

KERNFORSCHUNGSZENTRUM KARLSRUHE
Institut fur Datenverarbeitung in der Technik

KfK 4630

A FORMAL NET SPECIFICATION OF THE COMMUNICATION IN A

DISTRIBUTED COMPUTER SYSTEM

Horst Eggert

KERNFORSCHUNGSZENTRUM KARLSRUHE GmbH

Als Manuskript vervielfaltigt
Fur diesen Bericht behalten wir uns alle Rechte vor

Kernforschungszentrum Karlsruhe GmbH
Postfach 3640, 7500 Karlsruhe 1

ISSN 0303-4003

Abstract

The Petri Net Theory provides a method for the formal specification of concurrent systems (e.g.
distributed computer systems for diagnostic- and shutdown functions in Fast Reactors).

This method includes the verification/validation of the net specification about the causal behavior
of the modeled concurrent system.

Especially the Predicate/Transition Nets (most important class of high level nets) provide very
compact net specifications. Additionally, a Predicate/Transition Net can be described by different
levels of a system abstraction (for example in form of a net morphism).

So it is possible to describe a concurrent system in a formal manner and to validate its causal
behavior already during the design phase in the software live cycle. For example it can be shown,
that all global states of an application protocol do not include deadlocks and livelocks.

Formal net specifications and the results of their analysis raise the reliability of software systems
themselves and also the quality of the software documentation.

For the verification and documentation of net specifications computer tools are an absolute
necessity.

In our case the operating system UNIX* is available with a special Petri Net Tool PROVER
(PRedicate/Transition Net Oriented VERIification System).

In this environment a net specification was developed which provides a formal description of an
application protocol for a communication system. This communication system is the central part of
our distributed Fast Reactor Diagnostic System DESYRE (Diagnostic Expert SYstem for REactor
Surveillance). K

Zusammenfassung

Eine formale Netz Spezifikation zur Beschreibung der Kommunikation in einem verteilten
Rechnersystem

Die Petri Netz Theorie beschreibt eine Methode zur formalen Spezifikation nebenlaufiger Systeme
(z.B. verteilte Rechnersysteme zur Diagnose und zur Abschaltung in Schnellen Brutreaktoren).

Diese Methode enthilt Moglichkeiten zur Verifikation/Validation der Netzspezifikation in bezug
auf das kausale Verhalten des modellierten nebenldufigen Systems. Insbesondere die
Pradikat/Transitions Netze (eine sehr wichtige Klasse der hoheren Netze) unterstiitzen eine sehr
kompakte Netzspezifikation. Zusitzlich kénnen Priadikat/Transitions Netze verschiedene Ebenen
einer Systemabstraktion beschreiben (z.B. in Form eines Netz Morphismus).

Auf diese Weise ist es méglich, ein nebenldufiges System in einer formalen Art zu beschreiben und
die Validierung bereits widhrend der Entwurfsphase im Rahmen des Software Lebens Zyklus
vorzunehmen. Man kann z.B. zeigen, daf3 alle globalen Zustéinde des Applikations Protokolls keine
Verklemmungen (deadlocks, livelocks) enthalten.

Formale Netzspezifikationen sowie die Ergebnisse ihrer Analyse erhéhen die Zuverlédssigkeit von
Software Systemen und ebenfalls die Qualitit der Softwaredokumentation. Fiir die Verifikation
und Dokumentation von Netzspezifikationen sind rechnergestiitzte Werkzeuge unbedingt
notwendig.

In unserem Fall ist das Petri Netz Werkzeug PROVER (PRedicate/Transition Net Oriented
VERification System) unter dem Betriebssystem UNIX verfiighar.

In dieser Umgebung wurde eine Netzspezifikation erstellt, welche ein Applikationsprotokoll fir
ein Kommunikationssystem beschreibt. Dieses Kommunikationssystem ist ein zentraler Teil des
verteilten Diagnosesystems am Schnellen Briitter DESYRE (Diagnostic Expert SYstem for REactor
Surveillance).

* UNIX is atrademark of AT&T

Inhaltsverzeichnis

1.

3.2.1

3.2.2

4,

Introduction

Formal specifications with Petri Nets

Preliminary remarks

Place/Transition Nets

Predicate/Transition Nets

A part of a formally specified communication protocol
Modeling by stepwise refinement

The verification of the net model

The Petri Net Tool PROVER

The partial verification of the net model with PROVER

Conclusion

References

Page

13
13
14

18

1. Introduction

The Fast Reactor Diugnostic System DESYRE (Diagnostic Expert SYstem for REactor
Surveillance) [1], [2], {3],[4] is realized as a distributed on-line computer system.

