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Reaction behaviouf of B4C absorber material with stainless steel and
Zircaloy in severe LWR accidents

Abstract

The chemical reaction behaviour of B4e absorber material with 1.4919 stainless

steel (AISI 316) and Zircaloy-4 was studied in the temperature range 800 ­

1600 oe. The reaction kinetics for both systems can be described by parabolic rate

laws. Above 1000 oe, the reaction zone growth rates x2/t in the B4C1stainless steel

system are by about two orders of magnitude higher than those in the

B4C1Zircaloy-4 system. The compatibility specimens are quickly and completely

liquefied at about 1250 oe for the B4C1stainless steel reaction couples and at

about 1650 oe for the B4C1Zircaloy-4 reaction couples. In both reaction systems

the liquefaction occurs below the melting points of the components.

Reaktionsverhalten von B4C Absorbermaterial gegenüber rostfreiem
Stahl und Zircaloy bei schweren LWR-Störtällen

Zusammenfassung

Es wurde das chemische Reaktionsverhalten von B4e Absorbermaterial gegen­

über 1.4919 rostfreiem Stahl (AISI 316) bzw. Zircaloy-4 im Temperaturbereich von

800 bis 1600 "'C untersucht. Die Reaktionskinetik kann für beide Systeme durch

parabolische Zeitgesetze beschrieben werden. Oberhalb 1000 oe Sind die Wachs­

tumsraten x2/t der Reaktionszonen für das System B4C1rostfreier Stahl etwa zwei

Größenordnungen größer als die für das Reaktionssystem B4C1Zircaloy-4. Die

B4C1rostfreier Stahl-Verträglichkeitsproben schmelzen oberhalb etwa 1250 oe

und die des Systems B4C/Zircaloy-4 oberhalb 1650 oe schnell und vollständig

zusammen. In beiden Reaktionssystemen erfolgt die Verflüssigung der Proben

unterhalb dem Schmelzpunkt der Komponenten.
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1. Intl"oduction

The absorber rods in Boiling Water Reactors (BWR) and in Fast Breeder Reactors

(FBR) consist of boron carbide (B4C) pellets or B4C powder in stainless steel tubes.

In the case of BWRs, the absorber rods are contained in a four-bladed stainless

steel assembly. Four fuel rod bundles are each surrounded by a Zircaloy channel

box arranged around the cross-shaped control element (fl.9.:.l). The system boron

carbide/stainless steel tube is not stable thermodynamically, i.e. chemical

interactions have to be expected. Under normal reactor operation conditions the

limited chemical interactions between B4C and stainless steel can be tolerated.

But the question is how the absorber rods behave chemically at temperatures

beyond 1000 °C which have to be assumed in severe reactor accidents. First

scoping tests with small LWR fuel rod bundles containing B4C absorber rods

showed strong chemical interactions at temperatures above 1250°C which

resulted in a fast liquefaction and subsequent relocation of the absorber rod

material [1]. The liquid B4C/stainless steel reaction products then interact with

the Zircaloy flow channel box and the adjacent U02/Zircaloy fuel rods (fig. 1). For

this reason, it is also of interest to study the chemical interactions between B4C

and Zircaloy.

The objective of this paper is to describe quantitatively the chemical interaction

between B4C and stainless steel as weil as between B4C and Zircaloy up to the

liquefaction of the reaction specimens. The possible chemical interactions

between the stainless steel absorber bladeand the Zircaloy channel box and fuel

rod c1adding are not part of this work. Such results will be described elsewhere

[2]. The results of these single effects tests are important to understand and to

describe the complex material behaviourin integral experimentes like the CORA

fuel rod bundle meltdown tests [3].

