and the meaning af the consequence variables: 

IODCGD1 concentration of I-131 on ground surface at D1 (0.875 km) 

IODCGD2 concentration of I-131 on ground surface at D2 (4.9 km) 

IODCGD3 concentration of I-131 on ground surface at D3 (27 km) 

IODCAD1 concentration of I-131 in air near ground at D1 (0.875 km) 

IODCAD2 concentration of I-131 in air near ground at D2 (4.9 km) 

IODCAD3 concentration of I-131 in air near ground at D3 (27 km) 

CAECGD1 concentration of Cs-137 on ground surface at D1 (0.875 km) 

CAECGD2 concentration of Cs-137 on ground surface at D2 (4.9 km) 

CAECGD3 concentration of Cs-137 on ground surface at D3 (27 km) 

CAECAD1 concentration of Cs-137 in air near ground at D1 (0.875 km) 

CAECAD2 concentration of Cs-137 in air near ground at D2 (4.9 km) 

CAECAD3 concentration of Cs-137 in air near ground at D3 (27 km) 
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C.l Comparison of concentration runs (LHS; n= 40,80,100) 

In this section PRCCs are shown for activity concentrations (1-131, Cs-137) at three distance 

intervals on ground surface and in the air near ground. 
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AD-UFOMOD SENSITIVITY ANALYSIS ( LHS-DESIGN - NEW UFOMOD CODE SYSTEM) GONCENTRAT IONS PART 1 OF 12 

TABLE ENTRIES REPRESENT THE VALUE OF THE PARTIAL RANK GORRELATION COEFFICIENT (AND ITS RANK) FOR EACH COMBINA­
TION OF SELECTED INDEPENDENT AND SELECTED DEPENDENT VARIABLE, PROVIDEO THAT THE ABSOLUTE VALUE OFTHIS COEFFI-
CIENT IS GREATER THAN T(ALPHA) = 0.43 (40 RUNS), 0.25 (SO RUNS) OR 0.21 (100 RUNS) RESPECTIVELY 
FOR ALPHA = 0.05 SIGNIFICANCE LEVEL 
(E.G. THE CRITICAL VALUE IS T(ALPHA) = 0.67 (40 RUNS), 0.41 (SO RUNS) OR 0.36 (100 RUNS) RESPECTIVELY 
FOR ALPHA = 0.001 SIGNIFICANCE LEVEL) 

THE PERCENTACE GONTRIBUTIONS TO UNCERTAINTY ARE GIVEN FOR EACH INDEPENDENT PARAMETER OR GROUPS OF INDEPENDENT 
PARAMETERS (SIGY, SIGZ, LD) 

40U, SOU, 100U MEANS: IN THIS CASE ALL INDEPENDENT PARAMETERS ARE UNIFORMLY DISTRIBUTED 

IODCGD1 IODCGD1 IODCGD1 IODCGD1 IODCGD1 IODCGD1 

#RUNS 40 (%) 40U (%) so (%) SOU (%) 100 (%) 100U (%) 

SIGYO 
SI GZO 2 -.52 ( 4) 2 -. 64 ( 4) 2 
HMIX 1 
S I GY ( A) # 2 # 1 # # 1 # 1 # 
S I GY ( B) # # # # # # 
--------------------------------------------------------------------------------------------------------------s I GY ( C) # # # # # # 
SIGY(D) # # # # .34( 5)# # 
SIGY(E) # # # # -.24( 7)# # 
S I GY ( F ) # # # # # # 
S I GZ ( A ) I 18 I 12 I 19 I 14 I 16 I 1 9 

SIGZ(B) 
SIGZ(C) 
SIGZ(D) 
SIGZ(E) 
SIGZ(F) 

WP 
VD(AER) 
VD( IOD) 
LD(AER) 
LD( IOD) 

I 
I 
I 

-.61 ( 2) I 
-.52( 3) I 

. 98 ( 1) 83 
I 
I 2 

I 
I 

- .43( 5) I 
- .60( 2) I 

I 

-.47( 4) 4 

. 98 ( 1) S3 
I 

.50( 3) I 2 

I 
- .25( 6) I 
-.41 ( 5) I 
- .69( 2) I 
-.56( 3) I 

.9S( 1) 79 
I 
I 

I 
I 

- .42( 3) I 
- .49( 2) I 

I 

. 96 ( 1) 79 
I 
I 1 

I 
I 

-.26( 6) I 
-.69( 2) I 
- .6S( 3) I 

. 98 ( 1) S2 
I 
I 

I 
I 

-.45 ( 3) I 
-.61(2)1 

I 

.23 ( 5) 

. 96 ( 1) 75 
I 

.2S( 4) I 
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AD-UFOMOD SENSITIVITY ANALYSIS ( LHS-DESIGN - NEW UFOMOD CODE SYSTEM) GONCENTRAT IONS PART 2 OF 12 

TABLE ENTRIES REPRESENT THE VALUE OF THE PARTIAL RANK GORRELATION COEFFICIENT (AND ITS RANK) FOREACH COMBINA­
TION OF SELECTED INDEPENDENT AND SELECTED DEPENDENT VARIABLE, PROVIDEO THAT THE ABSOLUTE VALUE OF THIS COEFFI-
GIENT IS GREATER THAN T(ALPHA) = 0.43 (40 RUNS), 0.25 (80 RUNS) OR 0.21 (100 RUNS) RESPEGTIVELY 
FOR ALPHA = 0.05 SIGNIFICANGE LEVEL 
(E.G. THE GRITICAL VALUE IS T(ALPHA) = 0.67 (40 RUNS), 0.41 (80 RUNS) OR 0.36 (100 RUNS) RESPECTIVELY 
FOR ALPHA = 0.001 SIGNIFIGANCE LEVEL) 

THE PERGENTAGE GONTRIBUTIONS TO UNCERTAINTY ARE GIVEN FOR EAGH INDEPENDENT PARAMETER OR GROUPS OF INDEPENDENT 
PARAMETERS (SIGY, SIGZ, LD) 

40U, 80U, 100U MEANS: IN THIS GASE ALL INDEPENDENT PARAMETERS ARE UNIFORMLY DISTRIBUTED 

IODCGD2 IODGGD2 IODGGD2 IODCGD2 IODGGD2 IODGGD2 

#RUNS 40 (%) 40U (%) 80 (%) 80U (%) 100 (%) 100U (%) 

S I GYO 1 . 24 ( 6) 1 
SIGZO .80( 3) 6 2 .52( 4) 3 .39( 4) 4 .43( 4) 4 .56( 4) 12 
HMIX -.80( 4) 1 -.82( 1) 31 -.68( 2) 8 -.71( 2) 23 -.67( 2) 22 -.73( 1) 28 
S I GY ( A) # 2 # 5 # 1 # 1 # 1 # 1 
S I GY ( B ) - # # # # # # 
--------------------------------------------------------------------------------------------------------------s I GY ( C) # # # # # # 
SIGY(D) .47( 8)# # # # # # 
S I.GY ( E) # # # # # # 
S I GY ( F ) # # # # # # 
S I GZ ( A) I 1 8 I 8 I 25 I 8 I 1 3 I 4 

SIGZ(B) 
SIGZ(C) 
SIGZ(D) 
SIGZ(E) 
SIGZ(F) 

WP 
VD(AER) 
VD (IOD) 
LD(AER) 
LD( IOD) 

I 
-.54( 6) I 

I 
I 

-.63 ( 5) I 

. 95 ( 1) 43 

.47( 7) I 

.83( 2) I 

.78( 2) 22 
-.48( 4) I 

. 73 ( 3) I 

I 
I 

-.43( 5) I 
-.43( 6) I 
-.42( 7) I 

. 87 ( 1) 36 
I 

.62( 3) I 

I 
I 

- .29( 6) I 
I 
I 

.37( 5) 