The system includes a set of special detection computers (e.g. for the detection of acoustic noise and
temperature noise.)

These different detection systems use intelligent signal processing techniques to find out special
faults and anomalies and to make partial diagnoses in an early state.

The system also includes a process computer for immediate processing of raw data and an on-line
simulator for the simulation of faults.

Furthermore, the system contains a special LISP computer with an expert system for the inference
of the correlated predications of the detection computers and the process computer.

A test system [5] allows for the description and the generation of test data in the computer
network. Therefore, the inference of rules in the expert system can be casily tested with regards to

their logical consistency by application of such a test system.
Figure 1 illusirates the computer network in form of an informal Petri Net, (channel/instance net).

The communication between the different computers |6] within the seven levels of the ISO/OS!
communication model |'7] is realized with a local area network (IEEE 802.3/Ethernet) [8] and the
TCPIIP Protocol (Transmission Control Protocol/Internet Protocol) [9].

Figure 2 illustrates the ISO/OSI - seven layer reference model in form of a channel instance net.

The level seven (application protocol) of the ISO/OS] communication mode! is realized in the
following way:

- All above mentioned computers are used as clients in the computer network,
- anadditional computer, the data manager, is used as a server in the computer network.

Client

Expert_System I

data_request data_receive

Server

Data_Manager

preprocessed_
___________________________________ data_____|
___ dients_____|
|)
i Detection_ Detection_ Detection_ Detection_ Process_ on_line_ Test_ E
' System_1 System_2 System_3 System_4 Computer Simulator System)
i)
[S———— * ___ [PR
Stk sl { i S Eiideiteietsl fatabeiaiineieie ittty il daiateieidinll faliaCEN N
! 5 test_data_
S input

l Fast_Reactor_Process] l Operator

Figure 1: DESYRE: Distributed Expert SYstem for Reactor Surveilannce

Layer peer-protocol

Application “— ©< 4

Presentation P <:>< >

Session < ’Q‘ b

Transport < ’O"‘ >

Network < ’C)< >

Data Link < ’Q‘ >

Physical < '©‘ >

Figure 2: 1SO/OSI - seven layer reference modei and peer protocol

The data manager (server) receives preprocessed data from the detection computers and the process
computer (clients) and sends these data to the expert system (client) (see also figure 1).

Therefore the data manager provides the following abstract datatypes:

- FIFO (First In, First Out)
- RA (Random Access) for history data.

'_I‘he description of Lthis application protocol is already made before an implementation. It is realized
in formof a formal net specification with Predicate/Transition Nets.

Before presenting the method of Predicate/Transition Nets and the formal specification of the
application protocol a general idea about the structure of the communication between clients and
server shall be given.

Figure 3 represents this idea by an example of a File Transfer Protocol in form of a channcl/

instance net.
Client Server

e =

connection | b open - connection
request @ ~ v accept e
(JP T \
4 \
send 4——#@4-——» receive Q

connection close |
[t 4 B release
release parameter accept

Figure 3: Application Layer: a short form of a File I'vansfer Protocol

7

Cl ients can send open parameters Lo the server trying in this way to get conncetions inside the local
areanetwork.

If a client gets an available connection, it sends or receives data to/from the server via this
all ocated connection. After this procedure, the active client gives back the connection to the server
an d the server can allocate this connection for other clients,

2. Formal specifications with Petri Nets
2.® Preliminary remarks

The e functionality of concurrent systems (e.g. application protocols inside a distributed computer
Sy sstem) may not completely be verified by tests as the number of dynamic states in the system is
Loy large.

Theeefore it is not possible to validate concurrent systems by only using test procedures.
Pa_yticularly in case of the integration of computer applications in technical environments with
feaa tures of high safety (e.g. Fast Reactors) it is necessary to validate these computer applications
wi thregard to the requirements of their reliability.

Y(E«i:z'iﬁcation of the most critical part of systems - the concurrency - is possible before realizing the
Ime; plementation in form of a formal net specification.

Cose rpilation of the net specification and simulation of the dynamic behavior of the net (all global
sle= tes of the net) can be performed by application of a compuler tool.

After the simulation all global states of the net are described in the reachability graph.