In the literature, a few results of B4C/stainless steel reaction experiments,

performed with FBR absorber rads, have been published [4,5,6]. In some of these

experiments sodium was used as bonding material between the B4C and stainless

steel which improves the heat transfer from the B4C to the coolant. However, at

the same time, sodium bonding enhances the absorber material/c1adding

chemical interactions [6].
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2. IViaterials and conduct of the experiments

The isothermal annealing tests were performed with 1.4919 (AISI 316) stainless

steel (ss) and Zircaloy-4 (Zry) capsules which were filled with B4C powder. To get

a good solid-state contact between B4C and the capsule walls, the powder was

pressed into the crucible-like capsules. After that, the capsules were c10sed gas­

tight by a conical plug. The preparation and the c10sure of the specimens were

performed in a glove box under inert gas conditions.

Some preliminary compatibility tests were performed at 1100 °C with B4C

powders of various particle sizes to determine if the particle size influences the

extent of the chemical interactions. No influence of particle size over the range

from 44 to 840 pm on the interaction could be determined using the four

different powder mixtures. A particle size ranging from 177 to 250 pm was

finally selected for the compatibility experiments; the chemical composition of

the powder was: C = 20.9, N = 0.39, and 0 = 0.19 wt. %, the remainder was

boron.

The annealing experiments were performed in a tube furnace under flowing

argon. For the B4C/SS reaction couples the investigated temperature range varied

between 800 and 1200 °C and for the B4C/Zry reaction couples between 800 and

1600 oe. The annealing times ranged from 5 minutes to 300 hours. The maximum

temperatures of 1200 and 1600 °C, respectively, for the reaction couples were

limited by the onset of liquid phase formation at these temperatures and the

subsequent fast and complete Iiquefaction of the specimens at slightly higher

temperatures.

After the annealings, the specimens were mechanically cut and then metallo­

graphically prepared for examinations of the reaction zones with an optical

microscope. The thickness of the reaction zones were measured at four different

locations of the B4C/metai interface. In addition, some Scanning Electron

Microscopy (SEM)/Energy Dispersive X-Ray (EDX) or SEMlWave Length Dispersive

X-Ray (WDX) and Auger Electron Spectroscopy (AES) examinations were made to

obtain information on the' chemical compositions of the reaction products and

diffusion zones. In a few cases, microhardness measurements were made to

determine the extent of the diffusion zone.
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3. Results

3.1 Chemical interactions between B4C and stainless steel

3.1.1 Morphology ofthe interaction zone and reaction kinetics

The chemical interaction between B4C and stainless steel resulted in the

formation of two reaction layers. The first, adjacent to the B4C absorber

material, was very thin and had a rather homogeneous appearance; the second

reaction layer was much thicker and was characterized by the presence of a great

amount of second-phase precipitation in the ss matrix, lY!ainly along the grain

boundaries. .El.9.:.1. shows the appearance of both reaction layers at 1000 °C after

300 hours. A similar sequence of reaction layerswas observed at 1100 oe. At

1200 °C, however, the appearance of the reaction layer changed noticeably (f.i.fl
~). In the first reaction layer many macrovoids and in the second reaction layer

numerous microvoids have developed. In the chemically attacked steel matrix

the onset of eutectic melting was observed at some locations (flg..:...1).

In order to determine the B4C1ss reaction kinetics, the total reaction zone

thickness of both reaction layers was determined as a function of temperature

and time. The results are listed in table 1. The isothermal growth of the reaction

layer thickness is a linear function of the square root of time (parabolic rate law)

for all temperatures examined (fig. 5). This is an indication of a diffusion­

controlled chemical interaction. The reaction zone growth rates for the B4C1ss

chemical interactions are Iisted in table 2. These data are plotted as a function of

the reciprocal temperature together with some literature data in~ [5,6]. The

growth rate equation determined for the temperature range 800 - 1200 °C is:

226x /t (cm /8) = 8.76 . 10 exp (- 378000/RT)

R = 8.314 J/mol·K

(1)

This equation cannot be extrapolated to higher temperatures. Above 1200 °C,

the liquid phase formation starts. At about 1250 °C the B4C/SS reaction specimens

became completely liquefied within a few seconds as a result of eutectic

interactions.
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3.1.2 Chemical characterization of the reaction layers

The reaction zones of the specimens were examined by Auger Electron

Spectroscopy. Besides the determination of the element distribution,

quantitative measurements were performed. Some typical results of a specimen

annealed at 1200 °C for 6 hours are shown in fuLZ. As can be recognized easily,

the first reaction layer consists mainly of a (Fe,Cr) boride phase; the Fe and C dot

maps are not shown. The chemical composition of this boride phase is

FeCrO.89B 1.15. The (Fe,Cr) boride precipitates in the second reaction layer have a

different chemical composition which varies between FeCr1.180.97 and

FeCr1.6B1.4. The boride precipitates within the second reaction layer contained

small amounts of carbon whereas the first reaction layer was free of any carbon.