. 75 ( 1) 30 
I 

.60( 3) I 

I 
I 
I 
I 

-.31 ( 5) I 

-.25( 6) 
. 79 ( 1) 44 

I 
.60( 3) I 

I 
I 

-.24( 5) I 
I 
I 

.59( 2) 14 
I 

.56( 3) I 
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AD-UFOMOD SENSITIVITY ANALYSIS ( LHS-DESIGN - NEW UFOMOD CODE SYSTEM) GONGENTRATIONS PART 3 OF 12 

TABLE ENTRIES REPRESENT THE VALUE OF THE PARTIAL RANK GORRELATION COEFFICIENT (AND ITS RANK) FOR EACH COMBINA­
TION OF SELEGTED INDEPENDENT AND SELEGTED DEPENDENT VARIABLE, PROVIDEO THAT THE ABSOLUTE VALUE OFTHIS GOEFFI-
GIENT IS GREATER THAN T(ALPHA) = 0.43 (40 RUNS), 0.25 (80 RUNS) OR 0.21 (100 RUNS) RESPEGTIVELY 
FOR ALPHA = 0.05 SIGNIFIGANGE LEVEL 
(E.G. THE GRITIGAL VALUE IS T(ALPHA) = 0.67 (40 RUNS), 0.41 (80 RUNS) OR 0.36 (100 RUNS) RESPECTIVELY 
FOR ALPHA = 0.001 SIGNIFICANCE LEVEL) 

THE PERGENTAGE GONTRIBUTIONS TO UNGERTAINTY ARE GIVEN FOR EAGH INDEPENDENT PARAMETER OR GROUPS OF INDEPENDENT 
PARAMETERS (SIGY, SIGZ, LD) 

40U, 80U, 100U MEANS: IN THIS GASE ALL INDEPENDENT PARAMETERS ARE UNIFORMLY DISTRIBUTED 

#RUNS 

SIGYO 
SIGZO 
HMIX 
SIGY(A) 
SIGY(B) 

SIGY(G) 
SIGY(D) 
SIGY(E) 
SIGY(F) 
SIGZ(A) 

SIGZ(B) 
SIGZ(G) 
SIGZ(D) 
SIGZ(E) 
SIGZ(F) 

WP 
VD(AER) 
VD (IOD) 
LD(AER) 
LD( IOD) 

IODGGD3 

40 (%) 

-. 95 ( 1) 38 
# 3 
# 

# 
# 
# 

.47( 6)# 
I 2 

I 
I 
I 
I 

.56( 5) I 

.57( 4) 

.95( 2) 38 
I 

. 74( 3) I 9 

IODCGD3 

40U (%) 

1 
-. 95 ( 1) 49 

# 4 
# 

-.43 ( 5 )# 
# 
# 
# 
I 8 

. 91 ( 2) 28 
-.51(4)1 

.55( 3) 12 

IODCGD3 

80 (%) 

.29( 5) 1 
-.94( 1) 47 

# 1 
# 

# 
# 
# 
# 
110 

I 
I 
I 

.26( 6) I 

.48( 4) I 

1 

.92( 2) 32 
I 

.52( 3) I 3 

IODCGD3 

80U (%) 

-. 94( 1) 51 
# 2 
# 

# 
.25( 7)# 

# 
# 
I 4 

I 
I 

. 31 ( 5) I 

.25( 6) I 
I 

.33 ( 4) 

.90( 2) 32 
I 

.38( 3) I 4 

IODCGD3 

100 (%) 

. 30( 6) 
-.96( 1) 54 

# 
# 

# 
# 
# 
# 
I 4 

I 
I 
I 

.35( 5) I 

.43( 4) I 

.95( 2) 44 
I 

.69( 3) I 5 

IODGGD3 

100U (%) 

.23 ( 5) 1 
. -.91( 1) 47 

# 
# 

# 
# 
# 
# 
I 4 

I 
I 

.23 ( 6) I 
I 

.24( 4) I 

.88( 2) 34 
I 

.35( 3) I 2 
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AD-UFOMOD SENSIT!V!TY ANALYSIS ( LHS-DESIGN - NEW UFOMOD CODE SYSTEM) GONGENTRATIONS PART 4 OF 12 

TABLE ENTRIES REPRESENT THE VALUE OF THE PARTIAL RANK GORRELATION COEFFICIENT (AND ITS RANK) FOR EACH COMBINA­
TION OF SELECTED INDEPENDENT AND SELECTED DEPENDENT VARIABLE, PROVIDEO THAT THE ABSOLUTE VALUE OF THIS COEFFI-
CIENT IS GREATER THAN T(ALPHA) = 0.43 (40 RUNS), 0.25 (80 RUNS) OR 0.21 (100 RUNS) RESPECTIVELY 
FOR ALPHA = 0.05 SIGNIFICANCE LEVEL 
(E.G. THE CRITICAL VALUE IS T(ALPHA) = 0.67 (40 RUNS), 0.41 (80 RUNS) OR 0.36 (100 RUNS) RESPECTIVELY 
FOR ALPHA = 0.001 SIGNIFICANCE LEVEL) 

THE PERGENTAGE GONTRIBUTIONS TO UNCERTAINTY ARE GIVEN FOR EACH INDEPENDENT PARAMETER OR GROUPS OF INDEPENDENT 
PARAMETERS (SIGY, SIGZ, LD) 

40U, 80U, lOOU MEANS: IN THIS GASE ALL INDEPENDENT PARAMETERS ARE UNIFORMLY DISTRIBUTED 

IODCADl IODCADl IODCADl IODCADl IODCADl IODCADl 

#RUNS 40 (%) 40U (%) 80- (%) 80U (%) 100 (%) lOOU (%) 

SIGYO 
SIGZO -.60( 3) 2 -.50( 6) 1 -.72( 2) 7 -.46( 3) 2 -.56( 4) 3 -.32( 4) 
HMIX 3 . 
S I GY ( A) # 7 # 3 # 1 # # 1 # 1 
S I GY ( B ) # # # # # # 
--------------------------------------------------------------------------------------------------------------s I GY ( C) # # # # # # 
S I GY ( D) # # # # . 3 4 ( 6) # # 
S I GY ( E ) # # # # # # 
S I GY ( F ) # # # # # # 
SIGZ(A) 144 128 141 124 140 122 

SIGZ(B) 
SIGZ(C) 
SIGZ(D) 
SIGZ(E) 
SIGZ(F) 

WP 
VD(AER) 
VD( IOD) 
LD(AER) 
LD( IOD) 

I 
I 

-.44( 5) I 
-. 75( 2) I 
-.58( 4) I 

-.92( 1) 36 
I 
I 1 

-.47( 7) I 
I 

-.50( 5) I 
-. 79( 2) I 
-.57( 3) I 

-.98( 1) 69 
I 

.54( 4) I 1 

I 
- .27( 6) I 
- .39( 5) I 
- .69( 3) I 
-.59( 4) I 

-.94( 1) 47 
I 
I 

I 
I 

-.42( 4) I 
-.58( 2) I 
- .36( 5) I 

-.96( 1) 68 
I 
I 1 

I 
I 

-. 35( 5) I 
-.61( 2) I 
- .60( 3) I 

-.91( 1) 51 
I 
I 

I 
I 

-. 36( 3) I 
- .64( 2) I 
- .28( 5) I 

-. 96 ( 1) 72 
I 
I 
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AD-UFOMOD SENSITIVITY ANALYSIS ( LHS-DESIGN - NEW UFOMOD CODE SYSTEM) GONCENTRAT IONS PART 5 OF 12 