Another part of the computer tool allows for the interpretation of the reachability graph concerning
deadlocks, livelocks and other failures of the design (for more information see chapter 3.2).

After validation of the formal net specification has been made the computerized automatic
generation of the real runtime system is desirable. This however will not be discussed in this
paper.

2.2 Place/Transition Nets

The Net Theory [10], [11] provides a method for the description of processes (the dynamic behavior
ol systems).

ifere an axiomatic approach Lo the description of the information flow is made, assuming that the
description of real processes is causal and does not include the arrangement into a time scheme.
Without any theory the figure 4 mediates an idea about place/transition nets.

Mg (Initial Marking)

N= (S, T,F)
l- : 54 53
L Flow Relation »
Transition Input > Oplutput
aces
Places Places
S ={51,52,53.54} Firing Rule: - Stand S puts a token
T={t}} - Szand S4 gets a token

Fo={(sq,t))ds2,t9)(ty,53),(ty,54)} ' '

A4

M (Following Marking)

Marking of the Net N:

M:Si»NU{0}

Figure 4: A Place/Transition Net

The static part of a net N includes sets of places (described as cycles in figure 4), sels of transitions
(described as rectangles in figure 4) and a flow relation (described as ares in figure 4).

We distinguish between input places and output places of a transition.

The dynamic part of a net N is described as (okens which means that the sets of places are mapped
into the natural numbers.

The firing rule of place/transition nets implies that input places put a token and output places get a
token. The first dynamic state in a net N is named initial marking.

A gencralization of the firing rule is possible with the multiplicity of ares and the capacity of
pluces.

The multiplicity of ares is defined as the "number” of tokens leaving the input places and arriving
at the output places of a firing transition.

For the safety of nets the capacity of a place is necessary.

An example is given in figure 5.

5
Generalization of the Firing Rule

- Multiplicity of Arcs

- Capacity of Places (K)

Example:
S2

1]
(%2}

t 2 K

-
3
B
8 1 S3

=
it

~
i
N

)

52

S1 3 1 K
g in
«=2
—
Contact

A~

i
1}
[%2 4

An Upperbound of the Capacity of a Place
is necessary for the Safety of Nets

Figure 5: Generalization of the Firing Rule

Deadloc.k

Example:

S2 t2

Example:

Q

]
O— :

Figure 6: Deadlock and Livelock

Finally, a simple example of failures of the system design (see also chapter 2.1) will be shown.

Figure 6 illustrates a simple deadlock and a simple livelock.

Every real system working failure-free produces cyclical processes and not only one process step.
This example describes the simpliest form of a deadlock.

Considering the example of a livelock the transition t; can make exactly one firing step and as a
resull the transition ty can make infinite firing steps. This demonstrates the simpliest form of a
livelock.

2.3 Predicate/T'ransition Nets

For the description of extensive systems the place/transition nets discussed above are not
sufficiently powerful because of the simple mapping of places into natural numbers and the simple
firing rule in particular.

Much more powerful are the predicate/transition nets (high level petri nets) (12]. In the following
these nets will be discussed without making any [urther remarks on the theory.
A partial formal overview is illustrated in figure 7.

Zg = (2%)

R=(D, F, P)

Predicates
Functions (Operations) sets

Individuals

I=(N, A, K, Mp)

N=(S, T F) —-——l
Initial Marking (of Places)
Capacity (of Places)

Annotation {of the Net)

Flow Relation

Transitions sets

Places

Figure 7: A partial Definition of Predicate / Transition Nets

Predicate/Transition nets consist of syntactical and semantical extensions of place/transition nets.
The syntactical extension means the annotation of the net. The initial marking and the capacily
has been already discussed in chapter 2.2,

The semantical extension implies the possibility to define individual tokens and their handling in
the net. These individual tokens can be built from sets of individuals.

[urthermore, places can be mapped into predicates so that a scmantical relationship exists
between individual tokens, predicates and functions.

An example for the illustration of this abstraction is shown in figure 8 depicting the relationship
between the formalism of predicate/transition nets which we already have discussed before and a
simple application with only one place, one transition and the flow relation with two elements (two
arcs).

This application describes the communication protocol on the highest possible level of the clients
and the server inside the system DESYRE (see chapter 1).