The stainless steel matrix adjacent to the first reaction layer was depleted in Cr

and enriched in Ni (fig. 7). Similar observations were made in previous

experiments [4,6]. The amount of (Fe,Cr) boride precipitates within the second

reaction layer decreases with increasing distance from the B4C/SS interface. At

the same time, the Ni content within the attacked ss matrix decreases and finally

reaches its initial value. The reason for this behaviour may be the low solubility

of Ni in the boride phase [4] and the reduced affinity of Ni to boron compared to

that of Cr and Fe. The strong Cr depleti<:>n of the ss matrix is caused by the (Fe,Cr)

boride formation.

No carbon could be detected in the first reaction layer and neither in the ss

matrix of the second reaction layer. Only small amounts of Ccould be analyzed in

the (Fe,Cr) boride precipitations of the second reaction layer. Similar

observations are described in [6].

To determine the influence and depth of boron diffusion into the ss matrix

microhardness measurements were performed. The result of one specimen is

depicted in fig. 8. The first reaction layer shows a pronounced increase in

microhardness of about 1750 kp/mm 2 compared to that of the unreacted ss

matrix of about 200 kp/mm2. The average microhardness of the second reaction

layer is about 420 kp/mm 2. The overall thickness of the reaction zones

determined by microhardness measurements is about 900 pm (fig. 8) compared

to 950 llm determined metallographically (table 1). In the literature [7], a

microhardness of 2160 kp/mm2 was measured for (Fe,Cr)B and 1750 kp/mm 2 for

the compound (Fe,CrbB. The microhardness results provide support along with
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our quantitative chemical results for a metal to boron ratio of about 2 for the

borides in the first reaction layer. The formation of a (Fe,(rhB compound as a

result of chemical interactions between B4( and stainless steel was also

demonstrated by other authors [4] by X-ray diffraction measurements.

3.2 (hemical interactions between B4( and Zircaloy-4

3.2.1 Morphology of the interaction zone and reaction kinetics

The chemical interactions between B4( and Zircaloy-4 resulted in the formation

of different types of reaction zones in the temperature regions 800 - 1100 0(,

1200 - 1500°(, and 1600 O( and at slightly higher temperatures. At about 1650°(,

the compatibility specimens were completely liquefied during heatup. Between

800 and 1100 U( one reaction layer formed which consisted of a mixture of

zirconium boride and zirconium carbide (~). In the temperature range of

1200 to 1500 o( two reaction layers formed (fig. 10). The reaction layer adjacent

to the B4C/Zry interface was similar in composition to that at lower

temperatures, i.e. it consisted of zirconium boride and zirconium carbide. The

subsequent reaction layer, in the direction of the unreacted Zry matrix, consisted

mainly of zirconium boride (fig. 10). At 1600°(, also two reaction layers formed,

but, in addition, the onset of a localized liquid phase and zirconium-carbide

precipitation in the Zry matrix could be observed (fig. 11). The precipitates were

distributed over the whole Zry annealing capsule cross-section up to the outer

diameter. For this reason, the thickness of the second reaction layer could not be

determined at 1600 0(, not even after 5 minutes annealing time, since it

extended up to the outer surface of the wall. The precipitates within the Zry

matrix were surrounded by a thin second phase which formed probably during

cooling (fig. 12). As already mentioned, at temperatures 2: 1650 O( a sudden

meltdown of the B4C/Zry specimens occurred.