TABLE ENTRIES REPRESENT THE VALUE OF THE PARTIAL RANK GORRELATION COEFFICIENT (AND ITS RANK) FOR EACH COMBINA­
TION OF SELECTED INDEPENDENT AND SELECTED DEPENDENT VARIABLE, PROVIDEO THAT THE ABSOLUTE VALUE OF THIS COEFFI-
CIENT IS GREATER THAN T(ALPHA) = 0.43 (40 RUNS), 0.25 (80 RUNS) OR 0.21 (100 RUNS) RESPECTIVELY 
FOR ALPHA = 0.05 SIGNIFICANCE LEVEL 
(E.G. THE CRITICAL VALUE IS T(ALPHA) = 0.67 (40 RUNS), 0.41 (80 RUNS) OR 0.36 (100 RUNS) RESPECTIVELY 
FOR ALPHA = 0.001 SIGNIFICANCE LEVEL) 

THE PERGENTAGE GONTRIBUTIONS TO UNCERTAINTY ARE GIVEN FOR EACH INDEPENDENT PARAMETER OR GROUPS OF INDEPENDENT 
PARAMETERS (SIGY, SIGZ, LD) 

40U, 80U, 100U MEANS: IN THIS CASE ALL INDEPENDENT PARAMETERS ARE UNIFORMLY DISTRIBUTED 

#RUNS 

SIGYO 
SIGZO 
HMIX 
SIGY(A) 
SIGY(B) 

SIGY(C) 
SIGY(D) 
SIGY(E) 
SIGY(F) 
SIGZ(A) 

SIGZ(B) 
SIGZ(C) 
SIGZ(D) 
SIGZ(E) 
SIGZ(F) 

WP 
VD(AER) 
VD( IOD) 
LD(AER) 
LD( IOD) 

IODCAD2 

40 (%) 

.73( 3) 8 
-. 77( 2) 7 

.47( 5)# 5 
# 

# 
# 
# 
# 
I 6 

I 
I 
I 
I 

-.52( 4) I 

-.97( 1) 76 
I 
I 1 

IODCAD2 

40U (%) 

- .84( 2) 11 
# 1 
# 

# 
# 
# 
# 
I 3 

2 

-.98( 1) 84 
I 
I 

IODCAD2 

80 (%) 

-.61( 2) 3 
# 1 
# 

# 
# 
# 
# 
I 8 

I 
I 
I 

- .38( 4) I 
-.44( 3) I 

-. 97 ( 1) 86 
I 
I 

IODCAD2 

80U (%) 

. 33 ( 3) 1 
-.73( 2) 9 

# 1 
# 

# 
# 
# 
# 
I 3 

I 
I 

-.28( 4) I 
I 
I 

-. 96 ( 1) 82 
I 
I 1 

IODCAD2 

100 (%) 

.40( 3) 2 
-. 70( 2) 4 

# 2 
# 

- .22( 5 )# 
# 
# 
# 
I 3 

I 
I 
I 
I 

-.31 ( 4) I 

-.95( 1) 85 
I 
I 

IODCAD2 

100U (%) 

• 38 ( 3) 1 
-.78( 2) 8 
-. 28( 4)# 1 

# 

# 
# 
# 
# 
I 2 

I 
I 

-. 22( 5) I 
I 
I 

-. 97 ( 1) 85 
I 
I 
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TABLE ENTRIES REPRESENT THE VALUE OF THE PARTIAL RANK GORRELATION COEFFICIENT (AND ITS RANK) FOR EACH COMBINA­
TION OF SELECTED INDEPENDENT AND SELECTED DEPENDENT VARIABLE, PROVIDEO THAT THE ABSOLUTE VALUE OF THIS COEFFI-
CIENT IS GREATER THAN T(ALPHA) = 0.43 (40 RUNS), 0.25 (80 RUNS) OR 0.21 (100 RUNS) RESPECTIVELY 
FOR ALPHA = 0.05 SIGNIFICANCE LEVEL 
(E.G. THE CRITICAL VALUE IS T(ALPHA) = 0.67 (40 RUNS), 0.41 (80 RUNS) OR 0.36 (100 RUNS) RESPECTIVELY 
FOR ALPHA = 0.001 SIGNIFICANCE LEVEL) 

THE PERGENTAGE GONTRIBUTIONS TO UNCERTAINTY ARE GIVEN FOR EACH INDEPENDENT PARAMETER OR GROUPS OF INDEPENDENT 
PARAMETERS (SIGY, SIGZ, LD) 

40U, 80U, 100U MEANS: IN THIS CASE ALL INDEPENDENT PARAMETERS ARE UNIFORMLY DISTRIBUTED 

IODCAD3 IODCAD3 IODCAD3 IODCAD3 IODCAD3 IODCAD3 

#RUNS 40 (%) 40U (%) 80 (%) 80U (%) 100 (%) 100U (%) 

SIGYO 
SI GZO . 51 ( 4) 2 . 35 ( 4) 
HMIX -.97( 2) 37 -.95( 2) 33 -.96( 2) 40 -.96( 2) 30 -.93( 2) 39 -.95( 2) 27 
S I GY ( A) # 3 # 1 # 1 # # 1 # 
S I GY ( B ) # # # # . 21 ( 6) # # 
--------------------------------------------------------------------------------------------------------------
SIGY(C) # # -.29( 6)# # # # 
S I GY ( D ) # # # # # # 
S I GY ( E) # # # # # # 
S I GY ( F ) # # # # # # 
SIGZ(A) 16 14 14 13 16 13 

SIGZ(B) 
SIGZ(C) 
SIGZ(D) 
SIGZ(E) 
SIGZ(F) 

WP 
VD(AER) 
VD (IOD) 
LD(AER) 
LD( IOD) 

I 
I 
I 

.55( 3) I 

.51 ( 5) I 

-.97( 1) 53 
I 
I 1 

2 

-.97( 1) 63 
I 
I 1 

I 
I 
I 

.36( 4) I 

.44( 3) I 

-. 97( 1) 55 
I 

-.32(5)11 

I 
I 
I 
I 

.35( 5) I 

-.98( 1) 65 
I 

-.46 ( 3) I 1 

I 
I 
I 

.36( 3) I 

.34( 4) I 

-. 94( 1) 48 
I 

- .26( 5) I 

I 
.23( 5) I 

I 
I 

.29( 4) I 

-. 98 ( 1) 65 
I 

-.39( 3) I 1 
--------------------------------------------------------------------------------------------------------------
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TABLE ENTRIES REPRESENT THE VALUE OF THE PARTIAL RANK GORRELATION COEFFICIENT (AND ITS RANK) FOR EACH COMBINA­
TION OF SELECTED INDEPENDENT AND SELECTED DEPENDENT VARIABLE, PROVIDEO THAT THE ABSOLUTE VALUE OF THIS GOEFFI-
GIENT IS GREATER THAN T(ALPHA) = 0.43 (40 RUNS), 0.25 (80 RUNS) OR 0.21 (100 RUNS) RESPEGTIVELY 
FOR ALPHA = 0.05 SIGNIFIGANGE LEVEL 
(E.G. THE CRITIGAL VALUE IS T(ALPHA) = 0.67 (40 RUNS), 0.41 (80 RUNS) OR 0.36 (100 RUNS) RESPEGTIVELY 
FOR ALPHA = 0.001 SIGNIFIGANGE LEVEL) 

THE PERGENTAGE GONTRIBUTIONS TO UNGERTAINTY ARE GIVEN FOR EAGH INDEPENDENT PARAMETER OR GROUPS OF INDEPENDENT 
PARAMETERS (SIGY, SIGZ, LD) 

40U, 80U, 100U MEANS: IN THIS GASE ALL INDEPENDENT PARAMETERS ARE UNIFORMLY DISTRIBUTED 

GAEGGD1 GAEGGDl GAEGGD1 GAEGGD1 GAEGGD1 GAEGGD1 

#RUNS 40 (%) 40U (%) 80 (%) 80U (%) 100 (%) 100U (%) 