Lop =

3
i
|
I
I
I
!
]
]
t
I

I
i I

!
N=(ST,F :
! ’ '
]
Fo={{sy,ty),0ty,59)} : I :

|
I

]
(t1,59) 1= | Ag({ty,59)) = <dlikey,cmd,con> :
(sq.ty) 1= ll A ((s4,4)) = <clikey,cmd,con > !
T={ti} ety > jAp(t]) = true :
S ={s5¢} Sy i Il Py (Client,Key,Command,Connection) !
. l
L [
s‘l ‘1 ___ .

Figure 8: A Predicate/Transition Netin a Formal Form
The individuals in the union set D were defined as follows:

First subset of D:
- DS_1(detection System 1)
- EXPERT_SYS (Expert System)

Second subset of D:
- AN (Acoustic Nuise)
- INFERE (Inference)

Third subset of D:
- READ (receive)
- WRITE (transmit)

Fourth subset of D:
- CON_1 (Connection 1)

Based on these individuals we have built the two individual tokens <DS_1, AN, WRITIE, CON
1> and <EXPERT SYS, INFERE, READ, CON_1> which are used {or the initial marking of the
netin form of a formal sum.

Furthermore, the predicate Py of the place Sy is defined.
P1 has the following meaning:

Some clients (e.g. Delection System 1, Expert System) using keys (e.g. Acoustic Noise, Inference)
and the command (READ or WRITE) receive or transmil from/to the server via the symbolic
connection CON _1 inside Lhe local area network.

In this example the set of functions is empty and the capacily of s is 2.
The remaining will be easy to understand.

The flow relation (from the place to Lthe transition and reverse) is described by the variables <cli,

key, emd, con >,
There is a direct association between the variables, the predicate Py and the individual tokens,

The annotation of the transition is true (logical formula) and does not include any further
conditions in this case.

Figure 9 shows the same net representing the graphical elements of place/transition nets in a more
visual form.

sy I» P4(Client,Key,Command,Connection)

T T~ Ap((sy,t4)) = ty

Mofs) = <cli,key,cmd,con>

<DS_1,AN,WRITE,CON 1>
+ <EXPERT_SYS,INFERE,READ,CON 1> A ((ty,5)) = Arlty) = true
<cli,key,cmd,con>

_——/
K(S1) = 2

Figure 9: A PPredicaie/ Transition Neiin a Visual Form
The dynamic behavior of this net may as well be easily understood.

The reachability graph of the net which represents the dynamic behavior of the net includes only
one node because all the following markings are exactly the same as the initial marking.

IL is trivial that the node of the graph builds only one strongly connected component (SCC). That
means that there is a mutual reachability of all markings in the net,

”Only one SCC” permits the interpretation that no deadlocks and no livelocks occurred and that a
correction of the system design is not necessary.

On such a very high level of a model abstraction a view of single steps of the communication
protocol of DESYRE is not possible and it should suffice here to understand the principles of
predicate/transition nets,

In the next chapter we will try to give a more detailed view of the stepwise development of the
communication protocol with predicate/transition nets.

3. A part of a formally specified communication protocol

3.1 Modeling by stepwise refinement

Designing a system in only one step is not possible. This would not be a good style of engineering
and lead to unconditionally bad system designs which as a result produce unreliable systems.

The methods of structured programming [13] and stepwise refinement [14] teach us a good style of
programming design and can be easily transferred into the context of the system design with nets.

The net specification of the application protocol consists two principles of software engineering:
- stepwise refinement of nets (net morphism),
- embedding of nets in other nels (net morphism),

Based on these principles a large net specification can be subdivided into a sct of several consistent
netl parts,

The deseription of the nel parts by different steps is more comfortable than the description of the
whole net in only one step hecause the number of nodes and ares in a single net part can be handled
much easier.

Accordingly, the verification of the net parts in small steps is much easier than the verification of
the whole net in only one step because the number of all dynamical states (reachability graph) in a
single part is not so large.

In this way the description itself of the net specification and the verification of such a net
specification (all causal behaviors of the whole application protocol) is possible.

Figure 10 illustrates a formal form of system engineering steps of the communication protocol of
DESYRE.

Livery node ¥ in the graph stands for a symbolic name of a net and every arc ¢ in the graph is a
symbol for a refinement step or an embedding step (a special refinement step) of a net.

Refinements and embeddings of nets are homomorphisms [15].

This means the following: An association between two objects ¢ and b (in this case the nets a and b)
is called morphism. If a and b have algebraic structures (predicate/transition nets include such a
structure) and the association between the algebraic structures of a and b is compatible, then the
morphism is called homomorphism.