To determine the reaction kinetics between B4( and Zircaloy-4 the thickness of

the total reaction zone was measured as a function of the reaction tim.e up to

temperatures of 1500 oe. At 1600 O( only the thickness of the first reaction layer

could be determined. The results are listed in table 3 and plotted in figs 13, 14,

and '15 versus the square root of the reaction time. Also in the B4C/Zry reaction

couplet the growth of the reaction layers obeys parabolic rate laws indicating

that the rate·controlling step of the interactions is a diffusion process. The
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ealculated isothermal growth rates are listed in table 4 and plotted versus the

reeiproeal temperature in fig. 16. As ean be reeognized, the slope of the

Arrhenius plot, e.g. the aetivation energy, ehanges at temperatures above

1500°C to mueh higher values. The reason may be the formation of small

amounts of liquid phases. However, the metallographie deteetion of this phase

was not unambigous. The determined growth rate equations for 800 - 1500 °C

are (table 5):

and for 1500 - 1600 °C

2 2 ~x /t(cm /8) = 7.94 ·10 exp (-1438300/H'l')

R = 8.314 J/mol·K

(2)

(3)

The slope of the Arrhenius plot between 1500 and 1600 °C should aetually be

even steeper, sinee the thiekness of the seeond reaetion layer was not eonsidered

at 1600 °C beeause it eould not be determined

3.2.2 Chemieal eharaeterization of the reaetion layers

Only semi-quantitative AES and SEM examinations of the reaetion zones have

been performed. The results of a speeimen annealed at 1500 °C for 1 h are shown

in fig. 10. The first reaetion layer consists of a mixture of ZrC and ZrB2 and the

seeond reaction layer mainly of ZrB2. The same results have been obtained at

1600 °C but at this temperature zireonium carbide precipitates formed in

addition in the Zry matrix (fig. 12). The ZrC preeipitates were panially

surround€!d by another phase of different chemical composition which probably

formed during cooldown of the specimens due to changes in the earbon

solubility of the precipitates with temperature. The ternary Zr-B-C phase

diagrams at 1400 and 1800 °C show that the equilibrium phases whieh form as a

result of the B4CIZry interaction should be ZrC and ZrB2 (fig. 17).
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4. Discussion

4.1 84C/stainless steel reaction system

Thechemical interactions between B4C and stainless steel and B4C and Zircaloy-4

can be described by parabolic ratelaws in the temperature ranges 800 - 1200and

800 - 1600 °C, respectively, i.e. diffusion processes are the rate determining steps.

In the case of the B4C/SS reaction system, the chemical interactions above 800°C

are much faster than in the B4C1Zry reaction system (fig. 19) and the reaction­

zone growth rates differ from each other by up to about two orders of

magnitude. Whereas for the B4C/SS system the reaction can be described by one

single Arrhenius equation, in the B4C1Zry system two equations are necessary

(table 5). The change to higher values in the apparent activation energy of the

Arrhenius equation is probably caused by the formation of liquid phases whlch

accelerate the extent of interaction. The pronounced temperature sensitivity of

the reaction above 1500 °C is apparently determined by the increase III the

amount of liquid phases which, finally, results in a complete liquefaction of the

B4C/Zry specimens above 1650 oe.

A comparison of our reaction zone growth data for the system B4C1ss with

literature data [5,6] is shown in fig. 6. As can be seen, our reaction kinetics data

result in reaction zone growth rates x2/t which are somewhat more than two

orders of magnitude smaller. The reasons for this large difference may be the

very high contact pressure (21 MPa) that was applied in [5] to increase and to

maintain the solid-solid contact between B4C and stainless steel during the

annealing process, or the influence of liquid Na which was used as a bonding

medium in [6]. Na plays an important role with respect to the transport of carbon

and/or boron from the B4C to the stainless steel. The B4C/SS contact area will be

enlarged by Na bonding. The literature reaction zone growth rate data [5,6]

therefore define the upper limit for the extent of the chemical B4C1ss

interactions. The different chemical compositions of the examined stainless

steels probably play only a minor role. But this could mean that in our case the

rate determining step of the B4C1ss interactions is the transport of C and B to the

stainiesssteel surface, i.e. the quantity, and not the diffusion of the light

elements through the reaction layer into the stainless steel matrix. However,

with respect to the solid state contact conditions in LWR absorber elements the

results obtained in our experiments are more representative.
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The chemical analytical examinations of the reaction zones of the system B4C/SS

did not show any C diffusion into the first reaction layer adjacent to the B4C

Some low C concentration could be noticed in the (Fe,Cr) boride precipitates

within the second reaction layer but not in the surrounding stainless steel matrix.