SI GYO 1 2 
SI GZO 1 -.53 ( 4) -. 45 ( 3) 2 -. 31 ( 5) 
HMIX -.26( 8) -.23( 6) 
SIGY(A) # 2 .49( 3)# 6 # 2 .31( 6)# 1 # 1 # 1 
SIGY(B) .57( 3)# # # # # # 
--------------------------------------------------------------------------------------------------------------
SIGY(G) # # -.29( 3)# # # # 
SIGY(D) # # -.27( 5)# # # # 
SI GY ( E) # # . 27 ( 4) # # # # 
S I GY ( F ) # # # # # # 
SIGZ(A) 17 17 13 17 13 16 

SIGZ(B) 
SIGZ(G) 
SIGZ(D) 
SIGZ(E) 
SIGZ(F) 

WP 
VD(AER) 
VD( IOD) 
LD(AER) 
LD( IOD) 

.96( 2) 40 

.97( 1) 156 
I 

. 95 ( 1) 35 
-.45( 4) 

.95( 2) 146 
I 

.89( 2) 35 

. 89 ( 1) 144 
I 

.30 ( 7) I 
I 
I 

-. 39( 5) I 
- .67( 3) I 

.97( 1) 44 

.97( 2) 148 
I 

I 
I 
I 

- .32( 4) I 
-.28( 5) I 

.92( 1) 39 

.92( 2) 154 
I 

I 
I 
I 

- .34( 4) I 
-.58( 3) I 

. 96 ( 1) 41 

.95( 2) 148 
I 
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TABLE ENTRIES REPRESENT THE VALUE OF THE PARTIAL RANK GORRELATION COEFFICIENT (AND ITS RANK) FOR EACH COMBINA­
TION OF SELECTED INDEPENDENT AND SELECTED DEPENDENT VARIABLE, PROVIDEO THAT THE ABSOLUTE VALUE OF THIS COEFFI-
CIENT IS GREATER THAN T(ALPHA) = 0.43 (40 RUNS), 0.25 (80 RUNS) OR 0.21 (100 RUNS) RESPECTIVELY 
FOR ALPHA = 0.05 SIGNIFICANCE LEVEL 
(E.G. THE CRITICAL VALUE IS T(ALPHA) = 0.67 (40 RUNS), 0.41 (80 RUNS) OR 0.36 (100 RUNS) RESPECTIVELY 
FOR ALPHA = 0.001 SIGNIFICANCE LEVEL) 

THE PERGENTAGE GONTRIBUTIONS TO UNCERTAINTY ARE GIVEN FOR EACH INDEPENDENT PARAMETER OR GROUPS OF INDEPENDENT 
PARAMETERS (SIGY, SIGZ, LD) 

40U, 80U, 100U MEANS: IN THIS GASE ALL INDEPENDENT PARAMETERS ARE UNIFORMLY DISTRIBUTED 

#RUNS 

SIGYO 
SIGZO 
HMIX 
SIGY(A) 
SIGY(B) 

SIGY(C) 
SIGY(D) 
SIGY(E) 
SIGY(F) 
SIGZ(A) 

SIGZ(B) 
SIGZ(C) 
SIGZ(D) 
SIGZ(E) 
SIGZ(F) 

WP 
VD(AER) 
VD( IOD) 
LD(AER) 
LD( IOD) 

CAECGD2 

40 

-.52( 5) 
# 
# 

# 
# 
# 
# 

(%) 

I 4 

I 
I 
I 

.47( 6) I 
-.52( 4) I 

.92( 2) 7 

.56( 3) 

. 99 ( 1) 191 
I 

CAECGD2 

40U (%) 

-.56( 3) 2 
# 1 

.50( 5)# 

# 
# 
# 
# 

- .44( 6) I 3 

I 
I 
I 
I 

-.54( 4) I 

.86( 2) 2 

.99( 1)191 
I 

CAECGD2 

80 (%) 

# 1 
# 

-.34( 3)# 
# 
# 
# 
I 1 

.82( 2) 3 

.26( 4) 

. 98 ( 1) 191 
I 

CAECGD2 

80U 

.25( 5) 
-.50( 4) 

# 
# 

# 
# 
# 
# 

(%) 

I 2 

I 
I 
I 
I 

- .60( 3) I 

.90( 2) 8 

. 99 ( 1) 189 
I 

CAECGD2 

100 

-. 31 ( 4) 

(%) 

# 1 
# 

# 
# 
# 
# 
I 1 

I 
I 
I 
I 

-.40( 3) I 

.87( 2) 5 

.99( 1)193 
I 

CAECGD2 

100U 

.27( 5) 

-.44( 4) 

(%) 

# 2 
# 

# 
# 
# 
# 
I 3 

I 
I 
I 
I 

-. 61 ( 3) I 

.87( 2) 6 

. 98 ( 1) 188 
I 
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TABLE ENTRIES REPRESENT THE VALUE OF THE PARTIAL RANK GORRELATION COEFFICIENT (AND ITS RANK) FüR EACH COMBINA­
TION OF SELECTED INDEPENDENT AND SELECTED DEPENDENT VARIABLE, PROVIDEO THAT THE ABSOLUTE VALUE OF THIS COEFFI-
CIENT IS GREATER THAN T(ALPHA) = 0.43 (40 RUNS), 0.25 (80 RUNS) OR 0.21 (100 RUNS) RESPECTIVELY 
FüR ALPHA = 0.05 SIGNIFICANCE LEVEL 
(E.G. THE CRITICAL VALUE IS T(ALPHA) = 0.67 (40 RUNS), 0.41 (80 RUNS) OR 0.36 (100 RUNS) RESPECTIVELY 
FüR ALPHA = 0.001 SIGNIFICANCE LEVEL) 

THE PERGENTAGE GONTRIBUTIONS TO UNCERTAINTY ARE GIVEN FüR EAGH INDEPENDENT PARAMETER OR GROUPS OF INDEPENDENT 
PARAMETERS (SIGY, SIGZ, LD) . 

40U, 80U, 100U MEANS: IN THIS GASE ALL INDEPENDENT PARAMETERS ARE UNIFORMLY DISTRIBUTED 

#RUNS 

SIGYO 
SIGZO 
HMIX 
SIGY(A) 
SIGY(B) 

SIGY(G) 
SIGY(D) 
SIGY(E) 
SIGY(F) 
SIGZ(A) 

SIGZ(B) 
SIGZ(C)' 
SIGZ(D) 
SIGZ(E) 
SIGZ(F) 

WP 
VD(AER) 
VD( IOD) 
LD(AER) 
LD( IOD) 

GAEGGD3 

40 

-.67( 3) 
# 
# 

# 
# 
# 
# 

(%) 

I 3 

-.54( 4) 
.89( 2) 6 

. 99 ( 1) 192 
I 

CAEGGD3 

40U (%) 

-. 79 ( 3) 8 
# 3 
# 

.44( 5)# 
# 
# 
# 

- .49( 4) I 4 

.87( 2) 6 

. 97 ( 1) 177 
I 

GAECGD3 

80 

-.47( 3) 
# 
# 

-.29( 5)# 
# 
# 
# 

(%) 

I 2 

I 
I 
I 
I 

.32( 4) I 

.83( 2) 3 

.98( 1) 190 
I 

GAECGD3 

80U (%) 

-.74( 3) 8 
# 1 
# 

# 
# 
# 
# 

-.28 ( 5) I 1 

I 
I 

• 33 ( 4) I 
I 
I 

.26( 6) 

.84( 2) 16 

. 94 ( 1) 170 
I 

CAECGD3 

100 

-. 36 ( 3) 

.83( 2) 

(%) 

# 1 
# 

# 
# 
# 
# 
I 

4 

. 99 ( 1) 194 
I 

GAEGGD3 

100U (%) 