Because of the large amount of steps and relinements only the nets 20 until X6 and Xa of figure 10
will be discussed here.
The dynamic aspects of the nets will not be considered now but will be discussed in chapter 3.2.

%43
betd as |P4243
Sc nd D42
$d142
n41 250
$4041 W \&1)950

232 240 Ze
b3z
%6 v fossss_—Fite
a6 Sh 231

456 fq,aosl
Xa 5 %30
o5 $1030 / \¢2030
£10 £20

dij : Ti — Xj

po1
Z0
Figure 10: Graph of Stepwise Refinement and Embedding

IMigure 11 illustrates the net X0 which has been discussed in chapter 2.3.

We already know the annotation of the flow relation by variables.

The place has the symbolic name client_message_connection, the transition has the symbolic name
transmitter_receiver, We assume the annotation of the transition in the form true (in any other
cases, if a transition has only the symbolic name and no further annotation, this assumption will be
made).

The first step of refinement generates the net X1, This is illustrated in figure 12.

10

<cli,key,cmd,con>

transmitter_receiver

client mes j .
' _me sage_connect/onl <clikey,cmd,con>

Figure 11: The net X0

client_message_connection

client_message

<cli,key,cmd>

<di,key,cmd >

transmitter_receiver

Figure 12: The net X1

We split the place client_message_connection into the two places elient_message and connection.
The flow relation is split as well, depending on the protocol semantic and the topology of the net.
Another representation of the net £1 is shown in figure 13,

<cli,key,emd >

connection

client_message <dlikeycmd> |fransmitter_receiver <cons

Figure 13: The net X1

Here exactly the same net is discussed but the overall idea of the client/server system gets more
clear, The transition transmitter_receiver includes the activities of the server and on this level of
model abstraction we can see that the server provides connections for the clients.

Now let us consider the next step of refinement which is presented in figure 14.

In the net £2 the place client_message is split into the two places client and message and the flow
relation as well. This nel provides more information about the clients showing the client as object
and its message.

The next step of refinement is presented in figure 15.

The net £3 provides more detailed information about the transition transmitler_receiver because
of its splitting into the two transitions open_accept and send_receive_close.

Clients get connections and leave connections. In which way the clients send and receive messages
will not be discussed more concretely in this paper.

Let us consider the next step of refinement giving more information about the connection handling
in the communication protocol.

11

client_message

<con> /_\
| transmitter_recelver - con (w

<cli,key,cmd>

<cli,key,cmd>

Figure 14: The net ©2

client_message transmitter_receiver

open_accept

<cli,con>

open_accept_succ

<cli,con>

<cli,key,cmd >

- send_receive_close
<dikey,emd>

1
|
v
'
v
I
)
v
'
'
i
)
V
I
¢

Figure 15: The net 23
Fi gure 16 presents additional information about the open of the client and the accept of the server.

Thae refinement step of the net £4 includes the refinement of the transition open_accept and the
re finement of the place open_accept_suce in parallel,
This net clearly represents the separation of clients and server.

Fi gure 17 shows the next step of refinement by splitting the place accept_suce in the net ¥4 into
th etwo places state_con and con_suce.

Tre refinement step in the net X5 is a suitable step for error handling if there is no connection
av-ailable in the system.
IT 4 client dces not get a connection it cannot send or receive a message so that closing of this ciient
weonld be of no purpose.,

Fcor a systematic interruption of the protocol procedure we define an additional transition
er ror_empty_con with the condition if con=EMPTY_CON and, subsequently an c¢cmbedding (a
sp=ecial step of refinement) of Lhis Lransition in the net £5 will be designed .

Tt—e embedded net has the symbolic name a (see also figure 10) presented in Figure 18,

12

transmitter_recéiver

RSOOSR o b5 Ak b
client message !

1

)

b mmmemmmmmm e mmm e

|

)

: t

: accep

|

|

I

S OO RN P

|

|

! .

: <cli,con> <con>

|

] |

| |

1 i

I

iopenaceptsuec Lo

b N

I Y

H \

! |

! accept_succ i

: 1

| /

i /

! el <con>

UM U U !