These results suggest therefore that the formation of the compact (Fe,Cr) boride

phase at the B4C/SS interface inhibited the diffusion of carbon into the stainless

steel matrix and that the small quantities of C analyzed in the precipitates have

their origin in the initial carbon content of the steel matrix and not from the B4C

These observations are in agreement with those of reference [6] for the B4C/SS

1.4970 and B4C/SS 1.4981 reaction systems with sodium bonding.

In general, boron diffusion is much faster than that of carbon (fig. 19) [9,10]. In

addition,. theformation of stainless-steel-component borides is more stable

thermodynamically than the corresponding carbides [6,11,12]. In fig. 19 the

reaction zone growth rates of the B4C/SS 1.4919 system are plotted as a function

of the reciprocal temperature and compared with literature data on the

diffusion coefficient of boron in Armco iron [10] and of carbon in stainless steel

AISI 316 [9]. There are no data available on the diffusion of B in stainless steel.

Apparently, the diffusion of B or C into stainless steel is not the rate determining

step of the B4C/SS interaction but the diffusion of B through the homogeneous­

looking (Fe,Cr) boride phase, which forms the first reaction layer at the B4C/SS

interface. The average chemical composition of this phase is FeCrO.89B 1.15, i.e. it is

of the Fe2B or Cr2B type, which is in agreement with the ternary Fe-C-B and Cr-C­

B phase diagrams (fig. 20).

The (Fe,Cr) boride reaction layer also plays an important role with respect to the

critical upper temperature of the B4C/SS material combination at which the

formation of liquid phases occurs as a result of eutectic interactions. At about

1250 °C, a sudden and complete liquefaction of the B4C/SS specimens takes place,

which is of great importance with respect to safety considerations of LWRs.

Above 1250 °C, the cruciform absorber element will be partially liquefied, the

molten phases will relocate and form blockages at lower cooler elevations. Since

ternary Fe(Cr)-C-B phase diagrams are only available up to 1100 °C (fig. 20) [15],

the binary phase diagrams Fe-B, Cr-B, and Ni-B have to be used to explain the

low-temperature liquefaction process (fig. 21). The eutectic temperature of the

Fe-Fe2B subsystem is 1174 °C and that of the Cr-Cr2B subsystem is 1630 °C In the

Ni-B system first liquid phases form already at about 1020 °C Taking into account

the conditions in the B4C1ss reaction system which resulted in the formation of a
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(Fe,(rbB phase in contact with a modified steel matrix of high Ni and low (r

content, together with the binary phase diagram information, an eutectic

temperature arou nd 1250°(, as experimentally observed, seems to be plausible.

This failure temperature is about 200 o( lower than the melting point of stainless

steel and about 850 o( lower than that of B4e.

4.2 B4(/Zircaloy-4 reaction system

(ontrary to the B4C1ss system, for which only the diffusion of B into the reaction

layer and the steel matrix is of importance, Band ( both diffuse into the Zry and

interact chemically with Zr in the B4C1Zry system (fig. 10). However, ( diffuses

deeper into the Zry matrix and in larger quantities than B forming Zr(

precipitates. Zr has a higher solubility for (than for B (fig. 22) [13].

The slope of the Arrhenius equation for the temperature range 800 - 1500 o(

deviates below 1100 o( somewhat from the experimental data points (fig. 16).