-. 70( 3) 6 
# 1 
# 

# 
-.38( 4)# 

# 
# 
I 1 

.77( 2) 11 

. 94( 1) 172 
I 

--------------------------------------------------------------------------------------------------------------
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AD-UFOMOD SENSITIVITY ANALYSIS ( LHS-DESIGN - NEW UFOMOD CODE SYSTEM) GONGENTRATIONS PART 10 OF 12 

TABLE ENTRIES REPRESENT THE VALUE OF THE PARTIAL RANK GORRELATION COEFFICIENT (AND ITS RANK) FOR EACH COMBINA­
TION OF SELECTED INDEPENDENT AND SELECTED DEPENDENT VARIABLE, PROVIDEO THAT THE ABSOLUTE VALUE OF THIS COEFFI-
CIENT IS GREATER THAN T(ALPHA) = 0.43 (40 RUNS), 0.25 (80 RUNS) OR 0.21 (100 RUNS) RESPECTIVELY 
FOR ALPHA = 0.05 SIGNIFICANCE LEVEL 
(E.G. THE CRITICAL VALUE IS T(ALPHA) = 0.67 (40 RUNS), 0.41 (80 RUNS) OR 0.36 (100 RUNS) RESPECTIVELY 
FOR ALPHA = 0.001 SIGNIFICANCE LEVEL) 

THE PERGENTAGE GONTRIBUTIONS TO UNCERTAINTY ARE GIVEN FOR EACH INDEPENDENT PARAMETER OR GROUPS OF INDEPENDENT 
PARAMETERS (SIGY, SIGZ, LD) 

40U, 80U, 100U MEANS: IN THIS CASE ALL INDEPENDENT PARAMETERS ARE UNIFORMLY DISTRIBUTED 

CAECAD1 CAECAD1 CAECAD1 CAECAD1 CAECAD1 CAECAD1 

#RUNS 40 (%) 40U (%) 80 (%) 80U (%) 100 (%) 100U (%) 

SIGYO 
SIGZO -.74( 3) 5 -.77( 3) 4 -.83( 2) 10 -.84( 3) 7 -.84( 3) 6 -.85( 3) 5 
HMIX 1 
S I GY ( A) # # 2 # 1 # # 1 # 
S I GY ( B ) # # - . 25 ( 6 ) # # # # 
--------------------------------------------------------------------------------------------------------------s I GY ( C) # # # # # # 
S I GY ( 0 ) # # # # # # 
S I GY ( E ) # # # # - . 27 ( 6 ) # # 
S I GY ( F ) # # # # # # 
SIGZ(A) 191 193 188 190 .22( 7) 194 191 

SIGZ(B) 
SIGZ(C) 
SIGZ(D) 
SIGZ(E) 
SIGZ(F) 

WP 
VD(AER) 
VD( IOD) 
LD(AER) 
LD( IOD) 

I 
I 

-.47( 4) I 
-. 78( 2) I 
- .95( 1) I 

I 1 
I 

I 
I 

- .67( 4) I 
- .90( 2) I 
- .95( 1) I 

-.61( 5) 

I 
I 

-.43 ( 4) I 
-.83( 3) I 
-. 94 ( 1) I 

-. 42( 5) 

I 
I 

- .66( 4) I 
-.85( 2) I 
- .95( 1) I 

-.61( 5) 

I 
I 

-.63 ( 4) I 
-.86( 2) I 
-.95( 1) I 

-.35( 5) 

I 
I 

-.47( 5) I 
- .88( 2) I 
- .96( 1) I 

-.63( 4) 3 
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TABLE ENTRIES REPRESENT THE VALUE OF THE PARTIAL RANK GORRELATION COEFFICIENT (AND ITS RANK) FOR EACH COMBINA­
TION OF SELECTED INDEPENDENT AND SELECTED DEPENDENT VARIABLE, PROVIDEO THAT THE ABSOLUTE VALUE OF THIS COEFFI-
CIENT IS GREATER THAN T(ALPHA) = 0.43 (40 RUNS), 0.25 (80 RUNS) OR 0.21 (100 RUNS) RESPECTIVELY 
FOR ALPHA = 0.05 SIGNIFICANCE LEVEL 
(E.G. THE CRITICAL VALUE IS T(ALPHA) = 0.67 (40 RUNS), 0.41 (80 RUNS) OR 0.36 (100 RUNS) RESPECTIVELY 
FOR ALPHA = 0.001 SIGNIFICANCE LEVEL) 

THE PERGENTAGE GONTRIBUTIONS TO UNCERTAINTY ARE GIVEN FOR EACH INDEPENDENT PARAMETER OR GROUPS OF INDEPENDENT 
P-ARAMETERS (SIGY, SIGZ, LD) 

40U, 80U, 100U MEANS: IN THIS CASE ALL INDEPENDENT PARAMETERS ARE UNIFORMLY DISTRIBUTED 

CAECAD2 CAECAD2 CAECAD2 CAECAD2 CAECAD2 CAECAD2 

#RUNS 40 (%) 40U (%) 80 (%) 80U (%) 100 (%) 100U (%) 

SIGYO 
SIGZO 1 
HMIX -.62( 3) 10 -.84( 2) 8 -.67( 3) 2 -.71( 2) 12 -.76( 2) 9 -.69( 2) 12 
S I GY ( A) # 4 # 7 # 1 # 3 # 2 # 
S I GY ( B ) # . 44 ( 7) # # # # # 
--------------------------------------------------------------------------------------------------------------
SIGY(C) # .59( 4)# # # -.26( 5)# # 
S I GY ( D ) # # # # # # 
SIGY(E) .47( 5)# .48( 6)# # .35( 5)# # # 
S I GY ( F ) # # # # # # 
SIGZ(A) 174 170 189 169 187 170 

SIGZ(B) I I I I I I 
SIGZ(C) I I I I I I 
SIGZ(D) I I I I I I 
SIGZ(E) -.48 ( 4) I -.54( 5) I - .67( 2) I -.52( 3) I -.59 ( 3) I - .39( 4) I 
SIGZ(F) -.91( 1) I -. 93 ( 1) I -.93( 1)1 -.81( 1)1 -. 91 ( 1) I -. 84( 1) I 
--------------------------------------------------------------------------------------------------------------
WP 
VD(AER) 
VD( IOD) 
LD(AER) 
LD( IOD) 

-.63( 2) 10 
.44( 6) 

I 1 
I 

-.83( 3) 10 

I 1 
I 

-.55( 4) -.51( 4) 4 -.56( 4) 3 -.63( 3) 10 
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TABLE ENTRIES REPRESENT THE VALUE OF THE PARTIAL RANK GORRELATION COEFFICIENT (AND ITS RANK) FOR EACH COMBINA­
TION OF SELECTED INDEPENDENT AND SELECTED DEPENDENT VARIABLE, PROVIDEO THAT THE ABSOLUTE VALUE OFTHIS COEFFI-
CIENT IS GREATER THAN T{ALPHA) = 0.43 {40 RUNS), 0.25 (80 RUNS) OR 0.21 {100 RUNS) RESPECTIVELY 
FOR ALPHA = 0.05 SIGNIFICANCE LEVEL 
(E.G. THE CRITICAL VALUE IS T{ALPHA) = 0.67 (40 RUNS), 0.41 (80 RUNS) OR 0.36 (100 RUNS) RESPECTIVELY 
FOR ALPHA = 0.001 SIGNIFICANCE LEVEL) 

THE PERGENTAGE GONTRIBUTIONS TO UNCERTAINTY ARE GIVEN FOR EACH INDEPENDENT PARAMETER OR GROUPS OF INDEPENDENT 
PARAMETERS (SIGY, SIGZ, LD) 

40U, 80U, 100U MEANS: IN THIS CASE ALL INDEPENDENT PARAMETERS ARE UNIFORMLY DISTRIBUTED 

#RUNS 

SIGYO 
SIGZO 

CAECAD3 

40 

CAECAD3 

(%) 40U (%) 