: <cli,con> /

|
I |
send_receive_close

Figure 16: The net 24

transmitter_receiver

___ s
!
|
i

... “ 1
! |
! |
<cli>, ; :
open accept ! !
:)
h |
! !
4 |
) \

<di,con> <con> i <con>
|
|
)
I
)
;
|
i

""""""""""""""""""""""""""""" H connection

___________________________ i
)
1
|
open_succ :
!
|
|

___ | <con>
;
]
)
j
|
|
1
|
|
|
1
|
|
i
___)

ne Al .l
Figure 17: The net £5
<cli>
. error_empty con
if con = EMPTY_CON
<con>
<con>
<cli> <cli,con>

e @

Figure 18: The net Za

Figure 19 shows the net 6.
This net includes error handling of unavailable connections in the communication system.

13

transmitter_receiver

client_message

client

\ error_empty con
! ifcon =EMPTY_CON

<cli>

connection

|
!
i <cli,key,cmd >
]
! message /4 <CIREy,cmd>
\\\ I/

.

Figure 19: The net X6

At this point we will leave the engineering step of stepwise refinement and embedding. It should be
enough for the suggestion of ideas about the modeling method with predicate/transition nets.

In the next chaptler a presentation of a partial computerized verification of the net 26 will be given.

3.2 The verification of the net model
3.2.1 The Petri Net T'ool PROVER
The actual version of the Petri Net tool PROVER (PRedicate/Transition Net Oriented

VERification System) includes three operating modules (16].

IPigure 20 illustrates the structure.

» =
5 Modification |~ Net Model
¥
v
PDLC

Petri Net Compiler

Internal
Net Description

v

RGG
Runtime Reachability Graph
Error Generator

Reachability Graph
SCC

Strongly Connected
Component:

A4
RGI
_|Reachability Graph
Interpreter

Figure 20: Internal Structure of the Petri Net Tool PROVER

14

(1) The Petri Net Compiler (PDLC) translates a net model which is described in the PDL
(predicate/transition net description language). Syntactical errors and an internal net
description will be generated.

(2) Based on the internal net description and the initial marking the Reachability Graph
Generator (RGG) generates the complete reachability graph.

- . . e .
(3) The Reachability Graph Interpreter (RGS) applicates a number of different methods for the
1 (R ; H) 5 : I : .
reachability analysis. The most important melhod is the analysis of deadlocks and livelocks.

For more information see [16].

3.2.2 The partial verification of the net model with PROVER

First of all the net model in the PDL has to be described. The PDL representation of the net model
26 (sec figure 19) is demonstrated in the lollowing.

petrinet sigma_6;
const max_cli = 8;
max_con = 8;
var cli: (ps_1, DS_2, DS_3, DS_4, PROCESS_COMP, TEST_SYS, ON_LINE_ SIM,
EXPERT_SYS) ;
key: (AN, DN, FT, CM, TN, TMFI, PRIM_PUMP, INFERE, EMPTY KEY);
cmd: (READ, WRITE);
con: {CON_1, CON 2, CON_3, CON_4, CON_5, CON_6, CON_7, CON_8,
EMPTY_CON);
place client (max_cli) rclients enters the system’;
message (max_cli) '‘messages of the clients’;
client_open (max_cli) fclient send open’;
open_succ {max_cli) fopen ls successful’;
state_con (max_cli) *state of connectlions’;
con_succ (max_con) r connection successful’;
connection {max_con) ’connections of the system’;
trans open ‘open of the system’;
accept raccept of the system’;
error_empty_con if con = EMPTY CON ‘error no connection available’;
send_receive_close ’send_recelve_close of the system’;
flow open < client (<cli>)
> client_open(<ecli>), open_succ {<cli>);
accept < cllient_open{<cli>}, connection(<con>)
> state_con(<cli,con>), con_succ(<con>);
error_empty_con’ < open_succ (<eli>), state_con{<cli, con>),
con_succ (<con>)
> client (<cli>), connection{<con>);
send_receive_close - < open_succ (<cli>), state_con(<cli,con>},
con_succ (<con>), message (<cli, key, cmd>)
> message (<cli, key, cmd>}, client (<cli>),
connection{<con>);
mark = client: <DS_1>+<EXPERT_SYS>;
nessage: <DS_1, AN, WRITE>+<EXPERT_SYS, INFERE, READ>;
connection: <CON_1>+<EMPTY_CON>;

endnet

16

Any further remarks on this PDL will not be interesting as the syntactical structure ol this code is
very simple (for more information see [16}) and the semantical structure of the net has already
been discussed in chapter 3.1.

Just aremark on the initial murking of the net will be necessary.