The reason may be that below 1100 o( only one reaction layer (Zr( + ZrB2) is

formed whereas between 1100 and 1500 o( an additional reaction layer (ZrB2)

develops (fig. 10). The drastic change of the apparent activation energy at

1500 o( to a much higher value may be explained by the localized formation of

liquid phases. There are ternary Zr-B-( phase diagrams only available for 1400

and 1800 o( (fig. 17) [8], they show liquid phases at 1800 o( but not at 1400 oe.

The binary phase diagrams Zr-B and Zr-( have eutectic temperatures of about

1680 and about 1823 0(, respectively (fig. 22), i.e. weil above 1500 oe. The

complete and rapid liquefaction of the B4C1Zry reaction specimens at about

1650 o( may be explained by the Zr-ZrB2 eutectic temperature of 1680 o( and the

pseudo binary Zr-(Bo.s(o.s) phase diagram (fig. 23) [8], which shows that in the

ternary Zr-B-( system liquid phases form already at about 1615 o( under

equilibrium conditions. Since in our experiments Zircaloy-4 and not pure Zr was

used, which contains about 1.5 wt. % Sn, some changes in the onset of liquid

phase formation have to be expected in addition.

The ternary Zr-B-( equilibrium phase diagram (fig. 17) can be used in a first

approach to obtain information on the reaction layer sequence. The tie line 1 ~ 2

represents the initial Zr/B4( material contact of the reaction system. According to

this tie line the reaction layer sequence from the B4( to the Zry should be
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The experiments, however, show exactly the opposite reaction layer sequence

(fig. 10). In our short-time experiments we were far away from equilibrium

conditions and obtained, therefore, only intermediate conditions, which are not

reflected in phase diagrams. Another reason could be the different diffusion

velocities of Band ( in the Zry matrix and the resulting reaction products.

4.3 LWR related safety aspects

The experimental results show that the complete failure of the B4C1Zry reaction

couple as a result of liquefaction occurs at about 1650 0(, which is 400 o( higher

than that of the B4(/SS reaction system at about 1250 oe. If Zircaloy would be

used for the cruciform absorber element instead of stainless steel, the onset of

liquid phase formation could be shifted to much higher temperatures. Besides, at

temperatures below 1200 o( the B4C1Zry reaction rate is much slower than that of

B4C1ss. Therefore, more time would be available during a severe accident for

accident management measures.

Also, the use of different structural materials in large quantities within the reac­

tor core, like Zircaloy and stainless steel, as it is the case in Boiling Water Reactors

(BWR), causes additional severe material problems. Zircaloy and stainless steel

interact eutectically with each other and liquid phases can form already below

1000 oe. However, below 1000 o( the reaction rate is rather slow, but it becomes

much faster above 1000 o( [2]. At temperatures beyond 1250 o( a sudden lique­

faction of the components takes place, if they are in contact with each other.

Zr02 oxide layers on the Zircaloy surface of up to 50 pm thickness delay slightly

the liquefaction but they are not able to prevent it [2]. Due to these interactions

(B4C1ss and Zry/ss) B4( may eome into contaet with liquid and/or solid Zircaloy

above 1250 oe.

The premature low-temperature failure of the BWR absorber element and its

relocation may result in an early localized re.loeation of the B4( absorber materi­

al within the reactor eore and may cause loeal eritieality problems in a severe

reactor accident. In the (ORA 16 experiment, in whieh a BWR fuel rod bundle

was heated out-of-pile up to 2000 o( the failure of the absorber element and its

relocation between 1200 and 1300 o( could be eonfirmed a long time before the

fuel rods failed [3].
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5. Summary and conclusions

B4( absorber material in eontaet with stainless steel or Zirealoy-4 will result in

ehemical interaetions whieh ean be deseribed by parabolie rate laws.

Above 1000°(, the reaetion zone growth rates x2/t for the B4C1stainless steel

interaetions are about two orders of magnitude larger than those for the

B4C1Zirealoy-4 interaetions.

In the B4C1stainless steel reaetion eouple the reaetion kinetics beeomes very

rapid near 1200 O( due to the formation of liquid phases. Beyond 1250 U( a

sudden and eomplete liquefaetion of the eompatibility specimens takes plaee.