CAECAD3 CAECAD3 CAECAD3 

80 (%) 80U (%) 100 

CAECAD3 

(%) 100U (%) 

HMIX -.99( 1) 93 -.99( 1) 83 -.99( 1) 95 -.99( 1) 87 -.99( 1) 96 -.98( 1) 84 
S I GY ( A) # 1 # 1 # # 1 # 1 # 1 
S I GY ( B ) # # # # # # 
--------------------------------------------------------------------------------------------------------------s I GY ( C) # # # # # # 
S I GY ( D ) # # # # # # 
S I GY ( E) # # - . 27 ( 3 ) # # - . 25 ( 4) # # 
S I GY ( F) # # # # - . 3 3 ( 3) # # 
SIGZ(A) 13 12 11 12 I 11 

SIGZ(B) 
SIGZ(C) 
SIGZ(D) 
SIGZ(E) 
SIGZ(F) 

WP 
VD(AER) 
VD( IOD) 
LD(AER) 
LD( IOD) 

-.83( 2) 9 

I 1 
I 

-.92( 2) 16 
.52( 3) 

I 
I 

-. 74( 2) 

I 
- .27( 5) I 

I 
I 

.34( 3) I 

-.90( 2) 10 

-.33 ( 4) I 
I 

-.80( 2) 3 -.90( 2) 12 

-.24( 5) I -.33( 3) I 1 
I I 



Appendix C. Sensitivity Analyses (Tables of PRCC values) 103 





References 

[1] D.J. Alpert, R.L. Iman, J.C. Helton, J.D. Johnson 

A demonstration uncertaintyfsensitivity analysis using the health and econornic con­

sequence model CRAC 2 

March 1985 

SAND 84 - 1824 

NUREG/CR- 4199 

[2] D.J. Alpert, J.C. Helton 

Uncertainty and sensitivity analysis for reactor accident consequence models 

Proceedings of the "Workshop on Methods for Assessing the off-site Radiological 

Consequences of Nuclear Accidents" 

Luxembourg, April15-19,1985 

Comrnission ofthe European Communities, Report EUR-10397 EN (1986) 

869 - 890 

ISBN 92-825-5991-2 

[3] H.M. ApSimon, A.J.H. Goddard 

Atmospheric Transport of Radioisotopes and the Assessment of Population Doses on 

a European Scale. Application of the MESOS Code to the Meteorological Dispersion 

of Radioactive Discharges from National Nuclear Sites in the European Community 

with Particular Reference to the Mesoscale 

Comrnission ofthe European Communities, Report EUR-9128 EN (1984) 

Luxembourg 

[4] H.M. ApSimon, A.J.H. Goddard and J. Wrigley 

Lang-range atmospheric Dispersion of Radioisotopes - I. The MESOS model 

Atmospheric Environment, 19 (1985), 99-111 

[5] A. Bayer, K. Burkart, J. Ehrhardt, W. Hübschmann, M. Schüeckler, 

S. Vogt (KfK, Karlsruhe) 

W. Jacobi, H.G. Paretzke, K.-R. Trott (GSF, München) 

E. Hafer, B. Krzykacz (GRS, München) 

German risk study: Accident conseq uence model and the rcsults of the study 

Nuclear Technology, 59 (1982), 20- 50 

[6] J.V. Bradley 

Distribution-free statistical tests 

Prentice Hall, Englewood Cliffs, 1968 

References 105 



[7] H. Büning, G. Trenkler 

Nichtparametrische statistische Methoden 

V erlag Walter de Gruyter, Berlin, 1978 

[8] 1.A. Businger, 1.C. Wyngaard, Y. Izumi, E.F. Bradley 

Flux profile relationships in the atmospheric surface layer 

1. Atmos. Sei., 28 (1971), 181ff 

[9] D.1. Carson 

The development of a dry-inversion-capped convectively unstable boundary layer 

Q.1.R.Met. Soc. 99 (1973), 450ff 

[10] R.H. Clarke, G.N. Kelly 

MARC - The NRPB methodology for assessing radiological consequences of acci­

dental releases of activity 

National Radiological Protection Board, UK - Chilton, Didcot, 1981 

NRPB- R127 

[11] W.J. Conover 

Practical nonparametric statistics 

1. Wiley & Sons, New York, 1980 

[12] Deutsche Risikostudie Kernkraftwerke (DRS) 

Gesellschaft flir Reaktorsicherheit (Ed.) 

Verlag TÜV Rheinland, Köln, 1981 

(Main report and eight technical appendices) 

English translation of main report by EPRI 

(EPRI-NP-1804-SR (1981)) 

[13] Deutsche Risikostudie Kernkraftwerke (DRS) 

Fachband 8: Unfallfolgenrechnungen und Risikoergebnisse 

Gesellschaft flir Reaktorsicherheit (Ed.) 

Verlag TÜV Rhein1and, Köln, 1981 

English translation of Appendix 8 'Analysis of accident consequences and risks' by 

UKAEA Northern Division (Risley Trans 4496) 

[14] 1. Ehrhardt, S. Vogt 

106 

Unfallfolgenrechnungen und Risikoabschätzungen flir Druckwasserreaktoren mit dem 

Rechenprogramm UFOMOD/B3 

Kernforschungszentrum Karlsruhe GmbH, KfK - Report 3373, 

May 1983 



[15] J. Ehrhardt, K. Burkart, I. Hasemann, C. Matzerath, H.-J. Panitz, C. Steinhauer 

The Program System UFOMOD for Assessing the Consequences ofNuclear Accidents 

Kernforschungszentrum Karlsruhe, KfK - Report 4330, 

October 1988 

[16] J.E. Fackrell 

Flow behaviour near isolated reetangular buildings 

Central Electricity Generating Board, London (UK), 1982 

Report TPRD/M/12547/N82 

[17] J.E. Fackrell 

An exarnination of simple models for building influenced dispersion 

Atm. Env., 18 (1984), 89ff 

[18] F. Fischer 

Role and importance of uncertainty analysis 

Proceedings of the "Workshop on Methods for Assessing the off-site Radiological 

Consequences of Nuclear Accidents" 

Luxembourg, Aprill5-19,1985 

Commission of the European Communities, Report EUR-1 0397 EN ( 1986) 
769- 786 

ISBN 92-825-5991-2 

[19] F. Fischer 

Unsicherheits- und Sensitivitätsuntersuchungen ftir Unfallfolgenmodelle 

Jahrestagung Kerntechnik '87, Karlsruhe, June 2- 4, 1987, 

Tagungsbericht des Deutschen Atomforums e.V., Bonn, p. 259 - 262 

[20] F. Fischer 

Uncertainty and sensitivity analysis for computer models in accident consequence 

assessments 

International SNS/ENS/ANS - Topical Meeting on Probabilistic Safety Assessment 

and Risk Management 

August 30 - September 4, 1987, Swiss Federal Institute of Technology (ETH), Zürich, 

Switzerland 

in: 

Probabilistic Safety Assessment and Risk Management, PSA '87, Vol. 111, 939 - 944 

by Ve:rlag TÜV Rheinland GmbH, Köln, West Germany, 1987 

ISBN 3-88585-417-1 

Refercnces 107 



[21] F. Fischer 

UFOMOD - Uncertainty and sensitivity analysis 

"Joint CECjOECD (NEA) Workshop on Recent Advances in Reactor Accident Con­

sequence Assessment" 

January 25- 29, 1988, Rome (Italy) 

Commission ofthe European Communities, Report EUR-11408 EN (1988) 