The last part of the PDL representation of the net £6 is mark (that means the initial marking of the
net 26).

In the place client there are two individual tokens in form of a formal sum,

<DS_1>+ <EXPERT _SYS>.

The place message also includes two individual tokens in form of a formal sum,

<DS_1, AN, WRITE > + <EXPERT_SYS, INFERE, READ >,

The place connection includes two individual tokens in form of a formal sum,

<CON_1> + <EMPTY _CON>.

That means that the detection system 1 tries to write (transmit) the results of its deteetion method
"acoustic noise” Lo the server via the symbolic connection CON _1.

And that means also that the expert system tries to read (receive) the results from the server via
the symbolic connection CON _1, too.

These processes are concurrent on the shared resource CON 1,

The symbolic connection EMPTY_CON simulates the error handling (see chapter 3.1). In fact,
much more concurrency and shared resources exist in the net model but we will not consider these
features on this level of model abstraction,

Now let us call the net compiler PDLC with the following input:
pdle sigma 6

The net compiler provides the following vutput:

PDL compilation summary : No errors reported
Number of objects found, assorted by type:

4 varlables
28 values
0 functions
7 places
4 transitions
0 facts

in predicate/transition net SIGMA 6

16

After the compilation of the net 26 has been done we call the reachability graph generator RGG
with the following input:
rgg -msigma_6

The reachability graph generator provides the following output:

Reading PRT net model ...done. .
Bullding reachability graph. One dot = 12 markings.
. done,

Writing reachability graph ...done,

Reachability graph has 14 nodes in 1 strongly connected components

By making the following input our dialog is transferred into the rgi subsystem:
rgi sigma_6

The rgi subsystem provides the following output and stops with the prompt rgi>.

Reading reachability graph ... done
Building strong component graph ... done
Calculating transition dynamics ,.. done
Calculating graph statistics ... done
rgi>

Now we are in the rgi subsystem and we seleet a subset of questions about the reachability graph of
the net X6 with its initial marking which we discussed before.

rgi> show statlistics

.

Number of variables

of values : 28

of places 7

--"~- dead 0

of transitions 4

—="-~ dead 0

of overflows 0

of facts H 0

of false facts : 0

of graph nodes : 14

of graph arcs : 38

of SCCs H 1
Mean rel., place density % (places / marking) : 74,5
Mean token density (tokens / place) : 1.4
Mean attribute density {attributes / token) 1.6

As all the questions are answered positively by the reachability graph interpreter RGI it has been
proved that the net X6 is free of any design failures.
For more information about design fuilures see [16].

rgi> show places

17

Places :
1. place : CLIENT
semantics : clients enters the system
arity : 1
capacity : 8
max. tokens: 2
2. place : MESSAGE
semantics : messages of the clients
arity : 3
capacity 8
max. tokens: 2
3. place : CLIENT_OPEN
semantics : client send open
arity : 1
capacity : 8
max. tokens: 2
4. place : OPEN_SUCC
semantics open is successful
arity 1
max. tokens: 2
5. place : STATE_CON
semantics : state of connectlons
arity : 2
capacity : 8
max. tokens: 2
6. place : CON_succC
semantics : connection successful
arity : 1
capacity 8
max. tokens: 2
7. place : CONNECTION
semantics : connectlions of the system
arity : 1
capacity : 8
max. tokens: 2

Variables :

1. variable :
range H
2. variable
range :
3. variable :
range :
4, variable
range :

AN, DN, FT,

rgi> show variables

CLI

pDS_1, DS_2, DS_3, DS_4, PROCESS_COMP, TEST_ SYS,
ON_LINE_SIM, EXPERT SYS -
KEY

A, CM, TN, TMFI, PRIM_PUMP, INFERE, EMPTY KEY
READ, WRITE

CON

CON_1, CON_2, CON_3, CON_4, CON_5, CON_6, CON_7, CON_8,
EMPTY CON - B B

18

rgi> show transitions
Transitions :

1. transition : OPEN (infinltely-firable, strongly-live & falr)
semantics : open of the system

2. transition ¢ ACCEPT (infinitely-firable, strongly-live & fair)

semantics : accept of the system
3., transition : ERROR_EMPTY CON (infinitely-firable, strongly-live & fair)
semantics : error no connection available

4. transition ¢ SEND_RECEIVE CLOSE (infinitely-firable, strongly-live & fair)
semantics i send_receive_close of the system

rgi> show deads
The dead places : none.