(omplete liquefaetion of the B4(lZirealoy eompatibility specimens oeeurs at

about 1650 0(, i.e. at a temperature level 400 O( higher than that of the

B4C1stainless steel speeimens.

111 both reaetion systemsthe liquefaction occurs below the meltll1g POints 01

the eomponents due to euteetie interaetions.

The premature low-temperature failure of the BWR absorber element and

the localized reloeation of B4C within the reaetor eore may cause reeriticality

problems.

With respect to the LWR eore material behaviour in severe reaetor aeeidents

the use of Zirealoy c1added B4C absorber material instead of stainless steel

would result in a glfeater flexibility eoneerning aeeident management

measures, beeause the meltdown oeeurs at higher temperatures whieh will be

reaehed later.
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Table 1: Measured total reaction zone thickness for the
diffusion couple B4C/stainless steel 1.4919 (AISI 316)
as a function of temperature and time.

Reaetion
Specimen Temperature Time zoneoe h thiekness

pm

66 800 25 4

67 1/ 100 10

68 " 300 21

70 900 25 20

71 1/ 100 37

72 1/ 300 137

73 1000 25 142

74 JI 25 182

75 JI 100 292

85 1/ 100 287

76 1/ 300 520

78 1100 6 250

61 " 25 590

77 1/ 100 1150

82 1200 1,5 387

83 JI 6 950

84 " 25 1787
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Table 2: Reaction zone growth rate for the diffusion
couple 84C/stainlesssteel1.4919 (AISI316) as
function of temperature (800 - 1200 °C).

Temperature Reaction zone ~rowth rate, x2/toe cm /sec

800 3.65 x 10-12

900 1.25 x 10-10

1000 2.48 x 10-9

1100 3.67 x 10-8

1200 3.62 x 10-7
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Table 3: Measured total reaction zone thickness for the
diffusion couple B4C1Zircaloy-4 as a function of
temperature and time.

Reaction
Specimen Temperature Time zoneoe h thickness

pm

86 800 6 4

87 800 25 10

88 800 100 18

89 800 500 52

90 900 6 5. 7

93 900 25 8
.. - -

92 900 100 15
- -

91 900 300 26

94 1000 6 10

95 1000 25 14
-

96 1000 100 26

97 1000 300 42

100 1100 6 16
-~

98 1100 25 20

101 1100 300 107
- ---~

102 1200 6 29

104 1200 25 51_.-
103 1200 100 77

106 1300 1.5 25

107 1300 6 39

108 1300 25 61
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Reaction
Specimen Temperature Time zoneoe h thickness

pm

112 1400 1.5 26

111 1400 6 42

113 1400 25 75

147 1500 0.083 13

148 1500 0.25 19

149 1500 0.50 23

118 1500 1 34

150 1600 0.083 145

151 1600 0.25 255

152 1600 0.50 342

153 1600 1 450
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Table 4: Reaction zone growth rate for the diffusion
couple B4C/Zircaloy-4 as function of
temperature (800 - 1600 Oe).

Temperature Reaction zone ~rowth rate, x2/toe cm Isec

800 1.11 x 10-11

900 6.61 x 10-12

1000 1.80 x 10-11

1100 1.01 x 10-10

1200 1.96xl0-10

1300 4.89xl0-10

1400 6.83xl0-10

1500 3.35 x 10-9

1600 6.13 x 10-7

Table 5: Growth rate equations for the diffusion couples
B4C/stainless steel 1.4919 (AISI 316) and B4C/Zircaloy-4.

Temperature Growth rate equation, x2/tReaction couple rangeoe cm2/sec

B4C/SS 1.4919 800 - 1200 oe 8.76 x 106 exp (- 378000/RT)

B4C/Zircaloy-4 800 - 1400 oe 4.15 x 10-6 exp (- 122650/RT)

B4C/Zircaloy-4 1500 - 1600 oe 7.94 x 1033 exp (- 1438300/RT)
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