369 - 380 

ISBN 92-825-8424-0 

[22] F. Fischer, J. Ehrhardt 

Uncertainty analysis with a view towards applications in accident conseq-uence 

assessments 

Kernforschungszentrum Karlsruhe GmbH, KfK - Report 3906, 

September 1985 

[23] F. Fischer, J. Ehrhardt, J. Raicevic 

Analysis of uncertainties caused by the atmospheric dispersion model m accident 

consequence assessments with UFOMOD 

Kernforschungszentrum Karlsiuhe GmbH, KfK- Report 4262, 

June 1988 

[24] J.D. Gibbons 

Nonparametrie statistical inference 

Marcel Dekker Inc., New York, 1985 

[25] J.C. Helton, R.L. Iman, J.D. 1 ohnson, C.D. Leigh 

Unccrtainty and sensitivity ana1ysis of a modcl for mu1ticomponent aerosol dynamics 

Nuclear Technology, 73 (1986), 320- 342 

[26] E. Hofer, B. Krzykacz 

M odeling and propagation of uncertainties in the German risk study 

ANSjENS Topical Meeting on Probabilistic Risk Assessment 

Port Chester NY (USA), September 20- 24, 1981, 1342- 1354 

[27] E. Hofer, B. Krzykacz (GRS, München), 

108 

F. Fischer, J. Ehrhardt (KFK, Karlsruhe) 

M.J. Crick, G.N. Kelly (NRPB, Chilton (GB)) 

Uncertainty analysis and sensitivity analysis of accident consequence submodels 

ANSjENS Topical Meeting on Probabilistic Safety Methods and Applications 

San Francisco CA (USA), February 24- March 1, 1985, 130.1-130.17 

Special Report: EPRI-NP-3912-SR, (Vol. 2) 



[28] F.O. Hoffman et al. 

Procedures for evaluating the reliability of predictions made by environmental transfer 

models 

- Draft version- July 20, 1988 

Division of nuclear fuel cycle 

International Atomic Energy Agency, Vienna (Austria) to be published as an IAEA 

Safety Series Report 

[29] R.L. Iman, W.J. Conover 

Sensitivity analysis techniques: Self-teaching curriculum 

Sandia National Laboratories, Albuquerque NM (USA) 

June 1982 

[30] R.L. Iman, W.J. Conover 

A distribution-free approach to inducing rank correlation among inputvariables 

Comm. Statist. Simul. Comput., 11 (1982), 311 - 334 

[31] R.L. Iman, W.J. Conover 

Modern Business Statistics 

J. Wiley and Sons, New York, 1983 

[32] R.L. Iman, W.J. Conover 

A measure of top-down correlation 

Sandia National Laboratories, Albuquerque NM (USA) 

October 1985 

SAND 85- 0601 

[33] J. Giebel 

Verhalten und Eigenschaften atmosphärischer Sperrschichten 

Bericht der Landesanstalt für Immissionsschutz des Landes NRW, Essen, 1981 

LIS-Bericht Nr. 12 

[34] R.L. Iman, J.M. Davenport 

Rank correlation plots for use with correlated input variables 

Comm. Statist. Simul. Comput., 11 (1982), 335- 360 

[35] R.L. Iman, J.C. Helton 

An investigation of uncertainty and sensitivity analysis techniques for computer mod­

els 

Risk Analysis, 8 (1988), 71 - 90 

References 109 



[36] R.L. Iman, M.J. Shortencarier 

A FORTRAN 77 program and user's guide for the generation of Latin hypercube and 

random samples for use with computer models 

Sandia National Laboratories, Albuquerque NM (USA) 

March 1984 

SAND 83 - 2365 

NUREG/CR - 3624 

[37] R.L. Iman, M.J. Shortencarier, J.D. Johnson 

A FORTRAN 77 program and user's guide for the calculation of partial correlation 

and stanardized regression coefficients 

Sandia National Laboratories, Albuquerque NM (USA) 

June 1985 

SAND 85 - 0044 

NUREG/CR- 4122 

[38] J.S. Irwin 

A theoretical Variation of the wind profile power-law exponent as a function of surface 

roughness and stability 

Atm. Env., 13 (1979), 191ff 

[39] J.A. Jones, J.A. Williams 

Assessment of the raiological consequences of releases from degraded core accidents 

for a proposed PWR at Hinkley Point: Results using MARC-1 

National Radiological Protection Board, UK- Chilton, Didcot, 1988 

NRPB- M152 

[40] M.G. Kendall 

Rank correlation methods 

Griffin Ltd., London, 1970 

[41] M.G. Kendall, A. Stuart 

The advanced theory of statistics, Val. 1 

Griffin Ltd., London, 1963 

[42] M.G. Kendall, A. Stuart 

The advanced theory of statistics, Val. 2 

Griffin Ltd., London, 1967 

[ 43] B. Krause, P. Metzler 

Angewandte Statistik 

VEB Deutscher Verlag der Wissenschaften, Berlin, 1983 

llO 



[44] A.M. Liebetrau, P.G. Doctor 

The generation of dependent input variables to a performance assessment simulation 

code 

OECD/NEA/DOE - Workshop on Uncertainty Analysis for System Performance 

Analysis, February 24-26, 1987 

Battelle Seattle Conference Center, Seattle (USA), p. 85 - 115 

[45] J. Mariovet, A. Saltelli, N. Cadelli 

Uncertainty analysis techniques 

Commission of the European Communities, Luxembourg ( 1987) 

Report EUR-10934 EN 

[46] T. Mikkelsen; S.E. Larsen, S. Thykier-Nielsen 

Description of the RISO Puff Diffusion Model 

Nuclear Technology, 67 (1984), 56-65 

[ 47] Reactor Risk Reference Document 

U.S. Nuclear Regulatory Commission 

Main Report (Vol. 1), Appendices A-1 (Vol. 2), Appendices J-0 (Vol. 3) 

NUREG - 1150 (Draft), February 1987 

[48] J. Päsler-Sauer 

Comparative Calculations and Validation Studies with Atmospheric Dispersion Mod­

els 

Kernforschungszentrum Karlsruhe GmbH, KfK - Report 4164, 

1986 

[49] H.J. Panitz 

Sensitivity and uncertainty analysis ofthe atmospheric dispersion model ofUFOMOD 

Proceedings of the "Workshop on Methods for Assessing the off-site Radiological 

Consequences of Nuclear Accidents" 

Luxembourg, April 15-19,1985 

Commission ofthe European Communities, Report EUR-10397 EN (1986) 

831 - 850 

ISBN 92-825-5991-2 

[50] H.J. Panitz 

Accident Consequence Assessments with Different Atmospheric Dispersion Models -

A Benchmark Study 

Kernforschungszentrum Karlsruhe GmbH, KfK - Report 4445, 

to be published 

References 111 



[51] H.J. Panitz, C. Matzerath, J. Päsler-Sauer 

UFOMOD- Atmospheric dispersion and deposition 

Kernforschungszentrum Karlsruhe GmbH, KfK - Report 4332, 

to be published 

[52] F.Pasquill, F.B. Smith 

Atomspheric Diffusion (3. Edition) 

Bilis Horwood Ltd., Chichester, U.K., 1983 

[53] D. Rasch 

Einführung in die mathematische Statistik, Band II 

VEB Deutscher Verlag der Wissenschaften, Berlin, 1976 

[54] N.C. Rasmussen, 

Reactor Safety Study. An Assessment of Accident Risks in U.S. Commercial Nuclear 

Power Plants (WASH- 1400) 

U.S. Nuclear Regulatory Commission, Washington, D.C., October 1975 

NUREG -75/014 

[55] L.T. Ritchie, J.D. Johnson and R.M. Blond 

Calculations of Reactor Consequences, Version 2 

Sandia National Laboratories, Albuquerque NM (USA), 1981 

SAND 81 - 1994 

[56] A. Saltelli, J. Mariovet 

Performance of non-parametric statistics in sensitivity analysis and parameter ranking 

Commission of the European Communities, Luxembourg (1987) 