The dead transitions : none,

rgi> find livelocks

The livelocks : none.

We leave the Reachability Graph Interpreter with the command quit.

rgi> quit

4, Conclusion

Formal net specifications and the results of their analysis raise the reliability of software systems
themselves and also the quality of the software documentation.

In the future it may be necessary in West Germany to use formal net specifications and their
verification/validation for licence procedures of the TUV (Technischer Uberwachungs Verein) in
case of the integration of computer applications in the Fast Reactor and other technical
environments with features of high safety.

Concerning the further development of the Petri Netl tool PROVER we are currently working on
the following components:

- graphical net editor with a better PDIL representation and semantical features on
homomorphism

- implementation of further possibilities of interpretation of the reachability graph.

We hope that for the future it will be possible to connect the Petri Net method with methods of
algebraic specifications for algorithms,

19

This will be the basic assumption for the generation of real computer systems by formal system
specifications.

References

(1] EGGERT, ., Ein Entwicklungskonzept [iir ein Stérfall-Diagnosesystem,
unpublished report, Kernforschungszentrum Karlsruhe, (1986)

2] EGGERT, H., KELLNER, A, MASSIER, H., SCHADE, Il.J,
SCHLEISIEK, K., SCHRODER, R., Diagnosesystem zur Kerntber-
wachung von schnellen Brutreaktoren, unpublished report,
Kernforschungszentrum Karlsruhe, (1986)

(3] EGGERT, H., SCHERER, K.P,, KELBASSA, H.W, STILLER, P,
DUPMEIER, C. "Ein wissensbasiertes, verteiltes Rechnersystem zur
IFehlerdiagnose am Schnellen Briter, Informatik-Fachberichte Ni. 167,
Springer Verlag, Berlin, Heidelberg, New York (1988), 749-761

(4] EGGERT, H., SCHHERER, K.P., STILLER, P., ”A knowledge-based on-
line diagnostic system for the [fast Breeder Reactor KNK 17,
International Atomic Energy Agency, Specialists' Meeting on Advanced
Control for Fast Reactors, Argonne, USA (1989)

(5] , DUPMEIER, C., EGGERT, H., Ein Testsystemprototyp unter UNIX fiir
das Diagnosesystem am Schnellen Brater, unpublished report,
Kernforschungszentrum Karlsruhe, (1987)

[6] RUDOLPIL, G., ROHNACHER, P., Realisicrungskonzept fur das
Kommunikationsgesamtsystem, unpublished report, Kernforschungs-
zentrum Karlsruhe, (1987)

(7] ISO 7498, OSI - Open Systems Interconnection - Basic Reference Model
{1984)

(8] ' IEEE Project 802, Local Area Network Standards, Draft IEELS 802.3 -
CSMA/CD Access Method and Physical Specifications, Revision 1) (1982)

(91 COMER, D. K., Internetworking With TCP/IP, Principles, Protocols, and
Architecture, Prentice-Hall International, Inc., Englewood Cliffs, New
Jersey,(1988)

[10] PETRI, C.A,, "Concepts of Net Theory”, Proc. Symp. on Math. Found, of
Computer Science, High Tatras (1973)

[11} REISIG, W., Petri-Netze, Eine Einftihrung, Springer Verlag, Berlin,
Heidelberg, New York (1982)

[12] GENRICII, H.J., LAUTENBACLH, K., System Modelling with High-Level
Petri Nets, Theoretical Computer Science 13, North Holland Publishing
Company (1981) 109-136

|13} DAHL, O.-J., DIMJKSTRA, E.W, HOARE, C.AR. Structured
Programming, Academic Press, London and New York (1972)

[14] . WIRTH, N., Program Development by Stepwise Relinement, CACM, Vol.

14, No. 4, April 1971

[15]

[16]

20

EGGERT, H., "Eine Anwendung von Petri-Netzen fiir eine partielle Pro-
zelbeschreibung und deren Abbildung auf Echtzeitelemente von
PEARL”, Vom [Fachbereich Informatik der Technischen Universitat
Berlin genehmigte Dissertation, (1978)

LESZAK, M., EGGERT, H. Petri-Netz-Methoden und -Werkzeuge, Hilfs-
mittel zur Entwurfsspezifikation und -validation von Rechensystemen,
Informatik-Fachberichte Nr. 197, Springer Verlag, Berlin, Heidelberg,
New York, 1989