Report EUR-10851 EN 

ISBN 92-825-6882-2 

[57] G. Schwarz 

ll2 

Deposition and post-deposition readionuclide behaviour in urban environments 

Proceedings of the "Wo.rkshop on Methods for Assessing the off-site Radiological 

Consequences of Nuclear Accidents" 

Luxembourg, April15-19,1985 

Commission ofthe European Communities, Report EUR-10397 EN (1986) 

533 - 557 

ISBN 92-825-5991-2 



[58] J. Sinnaeve, M. Olast, F. Luykx 

The CEC programme on accident consequence assessment 

"Joint CECjOECD (NEA) Workshop on Recent Advances in Reactor Accident Con­

sequence Assessment" 

J anuary 25 - 29, 1988, Rome (I taly) 

Commission ofthe European Communities, Report EUR-11408 EN (1988) 

3 - 12 

ISBN 92-825-8424-0 

[59] F.B. Smith, D.J. Carson 

Some thoughts on the specification of the boundary layer relevant to num:~rical 

modeHing 

Bound. Layer Met., 12 (1977), 307fT 

[60] J. Straka, H. Geiss and K.J. Vogt 

Diffusion ofWaste Air Puffsand Plumes under Changing Weather Conditions 

Contr.Atmosph.Physics, 54 (1981), 207-221 

[61] A. Stuart 

The correlation between variate-values and ranks in samples from a continuous dis­
tribution 

The British Journal of Statistical Psychology, 7 (1954), 37- 44 

[62] O.G. Sutton 

~icrorneteorology 

~cGraw-Hill Book Cornpany, New York, 1953, 333fT 

[63] S.S. \Vilks 

~athcrnatical Statistics 

J. Wiley & Sons, New York, 1963 

References 113 





Distribution List 

Burkart INR 
Ehrhardt INR 
Faude INR 
Fischer, F. INR (30X) 
Fröh I i eh INR 
Fröhner INR 
Gabowitsch IDT 
Hasemann INR 
Keßler INR 
Küchle INR 
Küfner INR 
D. Meyer DTI/INR 
Matzerath AFAS 
Maschek INR 
Päsler-sauer INR 
Panitz INR 
PWA/PL INR 
PRS/PL INR 
Raicevic *) (20X) 
Raskob DTI/INR 
Steinhauer INR 
Trauboth IDT 

*) 

J agos Raicevic 

The Boris Kidric Institute of Nuclear Seiences 

Radiation Protection Department, OOUR- 100 
Vinca 

P.O. Box 522 

YU -11001 Belgrade 

Yugoslavia 

Anton Bayer 

Institut für Strahlenhygiene 

Bundesgesundheitsamt 

Ingolstädter Landstr. 1 

D-8042 Neuherberg bei München 

West Germany 

Distribution List 115 



K. van der Bosch 

T.N.O. 

P.O. Box 342 

NL-7300 AH Apeldoorn 

The N etherlands 

James E. Campbell 

Intera Environmental Consultants Inc. 

6850 Austin Center Blvd., Suite 300 

Austin, TX 78731 

USA 

S. Chakraborty 

Abteilung flir die Sicherheit der Kernanlagen 

Eidgenössisches Amt flir Energiewirtschaft 

CH-5303 Würenlingen 

Switzerland 

W.J. Conover 

College of Business Administration 

Texas Tech University 

Lubbock, TX 79409 

USA 

Peter J. Cooper 

United Kingdom Atomic Energy Authority 

Safety and Reliability Directorate 

Wigshaw Lane 

Culcheth 

Warrington, W A3 4NE 

United Kingdom 

Maleolm J. Crick 

National Radiological Protection Board 

Chilton, Didcot 

Oxon, OXll ORQ 

United Kingdom 

116 



Mark Cunningham 

Consequence and Risk Analysis Section 

Office of Nuclear Research 

U.S. Nuclear Regulatory Commission 

Washington, DC 20555 

USA 

Darryl Downing 

Building 9207A, MS2 

P.O. Box Y 

Oak Ridge National Laboratories 

Oak Ridge, TN 37831 

USA 

R.H. Gardner 

Health and Safety Research Division 

Oak Ridge National Laboratories 

Oak Ridge, TN 37830 

USA 

Dennis Gibbs 

Nuclear Department 

Royal Naval College 

Greenwich 

London, SElO 

United Kingdom 

R.L. Iman 

Division 6415 

Sandia National Laboratories 

P.O. Box 500 

Albuquerque, NM 87185 

USA 

J.C. Helton 

Department of Mathematics 

Arizona State University 

Tempe, AZ 85287 

USA 

Distribution List 117 



Marion D. Hill 

National Radiological Protection Board 

Chilton, Didcot 

Oxon, OXll ORQ 

United Kingdom 

Eduard Hofer 

Gesellschaft für Reaktorsicherheit 

Forschungsgelände 

D-8046 Garehing 

West Germany 

F.O. Hoffman 

Environmental Seiences Division 

Oak Ridge National Laboratories 

Oak Ridge, TN 37830 
USA 

Arthur J ones 

National Radiological Protection Board 

Chilton, Didcot 

Oxon, OXll ORQ 

United Kingdom 

G. Neale Kelly 

Commission of European Communities 

DG XII I D I 4 
Wetstraat 200 

B - 1049 Bruxelles 

Belgium 

John G. Kollas 

Nuclear Technology Department 

Greek Atomic Energy Commission 

N.R.C. Demokritos 

Aghia Paraskevi, Attikis 

Athens 

Greece 

118 



Bernard Krzykacz 

Gesellschaft flir Reaktorsicherheit 

Forschungsgelände 

D-8046 Garehing 

West Germany 

Mirko Lalovic 

Faculty of Technical Seiences 

U niversity of N ovi Sad 

P.O. Box 104 

YU-21000 Novi Sad 

Yugoslavia 

Felix Luykx 

Commission of European Communities 

DG V I EI 1 
Batiment Jean Monet 

Kirchberg 

Boite Postale 1907 

L-2920 Luxembourg 

Grand-Duchy of Luxembourg 

Shan Nair 

Research Division 

Central Electricity Generating Board 

Berkeley Nuclear Laboratories 

Gloucestershire 

Berkeley, GL13 9PB 

United Kingdom 

Alexander Nies 

Institut flir Tieflagerung 
Gesellschaft flir Strahlen- und Umweltforschung mbH 

Theodor-Heuss-Str. 4 

D-3300 Bra-unschweig 

West Germany 

Distribution List 119 



Marko 1\'inkovic 

The ßoris Kidric Institute of Nuclear Seiences 

Vinca 

P.O. Box 522 

YU -11001 Belgrade 

Yugoslavia 

William Nixon 

United Kingdom Atornic Energy Authority 

Safety and Reliability Directorate 

vVigshaw Lane 

Culcheth 

Warrington, WA3 4NE 

United Kingdom 

Luciano Olivi 

C.C.E. 

C.C.R. Stabilimento di ISPRA 

Divisione A.T.I. A36 (CETIS) 

1-21020 Ispra (Varese) 

Italy 

Wolfgang Pfeffer 

Gesellschaft ftlr Reaktorsicherheit 

Postfach 101650 

D-5000 Köln 1 

West Germany 

J aak S innaeve 

Comrnission of European Communities 

DG XII I F I 1 

Wetstraat 200 

ß-1049 Bruxelles 

ßelgium 

J. van der Steen 

KEMA 

P.O. Box 9035 

NL-6800 ET Arnhem 

The Netherlands 

120 



Eli Stern 

Risk Assessment Department 

Israel Atornic Energy Comrnission 

P.O. Box 7061 

Tel Aviv, 61070 

Israel 

Dik de Weger 

T.N.O. 

P.O. Box 342 

NL-7300 AH Apeldoorn 

The N etherlands 

Keith W oodard 

Pickard, Lowe & Garrick, Inc. 

1200 18th Street, N.W. 

Suite 612 

Washington, DC 20036 

USA 

Distribution List 121 




